Restore 2012 entries that hasn't been saved.
[official-gcc.git] / gcc / alias.c
blob37c3fa062cf4b44285b54597e872dcf4bd9bb0f5
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "diagnostic-core.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "tree-ssa-alias.h"
48 #include "pointer-set.h"
49 #include "tree-flow.h"
51 /* The aliasing API provided here solves related but different problems:
53 Say there exists (in c)
55 struct X {
56 struct Y y1;
57 struct Z z2;
58 } x1, *px1, *px2;
60 struct Y y2, *py;
61 struct Z z2, *pz;
64 py = &px1.y1;
65 px2 = &x1;
67 Consider the four questions:
69 Can a store to x1 interfere with px2->y1?
70 Can a store to x1 interfere with px2->z2?
71 (*px2).z2
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
75 The answer to these questions can be yes, yes, yes, and maybe.
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store thru a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
82 The last two of the questions can be solved in the same way as the
83 first two questions but this is too conservative. The observation
84 is that in some cases analysis we can know if which (if any) fields
85 are addressed and if those addresses are used in bad ways. This
86 analysis may be language specific. In C, arbitrary operations may
87 be applied to pointers. However, there is some indication that
88 this may be too conservative for some C++ types.
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
93 Historically in GCC, these two problems were combined and a single
94 data structure was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two question is similar to the
97 first, but does not contain have the fields in it whose address are
98 never taken. For types that do escape the compilation unit, the
99 data structures will have identical information.
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
107 struct S { int i; double d; };
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
116 |/_ _\|
117 int double
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
149 typedef struct alias_set_entry_d *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
161 bool (*) (const_rtx, bool));
162 static int aliases_everything_p (const_rtx);
163 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
164 static tree decl_for_component_ref (tree);
165 static int write_dependence_p (const_rtx, const_rtx, int);
167 static void memory_modified_1 (rtx, const_rtx, void *);
169 /* Set up all info needed to perform alias analysis on memory references. */
171 /* Returns the size in bytes of the mode of X. */
172 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
174 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
175 different alias sets. We ignore alias sets in functions making use
176 of variable arguments because the va_arg macros on some systems are
177 not legal ANSI C. */
178 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
179 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
181 /* Cap the number of passes we make over the insns propagating alias
182 information through set chains. 10 is a completely arbitrary choice. */
183 #define MAX_ALIAS_LOOP_PASSES 10
185 /* reg_base_value[N] gives an address to which register N is related.
186 If all sets after the first add or subtract to the current value
187 or otherwise modify it so it does not point to a different top level
188 object, reg_base_value[N] is equal to the address part of the source
189 of the first set.
191 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
192 expressions represent certain special values: function arguments and
193 the stack, frame, and argument pointers.
195 The contents of an ADDRESS is not normally used, the mode of the
196 ADDRESS determines whether the ADDRESS is a function argument or some
197 other special value. Pointer equality, not rtx_equal_p, determines whether
198 two ADDRESS expressions refer to the same base address.
200 The only use of the contents of an ADDRESS is for determining if the
201 current function performs nonlocal memory memory references for the
202 purposes of marking the function as a constant function. */
204 static GTY(()) VEC(rtx,gc) *reg_base_value;
205 static rtx *new_reg_base_value;
207 /* We preserve the copy of old array around to avoid amount of garbage
208 produced. About 8% of garbage produced were attributed to this
209 array. */
210 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
212 #define static_reg_base_value \
213 (this_target_rtl->x_static_reg_base_value)
215 #define REG_BASE_VALUE(X) \
216 (REGNO (X) < VEC_length (rtx, reg_base_value) \
217 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
219 /* Vector indexed by N giving the initial (unchanging) value known for
220 pseudo-register N. This array is initialized in init_alias_analysis,
221 and does not change until end_alias_analysis is called. */
222 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
224 /* Indicates number of valid entries in reg_known_value. */
225 static GTY(()) unsigned int reg_known_value_size;
227 /* Vector recording for each reg_known_value whether it is due to a
228 REG_EQUIV note. Future passes (viz., reload) may replace the
229 pseudo with the equivalent expression and so we account for the
230 dependences that would be introduced if that happens.
232 The REG_EQUIV notes created in assign_parms may mention the arg
233 pointer, and there are explicit insns in the RTL that modify the
234 arg pointer. Thus we must ensure that such insns don't get
235 scheduled across each other because that would invalidate the
236 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
237 wrong, but solving the problem in the scheduler will likely give
238 better code, so we do it here. */
239 static bool *reg_known_equiv_p;
241 /* True when scanning insns from the start of the rtl to the
242 NOTE_INSN_FUNCTION_BEG note. */
243 static bool copying_arguments;
245 DEF_VEC_P(alias_set_entry);
246 DEF_VEC_ALLOC_P(alias_set_entry,gc);
248 /* The splay-tree used to store the various alias set entries. */
249 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
251 /* Build a decomposed reference object for querying the alias-oracle
252 from the MEM rtx and store it in *REF.
253 Returns false if MEM is not suitable for the alias-oracle. */
255 static bool
256 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
258 tree expr = MEM_EXPR (mem);
259 tree base;
261 if (!expr)
262 return false;
264 ao_ref_init (ref, expr);
266 /* Get the base of the reference and see if we have to reject or
267 adjust it. */
268 base = ao_ref_base (ref);
269 if (base == NULL_TREE)
270 return false;
272 /* The tree oracle doesn't like to have these. */
273 if (TREE_CODE (base) == FUNCTION_DECL
274 || TREE_CODE (base) == LABEL_DECL)
275 return false;
277 /* If this is a pointer dereference of a non-SSA_NAME punt.
278 ??? We could replace it with a pointer to anything. */
279 if ((INDIRECT_REF_P (base)
280 || TREE_CODE (base) == MEM_REF)
281 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
282 return false;
283 if (TREE_CODE (base) == TARGET_MEM_REF
284 && TMR_BASE (base)
285 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
286 return false;
288 /* If this is a reference based on a partitioned decl replace the
289 base with an INDIRECT_REF of the pointer representative we
290 created during stack slot partitioning. */
291 if (TREE_CODE (base) == VAR_DECL
292 && ! TREE_STATIC (base)
293 && cfun->gimple_df->decls_to_pointers != NULL)
295 void *namep;
296 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
297 if (namep)
298 ref->base = build_simple_mem_ref (*(tree *)namep);
300 else if (TREE_CODE (base) == TARGET_MEM_REF
301 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
302 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
303 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
304 && cfun->gimple_df->decls_to_pointers != NULL)
306 void *namep;
307 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
308 TREE_OPERAND (TMR_BASE (base), 0));
309 if (namep)
310 ref->base = build_simple_mem_ref (*(tree *)namep);
313 ref->ref_alias_set = MEM_ALIAS_SET (mem);
315 /* If MEM_OFFSET or MEM_SIZE are unknown we have to punt.
316 Keep points-to related information though. */
317 if (!MEM_OFFSET_KNOWN_P (mem)
318 || !MEM_SIZE_KNOWN_P (mem))
320 ref->ref = NULL_TREE;
321 ref->offset = 0;
322 ref->size = -1;
323 ref->max_size = -1;
324 return true;
327 /* If the base decl is a parameter we can have negative MEM_OFFSET in
328 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
329 here. */
330 if (MEM_OFFSET (mem) < 0
331 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
332 return true;
334 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
335 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
337 /* The MEM may extend into adjacent fields, so adjust max_size if
338 necessary. */
339 if (ref->max_size != -1
340 && ref->size > ref->max_size)
341 ref->max_size = ref->size;
343 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
344 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
345 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
346 && (ref->offset < 0
347 || (DECL_P (ref->base)
348 && (!host_integerp (DECL_SIZE (ref->base), 1)
349 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
350 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
351 return false;
353 return true;
356 /* Query the alias-oracle on whether the two memory rtx X and MEM may
357 alias. If TBAA_P is set also apply TBAA. Returns true if the
358 two rtxen may alias, false otherwise. */
360 static bool
361 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
363 ao_ref ref1, ref2;
365 if (!ao_ref_from_mem (&ref1, x)
366 || !ao_ref_from_mem (&ref2, mem))
367 return true;
369 return refs_may_alias_p_1 (&ref1, &ref2,
370 tbaa_p
371 && MEM_ALIAS_SET (x) != 0
372 && MEM_ALIAS_SET (mem) != 0);
375 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
376 such an entry, or NULL otherwise. */
378 static inline alias_set_entry
379 get_alias_set_entry (alias_set_type alias_set)
381 return VEC_index (alias_set_entry, alias_sets, alias_set);
384 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
385 the two MEMs cannot alias each other. */
387 static inline int
388 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
390 /* Perform a basic sanity check. Namely, that there are no alias sets
391 if we're not using strict aliasing. This helps to catch bugs
392 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
393 where a MEM is allocated in some way other than by the use of
394 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
395 use alias sets to indicate that spilled registers cannot alias each
396 other, we might need to remove this check. */
397 gcc_assert (flag_strict_aliasing
398 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
400 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
403 /* Insert the NODE into the splay tree given by DATA. Used by
404 record_alias_subset via splay_tree_foreach. */
406 static int
407 insert_subset_children (splay_tree_node node, void *data)
409 splay_tree_insert ((splay_tree) data, node->key, node->value);
411 return 0;
414 /* Return true if the first alias set is a subset of the second. */
416 bool
417 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
419 alias_set_entry ase;
421 /* Everything is a subset of the "aliases everything" set. */
422 if (set2 == 0)
423 return true;
425 /* Otherwise, check if set1 is a subset of set2. */
426 ase = get_alias_set_entry (set2);
427 if (ase != 0
428 && (ase->has_zero_child
429 || splay_tree_lookup (ase->children,
430 (splay_tree_key) set1)))
431 return true;
432 return false;
435 /* Return 1 if the two specified alias sets may conflict. */
438 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
440 alias_set_entry ase;
442 /* The easy case. */
443 if (alias_sets_must_conflict_p (set1, set2))
444 return 1;
446 /* See if the first alias set is a subset of the second. */
447 ase = get_alias_set_entry (set1);
448 if (ase != 0
449 && (ase->has_zero_child
450 || splay_tree_lookup (ase->children,
451 (splay_tree_key) set2)))
452 return 1;
454 /* Now do the same, but with the alias sets reversed. */
455 ase = get_alias_set_entry (set2);
456 if (ase != 0
457 && (ase->has_zero_child
458 || splay_tree_lookup (ase->children,
459 (splay_tree_key) set1)))
460 return 1;
462 /* The two alias sets are distinct and neither one is the
463 child of the other. Therefore, they cannot conflict. */
464 return 0;
467 /* Return 1 if the two specified alias sets will always conflict. */
470 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
472 if (set1 == 0 || set2 == 0 || set1 == set2)
473 return 1;
475 return 0;
478 /* Return 1 if any MEM object of type T1 will always conflict (using the
479 dependency routines in this file) with any MEM object of type T2.
480 This is used when allocating temporary storage. If T1 and/or T2 are
481 NULL_TREE, it means we know nothing about the storage. */
484 objects_must_conflict_p (tree t1, tree t2)
486 alias_set_type set1, set2;
488 /* If neither has a type specified, we don't know if they'll conflict
489 because we may be using them to store objects of various types, for
490 example the argument and local variables areas of inlined functions. */
491 if (t1 == 0 && t2 == 0)
492 return 0;
494 /* If they are the same type, they must conflict. */
495 if (t1 == t2
496 /* Likewise if both are volatile. */
497 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
498 return 1;
500 set1 = t1 ? get_alias_set (t1) : 0;
501 set2 = t2 ? get_alias_set (t2) : 0;
503 /* We can't use alias_sets_conflict_p because we must make sure
504 that every subtype of t1 will conflict with every subtype of
505 t2 for which a pair of subobjects of these respective subtypes
506 overlaps on the stack. */
507 return alias_sets_must_conflict_p (set1, set2);
510 /* Return true if all nested component references handled by
511 get_inner_reference in T are such that we should use the alias set
512 provided by the object at the heart of T.
514 This is true for non-addressable components (which don't have their
515 own alias set), as well as components of objects in alias set zero.
516 This later point is a special case wherein we wish to override the
517 alias set used by the component, but we don't have per-FIELD_DECL
518 assignable alias sets. */
520 bool
521 component_uses_parent_alias_set (const_tree t)
523 while (1)
525 /* If we're at the end, it vacuously uses its own alias set. */
526 if (!handled_component_p (t))
527 return false;
529 switch (TREE_CODE (t))
531 case COMPONENT_REF:
532 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
533 return true;
534 break;
536 case ARRAY_REF:
537 case ARRAY_RANGE_REF:
538 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
539 return true;
540 break;
542 case REALPART_EXPR:
543 case IMAGPART_EXPR:
544 break;
546 default:
547 /* Bitfields and casts are never addressable. */
548 return true;
551 t = TREE_OPERAND (t, 0);
552 if (get_alias_set (TREE_TYPE (t)) == 0)
553 return true;
557 /* Return the alias set for the memory pointed to by T, which may be
558 either a type or an expression. Return -1 if there is nothing
559 special about dereferencing T. */
561 static alias_set_type
562 get_deref_alias_set_1 (tree t)
564 /* If we're not doing any alias analysis, just assume everything
565 aliases everything else. */
566 if (!flag_strict_aliasing)
567 return 0;
569 /* All we care about is the type. */
570 if (! TYPE_P (t))
571 t = TREE_TYPE (t);
573 /* If we have an INDIRECT_REF via a void pointer, we don't
574 know anything about what that might alias. Likewise if the
575 pointer is marked that way. */
576 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
577 || TYPE_REF_CAN_ALIAS_ALL (t))
578 return 0;
580 return -1;
583 /* Return the alias set for the memory pointed to by T, which may be
584 either a type or an expression. */
586 alias_set_type
587 get_deref_alias_set (tree t)
589 alias_set_type set = get_deref_alias_set_1 (t);
591 /* Fall back to the alias-set of the pointed-to type. */
592 if (set == -1)
594 if (! TYPE_P (t))
595 t = TREE_TYPE (t);
596 set = get_alias_set (TREE_TYPE (t));
599 return set;
602 /* Return the alias set for T, which may be either a type or an
603 expression. Call language-specific routine for help, if needed. */
605 alias_set_type
606 get_alias_set (tree t)
608 alias_set_type set;
610 /* If we're not doing any alias analysis, just assume everything
611 aliases everything else. Also return 0 if this or its type is
612 an error. */
613 if (! flag_strict_aliasing || t == error_mark_node
614 || (! TYPE_P (t)
615 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
616 return 0;
618 /* We can be passed either an expression or a type. This and the
619 language-specific routine may make mutually-recursive calls to each other
620 to figure out what to do. At each juncture, we see if this is a tree
621 that the language may need to handle specially. First handle things that
622 aren't types. */
623 if (! TYPE_P (t))
625 tree inner;
627 /* Give the language a chance to do something with this tree
628 before we look at it. */
629 STRIP_NOPS (t);
630 set = lang_hooks.get_alias_set (t);
631 if (set != -1)
632 return set;
634 /* Get the base object of the reference. */
635 inner = t;
636 while (handled_component_p (inner))
638 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
639 the type of any component references that wrap it to
640 determine the alias-set. */
641 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
642 t = TREE_OPERAND (inner, 0);
643 inner = TREE_OPERAND (inner, 0);
646 /* Handle pointer dereferences here, they can override the
647 alias-set. */
648 if (INDIRECT_REF_P (inner))
650 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
651 if (set != -1)
652 return set;
654 else if (TREE_CODE (inner) == TARGET_MEM_REF)
655 return get_deref_alias_set (TMR_OFFSET (inner));
656 else if (TREE_CODE (inner) == MEM_REF)
658 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
659 if (set != -1)
660 return set;
663 /* If the innermost reference is a MEM_REF that has a
664 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
665 using the memory access type for determining the alias-set. */
666 if (TREE_CODE (inner) == MEM_REF
667 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
668 != TYPE_MAIN_VARIANT
669 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
670 return get_deref_alias_set (TREE_OPERAND (inner, 1));
672 /* Otherwise, pick up the outermost object that we could have a pointer
673 to, processing conversions as above. */
674 while (component_uses_parent_alias_set (t))
676 t = TREE_OPERAND (t, 0);
677 STRIP_NOPS (t);
680 /* If we've already determined the alias set for a decl, just return
681 it. This is necessary for C++ anonymous unions, whose component
682 variables don't look like union members (boo!). */
683 if (TREE_CODE (t) == VAR_DECL
684 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
685 return MEM_ALIAS_SET (DECL_RTL (t));
687 /* Now all we care about is the type. */
688 t = TREE_TYPE (t);
691 /* Variant qualifiers don't affect the alias set, so get the main
692 variant. */
693 t = TYPE_MAIN_VARIANT (t);
695 /* Always use the canonical type as well. If this is a type that
696 requires structural comparisons to identify compatible types
697 use alias set zero. */
698 if (TYPE_STRUCTURAL_EQUALITY_P (t))
700 /* Allow the language to specify another alias set for this
701 type. */
702 set = lang_hooks.get_alias_set (t);
703 if (set != -1)
704 return set;
705 return 0;
708 t = TYPE_CANONICAL (t);
710 /* The canonical type should not require structural equality checks. */
711 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
713 /* If this is a type with a known alias set, return it. */
714 if (TYPE_ALIAS_SET_KNOWN_P (t))
715 return TYPE_ALIAS_SET (t);
717 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
718 if (!COMPLETE_TYPE_P (t))
720 /* For arrays with unknown size the conservative answer is the
721 alias set of the element type. */
722 if (TREE_CODE (t) == ARRAY_TYPE)
723 return get_alias_set (TREE_TYPE (t));
725 /* But return zero as a conservative answer for incomplete types. */
726 return 0;
729 /* See if the language has special handling for this type. */
730 set = lang_hooks.get_alias_set (t);
731 if (set != -1)
732 return set;
734 /* There are no objects of FUNCTION_TYPE, so there's no point in
735 using up an alias set for them. (There are, of course, pointers
736 and references to functions, but that's different.) */
737 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
738 set = 0;
740 /* Unless the language specifies otherwise, let vector types alias
741 their components. This avoids some nasty type punning issues in
742 normal usage. And indeed lets vectors be treated more like an
743 array slice. */
744 else if (TREE_CODE (t) == VECTOR_TYPE)
745 set = get_alias_set (TREE_TYPE (t));
747 /* Unless the language specifies otherwise, treat array types the
748 same as their components. This avoids the asymmetry we get
749 through recording the components. Consider accessing a
750 character(kind=1) through a reference to a character(kind=1)[1:1].
751 Or consider if we want to assign integer(kind=4)[0:D.1387] and
752 integer(kind=4)[4] the same alias set or not.
753 Just be pragmatic here and make sure the array and its element
754 type get the same alias set assigned. */
755 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
756 set = get_alias_set (TREE_TYPE (t));
758 /* From the former common C and C++ langhook implementation:
760 Unfortunately, there is no canonical form of a pointer type.
761 In particular, if we have `typedef int I', then `int *', and
762 `I *' are different types. So, we have to pick a canonical
763 representative. We do this below.
765 Technically, this approach is actually more conservative that
766 it needs to be. In particular, `const int *' and `int *'
767 should be in different alias sets, according to the C and C++
768 standard, since their types are not the same, and so,
769 technically, an `int **' and `const int **' cannot point at
770 the same thing.
772 But, the standard is wrong. In particular, this code is
773 legal C++:
775 int *ip;
776 int **ipp = &ip;
777 const int* const* cipp = ipp;
778 And, it doesn't make sense for that to be legal unless you
779 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
780 the pointed-to types. This issue has been reported to the
781 C++ committee.
783 In addition to the above canonicalization issue, with LTO
784 we should also canonicalize `T (*)[]' to `T *' avoiding
785 alias issues with pointer-to element types and pointer-to
786 array types.
788 Likewise we need to deal with the situation of incomplete
789 pointed-to types and make `*(struct X **)&a' and
790 `*(struct X {} **)&a' alias. Otherwise we will have to
791 guarantee that all pointer-to incomplete type variants
792 will be replaced by pointer-to complete type variants if
793 they are available.
795 With LTO the convenient situation of using `void *' to
796 access and store any pointer type will also become
797 more apparent (and `void *' is just another pointer-to
798 incomplete type). Assigning alias-set zero to `void *'
799 and all pointer-to incomplete types is a not appealing
800 solution. Assigning an effective alias-set zero only
801 affecting pointers might be - by recording proper subset
802 relationships of all pointer alias-sets.
804 Pointer-to function types are another grey area which
805 needs caution. Globbing them all into one alias-set
806 or the above effective zero set would work.
808 For now just assign the same alias-set to all pointers.
809 That's simple and avoids all the above problems. */
810 else if (POINTER_TYPE_P (t)
811 && t != ptr_type_node)
812 set = get_alias_set (ptr_type_node);
814 /* Otherwise make a new alias set for this type. */
815 else
817 /* Each canonical type gets its own alias set, so canonical types
818 shouldn't form a tree. It doesn't really matter for types
819 we handle specially above, so only check it where it possibly
820 would result in a bogus alias set. */
821 gcc_checking_assert (TYPE_CANONICAL (t) == t);
823 set = new_alias_set ();
826 TYPE_ALIAS_SET (t) = set;
828 /* If this is an aggregate type or a complex type, we must record any
829 component aliasing information. */
830 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
831 record_component_aliases (t);
833 return set;
836 /* Return a brand-new alias set. */
838 alias_set_type
839 new_alias_set (void)
841 if (flag_strict_aliasing)
843 if (alias_sets == 0)
844 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
845 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
846 return VEC_length (alias_set_entry, alias_sets) - 1;
848 else
849 return 0;
852 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
853 not everything that aliases SUPERSET also aliases SUBSET. For example,
854 in C, a store to an `int' can alias a load of a structure containing an
855 `int', and vice versa. But it can't alias a load of a 'double' member
856 of the same structure. Here, the structure would be the SUPERSET and
857 `int' the SUBSET. This relationship is also described in the comment at
858 the beginning of this file.
860 This function should be called only once per SUPERSET/SUBSET pair.
862 It is illegal for SUPERSET to be zero; everything is implicitly a
863 subset of alias set zero. */
865 void
866 record_alias_subset (alias_set_type superset, alias_set_type subset)
868 alias_set_entry superset_entry;
869 alias_set_entry subset_entry;
871 /* It is possible in complex type situations for both sets to be the same,
872 in which case we can ignore this operation. */
873 if (superset == subset)
874 return;
876 gcc_assert (superset);
878 superset_entry = get_alias_set_entry (superset);
879 if (superset_entry == 0)
881 /* Create an entry for the SUPERSET, so that we have a place to
882 attach the SUBSET. */
883 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
884 superset_entry->alias_set = superset;
885 superset_entry->children
886 = splay_tree_new_ggc (splay_tree_compare_ints,
887 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
888 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
889 superset_entry->has_zero_child = 0;
890 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
893 if (subset == 0)
894 superset_entry->has_zero_child = 1;
895 else
897 subset_entry = get_alias_set_entry (subset);
898 /* If there is an entry for the subset, enter all of its children
899 (if they are not already present) as children of the SUPERSET. */
900 if (subset_entry)
902 if (subset_entry->has_zero_child)
903 superset_entry->has_zero_child = 1;
905 splay_tree_foreach (subset_entry->children, insert_subset_children,
906 superset_entry->children);
909 /* Enter the SUBSET itself as a child of the SUPERSET. */
910 splay_tree_insert (superset_entry->children,
911 (splay_tree_key) subset, 0);
915 /* Record that component types of TYPE, if any, are part of that type for
916 aliasing purposes. For record types, we only record component types
917 for fields that are not marked non-addressable. For array types, we
918 only record the component type if it is not marked non-aliased. */
920 void
921 record_component_aliases (tree type)
923 alias_set_type superset = get_alias_set (type);
924 tree field;
926 if (superset == 0)
927 return;
929 switch (TREE_CODE (type))
931 case RECORD_TYPE:
932 case UNION_TYPE:
933 case QUAL_UNION_TYPE:
934 /* Recursively record aliases for the base classes, if there are any. */
935 if (TYPE_BINFO (type))
937 int i;
938 tree binfo, base_binfo;
940 for (binfo = TYPE_BINFO (type), i = 0;
941 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
942 record_alias_subset (superset,
943 get_alias_set (BINFO_TYPE (base_binfo)));
945 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
946 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
947 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
948 break;
950 case COMPLEX_TYPE:
951 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
952 break;
954 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
955 element type. */
957 default:
958 break;
962 /* Allocate an alias set for use in storing and reading from the varargs
963 spill area. */
965 static GTY(()) alias_set_type varargs_set = -1;
967 alias_set_type
968 get_varargs_alias_set (void)
970 #if 1
971 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
972 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
973 consistently use the varargs alias set for loads from the varargs
974 area. So don't use it anywhere. */
975 return 0;
976 #else
977 if (varargs_set == -1)
978 varargs_set = new_alias_set ();
980 return varargs_set;
981 #endif
984 /* Likewise, but used for the fixed portions of the frame, e.g., register
985 save areas. */
987 static GTY(()) alias_set_type frame_set = -1;
989 alias_set_type
990 get_frame_alias_set (void)
992 if (frame_set == -1)
993 frame_set = new_alias_set ();
995 return frame_set;
998 /* Inside SRC, the source of a SET, find a base address. */
1000 static rtx
1001 find_base_value (rtx src)
1003 unsigned int regno;
1005 #if defined (FIND_BASE_TERM)
1006 /* Try machine-dependent ways to find the base term. */
1007 src = FIND_BASE_TERM (src);
1008 #endif
1010 switch (GET_CODE (src))
1012 case SYMBOL_REF:
1013 case LABEL_REF:
1014 return src;
1016 case REG:
1017 regno = REGNO (src);
1018 /* At the start of a function, argument registers have known base
1019 values which may be lost later. Returning an ADDRESS
1020 expression here allows optimization based on argument values
1021 even when the argument registers are used for other purposes. */
1022 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1023 return new_reg_base_value[regno];
1025 /* If a pseudo has a known base value, return it. Do not do this
1026 for non-fixed hard regs since it can result in a circular
1027 dependency chain for registers which have values at function entry.
1029 The test above is not sufficient because the scheduler may move
1030 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1031 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1032 && regno < VEC_length (rtx, reg_base_value))
1034 /* If we're inside init_alias_analysis, use new_reg_base_value
1035 to reduce the number of relaxation iterations. */
1036 if (new_reg_base_value && new_reg_base_value[regno]
1037 && DF_REG_DEF_COUNT (regno) == 1)
1038 return new_reg_base_value[regno];
1040 if (VEC_index (rtx, reg_base_value, regno))
1041 return VEC_index (rtx, reg_base_value, regno);
1044 return 0;
1046 case MEM:
1047 /* Check for an argument passed in memory. Only record in the
1048 copying-arguments block; it is too hard to track changes
1049 otherwise. */
1050 if (copying_arguments
1051 && (XEXP (src, 0) == arg_pointer_rtx
1052 || (GET_CODE (XEXP (src, 0)) == PLUS
1053 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1054 return gen_rtx_ADDRESS (VOIDmode, src);
1055 return 0;
1057 case CONST:
1058 src = XEXP (src, 0);
1059 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1060 break;
1062 /* ... fall through ... */
1064 case PLUS:
1065 case MINUS:
1067 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1069 /* If either operand is a REG that is a known pointer, then it
1070 is the base. */
1071 if (REG_P (src_0) && REG_POINTER (src_0))
1072 return find_base_value (src_0);
1073 if (REG_P (src_1) && REG_POINTER (src_1))
1074 return find_base_value (src_1);
1076 /* If either operand is a REG, then see if we already have
1077 a known value for it. */
1078 if (REG_P (src_0))
1080 temp = find_base_value (src_0);
1081 if (temp != 0)
1082 src_0 = temp;
1085 if (REG_P (src_1))
1087 temp = find_base_value (src_1);
1088 if (temp!= 0)
1089 src_1 = temp;
1092 /* If either base is named object or a special address
1093 (like an argument or stack reference), then use it for the
1094 base term. */
1095 if (src_0 != 0
1096 && (GET_CODE (src_0) == SYMBOL_REF
1097 || GET_CODE (src_0) == LABEL_REF
1098 || (GET_CODE (src_0) == ADDRESS
1099 && GET_MODE (src_0) != VOIDmode)))
1100 return src_0;
1102 if (src_1 != 0
1103 && (GET_CODE (src_1) == SYMBOL_REF
1104 || GET_CODE (src_1) == LABEL_REF
1105 || (GET_CODE (src_1) == ADDRESS
1106 && GET_MODE (src_1) != VOIDmode)))
1107 return src_1;
1109 /* Guess which operand is the base address:
1110 If either operand is a symbol, then it is the base. If
1111 either operand is a CONST_INT, then the other is the base. */
1112 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1113 return find_base_value (src_0);
1114 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1115 return find_base_value (src_1);
1117 return 0;
1120 case LO_SUM:
1121 /* The standard form is (lo_sum reg sym) so look only at the
1122 second operand. */
1123 return find_base_value (XEXP (src, 1));
1125 case AND:
1126 /* If the second operand is constant set the base
1127 address to the first operand. */
1128 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1129 return find_base_value (XEXP (src, 0));
1130 return 0;
1132 case TRUNCATE:
1133 /* As we do not know which address space the pointer is refering to, we can
1134 handle this only if the target does not support different pointer or
1135 address modes depending on the address space. */
1136 if (!target_default_pointer_address_modes_p ())
1137 break;
1138 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1139 break;
1140 /* Fall through. */
1141 case HIGH:
1142 case PRE_INC:
1143 case PRE_DEC:
1144 case POST_INC:
1145 case POST_DEC:
1146 case PRE_MODIFY:
1147 case POST_MODIFY:
1148 return find_base_value (XEXP (src, 0));
1150 case ZERO_EXTEND:
1151 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1152 /* As we do not know which address space the pointer is refering to, we can
1153 handle this only if the target does not support different pointer or
1154 address modes depending on the address space. */
1155 if (!target_default_pointer_address_modes_p ())
1156 break;
1159 rtx temp = find_base_value (XEXP (src, 0));
1161 if (temp != 0 && CONSTANT_P (temp))
1162 temp = convert_memory_address (Pmode, temp);
1164 return temp;
1167 default:
1168 break;
1171 return 0;
1174 /* Called from init_alias_analysis indirectly through note_stores. */
1176 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1177 register N has been set in this function. */
1178 static char *reg_seen;
1180 /* Addresses which are known not to alias anything else are identified
1181 by a unique integer. */
1182 static int unique_id;
1184 static void
1185 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1187 unsigned regno;
1188 rtx src;
1189 int n;
1191 if (!REG_P (dest))
1192 return;
1194 regno = REGNO (dest);
1196 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1198 /* If this spans multiple hard registers, then we must indicate that every
1199 register has an unusable value. */
1200 if (regno < FIRST_PSEUDO_REGISTER)
1201 n = hard_regno_nregs[regno][GET_MODE (dest)];
1202 else
1203 n = 1;
1204 if (n != 1)
1206 while (--n >= 0)
1208 reg_seen[regno + n] = 1;
1209 new_reg_base_value[regno + n] = 0;
1211 return;
1214 if (set)
1216 /* A CLOBBER wipes out any old value but does not prevent a previously
1217 unset register from acquiring a base address (i.e. reg_seen is not
1218 set). */
1219 if (GET_CODE (set) == CLOBBER)
1221 new_reg_base_value[regno] = 0;
1222 return;
1224 src = SET_SRC (set);
1226 else
1228 if (reg_seen[regno])
1230 new_reg_base_value[regno] = 0;
1231 return;
1233 reg_seen[regno] = 1;
1234 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1235 GEN_INT (unique_id++));
1236 return;
1239 /* If this is not the first set of REGNO, see whether the new value
1240 is related to the old one. There are two cases of interest:
1242 (1) The register might be assigned an entirely new value
1243 that has the same base term as the original set.
1245 (2) The set might be a simple self-modification that
1246 cannot change REGNO's base value.
1248 If neither case holds, reject the original base value as invalid.
1249 Note that the following situation is not detected:
1251 extern int x, y; int *p = &x; p += (&y-&x);
1253 ANSI C does not allow computing the difference of addresses
1254 of distinct top level objects. */
1255 if (new_reg_base_value[regno] != 0
1256 && find_base_value (src) != new_reg_base_value[regno])
1257 switch (GET_CODE (src))
1259 case LO_SUM:
1260 case MINUS:
1261 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1262 new_reg_base_value[regno] = 0;
1263 break;
1264 case PLUS:
1265 /* If the value we add in the PLUS is also a valid base value,
1266 this might be the actual base value, and the original value
1267 an index. */
1269 rtx other = NULL_RTX;
1271 if (XEXP (src, 0) == dest)
1272 other = XEXP (src, 1);
1273 else if (XEXP (src, 1) == dest)
1274 other = XEXP (src, 0);
1276 if (! other || find_base_value (other))
1277 new_reg_base_value[regno] = 0;
1278 break;
1280 case AND:
1281 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1282 new_reg_base_value[regno] = 0;
1283 break;
1284 default:
1285 new_reg_base_value[regno] = 0;
1286 break;
1288 /* If this is the first set of a register, record the value. */
1289 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1290 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1291 new_reg_base_value[regno] = find_base_value (src);
1293 reg_seen[regno] = 1;
1296 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1297 using hard registers with non-null REG_BASE_VALUE for renaming. */
1299 get_reg_base_value (unsigned int regno)
1301 return VEC_index (rtx, reg_base_value, regno);
1304 /* If a value is known for REGNO, return it. */
1307 get_reg_known_value (unsigned int regno)
1309 if (regno >= FIRST_PSEUDO_REGISTER)
1311 regno -= FIRST_PSEUDO_REGISTER;
1312 if (regno < reg_known_value_size)
1313 return reg_known_value[regno];
1315 return NULL;
1318 /* Set it. */
1320 static void
1321 set_reg_known_value (unsigned int regno, rtx val)
1323 if (regno >= FIRST_PSEUDO_REGISTER)
1325 regno -= FIRST_PSEUDO_REGISTER;
1326 if (regno < reg_known_value_size)
1327 reg_known_value[regno] = val;
1331 /* Similarly for reg_known_equiv_p. */
1333 bool
1334 get_reg_known_equiv_p (unsigned int regno)
1336 if (regno >= FIRST_PSEUDO_REGISTER)
1338 regno -= FIRST_PSEUDO_REGISTER;
1339 if (regno < reg_known_value_size)
1340 return reg_known_equiv_p[regno];
1342 return false;
1345 static void
1346 set_reg_known_equiv_p (unsigned int regno, bool val)
1348 if (regno >= FIRST_PSEUDO_REGISTER)
1350 regno -= FIRST_PSEUDO_REGISTER;
1351 if (regno < reg_known_value_size)
1352 reg_known_equiv_p[regno] = val;
1357 /* Returns a canonical version of X, from the point of view alias
1358 analysis. (For example, if X is a MEM whose address is a register,
1359 and the register has a known value (say a SYMBOL_REF), then a MEM
1360 whose address is the SYMBOL_REF is returned.) */
1363 canon_rtx (rtx x)
1365 /* Recursively look for equivalences. */
1366 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1368 rtx t = get_reg_known_value (REGNO (x));
1369 if (t == x)
1370 return x;
1371 if (t)
1372 return canon_rtx (t);
1375 if (GET_CODE (x) == PLUS)
1377 rtx x0 = canon_rtx (XEXP (x, 0));
1378 rtx x1 = canon_rtx (XEXP (x, 1));
1380 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1382 if (CONST_INT_P (x0))
1383 return plus_constant (x1, INTVAL (x0));
1384 else if (CONST_INT_P (x1))
1385 return plus_constant (x0, INTVAL (x1));
1386 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1390 /* This gives us much better alias analysis when called from
1391 the loop optimizer. Note we want to leave the original
1392 MEM alone, but need to return the canonicalized MEM with
1393 all the flags with their original values. */
1394 else if (MEM_P (x))
1395 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1397 return x;
1400 /* Return 1 if X and Y are identical-looking rtx's.
1401 Expect that X and Y has been already canonicalized.
1403 We use the data in reg_known_value above to see if two registers with
1404 different numbers are, in fact, equivalent. */
1406 static int
1407 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1409 int i;
1410 int j;
1411 enum rtx_code code;
1412 const char *fmt;
1414 if (x == 0 && y == 0)
1415 return 1;
1416 if (x == 0 || y == 0)
1417 return 0;
1419 if (x == y)
1420 return 1;
1422 code = GET_CODE (x);
1423 /* Rtx's of different codes cannot be equal. */
1424 if (code != GET_CODE (y))
1425 return 0;
1427 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1428 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1430 if (GET_MODE (x) != GET_MODE (y))
1431 return 0;
1433 /* Some RTL can be compared without a recursive examination. */
1434 switch (code)
1436 case REG:
1437 return REGNO (x) == REGNO (y);
1439 case LABEL_REF:
1440 return XEXP (x, 0) == XEXP (y, 0);
1442 case SYMBOL_REF:
1443 return XSTR (x, 0) == XSTR (y, 0);
1445 case VALUE:
1446 case CONST_INT:
1447 case CONST_DOUBLE:
1448 case CONST_FIXED:
1449 /* There's no need to compare the contents of CONST_DOUBLEs or
1450 CONST_INTs because pointer equality is a good enough
1451 comparison for these nodes. */
1452 return 0;
1454 default:
1455 break;
1458 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1459 if (code == PLUS)
1460 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1461 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1462 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1463 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1464 /* For commutative operations, the RTX match if the operand match in any
1465 order. Also handle the simple binary and unary cases without a loop. */
1466 if (COMMUTATIVE_P (x))
1468 rtx xop0 = canon_rtx (XEXP (x, 0));
1469 rtx yop0 = canon_rtx (XEXP (y, 0));
1470 rtx yop1 = canon_rtx (XEXP (y, 1));
1472 return ((rtx_equal_for_memref_p (xop0, yop0)
1473 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1474 || (rtx_equal_for_memref_p (xop0, yop1)
1475 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1477 else if (NON_COMMUTATIVE_P (x))
1479 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1480 canon_rtx (XEXP (y, 0)))
1481 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1482 canon_rtx (XEXP (y, 1))));
1484 else if (UNARY_P (x))
1485 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1486 canon_rtx (XEXP (y, 0)));
1488 /* Compare the elements. If any pair of corresponding elements
1489 fail to match, return 0 for the whole things.
1491 Limit cases to types which actually appear in addresses. */
1493 fmt = GET_RTX_FORMAT (code);
1494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1496 switch (fmt[i])
1498 case 'i':
1499 if (XINT (x, i) != XINT (y, i))
1500 return 0;
1501 break;
1503 case 'E':
1504 /* Two vectors must have the same length. */
1505 if (XVECLEN (x, i) != XVECLEN (y, i))
1506 return 0;
1508 /* And the corresponding elements must match. */
1509 for (j = 0; j < XVECLEN (x, i); j++)
1510 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1511 canon_rtx (XVECEXP (y, i, j))) == 0)
1512 return 0;
1513 break;
1515 case 'e':
1516 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1517 canon_rtx (XEXP (y, i))) == 0)
1518 return 0;
1519 break;
1521 /* This can happen for asm operands. */
1522 case 's':
1523 if (strcmp (XSTR (x, i), XSTR (y, i)))
1524 return 0;
1525 break;
1527 /* This can happen for an asm which clobbers memory. */
1528 case '0':
1529 break;
1531 /* It is believed that rtx's at this level will never
1532 contain anything but integers and other rtx's,
1533 except for within LABEL_REFs and SYMBOL_REFs. */
1534 default:
1535 gcc_unreachable ();
1538 return 1;
1542 find_base_term (rtx x)
1544 cselib_val *val;
1545 struct elt_loc_list *l, *f;
1546 rtx ret;
1548 #if defined (FIND_BASE_TERM)
1549 /* Try machine-dependent ways to find the base term. */
1550 x = FIND_BASE_TERM (x);
1551 #endif
1553 switch (GET_CODE (x))
1555 case REG:
1556 return REG_BASE_VALUE (x);
1558 case TRUNCATE:
1559 /* As we do not know which address space the pointer is refering to, we can
1560 handle this only if the target does not support different pointer or
1561 address modes depending on the address space. */
1562 if (!target_default_pointer_address_modes_p ())
1563 return 0;
1564 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1565 return 0;
1566 /* Fall through. */
1567 case HIGH:
1568 case PRE_INC:
1569 case PRE_DEC:
1570 case POST_INC:
1571 case POST_DEC:
1572 case PRE_MODIFY:
1573 case POST_MODIFY:
1574 return find_base_term (XEXP (x, 0));
1576 case ZERO_EXTEND:
1577 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1578 /* As we do not know which address space the pointer is refering to, we can
1579 handle this only if the target does not support different pointer or
1580 address modes depending on the address space. */
1581 if (!target_default_pointer_address_modes_p ())
1582 return 0;
1585 rtx temp = find_base_term (XEXP (x, 0));
1587 if (temp != 0 && CONSTANT_P (temp))
1588 temp = convert_memory_address (Pmode, temp);
1590 return temp;
1593 case VALUE:
1594 val = CSELIB_VAL_PTR (x);
1595 ret = NULL_RTX;
1597 if (!val)
1598 return ret;
1600 f = val->locs;
1601 /* Temporarily reset val->locs to avoid infinite recursion. */
1602 val->locs = NULL;
1604 for (l = f; l; l = l->next)
1605 if (GET_CODE (l->loc) == VALUE
1606 && CSELIB_VAL_PTR (l->loc)->locs
1607 && !CSELIB_VAL_PTR (l->loc)->locs->next
1608 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1609 continue;
1610 else if ((ret = find_base_term (l->loc)) != 0)
1611 break;
1613 val->locs = f;
1614 return ret;
1616 case LO_SUM:
1617 /* The standard form is (lo_sum reg sym) so look only at the
1618 second operand. */
1619 return find_base_term (XEXP (x, 1));
1621 case CONST:
1622 x = XEXP (x, 0);
1623 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1624 return 0;
1625 /* Fall through. */
1626 case PLUS:
1627 case MINUS:
1629 rtx tmp1 = XEXP (x, 0);
1630 rtx tmp2 = XEXP (x, 1);
1632 /* This is a little bit tricky since we have to determine which of
1633 the two operands represents the real base address. Otherwise this
1634 routine may return the index register instead of the base register.
1636 That may cause us to believe no aliasing was possible, when in
1637 fact aliasing is possible.
1639 We use a few simple tests to guess the base register. Additional
1640 tests can certainly be added. For example, if one of the operands
1641 is a shift or multiply, then it must be the index register and the
1642 other operand is the base register. */
1644 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1645 return find_base_term (tmp2);
1647 /* If either operand is known to be a pointer, then use it
1648 to determine the base term. */
1649 if (REG_P (tmp1) && REG_POINTER (tmp1))
1651 rtx base = find_base_term (tmp1);
1652 if (base)
1653 return base;
1656 if (REG_P (tmp2) && REG_POINTER (tmp2))
1658 rtx base = find_base_term (tmp2);
1659 if (base)
1660 return base;
1663 /* Neither operand was known to be a pointer. Go ahead and find the
1664 base term for both operands. */
1665 tmp1 = find_base_term (tmp1);
1666 tmp2 = find_base_term (tmp2);
1668 /* If either base term is named object or a special address
1669 (like an argument or stack reference), then use it for the
1670 base term. */
1671 if (tmp1 != 0
1672 && (GET_CODE (tmp1) == SYMBOL_REF
1673 || GET_CODE (tmp1) == LABEL_REF
1674 || (GET_CODE (tmp1) == ADDRESS
1675 && GET_MODE (tmp1) != VOIDmode)))
1676 return tmp1;
1678 if (tmp2 != 0
1679 && (GET_CODE (tmp2) == SYMBOL_REF
1680 || GET_CODE (tmp2) == LABEL_REF
1681 || (GET_CODE (tmp2) == ADDRESS
1682 && GET_MODE (tmp2) != VOIDmode)))
1683 return tmp2;
1685 /* We could not determine which of the two operands was the
1686 base register and which was the index. So we can determine
1687 nothing from the base alias check. */
1688 return 0;
1691 case AND:
1692 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1693 return find_base_term (XEXP (x, 0));
1694 return 0;
1696 case SYMBOL_REF:
1697 case LABEL_REF:
1698 return x;
1700 default:
1701 return 0;
1705 /* Return 0 if the addresses X and Y are known to point to different
1706 objects, 1 if they might be pointers to the same object. */
1708 static int
1709 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1710 enum machine_mode y_mode)
1712 rtx x_base = find_base_term (x);
1713 rtx y_base = find_base_term (y);
1715 /* If the address itself has no known base see if a known equivalent
1716 value has one. If either address still has no known base, nothing
1717 is known about aliasing. */
1718 if (x_base == 0)
1720 rtx x_c;
1722 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1723 return 1;
1725 x_base = find_base_term (x_c);
1726 if (x_base == 0)
1727 return 1;
1730 if (y_base == 0)
1732 rtx y_c;
1733 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1734 return 1;
1736 y_base = find_base_term (y_c);
1737 if (y_base == 0)
1738 return 1;
1741 /* If the base addresses are equal nothing is known about aliasing. */
1742 if (rtx_equal_p (x_base, y_base))
1743 return 1;
1745 /* The base addresses are different expressions. If they are not accessed
1746 via AND, there is no conflict. We can bring knowledge of object
1747 alignment into play here. For example, on alpha, "char a, b;" can
1748 alias one another, though "char a; long b;" cannot. AND addesses may
1749 implicitly alias surrounding objects; i.e. unaligned access in DImode
1750 via AND address can alias all surrounding object types except those
1751 with aligment 8 or higher. */
1752 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1753 return 1;
1754 if (GET_CODE (x) == AND
1755 && (!CONST_INT_P (XEXP (x, 1))
1756 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1757 return 1;
1758 if (GET_CODE (y) == AND
1759 && (!CONST_INT_P (XEXP (y, 1))
1760 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1761 return 1;
1763 /* Differing symbols not accessed via AND never alias. */
1764 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1765 return 0;
1767 /* If one address is a stack reference there can be no alias:
1768 stack references using different base registers do not alias,
1769 a stack reference can not alias a parameter, and a stack reference
1770 can not alias a global. */
1771 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1772 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1773 return 0;
1775 return 1;
1778 /* Convert the address X into something we can use. This is done by returning
1779 it unchanged unless it is a value; in the latter case we call cselib to get
1780 a more useful rtx. */
1783 get_addr (rtx x)
1785 cselib_val *v;
1786 struct elt_loc_list *l;
1788 if (GET_CODE (x) != VALUE)
1789 return x;
1790 v = CSELIB_VAL_PTR (x);
1791 if (v)
1793 for (l = v->locs; l; l = l->next)
1794 if (CONSTANT_P (l->loc))
1795 return l->loc;
1796 for (l = v->locs; l; l = l->next)
1797 if (!REG_P (l->loc) && !MEM_P (l->loc))
1798 return l->loc;
1799 if (v->locs)
1800 return v->locs->loc;
1802 return x;
1805 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1806 where SIZE is the size in bytes of the memory reference. If ADDR
1807 is not modified by the memory reference then ADDR is returned. */
1809 static rtx
1810 addr_side_effect_eval (rtx addr, int size, int n_refs)
1812 int offset = 0;
1814 switch (GET_CODE (addr))
1816 case PRE_INC:
1817 offset = (n_refs + 1) * size;
1818 break;
1819 case PRE_DEC:
1820 offset = -(n_refs + 1) * size;
1821 break;
1822 case POST_INC:
1823 offset = n_refs * size;
1824 break;
1825 case POST_DEC:
1826 offset = -n_refs * size;
1827 break;
1829 default:
1830 return addr;
1833 if (offset)
1834 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1835 GEN_INT (offset));
1836 else
1837 addr = XEXP (addr, 0);
1838 addr = canon_rtx (addr);
1840 return addr;
1843 /* Return one if X and Y (memory addresses) reference the
1844 same location in memory or if the references overlap.
1845 Return zero if they do not overlap, else return
1846 minus one in which case they still might reference the same location.
1848 C is an offset accumulator. When
1849 C is nonzero, we are testing aliases between X and Y + C.
1850 XSIZE is the size in bytes of the X reference,
1851 similarly YSIZE is the size in bytes for Y.
1852 Expect that canon_rtx has been already called for X and Y.
1854 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1855 referenced (the reference was BLKmode), so make the most pessimistic
1856 assumptions.
1858 If XSIZE or YSIZE is negative, we may access memory outside the object
1859 being referenced as a side effect. This can happen when using AND to
1860 align memory references, as is done on the Alpha.
1862 Nice to notice that varying addresses cannot conflict with fp if no
1863 local variables had their addresses taken, but that's too hard now.
1865 ??? Contrary to the tree alias oracle this does not return
1866 one for X + non-constant and Y + non-constant when X and Y are equal.
1867 If that is fixed the TBAA hack for union type-punning can be removed. */
1869 static int
1870 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1872 if (GET_CODE (x) == VALUE)
1874 if (REG_P (y))
1876 struct elt_loc_list *l = NULL;
1877 if (CSELIB_VAL_PTR (x))
1878 for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next)
1879 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1880 break;
1881 if (l)
1882 x = y;
1883 else
1884 x = get_addr (x);
1886 /* Don't call get_addr if y is the same VALUE. */
1887 else if (x != y)
1888 x = get_addr (x);
1890 if (GET_CODE (y) == VALUE)
1892 if (REG_P (x))
1894 struct elt_loc_list *l = NULL;
1895 if (CSELIB_VAL_PTR (y))
1896 for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next)
1897 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1898 break;
1899 if (l)
1900 y = x;
1901 else
1902 y = get_addr (y);
1904 /* Don't call get_addr if x is the same VALUE. */
1905 else if (y != x)
1906 y = get_addr (y);
1908 if (GET_CODE (x) == HIGH)
1909 x = XEXP (x, 0);
1910 else if (GET_CODE (x) == LO_SUM)
1911 x = XEXP (x, 1);
1912 else
1913 x = addr_side_effect_eval (x, xsize, 0);
1914 if (GET_CODE (y) == HIGH)
1915 y = XEXP (y, 0);
1916 else if (GET_CODE (y) == LO_SUM)
1917 y = XEXP (y, 1);
1918 else
1919 y = addr_side_effect_eval (y, ysize, 0);
1921 if (rtx_equal_for_memref_p (x, y))
1923 if (xsize <= 0 || ysize <= 0)
1924 return 1;
1925 if (c >= 0 && xsize > c)
1926 return 1;
1927 if (c < 0 && ysize+c > 0)
1928 return 1;
1929 return 0;
1932 /* This code used to check for conflicts involving stack references and
1933 globals but the base address alias code now handles these cases. */
1935 if (GET_CODE (x) == PLUS)
1937 /* The fact that X is canonicalized means that this
1938 PLUS rtx is canonicalized. */
1939 rtx x0 = XEXP (x, 0);
1940 rtx x1 = XEXP (x, 1);
1942 if (GET_CODE (y) == PLUS)
1944 /* The fact that Y is canonicalized means that this
1945 PLUS rtx is canonicalized. */
1946 rtx y0 = XEXP (y, 0);
1947 rtx y1 = XEXP (y, 1);
1949 if (rtx_equal_for_memref_p (x1, y1))
1950 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1951 if (rtx_equal_for_memref_p (x0, y0))
1952 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1953 if (CONST_INT_P (x1))
1955 if (CONST_INT_P (y1))
1956 return memrefs_conflict_p (xsize, x0, ysize, y0,
1957 c - INTVAL (x1) + INTVAL (y1));
1958 else
1959 return memrefs_conflict_p (xsize, x0, ysize, y,
1960 c - INTVAL (x1));
1962 else if (CONST_INT_P (y1))
1963 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1965 return -1;
1967 else if (CONST_INT_P (x1))
1968 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1970 else if (GET_CODE (y) == PLUS)
1972 /* The fact that Y is canonicalized means that this
1973 PLUS rtx is canonicalized. */
1974 rtx y0 = XEXP (y, 0);
1975 rtx y1 = XEXP (y, 1);
1977 if (CONST_INT_P (y1))
1978 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1979 else
1980 return -1;
1983 if (GET_CODE (x) == GET_CODE (y))
1984 switch (GET_CODE (x))
1986 case MULT:
1988 /* Handle cases where we expect the second operands to be the
1989 same, and check only whether the first operand would conflict
1990 or not. */
1991 rtx x0, y0;
1992 rtx x1 = canon_rtx (XEXP (x, 1));
1993 rtx y1 = canon_rtx (XEXP (y, 1));
1994 if (! rtx_equal_for_memref_p (x1, y1))
1995 return -1;
1996 x0 = canon_rtx (XEXP (x, 0));
1997 y0 = canon_rtx (XEXP (y, 0));
1998 if (rtx_equal_for_memref_p (x0, y0))
1999 return (xsize == 0 || ysize == 0
2000 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2002 /* Can't properly adjust our sizes. */
2003 if (!CONST_INT_P (x1))
2004 return -1;
2005 xsize /= INTVAL (x1);
2006 ysize /= INTVAL (x1);
2007 c /= INTVAL (x1);
2008 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2011 default:
2012 break;
2015 /* Treat an access through an AND (e.g. a subword access on an Alpha)
2016 as an access with indeterminate size. Assume that references
2017 besides AND are aligned, so if the size of the other reference is
2018 at least as large as the alignment, assume no other overlap. */
2019 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2021 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
2022 xsize = -1;
2023 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
2025 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2027 /* ??? If we are indexing far enough into the array/structure, we
2028 may yet be able to determine that we can not overlap. But we
2029 also need to that we are far enough from the end not to overlap
2030 a following reference, so we do nothing with that for now. */
2031 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
2032 ysize = -1;
2033 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
2036 if (CONSTANT_P (x))
2038 if (CONST_INT_P (x) && CONST_INT_P (y))
2040 c += (INTVAL (y) - INTVAL (x));
2041 return (xsize <= 0 || ysize <= 0
2042 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2045 if (GET_CODE (x) == CONST)
2047 if (GET_CODE (y) == CONST)
2048 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2049 ysize, canon_rtx (XEXP (y, 0)), c);
2050 else
2051 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2052 ysize, y, c);
2054 if (GET_CODE (y) == CONST)
2055 return memrefs_conflict_p (xsize, x, ysize,
2056 canon_rtx (XEXP (y, 0)), c);
2058 if (CONSTANT_P (y))
2059 return (xsize <= 0 || ysize <= 0
2060 || (rtx_equal_for_memref_p (x, y)
2061 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2063 return -1;
2066 return -1;
2069 /* Functions to compute memory dependencies.
2071 Since we process the insns in execution order, we can build tables
2072 to keep track of what registers are fixed (and not aliased), what registers
2073 are varying in known ways, and what registers are varying in unknown
2074 ways.
2076 If both memory references are volatile, then there must always be a
2077 dependence between the two references, since their order can not be
2078 changed. A volatile and non-volatile reference can be interchanged
2079 though.
2081 A MEM_IN_STRUCT reference at a non-AND varying address can never
2082 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
2083 also must allow AND addresses, because they may generate accesses
2084 outside the object being referenced. This is used to generate
2085 aligned addresses from unaligned addresses, for instance, the alpha
2086 storeqi_unaligned pattern. */
2088 /* Read dependence: X is read after read in MEM takes place. There can
2089 only be a dependence here if both reads are volatile. */
2092 read_dependence (const_rtx mem, const_rtx x)
2094 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
2097 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
2098 MEM2 is a reference to a structure at a varying address, or returns
2099 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
2100 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
2101 to decide whether or not an address may vary; it should return
2102 nonzero whenever variation is possible.
2103 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
2105 static const_rtx
2106 fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
2107 rtx mem2_addr,
2108 bool (*varies_p) (const_rtx, bool))
2110 if (! flag_strict_aliasing)
2111 return NULL_RTX;
2113 if (MEM_ALIAS_SET (mem2)
2114 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2115 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2116 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2117 varying address. */
2118 return mem1;
2120 if (MEM_ALIAS_SET (mem1)
2121 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2122 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2123 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2124 varying address. */
2125 return mem2;
2127 return NULL_RTX;
2130 /* Returns nonzero if something about the mode or address format MEM1
2131 indicates that it might well alias *anything*. */
2133 static int
2134 aliases_everything_p (const_rtx mem)
2136 if (GET_CODE (XEXP (mem, 0)) == AND)
2137 /* If the address is an AND, it's very hard to know at what it is
2138 actually pointing. */
2139 return 1;
2141 return 0;
2144 /* Return true if we can determine that the fields referenced cannot
2145 overlap for any pair of objects. */
2147 static bool
2148 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2150 const_tree fieldx, fieldy, typex, typey, orig_y;
2152 if (!flag_strict_aliasing)
2153 return false;
2157 /* The comparison has to be done at a common type, since we don't
2158 know how the inheritance hierarchy works. */
2159 orig_y = y;
2162 fieldx = TREE_OPERAND (x, 1);
2163 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2165 y = orig_y;
2168 fieldy = TREE_OPERAND (y, 1);
2169 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2171 if (typex == typey)
2172 goto found;
2174 y = TREE_OPERAND (y, 0);
2176 while (y && TREE_CODE (y) == COMPONENT_REF);
2178 x = TREE_OPERAND (x, 0);
2180 while (x && TREE_CODE (x) == COMPONENT_REF);
2181 /* Never found a common type. */
2182 return false;
2184 found:
2185 /* If we're left with accessing different fields of a structure,
2186 then no overlap. */
2187 if (TREE_CODE (typex) == RECORD_TYPE
2188 && fieldx != fieldy)
2189 return true;
2191 /* The comparison on the current field failed. If we're accessing
2192 a very nested structure, look at the next outer level. */
2193 x = TREE_OPERAND (x, 0);
2194 y = TREE_OPERAND (y, 0);
2196 while (x && y
2197 && TREE_CODE (x) == COMPONENT_REF
2198 && TREE_CODE (y) == COMPONENT_REF);
2200 return false;
2203 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2205 static tree
2206 decl_for_component_ref (tree x)
2210 x = TREE_OPERAND (x, 0);
2212 while (x && TREE_CODE (x) == COMPONENT_REF);
2214 return x && DECL_P (x) ? x : NULL_TREE;
2217 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2218 for the offset of the field reference. *KNOWN_P says whether the
2219 offset is known. */
2221 static void
2222 adjust_offset_for_component_ref (tree x, bool *known_p,
2223 HOST_WIDE_INT *offset)
2225 if (!*known_p)
2226 return;
2229 tree xoffset = component_ref_field_offset (x);
2230 tree field = TREE_OPERAND (x, 1);
2232 if (! host_integerp (xoffset, 1))
2234 *known_p = false;
2235 return;
2237 *offset += (tree_low_cst (xoffset, 1)
2238 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2239 / BITS_PER_UNIT));
2241 x = TREE_OPERAND (x, 0);
2243 while (x && TREE_CODE (x) == COMPONENT_REF);
2246 /* Return nonzero if we can determine the exprs corresponding to memrefs
2247 X and Y and they do not overlap.
2248 If LOOP_VARIANT is set, skip offset-based disambiguation */
2251 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2253 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2254 rtx rtlx, rtly;
2255 rtx basex, basey;
2256 bool moffsetx_known_p, moffsety_known_p;
2257 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2258 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2260 /* Unless both have exprs, we can't tell anything. */
2261 if (exprx == 0 || expry == 0)
2262 return 0;
2264 /* For spill-slot accesses make sure we have valid offsets. */
2265 if ((exprx == get_spill_slot_decl (false)
2266 && ! MEM_OFFSET_KNOWN_P (x))
2267 || (expry == get_spill_slot_decl (false)
2268 && ! MEM_OFFSET_KNOWN_P (y)))
2269 return 0;
2271 /* If both are field references, we may be able to determine something. */
2272 if (TREE_CODE (exprx) == COMPONENT_REF
2273 && TREE_CODE (expry) == COMPONENT_REF
2274 && nonoverlapping_component_refs_p (exprx, expry))
2275 return 1;
2278 /* If the field reference test failed, look at the DECLs involved. */
2279 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2280 if (moffsetx_known_p)
2281 moffsetx = MEM_OFFSET (x);
2282 if (TREE_CODE (exprx) == COMPONENT_REF)
2284 tree t = decl_for_component_ref (exprx);
2285 if (! t)
2286 return 0;
2287 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2288 exprx = t;
2291 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2292 if (moffsety_known_p)
2293 moffsety = MEM_OFFSET (y);
2294 if (TREE_CODE (expry) == COMPONENT_REF)
2296 tree t = decl_for_component_ref (expry);
2297 if (! t)
2298 return 0;
2299 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2300 expry = t;
2303 if (! DECL_P (exprx) || ! DECL_P (expry))
2304 return 0;
2306 /* With invalid code we can end up storing into the constant pool.
2307 Bail out to avoid ICEing when creating RTL for this.
2308 See gfortran.dg/lto/20091028-2_0.f90. */
2309 if (TREE_CODE (exprx) == CONST_DECL
2310 || TREE_CODE (expry) == CONST_DECL)
2311 return 1;
2313 rtlx = DECL_RTL (exprx);
2314 rtly = DECL_RTL (expry);
2316 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2317 can't overlap unless they are the same because we never reuse that part
2318 of the stack frame used for locals for spilled pseudos. */
2319 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2320 && ! rtx_equal_p (rtlx, rtly))
2321 return 1;
2323 /* If we have MEMs refering to different address spaces (which can
2324 potentially overlap), we cannot easily tell from the addresses
2325 whether the references overlap. */
2326 if (MEM_P (rtlx) && MEM_P (rtly)
2327 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2328 return 0;
2330 /* Get the base and offsets of both decls. If either is a register, we
2331 know both are and are the same, so use that as the base. The only
2332 we can avoid overlap is if we can deduce that they are nonoverlapping
2333 pieces of that decl, which is very rare. */
2334 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2335 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2336 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2338 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2339 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2340 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2342 /* If the bases are different, we know they do not overlap if both
2343 are constants or if one is a constant and the other a pointer into the
2344 stack frame. Otherwise a different base means we can't tell if they
2345 overlap or not. */
2346 if (! rtx_equal_p (basex, basey))
2347 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2348 || (CONSTANT_P (basex) && REG_P (basey)
2349 && REGNO_PTR_FRAME_P (REGNO (basey)))
2350 || (CONSTANT_P (basey) && REG_P (basex)
2351 && REGNO_PTR_FRAME_P (REGNO (basex))));
2353 /* Offset based disambiguation not appropriate for loop invariant */
2354 if (loop_invariant)
2355 return 0;
2357 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2358 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2359 : -1);
2360 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2361 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2362 : -1);
2364 /* If we have an offset for either memref, it can update the values computed
2365 above. */
2366 if (moffsetx_known_p)
2367 offsetx += moffsetx, sizex -= moffsetx;
2368 if (moffsety_known_p)
2369 offsety += moffsety, sizey -= moffsety;
2371 /* If a memref has both a size and an offset, we can use the smaller size.
2372 We can't do this if the offset isn't known because we must view this
2373 memref as being anywhere inside the DECL's MEM. */
2374 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2375 sizex = MEM_SIZE (x);
2376 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2377 sizey = MEM_SIZE (y);
2379 /* Put the values of the memref with the lower offset in X's values. */
2380 if (offsetx > offsety)
2382 tem = offsetx, offsetx = offsety, offsety = tem;
2383 tem = sizex, sizex = sizey, sizey = tem;
2386 /* If we don't know the size of the lower-offset value, we can't tell
2387 if they conflict. Otherwise, we do the test. */
2388 return sizex >= 0 && offsety >= offsetx + sizex;
2391 /* Helper for true_dependence and canon_true_dependence.
2392 Checks for true dependence: X is read after store in MEM takes place.
2394 VARIES is the function that should be used as rtx_varies function.
2396 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2397 NULL_RTX, and the canonical addresses of MEM and X are both computed
2398 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2400 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2402 Returns 1 if there is a true dependence, 0 otherwise. */
2404 static int
2405 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2406 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool),
2407 bool mem_canonicalized)
2409 rtx base;
2410 int ret;
2412 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2413 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2415 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2416 return 1;
2418 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2419 This is used in epilogue deallocation functions, and in cselib. */
2420 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2421 return 1;
2422 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2423 return 1;
2424 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2425 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2426 return 1;
2428 /* Read-only memory is by definition never modified, and therefore can't
2429 conflict with anything. We don't expect to find read-only set on MEM,
2430 but stupid user tricks can produce them, so don't die. */
2431 if (MEM_READONLY_P (x))
2432 return 0;
2434 /* If we have MEMs refering to different address spaces (which can
2435 potentially overlap), we cannot easily tell from the addresses
2436 whether the references overlap. */
2437 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2438 return 1;
2440 if (! mem_addr)
2442 mem_addr = XEXP (mem, 0);
2443 if (mem_mode == VOIDmode)
2444 mem_mode = GET_MODE (mem);
2447 if (! x_addr)
2449 x_addr = XEXP (x, 0);
2450 if (!((GET_CODE (x_addr) == VALUE
2451 && GET_CODE (mem_addr) != VALUE
2452 && reg_mentioned_p (x_addr, mem_addr))
2453 || (GET_CODE (x_addr) != VALUE
2454 && GET_CODE (mem_addr) == VALUE
2455 && reg_mentioned_p (mem_addr, x_addr))))
2457 x_addr = get_addr (x_addr);
2458 if (! mem_canonicalized)
2459 mem_addr = get_addr (mem_addr);
2463 base = find_base_term (x_addr);
2464 if (base && (GET_CODE (base) == LABEL_REF
2465 || (GET_CODE (base) == SYMBOL_REF
2466 && CONSTANT_POOL_ADDRESS_P (base))))
2467 return 0;
2469 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2470 return 0;
2472 x_addr = canon_rtx (x_addr);
2473 if (!mem_canonicalized)
2474 mem_addr = canon_rtx (mem_addr);
2476 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2477 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2478 return ret;
2480 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2481 return 0;
2483 if (nonoverlapping_memrefs_p (mem, x, false))
2484 return 0;
2486 if (aliases_everything_p (x))
2487 return 1;
2489 /* We cannot use aliases_everything_p to test MEM, since we must look
2490 at MEM_ADDR, rather than XEXP (mem, 0). */
2491 if (GET_CODE (mem_addr) == AND)
2492 return 1;
2494 /* ??? In true_dependence we also allow BLKmode to alias anything. Why
2495 don't we do this in anti_dependence and output_dependence? */
2496 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2497 return 1;
2499 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2500 return 0;
2502 return rtx_refs_may_alias_p (x, mem, true);
2505 /* True dependence: X is read after store in MEM takes place. */
2508 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2509 bool (*varies) (const_rtx, bool))
2511 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2512 x, NULL_RTX, varies,
2513 /*mem_canonicalized=*/false);
2516 /* Canonical true dependence: X is read after store in MEM takes place.
2517 Variant of true_dependence which assumes MEM has already been
2518 canonicalized (hence we no longer do that here).
2519 The mem_addr argument has been added, since true_dependence_1 computed
2520 this value prior to canonicalizing. */
2523 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2524 const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2526 return true_dependence_1 (mem, mem_mode, mem_addr,
2527 x, x_addr, varies,
2528 /*mem_canonicalized=*/true);
2531 /* Returns nonzero if a write to X might alias a previous read from
2532 (or, if WRITEP is nonzero, a write to) MEM. */
2534 static int
2535 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2537 rtx x_addr, mem_addr;
2538 const_rtx fixed_scalar;
2539 rtx base;
2540 int ret;
2542 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2543 return 1;
2545 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2546 This is used in epilogue deallocation functions. */
2547 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2548 return 1;
2549 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2550 return 1;
2551 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2552 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2553 return 1;
2555 /* A read from read-only memory can't conflict with read-write memory. */
2556 if (!writep && MEM_READONLY_P (mem))
2557 return 0;
2559 /* If we have MEMs refering to different address spaces (which can
2560 potentially overlap), we cannot easily tell from the addresses
2561 whether the references overlap. */
2562 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2563 return 1;
2565 x_addr = XEXP (x, 0);
2566 mem_addr = XEXP (mem, 0);
2567 if (!((GET_CODE (x_addr) == VALUE
2568 && GET_CODE (mem_addr) != VALUE
2569 && reg_mentioned_p (x_addr, mem_addr))
2570 || (GET_CODE (x_addr) != VALUE
2571 && GET_CODE (mem_addr) == VALUE
2572 && reg_mentioned_p (mem_addr, x_addr))))
2574 x_addr = get_addr (x_addr);
2575 mem_addr = get_addr (mem_addr);
2578 if (! writep)
2580 base = find_base_term (mem_addr);
2581 if (base && (GET_CODE (base) == LABEL_REF
2582 || (GET_CODE (base) == SYMBOL_REF
2583 && CONSTANT_POOL_ADDRESS_P (base))))
2584 return 0;
2587 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2588 GET_MODE (mem)))
2589 return 0;
2591 x_addr = canon_rtx (x_addr);
2592 mem_addr = canon_rtx (mem_addr);
2594 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2595 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2596 return ret;
2598 if (nonoverlapping_memrefs_p (x, mem, false))
2599 return 0;
2601 fixed_scalar
2602 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2603 rtx_addr_varies_p);
2605 if ((fixed_scalar == mem && !aliases_everything_p (x))
2606 || (fixed_scalar == x && !aliases_everything_p (mem)))
2607 return 0;
2609 return rtx_refs_may_alias_p (x, mem, false);
2612 /* Anti dependence: X is written after read in MEM takes place. */
2615 anti_dependence (const_rtx mem, const_rtx x)
2617 return write_dependence_p (mem, x, /*writep=*/0);
2620 /* Output dependence: X is written after store in MEM takes place. */
2623 output_dependence (const_rtx mem, const_rtx x)
2625 return write_dependence_p (mem, x, /*writep=*/1);
2630 /* Check whether X may be aliased with MEM. Don't do offset-based
2631 memory disambiguation & TBAA. */
2633 may_alias_p (const_rtx mem, const_rtx x)
2635 rtx x_addr, mem_addr;
2637 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2638 return 1;
2640 /* ??? In true_dependence we also allow BLKmode to alias anything. */
2641 if (GET_MODE (mem) == BLKmode || GET_MODE (x) == BLKmode)
2642 return 1;
2644 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2645 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2646 return 1;
2648 /* Read-only memory is by definition never modified, and therefore can't
2649 conflict with anything. We don't expect to find read-only set on MEM,
2650 but stupid user tricks can produce them, so don't die. */
2651 if (MEM_READONLY_P (x))
2652 return 0;
2654 /* If we have MEMs refering to different address spaces (which can
2655 potentially overlap), we cannot easily tell from the addresses
2656 whether the references overlap. */
2657 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2658 return 1;
2660 x_addr = XEXP (x, 0);
2661 mem_addr = XEXP (mem, 0);
2662 if (!((GET_CODE (x_addr) == VALUE
2663 && GET_CODE (mem_addr) != VALUE
2664 && reg_mentioned_p (x_addr, mem_addr))
2665 || (GET_CODE (x_addr) != VALUE
2666 && GET_CODE (mem_addr) == VALUE
2667 && reg_mentioned_p (mem_addr, x_addr))))
2669 x_addr = get_addr (x_addr);
2670 mem_addr = get_addr (mem_addr);
2673 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2674 return 0;
2676 x_addr = canon_rtx (x_addr);
2677 mem_addr = canon_rtx (mem_addr);
2679 if (nonoverlapping_memrefs_p (mem, x, true))
2680 return 0;
2682 if (aliases_everything_p (x))
2683 return 1;
2685 /* We cannot use aliases_everything_p to test MEM, since we must look
2686 at MEM_ADDR, rather than XEXP (mem, 0). */
2687 if (GET_CODE (mem_addr) == AND)
2688 return 1;
2690 if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2691 rtx_addr_varies_p))
2692 return 0;
2694 /* TBAA not valid for loop_invarint */
2695 return rtx_refs_may_alias_p (x, mem, false);
2698 void
2699 init_alias_target (void)
2701 int i;
2703 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2705 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2706 /* Check whether this register can hold an incoming pointer
2707 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2708 numbers, so translate if necessary due to register windows. */
2709 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2710 && HARD_REGNO_MODE_OK (i, Pmode))
2711 static_reg_base_value[i]
2712 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2714 static_reg_base_value[STACK_POINTER_REGNUM]
2715 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2716 static_reg_base_value[ARG_POINTER_REGNUM]
2717 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2718 static_reg_base_value[FRAME_POINTER_REGNUM]
2719 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2720 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2721 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2722 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2723 #endif
2726 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2727 to be memory reference. */
2728 static bool memory_modified;
2729 static void
2730 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2732 if (MEM_P (x))
2734 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2735 memory_modified = true;
2740 /* Return true when INSN possibly modify memory contents of MEM
2741 (i.e. address can be modified). */
2742 bool
2743 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2745 if (!INSN_P (insn))
2746 return false;
2747 memory_modified = false;
2748 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2749 return memory_modified;
2752 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2753 array. */
2755 void
2756 init_alias_analysis (void)
2758 unsigned int maxreg = max_reg_num ();
2759 int changed, pass;
2760 int i;
2761 unsigned int ui;
2762 rtx insn;
2764 timevar_push (TV_ALIAS_ANALYSIS);
2766 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2767 reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size);
2768 reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2770 /* If we have memory allocated from the previous run, use it. */
2771 if (old_reg_base_value)
2772 reg_base_value = old_reg_base_value;
2774 if (reg_base_value)
2775 VEC_truncate (rtx, reg_base_value, 0);
2777 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2779 new_reg_base_value = XNEWVEC (rtx, maxreg);
2780 reg_seen = XNEWVEC (char, maxreg);
2782 /* The basic idea is that each pass through this loop will use the
2783 "constant" information from the previous pass to propagate alias
2784 information through another level of assignments.
2786 This could get expensive if the assignment chains are long. Maybe
2787 we should throttle the number of iterations, possibly based on
2788 the optimization level or flag_expensive_optimizations.
2790 We could propagate more information in the first pass by making use
2791 of DF_REG_DEF_COUNT to determine immediately that the alias information
2792 for a pseudo is "constant".
2794 A program with an uninitialized variable can cause an infinite loop
2795 here. Instead of doing a full dataflow analysis to detect such problems
2796 we just cap the number of iterations for the loop.
2798 The state of the arrays for the set chain in question does not matter
2799 since the program has undefined behavior. */
2801 pass = 0;
2804 /* Assume nothing will change this iteration of the loop. */
2805 changed = 0;
2807 /* We want to assign the same IDs each iteration of this loop, so
2808 start counting from zero each iteration of the loop. */
2809 unique_id = 0;
2811 /* We're at the start of the function each iteration through the
2812 loop, so we're copying arguments. */
2813 copying_arguments = true;
2815 /* Wipe the potential alias information clean for this pass. */
2816 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2818 /* Wipe the reg_seen array clean. */
2819 memset (reg_seen, 0, maxreg);
2821 /* Mark all hard registers which may contain an address.
2822 The stack, frame and argument pointers may contain an address.
2823 An argument register which can hold a Pmode value may contain
2824 an address even if it is not in BASE_REGS.
2826 The address expression is VOIDmode for an argument and
2827 Pmode for other registers. */
2829 memcpy (new_reg_base_value, static_reg_base_value,
2830 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2832 /* Walk the insns adding values to the new_reg_base_value array. */
2833 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2835 if (INSN_P (insn))
2837 rtx note, set;
2839 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2840 /* The prologue/epilogue insns are not threaded onto the
2841 insn chain until after reload has completed. Thus,
2842 there is no sense wasting time checking if INSN is in
2843 the prologue/epilogue until after reload has completed. */
2844 if (reload_completed
2845 && prologue_epilogue_contains (insn))
2846 continue;
2847 #endif
2849 /* If this insn has a noalias note, process it, Otherwise,
2850 scan for sets. A simple set will have no side effects
2851 which could change the base value of any other register. */
2853 if (GET_CODE (PATTERN (insn)) == SET
2854 && REG_NOTES (insn) != 0
2855 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2856 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2857 else
2858 note_stores (PATTERN (insn), record_set, NULL);
2860 set = single_set (insn);
2862 if (set != 0
2863 && REG_P (SET_DEST (set))
2864 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2866 unsigned int regno = REGNO (SET_DEST (set));
2867 rtx src = SET_SRC (set);
2868 rtx t;
2870 note = find_reg_equal_equiv_note (insn);
2871 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2872 && DF_REG_DEF_COUNT (regno) != 1)
2873 note = NULL_RTX;
2875 if (note != NULL_RTX
2876 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2877 && ! rtx_varies_p (XEXP (note, 0), 1)
2878 && ! reg_overlap_mentioned_p (SET_DEST (set),
2879 XEXP (note, 0)))
2881 set_reg_known_value (regno, XEXP (note, 0));
2882 set_reg_known_equiv_p (regno,
2883 REG_NOTE_KIND (note) == REG_EQUIV);
2885 else if (DF_REG_DEF_COUNT (regno) == 1
2886 && GET_CODE (src) == PLUS
2887 && REG_P (XEXP (src, 0))
2888 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2889 && CONST_INT_P (XEXP (src, 1)))
2891 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2892 set_reg_known_value (regno, t);
2893 set_reg_known_equiv_p (regno, 0);
2895 else if (DF_REG_DEF_COUNT (regno) == 1
2896 && ! rtx_varies_p (src, 1))
2898 set_reg_known_value (regno, src);
2899 set_reg_known_equiv_p (regno, 0);
2903 else if (NOTE_P (insn)
2904 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2905 copying_arguments = false;
2908 /* Now propagate values from new_reg_base_value to reg_base_value. */
2909 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2911 for (ui = 0; ui < maxreg; ui++)
2913 if (new_reg_base_value[ui]
2914 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2915 && ! rtx_equal_p (new_reg_base_value[ui],
2916 VEC_index (rtx, reg_base_value, ui)))
2918 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2919 changed = 1;
2923 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2925 /* Fill in the remaining entries. */
2926 for (i = 0; i < (int)reg_known_value_size; i++)
2927 if (reg_known_value[i] == 0)
2928 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2930 /* Clean up. */
2931 free (new_reg_base_value);
2932 new_reg_base_value = 0;
2933 free (reg_seen);
2934 reg_seen = 0;
2935 timevar_pop (TV_ALIAS_ANALYSIS);
2938 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2939 Special API for var-tracking pass purposes. */
2941 void
2942 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2944 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2947 void
2948 end_alias_analysis (void)
2950 old_reg_base_value = reg_base_value;
2951 ggc_free (reg_known_value);
2952 reg_known_value = 0;
2953 reg_known_value_size = 0;
2954 free (reg_known_equiv_p);
2955 reg_known_equiv_p = 0;
2958 #include "gt-alias.h"