2015-06-25 Zhouyi Zhou <yizhouzhou@ict.ac.cn>
[official-gcc.git] / gcc / regs.h
blob8088d681f1ae3363ed89faf73c5bdd667c01a73a
1 /* Define per-register tables for data flow info and register allocation.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_REGS_H
21 #define GCC_REGS_H
23 #include "hard-reg-set.h"
24 #include "rtl.h"
26 #define REG_BYTES(R) mode_size[(int) GET_MODE (R)]
28 /* When you only have the mode of a pseudo register before it has a hard
29 register chosen for it, this reports the size of each hard register
30 a pseudo in such a mode would get allocated to. A target may
31 override this. */
33 #ifndef REGMODE_NATURAL_SIZE
34 #define REGMODE_NATURAL_SIZE(MODE) UNITS_PER_WORD
35 #endif
37 /* Maximum register number used in this function, plus one. */
39 extern int max_regno;
41 /* REG_N_REFS and REG_N_SETS are initialized by a call to
42 regstat_init_n_sets_and_refs from the current values of
43 DF_REG_DEF_COUNT and DF_REG_USE_COUNT. REG_N_REFS and REG_N_SETS
44 should only be used if a pass need to change these values in some
45 magical way or the pass needs to have accurate values for these
46 and is not using incremental df scanning.
48 At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
49 should be made to regstat_free_n_sets_and_refs.
51 Local alloc seems to play pretty loose with these values.
52 REG_N_REFS is set to 0 if the register is used in an asm.
53 Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
54 REG_N_SETS for three address insns. Other passes seem to have
55 other special values. */
59 /* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */
61 struct regstat_n_sets_and_refs_t
63 int sets; /* # of times (REG n) is set */
64 int refs; /* # of times (REG n) is used or set */
67 extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;
69 /* Indexed by n, gives number of times (REG n) is used or set. */
70 static inline int
71 REG_N_REFS (int regno)
73 return regstat_n_sets_and_refs[regno].refs;
76 /* Indexed by n, gives number of times (REG n) is used or set. */
77 #define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
78 #define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)
80 /* Indexed by n, gives number of times (REG n) is set. */
81 static inline int
82 REG_N_SETS (int regno)
84 return regstat_n_sets_and_refs[regno].sets;
87 /* Indexed by n, gives number of times (REG n) is set. */
88 #define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
89 #define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)
91 /* Given a REG, return TRUE if the reg is a PARM_DECL, FALSE otherwise. */
92 extern bool reg_is_parm_p (rtx);
94 /* Functions defined in regstat.c. */
95 extern void regstat_init_n_sets_and_refs (void);
96 extern void regstat_free_n_sets_and_refs (void);
97 extern void regstat_compute_ri (void);
98 extern void regstat_free_ri (void);
99 extern bitmap regstat_get_setjmp_crosses (void);
100 extern void regstat_compute_calls_crossed (void);
101 extern void regstat_free_calls_crossed (void);
102 extern void dump_reg_info (FILE *);
104 /* Register information indexed by register number. This structure is
105 initialized by calling regstat_compute_ri and is destroyed by
106 calling regstat_free_ri. */
107 struct reg_info_t
109 int freq; /* # estimated frequency (REG n) is used or set */
110 int deaths; /* # of times (REG n) dies */
111 int live_length; /* # of instructions (REG n) is live */
112 int calls_crossed; /* # of calls (REG n) is live across */
113 int freq_calls_crossed; /* # estimated frequency (REG n) crosses call */
114 int throw_calls_crossed; /* # of calls that may throw (REG n) is live across */
115 int basic_block; /* # of basic blocks (REG n) is used in */
118 extern struct reg_info_t *reg_info_p;
120 /* The number allocated elements of reg_info_p. */
121 extern size_t reg_info_p_size;
123 /* Estimate frequency of references to register N. */
125 #define REG_FREQ(N) (reg_info_p[N].freq)
127 /* The weights for each insn varies from 0 to REG_FREQ_BASE.
128 This constant does not need to be high, as in infrequently executed
129 regions we want to count instructions equivalently to optimize for
130 size instead of speed. */
131 #define REG_FREQ_MAX 1000
133 /* Compute register frequency from the BB frequency. When optimizing for size,
134 or profile driven feedback is available and the function is never executed,
135 frequency is always equivalent. Otherwise rescale the basic block
136 frequency. */
137 #define REG_FREQ_FROM_BB(bb) (optimize_function_for_size_p (cfun) \
138 ? REG_FREQ_MAX \
139 : ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
140 ? ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
141 : 1)
143 /* Indexed by N, gives number of insns in which register N dies.
144 Note that if register N is live around loops, it can die
145 in transitions between basic blocks, and that is not counted here.
146 So this is only a reliable indicator of how many regions of life there are
147 for registers that are contained in one basic block. */
149 #define REG_N_DEATHS(N) (reg_info_p[N].deaths)
151 /* Get the number of consecutive words required to hold pseudo-reg N. */
153 #define PSEUDO_REGNO_SIZE(N) \
154 ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1) \
155 / UNITS_PER_WORD)
157 /* Get the number of bytes required to hold pseudo-reg N. */
159 #define PSEUDO_REGNO_BYTES(N) \
160 GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))
162 /* Get the machine mode of pseudo-reg N. */
164 #define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])
166 /* Indexed by N, gives number of CALL_INSNS across which (REG n) is live. */
168 #define REG_N_CALLS_CROSSED(N) (reg_info_p[N].calls_crossed)
169 #define REG_FREQ_CALLS_CROSSED(N) (reg_info_p[N].freq_calls_crossed)
171 /* Indexed by N, gives number of CALL_INSNS that may throw, across which
172 (REG n) is live. */
174 #define REG_N_THROWING_CALLS_CROSSED(N) (reg_info_p[N].throw_calls_crossed)
176 /* Total number of instructions at which (REG n) is live.
178 This is set in regstat.c whenever register info is requested and
179 remains valid for the rest of the compilation of the function; it is
180 used to control register allocation. The larger this is, the less
181 priority (REG n) gets for allocation in a hard register (in IRA in
182 priority-coloring mode).
184 Negative values are special: -1 is used to mark a pseudo reg that
185 should not be allocated to a hard register, because it crosses a
186 setjmp call. */
188 #define REG_LIVE_LENGTH(N) (reg_info_p[N].live_length)
190 /* Indexed by n, gives number of basic block that (REG n) is used in.
191 If the value is REG_BLOCK_GLOBAL (-1),
192 it means (REG n) is used in more than one basic block.
193 REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
194 This information remains valid for the rest of the compilation
195 of the current function; it is used to control register allocation. */
197 #define REG_BLOCK_UNKNOWN 0
198 #define REG_BLOCK_GLOBAL -1
200 #define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
202 /* Vector of substitutions of register numbers,
203 used to map pseudo regs into hardware regs.
205 This can't be folded into reg_n_info without changing all of the
206 machine dependent directories, since the reload functions
207 in the machine dependent files access it. */
209 extern short *reg_renumber;
211 /* Flag set by local-alloc or global-alloc if they decide to allocate
212 something in a call-clobbered register. */
214 extern int caller_save_needed;
216 /* Select a register mode required for caller save of hard regno REGNO. */
217 #ifndef HARD_REGNO_CALLER_SAVE_MODE
218 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
219 choose_hard_reg_mode (REGNO, NREGS, false)
220 #endif
222 /* Registers that get partially clobbered by a call in a given mode.
223 These must not be call used registers. */
224 #ifndef HARD_REGNO_CALL_PART_CLOBBERED
225 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) 0
226 #endif
228 /* Target-dependent globals. */
229 struct target_regs {
230 /* For each starting hard register, the number of consecutive hard
231 registers that a given machine mode occupies. */
232 unsigned char x_hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
234 /* For each hard register, the widest mode object that it can contain.
235 This will be a MODE_INT mode if the register can hold integers. Otherwise
236 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
237 register. */
238 machine_mode x_reg_raw_mode[FIRST_PSEUDO_REGISTER];
240 /* Vector indexed by machine mode saying whether there are regs of
241 that mode. */
242 bool x_have_regs_of_mode[MAX_MACHINE_MODE];
244 /* 1 if the corresponding class contains a register of the given mode. */
245 char x_contains_reg_of_mode[N_REG_CLASSES][MAX_MACHINE_MODE];
247 /* Record for each mode whether we can move a register directly to or
248 from an object of that mode in memory. If we can't, we won't try
249 to use that mode directly when accessing a field of that mode. */
250 char x_direct_load[NUM_MACHINE_MODES];
251 char x_direct_store[NUM_MACHINE_MODES];
253 /* Record for each mode whether we can float-extend from memory. */
254 bool x_float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
257 extern struct target_regs default_target_regs;
258 #if SWITCHABLE_TARGET
259 extern struct target_regs *this_target_regs;
260 #else
261 #define this_target_regs (&default_target_regs)
262 #endif
264 #define hard_regno_nregs \
265 (this_target_regs->x_hard_regno_nregs)
266 #define reg_raw_mode \
267 (this_target_regs->x_reg_raw_mode)
268 #define have_regs_of_mode \
269 (this_target_regs->x_have_regs_of_mode)
270 #define contains_reg_of_mode \
271 (this_target_regs->x_contains_reg_of_mode)
272 #define direct_load \
273 (this_target_regs->x_direct_load)
274 #define direct_store \
275 (this_target_regs->x_direct_store)
276 #define float_extend_from_mem \
277 (this_target_regs->x_float_extend_from_mem)
279 /* Return an exclusive upper bound on the registers occupied by hard
280 register (reg:MODE REGNO). */
282 static inline unsigned int
283 end_hard_regno (machine_mode mode, unsigned int regno)
285 return regno + hard_regno_nregs[regno][(int) mode];
288 /* Add to REGS all the registers required to store a value of mode MODE
289 in register REGNO. */
291 static inline void
292 add_to_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
293 unsigned int regno)
295 unsigned int end_regno;
297 end_regno = end_hard_regno (mode, regno);
299 SET_HARD_REG_BIT (*regs, regno);
300 while (++regno < end_regno);
303 /* Likewise, but remove the registers. */
305 static inline void
306 remove_from_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
307 unsigned int regno)
309 unsigned int end_regno;
311 end_regno = end_hard_regno (mode, regno);
313 CLEAR_HARD_REG_BIT (*regs, regno);
314 while (++regno < end_regno);
317 /* Return true if REGS contains the whole of (reg:MODE REGNO). */
319 static inline bool
320 in_hard_reg_set_p (const HARD_REG_SET regs, machine_mode mode,
321 unsigned int regno)
323 unsigned int end_regno;
325 gcc_assert (HARD_REGISTER_NUM_P (regno));
327 if (!TEST_HARD_REG_BIT (regs, regno))
328 return false;
330 end_regno = end_hard_regno (mode, regno);
332 if (!HARD_REGISTER_NUM_P (end_regno - 1))
333 return false;
335 while (++regno < end_regno)
336 if (!TEST_HARD_REG_BIT (regs, regno))
337 return false;
339 return true;
342 /* Return true if (reg:MODE REGNO) includes an element of REGS. */
344 static inline bool
345 overlaps_hard_reg_set_p (const HARD_REG_SET regs, machine_mode mode,
346 unsigned int regno)
348 unsigned int end_regno;
350 if (TEST_HARD_REG_BIT (regs, regno))
351 return true;
353 end_regno = end_hard_regno (mode, regno);
354 while (++regno < end_regno)
355 if (TEST_HARD_REG_BIT (regs, regno))
356 return true;
358 return false;
361 /* Like add_to_hard_reg_set, but use a REGNO/NREGS range instead of
362 REGNO and MODE. */
364 static inline void
365 add_range_to_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
366 int nregs)
368 while (nregs-- > 0)
369 SET_HARD_REG_BIT (*regs, regno + nregs);
372 /* Likewise, but remove the registers. */
374 static inline void
375 remove_range_from_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
376 int nregs)
378 while (nregs-- > 0)
379 CLEAR_HARD_REG_BIT (*regs, regno + nregs);
382 /* Like overlaps_hard_reg_set_p, but use a REGNO/NREGS range instead of
383 REGNO and MODE. */
384 static inline bool
385 range_overlaps_hard_reg_set_p (const HARD_REG_SET set, unsigned regno,
386 int nregs)
388 while (nregs-- > 0)
389 if (TEST_HARD_REG_BIT (set, regno + nregs))
390 return true;
391 return false;
394 /* Like in_hard_reg_set_p, but use a REGNO/NREGS range instead of
395 REGNO and MODE. */
396 static inline bool
397 range_in_hard_reg_set_p (const HARD_REG_SET set, unsigned regno, int nregs)
399 while (nregs-- > 0)
400 if (!TEST_HARD_REG_BIT (set, regno + nregs))
401 return false;
402 return true;
405 /* Get registers used by given function call instruction. */
406 extern bool get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
407 HARD_REG_SET default_set);
409 #endif /* GCC_REGS_H */