1 /* Loop autoparallelization.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "tree-pass.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-general.h"
56 #include "params-enum.h"
57 #include "tree-ssa-alias.h"
59 #include "gomp-constants.h"
61 #include "stringpool.h"
64 /* This pass tries to distribute iterations of loops into several threads.
65 The implementation is straightforward -- for each loop we test whether its
66 iterations are independent, and if it is the case (and some additional
67 conditions regarding profitability and correctness are satisfied), we
68 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
71 The most of the complexity is in bringing the code into shape expected
73 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
74 variable and that the exit test is at the start of the loop body
75 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
76 variables by accesses through pointers, and breaking up ssa chains
77 by storing the values incoming to the parallelized loop to a structure
78 passed to the new function as an argument (something similar is done
79 in omp gimplification, unfortunately only a small part of the code
83 -- if there are several parallelizable loops in a function, it may be
84 possible to generate the threads just once (using synchronization to
85 ensure that cross-loop dependences are obeyed).
86 -- handling of common reduction patterns for outer loops.
88 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
91 currently we use vect_force_simple_reduction() to detect reduction patterns.
92 The code transformation will be introduced by an example.
99 for (i = 0; i < N; i++)
109 # sum_29 = PHI <sum_11(5), 1(3)>
110 # i_28 = PHI <i_12(5), 0(3)>
113 sum_11 = D.1795_8 + sum_29;
121 # sum_21 = PHI <sum_11(4)>
122 printf (&"%d"[0], sum_21);
125 after reduction transformation (only relevant parts):
133 # Storing the initial value given by the user. #
135 .paral_data_store.32.sum.27 = 1;
137 #pragma omp parallel num_threads(4)
139 #pragma omp for schedule(static)
141 # The neutral element corresponding to the particular
142 reduction's operation, e.g. 0 for PLUS_EXPR,
143 1 for MULT_EXPR, etc. replaces the user's initial value. #
145 # sum.27_29 = PHI <sum.27_11, 0>
147 sum.27_11 = D.1827_8 + sum.27_29;
151 # Adding this reduction phi is done at create_phi_for_local_result() #
152 # sum.27_56 = PHI <sum.27_11, 0>
155 # Creating the atomic operation is done at
156 create_call_for_reduction_1() #
158 #pragma omp atomic_load
159 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
160 D.1840_60 = sum.27_56 + D.1839_59;
161 #pragma omp atomic_store (D.1840_60);
165 # collecting the result after the join of the threads is done at
166 create_loads_for_reductions().
167 The value computed by the threads is loaded from the
171 .paral_data_load.33_52 = &.paral_data_store.32;
172 sum_37 = .paral_data_load.33_52->sum.27;
173 sum_43 = D.1795_41 + sum_37;
176 # sum_21 = PHI <sum_43, sum_26>
177 printf (&"%d"[0], sum_21);
185 /* Minimal number of iterations of a loop that should be executed in each
187 #define MIN_PER_THREAD PARAM_VALUE (PARAM_PARLOOPS_MIN_PER_THREAD)
189 /* Element of the hashtable, representing a
190 reduction in the current loop. */
191 struct reduction_info
193 gimple
*reduc_stmt
; /* reduction statement. */
194 gimple
*reduc_phi
; /* The phi node defining the reduction. */
195 enum tree_code reduction_code
;/* code for the reduction operation. */
196 unsigned reduc_version
; /* SSA_NAME_VERSION of original reduc_phi
198 gphi
*keep_res
; /* The PHI_RESULT of this phi is the resulting value
199 of the reduction variable when existing the loop. */
200 tree initial_value
; /* The initial value of the reduction var before entering the loop. */
201 tree field
; /* the name of the field in the parloop data structure intended for reduction. */
202 tree reduc_addr
; /* The address of the reduction variable for
203 openacc reductions. */
204 tree init
; /* reduction initialization value. */
205 gphi
*new_phi
; /* (helper field) Newly created phi node whose result
206 will be passed to the atomic operation. Represents
207 the local result each thread computed for the reduction
211 /* Reduction info hashtable helpers. */
213 struct reduction_hasher
: free_ptr_hash
<reduction_info
>
215 static inline hashval_t
hash (const reduction_info
*);
216 static inline bool equal (const reduction_info
*, const reduction_info
*);
219 /* Equality and hash functions for hashtab code. */
222 reduction_hasher::equal (const reduction_info
*a
, const reduction_info
*b
)
224 return (a
->reduc_phi
== b
->reduc_phi
);
228 reduction_hasher::hash (const reduction_info
*a
)
230 return a
->reduc_version
;
233 typedef hash_table
<reduction_hasher
> reduction_info_table_type
;
236 static struct reduction_info
*
237 reduction_phi (reduction_info_table_type
*reduction_list
, gimple
*phi
)
239 struct reduction_info tmpred
, *red
;
241 if (reduction_list
->is_empty () || phi
== NULL
)
244 if (gimple_uid (phi
) == (unsigned int)-1
245 || gimple_uid (phi
) == 0)
248 tmpred
.reduc_phi
= phi
;
249 tmpred
.reduc_version
= gimple_uid (phi
);
250 red
= reduction_list
->find (&tmpred
);
251 gcc_assert (red
== NULL
|| red
->reduc_phi
== phi
);
256 /* Element of hashtable of names to copy. */
258 struct name_to_copy_elt
260 unsigned version
; /* The version of the name to copy. */
261 tree new_name
; /* The new name used in the copy. */
262 tree field
; /* The field of the structure used to pass the
266 /* Name copies hashtable helpers. */
268 struct name_to_copy_hasher
: free_ptr_hash
<name_to_copy_elt
>
270 static inline hashval_t
hash (const name_to_copy_elt
*);
271 static inline bool equal (const name_to_copy_elt
*, const name_to_copy_elt
*);
274 /* Equality and hash functions for hashtab code. */
277 name_to_copy_hasher::equal (const name_to_copy_elt
*a
, const name_to_copy_elt
*b
)
279 return a
->version
== b
->version
;
283 name_to_copy_hasher::hash (const name_to_copy_elt
*a
)
285 return (hashval_t
) a
->version
;
288 typedef hash_table
<name_to_copy_hasher
> name_to_copy_table_type
;
290 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
291 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
292 represents the denominator for every element in the matrix. */
293 typedef struct lambda_trans_matrix_s
295 lambda_matrix matrix
;
299 } *lambda_trans_matrix
;
300 #define LTM_MATRIX(T) ((T)->matrix)
301 #define LTM_ROWSIZE(T) ((T)->rowsize)
302 #define LTM_COLSIZE(T) ((T)->colsize)
303 #define LTM_DENOMINATOR(T) ((T)->denominator)
305 /* Allocate a new transformation matrix. */
307 static lambda_trans_matrix
308 lambda_trans_matrix_new (int colsize
, int rowsize
,
309 struct obstack
* lambda_obstack
)
311 lambda_trans_matrix ret
;
313 ret
= (lambda_trans_matrix
)
314 obstack_alloc (lambda_obstack
, sizeof (struct lambda_trans_matrix_s
));
315 LTM_MATRIX (ret
) = lambda_matrix_new (rowsize
, colsize
, lambda_obstack
);
316 LTM_ROWSIZE (ret
) = rowsize
;
317 LTM_COLSIZE (ret
) = colsize
;
318 LTM_DENOMINATOR (ret
) = 1;
322 /* Multiply a vector VEC by a matrix MAT.
323 MAT is an M*N matrix, and VEC is a vector with length N. The result
324 is stored in DEST which must be a vector of length M. */
327 lambda_matrix_vector_mult (lambda_matrix matrix
, int m
, int n
,
328 lambda_vector vec
, lambda_vector dest
)
332 lambda_vector_clear (dest
, m
);
333 for (i
= 0; i
< m
; i
++)
334 for (j
= 0; j
< n
; j
++)
335 dest
[i
] += matrix
[i
][j
] * vec
[j
];
338 /* Return true if TRANS is a legal transformation matrix that respects
339 the dependence vectors in DISTS and DIRS. The conservative answer
342 "Wolfe proves that a unimodular transformation represented by the
343 matrix T is legal when applied to a loop nest with a set of
344 lexicographically non-negative distance vectors RDG if and only if
345 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
346 i.e.: if and only if it transforms the lexicographically positive
347 distance vectors to lexicographically positive vectors. Note that
348 a unimodular matrix must transform the zero vector (and only it) to
349 the zero vector." S.Muchnick. */
352 lambda_transform_legal_p (lambda_trans_matrix trans
,
354 vec
<ddr_p
> dependence_relations
)
357 lambda_vector distres
;
358 struct data_dependence_relation
*ddr
;
360 gcc_assert (LTM_COLSIZE (trans
) == nb_loops
361 && LTM_ROWSIZE (trans
) == nb_loops
);
363 /* When there are no dependences, the transformation is correct. */
364 if (dependence_relations
.length () == 0)
367 ddr
= dependence_relations
[0];
371 /* When there is an unknown relation in the dependence_relations, we
372 know that it is no worth looking at this loop nest: give up. */
373 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
376 distres
= lambda_vector_new (nb_loops
);
378 /* For each distance vector in the dependence graph. */
379 FOR_EACH_VEC_ELT (dependence_relations
, i
, ddr
)
381 /* Don't care about relations for which we know that there is no
382 dependence, nor about read-read (aka. output-dependences):
383 these data accesses can happen in any order. */
384 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
385 || (DR_IS_READ (DDR_A (ddr
)) && DR_IS_READ (DDR_B (ddr
))))
388 /* Conservatively answer: "this transformation is not valid". */
389 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
392 /* If the dependence could not be captured by a distance vector,
393 conservatively answer that the transform is not valid. */
394 if (DDR_NUM_DIST_VECTS (ddr
) == 0)
397 /* Compute trans.dist_vect */
398 for (j
= 0; j
< DDR_NUM_DIST_VECTS (ddr
); j
++)
400 lambda_matrix_vector_mult (LTM_MATRIX (trans
), nb_loops
, nb_loops
,
401 DDR_DIST_VECT (ddr
, j
), distres
);
403 if (!lambda_vector_lexico_pos (distres
, nb_loops
))
410 /* Data dependency analysis. Returns true if the iterations of LOOP
411 are independent on each other (that is, if we can execute them
415 loop_parallel_p (struct loop
*loop
, struct obstack
* parloop_obstack
)
417 vec
<ddr_p
> dependence_relations
;
418 vec
<data_reference_p
> datarefs
;
419 lambda_trans_matrix trans
;
422 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
424 fprintf (dump_file
, "Considering loop %d\n", loop
->num
);
426 fprintf (dump_file
, "loop is innermost\n");
428 fprintf (dump_file
, "loop NOT innermost\n");
431 /* Check for problems with dependences. If the loop can be reversed,
432 the iterations are independent. */
433 auto_vec
<loop_p
, 3> loop_nest
;
434 datarefs
.create (10);
435 dependence_relations
.create (100);
436 if (! compute_data_dependences_for_loop (loop
, true, &loop_nest
, &datarefs
,
437 &dependence_relations
))
439 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
440 fprintf (dump_file
, " FAILED: cannot analyze data dependencies\n");
444 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
445 dump_data_dependence_relations (dump_file
, dependence_relations
);
447 trans
= lambda_trans_matrix_new (1, 1, parloop_obstack
);
448 LTM_MATRIX (trans
)[0][0] = -1;
450 if (lambda_transform_legal_p (trans
, 1, dependence_relations
))
453 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
454 fprintf (dump_file
, " SUCCESS: may be parallelized\n");
456 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
458 " FAILED: data dependencies exist across iterations\n");
461 free_dependence_relations (dependence_relations
);
462 free_data_refs (datarefs
);
467 /* Return true when LOOP contains basic blocks marked with the
468 BB_IRREDUCIBLE_LOOP flag. */
471 loop_has_blocks_with_irreducible_flag (struct loop
*loop
)
474 basic_block
*bbs
= get_loop_body_in_dom_order (loop
);
477 for (i
= 0; i
< loop
->num_nodes
; i
++)
478 if (bbs
[i
]->flags
& BB_IRREDUCIBLE_LOOP
)
487 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
488 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
489 to their addresses that can be reused. The address of OBJ is known to
490 be invariant in the whole function. Other needed statements are placed
494 take_address_of (tree obj
, tree type
, edge entry
,
495 int_tree_htab_type
*decl_address
, gimple_stmt_iterator
*gsi
)
498 tree
*var_p
, name
, addr
;
502 /* Since the address of OBJ is invariant, the trees may be shared.
503 Avoid rewriting unrelated parts of the code. */
504 obj
= unshare_expr (obj
);
506 handled_component_p (*var_p
);
507 var_p
= &TREE_OPERAND (*var_p
, 0))
510 /* Canonicalize the access to base on a MEM_REF. */
512 *var_p
= build_simple_mem_ref (build_fold_addr_expr (*var_p
));
514 /* Assign a canonical SSA name to the address of the base decl used
515 in the address and share it for all accesses and addresses based
517 uid
= DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p
, 0), 0));
520 int_tree_map
*slot
= decl_address
->find_slot (elt
, INSERT
);
525 addr
= TREE_OPERAND (*var_p
, 0);
527 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p
, 0), 0));
529 name
= make_temp_ssa_name (TREE_TYPE (addr
), NULL
, obj_name
);
531 name
= make_ssa_name (TREE_TYPE (addr
));
532 stmt
= gimple_build_assign (name
, addr
);
533 gsi_insert_on_edge_immediate (entry
, stmt
);
541 /* Express the address in terms of the canonical SSA name. */
542 TREE_OPERAND (*var_p
, 0) = name
;
544 return build_fold_addr_expr_with_type (obj
, type
);
546 name
= force_gimple_operand (build_addr (obj
),
547 &stmts
, true, NULL_TREE
);
548 if (!gimple_seq_empty_p (stmts
))
549 gsi_insert_seq_before (gsi
, stmts
, GSI_SAME_STMT
);
551 if (!useless_type_conversion_p (type
, TREE_TYPE (name
)))
553 name
= force_gimple_operand (fold_convert (type
, name
), &stmts
, true,
555 if (!gimple_seq_empty_p (stmts
))
556 gsi_insert_seq_before (gsi
, stmts
, GSI_SAME_STMT
);
563 reduc_stmt_res (gimple
*stmt
)
565 return (gimple_code (stmt
) == GIMPLE_PHI
566 ? gimple_phi_result (stmt
)
567 : gimple_assign_lhs (stmt
));
570 /* Callback for htab_traverse. Create the initialization statement
571 for reduction described in SLOT, and place it at the preheader of
572 the loop described in DATA. */
575 initialize_reductions (reduction_info
**slot
, struct loop
*loop
)
581 struct reduction_info
*const reduc
= *slot
;
583 /* Create initialization in preheader:
584 reduction_variable = initialization value of reduction. */
586 /* In the phi node at the header, replace the argument coming
587 from the preheader with the reduction initialization value. */
589 /* Initialize the reduction. */
590 type
= TREE_TYPE (PHI_RESULT (reduc
->reduc_phi
));
591 init
= omp_reduction_init_op (gimple_location (reduc
->reduc_stmt
),
592 reduc
->reduction_code
, type
);
595 /* Replace the argument representing the initialization value
596 with the initialization value for the reduction (neutral
597 element for the particular operation, e.g. 0 for PLUS_EXPR,
598 1 for MULT_EXPR, etc).
599 Keep the old value in a new variable "reduction_initial",
600 that will be taken in consideration after the parallel
601 computing is done. */
603 e
= loop_preheader_edge (loop
);
604 arg
= PHI_ARG_DEF_FROM_EDGE (reduc
->reduc_phi
, e
);
605 /* Create new variable to hold the initial value. */
607 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
608 (reduc
->reduc_phi
, loop_preheader_edge (loop
)), init
);
609 reduc
->initial_value
= arg
;
615 struct walk_stmt_info info
;
617 int_tree_htab_type
*decl_address
;
618 gimple_stmt_iterator
*gsi
;
623 /* Eliminates references to local variables in *TP out of the single
624 entry single exit region starting at DTA->ENTRY.
625 DECL_ADDRESS contains addresses of the references that had their
626 address taken already. If the expression is changed, CHANGED is
627 set to true. Callback for walk_tree. */
630 eliminate_local_variables_1 (tree
*tp
, int *walk_subtrees
, void *data
)
632 struct elv_data
*const dta
= (struct elv_data
*) data
;
633 tree t
= *tp
, var
, addr
, addr_type
, type
, obj
;
639 if (!SSA_VAR_P (t
) || DECL_EXTERNAL (t
))
642 type
= TREE_TYPE (t
);
643 addr_type
= build_pointer_type (type
);
644 addr
= take_address_of (t
, addr_type
, dta
->entry
, dta
->decl_address
,
646 if (dta
->gsi
== NULL
&& addr
== NULL_TREE
)
652 *tp
= build_simple_mem_ref (addr
);
658 if (TREE_CODE (t
) == ADDR_EXPR
)
660 /* ADDR_EXPR may appear in two contexts:
661 -- as a gimple operand, when the address taken is a function invariant
662 -- as gimple rhs, when the resulting address in not a function
664 We do not need to do anything special in the latter case (the base of
665 the memory reference whose address is taken may be replaced in the
666 DECL_P case). The former case is more complicated, as we need to
667 ensure that the new address is still a gimple operand. Thus, it
668 is not sufficient to replace just the base of the memory reference --
669 we need to move the whole computation of the address out of the
671 if (!is_gimple_val (t
))
675 obj
= TREE_OPERAND (t
, 0);
676 var
= get_base_address (obj
);
677 if (!var
|| !SSA_VAR_P (var
) || DECL_EXTERNAL (var
))
680 addr_type
= TREE_TYPE (t
);
681 addr
= take_address_of (obj
, addr_type
, dta
->entry
, dta
->decl_address
,
683 if (dta
->gsi
== NULL
&& addr
== NULL_TREE
)
700 /* Moves the references to local variables in STMT at *GSI out of the single
701 entry single exit region starting at ENTRY. DECL_ADDRESS contains
702 addresses of the references that had their address taken
706 eliminate_local_variables_stmt (edge entry
, gimple_stmt_iterator
*gsi
,
707 int_tree_htab_type
*decl_address
)
710 gimple
*stmt
= gsi_stmt (*gsi
);
712 memset (&dta
.info
, '\0', sizeof (dta
.info
));
714 dta
.decl_address
= decl_address
;
718 if (gimple_debug_bind_p (stmt
))
721 walk_tree (gimple_debug_bind_get_value_ptr (stmt
),
722 eliminate_local_variables_1
, &dta
.info
, NULL
);
725 gimple_debug_bind_reset_value (stmt
);
729 else if (gimple_clobber_p (stmt
))
731 unlink_stmt_vdef (stmt
);
732 stmt
= gimple_build_nop ();
733 gsi_replace (gsi
, stmt
, false);
739 walk_gimple_op (stmt
, eliminate_local_variables_1
, &dta
.info
);
746 /* Eliminates the references to local variables from the single entry
747 single exit region between the ENTRY and EXIT edges.
750 1) Taking address of a local variable -- these are moved out of the
751 region (and temporary variable is created to hold the address if
754 2) Dereferencing a local variable -- these are replaced with indirect
758 eliminate_local_variables (edge entry
, edge exit
)
761 auto_vec
<basic_block
, 3> body
;
763 gimple_stmt_iterator gsi
;
764 bool has_debug_stmt
= false;
765 int_tree_htab_type
decl_address (10);
766 basic_block entry_bb
= entry
->src
;
767 basic_block exit_bb
= exit
->dest
;
769 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &body
);
771 FOR_EACH_VEC_ELT (body
, i
, bb
)
772 if (bb
!= entry_bb
&& bb
!= exit_bb
)
774 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
775 if (is_gimple_debug (gsi_stmt (gsi
)))
777 if (gimple_debug_bind_p (gsi_stmt (gsi
)))
778 has_debug_stmt
= true;
781 eliminate_local_variables_stmt (entry
, &gsi
, &decl_address
);
785 FOR_EACH_VEC_ELT (body
, i
, bb
)
786 if (bb
!= entry_bb
&& bb
!= exit_bb
)
787 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
788 if (gimple_debug_bind_p (gsi_stmt (gsi
)))
789 eliminate_local_variables_stmt (entry
, &gsi
, &decl_address
);
792 /* Returns true if expression EXPR is not defined between ENTRY and
793 EXIT, i.e. if all its operands are defined outside of the region. */
796 expr_invariant_in_region_p (edge entry
, edge exit
, tree expr
)
798 basic_block entry_bb
= entry
->src
;
799 basic_block exit_bb
= exit
->dest
;
802 if (is_gimple_min_invariant (expr
))
805 if (TREE_CODE (expr
) == SSA_NAME
)
807 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
809 && dominated_by_p (CDI_DOMINATORS
, def_bb
, entry_bb
)
810 && !dominated_by_p (CDI_DOMINATORS
, def_bb
, exit_bb
))
819 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
820 The copies are stored to NAME_COPIES, if NAME was already duplicated,
821 its duplicate stored in NAME_COPIES is returned.
823 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
824 duplicated, storing the copies in DECL_COPIES. */
827 separate_decls_in_region_name (tree name
, name_to_copy_table_type
*name_copies
,
828 int_tree_htab_type
*decl_copies
,
831 tree copy
, var
, var_copy
;
832 unsigned idx
, uid
, nuid
;
833 struct int_tree_map ielt
;
834 struct name_to_copy_elt elt
, *nelt
;
835 name_to_copy_elt
**slot
;
838 if (TREE_CODE (name
) != SSA_NAME
)
841 idx
= SSA_NAME_VERSION (name
);
843 slot
= name_copies
->find_slot_with_hash (&elt
, idx
,
844 copy_name_p
? INSERT
: NO_INSERT
);
846 return (*slot
)->new_name
;
850 copy
= duplicate_ssa_name (name
, NULL
);
851 nelt
= XNEW (struct name_to_copy_elt
);
853 nelt
->new_name
= copy
;
854 nelt
->field
= NULL_TREE
;
863 var
= SSA_NAME_VAR (name
);
867 uid
= DECL_UID (var
);
869 dslot
= decl_copies
->find_slot_with_hash (ielt
, uid
, INSERT
);
872 var_copy
= create_tmp_var (TREE_TYPE (var
), get_name (var
));
873 DECL_GIMPLE_REG_P (var_copy
) = DECL_GIMPLE_REG_P (var
);
875 dslot
->to
= var_copy
;
877 /* Ensure that when we meet this decl next time, we won't duplicate
879 nuid
= DECL_UID (var_copy
);
881 dslot
= decl_copies
->find_slot_with_hash (ielt
, nuid
, INSERT
);
882 gcc_assert (!dslot
->to
);
884 dslot
->to
= var_copy
;
887 var_copy
= dslot
->to
;
889 replace_ssa_name_symbol (copy
, var_copy
);
893 /* Finds the ssa names used in STMT that are defined outside the
894 region between ENTRY and EXIT and replaces such ssa names with
895 their duplicates. The duplicates are stored to NAME_COPIES. Base
896 decls of all ssa names used in STMT (including those defined in
897 LOOP) are replaced with the new temporary variables; the
898 replacement decls are stored in DECL_COPIES. */
901 separate_decls_in_region_stmt (edge entry
, edge exit
, gimple
*stmt
,
902 name_to_copy_table_type
*name_copies
,
903 int_tree_htab_type
*decl_copies
)
911 FOR_EACH_PHI_OR_STMT_DEF (def
, stmt
, oi
, SSA_OP_DEF
)
913 name
= DEF_FROM_PTR (def
);
914 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
915 copy
= separate_decls_in_region_name (name
, name_copies
, decl_copies
,
917 gcc_assert (copy
== name
);
920 FOR_EACH_PHI_OR_STMT_USE (use
, stmt
, oi
, SSA_OP_USE
)
922 name
= USE_FROM_PTR (use
);
923 if (TREE_CODE (name
) != SSA_NAME
)
926 copy_name_p
= expr_invariant_in_region_p (entry
, exit
, name
);
927 copy
= separate_decls_in_region_name (name
, name_copies
, decl_copies
,
933 /* Finds the ssa names used in STMT that are defined outside the
934 region between ENTRY and EXIT and replaces such ssa names with
935 their duplicates. The duplicates are stored to NAME_COPIES. Base
936 decls of all ssa names used in STMT (including those defined in
937 LOOP) are replaced with the new temporary variables; the
938 replacement decls are stored in DECL_COPIES. */
941 separate_decls_in_region_debug (gimple
*stmt
,
942 name_to_copy_table_type
*name_copies
,
943 int_tree_htab_type
*decl_copies
)
948 struct int_tree_map ielt
;
949 struct name_to_copy_elt elt
;
950 name_to_copy_elt
**slot
;
953 if (gimple_debug_bind_p (stmt
))
954 var
= gimple_debug_bind_get_var (stmt
);
955 else if (gimple_debug_source_bind_p (stmt
))
956 var
= gimple_debug_source_bind_get_var (stmt
);
959 if (TREE_CODE (var
) == DEBUG_EXPR_DECL
|| TREE_CODE (var
) == LABEL_DECL
)
961 gcc_assert (DECL_P (var
) && SSA_VAR_P (var
));
962 ielt
.uid
= DECL_UID (var
);
963 dslot
= decl_copies
->find_slot_with_hash (ielt
, ielt
.uid
, NO_INSERT
);
966 if (gimple_debug_bind_p (stmt
))
967 gimple_debug_bind_set_var (stmt
, dslot
->to
);
968 else if (gimple_debug_source_bind_p (stmt
))
969 gimple_debug_source_bind_set_var (stmt
, dslot
->to
);
971 FOR_EACH_PHI_OR_STMT_USE (use
, stmt
, oi
, SSA_OP_USE
)
973 name
= USE_FROM_PTR (use
);
974 if (TREE_CODE (name
) != SSA_NAME
)
977 elt
.version
= SSA_NAME_VERSION (name
);
978 slot
= name_copies
->find_slot_with_hash (&elt
, elt
.version
, NO_INSERT
);
981 gimple_debug_bind_reset_value (stmt
);
986 SET_USE (use
, (*slot
)->new_name
);
992 /* Callback for htab_traverse. Adds a field corresponding to the reduction
993 specified in SLOT. The type is passed in DATA. */
996 add_field_for_reduction (reduction_info
**slot
, tree type
)
999 struct reduction_info
*const red
= *slot
;
1000 tree var
= reduc_stmt_res (red
->reduc_stmt
);
1001 tree field
= build_decl (gimple_location (red
->reduc_stmt
), FIELD_DECL
,
1002 SSA_NAME_IDENTIFIER (var
), TREE_TYPE (var
));
1004 insert_field_into_struct (type
, field
);
1011 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1012 described in SLOT. The type is passed in DATA. */
1015 add_field_for_name (name_to_copy_elt
**slot
, tree type
)
1017 struct name_to_copy_elt
*const elt
= *slot
;
1018 tree name
= ssa_name (elt
->version
);
1019 tree field
= build_decl (UNKNOWN_LOCATION
,
1020 FIELD_DECL
, SSA_NAME_IDENTIFIER (name
),
1023 insert_field_into_struct (type
, field
);
1029 /* Callback for htab_traverse. A local result is the intermediate result
1030 computed by a single
1031 thread, or the initial value in case no iteration was executed.
1032 This function creates a phi node reflecting these values.
1033 The phi's result will be stored in NEW_PHI field of the
1034 reduction's data structure. */
1037 create_phi_for_local_result (reduction_info
**slot
, struct loop
*loop
)
1039 struct reduction_info
*const reduc
= *slot
;
1042 basic_block store_bb
, continue_bb
;
1046 /* STORE_BB is the block where the phi
1047 should be stored. It is the destination of the loop exit.
1048 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1049 continue_bb
= single_pred (loop
->latch
);
1050 store_bb
= FALLTHRU_EDGE (continue_bb
)->dest
;
1052 /* STORE_BB has two predecessors. One coming from the loop
1053 (the reduction's result is computed at the loop),
1054 and another coming from a block preceding the loop,
1056 are executed (the initial value should be taken). */
1057 if (EDGE_PRED (store_bb
, 0) == FALLTHRU_EDGE (continue_bb
))
1058 e
= EDGE_PRED (store_bb
, 1);
1060 e
= EDGE_PRED (store_bb
, 0);
1061 tree lhs
= reduc_stmt_res (reduc
->reduc_stmt
);
1062 local_res
= copy_ssa_name (lhs
);
1063 locus
= gimple_location (reduc
->reduc_stmt
);
1064 new_phi
= create_phi_node (local_res
, store_bb
);
1065 add_phi_arg (new_phi
, reduc
->init
, e
, locus
);
1066 add_phi_arg (new_phi
, lhs
, FALLTHRU_EDGE (continue_bb
), locus
);
1067 reduc
->new_phi
= new_phi
;
1077 basic_block store_bb
;
1078 basic_block load_bb
;
1081 /* Callback for htab_traverse. Create an atomic instruction for the
1082 reduction described in SLOT.
1083 DATA annotates the place in memory the atomic operation relates to,
1084 and the basic block it needs to be generated in. */
1087 create_call_for_reduction_1 (reduction_info
**slot
, struct clsn_data
*clsn_data
)
1089 struct reduction_info
*const reduc
= *slot
;
1090 gimple_stmt_iterator gsi
;
1091 tree type
= TREE_TYPE (PHI_RESULT (reduc
->reduc_phi
));
1096 tree t
, addr
, ref
, x
;
1097 tree tmp_load
, name
;
1100 if (reduc
->reduc_addr
== NULL_TREE
)
1102 load_struct
= build_simple_mem_ref (clsn_data
->load
);
1103 t
= build3 (COMPONENT_REF
, type
, load_struct
, reduc
->field
, NULL_TREE
);
1105 addr
= build_addr (t
);
1109 /* Set the address for the atomic store. */
1110 addr
= reduc
->reduc_addr
;
1112 /* Remove the non-atomic store '*addr = sum'. */
1113 tree res
= PHI_RESULT (reduc
->keep_res
);
1114 use_operand_p use_p
;
1116 bool single_use_p
= single_imm_use (res
, &use_p
, &stmt
);
1117 gcc_assert (single_use_p
);
1118 replace_uses_by (gimple_vdef (stmt
),
1119 gimple_vuse (stmt
));
1120 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1121 gsi_remove (&gsi
, true);
1124 /* Create phi node. */
1125 bb
= clsn_data
->load_bb
;
1127 gsi
= gsi_last_bb (bb
);
1128 e
= split_block (bb
, gsi_stmt (gsi
));
1131 tmp_load
= create_tmp_var (TREE_TYPE (TREE_TYPE (addr
)));
1132 tmp_load
= make_ssa_name (tmp_load
);
1133 load
= gimple_build_omp_atomic_load (tmp_load
, addr
,
1134 OMP_MEMORY_ORDER_RELAXED
);
1135 SSA_NAME_DEF_STMT (tmp_load
) = load
;
1136 gsi
= gsi_start_bb (new_bb
);
1137 gsi_insert_after (&gsi
, load
, GSI_NEW_STMT
);
1139 e
= split_block (new_bb
, load
);
1141 gsi
= gsi_start_bb (new_bb
);
1143 x
= fold_build2 (reduc
->reduction_code
,
1144 TREE_TYPE (PHI_RESULT (reduc
->new_phi
)), ref
,
1145 PHI_RESULT (reduc
->new_phi
));
1147 name
= force_gimple_operand_gsi (&gsi
, x
, true, NULL_TREE
, true,
1148 GSI_CONTINUE_LINKING
);
1150 gimple
*store
= gimple_build_omp_atomic_store (name
,
1151 OMP_MEMORY_ORDER_RELAXED
);
1152 gsi_insert_after (&gsi
, store
, GSI_NEW_STMT
);
1156 /* Create the atomic operation at the join point of the threads.
1157 REDUCTION_LIST describes the reductions in the LOOP.
1158 LD_ST_DATA describes the shared data structure where
1159 shared data is stored in and loaded from. */
1161 create_call_for_reduction (struct loop
*loop
,
1162 reduction_info_table_type
*reduction_list
,
1163 struct clsn_data
*ld_st_data
)
1165 reduction_list
->traverse
<struct loop
*, create_phi_for_local_result
> (loop
);
1166 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1167 basic_block continue_bb
= single_pred (loop
->latch
);
1168 ld_st_data
->load_bb
= FALLTHRU_EDGE (continue_bb
)->dest
;
1170 ->traverse
<struct clsn_data
*, create_call_for_reduction_1
> (ld_st_data
);
1173 /* Callback for htab_traverse. Loads the final reduction value at the
1174 join point of all threads, and inserts it in the right place. */
1177 create_loads_for_reductions (reduction_info
**slot
, struct clsn_data
*clsn_data
)
1179 struct reduction_info
*const red
= *slot
;
1181 gimple_stmt_iterator gsi
;
1182 tree type
= TREE_TYPE (reduc_stmt_res (red
->reduc_stmt
));
1187 /* If there's no exit phi, the result of the reduction is unused. */
1188 if (red
->keep_res
== NULL
)
1191 gsi
= gsi_after_labels (clsn_data
->load_bb
);
1192 load_struct
= build_simple_mem_ref (clsn_data
->load
);
1193 load_struct
= build3 (COMPONENT_REF
, type
, load_struct
, red
->field
,
1197 name
= PHI_RESULT (red
->keep_res
);
1198 stmt
= gimple_build_assign (name
, x
);
1200 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1202 for (gsi
= gsi_start_phis (gimple_bb (red
->keep_res
));
1203 !gsi_end_p (gsi
); gsi_next (&gsi
))
1204 if (gsi_stmt (gsi
) == red
->keep_res
)
1206 remove_phi_node (&gsi
, false);
1212 /* Load the reduction result that was stored in LD_ST_DATA.
1213 REDUCTION_LIST describes the list of reductions that the
1214 loads should be generated for. */
1216 create_final_loads_for_reduction (reduction_info_table_type
*reduction_list
,
1217 struct clsn_data
*ld_st_data
)
1219 gimple_stmt_iterator gsi
;
1223 gsi
= gsi_after_labels (ld_st_data
->load_bb
);
1224 t
= build_fold_addr_expr (ld_st_data
->store
);
1225 stmt
= gimple_build_assign (ld_st_data
->load
, t
);
1227 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1230 ->traverse
<struct clsn_data
*, create_loads_for_reductions
> (ld_st_data
);
1234 /* Callback for htab_traverse. Store the neutral value for the
1235 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1236 1 for MULT_EXPR, etc. into the reduction field.
1237 The reduction is specified in SLOT. The store information is
1241 create_stores_for_reduction (reduction_info
**slot
, struct clsn_data
*clsn_data
)
1243 struct reduction_info
*const red
= *slot
;
1246 gimple_stmt_iterator gsi
;
1247 tree type
= TREE_TYPE (reduc_stmt_res (red
->reduc_stmt
));
1249 gsi
= gsi_last_bb (clsn_data
->store_bb
);
1250 t
= build3 (COMPONENT_REF
, type
, clsn_data
->store
, red
->field
, NULL_TREE
);
1251 stmt
= gimple_build_assign (t
, red
->initial_value
);
1252 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1257 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1258 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1259 specified in SLOT. */
1262 create_loads_and_stores_for_name (name_to_copy_elt
**slot
,
1263 struct clsn_data
*clsn_data
)
1265 struct name_to_copy_elt
*const elt
= *slot
;
1268 gimple_stmt_iterator gsi
;
1269 tree type
= TREE_TYPE (elt
->new_name
);
1272 gsi
= gsi_last_bb (clsn_data
->store_bb
);
1273 t
= build3 (COMPONENT_REF
, type
, clsn_data
->store
, elt
->field
, NULL_TREE
);
1274 stmt
= gimple_build_assign (t
, ssa_name (elt
->version
));
1275 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1277 gsi
= gsi_last_bb (clsn_data
->load_bb
);
1278 load_struct
= build_simple_mem_ref (clsn_data
->load
);
1279 t
= build3 (COMPONENT_REF
, type
, load_struct
, elt
->field
, NULL_TREE
);
1280 stmt
= gimple_build_assign (elt
->new_name
, t
);
1281 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1286 /* Moves all the variables used in LOOP and defined outside of it (including
1287 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1288 name) to a structure created for this purpose. The code
1296 is transformed this way:
1311 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1312 pointer `new' is intentionally not initialized (the loop will be split to a
1313 separate function later, and `new' will be initialized from its arguments).
1314 LD_ST_DATA holds information about the shared data structure used to pass
1315 information among the threads. It is initialized here, and
1316 gen_parallel_loop will pass it to create_call_for_reduction that
1317 needs this information. REDUCTION_LIST describes the reductions
1321 separate_decls_in_region (edge entry
, edge exit
,
1322 reduction_info_table_type
*reduction_list
,
1323 tree
*arg_struct
, tree
*new_arg_struct
,
1324 struct clsn_data
*ld_st_data
)
1327 basic_block bb1
= split_edge (entry
);
1328 basic_block bb0
= single_pred (bb1
);
1329 name_to_copy_table_type
name_copies (10);
1330 int_tree_htab_type
decl_copies (10);
1332 tree type
, type_name
, nvar
;
1333 gimple_stmt_iterator gsi
;
1334 struct clsn_data clsn_data
;
1335 auto_vec
<basic_block
, 3> body
;
1337 basic_block entry_bb
= bb1
;
1338 basic_block exit_bb
= exit
->dest
;
1339 bool has_debug_stmt
= false;
1341 entry
= single_succ_edge (entry_bb
);
1342 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &body
);
1344 FOR_EACH_VEC_ELT (body
, i
, bb
)
1346 if (bb
!= entry_bb
&& bb
!= exit_bb
)
1348 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1349 separate_decls_in_region_stmt (entry
, exit
, gsi_stmt (gsi
),
1350 &name_copies
, &decl_copies
);
1352 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1354 gimple
*stmt
= gsi_stmt (gsi
);
1356 if (is_gimple_debug (stmt
))
1357 has_debug_stmt
= true;
1359 separate_decls_in_region_stmt (entry
, exit
, stmt
,
1360 &name_copies
, &decl_copies
);
1365 /* Now process debug bind stmts. We must not create decls while
1366 processing debug stmts, so we defer their processing so as to
1367 make sure we will have debug info for as many variables as
1368 possible (all of those that were dealt with in the loop above),
1369 and discard those for which we know there's nothing we can
1372 FOR_EACH_VEC_ELT (body
, i
, bb
)
1373 if (bb
!= entry_bb
&& bb
!= exit_bb
)
1375 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
1377 gimple
*stmt
= gsi_stmt (gsi
);
1379 if (is_gimple_debug (stmt
))
1381 if (separate_decls_in_region_debug (stmt
, &name_copies
,
1384 gsi_remove (&gsi
, true);
1393 if (name_copies
.is_empty () && reduction_list
->is_empty ())
1395 /* It may happen that there is nothing to copy (if there are only
1396 loop carried and external variables in the loop). */
1398 *new_arg_struct
= NULL
;
1402 /* Create the type for the structure to store the ssa names to. */
1403 type
= lang_hooks
.types
.make_type (RECORD_TYPE
);
1404 type_name
= build_decl (UNKNOWN_LOCATION
,
1405 TYPE_DECL
, create_tmp_var_name (".paral_data"),
1407 TYPE_NAME (type
) = type_name
;
1409 name_copies
.traverse
<tree
, add_field_for_name
> (type
);
1410 if (reduction_list
&& !reduction_list
->is_empty ())
1412 /* Create the fields for reductions. */
1413 reduction_list
->traverse
<tree
, add_field_for_reduction
> (type
);
1417 /* Create the loads and stores. */
1418 *arg_struct
= create_tmp_var (type
, ".paral_data_store");
1419 nvar
= create_tmp_var (build_pointer_type (type
), ".paral_data_load");
1420 *new_arg_struct
= make_ssa_name (nvar
);
1422 ld_st_data
->store
= *arg_struct
;
1423 ld_st_data
->load
= *new_arg_struct
;
1424 ld_st_data
->store_bb
= bb0
;
1425 ld_st_data
->load_bb
= bb1
;
1428 .traverse
<struct clsn_data
*, create_loads_and_stores_for_name
>
1431 /* Load the calculation from memory (after the join of the threads). */
1433 if (reduction_list
&& !reduction_list
->is_empty ())
1436 ->traverse
<struct clsn_data
*, create_stores_for_reduction
>
1438 clsn_data
.load
= make_ssa_name (nvar
);
1439 clsn_data
.load_bb
= exit
->dest
;
1440 clsn_data
.store
= ld_st_data
->store
;
1441 create_final_loads_for_reduction (reduction_list
, &clsn_data
);
1446 /* Returns true if FN was created to run in parallel. */
1449 parallelized_function_p (tree fndecl
)
1451 cgraph_node
*node
= cgraph_node::get (fndecl
);
1452 gcc_assert (node
!= NULL
);
1453 return node
->parallelized_function
;
1456 /* Creates and returns an empty function that will receive the body of
1457 a parallelized loop. */
1460 create_loop_fn (location_t loc
)
1464 tree decl
, type
, name
, t
;
1465 struct function
*act_cfun
= cfun
;
1466 static unsigned loopfn_num
;
1468 loc
= LOCATION_LOCUS (loc
);
1469 snprintf (buf
, 100, "%s.$loopfn", current_function_name ());
1470 ASM_FORMAT_PRIVATE_NAME (tname
, buf
, loopfn_num
++);
1471 clean_symbol_name (tname
);
1472 name
= get_identifier (tname
);
1473 type
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
1475 decl
= build_decl (loc
, FUNCTION_DECL
, name
, type
);
1476 TREE_STATIC (decl
) = 1;
1477 TREE_USED (decl
) = 1;
1478 DECL_ARTIFICIAL (decl
) = 1;
1479 DECL_IGNORED_P (decl
) = 0;
1480 TREE_PUBLIC (decl
) = 0;
1481 DECL_UNINLINABLE (decl
) = 1;
1482 DECL_EXTERNAL (decl
) = 0;
1483 DECL_CONTEXT (decl
) = NULL_TREE
;
1484 DECL_INITIAL (decl
) = make_node (BLOCK
);
1485 BLOCK_SUPERCONTEXT (DECL_INITIAL (decl
)) = decl
;
1487 t
= build_decl (loc
, RESULT_DECL
, NULL_TREE
, void_type_node
);
1488 DECL_ARTIFICIAL (t
) = 1;
1489 DECL_IGNORED_P (t
) = 1;
1490 DECL_RESULT (decl
) = t
;
1492 t
= build_decl (loc
, PARM_DECL
, get_identifier (".paral_data_param"),
1494 DECL_ARTIFICIAL (t
) = 1;
1495 DECL_ARG_TYPE (t
) = ptr_type_node
;
1496 DECL_CONTEXT (t
) = decl
;
1498 DECL_ARGUMENTS (decl
) = t
;
1500 allocate_struct_function (decl
, false);
1501 DECL_STRUCT_FUNCTION (decl
)->last_clique
= act_cfun
->last_clique
;
1503 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1505 set_cfun (act_cfun
);
1510 /* Replace uses of NAME by VAL in block BB. */
1513 replace_uses_in_bb_by (tree name
, tree val
, basic_block bb
)
1516 imm_use_iterator imm_iter
;
1518 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, name
)
1520 if (gimple_bb (use_stmt
) != bb
)
1523 use_operand_p use_p
;
1524 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1525 SET_USE (use_p
, val
);
1529 /* Do transformation from:
1536 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1537 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1541 sum_b = sum_a + sum_update
1549 ivtmp_b = ivtmp_a + 1;
1553 sum_z = PHI <sum_b (cond[1]), ...>
1555 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1565 ivtmp_a = PHI <ivtmp_c (latch)>
1566 sum_a = PHI <sum_c (latch)>
1570 sum_b = sum_a + sum_update
1575 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1576 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1577 if (ivtmp_c < n + 1)
1583 ivtmp_b = ivtmp_a + 1;
1587 sum_y = PHI <sum_c (newheader)>
1590 sum_z = PHI <sum_y (newexit), ...>
1593 In unified diff format:
1598 + goto <bb newheader>
1601 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1602 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1603 + ivtmp_a = PHI <ivtmp_c (latch)>
1604 + sum_a = PHI <sum_c (latch)>
1608 sum_b = sum_a + sum_update
1615 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1616 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1617 + if (ivtmp_c < n + 1)
1623 ivtmp_b = ivtmp_a + 1;
1625 + goto <bb newheader>
1628 + sum_y = PHI <sum_c (newheader)>
1631 - sum_z = PHI <sum_b (cond[1]), ...>
1632 + sum_z = PHI <sum_y (newexit), ...>
1634 Note: the example does not show any virtual phis, but these are handled more
1635 or less as reductions.
1638 Moves the exit condition of LOOP to the beginning of its header.
1639 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1643 transform_to_exit_first_loop_alt (struct loop
*loop
,
1644 reduction_info_table_type
*reduction_list
,
1647 basic_block header
= loop
->header
;
1648 basic_block latch
= loop
->latch
;
1649 edge exit
= single_dom_exit (loop
);
1650 basic_block exit_block
= exit
->dest
;
1651 gcond
*cond_stmt
= as_a
<gcond
*> (last_stmt (exit
->src
));
1652 tree control
= gimple_cond_lhs (cond_stmt
);
1655 /* Rewriting virtuals into loop-closed ssa normal form makes this
1656 transformation simpler. It also ensures that the virtuals are in
1657 loop-closed ssa normal from after the transformation, which is required by
1658 create_parallel_loop. */
1659 rewrite_virtuals_into_loop_closed_ssa (loop
);
1661 /* Create the new_header block. */
1662 basic_block new_header
= split_block_before_cond_jump (exit
->src
);
1663 edge edge_at_split
= single_pred_edge (new_header
);
1665 /* Redirect entry edge to new_header. */
1666 edge entry
= loop_preheader_edge (loop
);
1667 e
= redirect_edge_and_branch (entry
, new_header
);
1668 gcc_assert (e
== entry
);
1670 /* Redirect post_inc_edge to new_header. */
1671 edge post_inc_edge
= single_succ_edge (latch
);
1672 e
= redirect_edge_and_branch (post_inc_edge
, new_header
);
1673 gcc_assert (e
== post_inc_edge
);
1675 /* Redirect post_cond_edge to header. */
1676 edge post_cond_edge
= single_pred_edge (latch
);
1677 e
= redirect_edge_and_branch (post_cond_edge
, header
);
1678 gcc_assert (e
== post_cond_edge
);
1680 /* Redirect edge_at_split to latch. */
1681 e
= redirect_edge_and_branch (edge_at_split
, latch
);
1682 gcc_assert (e
== edge_at_split
);
1684 /* Set the new loop bound. */
1685 gimple_cond_set_rhs (cond_stmt
, bound
);
1686 update_stmt (cond_stmt
);
1688 /* Repair the ssa. */
1689 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (post_inc_edge
);
1693 for (gsi
= gsi_start_phis (header
), i
= 0;
1694 !gsi_end_p (gsi
) && v
->iterate (i
, &vm
);
1695 gsi_next (&gsi
), i
++)
1697 gphi
*phi
= gsi
.phi ();
1698 tree res_a
= PHI_RESULT (phi
);
1700 /* Create new phi. */
1701 tree res_c
= copy_ssa_name (res_a
, phi
);
1702 gphi
*nphi
= create_phi_node (res_c
, new_header
);
1704 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1705 replace_uses_in_bb_by (res_a
, res_c
, new_header
);
1707 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1708 add_phi_arg (phi
, res_c
, post_cond_edge
, UNKNOWN_LOCATION
);
1710 /* Replace sum_b with sum_c in exit phi. */
1711 tree res_b
= redirect_edge_var_map_def (vm
);
1712 replace_uses_in_bb_by (res_b
, res_c
, exit_block
);
1714 struct reduction_info
*red
= reduction_phi (reduction_list
, phi
);
1715 gcc_assert (virtual_operand_p (res_a
)
1721 /* Register the new reduction phi. */
1722 red
->reduc_phi
= nphi
;
1723 gimple_set_uid (red
->reduc_phi
, red
->reduc_version
);
1726 gcc_assert (gsi_end_p (gsi
) && !v
->iterate (i
, &vm
));
1728 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1729 flush_pending_stmts (entry
);
1731 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1732 flush_pending_stmts (post_inc_edge
);
1735 basic_block new_exit_block
= NULL
;
1736 if (!single_pred_p (exit
->dest
))
1738 /* Create a new empty exit block, inbetween the new loop header and the
1739 old exit block. The function separate_decls_in_region needs this block
1740 to insert code that is active on loop exit, but not any other path. */
1741 new_exit_block
= split_edge (exit
);
1744 /* Insert and register the reduction exit phis. */
1745 for (gphi_iterator gsi
= gsi_start_phis (exit_block
);
1749 gphi
*phi
= gsi
.phi ();
1751 tree res_z
= PHI_RESULT (phi
);
1754 if (new_exit_block
!= NULL
)
1756 /* Now that we have a new exit block, duplicate the phi of the old
1757 exit block in the new exit block to preserve loop-closed ssa. */
1758 edge succ_new_exit_block
= single_succ_edge (new_exit_block
);
1759 edge pred_new_exit_block
= single_pred_edge (new_exit_block
);
1760 tree res_y
= copy_ssa_name (res_z
, phi
);
1761 nphi
= create_phi_node (res_y
, new_exit_block
);
1762 res_c
= PHI_ARG_DEF_FROM_EDGE (phi
, succ_new_exit_block
);
1763 add_phi_arg (nphi
, res_c
, pred_new_exit_block
, UNKNOWN_LOCATION
);
1764 add_phi_arg (phi
, res_y
, succ_new_exit_block
, UNKNOWN_LOCATION
);
1767 res_c
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
1769 if (virtual_operand_p (res_z
))
1772 gimple
*reduc_phi
= SSA_NAME_DEF_STMT (res_c
);
1773 struct reduction_info
*red
= reduction_phi (reduction_list
, reduc_phi
);
1775 red
->keep_res
= (nphi
!= NULL
1780 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1781 then we're still using some fields, so only bother about fields that are
1782 still used: header and latch.
1783 The loop has a new header bb, so we update it. The latch bb stays the
1785 loop
->header
= new_header
;
1787 /* Recalculate dominance info. */
1788 free_dominance_info (CDI_DOMINATORS
);
1789 calculate_dominance_info (CDI_DOMINATORS
);
1791 checking_verify_ssa (true, true);
1794 /* Tries to moves the exit condition of LOOP to the beginning of its header
1795 without duplication of the loop body. NIT is the number of iterations of the
1796 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1797 transformation is successful. */
1800 try_transform_to_exit_first_loop_alt (struct loop
*loop
,
1801 reduction_info_table_type
*reduction_list
,
1804 /* Check whether the latch contains a single statement. */
1805 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop
->latch
)))
1808 /* Check whether the latch contains no phis. */
1809 if (phi_nodes (loop
->latch
) != NULL
)
1812 /* Check whether the latch contains the loop iv increment. */
1813 edge back
= single_succ_edge (loop
->latch
);
1814 edge exit
= single_dom_exit (loop
);
1815 gcond
*cond_stmt
= as_a
<gcond
*> (last_stmt (exit
->src
));
1816 tree control
= gimple_cond_lhs (cond_stmt
);
1817 gphi
*phi
= as_a
<gphi
*> (SSA_NAME_DEF_STMT (control
));
1818 tree inc_res
= gimple_phi_arg_def (phi
, back
->dest_idx
);
1819 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res
)) != loop
->latch
)
1822 /* Check whether there's no code between the loop condition and the latch. */
1823 if (!single_pred_p (loop
->latch
)
1824 || single_pred (loop
->latch
) != exit
->src
)
1827 tree alt_bound
= NULL_TREE
;
1828 tree nit_type
= TREE_TYPE (nit
);
1830 /* Figure out whether nit + 1 overflows. */
1831 if (TREE_CODE (nit
) == INTEGER_CST
)
1833 if (!tree_int_cst_equal (nit
, TYPE_MAX_VALUE (nit_type
)))
1835 alt_bound
= fold_build2_loc (UNKNOWN_LOCATION
, PLUS_EXPR
, nit_type
,
1836 nit
, build_one_cst (nit_type
));
1838 gcc_assert (TREE_CODE (alt_bound
) == INTEGER_CST
);
1839 transform_to_exit_first_loop_alt (loop
, reduction_list
, alt_bound
);
1844 /* Todo: Figure out if we can trigger this, if it's worth to handle
1845 optimally, and if we can handle it optimally. */
1850 gcc_assert (TREE_CODE (nit
) == SSA_NAME
);
1852 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1853 iv with base 0 and step 1 that is incremented in the latch, like this:
1856 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1867 The range of iv_1 is [0, nit]. The latch edge is taken for
1868 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1869 number of latch executions is equal to nit.
1871 The function max_loop_iterations gives us the maximum number of latch
1872 executions, so it gives us the maximum value of nit. */
1874 if (!max_loop_iterations (loop
, &nit_max
))
1877 /* Check if nit + 1 overflows. */
1878 widest_int type_max
= wi::to_widest (TYPE_MAX_VALUE (nit_type
));
1879 if (nit_max
>= type_max
)
1882 gimple
*def
= SSA_NAME_DEF_STMT (nit
);
1884 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1886 && is_gimple_assign (def
)
1887 && gimple_assign_rhs_code (def
) == PLUS_EXPR
)
1889 tree op1
= gimple_assign_rhs1 (def
);
1890 tree op2
= gimple_assign_rhs2 (def
);
1891 if (integer_minus_onep (op1
))
1893 else if (integer_minus_onep (op2
))
1897 /* If not found, insert nit + 1. */
1898 if (alt_bound
== NULL_TREE
)
1900 alt_bound
= fold_build2 (PLUS_EXPR
, nit_type
, nit
,
1901 build_int_cst_type (nit_type
, 1));
1903 gimple_stmt_iterator gsi
= gsi_last_bb (loop_preheader_edge (loop
)->src
);
1906 = force_gimple_operand_gsi (&gsi
, alt_bound
, true, NULL_TREE
, false,
1907 GSI_CONTINUE_LINKING
);
1910 transform_to_exit_first_loop_alt (loop
, reduction_list
, alt_bound
);
1914 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1915 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1919 transform_to_exit_first_loop (struct loop
*loop
,
1920 reduction_info_table_type
*reduction_list
,
1923 basic_block
*bbs
, *nbbs
, ex_bb
, orig_header
;
1926 edge exit
= single_dom_exit (loop
), hpred
;
1927 tree control
, control_name
, res
, t
;
1930 gcond
*cond_stmt
, *cond_nit
;
1933 split_block_after_labels (loop
->header
);
1934 orig_header
= single_succ (loop
->header
);
1935 hpred
= single_succ_edge (loop
->header
);
1937 cond_stmt
= as_a
<gcond
*> (last_stmt (exit
->src
));
1938 control
= gimple_cond_lhs (cond_stmt
);
1939 gcc_assert (gimple_cond_rhs (cond_stmt
) == nit
);
1941 /* Make sure that we have phi nodes on exit for all loop header phis
1942 (create_parallel_loop requires that). */
1943 for (gphi_iterator gsi
= gsi_start_phis (loop
->header
);
1948 res
= PHI_RESULT (phi
);
1949 t
= copy_ssa_name (res
, phi
);
1950 SET_PHI_RESULT (phi
, t
);
1951 nphi
= create_phi_node (res
, orig_header
);
1952 add_phi_arg (nphi
, t
, hpred
, UNKNOWN_LOCATION
);
1956 gimple_cond_set_lhs (cond_stmt
, t
);
1957 update_stmt (cond_stmt
);
1962 bbs
= get_loop_body_in_dom_order (loop
);
1964 for (n
= 0; bbs
[n
] != exit
->src
; n
++)
1966 nbbs
= XNEWVEC (basic_block
, n
);
1967 ok
= gimple_duplicate_sese_tail (single_succ_edge (loop
->header
), exit
,
1974 /* Other than reductions, the only gimple reg that should be copied
1975 out of the loop is the control variable. */
1976 exit
= single_dom_exit (loop
);
1977 control_name
= NULL_TREE
;
1978 for (gphi_iterator gsi
= gsi_start_phis (ex_bb
);
1982 res
= PHI_RESULT (phi
);
1983 if (virtual_operand_p (res
))
1989 /* Check if it is a part of reduction. If it is,
1990 keep the phi at the reduction's keep_res field. The
1991 PHI_RESULT of this phi is the resulting value of the reduction
1992 variable when exiting the loop. */
1994 if (!reduction_list
->is_empty ())
1996 struct reduction_info
*red
;
1998 tree val
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
1999 red
= reduction_phi (reduction_list
, SSA_NAME_DEF_STMT (val
));
2002 red
->keep_res
= phi
;
2007 gcc_assert (control_name
== NULL_TREE
2008 && SSA_NAME_VAR (res
) == SSA_NAME_VAR (control
));
2010 remove_phi_node (&gsi
, false);
2012 gcc_assert (control_name
!= NULL_TREE
);
2014 /* Initialize the control variable to number of iterations
2015 according to the rhs of the exit condition. */
2016 gimple_stmt_iterator gsi
= gsi_after_labels (ex_bb
);
2017 cond_nit
= as_a
<gcond
*> (last_stmt (exit
->src
));
2018 nit_1
= gimple_cond_rhs (cond_nit
);
2019 nit_1
= force_gimple_operand_gsi (&gsi
,
2020 fold_convert (TREE_TYPE (control_name
), nit_1
),
2021 false, NULL_TREE
, false, GSI_SAME_STMT
);
2022 stmt
= gimple_build_assign (control_name
, nit_1
);
2023 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
2026 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
2027 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
2028 NEW_DATA is the variable that should be initialized from the argument
2029 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2030 that number is to be determined later. */
2033 create_parallel_loop (struct loop
*loop
, tree loop_fn
, tree data
,
2034 tree new_data
, unsigned n_threads
, location_t loc
,
2035 bool oacc_kernels_p
)
2037 gimple_stmt_iterator gsi
;
2038 basic_block for_bb
, ex_bb
, continue_bb
;
2040 gomp_parallel
*omp_par_stmt
;
2041 gimple
*omp_return_stmt1
, *omp_return_stmt2
;
2045 gomp_continue
*omp_cont_stmt
;
2046 tree cvar
, cvar_init
, initvar
, cvar_next
, cvar_base
, type
;
2047 edge exit
, nexit
, guard
, end
, e
;
2051 gcc_checking_assert (lookup_attribute ("oacc kernels",
2052 DECL_ATTRIBUTES (cfun
->decl
)));
2053 /* Indicate to later processing that this is a parallelized OpenACC
2054 kernels construct. */
2055 DECL_ATTRIBUTES (cfun
->decl
)
2056 = tree_cons (get_identifier ("oacc kernels parallelized"),
2057 NULL_TREE
, DECL_ATTRIBUTES (cfun
->decl
));
2061 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2063 basic_block bb
= loop_preheader_edge (loop
)->src
;
2064 basic_block paral_bb
= single_pred (bb
);
2065 gsi
= gsi_last_bb (paral_bb
);
2067 gcc_checking_assert (n_threads
!= 0);
2068 t
= build_omp_clause (loc
, OMP_CLAUSE_NUM_THREADS
);
2069 OMP_CLAUSE_NUM_THREADS_EXPR (t
)
2070 = build_int_cst (integer_type_node
, n_threads
);
2071 omp_par_stmt
= gimple_build_omp_parallel (NULL
, t
, loop_fn
, data
);
2072 gimple_set_location (omp_par_stmt
, loc
);
2074 gsi_insert_after (&gsi
, omp_par_stmt
, GSI_NEW_STMT
);
2076 /* Initialize NEW_DATA. */
2079 gassign
*assign_stmt
;
2081 gsi
= gsi_after_labels (bb
);
2083 param
= make_ssa_name (DECL_ARGUMENTS (loop_fn
));
2084 assign_stmt
= gimple_build_assign (param
, build_fold_addr_expr (data
));
2085 gsi_insert_before (&gsi
, assign_stmt
, GSI_SAME_STMT
);
2087 assign_stmt
= gimple_build_assign (new_data
,
2088 fold_convert (TREE_TYPE (new_data
), param
));
2089 gsi_insert_before (&gsi
, assign_stmt
, GSI_SAME_STMT
);
2092 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2093 bb
= split_loop_exit_edge (single_dom_exit (loop
));
2094 gsi
= gsi_last_bb (bb
);
2095 omp_return_stmt1
= gimple_build_omp_return (false);
2096 gimple_set_location (omp_return_stmt1
, loc
);
2097 gsi_insert_after (&gsi
, omp_return_stmt1
, GSI_NEW_STMT
);
2100 /* Extract data for GIMPLE_OMP_FOR. */
2101 gcc_assert (loop
->header
== single_dom_exit (loop
)->src
);
2102 cond_stmt
= as_a
<gcond
*> (last_stmt (loop
->header
));
2104 cvar
= gimple_cond_lhs (cond_stmt
);
2105 cvar_base
= SSA_NAME_VAR (cvar
);
2106 phi
= SSA_NAME_DEF_STMT (cvar
);
2107 cvar_init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2108 initvar
= copy_ssa_name (cvar
);
2109 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi
, loop_preheader_edge (loop
)),
2111 cvar_next
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2113 gsi
= gsi_last_nondebug_bb (loop
->latch
);
2114 gcc_assert (gsi_stmt (gsi
) == SSA_NAME_DEF_STMT (cvar_next
));
2115 gsi_remove (&gsi
, true);
2118 for_bb
= split_edge (loop_preheader_edge (loop
));
2119 ex_bb
= split_loop_exit_edge (single_dom_exit (loop
));
2120 extract_true_false_edges_from_block (loop
->header
, &nexit
, &exit
);
2121 gcc_assert (exit
== single_dom_exit (loop
));
2123 guard
= make_edge (for_bb
, ex_bb
, 0);
2124 /* FIXME: What is the probability? */
2125 guard
->probability
= profile_probability::guessed_never ();
2126 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2127 loop
->latch
= split_edge (single_succ_edge (loop
->latch
));
2128 single_pred_edge (loop
->latch
)->flags
= 0;
2129 end
= make_single_succ_edge (single_pred (loop
->latch
), ex_bb
, EDGE_FALLTHRU
);
2130 rescan_loop_exit (end
, true, false);
2132 for (gphi_iterator gpi
= gsi_start_phis (ex_bb
);
2133 !gsi_end_p (gpi
); gsi_next (&gpi
))
2136 gphi
*phi
= gpi
.phi ();
2137 tree def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2138 gimple
*def_stmt
= SSA_NAME_DEF_STMT (def
);
2140 /* If the exit phi is not connected to a header phi in the same loop, this
2141 value is not modified in the loop, and we're done with this phi. */
2142 if (!(gimple_code (def_stmt
) == GIMPLE_PHI
2143 && gimple_bb (def_stmt
) == loop
->header
))
2145 locus
= gimple_phi_arg_location_from_edge (phi
, exit
);
2146 add_phi_arg (phi
, def
, guard
, locus
);
2147 add_phi_arg (phi
, def
, end
, locus
);
2151 gphi
*stmt
= as_a
<gphi
*> (def_stmt
);
2152 def
= PHI_ARG_DEF_FROM_EDGE (stmt
, loop_preheader_edge (loop
));
2153 locus
= gimple_phi_arg_location_from_edge (stmt
,
2154 loop_preheader_edge (loop
));
2155 add_phi_arg (phi
, def
, guard
, locus
);
2157 def
= PHI_ARG_DEF_FROM_EDGE (stmt
, loop_latch_edge (loop
));
2158 locus
= gimple_phi_arg_location_from_edge (stmt
, loop_latch_edge (loop
));
2159 add_phi_arg (phi
, def
, end
, locus
);
2161 e
= redirect_edge_and_branch (exit
, nexit
->dest
);
2162 PENDING_STMT (e
) = NULL
;
2164 /* Emit GIMPLE_OMP_FOR. */
2166 /* Parallelized OpenACC kernels constructs use gang parallelism. See also
2167 omp-offload.c:execute_oacc_device_lower. */
2168 t
= build_omp_clause (loc
, OMP_CLAUSE_GANG
);
2171 t
= build_omp_clause (loc
, OMP_CLAUSE_SCHEDULE
);
2172 int chunk_size
= PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE
);
2173 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2174 = (enum PARAM_PARLOOPS_SCHEDULE_KIND
) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE
);
2175 switch (schedule_type
)
2177 case PARAM_PARLOOPS_SCHEDULE_KIND_static
:
2178 OMP_CLAUSE_SCHEDULE_KIND (t
) = OMP_CLAUSE_SCHEDULE_STATIC
;
2180 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic
:
2181 OMP_CLAUSE_SCHEDULE_KIND (t
) = OMP_CLAUSE_SCHEDULE_DYNAMIC
;
2183 case PARAM_PARLOOPS_SCHEDULE_KIND_guided
:
2184 OMP_CLAUSE_SCHEDULE_KIND (t
) = OMP_CLAUSE_SCHEDULE_GUIDED
;
2186 case PARAM_PARLOOPS_SCHEDULE_KIND_auto
:
2187 OMP_CLAUSE_SCHEDULE_KIND (t
) = OMP_CLAUSE_SCHEDULE_AUTO
;
2190 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime
:
2191 OMP_CLAUSE_SCHEDULE_KIND (t
) = OMP_CLAUSE_SCHEDULE_RUNTIME
;
2197 if (chunk_size
!= 0)
2198 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t
)
2199 = build_int_cst (integer_type_node
, chunk_size
);
2202 for_stmt
= gimple_build_omp_for (NULL
,
2204 ? GF_OMP_FOR_KIND_OACC_LOOP
2205 : GF_OMP_FOR_KIND_FOR
),
2208 gimple_cond_set_lhs (cond_stmt
, cvar_base
);
2209 type
= TREE_TYPE (cvar
);
2210 gimple_set_location (for_stmt
, loc
);
2211 gimple_omp_for_set_index (for_stmt
, 0, initvar
);
2212 gimple_omp_for_set_initial (for_stmt
, 0, cvar_init
);
2213 gimple_omp_for_set_final (for_stmt
, 0, gimple_cond_rhs (cond_stmt
));
2214 gimple_omp_for_set_cond (for_stmt
, 0, gimple_cond_code (cond_stmt
));
2215 gimple_omp_for_set_incr (for_stmt
, 0, build2 (PLUS_EXPR
, type
,
2217 build_int_cst (type
, 1)));
2219 gsi
= gsi_last_bb (for_bb
);
2220 gsi_insert_after (&gsi
, for_stmt
, GSI_NEW_STMT
);
2221 SSA_NAME_DEF_STMT (initvar
) = for_stmt
;
2223 /* Emit GIMPLE_OMP_CONTINUE. */
2224 continue_bb
= single_pred (loop
->latch
);
2225 gsi
= gsi_last_bb (continue_bb
);
2226 omp_cont_stmt
= gimple_build_omp_continue (cvar_next
, cvar
);
2227 gimple_set_location (omp_cont_stmt
, loc
);
2228 gsi_insert_after (&gsi
, omp_cont_stmt
, GSI_NEW_STMT
);
2229 SSA_NAME_DEF_STMT (cvar_next
) = omp_cont_stmt
;
2231 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2232 gsi
= gsi_last_bb (ex_bb
);
2233 omp_return_stmt2
= gimple_build_omp_return (true);
2234 gimple_set_location (omp_return_stmt2
, loc
);
2235 gsi_insert_after (&gsi
, omp_return_stmt2
, GSI_NEW_STMT
);
2237 /* After the above dom info is hosed. Re-compute it. */
2238 free_dominance_info (CDI_DOMINATORS
);
2239 calculate_dominance_info (CDI_DOMINATORS
);
2242 /* Return number of phis in bb. If COUNT_VIRTUAL_P is false, don't count the
2246 num_phis (basic_block bb
, bool count_virtual_p
)
2248 unsigned int nr_phis
= 0;
2250 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2252 if (!count_virtual_p
&& virtual_operand_p (PHI_RESULT (gsi
.phi ())))
2261 /* Generates code to execute the iterations of LOOP in N_THREADS
2262 threads in parallel, which can be 0 if that number is to be determined
2265 NITER describes number of iterations of LOOP.
2266 REDUCTION_LIST describes the reductions existent in the LOOP. */
2269 gen_parallel_loop (struct loop
*loop
,
2270 reduction_info_table_type
*reduction_list
,
2271 unsigned n_threads
, struct tree_niter_desc
*niter
,
2272 bool oacc_kernels_p
)
2274 tree many_iterations_cond
, type
, nit
;
2275 tree arg_struct
, new_arg_struct
;
2278 struct clsn_data clsn_data
;
2281 unsigned int m_p_thread
=2;
2285 ---------------------------------------------------------------------
2288 IV = phi (INIT, IV + STEP)
2294 ---------------------------------------------------------------------
2296 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2297 we generate the following code:
2299 ---------------------------------------------------------------------
2302 || NITER < MIN_PER_THREAD * N_THREADS)
2306 store all local loop-invariant variables used in body of the loop to DATA.
2307 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2308 load the variables from DATA.
2309 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2312 GIMPLE_OMP_CONTINUE;
2313 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2314 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2320 IV = phi (INIT, IV + STEP)
2331 /* Create two versions of the loop -- in the old one, we know that the
2332 number of iterations is large enough, and we will transform it into the
2333 loop that will be split to loop_fn, the new one will be used for the
2334 remaining iterations. */
2336 /* We should compute a better number-of-iterations value for outer loops.
2339 for (i = 0; i < n; ++i)
2340 for (j = 0; j < m; ++j)
2343 we should compute nit = n * m, not nit = n.
2344 Also may_be_zero handling would need to be adjusted. */
2346 type
= TREE_TYPE (niter
->niter
);
2347 nit
= force_gimple_operand (unshare_expr (niter
->niter
), &stmts
, true,
2350 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop
), stmts
);
2352 if (!oacc_kernels_p
)
2357 m_p_thread
=MIN_PER_THREAD
;
2359 gcc_checking_assert (n_threads
!= 0);
2360 many_iterations_cond
=
2361 fold_build2 (GE_EXPR
, boolean_type_node
,
2362 nit
, build_int_cst (type
, m_p_thread
* n_threads
- 1));
2364 many_iterations_cond
2365 = fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2366 invert_truthvalue (unshare_expr (niter
->may_be_zero
)),
2367 many_iterations_cond
);
2368 many_iterations_cond
2369 = force_gimple_operand (many_iterations_cond
, &stmts
, false, NULL_TREE
);
2371 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop
), stmts
);
2372 if (!is_gimple_condexpr (many_iterations_cond
))
2374 many_iterations_cond
2375 = force_gimple_operand (many_iterations_cond
, &stmts
,
2378 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop
),
2382 initialize_original_copy_tables ();
2384 /* We assume that the loop usually iterates a lot. */
2385 loop_version (loop
, many_iterations_cond
, NULL
,
2386 profile_probability::likely (),
2387 profile_probability::unlikely (),
2388 profile_probability::likely (),
2389 profile_probability::unlikely (), true);
2390 update_ssa (TODO_update_ssa
);
2391 free_original_copy_tables ();
2394 /* Base all the induction variables in LOOP on a single control one. */
2395 canonicalize_loop_ivs (loop
, &nit
, true);
2396 if (num_phis (loop
->header
, false) != reduction_list
->elements () + 1)
2398 /* The call to canonicalize_loop_ivs above failed to "base all the
2399 induction variables in LOOP on a single control one". Do damage
2401 basic_block preheader
= loop_preheader_edge (loop
)->src
;
2402 basic_block cond_bb
= single_pred (preheader
);
2403 gcond
*cond
= as_a
<gcond
*> (gsi_stmt (gsi_last_bb (cond_bb
)));
2404 gimple_cond_make_true (cond
);
2406 /* We've gotten rid of the duplicate loop created by loop_version, but
2407 we can't undo whatever canonicalize_loop_ivs has done.
2408 TODO: Fix this properly by ensuring that the call to
2409 canonicalize_loop_ivs succeeds. */
2411 && (dump_flags
& TDF_DETAILS
))
2412 fprintf (dump_file
, "canonicalize_loop_ivs failed for loop %d,"
2413 " aborting transformation\n", loop
->num
);
2417 /* Ensure that the exit condition is the first statement in the loop.
2418 The common case is that latch of the loop is empty (apart from the
2419 increment) and immediately follows the loop exit test. Attempt to move the
2420 entry of the loop directly before the exit check and increase the number of
2421 iterations of the loop by one. */
2422 if (try_transform_to_exit_first_loop_alt (loop
, reduction_list
, nit
))
2425 && (dump_flags
& TDF_DETAILS
))
2427 "alternative exit-first loop transform succeeded"
2428 " for loop %d\n", loop
->num
);
2435 /* Fall back on the method that handles more cases, but duplicates the
2436 loop body: move the exit condition of LOOP to the beginning of its
2437 header, and duplicate the part of the last iteration that gets disabled
2438 to the exit of the loop. */
2439 transform_to_exit_first_loop (loop
, reduction_list
, nit
);
2442 /* Generate initializations for reductions. */
2443 if (!reduction_list
->is_empty ())
2444 reduction_list
->traverse
<struct loop
*, initialize_reductions
> (loop
);
2446 /* Eliminate the references to local variables from the loop. */
2447 gcc_assert (single_exit (loop
));
2448 entry
= loop_preheader_edge (loop
);
2449 exit
= single_dom_exit (loop
);
2451 /* This rewrites the body in terms of new variables. This has already
2452 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
2453 if (!oacc_kernels_p
)
2455 eliminate_local_variables (entry
, exit
);
2456 /* In the old loop, move all variables non-local to the loop to a
2457 structure and back, and create separate decls for the variables used in
2459 separate_decls_in_region (entry
, exit
, reduction_list
, &arg_struct
,
2460 &new_arg_struct
, &clsn_data
);
2464 arg_struct
= NULL_TREE
;
2465 new_arg_struct
= NULL_TREE
;
2466 clsn_data
.load
= NULL_TREE
;
2467 clsn_data
.load_bb
= exit
->dest
;
2468 clsn_data
.store
= NULL_TREE
;
2469 clsn_data
.store_bb
= NULL
;
2472 /* Create the parallel constructs. */
2473 loc
= UNKNOWN_LOCATION
;
2474 cond_stmt
= last_stmt (loop
->header
);
2476 loc
= gimple_location (cond_stmt
);
2477 create_parallel_loop (loop
, create_loop_fn (loc
), arg_struct
, new_arg_struct
,
2478 n_threads
, loc
, oacc_kernels_p
);
2479 if (!reduction_list
->is_empty ())
2480 create_call_for_reduction (loop
, reduction_list
, &clsn_data
);
2484 /* Free loop bound estimations that could contain references to
2485 removed statements. */
2486 free_numbers_of_iterations_estimates (cfun
);
2489 /* Returns true when LOOP contains vector phi nodes. */
2492 loop_has_vector_phi_nodes (struct loop
*loop ATTRIBUTE_UNUSED
)
2495 basic_block
*bbs
= get_loop_body_in_dom_order (loop
);
2499 for (i
= 0; i
< loop
->num_nodes
; i
++)
2500 for (gsi
= gsi_start_phis (bbs
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
2501 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi
.phi ()))) == VECTOR_TYPE
)
2510 /* Create a reduction_info struct, initialize it with REDUC_STMT
2511 and PHI, insert it to the REDUCTION_LIST. */
2514 build_new_reduction (reduction_info_table_type
*reduction_list
,
2515 gimple
*reduc_stmt
, gphi
*phi
)
2517 reduction_info
**slot
;
2518 struct reduction_info
*new_reduction
;
2519 enum tree_code reduction_code
;
2521 gcc_assert (reduc_stmt
);
2523 if (gimple_code (reduc_stmt
) == GIMPLE_PHI
)
2525 tree op1
= PHI_ARG_DEF (reduc_stmt
, 0);
2526 gimple
*def1
= SSA_NAME_DEF_STMT (op1
);
2527 reduction_code
= gimple_assign_rhs_code (def1
);
2530 reduction_code
= gimple_assign_rhs_code (reduc_stmt
);
2531 /* Check for OpenMP supported reduction. */
2532 switch (reduction_code
)
2542 case TRUTH_XOR_EXPR
:
2543 case TRUTH_AND_EXPR
:
2549 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2552 "Detected reduction. reduction stmt is:\n");
2553 print_gimple_stmt (dump_file
, reduc_stmt
, 0);
2554 fprintf (dump_file
, "\n");
2557 new_reduction
= XCNEW (struct reduction_info
);
2559 new_reduction
->reduc_stmt
= reduc_stmt
;
2560 new_reduction
->reduc_phi
= phi
;
2561 new_reduction
->reduc_version
= SSA_NAME_VERSION (gimple_phi_result (phi
));
2562 new_reduction
->reduction_code
= reduction_code
;
2563 slot
= reduction_list
->find_slot (new_reduction
, INSERT
);
2564 *slot
= new_reduction
;
2567 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2570 set_reduc_phi_uids (reduction_info
**slot
, void *data ATTRIBUTE_UNUSED
)
2572 struct reduction_info
*const red
= *slot
;
2573 gimple_set_uid (red
->reduc_phi
, red
->reduc_version
);
2577 /* Return true if the type of reduction performed by STMT_INFO is suitable
2581 valid_reduction_p (stmt_vec_info stmt_info
)
2583 /* Parallelization would reassociate the operation, which isn't
2584 allowed for in-order reductions. */
2585 vect_reduction_type reduc_type
= STMT_VINFO_REDUC_TYPE (stmt_info
);
2586 return reduc_type
!= FOLD_LEFT_REDUCTION
;
2589 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2592 gather_scalar_reductions (loop_p loop
, reduction_info_table_type
*reduction_list
)
2595 loop_vec_info simple_loop_info
;
2596 auto_vec
<gphi
*, 4> double_reduc_phis
;
2597 auto_vec
<gimple
*, 4> double_reduc_stmts
;
2599 vec_info_shared shared
;
2600 simple_loop_info
= vect_analyze_loop_form (loop
, &shared
);
2601 if (simple_loop_info
== NULL
)
2604 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2606 gphi
*phi
= gsi
.phi ();
2608 tree res
= PHI_RESULT (phi
);
2611 if (virtual_operand_p (res
))
2614 if (simple_iv (loop
, loop
, res
, &iv
, true))
2617 stmt_vec_info reduc_stmt_info
2618 = vect_force_simple_reduction (simple_loop_info
,
2619 simple_loop_info
->lookup_stmt (phi
),
2620 &double_reduc
, true);
2621 if (!reduc_stmt_info
|| !valid_reduction_p (reduc_stmt_info
))
2626 if (loop
->inner
->inner
!= NULL
)
2629 double_reduc_phis
.safe_push (phi
);
2630 double_reduc_stmts
.safe_push (reduc_stmt_info
->stmt
);
2634 build_new_reduction (reduction_list
, reduc_stmt_info
->stmt
, phi
);
2636 delete simple_loop_info
;
2638 if (!double_reduc_phis
.is_empty ())
2640 vec_info_shared shared
;
2641 simple_loop_info
= vect_analyze_loop_form (loop
->inner
, &shared
);
2642 if (simple_loop_info
)
2647 FOR_EACH_VEC_ELT (double_reduc_phis
, i
, phi
)
2650 tree res
= PHI_RESULT (phi
);
2653 use_operand_p use_p
;
2655 bool single_use_p
= single_imm_use (res
, &use_p
, &inner_stmt
);
2656 gcc_assert (single_use_p
);
2657 if (gimple_code (inner_stmt
) != GIMPLE_PHI
)
2659 gphi
*inner_phi
= as_a
<gphi
*> (inner_stmt
);
2660 if (simple_iv (loop
->inner
, loop
->inner
, PHI_RESULT (inner_phi
),
2664 stmt_vec_info inner_phi_info
2665 = simple_loop_info
->lookup_stmt (inner_phi
);
2666 stmt_vec_info inner_reduc_stmt_info
2667 = vect_force_simple_reduction (simple_loop_info
,
2669 &double_reduc
, true);
2670 gcc_assert (!double_reduc
);
2671 if (!inner_reduc_stmt_info
2672 || !valid_reduction_p (inner_reduc_stmt_info
))
2675 build_new_reduction (reduction_list
, double_reduc_stmts
[i
], phi
);
2677 delete simple_loop_info
;
2682 if (reduction_list
->is_empty ())
2685 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2686 and delete simple_loop_info, we can set gimple_uid of reduc_phi stmts only
2689 FOR_EACH_BB_FN (bb
, cfun
)
2690 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2691 gimple_set_uid (gsi_stmt (gsi
), (unsigned int)-1);
2692 reduction_list
->traverse
<void *, set_reduc_phi_uids
> (NULL
);
2695 /* Try to initialize NITER for code generation part. */
2698 try_get_loop_niter (loop_p loop
, struct tree_niter_desc
*niter
)
2700 edge exit
= single_dom_exit (loop
);
2704 /* We need to know # of iterations, and there should be no uses of values
2705 defined inside loop outside of it, unless the values are invariants of
2707 if (!number_of_iterations_exit (loop
, exit
, niter
, false))
2709 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2710 fprintf (dump_file
, " FAILED: number of iterations not known\n");
2717 /* Return the default def of the first function argument. */
2720 get_omp_data_i_param (void)
2722 tree decl
= DECL_ARGUMENTS (cfun
->decl
);
2723 gcc_assert (DECL_CHAIN (decl
) == NULL_TREE
);
2724 return ssa_default_def (cfun
, decl
);
2727 /* For PHI in loop header of LOOP, look for pattern:
2730 .omp_data_i = &.omp_data_arr;
2731 addr = .omp_data_i->sum;
2735 sum_b = PHI <sum_a (preheader), sum_c (latch)>
2737 and return addr. Otherwise, return NULL_TREE. */
2740 find_reduc_addr (struct loop
*loop
, gphi
*phi
)
2742 edge e
= loop_preheader_edge (loop
);
2743 tree arg
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
2744 gimple
*stmt
= SSA_NAME_DEF_STMT (arg
);
2745 if (!gimple_assign_single_p (stmt
))
2747 tree memref
= gimple_assign_rhs1 (stmt
);
2748 if (TREE_CODE (memref
) != MEM_REF
)
2750 tree addr
= TREE_OPERAND (memref
, 0);
2752 gimple
*stmt2
= SSA_NAME_DEF_STMT (addr
);
2753 if (!gimple_assign_single_p (stmt2
))
2755 tree compref
= gimple_assign_rhs1 (stmt2
);
2756 if (TREE_CODE (compref
) != COMPONENT_REF
)
2758 tree addr2
= TREE_OPERAND (compref
, 0);
2759 if (TREE_CODE (addr2
) != MEM_REF
)
2761 addr2
= TREE_OPERAND (addr2
, 0);
2762 if (TREE_CODE (addr2
) != SSA_NAME
2763 || addr2
!= get_omp_data_i_param ())
2769 /* Try to initialize REDUCTION_LIST for code generation part.
2770 REDUCTION_LIST describes the reductions. */
2773 try_create_reduction_list (loop_p loop
,
2774 reduction_info_table_type
*reduction_list
,
2775 bool oacc_kernels_p
)
2777 edge exit
= single_dom_exit (loop
);
2782 /* Try to get rid of exit phis. */
2783 final_value_replacement_loop (loop
);
2785 gather_scalar_reductions (loop
, reduction_list
);
2788 for (gsi
= gsi_start_phis (exit
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2790 gphi
*phi
= gsi
.phi ();
2791 struct reduction_info
*red
;
2792 imm_use_iterator imm_iter
;
2793 use_operand_p use_p
;
2795 tree val
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2797 if (!virtual_operand_p (val
))
2799 if (TREE_CODE (val
) != SSA_NAME
)
2801 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2803 " FAILED: exit PHI argument invariant.\n");
2807 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2809 fprintf (dump_file
, "phi is ");
2810 print_gimple_stmt (dump_file
, phi
, 0);
2811 fprintf (dump_file
, "arg of phi to exit: value ");
2812 print_generic_expr (dump_file
, val
);
2813 fprintf (dump_file
, " used outside loop\n");
2815 " checking if it is part of reduction pattern:\n");
2817 if (reduction_list
->is_empty ())
2819 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2821 " FAILED: it is not a part of reduction.\n");
2825 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, val
)
2827 if (!gimple_debug_bind_p (USE_STMT (use_p
))
2828 && flow_bb_inside_loop_p (loop
, gimple_bb (USE_STMT (use_p
))))
2830 reduc_phi
= USE_STMT (use_p
);
2834 red
= reduction_phi (reduction_list
, reduc_phi
);
2837 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2839 " FAILED: it is not a part of reduction.\n");
2842 if (red
->keep_res
!= NULL
)
2844 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2846 " FAILED: reduction has multiple exit phis.\n");
2849 red
->keep_res
= phi
;
2850 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2852 fprintf (dump_file
, "reduction phi is ");
2853 print_gimple_stmt (dump_file
, red
->reduc_phi
, 0);
2854 fprintf (dump_file
, "reduction stmt is ");
2855 print_gimple_stmt (dump_file
, red
->reduc_stmt
, 0);
2860 /* The iterations of the loop may communicate only through bivs whose
2861 iteration space can be distributed efficiently. */
2862 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2864 gphi
*phi
= gsi
.phi ();
2865 tree def
= PHI_RESULT (phi
);
2868 if (!virtual_operand_p (def
) && !simple_iv (loop
, loop
, def
, &iv
, true))
2870 struct reduction_info
*red
;
2872 red
= reduction_phi (reduction_list
, phi
);
2875 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2877 " FAILED: scalar dependency between iterations\n");
2885 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
);
2888 gphi
*phi
= gsi
.phi ();
2889 tree def
= PHI_RESULT (phi
);
2892 if (!virtual_operand_p (def
)
2893 && !simple_iv (loop
, loop
, def
, &iv
, true))
2895 tree addr
= find_reduc_addr (loop
, phi
);
2896 if (addr
== NULL_TREE
)
2898 struct reduction_info
*red
= reduction_phi (reduction_list
, phi
);
2899 red
->reduc_addr
= addr
;
2907 /* Return true if LOOP contains phis with ADDR_EXPR in args. */
2910 loop_has_phi_with_address_arg (struct loop
*loop
)
2912 basic_block
*bbs
= get_loop_body (loop
);
2917 for (i
= 0; i
< loop
->num_nodes
; i
++)
2918 for (gsi
= gsi_start_phis (bbs
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
2920 gphi
*phi
= gsi
.phi ();
2921 for (j
= 0; j
< gimple_phi_num_args (phi
); j
++)
2923 tree arg
= gimple_phi_arg_def (phi
, j
);
2924 if (TREE_CODE (arg
) == ADDR_EXPR
)
2926 /* This should be handled by eliminate_local_variables, but that
2927 function currently ignores phis. */
2939 /* Return true if memory ref REF (corresponding to the stmt at GSI in
2940 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
2941 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
2942 store. Ignore conflicts with SKIP_STMT. */
2945 ref_conflicts_with_region (gimple_stmt_iterator gsi
, ao_ref
*ref
,
2946 bool ref_is_store
, vec
<basic_block
> region_bbs
,
2947 unsigned int i
, gimple
*skip_stmt
)
2949 basic_block bb
= region_bbs
[i
];
2954 for (; !gsi_end_p (gsi
);
2957 gimple
*stmt
= gsi_stmt (gsi
);
2958 if (stmt
== skip_stmt
)
2962 fprintf (dump_file
, "skipping reduction store: ");
2963 print_gimple_stmt (dump_file
, stmt
, 0);
2968 if (!gimple_vdef (stmt
)
2969 && !gimple_vuse (stmt
))
2972 if (gimple_code (stmt
) == GIMPLE_RETURN
)
2977 if (ref_maybe_used_by_stmt_p (stmt
, ref
))
2981 fprintf (dump_file
, "Stmt ");
2982 print_gimple_stmt (dump_file
, stmt
, 0);
2989 if (stmt_may_clobber_ref_p_1 (stmt
, ref
))
2993 fprintf (dump_file
, "Stmt ");
2994 print_gimple_stmt (dump_file
, stmt
, 0);
3001 if (i
== region_bbs
.length ())
3004 gsi
= gsi_start_bb (bb
);
3010 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
3011 in parallel with REGION_BBS containing the loop. Return the stores of
3012 reduction results in REDUCTION_STORES. */
3015 oacc_entry_exit_ok_1 (bitmap in_loop_bbs
, vec
<basic_block
> region_bbs
,
3016 reduction_info_table_type
*reduction_list
,
3017 bitmap reduction_stores
)
3019 tree omp_data_i
= get_omp_data_i_param ();
3023 FOR_EACH_VEC_ELT (region_bbs
, i
, bb
)
3025 if (bitmap_bit_p (in_loop_bbs
, bb
->index
))
3028 gimple_stmt_iterator gsi
;
3029 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
3032 gimple
*stmt
= gsi_stmt (gsi
);
3033 gimple
*skip_stmt
= NULL
;
3035 if (is_gimple_debug (stmt
)
3036 || gimple_code (stmt
) == GIMPLE_COND
)
3040 bool ref_is_store
= false;
3041 if (gimple_assign_load_p (stmt
))
3043 tree rhs
= gimple_assign_rhs1 (stmt
);
3044 tree base
= get_base_address (rhs
);
3045 if (TREE_CODE (base
) == MEM_REF
3046 && operand_equal_p (TREE_OPERAND (base
, 0), omp_data_i
, 0))
3049 tree lhs
= gimple_assign_lhs (stmt
);
3050 if (TREE_CODE (lhs
) == SSA_NAME
3051 && has_single_use (lhs
))
3053 use_operand_p use_p
;
3055 single_imm_use (lhs
, &use_p
, &use_stmt
);
3056 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
3058 struct reduction_info
*red
;
3059 red
= reduction_phi (reduction_list
, use_stmt
);
3060 tree val
= PHI_RESULT (red
->keep_res
);
3061 if (has_single_use (val
))
3063 single_imm_use (val
, &use_p
, &use_stmt
);
3064 if (gimple_store_p (use_stmt
))
3067 = SSA_NAME_VERSION (gimple_vdef (use_stmt
));
3068 bitmap_set_bit (reduction_stores
, id
);
3069 skip_stmt
= use_stmt
;
3072 fprintf (dump_file
, "found reduction load: ");
3073 print_gimple_stmt (dump_file
, stmt
, 0);
3080 ao_ref_init (&ref
, rhs
);
3082 else if (gimple_store_p (stmt
))
3084 ao_ref_init (&ref
, gimple_assign_lhs (stmt
));
3085 ref_is_store
= true;
3087 else if (gimple_code (stmt
) == GIMPLE_OMP_RETURN
)
3089 else if (!gimple_has_side_effects (stmt
)
3090 && !gimple_could_trap_p (stmt
)
3091 && !stmt_could_throw_p (cfun
, stmt
)
3092 && !gimple_vdef (stmt
)
3093 && !gimple_vuse (stmt
))
3095 else if (gimple_call_internal_p (stmt
, IFN_GOACC_DIM_POS
))
3097 else if (gimple_code (stmt
) == GIMPLE_RETURN
)
3103 fprintf (dump_file
, "Unhandled stmt in entry/exit: ");
3104 print_gimple_stmt (dump_file
, stmt
, 0);
3109 if (ref_conflicts_with_region (gsi
, &ref
, ref_is_store
, region_bbs
,
3114 fprintf (dump_file
, "conflicts with entry/exit stmt: ");
3115 print_gimple_stmt (dump_file
, stmt
, 0);
3125 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3126 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3127 if any changes were made. */
3130 oacc_entry_exit_single_gang (bitmap in_loop_bbs
, vec
<basic_block
> region_bbs
,
3131 bitmap reduction_stores
)
3133 tree gang_pos
= NULL_TREE
;
3134 bool changed
= false;
3138 FOR_EACH_VEC_ELT (region_bbs
, i
, bb
)
3140 if (bitmap_bit_p (in_loop_bbs
, bb
->index
))
3143 gimple_stmt_iterator gsi
;
3144 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
3146 gimple
*stmt
= gsi_stmt (gsi
);
3148 if (!gimple_store_p (stmt
))
3150 /* Update gsi to point to next stmt. */
3155 if (bitmap_bit_p (reduction_stores
,
3156 SSA_NAME_VERSION (gimple_vdef (stmt
))))
3161 "skipped reduction store for single-gang"
3163 print_gimple_stmt (dump_file
, stmt
, 0);
3166 /* Update gsi to point to next stmt. */
3173 if (gang_pos
== NULL_TREE
)
3175 tree arg
= build_int_cst (integer_type_node
, GOMP_DIM_GANG
);
3177 = gimple_build_call_internal (IFN_GOACC_DIM_POS
, 1, arg
);
3178 gang_pos
= make_ssa_name (integer_type_node
);
3179 gimple_call_set_lhs (gang_single
, gang_pos
);
3180 gimple_stmt_iterator start
3181 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
3182 tree vuse
= ssa_default_def (cfun
, gimple_vop (cfun
));
3183 gimple_set_vuse (gang_single
, vuse
);
3184 gsi_insert_before (&start
, gang_single
, GSI_SAME_STMT
);
3190 "found store that needs single-gang neutering: ");
3191 print_gimple_stmt (dump_file
, stmt
, 0);
3195 /* Split block before store. */
3196 gimple_stmt_iterator gsi2
= gsi
;
3199 if (gsi_end_p (gsi2
))
3201 e
= split_block_after_labels (bb
);
3202 gsi2
= gsi_last_bb (bb
);
3205 e
= split_block (bb
, gsi_stmt (gsi2
));
3206 basic_block bb2
= e
->dest
;
3208 /* Split block after store. */
3209 gimple_stmt_iterator gsi3
= gsi_start_bb (bb2
);
3210 edge e2
= split_block (bb2
, gsi_stmt (gsi3
));
3211 basic_block bb3
= e2
->dest
;
3214 = gimple_build_cond (EQ_EXPR
, gang_pos
, integer_zero_node
,
3215 NULL_TREE
, NULL_TREE
);
3216 gsi_insert_after (&gsi2
, cond
, GSI_NEW_STMT
);
3218 edge e3
= make_edge (bb
, bb3
, EDGE_FALSE_VALUE
);
3219 /* FIXME: What is the probability? */
3220 e3
->probability
= profile_probability::guessed_never ();
3221 e
->flags
= EDGE_TRUE_VALUE
;
3223 tree vdef
= gimple_vdef (stmt
);
3224 tree vuse
= gimple_vuse (stmt
);
3226 tree phi_res
= copy_ssa_name (vdef
);
3227 gphi
*new_phi
= create_phi_node (phi_res
, bb3
);
3228 replace_uses_by (vdef
, phi_res
);
3229 add_phi_arg (new_phi
, vuse
, e3
, UNKNOWN_LOCATION
);
3230 add_phi_arg (new_phi
, vdef
, e2
, UNKNOWN_LOCATION
);
3232 /* Update gsi to point to next stmt. */
3234 gsi
= gsi_start_bb (bb
);
3242 /* Return true if the statements before and after the LOOP can be executed in
3243 parallel with the function containing the loop. Resolve conflicting stores
3244 outside LOOP by guarding them such that only a single gang executes them. */
3247 oacc_entry_exit_ok (struct loop
*loop
,
3248 reduction_info_table_type
*reduction_list
)
3250 basic_block
*loop_bbs
= get_loop_body_in_dom_order (loop
);
3251 vec
<basic_block
> region_bbs
3252 = get_all_dominated_blocks (CDI_DOMINATORS
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
3254 bitmap in_loop_bbs
= BITMAP_ALLOC (NULL
);
3255 bitmap_clear (in_loop_bbs
);
3256 for (unsigned int i
= 0; i
< loop
->num_nodes
; i
++)
3257 bitmap_set_bit (in_loop_bbs
, loop_bbs
[i
]->index
);
3259 bitmap reduction_stores
= BITMAP_ALLOC (NULL
);
3260 bool res
= oacc_entry_exit_ok_1 (in_loop_bbs
, region_bbs
, reduction_list
,
3265 bool changed
= oacc_entry_exit_single_gang (in_loop_bbs
, region_bbs
,
3269 free_dominance_info (CDI_DOMINATORS
);
3270 calculate_dominance_info (CDI_DOMINATORS
);
3274 region_bbs
.release ();
3277 BITMAP_FREE (in_loop_bbs
);
3278 BITMAP_FREE (reduction_stores
);
3283 /* Detect parallel loops and generate parallel code using libgomp
3284 primitives. Returns true if some loop was parallelized, false
3288 parallelize_loops (bool oacc_kernels_p
)
3291 bool changed
= false;
3293 struct loop
*skip_loop
= NULL
;
3294 struct tree_niter_desc niter_desc
;
3295 struct obstack parloop_obstack
;
3296 HOST_WIDE_INT estimated
;
3298 /* Do not parallelize loops in the functions created by parallelization. */
3300 && parallelized_function_p (cfun
->decl
))
3303 /* Do not parallelize loops in offloaded functions. */
3305 && oacc_get_fn_attrib (cfun
->decl
) != NULL
)
3308 if (cfun
->has_nonlocal_label
)
3311 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
3312 the argument to -ftree-parallelize-loops. */
3316 n_threads
= flag_tree_parallelize_loops
;
3318 gcc_obstack_init (&parloop_obstack
);
3319 reduction_info_table_type
reduction_list (10);
3321 calculate_dominance_info (CDI_DOMINATORS
);
3323 FOR_EACH_LOOP (loop
, 0)
3325 if (loop
== skip_loop
)
3327 if (!loop
->in_oacc_kernels_region
3328 && dump_file
&& (dump_flags
& TDF_DETAILS
))
3330 "Skipping loop %d as inner loop of parallelized loop\n",
3333 skip_loop
= loop
->inner
;
3339 reduction_list
.empty ();
3343 if (!loop
->in_oacc_kernels_region
)
3346 /* Don't try to parallelize inner loops in an oacc kernels region. */
3348 skip_loop
= loop
->inner
;
3350 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3352 "Trying loop %d with header bb %d in oacc kernels"
3353 " region\n", loop
->num
, loop
->header
->index
);
3356 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3358 fprintf (dump_file
, "Trying loop %d as candidate\n",loop
->num
);
3360 fprintf (dump_file
, "loop %d is not innermost\n",loop
->num
);
3362 fprintf (dump_file
, "loop %d is innermost\n",loop
->num
);
3365 if (!single_dom_exit (loop
))
3368 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3369 fprintf (dump_file
, "loop is !single_dom_exit\n");
3374 if (/* And of course, the loop must be parallelizable. */
3375 !can_duplicate_loop_p (loop
)
3376 || loop_has_blocks_with_irreducible_flag (loop
)
3377 || (loop_preheader_edge (loop
)->src
->flags
& BB_IRREDUCIBLE_LOOP
)
3378 /* FIXME: the check for vector phi nodes could be removed. */
3379 || loop_has_vector_phi_nodes (loop
))
3382 estimated
= estimated_loop_iterations_int (loop
);
3383 if (estimated
== -1)
3384 estimated
= get_likely_max_loop_iterations_int (loop
);
3385 /* FIXME: Bypass this check as graphite doesn't update the
3386 count and frequency correctly now. */
3387 if (!flag_loop_parallelize_all
3389 && ((estimated
!= -1
3391 < ((HOST_WIDE_INT
) n_threads
3392 * (loop
->inner
? 2 : MIN_PER_THREAD
) - 1)))
3393 /* Do not bother with loops in cold areas. */
3394 || optimize_loop_nest_for_size_p (loop
)))
3397 if (!try_get_loop_niter (loop
, &niter_desc
))
3400 if (!try_create_reduction_list (loop
, &reduction_list
, oacc_kernels_p
))
3403 if (loop_has_phi_with_address_arg (loop
))
3406 if (!loop
->can_be_parallel
3407 && !loop_parallel_p (loop
, &parloop_obstack
))
3411 && !oacc_entry_exit_ok (loop
, &reduction_list
))
3414 fprintf (dump_file
, "entry/exit not ok: FAILED\n");
3419 skip_loop
= loop
->inner
;
3421 if (dump_enabled_p ())
3423 dump_user_location_t loop_loc
= find_loop_location (loop
);
3425 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, loop_loc
,
3426 "parallelizing outer loop %d\n", loop
->num
);
3428 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, loop_loc
,
3429 "parallelizing inner loop %d\n", loop
->num
);
3432 gen_parallel_loop (loop
, &reduction_list
,
3433 n_threads
, &niter_desc
, oacc_kernels_p
);
3436 obstack_free (&parloop_obstack
, NULL
);
3438 /* Parallelization will cause new function calls to be inserted through
3439 which local variables will escape. Reset the points-to solution
3442 pt_solution_reset (&cfun
->gimple_df
->escaped
);
3447 /* Parallelization. */
3451 const pass_data pass_data_parallelize_loops
=
3453 GIMPLE_PASS
, /* type */
3454 "parloops", /* name */
3455 OPTGROUP_LOOP
, /* optinfo_flags */
3456 TV_TREE_PARALLELIZE_LOOPS
, /* tv_id */
3457 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3458 0, /* properties_provided */
3459 0, /* properties_destroyed */
3460 0, /* todo_flags_start */
3461 0, /* todo_flags_finish */
3464 class pass_parallelize_loops
: public gimple_opt_pass
3467 pass_parallelize_loops (gcc::context
*ctxt
)
3468 : gimple_opt_pass (pass_data_parallelize_loops
, ctxt
),
3469 oacc_kernels_p (false)
3472 /* opt_pass methods: */
3473 virtual bool gate (function
*)
3476 return flag_openacc
;
3478 return flag_tree_parallelize_loops
> 1;
3480 virtual unsigned int execute (function
*);
3481 opt_pass
* clone () { return new pass_parallelize_loops (m_ctxt
); }
3482 void set_pass_param (unsigned int n
, bool param
)
3484 gcc_assert (n
== 0);
3485 oacc_kernels_p
= param
;
3489 bool oacc_kernels_p
;
3490 }; // class pass_parallelize_loops
3493 pass_parallelize_loops::execute (function
*fun
)
3495 tree nthreads
= builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS
);
3496 if (nthreads
== NULL_TREE
)
3499 bool in_loop_pipeline
= scev_initialized_p ();
3500 if (!in_loop_pipeline
)
3501 loop_optimizer_init (LOOPS_NORMAL
3502 | LOOPS_HAVE_RECORDED_EXITS
);
3504 if (number_of_loops (fun
) <= 1)
3507 if (!in_loop_pipeline
)
3509 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
3513 unsigned int todo
= 0;
3514 if (parallelize_loops (oacc_kernels_p
))
3516 fun
->curr_properties
&= ~(PROP_gimple_eomp
);
3518 checking_verify_loop_structure ();
3520 todo
|= TODO_update_ssa
;
3523 if (!in_loop_pipeline
)
3526 loop_optimizer_finalize ();
3535 make_pass_parallelize_loops (gcc::context
*ctxt
)
3537 return new pass_parallelize_loops (ctxt
);