Restore 2012 entries that hasn't been saved.
[official-gcc.git] / gcc / tree-outof-ssa.c
blobf52b26030121e0d87922cc127c99e21436c6e6c5
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Andrew Macleod <amacleod@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "ggc.h"
28 #include "basic-block.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "bitmap.h"
32 #include "tree-flow.h"
33 #include "timevar.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "ssaexpand.h"
39 /* FIXME: A lot of code here deals with expanding to RTL. All that code
40 should be in cfgexpand.c. */
41 #include "expr.h"
44 DEF_VEC_I(source_location);
45 DEF_VEC_ALLOC_I(source_location,heap);
47 /* Used to hold all the components required to do SSA PHI elimination.
48 The node and pred/succ list is a simple linear list of nodes and
49 edges represented as pairs of nodes.
51 The predecessor and successor list: Nodes are entered in pairs, where
52 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
53 predecessors, all the odd elements are successors.
55 Rationale:
56 When implemented as bitmaps, very large programs SSA->Normal times were
57 being dominated by clearing the interference graph.
59 Typically this list of edges is extremely small since it only includes
60 PHI results and uses from a single edge which have not coalesced with
61 each other. This means that no virtual PHI nodes are included, and
62 empirical evidence suggests that the number of edges rarely exceed
63 3, and in a bootstrap of GCC, the maximum size encountered was 7.
64 This also limits the number of possible nodes that are involved to
65 rarely more than 6, and in the bootstrap of gcc, the maximum number
66 of nodes encountered was 12. */
68 typedef struct _elim_graph {
69 /* Size of the elimination vectors. */
70 int size;
72 /* List of nodes in the elimination graph. */
73 VEC(int,heap) *nodes;
75 /* The predecessor and successor edge list. */
76 VEC(int,heap) *edge_list;
78 /* Source locus on each edge */
79 VEC(source_location,heap) *edge_locus;
81 /* Visited vector. */
82 sbitmap visited;
84 /* Stack for visited nodes. */
85 VEC(int,heap) *stack;
87 /* The variable partition map. */
88 var_map map;
90 /* Edge being eliminated by this graph. */
91 edge e;
93 /* List of constant copies to emit. These are pushed on in pairs. */
94 VEC(int,heap) *const_dests;
95 VEC(tree,heap) *const_copies;
97 /* Source locations for any constant copies. */
98 VEC(source_location,heap) *copy_locus;
99 } *elim_graph;
102 /* For an edge E find out a good source location to associate with
103 instructions inserted on edge E. If E has an implicit goto set,
104 use its location. Otherwise search instructions in predecessors
105 of E for a location, and use that one. That makes sense because
106 we insert on edges for PHI nodes, and effects of PHIs happen on
107 the end of the predecessor conceptually. */
109 static void
110 set_location_for_edge (edge e)
112 if (e->goto_locus)
114 set_curr_insn_source_location (e->goto_locus);
115 set_curr_insn_block (e->goto_block);
117 else
119 basic_block bb = e->src;
120 gimple_stmt_iterator gsi;
124 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
126 gimple stmt = gsi_stmt (gsi);
127 if (is_gimple_debug (stmt))
128 continue;
129 if (gimple_has_location (stmt) || gimple_block (stmt))
131 set_curr_insn_source_location (gimple_location (stmt));
132 set_curr_insn_block (gimple_block (stmt));
133 return;
136 /* Nothing found in this basic block. Make a half-assed attempt
137 to continue with another block. */
138 if (single_pred_p (bb))
139 bb = single_pred (bb);
140 else
141 bb = e->src;
143 while (bb != e->src);
147 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
148 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
149 which we deduce the size to copy in that case. */
151 static inline rtx
152 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
154 rtx seq;
156 start_sequence ();
158 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
159 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
160 if (GET_MODE (src) == BLKmode)
162 gcc_assert (GET_MODE (dest) == BLKmode);
163 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
165 else
166 emit_move_insn (dest, src);
168 seq = get_insns ();
169 end_sequence ();
171 return seq;
174 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
176 static void
177 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
179 tree var;
180 rtx seq;
181 if (dump_file && (dump_flags & TDF_DETAILS))
183 fprintf (dump_file,
184 "Inserting a partition copy on edge BB%d->BB%d :"
185 "PART.%d = PART.%d",
186 e->src->index,
187 e->dest->index, dest, src);
188 fprintf (dump_file, "\n");
191 gcc_assert (SA.partition_to_pseudo[dest]);
192 gcc_assert (SA.partition_to_pseudo[src]);
194 set_location_for_edge (e);
195 /* If a locus is provided, override the default. */
196 if (locus)
197 set_curr_insn_source_location (locus);
199 var = partition_to_var (SA.map, src);
200 seq = emit_partition_copy (SA.partition_to_pseudo[dest],
201 SA.partition_to_pseudo[src],
202 TYPE_UNSIGNED (TREE_TYPE (var)),
203 var);
205 insert_insn_on_edge (seq, e);
208 /* Insert a copy instruction from expression SRC to partition DEST
209 onto edge E. */
211 static void
212 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
214 rtx seq, x;
215 enum machine_mode dest_mode, src_mode;
216 int unsignedp;
217 tree var;
219 if (dump_file && (dump_flags & TDF_DETAILS))
221 fprintf (dump_file,
222 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
223 e->src->index,
224 e->dest->index, dest);
225 print_generic_expr (dump_file, src, TDF_SLIM);
226 fprintf (dump_file, "\n");
229 gcc_assert (SA.partition_to_pseudo[dest]);
231 set_location_for_edge (e);
232 /* If a locus is provided, override the default. */
233 if (locus)
234 set_curr_insn_source_location (locus);
236 start_sequence ();
238 var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
239 src_mode = TYPE_MODE (TREE_TYPE (src));
240 dest_mode = GET_MODE (SA.partition_to_pseudo[dest]);
241 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
242 gcc_assert (!REG_P (SA.partition_to_pseudo[dest])
243 || dest_mode == promote_decl_mode (var, &unsignedp));
245 if (src_mode != dest_mode)
247 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
248 x = convert_modes (dest_mode, src_mode, x, unsignedp);
250 else if (src_mode == BLKmode)
252 x = SA.partition_to_pseudo[dest];
253 store_expr (src, x, 0, false);
255 else
256 x = expand_expr (src, SA.partition_to_pseudo[dest],
257 dest_mode, EXPAND_NORMAL);
259 if (x != SA.partition_to_pseudo[dest])
260 emit_move_insn (SA.partition_to_pseudo[dest], x);
261 seq = get_insns ();
262 end_sequence ();
264 insert_insn_on_edge (seq, e);
267 /* Insert a copy instruction from RTL expression SRC to partition DEST
268 onto edge E. */
270 static void
271 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
272 source_location locus)
274 rtx seq;
275 if (dump_file && (dump_flags & TDF_DETAILS))
277 fprintf (dump_file,
278 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
279 e->src->index,
280 e->dest->index, dest);
281 print_simple_rtl (dump_file, src);
282 fprintf (dump_file, "\n");
285 gcc_assert (SA.partition_to_pseudo[dest]);
287 set_location_for_edge (e);
288 /* If a locus is provided, override the default. */
289 if (locus)
290 set_curr_insn_source_location (locus);
292 /* We give the destination as sizeexp in case src/dest are BLKmode
293 mems. Usually we give the source. As we result from SSA names
294 the left and right size should be the same (and no WITH_SIZE_EXPR
295 involved), so it doesn't matter. */
296 seq = emit_partition_copy (SA.partition_to_pseudo[dest],
297 src, unsignedsrcp,
298 partition_to_var (SA.map, dest));
300 insert_insn_on_edge (seq, e);
303 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
304 onto edge E. */
306 static void
307 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
309 tree var;
310 rtx seq;
311 if (dump_file && (dump_flags & TDF_DETAILS))
313 fprintf (dump_file,
314 "Inserting a temp copy on edge BB%d->BB%d : ",
315 e->src->index,
316 e->dest->index);
317 print_simple_rtl (dump_file, dest);
318 fprintf (dump_file, "= PART.%d\n", src);
321 gcc_assert (SA.partition_to_pseudo[src]);
323 set_location_for_edge (e);
324 /* If a locus is provided, override the default. */
325 if (locus)
326 set_curr_insn_source_location (locus);
328 var = partition_to_var (SA.map, src);
329 seq = emit_partition_copy (dest,
330 SA.partition_to_pseudo[src],
331 TYPE_UNSIGNED (TREE_TYPE (var)),
332 var);
334 insert_insn_on_edge (seq, e);
338 /* Create an elimination graph with SIZE nodes and associated data
339 structures. */
341 static elim_graph
342 new_elim_graph (int size)
344 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
346 g->nodes = VEC_alloc (int, heap, 30);
347 g->const_dests = VEC_alloc (int, heap, 20);
348 g->const_copies = VEC_alloc (tree, heap, 20);
349 g->copy_locus = VEC_alloc (source_location, heap, 10);
350 g->edge_list = VEC_alloc (int, heap, 20);
351 g->edge_locus = VEC_alloc (source_location, heap, 10);
352 g->stack = VEC_alloc (int, heap, 30);
354 g->visited = sbitmap_alloc (size);
356 return g;
360 /* Empty elimination graph G. */
362 static inline void
363 clear_elim_graph (elim_graph g)
365 VEC_truncate (int, g->nodes, 0);
366 VEC_truncate (int, g->edge_list, 0);
367 VEC_truncate (source_location, g->edge_locus, 0);
371 /* Delete elimination graph G. */
373 static inline void
374 delete_elim_graph (elim_graph g)
376 sbitmap_free (g->visited);
377 VEC_free (int, heap, g->stack);
378 VEC_free (int, heap, g->edge_list);
379 VEC_free (tree, heap, g->const_copies);
380 VEC_free (int, heap, g->const_dests);
381 VEC_free (int, heap, g->nodes);
382 VEC_free (source_location, heap, g->copy_locus);
383 VEC_free (source_location, heap, g->edge_locus);
385 free (g);
389 /* Return the number of nodes in graph G. */
391 static inline int
392 elim_graph_size (elim_graph g)
394 return VEC_length (int, g->nodes);
398 /* Add NODE to graph G, if it doesn't exist already. */
400 static inline void
401 elim_graph_add_node (elim_graph g, int node)
403 int x;
404 int t;
406 FOR_EACH_VEC_ELT (int, g->nodes, x, t)
407 if (t == node)
408 return;
409 VEC_safe_push (int, heap, g->nodes, node);
413 /* Add the edge PRED->SUCC to graph G. */
415 static inline void
416 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
418 VEC_safe_push (int, heap, g->edge_list, pred);
419 VEC_safe_push (int, heap, g->edge_list, succ);
420 VEC_safe_push (source_location, heap, g->edge_locus, locus);
424 /* Remove an edge from graph G for which NODE is the predecessor, and
425 return the successor node. -1 is returned if there is no such edge. */
427 static inline int
428 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
430 int y;
431 unsigned x;
432 for (x = 0; x < VEC_length (int, g->edge_list); x += 2)
433 if (VEC_index (int, g->edge_list, x) == node)
435 VEC_replace (int, g->edge_list, x, -1);
436 y = VEC_index (int, g->edge_list, x + 1);
437 VEC_replace (int, g->edge_list, x + 1, -1);
438 *locus = VEC_index (source_location, g->edge_locus, x / 2);
439 VEC_replace (source_location, g->edge_locus, x / 2, UNKNOWN_LOCATION);
440 return y;
442 *locus = UNKNOWN_LOCATION;
443 return -1;
447 /* Find all the nodes in GRAPH which are successors to NODE in the
448 edge list. VAR will hold the partition number found. CODE is the
449 code fragment executed for every node found. */
451 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
452 do { \
453 unsigned x_; \
454 int y_; \
455 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
457 y_ = VEC_index (int, (GRAPH)->edge_list, x_); \
458 if (y_ != (NODE)) \
459 continue; \
460 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1)); \
461 (void) ((LOCUS) = VEC_index (source_location, \
462 (GRAPH)->edge_locus, x_ / 2)); \
463 CODE; \
465 } while (0)
468 /* Find all the nodes which are predecessors of NODE in the edge list for
469 GRAPH. VAR will hold the partition number found. CODE is the
470 code fragment executed for every node found. */
472 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
473 do { \
474 unsigned x_; \
475 int y_; \
476 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
478 y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1); \
479 if (y_ != (NODE)) \
480 continue; \
481 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_)); \
482 (void) ((LOCUS) = VEC_index (source_location, \
483 (GRAPH)->edge_locus, x_ / 2)); \
484 CODE; \
486 } while (0)
489 /* Add T to elimination graph G. */
491 static inline void
492 eliminate_name (elim_graph g, int T)
494 elim_graph_add_node (g, T);
498 /* Build elimination graph G for basic block BB on incoming PHI edge
499 G->e. */
501 static void
502 eliminate_build (elim_graph g)
504 tree Ti;
505 int p0, pi;
506 gimple_stmt_iterator gsi;
508 clear_elim_graph (g);
510 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
512 gimple phi = gsi_stmt (gsi);
513 source_location locus;
515 p0 = var_to_partition (g->map, gimple_phi_result (phi));
516 /* Ignore results which are not in partitions. */
517 if (p0 == NO_PARTITION)
518 continue;
520 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
521 locus = gimple_phi_arg_location_from_edge (phi, g->e);
523 /* If this argument is a constant, or a SSA_NAME which is being
524 left in SSA form, just queue a copy to be emitted on this
525 edge. */
526 if (!phi_ssa_name_p (Ti)
527 || (TREE_CODE (Ti) == SSA_NAME
528 && var_to_partition (g->map, Ti) == NO_PARTITION))
530 /* Save constant copies until all other copies have been emitted
531 on this edge. */
532 VEC_safe_push (int, heap, g->const_dests, p0);
533 VEC_safe_push (tree, heap, g->const_copies, Ti);
534 VEC_safe_push (source_location, heap, g->copy_locus, locus);
536 else
538 pi = var_to_partition (g->map, Ti);
539 if (p0 != pi)
541 eliminate_name (g, p0);
542 eliminate_name (g, pi);
543 elim_graph_add_edge (g, p0, pi, locus);
550 /* Push successors of T onto the elimination stack for G. */
552 static void
553 elim_forward (elim_graph g, int T)
555 int S;
556 source_location locus;
558 SET_BIT (g->visited, T);
559 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
561 if (!TEST_BIT (g->visited, S))
562 elim_forward (g, S);
564 VEC_safe_push (int, heap, g->stack, T);
568 /* Return 1 if there unvisited predecessors of T in graph G. */
570 static int
571 elim_unvisited_predecessor (elim_graph g, int T)
573 int P;
574 source_location locus;
576 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
578 if (!TEST_BIT (g->visited, P))
579 return 1;
581 return 0;
584 /* Process predecessors first, and insert a copy. */
586 static void
587 elim_backward (elim_graph g, int T)
589 int P;
590 source_location locus;
592 SET_BIT (g->visited, T);
593 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
595 if (!TEST_BIT (g->visited, P))
597 elim_backward (g, P);
598 insert_partition_copy_on_edge (g->e, P, T, locus);
603 /* Allocate a new pseudo register usable for storing values sitting
604 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
606 static rtx
607 get_temp_reg (tree name)
609 tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
610 tree type = TREE_TYPE (var);
611 int unsignedp;
612 enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
613 rtx x = gen_reg_rtx (reg_mode);
614 if (POINTER_TYPE_P (type))
615 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
616 return x;
619 /* Insert required copies for T in graph G. Check for a strongly connected
620 region, and create a temporary to break the cycle if one is found. */
622 static void
623 elim_create (elim_graph g, int T)
625 int P, S;
626 source_location locus;
628 if (elim_unvisited_predecessor (g, T))
630 tree var = partition_to_var (g->map, T);
631 rtx U = get_temp_reg (var);
632 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
634 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
635 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
637 if (!TEST_BIT (g->visited, P))
639 elim_backward (g, P);
640 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
644 else
646 S = elim_graph_remove_succ_edge (g, T, &locus);
647 if (S != -1)
649 SET_BIT (g->visited, T);
650 insert_partition_copy_on_edge (g->e, T, S, locus);
656 /* Eliminate all the phi nodes on edge E in graph G. */
658 static void
659 eliminate_phi (edge e, elim_graph g)
661 int x;
663 gcc_assert (VEC_length (tree, g->const_copies) == 0);
664 gcc_assert (VEC_length (source_location, g->copy_locus) == 0);
666 /* Abnormal edges already have everything coalesced. */
667 if (e->flags & EDGE_ABNORMAL)
668 return;
670 g->e = e;
672 eliminate_build (g);
674 if (elim_graph_size (g) != 0)
676 int part;
678 sbitmap_zero (g->visited);
679 VEC_truncate (int, g->stack, 0);
681 FOR_EACH_VEC_ELT (int, g->nodes, x, part)
683 if (!TEST_BIT (g->visited, part))
684 elim_forward (g, part);
687 sbitmap_zero (g->visited);
688 while (VEC_length (int, g->stack) > 0)
690 x = VEC_pop (int, g->stack);
691 if (!TEST_BIT (g->visited, x))
692 elim_create (g, x);
696 /* If there are any pending constant copies, issue them now. */
697 while (VEC_length (tree, g->const_copies) > 0)
699 int dest;
700 tree src;
701 source_location locus;
703 src = VEC_pop (tree, g->const_copies);
704 dest = VEC_pop (int, g->const_dests);
705 locus = VEC_pop (source_location, g->copy_locus);
706 insert_value_copy_on_edge (e, dest, src, locus);
711 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
712 check to see if this allows another PHI node to be removed. */
714 static void
715 remove_gimple_phi_args (gimple phi)
717 use_operand_p arg_p;
718 ssa_op_iter iter;
720 if (dump_file && (dump_flags & TDF_DETAILS))
722 fprintf (dump_file, "Removing Dead PHI definition: ");
723 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
726 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
728 tree arg = USE_FROM_PTR (arg_p);
729 if (TREE_CODE (arg) == SSA_NAME)
731 /* Remove the reference to the existing argument. */
732 SET_USE (arg_p, NULL_TREE);
733 if (has_zero_uses (arg))
735 gimple stmt;
736 gimple_stmt_iterator gsi;
738 stmt = SSA_NAME_DEF_STMT (arg);
740 /* Also remove the def if it is a PHI node. */
741 if (gimple_code (stmt) == GIMPLE_PHI)
743 remove_gimple_phi_args (stmt);
744 gsi = gsi_for_stmt (stmt);
745 remove_phi_node (&gsi, true);
753 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
755 static void
756 eliminate_useless_phis (void)
758 basic_block bb;
759 gimple_stmt_iterator gsi;
760 tree result;
762 FOR_EACH_BB (bb)
764 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
766 gimple phi = gsi_stmt (gsi);
767 result = gimple_phi_result (phi);
768 if (!is_gimple_reg (SSA_NAME_VAR (result)))
770 #ifdef ENABLE_CHECKING
771 size_t i;
772 /* There should be no arguments which are not virtual, or the
773 results will be incorrect. */
774 for (i = 0; i < gimple_phi_num_args (phi); i++)
776 tree arg = PHI_ARG_DEF (phi, i);
777 if (TREE_CODE (arg) == SSA_NAME
778 && is_gimple_reg (SSA_NAME_VAR (arg)))
780 fprintf (stderr, "Argument of PHI is not virtual (");
781 print_generic_expr (stderr, arg, TDF_SLIM);
782 fprintf (stderr, "), but the result is :");
783 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
784 internal_error ("SSA corruption");
787 #endif
788 remove_phi_node (&gsi, true);
790 else
792 /* Also remove real PHIs with no uses. */
793 if (has_zero_uses (result))
795 remove_gimple_phi_args (phi);
796 remove_phi_node (&gsi, true);
798 else
799 gsi_next (&gsi);
806 /* This function will rewrite the current program using the variable mapping
807 found in MAP. If the replacement vector VALUES is provided, any
808 occurrences of partitions with non-null entries in the vector will be
809 replaced with the expression in the vector instead of its mapped
810 variable. */
812 static void
813 rewrite_trees (var_map map ATTRIBUTE_UNUSED)
815 #ifdef ENABLE_CHECKING
816 basic_block bb;
817 /* Search for PHIs where the destination has no partition, but one
818 or more arguments has a partition. This should not happen and can
819 create incorrect code. */
820 FOR_EACH_BB (bb)
822 gimple_stmt_iterator gsi;
823 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
825 gimple phi = gsi_stmt (gsi);
826 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
827 if (T0 == NULL_TREE)
829 size_t i;
830 for (i = 0; i < gimple_phi_num_args (phi); i++)
832 tree arg = PHI_ARG_DEF (phi, i);
834 if (TREE_CODE (arg) == SSA_NAME
835 && var_to_partition (map, arg) != NO_PARTITION)
837 fprintf (stderr, "Argument of PHI is in a partition :(");
838 print_generic_expr (stderr, arg, TDF_SLIM);
839 fprintf (stderr, "), but the result is not :");
840 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
841 internal_error ("SSA corruption");
847 #endif
850 /* Given the out-of-ssa info object SA (with prepared partitions)
851 eliminate all phi nodes in all basic blocks. Afterwards no
852 basic block will have phi nodes anymore and there are possibly
853 some RTL instructions inserted on edges. */
855 void
856 expand_phi_nodes (struct ssaexpand *sa)
858 basic_block bb;
859 elim_graph g = new_elim_graph (sa->map->num_partitions);
860 g->map = sa->map;
862 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
863 if (!gimple_seq_empty_p (phi_nodes (bb)))
865 edge e;
866 edge_iterator ei;
867 FOR_EACH_EDGE (e, ei, bb->preds)
868 eliminate_phi (e, g);
869 set_phi_nodes (bb, NULL);
870 /* We can't redirect EH edges in RTL land, so we need to do this
871 here. Redirection happens only when splitting is necessary,
872 which it is only for critical edges, normally. For EH edges
873 it might also be necessary when the successor has more than
874 one predecessor. In that case the edge is either required to
875 be fallthru (which EH edges aren't), or the predecessor needs
876 to end with a jump (which again, isn't the case with EH edges).
877 Hence, split all EH edges on which we inserted instructions
878 and whose successor has multiple predecessors. */
879 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
881 if (e->insns.r && (e->flags & EDGE_EH)
882 && !single_pred_p (e->dest))
884 rtx insns = e->insns.r;
885 basic_block bb;
886 e->insns.r = NULL_RTX;
887 bb = split_edge (e);
888 single_pred_edge (bb)->insns.r = insns;
890 else
891 ei_next (&ei);
895 delete_elim_graph (g);
899 /* Remove the ssa-names in the current function and translate them into normal
900 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
901 should also be used. */
903 static void
904 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
906 bitmap values = NULL;
907 var_map map;
908 unsigned i;
910 map = coalesce_ssa_name ();
912 /* Return to viewing the variable list as just all reference variables after
913 coalescing has been performed. */
914 partition_view_normal (map, false);
916 if (dump_file && (dump_flags & TDF_DETAILS))
918 fprintf (dump_file, "After Coalescing:\n");
919 dump_var_map (dump_file, map);
922 if (perform_ter)
924 values = find_replaceable_exprs (map);
925 if (values && dump_file && (dump_flags & TDF_DETAILS))
926 dump_replaceable_exprs (dump_file, values);
929 rewrite_trees (map);
931 sa->map = map;
932 sa->values = values;
933 sa->partition_has_default_def = BITMAP_ALLOC (NULL);
934 for (i = 1; i < num_ssa_names; i++)
936 tree t = ssa_name (i);
937 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
939 int p = var_to_partition (map, t);
940 if (p != NO_PARTITION)
941 bitmap_set_bit (sa->partition_has_default_def, p);
947 /* If not already done so for basic block BB, assign increasing uids
948 to each of its instructions. */
950 static void
951 maybe_renumber_stmts_bb (basic_block bb)
953 unsigned i = 0;
954 gimple_stmt_iterator gsi;
956 if (!bb->aux)
957 return;
958 bb->aux = NULL;
959 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
961 gimple stmt = gsi_stmt (gsi);
962 gimple_set_uid (stmt, i);
963 i++;
968 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
969 of a PHI node) and ARG (one of its arguments) conflict. Return false
970 otherwise, also when we simply aren't sure. */
972 static bool
973 trivially_conflicts_p (basic_block bb, tree result, tree arg)
975 use_operand_p use;
976 imm_use_iterator imm_iter;
977 gimple defa = SSA_NAME_DEF_STMT (arg);
979 /* If ARG isn't defined in the same block it's too complicated for
980 our little mind. */
981 if (gimple_bb (defa) != bb)
982 return false;
984 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
986 gimple use_stmt = USE_STMT (use);
987 if (is_gimple_debug (use_stmt))
988 continue;
989 /* Now, if there's a use of RESULT that lies outside this basic block,
990 then there surely is a conflict with ARG. */
991 if (gimple_bb (use_stmt) != bb)
992 return true;
993 if (gimple_code (use_stmt) == GIMPLE_PHI)
994 continue;
995 /* The use now is in a real stmt of BB, so if ARG was defined
996 in a PHI node (like RESULT) both conflict. */
997 if (gimple_code (defa) == GIMPLE_PHI)
998 return true;
999 maybe_renumber_stmts_bb (bb);
1000 /* If the use of RESULT occurs after the definition of ARG,
1001 the two conflict too. */
1002 if (gimple_uid (defa) < gimple_uid (use_stmt))
1003 return true;
1006 return false;
1010 /* Search every PHI node for arguments associated with backedges which
1011 we can trivially determine will need a copy (the argument is either
1012 not an SSA_NAME or the argument has a different underlying variable
1013 than the PHI result).
1015 Insert a copy from the PHI argument to a new destination at the
1016 end of the block with the backedge to the top of the loop. Update
1017 the PHI argument to reference this new destination. */
1019 static void
1020 insert_backedge_copies (void)
1022 basic_block bb;
1023 gimple_stmt_iterator gsi;
1025 mark_dfs_back_edges ();
1027 FOR_EACH_BB (bb)
1029 /* Mark block as possibly needing calculation of UIDs. */
1030 bb->aux = &bb->aux;
1032 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1034 gimple phi = gsi_stmt (gsi);
1035 tree result = gimple_phi_result (phi);
1036 tree result_var;
1037 size_t i;
1039 if (!is_gimple_reg (result))
1040 continue;
1042 result_var = SSA_NAME_VAR (result);
1043 for (i = 0; i < gimple_phi_num_args (phi); i++)
1045 tree arg = gimple_phi_arg_def (phi, i);
1046 edge e = gimple_phi_arg_edge (phi, i);
1048 /* If the argument is not an SSA_NAME, then we will need a
1049 constant initialization. If the argument is an SSA_NAME with
1050 a different underlying variable then a copy statement will be
1051 needed. */
1052 if ((e->flags & EDGE_DFS_BACK)
1053 && (TREE_CODE (arg) != SSA_NAME
1054 || SSA_NAME_VAR (arg) != result_var
1055 || trivially_conflicts_p (bb, result, arg)))
1057 tree name;
1058 gimple stmt, last = NULL;
1059 gimple_stmt_iterator gsi2;
1061 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1062 if (!gsi_end_p (gsi2))
1063 last = gsi_stmt (gsi2);
1065 /* In theory the only way we ought to get back to the
1066 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1067 However, better safe than sorry.
1068 If the block ends with a control statement or
1069 something that might throw, then we have to
1070 insert this assignment before the last
1071 statement. Else insert it after the last statement. */
1072 if (last && stmt_ends_bb_p (last))
1074 /* If the last statement in the block is the definition
1075 site of the PHI argument, then we can't insert
1076 anything after it. */
1077 if (TREE_CODE (arg) == SSA_NAME
1078 && SSA_NAME_DEF_STMT (arg) == last)
1079 continue;
1082 /* Create a new instance of the underlying variable of the
1083 PHI result. */
1084 stmt = gimple_build_assign (result_var,
1085 gimple_phi_arg_def (phi, i));
1086 name = make_ssa_name (result_var, stmt);
1087 gimple_assign_set_lhs (stmt, name);
1089 /* copy location if present. */
1090 if (gimple_phi_arg_has_location (phi, i))
1091 gimple_set_location (stmt,
1092 gimple_phi_arg_location (phi, i));
1094 /* Insert the new statement into the block and update
1095 the PHI node. */
1096 if (last && stmt_ends_bb_p (last))
1097 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1098 else
1099 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1100 SET_PHI_ARG_DEF (phi, i, name);
1105 /* Unmark this block again. */
1106 bb->aux = NULL;
1110 /* Free all memory associated with going out of SSA form. SA is
1111 the outof-SSA info object. */
1113 void
1114 finish_out_of_ssa (struct ssaexpand *sa)
1116 free (sa->partition_to_pseudo);
1117 if (sa->values)
1118 BITMAP_FREE (sa->values);
1119 delete_var_map (sa->map);
1120 BITMAP_FREE (sa->partition_has_default_def);
1121 memset (sa, 0, sizeof *sa);
1124 /* Take the current function out of SSA form, translating PHIs as described in
1125 R. Morgan, ``Building an Optimizing Compiler'',
1126 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1128 unsigned int
1129 rewrite_out_of_ssa (struct ssaexpand *sa)
1131 /* If elimination of a PHI requires inserting a copy on a backedge,
1132 then we will have to split the backedge which has numerous
1133 undesirable performance effects.
1135 A significant number of such cases can be handled here by inserting
1136 copies into the loop itself. */
1137 insert_backedge_copies ();
1140 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1141 eliminate_useless_phis ();
1143 if (dump_file && (dump_flags & TDF_DETAILS))
1144 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1146 remove_ssa_form (flag_tree_ter, sa);
1148 if (dump_file && (dump_flags & TDF_DETAILS))
1149 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1151 return 0;