1 /* Gimple Represented as Polyhedra.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@inria.fr>
4 and Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_GRAPHITE_PPL_H
22 #define GCC_GRAPHITE_PPL_H
24 #include "double-int.h"
27 ppl_Polyhedron_t
ppl_strip_loop (ppl_Polyhedron_t
, ppl_dimension_type
, int);
28 int ppl_lexico_compare_linear_expressions (ppl_Linear_Expression_t
,
29 ppl_Linear_Expression_t
);
31 void ppl_print_polyhedron_matrix (FILE *, ppl_const_Polyhedron_t
);
32 void ppl_print_powerset_matrix (FILE *, ppl_Pointset_Powerset_C_Polyhedron_t
);
33 void debug_ppl_polyhedron_matrix (ppl_Polyhedron_t
);
34 void debug_ppl_powerset_matrix (ppl_Pointset_Powerset_C_Polyhedron_t
);
35 void ppl_print_linear_expr (FILE *, ppl_Linear_Expression_t
);
36 void debug_ppl_linear_expr (ppl_Linear_Expression_t
);
37 void ppl_read_polyhedron_matrix (ppl_Polyhedron_t
*, FILE *);
38 void ppl_insert_dimensions (ppl_Polyhedron_t
, int, int);
39 void ppl_insert_dimensions_pointset (ppl_Pointset_Powerset_C_Polyhedron_t
, int,
41 void ppl_set_inhomogeneous_gmp (ppl_Linear_Expression_t
, mpz_t
);
42 void ppl_set_coef_gmp (ppl_Linear_Expression_t
, ppl_dimension_type
, mpz_t
);
43 void ppl_max_for_le_pointset (ppl_Pointset_Powerset_C_Polyhedron_t
,
44 ppl_Linear_Expression_t
, mpz_t
);
45 void ppl_min_for_le_pointset (ppl_Pointset_Powerset_C_Polyhedron_t
,
46 ppl_Linear_Expression_t
, mpz_t
);
47 ppl_Constraint_t
ppl_build_relation (int, int, int, int,
48 enum ppl_enum_Constraint_Type
);
49 void debug_gmp_value (mpz_t
);
50 bool ppl_powerset_is_empty (ppl_Pointset_Powerset_C_Polyhedron_t
);
53 /* Assigns to RES the value of the INTEGER_CST T. */
56 tree_int_to_gmp (tree t
, mpz_t res
)
58 double_int di
= tree_to_double_int (t
);
59 mpz_set_double_int (res
, di
, TYPE_UNSIGNED (TREE_TYPE (t
)));
62 /* Converts a GMP constant VAL to a tree and returns it. */
65 gmp_cst_to_tree (tree type
, mpz_t val
)
67 tree t
= type
? type
: integer_type_node
;
73 di
= mpz_get_double_int (t
, tmp
, true);
76 return double_int_to_tree (t
, di
);
79 /* Set the inhomogeneous term of E to the integer X. */
82 ppl_set_inhomogeneous (ppl_Linear_Expression_t e
, int x
)
87 ppl_set_inhomogeneous_gmp (e
, v
);
91 /* Set the inhomogeneous term of E to the tree X. */
94 ppl_set_inhomogeneous_tree (ppl_Linear_Expression_t e
, tree x
)
98 tree_int_to_gmp (x
, v
);
99 ppl_set_inhomogeneous_gmp (e
, v
);
103 /* Set E[I] to integer X. */
106 ppl_set_coef (ppl_Linear_Expression_t e
, ppl_dimension_type i
, int x
)
111 ppl_set_coef_gmp (e
, i
, v
);
115 /* Set E[I] to tree X. */
118 ppl_set_coef_tree (ppl_Linear_Expression_t e
, ppl_dimension_type i
, tree x
)
122 tree_int_to_gmp (x
, v
);
123 ppl_set_coef_gmp (e
, i
, v
);
127 /* Sets RES to the min of V1 and V2. */
130 value_min (mpz_t res
, mpz_t v1
, mpz_t v2
)
132 if (mpz_cmp (v1
, v2
) < 0)
138 /* Sets RES to the max of V1 and V2. */
141 value_max (mpz_t res
, mpz_t v1
, mpz_t v2
)
143 if (mpz_cmp (v1
, v2
) < 0)
149 /* Builds a new identity map for dimension DIM. */
151 static inline ppl_dimension_type
*
152 ppl_new_id_map (ppl_dimension_type dim
)
154 ppl_dimension_type
*map
, i
;
156 map
= (ppl_dimension_type
*) XNEWVEC (ppl_dimension_type
, dim
);
158 for (i
= 0; i
< dim
; i
++)
164 /* Builds an interchange of dimensions A and B in MAP. */
167 ppl_interchange (ppl_dimension_type
*map
,
168 ppl_dimension_type a
,
169 ppl_dimension_type b
)