2014-01-30 Alangi Derick <alangiderick@gmail.com>
[official-gcc.git] / gcc / tree-cfg.c
blobdfc9b7b4cef14add84b2c8570ff9c57eee3cb8a2
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
75 /* Local declarations. */
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity = 20;
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
93 static struct pointer_map_t *edge_to_cases;
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
99 static bitmap touched_switch_bbs;
101 /* CFG statistics. */
102 struct cfg_stats_d
104 long num_merged_labels;
107 static struct cfg_stats_d cfg_stats;
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
112 location_t locus;
113 int discriminator;
116 /* Hashtable helpers. */
118 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
120 typedef locus_discrim_map value_type;
121 typedef locus_discrim_map compare_type;
122 static inline hashval_t hash (const value_type *);
123 static inline bool equal (const value_type *, const compare_type *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const value_type *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
141 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
144 static hash_table <locus_discrim_hasher> discriminator_per_locus;
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq);
149 /* Edges. */
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block);
153 static void make_gimple_switch_edges (basic_block);
154 static bool make_goto_expr_edges (basic_block);
155 static void make_gimple_asm_edges (basic_block);
156 static edge gimple_redirect_edge_and_branch (edge, basic_block);
157 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple, gimple);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge);
163 static gimple first_non_label_stmt (basic_block);
164 static bool verify_gimple_transaction (gimple);
166 /* Flowgraph optimization and cleanup. */
167 static void gimple_merge_blocks (basic_block, basic_block);
168 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
169 static void remove_bb (basic_block);
170 static edge find_taken_edge_computed_goto (basic_block, tree);
171 static edge find_taken_edge_cond_expr (basic_block, tree);
172 static edge find_taken_edge_switch_expr (basic_block, tree);
173 static tree find_case_label_for_value (gimple, tree);
175 void
176 init_empty_tree_cfg_for_function (struct function *fn)
178 /* Initialize the basic block array. */
179 init_flow (fn);
180 profile_status_for_fn (fn) = PROFILE_ABSENT;
181 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
182 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
183 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
184 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
185 initial_cfg_capacity);
187 /* Build a mapping of labels to their associated blocks. */
188 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
189 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
190 initial_cfg_capacity);
192 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
193 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
195 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
196 = EXIT_BLOCK_PTR_FOR_FN (fn);
197 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
198 = ENTRY_BLOCK_PTR_FOR_FN (fn);
201 void
202 init_empty_tree_cfg (void)
204 init_empty_tree_cfg_for_function (cfun);
207 /*---------------------------------------------------------------------------
208 Create basic blocks
209 ---------------------------------------------------------------------------*/
211 /* Entry point to the CFG builder for trees. SEQ is the sequence of
212 statements to be added to the flowgraph. */
214 static void
215 build_gimple_cfg (gimple_seq seq)
217 /* Register specific gimple functions. */
218 gimple_register_cfg_hooks ();
220 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
222 init_empty_tree_cfg ();
224 make_blocks (seq);
226 /* Make sure there is always at least one block, even if it's empty. */
227 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
228 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
230 /* Adjust the size of the array. */
231 if (basic_block_info_for_fn (cfun)->length ()
232 < (size_t) n_basic_blocks_for_fn (cfun))
233 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
234 n_basic_blocks_for_fn (cfun));
236 /* To speed up statement iterator walks, we first purge dead labels. */
237 cleanup_dead_labels ();
239 /* Group case nodes to reduce the number of edges.
240 We do this after cleaning up dead labels because otherwise we miss
241 a lot of obvious case merging opportunities. */
242 group_case_labels ();
244 /* Create the edges of the flowgraph. */
245 discriminator_per_locus.create (13);
246 make_edges ();
247 assign_discriminators ();
248 cleanup_dead_labels ();
249 discriminator_per_locus.dispose ();
253 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
254 it and set loop->safelen to INT_MAX. We assume that the annotation
255 comes immediately before the condition. */
257 static void
258 replace_loop_annotate ()
260 struct loop *loop;
261 basic_block bb;
262 gimple_stmt_iterator gsi;
263 gimple stmt;
265 FOR_EACH_LOOP (loop, 0)
267 gsi = gsi_last_bb (loop->header);
268 stmt = gsi_stmt (gsi);
269 if (stmt && gimple_code (stmt) == GIMPLE_COND)
271 gsi_prev_nondebug (&gsi);
272 if (gsi_end_p (gsi))
273 continue;
274 stmt = gsi_stmt (gsi);
275 if (gimple_code (stmt) != GIMPLE_CALL)
276 continue;
277 if (!gimple_call_internal_p (stmt)
278 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
279 continue;
280 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
281 != annot_expr_ivdep_kind)
282 continue;
283 stmt = gimple_build_assign (gimple_call_lhs (stmt),
284 gimple_call_arg (stmt, 0));
285 gsi_replace (&gsi, stmt, true);
286 loop->safelen = INT_MAX;
290 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
291 FOR_EACH_BB_FN (bb, cfun)
293 gsi = gsi_last_bb (bb);
294 stmt = gsi_stmt (gsi);
295 if (stmt && gimple_code (stmt) == GIMPLE_COND)
296 gsi_prev_nondebug (&gsi);
297 if (gsi_end_p (gsi))
298 continue;
299 stmt = gsi_stmt (gsi);
300 if (gimple_code (stmt) != GIMPLE_CALL)
301 continue;
302 if (!gimple_call_internal_p (stmt)
303 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
304 continue;
305 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
306 != annot_expr_ivdep_kind)
307 continue;
308 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
309 "annotation");
310 stmt = gimple_build_assign (gimple_call_lhs (stmt),
311 gimple_call_arg (stmt, 0));
312 gsi_replace (&gsi, stmt, true);
317 static unsigned int
318 execute_build_cfg (void)
320 gimple_seq body = gimple_body (current_function_decl);
322 build_gimple_cfg (body);
323 gimple_set_body (current_function_decl, NULL);
324 if (dump_file && (dump_flags & TDF_DETAILS))
326 fprintf (dump_file, "Scope blocks:\n");
327 dump_scope_blocks (dump_file, dump_flags);
329 cleanup_tree_cfg ();
330 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
331 replace_loop_annotate ();
332 return 0;
335 namespace {
337 const pass_data pass_data_build_cfg =
339 GIMPLE_PASS, /* type */
340 "cfg", /* name */
341 OPTGROUP_NONE, /* optinfo_flags */
342 false, /* has_gate */
343 true, /* has_execute */
344 TV_TREE_CFG, /* tv_id */
345 PROP_gimple_leh, /* properties_required */
346 ( PROP_cfg | PROP_loops ), /* properties_provided */
347 0, /* properties_destroyed */
348 0, /* todo_flags_start */
349 TODO_verify_stmts, /* todo_flags_finish */
352 class pass_build_cfg : public gimple_opt_pass
354 public:
355 pass_build_cfg (gcc::context *ctxt)
356 : gimple_opt_pass (pass_data_build_cfg, ctxt)
359 /* opt_pass methods: */
360 unsigned int execute () { return execute_build_cfg (); }
362 }; // class pass_build_cfg
364 } // anon namespace
366 gimple_opt_pass *
367 make_pass_build_cfg (gcc::context *ctxt)
369 return new pass_build_cfg (ctxt);
373 /* Return true if T is a computed goto. */
375 bool
376 computed_goto_p (gimple t)
378 return (gimple_code (t) == GIMPLE_GOTO
379 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
382 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
383 the other edge points to a bb with just __builtin_unreachable ().
384 I.e. return true for C->M edge in:
385 <bb C>:
387 if (something)
388 goto <bb N>;
389 else
390 goto <bb M>;
391 <bb N>:
392 __builtin_unreachable ();
393 <bb M>: */
395 bool
396 assert_unreachable_fallthru_edge_p (edge e)
398 basic_block pred_bb = e->src;
399 gimple last = last_stmt (pred_bb);
400 if (last && gimple_code (last) == GIMPLE_COND)
402 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
403 if (other_bb == e->dest)
404 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
405 if (EDGE_COUNT (other_bb->succs) == 0)
407 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
408 gimple stmt;
410 if (gsi_end_p (gsi))
411 return false;
412 stmt = gsi_stmt (gsi);
413 if (is_gimple_debug (stmt))
415 gsi_next_nondebug (&gsi);
416 if (gsi_end_p (gsi))
417 return false;
418 stmt = gsi_stmt (gsi);
420 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
423 return false;
427 /* Build a flowgraph for the sequence of stmts SEQ. */
429 static void
430 make_blocks (gimple_seq seq)
432 gimple_stmt_iterator i = gsi_start (seq);
433 gimple stmt = NULL;
434 bool start_new_block = true;
435 bool first_stmt_of_seq = true;
436 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
438 while (!gsi_end_p (i))
440 gimple prev_stmt;
442 prev_stmt = stmt;
443 stmt = gsi_stmt (i);
445 /* If the statement starts a new basic block or if we have determined
446 in a previous pass that we need to create a new block for STMT, do
447 so now. */
448 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
450 if (!first_stmt_of_seq)
451 gsi_split_seq_before (&i, &seq);
452 bb = create_basic_block (seq, NULL, bb);
453 start_new_block = false;
456 /* Now add STMT to BB and create the subgraphs for special statement
457 codes. */
458 gimple_set_bb (stmt, bb);
460 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
461 next iteration. */
462 if (stmt_ends_bb_p (stmt))
464 /* If the stmt can make abnormal goto use a new temporary
465 for the assignment to the LHS. This makes sure the old value
466 of the LHS is available on the abnormal edge. Otherwise
467 we will end up with overlapping life-ranges for abnormal
468 SSA names. */
469 if (gimple_has_lhs (stmt)
470 && stmt_can_make_abnormal_goto (stmt)
471 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
473 tree lhs = gimple_get_lhs (stmt);
474 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
475 gimple s = gimple_build_assign (lhs, tmp);
476 gimple_set_location (s, gimple_location (stmt));
477 gimple_set_block (s, gimple_block (stmt));
478 gimple_set_lhs (stmt, tmp);
479 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
480 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
481 DECL_GIMPLE_REG_P (tmp) = 1;
482 gsi_insert_after (&i, s, GSI_SAME_STMT);
484 start_new_block = true;
487 gsi_next (&i);
488 first_stmt_of_seq = false;
493 /* Create and return a new empty basic block after bb AFTER. */
495 static basic_block
496 create_bb (void *h, void *e, basic_block after)
498 basic_block bb;
500 gcc_assert (!e);
502 /* Create and initialize a new basic block. Since alloc_block uses
503 GC allocation that clears memory to allocate a basic block, we do
504 not have to clear the newly allocated basic block here. */
505 bb = alloc_block ();
507 bb->index = last_basic_block_for_fn (cfun);
508 bb->flags = BB_NEW;
509 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
511 /* Add the new block to the linked list of blocks. */
512 link_block (bb, after);
514 /* Grow the basic block array if needed. */
515 if ((size_t) last_basic_block_for_fn (cfun)
516 == basic_block_info_for_fn (cfun)->length ())
518 size_t new_size =
519 (last_basic_block_for_fn (cfun)
520 + (last_basic_block_for_fn (cfun) + 3) / 4);
521 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
524 /* Add the newly created block to the array. */
525 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
527 n_basic_blocks_for_fn (cfun)++;
528 last_basic_block_for_fn (cfun)++;
530 return bb;
534 /*---------------------------------------------------------------------------
535 Edge creation
536 ---------------------------------------------------------------------------*/
538 /* Fold COND_EXPR_COND of each COND_EXPR. */
540 void
541 fold_cond_expr_cond (void)
543 basic_block bb;
545 FOR_EACH_BB_FN (bb, cfun)
547 gimple stmt = last_stmt (bb);
549 if (stmt && gimple_code (stmt) == GIMPLE_COND)
551 location_t loc = gimple_location (stmt);
552 tree cond;
553 bool zerop, onep;
555 fold_defer_overflow_warnings ();
556 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
557 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
558 if (cond)
560 zerop = integer_zerop (cond);
561 onep = integer_onep (cond);
563 else
564 zerop = onep = false;
566 fold_undefer_overflow_warnings (zerop || onep,
567 stmt,
568 WARN_STRICT_OVERFLOW_CONDITIONAL);
569 if (zerop)
570 gimple_cond_make_false (stmt);
571 else if (onep)
572 gimple_cond_make_true (stmt);
577 /* If basic block BB has an abnormal edge to a basic block
578 containing IFN_ABNORMAL_DISPATCHER internal call, return
579 that the dispatcher's basic block, otherwise return NULL. */
581 basic_block
582 get_abnormal_succ_dispatcher (basic_block bb)
584 edge e;
585 edge_iterator ei;
587 FOR_EACH_EDGE (e, ei, bb->succs)
588 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
590 gimple_stmt_iterator gsi
591 = gsi_start_nondebug_after_labels_bb (e->dest);
592 gimple g = gsi_stmt (gsi);
593 if (g
594 && is_gimple_call (g)
595 && gimple_call_internal_p (g)
596 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
597 return e->dest;
599 return NULL;
602 /* Helper function for make_edges. Create a basic block with
603 with ABNORMAL_DISPATCHER internal call in it if needed, and
604 create abnormal edges from BBS to it and from it to FOR_BB
605 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
607 static void
608 handle_abnormal_edges (basic_block *dispatcher_bbs,
609 basic_block for_bb, int *bb_to_omp_idx,
610 auto_vec<basic_block> *bbs, bool computed_goto)
612 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
613 unsigned int idx = 0;
614 basic_block bb;
615 bool inner = false;
617 if (bb_to_omp_idx)
619 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
620 if (bb_to_omp_idx[for_bb->index] != 0)
621 inner = true;
624 /* If the dispatcher has been created already, then there are basic
625 blocks with abnormal edges to it, so just make a new edge to
626 for_bb. */
627 if (*dispatcher == NULL)
629 /* Check if there are any basic blocks that need to have
630 abnormal edges to this dispatcher. If there are none, return
631 early. */
632 if (bb_to_omp_idx == NULL)
634 if (bbs->is_empty ())
635 return;
637 else
639 FOR_EACH_VEC_ELT (*bbs, idx, bb)
640 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
641 break;
642 if (bb == NULL)
643 return;
646 /* Create the dispatcher bb. */
647 *dispatcher = create_basic_block (NULL, NULL, for_bb);
648 if (computed_goto)
650 /* Factor computed gotos into a common computed goto site. Also
651 record the location of that site so that we can un-factor the
652 gotos after we have converted back to normal form. */
653 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
655 /* Create the destination of the factored goto. Each original
656 computed goto will put its desired destination into this
657 variable and jump to the label we create immediately below. */
658 tree var = create_tmp_var (ptr_type_node, "gotovar");
660 /* Build a label for the new block which will contain the
661 factored computed goto. */
662 tree factored_label_decl
663 = create_artificial_label (UNKNOWN_LOCATION);
664 gimple factored_computed_goto_label
665 = gimple_build_label (factored_label_decl);
666 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
668 /* Build our new computed goto. */
669 gimple factored_computed_goto = gimple_build_goto (var);
670 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
672 FOR_EACH_VEC_ELT (*bbs, idx, bb)
674 if (bb_to_omp_idx
675 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
676 continue;
678 gsi = gsi_last_bb (bb);
679 gimple last = gsi_stmt (gsi);
681 gcc_assert (computed_goto_p (last));
683 /* Copy the original computed goto's destination into VAR. */
684 gimple assignment
685 = gimple_build_assign (var, gimple_goto_dest (last));
686 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
688 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
689 e->goto_locus = gimple_location (last);
690 gsi_remove (&gsi, true);
693 else
695 tree arg = inner ? boolean_true_node : boolean_false_node;
696 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
697 1, arg);
698 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
699 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
701 /* Create predecessor edges of the dispatcher. */
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
707 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
712 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
715 /* Join all the blocks in the flowgraph. */
717 static void
718 make_edges (void)
720 basic_block bb;
721 struct omp_region *cur_region = NULL;
722 auto_vec<basic_block> ab_edge_goto;
723 auto_vec<basic_block> ab_edge_call;
724 int *bb_to_omp_idx = NULL;
725 int cur_omp_region_idx = 0;
727 /* Create an edge from entry to the first block with executable
728 statements in it. */
729 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
730 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
731 EDGE_FALLTHRU);
733 /* Traverse the basic block array placing edges. */
734 FOR_EACH_BB_FN (bb, cfun)
736 gimple last = last_stmt (bb);
737 bool fallthru;
739 if (bb_to_omp_idx)
740 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
742 if (last)
744 enum gimple_code code = gimple_code (last);
745 switch (code)
747 case GIMPLE_GOTO:
748 if (make_goto_expr_edges (bb))
749 ab_edge_goto.safe_push (bb);
750 fallthru = false;
751 break;
752 case GIMPLE_RETURN:
753 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
754 fallthru = false;
755 break;
756 case GIMPLE_COND:
757 make_cond_expr_edges (bb);
758 fallthru = false;
759 break;
760 case GIMPLE_SWITCH:
761 make_gimple_switch_edges (bb);
762 fallthru = false;
763 break;
764 case GIMPLE_RESX:
765 make_eh_edges (last);
766 fallthru = false;
767 break;
768 case GIMPLE_EH_DISPATCH:
769 fallthru = make_eh_dispatch_edges (last);
770 break;
772 case GIMPLE_CALL:
773 /* If this function receives a nonlocal goto, then we need to
774 make edges from this call site to all the nonlocal goto
775 handlers. */
776 if (stmt_can_make_abnormal_goto (last))
777 ab_edge_call.safe_push (bb);
779 /* If this statement has reachable exception handlers, then
780 create abnormal edges to them. */
781 make_eh_edges (last);
783 /* BUILTIN_RETURN is really a return statement. */
784 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
786 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
787 fallthru = false;
789 /* Some calls are known not to return. */
790 else
791 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
792 break;
794 case GIMPLE_ASSIGN:
795 /* A GIMPLE_ASSIGN may throw internally and thus be considered
796 control-altering. */
797 if (is_ctrl_altering_stmt (last))
798 make_eh_edges (last);
799 fallthru = true;
800 break;
802 case GIMPLE_ASM:
803 make_gimple_asm_edges (bb);
804 fallthru = true;
805 break;
807 CASE_GIMPLE_OMP:
808 fallthru = make_gimple_omp_edges (bb, &cur_region,
809 &cur_omp_region_idx);
810 if (cur_region && bb_to_omp_idx == NULL)
811 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
812 break;
814 case GIMPLE_TRANSACTION:
816 tree abort_label = gimple_transaction_label (last);
817 if (abort_label)
818 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
819 fallthru = true;
821 break;
823 default:
824 gcc_assert (!stmt_ends_bb_p (last));
825 fallthru = true;
828 else
829 fallthru = true;
831 if (fallthru)
832 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
835 /* Computed gotos are hell to deal with, especially if there are
836 lots of them with a large number of destinations. So we factor
837 them to a common computed goto location before we build the
838 edge list. After we convert back to normal form, we will un-factor
839 the computed gotos since factoring introduces an unwanted jump.
840 For non-local gotos and abnormal edges from calls to calls that return
841 twice or forced labels, factor the abnormal edges too, by having all
842 abnormal edges from the calls go to a common artificial basic block
843 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
844 basic block to all forced labels and calls returning twice.
845 We do this per-OpenMP structured block, because those regions
846 are guaranteed to be single entry single exit by the standard,
847 so it is not allowed to enter or exit such regions abnormally this way,
848 thus all computed gotos, non-local gotos and setjmp/longjmp calls
849 must not transfer control across SESE region boundaries. */
850 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
852 gimple_stmt_iterator gsi;
853 basic_block dispatcher_bb_array[2] = { NULL, NULL };
854 basic_block *dispatcher_bbs = dispatcher_bb_array;
855 int count = n_basic_blocks_for_fn (cfun);
857 if (bb_to_omp_idx)
858 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
860 FOR_EACH_BB_FN (bb, cfun)
862 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
864 gimple label_stmt = gsi_stmt (gsi);
865 tree target;
867 if (gimple_code (label_stmt) != GIMPLE_LABEL)
868 break;
870 target = gimple_label_label (label_stmt);
872 /* Make an edge to every label block that has been marked as a
873 potential target for a computed goto or a non-local goto. */
874 if (FORCED_LABEL (target))
875 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
876 &ab_edge_goto, true);
877 if (DECL_NONLOCAL (target))
879 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
880 &ab_edge_call, false);
881 break;
885 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
886 gsi_next_nondebug (&gsi);
887 if (!gsi_end_p (gsi))
889 /* Make an edge to every setjmp-like call. */
890 gimple call_stmt = gsi_stmt (gsi);
891 if (is_gimple_call (call_stmt)
892 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
893 || gimple_call_builtin_p (call_stmt,
894 BUILT_IN_SETJMP_RECEIVER)))
895 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
896 &ab_edge_call, false);
900 if (bb_to_omp_idx)
901 XDELETE (dispatcher_bbs);
904 XDELETE (bb_to_omp_idx);
906 free_omp_regions ();
908 /* Fold COND_EXPR_COND of each COND_EXPR. */
909 fold_cond_expr_cond ();
912 /* Find the next available discriminator value for LOCUS. The
913 discriminator distinguishes among several basic blocks that
914 share a common locus, allowing for more accurate sample-based
915 profiling. */
917 static int
918 next_discriminator_for_locus (location_t locus)
920 struct locus_discrim_map item;
921 struct locus_discrim_map **slot;
923 item.locus = locus;
924 item.discriminator = 0;
925 slot = discriminator_per_locus.find_slot_with_hash (
926 &item, LOCATION_LINE (locus), INSERT);
927 gcc_assert (slot);
928 if (*slot == HTAB_EMPTY_ENTRY)
930 *slot = XNEW (struct locus_discrim_map);
931 gcc_assert (*slot);
932 (*slot)->locus = locus;
933 (*slot)->discriminator = 0;
935 (*slot)->discriminator++;
936 return (*slot)->discriminator;
939 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
941 static bool
942 same_line_p (location_t locus1, location_t locus2)
944 expanded_location from, to;
946 if (locus1 == locus2)
947 return true;
949 from = expand_location (locus1);
950 to = expand_location (locus2);
952 if (from.line != to.line)
953 return false;
954 if (from.file == to.file)
955 return true;
956 return (from.file != NULL
957 && to.file != NULL
958 && filename_cmp (from.file, to.file) == 0);
961 /* Assign discriminators to each basic block. */
963 static void
964 assign_discriminators (void)
966 basic_block bb;
968 FOR_EACH_BB_FN (bb, cfun)
970 edge e;
971 edge_iterator ei;
972 gimple last = last_stmt (bb);
973 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
975 if (locus == UNKNOWN_LOCATION)
976 continue;
978 FOR_EACH_EDGE (e, ei, bb->succs)
980 gimple first = first_non_label_stmt (e->dest);
981 gimple last = last_stmt (e->dest);
982 if ((first && same_line_p (locus, gimple_location (first)))
983 || (last && same_line_p (locus, gimple_location (last))))
985 if (e->dest->discriminator != 0 && bb->discriminator == 0)
986 bb->discriminator = next_discriminator_for_locus (locus);
987 else
988 e->dest->discriminator = next_discriminator_for_locus (locus);
994 /* Create the edges for a GIMPLE_COND starting at block BB. */
996 static void
997 make_cond_expr_edges (basic_block bb)
999 gimple entry = last_stmt (bb);
1000 gimple then_stmt, else_stmt;
1001 basic_block then_bb, else_bb;
1002 tree then_label, else_label;
1003 edge e;
1005 gcc_assert (entry);
1006 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1008 /* Entry basic blocks for each component. */
1009 then_label = gimple_cond_true_label (entry);
1010 else_label = gimple_cond_false_label (entry);
1011 then_bb = label_to_block (then_label);
1012 else_bb = label_to_block (else_label);
1013 then_stmt = first_stmt (then_bb);
1014 else_stmt = first_stmt (else_bb);
1016 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1017 e->goto_locus = gimple_location (then_stmt);
1018 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1019 if (e)
1020 e->goto_locus = gimple_location (else_stmt);
1022 /* We do not need the labels anymore. */
1023 gimple_cond_set_true_label (entry, NULL_TREE);
1024 gimple_cond_set_false_label (entry, NULL_TREE);
1028 /* Called for each element in the hash table (P) as we delete the
1029 edge to cases hash table.
1031 Clear all the TREE_CHAINs to prevent problems with copying of
1032 SWITCH_EXPRs and structure sharing rules, then free the hash table
1033 element. */
1035 static bool
1036 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
1037 void *data ATTRIBUTE_UNUSED)
1039 tree t, next;
1041 for (t = (tree) *value; t; t = next)
1043 next = CASE_CHAIN (t);
1044 CASE_CHAIN (t) = NULL;
1047 *value = NULL;
1048 return true;
1051 /* Start recording information mapping edges to case labels. */
1053 void
1054 start_recording_case_labels (void)
1056 gcc_assert (edge_to_cases == NULL);
1057 edge_to_cases = pointer_map_create ();
1058 touched_switch_bbs = BITMAP_ALLOC (NULL);
1061 /* Return nonzero if we are recording information for case labels. */
1063 static bool
1064 recording_case_labels_p (void)
1066 return (edge_to_cases != NULL);
1069 /* Stop recording information mapping edges to case labels and
1070 remove any information we have recorded. */
1071 void
1072 end_recording_case_labels (void)
1074 bitmap_iterator bi;
1075 unsigned i;
1076 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
1077 pointer_map_destroy (edge_to_cases);
1078 edge_to_cases = NULL;
1079 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1081 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1082 if (bb)
1084 gimple stmt = last_stmt (bb);
1085 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1086 group_case_labels_stmt (stmt);
1089 BITMAP_FREE (touched_switch_bbs);
1092 /* If we are inside a {start,end}_recording_cases block, then return
1093 a chain of CASE_LABEL_EXPRs from T which reference E.
1095 Otherwise return NULL. */
1097 static tree
1098 get_cases_for_edge (edge e, gimple t)
1100 void **slot;
1101 size_t i, n;
1103 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1104 chains available. Return NULL so the caller can detect this case. */
1105 if (!recording_case_labels_p ())
1106 return NULL;
1108 slot = pointer_map_contains (edge_to_cases, e);
1109 if (slot)
1110 return (tree) *slot;
1112 /* If we did not find E in the hash table, then this must be the first
1113 time we have been queried for information about E & T. Add all the
1114 elements from T to the hash table then perform the query again. */
1116 n = gimple_switch_num_labels (t);
1117 for (i = 0; i < n; i++)
1119 tree elt = gimple_switch_label (t, i);
1120 tree lab = CASE_LABEL (elt);
1121 basic_block label_bb = label_to_block (lab);
1122 edge this_edge = find_edge (e->src, label_bb);
1124 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1125 a new chain. */
1126 slot = pointer_map_insert (edge_to_cases, this_edge);
1127 CASE_CHAIN (elt) = (tree) *slot;
1128 *slot = elt;
1131 return (tree) *pointer_map_contains (edge_to_cases, e);
1134 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1136 static void
1137 make_gimple_switch_edges (basic_block bb)
1139 gimple entry = last_stmt (bb);
1140 size_t i, n;
1142 n = gimple_switch_num_labels (entry);
1144 for (i = 0; i < n; ++i)
1146 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1147 basic_block label_bb = label_to_block (lab);
1148 make_edge (bb, label_bb, 0);
1153 /* Return the basic block holding label DEST. */
1155 basic_block
1156 label_to_block_fn (struct function *ifun, tree dest)
1158 int uid = LABEL_DECL_UID (dest);
1160 /* We would die hard when faced by an undefined label. Emit a label to
1161 the very first basic block. This will hopefully make even the dataflow
1162 and undefined variable warnings quite right. */
1163 if (seen_error () && uid < 0)
1165 gimple_stmt_iterator gsi =
1166 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1167 gimple stmt;
1169 stmt = gimple_build_label (dest);
1170 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1171 uid = LABEL_DECL_UID (dest);
1173 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1174 return NULL;
1175 return (*ifun->cfg->x_label_to_block_map)[uid];
1178 /* Create edges for a goto statement at block BB. Returns true
1179 if abnormal edges should be created. */
1181 static bool
1182 make_goto_expr_edges (basic_block bb)
1184 gimple_stmt_iterator last = gsi_last_bb (bb);
1185 gimple goto_t = gsi_stmt (last);
1187 /* A simple GOTO creates normal edges. */
1188 if (simple_goto_p (goto_t))
1190 tree dest = gimple_goto_dest (goto_t);
1191 basic_block label_bb = label_to_block (dest);
1192 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1193 e->goto_locus = gimple_location (goto_t);
1194 gsi_remove (&last, true);
1195 return false;
1198 /* A computed GOTO creates abnormal edges. */
1199 return true;
1202 /* Create edges for an asm statement with labels at block BB. */
1204 static void
1205 make_gimple_asm_edges (basic_block bb)
1207 gimple stmt = last_stmt (bb);
1208 int i, n = gimple_asm_nlabels (stmt);
1210 for (i = 0; i < n; ++i)
1212 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1213 basic_block label_bb = label_to_block (label);
1214 make_edge (bb, label_bb, 0);
1218 /*---------------------------------------------------------------------------
1219 Flowgraph analysis
1220 ---------------------------------------------------------------------------*/
1222 /* Cleanup useless labels in basic blocks. This is something we wish
1223 to do early because it allows us to group case labels before creating
1224 the edges for the CFG, and it speeds up block statement iterators in
1225 all passes later on.
1226 We rerun this pass after CFG is created, to get rid of the labels that
1227 are no longer referenced. After then we do not run it any more, since
1228 (almost) no new labels should be created. */
1230 /* A map from basic block index to the leading label of that block. */
1231 static struct label_record
1233 /* The label. */
1234 tree label;
1236 /* True if the label is referenced from somewhere. */
1237 bool used;
1238 } *label_for_bb;
1240 /* Given LABEL return the first label in the same basic block. */
1242 static tree
1243 main_block_label (tree label)
1245 basic_block bb = label_to_block (label);
1246 tree main_label = label_for_bb[bb->index].label;
1248 /* label_to_block possibly inserted undefined label into the chain. */
1249 if (!main_label)
1251 label_for_bb[bb->index].label = label;
1252 main_label = label;
1255 label_for_bb[bb->index].used = true;
1256 return main_label;
1259 /* Clean up redundant labels within the exception tree. */
1261 static void
1262 cleanup_dead_labels_eh (void)
1264 eh_landing_pad lp;
1265 eh_region r;
1266 tree lab;
1267 int i;
1269 if (cfun->eh == NULL)
1270 return;
1272 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1273 if (lp && lp->post_landing_pad)
1275 lab = main_block_label (lp->post_landing_pad);
1276 if (lab != lp->post_landing_pad)
1278 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1279 EH_LANDING_PAD_NR (lab) = lp->index;
1283 FOR_ALL_EH_REGION (r)
1284 switch (r->type)
1286 case ERT_CLEANUP:
1287 case ERT_MUST_NOT_THROW:
1288 break;
1290 case ERT_TRY:
1292 eh_catch c;
1293 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1295 lab = c->label;
1296 if (lab)
1297 c->label = main_block_label (lab);
1300 break;
1302 case ERT_ALLOWED_EXCEPTIONS:
1303 lab = r->u.allowed.label;
1304 if (lab)
1305 r->u.allowed.label = main_block_label (lab);
1306 break;
1311 /* Cleanup redundant labels. This is a three-step process:
1312 1) Find the leading label for each block.
1313 2) Redirect all references to labels to the leading labels.
1314 3) Cleanup all useless labels. */
1316 void
1317 cleanup_dead_labels (void)
1319 basic_block bb;
1320 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1322 /* Find a suitable label for each block. We use the first user-defined
1323 label if there is one, or otherwise just the first label we see. */
1324 FOR_EACH_BB_FN (bb, cfun)
1326 gimple_stmt_iterator i;
1328 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1330 tree label;
1331 gimple stmt = gsi_stmt (i);
1333 if (gimple_code (stmt) != GIMPLE_LABEL)
1334 break;
1336 label = gimple_label_label (stmt);
1338 /* If we have not yet seen a label for the current block,
1339 remember this one and see if there are more labels. */
1340 if (!label_for_bb[bb->index].label)
1342 label_for_bb[bb->index].label = label;
1343 continue;
1346 /* If we did see a label for the current block already, but it
1347 is an artificially created label, replace it if the current
1348 label is a user defined label. */
1349 if (!DECL_ARTIFICIAL (label)
1350 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1352 label_for_bb[bb->index].label = label;
1353 break;
1358 /* Now redirect all jumps/branches to the selected label.
1359 First do so for each block ending in a control statement. */
1360 FOR_EACH_BB_FN (bb, cfun)
1362 gimple stmt = last_stmt (bb);
1363 tree label, new_label;
1365 if (!stmt)
1366 continue;
1368 switch (gimple_code (stmt))
1370 case GIMPLE_COND:
1371 label = gimple_cond_true_label (stmt);
1372 if (label)
1374 new_label = main_block_label (label);
1375 if (new_label != label)
1376 gimple_cond_set_true_label (stmt, new_label);
1379 label = gimple_cond_false_label (stmt);
1380 if (label)
1382 new_label = main_block_label (label);
1383 if (new_label != label)
1384 gimple_cond_set_false_label (stmt, new_label);
1386 break;
1388 case GIMPLE_SWITCH:
1390 size_t i, n = gimple_switch_num_labels (stmt);
1392 /* Replace all destination labels. */
1393 for (i = 0; i < n; ++i)
1395 tree case_label = gimple_switch_label (stmt, i);
1396 label = CASE_LABEL (case_label);
1397 new_label = main_block_label (label);
1398 if (new_label != label)
1399 CASE_LABEL (case_label) = new_label;
1401 break;
1404 case GIMPLE_ASM:
1406 int i, n = gimple_asm_nlabels (stmt);
1408 for (i = 0; i < n; ++i)
1410 tree cons = gimple_asm_label_op (stmt, i);
1411 tree label = main_block_label (TREE_VALUE (cons));
1412 TREE_VALUE (cons) = label;
1414 break;
1417 /* We have to handle gotos until they're removed, and we don't
1418 remove them until after we've created the CFG edges. */
1419 case GIMPLE_GOTO:
1420 if (!computed_goto_p (stmt))
1422 label = gimple_goto_dest (stmt);
1423 new_label = main_block_label (label);
1424 if (new_label != label)
1425 gimple_goto_set_dest (stmt, new_label);
1427 break;
1429 case GIMPLE_TRANSACTION:
1431 tree label = gimple_transaction_label (stmt);
1432 if (label)
1434 tree new_label = main_block_label (label);
1435 if (new_label != label)
1436 gimple_transaction_set_label (stmt, new_label);
1439 break;
1441 default:
1442 break;
1446 /* Do the same for the exception region tree labels. */
1447 cleanup_dead_labels_eh ();
1449 /* Finally, purge dead labels. All user-defined labels and labels that
1450 can be the target of non-local gotos and labels which have their
1451 address taken are preserved. */
1452 FOR_EACH_BB_FN (bb, cfun)
1454 gimple_stmt_iterator i;
1455 tree label_for_this_bb = label_for_bb[bb->index].label;
1457 if (!label_for_this_bb)
1458 continue;
1460 /* If the main label of the block is unused, we may still remove it. */
1461 if (!label_for_bb[bb->index].used)
1462 label_for_this_bb = NULL;
1464 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1466 tree label;
1467 gimple stmt = gsi_stmt (i);
1469 if (gimple_code (stmt) != GIMPLE_LABEL)
1470 break;
1472 label = gimple_label_label (stmt);
1474 if (label == label_for_this_bb
1475 || !DECL_ARTIFICIAL (label)
1476 || DECL_NONLOCAL (label)
1477 || FORCED_LABEL (label))
1478 gsi_next (&i);
1479 else
1480 gsi_remove (&i, true);
1484 free (label_for_bb);
1487 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1488 the ones jumping to the same label.
1489 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1491 void
1492 group_case_labels_stmt (gimple stmt)
1494 int old_size = gimple_switch_num_labels (stmt);
1495 int i, j, new_size = old_size;
1496 basic_block default_bb = NULL;
1498 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1500 /* Look for possible opportunities to merge cases. */
1501 i = 1;
1502 while (i < old_size)
1504 tree base_case, base_high;
1505 basic_block base_bb;
1507 base_case = gimple_switch_label (stmt, i);
1509 gcc_assert (base_case);
1510 base_bb = label_to_block (CASE_LABEL (base_case));
1512 /* Discard cases that have the same destination as the
1513 default case. */
1514 if (base_bb == default_bb)
1516 gimple_switch_set_label (stmt, i, NULL_TREE);
1517 i++;
1518 new_size--;
1519 continue;
1522 base_high = CASE_HIGH (base_case)
1523 ? CASE_HIGH (base_case)
1524 : CASE_LOW (base_case);
1525 i++;
1527 /* Try to merge case labels. Break out when we reach the end
1528 of the label vector or when we cannot merge the next case
1529 label with the current one. */
1530 while (i < old_size)
1532 tree merge_case = gimple_switch_label (stmt, i);
1533 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1534 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1536 /* Merge the cases if they jump to the same place,
1537 and their ranges are consecutive. */
1538 if (merge_bb == base_bb
1539 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1541 base_high = CASE_HIGH (merge_case) ?
1542 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1543 CASE_HIGH (base_case) = base_high;
1544 gimple_switch_set_label (stmt, i, NULL_TREE);
1545 new_size--;
1546 i++;
1548 else
1549 break;
1553 /* Compress the case labels in the label vector, and adjust the
1554 length of the vector. */
1555 for (i = 0, j = 0; i < new_size; i++)
1557 while (! gimple_switch_label (stmt, j))
1558 j++;
1559 gimple_switch_set_label (stmt, i,
1560 gimple_switch_label (stmt, j++));
1563 gcc_assert (new_size <= old_size);
1564 gimple_switch_set_num_labels (stmt, new_size);
1567 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1568 and scan the sorted vector of cases. Combine the ones jumping to the
1569 same label. */
1571 void
1572 group_case_labels (void)
1574 basic_block bb;
1576 FOR_EACH_BB_FN (bb, cfun)
1578 gimple stmt = last_stmt (bb);
1579 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1580 group_case_labels_stmt (stmt);
1584 /* Checks whether we can merge block B into block A. */
1586 static bool
1587 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1589 gimple stmt;
1590 gimple_stmt_iterator gsi;
1592 if (!single_succ_p (a))
1593 return false;
1595 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1596 return false;
1598 if (single_succ (a) != b)
1599 return false;
1601 if (!single_pred_p (b))
1602 return false;
1604 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1605 return false;
1607 /* If A ends by a statement causing exceptions or something similar, we
1608 cannot merge the blocks. */
1609 stmt = last_stmt (a);
1610 if (stmt && stmt_ends_bb_p (stmt))
1611 return false;
1613 /* Do not allow a block with only a non-local label to be merged. */
1614 if (stmt
1615 && gimple_code (stmt) == GIMPLE_LABEL
1616 && DECL_NONLOCAL (gimple_label_label (stmt)))
1617 return false;
1619 /* Examine the labels at the beginning of B. */
1620 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1622 tree lab;
1623 stmt = gsi_stmt (gsi);
1624 if (gimple_code (stmt) != GIMPLE_LABEL)
1625 break;
1626 lab = gimple_label_label (stmt);
1628 /* Do not remove user forced labels or for -O0 any user labels. */
1629 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1630 return false;
1633 /* Protect the loop latches. */
1634 if (current_loops && b->loop_father->latch == b)
1635 return false;
1637 /* It must be possible to eliminate all phi nodes in B. If ssa form
1638 is not up-to-date and a name-mapping is registered, we cannot eliminate
1639 any phis. Symbols marked for renaming are never a problem though. */
1640 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1642 gimple phi = gsi_stmt (gsi);
1643 /* Technically only new names matter. */
1644 if (name_registered_for_update_p (PHI_RESULT (phi)))
1645 return false;
1648 /* When not optimizing, don't merge if we'd lose goto_locus. */
1649 if (!optimize
1650 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1652 location_t goto_locus = single_succ_edge (a)->goto_locus;
1653 gimple_stmt_iterator prev, next;
1654 prev = gsi_last_nondebug_bb (a);
1655 next = gsi_after_labels (b);
1656 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1657 gsi_next_nondebug (&next);
1658 if ((gsi_end_p (prev)
1659 || gimple_location (gsi_stmt (prev)) != goto_locus)
1660 && (gsi_end_p (next)
1661 || gimple_location (gsi_stmt (next)) != goto_locus))
1662 return false;
1665 return true;
1668 /* Replaces all uses of NAME by VAL. */
1670 void
1671 replace_uses_by (tree name, tree val)
1673 imm_use_iterator imm_iter;
1674 use_operand_p use;
1675 gimple stmt;
1676 edge e;
1678 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1680 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1682 replace_exp (use, val);
1684 if (gimple_code (stmt) == GIMPLE_PHI)
1686 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1687 if (e->flags & EDGE_ABNORMAL)
1689 /* This can only occur for virtual operands, since
1690 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1691 would prevent replacement. */
1692 gcc_checking_assert (virtual_operand_p (name));
1693 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1698 if (gimple_code (stmt) != GIMPLE_PHI)
1700 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1701 gimple orig_stmt = stmt;
1702 size_t i;
1704 /* Mark the block if we changed the last stmt in it. */
1705 if (cfgcleanup_altered_bbs
1706 && stmt_ends_bb_p (stmt))
1707 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1709 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1710 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1711 only change sth from non-invariant to invariant, and only
1712 when propagating constants. */
1713 if (is_gimple_min_invariant (val))
1714 for (i = 0; i < gimple_num_ops (stmt); i++)
1716 tree op = gimple_op (stmt, i);
1717 /* Operands may be empty here. For example, the labels
1718 of a GIMPLE_COND are nulled out following the creation
1719 of the corresponding CFG edges. */
1720 if (op && TREE_CODE (op) == ADDR_EXPR)
1721 recompute_tree_invariant_for_addr_expr (op);
1724 if (fold_stmt (&gsi))
1725 stmt = gsi_stmt (gsi);
1727 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1728 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1730 update_stmt (stmt);
1734 gcc_checking_assert (has_zero_uses (name));
1736 /* Also update the trees stored in loop structures. */
1737 if (current_loops)
1739 struct loop *loop;
1741 FOR_EACH_LOOP (loop, 0)
1743 substitute_in_loop_info (loop, name, val);
1748 /* Merge block B into block A. */
1750 static void
1751 gimple_merge_blocks (basic_block a, basic_block b)
1753 gimple_stmt_iterator last, gsi, psi;
1755 if (dump_file)
1756 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1758 /* Remove all single-valued PHI nodes from block B of the form
1759 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1760 gsi = gsi_last_bb (a);
1761 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1763 gimple phi = gsi_stmt (psi);
1764 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1765 gimple copy;
1766 bool may_replace_uses = (virtual_operand_p (def)
1767 || may_propagate_copy (def, use));
1769 /* In case we maintain loop closed ssa form, do not propagate arguments
1770 of loop exit phi nodes. */
1771 if (current_loops
1772 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1773 && !virtual_operand_p (def)
1774 && TREE_CODE (use) == SSA_NAME
1775 && a->loop_father != b->loop_father)
1776 may_replace_uses = false;
1778 if (!may_replace_uses)
1780 gcc_assert (!virtual_operand_p (def));
1782 /* Note that just emitting the copies is fine -- there is no problem
1783 with ordering of phi nodes. This is because A is the single
1784 predecessor of B, therefore results of the phi nodes cannot
1785 appear as arguments of the phi nodes. */
1786 copy = gimple_build_assign (def, use);
1787 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1788 remove_phi_node (&psi, false);
1790 else
1792 /* If we deal with a PHI for virtual operands, we can simply
1793 propagate these without fussing with folding or updating
1794 the stmt. */
1795 if (virtual_operand_p (def))
1797 imm_use_iterator iter;
1798 use_operand_p use_p;
1799 gimple stmt;
1801 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1802 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1803 SET_USE (use_p, use);
1805 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1806 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1808 else
1809 replace_uses_by (def, use);
1811 remove_phi_node (&psi, true);
1815 /* Ensure that B follows A. */
1816 move_block_after (b, a);
1818 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1819 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1821 /* Remove labels from B and set gimple_bb to A for other statements. */
1822 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1824 gimple stmt = gsi_stmt (gsi);
1825 if (gimple_code (stmt) == GIMPLE_LABEL)
1827 tree label = gimple_label_label (stmt);
1828 int lp_nr;
1830 gsi_remove (&gsi, false);
1832 /* Now that we can thread computed gotos, we might have
1833 a situation where we have a forced label in block B
1834 However, the label at the start of block B might still be
1835 used in other ways (think about the runtime checking for
1836 Fortran assigned gotos). So we can not just delete the
1837 label. Instead we move the label to the start of block A. */
1838 if (FORCED_LABEL (label))
1840 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1841 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1843 /* Other user labels keep around in a form of a debug stmt. */
1844 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1846 gimple dbg = gimple_build_debug_bind (label,
1847 integer_zero_node,
1848 stmt);
1849 gimple_debug_bind_reset_value (dbg);
1850 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1853 lp_nr = EH_LANDING_PAD_NR (label);
1854 if (lp_nr)
1856 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1857 lp->post_landing_pad = NULL;
1860 else
1862 gimple_set_bb (stmt, a);
1863 gsi_next (&gsi);
1867 /* Merge the sequences. */
1868 last = gsi_last_bb (a);
1869 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1870 set_bb_seq (b, NULL);
1872 if (cfgcleanup_altered_bbs)
1873 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1877 /* Return the one of two successors of BB that is not reachable by a
1878 complex edge, if there is one. Else, return BB. We use
1879 this in optimizations that use post-dominators for their heuristics,
1880 to catch the cases in C++ where function calls are involved. */
1882 basic_block
1883 single_noncomplex_succ (basic_block bb)
1885 edge e0, e1;
1886 if (EDGE_COUNT (bb->succs) != 2)
1887 return bb;
1889 e0 = EDGE_SUCC (bb, 0);
1890 e1 = EDGE_SUCC (bb, 1);
1891 if (e0->flags & EDGE_COMPLEX)
1892 return e1->dest;
1893 if (e1->flags & EDGE_COMPLEX)
1894 return e0->dest;
1896 return bb;
1899 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1901 void
1902 notice_special_calls (gimple call)
1904 int flags = gimple_call_flags (call);
1906 if (flags & ECF_MAY_BE_ALLOCA)
1907 cfun->calls_alloca = true;
1908 if (flags & ECF_RETURNS_TWICE)
1909 cfun->calls_setjmp = true;
1913 /* Clear flags set by notice_special_calls. Used by dead code removal
1914 to update the flags. */
1916 void
1917 clear_special_calls (void)
1919 cfun->calls_alloca = false;
1920 cfun->calls_setjmp = false;
1923 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1925 static void
1926 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1928 /* Since this block is no longer reachable, we can just delete all
1929 of its PHI nodes. */
1930 remove_phi_nodes (bb);
1932 /* Remove edges to BB's successors. */
1933 while (EDGE_COUNT (bb->succs) > 0)
1934 remove_edge (EDGE_SUCC (bb, 0));
1938 /* Remove statements of basic block BB. */
1940 static void
1941 remove_bb (basic_block bb)
1943 gimple_stmt_iterator i;
1945 if (dump_file)
1947 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1948 if (dump_flags & TDF_DETAILS)
1950 dump_bb (dump_file, bb, 0, dump_flags);
1951 fprintf (dump_file, "\n");
1955 if (current_loops)
1957 struct loop *loop = bb->loop_father;
1959 /* If a loop gets removed, clean up the information associated
1960 with it. */
1961 if (loop->latch == bb
1962 || loop->header == bb)
1963 free_numbers_of_iterations_estimates_loop (loop);
1966 /* Remove all the instructions in the block. */
1967 if (bb_seq (bb) != NULL)
1969 /* Walk backwards so as to get a chance to substitute all
1970 released DEFs into debug stmts. See
1971 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1972 details. */
1973 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1975 gimple stmt = gsi_stmt (i);
1976 if (gimple_code (stmt) == GIMPLE_LABEL
1977 && (FORCED_LABEL (gimple_label_label (stmt))
1978 || DECL_NONLOCAL (gimple_label_label (stmt))))
1980 basic_block new_bb;
1981 gimple_stmt_iterator new_gsi;
1983 /* A non-reachable non-local label may still be referenced.
1984 But it no longer needs to carry the extra semantics of
1985 non-locality. */
1986 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1988 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1989 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1992 new_bb = bb->prev_bb;
1993 new_gsi = gsi_start_bb (new_bb);
1994 gsi_remove (&i, false);
1995 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1997 else
1999 /* Release SSA definitions if we are in SSA. Note that we
2000 may be called when not in SSA. For example,
2001 final_cleanup calls this function via
2002 cleanup_tree_cfg. */
2003 if (gimple_in_ssa_p (cfun))
2004 release_defs (stmt);
2006 gsi_remove (&i, true);
2009 if (gsi_end_p (i))
2010 i = gsi_last_bb (bb);
2011 else
2012 gsi_prev (&i);
2016 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2017 bb->il.gimple.seq = NULL;
2018 bb->il.gimple.phi_nodes = NULL;
2022 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2023 predicate VAL, return the edge that will be taken out of the block.
2024 If VAL does not match a unique edge, NULL is returned. */
2026 edge
2027 find_taken_edge (basic_block bb, tree val)
2029 gimple stmt;
2031 stmt = last_stmt (bb);
2033 gcc_assert (stmt);
2034 gcc_assert (is_ctrl_stmt (stmt));
2036 if (val == NULL)
2037 return NULL;
2039 if (!is_gimple_min_invariant (val))
2040 return NULL;
2042 if (gimple_code (stmt) == GIMPLE_COND)
2043 return find_taken_edge_cond_expr (bb, val);
2045 if (gimple_code (stmt) == GIMPLE_SWITCH)
2046 return find_taken_edge_switch_expr (bb, val);
2048 if (computed_goto_p (stmt))
2050 /* Only optimize if the argument is a label, if the argument is
2051 not a label then we can not construct a proper CFG.
2053 It may be the case that we only need to allow the LABEL_REF to
2054 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2055 appear inside a LABEL_EXPR just to be safe. */
2056 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2057 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2058 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2059 return NULL;
2062 gcc_unreachable ();
2065 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2066 statement, determine which of the outgoing edges will be taken out of the
2067 block. Return NULL if either edge may be taken. */
2069 static edge
2070 find_taken_edge_computed_goto (basic_block bb, tree val)
2072 basic_block dest;
2073 edge e = NULL;
2075 dest = label_to_block (val);
2076 if (dest)
2078 e = find_edge (bb, dest);
2079 gcc_assert (e != NULL);
2082 return e;
2085 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2086 statement, determine which of the two edges will be taken out of the
2087 block. Return NULL if either edge may be taken. */
2089 static edge
2090 find_taken_edge_cond_expr (basic_block bb, tree val)
2092 edge true_edge, false_edge;
2094 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2096 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2097 return (integer_zerop (val) ? false_edge : true_edge);
2100 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2101 statement, determine which edge will be taken out of the block. Return
2102 NULL if any edge may be taken. */
2104 static edge
2105 find_taken_edge_switch_expr (basic_block bb, tree val)
2107 basic_block dest_bb;
2108 edge e;
2109 gimple switch_stmt;
2110 tree taken_case;
2112 switch_stmt = last_stmt (bb);
2113 taken_case = find_case_label_for_value (switch_stmt, val);
2114 dest_bb = label_to_block (CASE_LABEL (taken_case));
2116 e = find_edge (bb, dest_bb);
2117 gcc_assert (e);
2118 return e;
2122 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2123 We can make optimal use here of the fact that the case labels are
2124 sorted: We can do a binary search for a case matching VAL. */
2126 static tree
2127 find_case_label_for_value (gimple switch_stmt, tree val)
2129 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2130 tree default_case = gimple_switch_default_label (switch_stmt);
2132 for (low = 0, high = n; high - low > 1; )
2134 size_t i = (high + low) / 2;
2135 tree t = gimple_switch_label (switch_stmt, i);
2136 int cmp;
2138 /* Cache the result of comparing CASE_LOW and val. */
2139 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2141 if (cmp > 0)
2142 high = i;
2143 else
2144 low = i;
2146 if (CASE_HIGH (t) == NULL)
2148 /* A singe-valued case label. */
2149 if (cmp == 0)
2150 return t;
2152 else
2154 /* A case range. We can only handle integer ranges. */
2155 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2156 return t;
2160 return default_case;
2164 /* Dump a basic block on stderr. */
2166 void
2167 gimple_debug_bb (basic_block bb)
2169 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2173 /* Dump basic block with index N on stderr. */
2175 basic_block
2176 gimple_debug_bb_n (int n)
2178 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2179 return BASIC_BLOCK_FOR_FN (cfun, n);
2183 /* Dump the CFG on stderr.
2185 FLAGS are the same used by the tree dumping functions
2186 (see TDF_* in dumpfile.h). */
2188 void
2189 gimple_debug_cfg (int flags)
2191 gimple_dump_cfg (stderr, flags);
2195 /* Dump the program showing basic block boundaries on the given FILE.
2197 FLAGS are the same used by the tree dumping functions (see TDF_* in
2198 tree.h). */
2200 void
2201 gimple_dump_cfg (FILE *file, int flags)
2203 if (flags & TDF_DETAILS)
2205 dump_function_header (file, current_function_decl, flags);
2206 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2207 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2208 last_basic_block_for_fn (cfun));
2210 brief_dump_cfg (file, flags | TDF_COMMENT);
2211 fprintf (file, "\n");
2214 if (flags & TDF_STATS)
2215 dump_cfg_stats (file);
2217 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2221 /* Dump CFG statistics on FILE. */
2223 void
2224 dump_cfg_stats (FILE *file)
2226 static long max_num_merged_labels = 0;
2227 unsigned long size, total = 0;
2228 long num_edges;
2229 basic_block bb;
2230 const char * const fmt_str = "%-30s%-13s%12s\n";
2231 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2232 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2233 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2234 const char *funcname = current_function_name ();
2236 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2238 fprintf (file, "---------------------------------------------------------\n");
2239 fprintf (file, fmt_str, "", " Number of ", "Memory");
2240 fprintf (file, fmt_str, "", " instances ", "used ");
2241 fprintf (file, "---------------------------------------------------------\n");
2243 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2244 total += size;
2245 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2246 SCALE (size), LABEL (size));
2248 num_edges = 0;
2249 FOR_EACH_BB_FN (bb, cfun)
2250 num_edges += EDGE_COUNT (bb->succs);
2251 size = num_edges * sizeof (struct edge_def);
2252 total += size;
2253 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2255 fprintf (file, "---------------------------------------------------------\n");
2256 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2257 LABEL (total));
2258 fprintf (file, "---------------------------------------------------------\n");
2259 fprintf (file, "\n");
2261 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2262 max_num_merged_labels = cfg_stats.num_merged_labels;
2264 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2265 cfg_stats.num_merged_labels, max_num_merged_labels);
2267 fprintf (file, "\n");
2271 /* Dump CFG statistics on stderr. Keep extern so that it's always
2272 linked in the final executable. */
2274 DEBUG_FUNCTION void
2275 debug_cfg_stats (void)
2277 dump_cfg_stats (stderr);
2280 /*---------------------------------------------------------------------------
2281 Miscellaneous helpers
2282 ---------------------------------------------------------------------------*/
2284 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2285 flow. Transfers of control flow associated with EH are excluded. */
2287 static bool
2288 call_can_make_abnormal_goto (gimple t)
2290 /* If the function has no non-local labels, then a call cannot make an
2291 abnormal transfer of control. */
2292 if (!cfun->has_nonlocal_label
2293 && !cfun->calls_setjmp)
2294 return false;
2296 /* Likewise if the call has no side effects. */
2297 if (!gimple_has_side_effects (t))
2298 return false;
2300 /* Likewise if the called function is leaf. */
2301 if (gimple_call_flags (t) & ECF_LEAF)
2302 return false;
2304 return true;
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2311 bool
2312 stmt_can_make_abnormal_goto (gimple t)
2314 if (computed_goto_p (t))
2315 return true;
2316 if (is_gimple_call (t))
2317 return call_can_make_abnormal_goto (t);
2318 return false;
2322 /* Return true if T represents a stmt that always transfers control. */
2324 bool
2325 is_ctrl_stmt (gimple t)
2327 switch (gimple_code (t))
2329 case GIMPLE_COND:
2330 case GIMPLE_SWITCH:
2331 case GIMPLE_GOTO:
2332 case GIMPLE_RETURN:
2333 case GIMPLE_RESX:
2334 return true;
2335 default:
2336 return false;
2341 /* Return true if T is a statement that may alter the flow of control
2342 (e.g., a call to a non-returning function). */
2344 bool
2345 is_ctrl_altering_stmt (gimple t)
2347 gcc_assert (t);
2349 switch (gimple_code (t))
2351 case GIMPLE_CALL:
2353 int flags = gimple_call_flags (t);
2355 /* A call alters control flow if it can make an abnormal goto. */
2356 if (call_can_make_abnormal_goto (t))
2357 return true;
2359 /* A call also alters control flow if it does not return. */
2360 if (flags & ECF_NORETURN)
2361 return true;
2363 /* TM ending statements have backedges out of the transaction.
2364 Return true so we split the basic block containing them.
2365 Note that the TM_BUILTIN test is merely an optimization. */
2366 if ((flags & ECF_TM_BUILTIN)
2367 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2368 return true;
2370 /* BUILT_IN_RETURN call is same as return statement. */
2371 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2372 return true;
2374 break;
2376 case GIMPLE_EH_DISPATCH:
2377 /* EH_DISPATCH branches to the individual catch handlers at
2378 this level of a try or allowed-exceptions region. It can
2379 fallthru to the next statement as well. */
2380 return true;
2382 case GIMPLE_ASM:
2383 if (gimple_asm_nlabels (t) > 0)
2384 return true;
2385 break;
2387 CASE_GIMPLE_OMP:
2388 /* OpenMP directives alter control flow. */
2389 return true;
2391 case GIMPLE_TRANSACTION:
2392 /* A transaction start alters control flow. */
2393 return true;
2395 default:
2396 break;
2399 /* If a statement can throw, it alters control flow. */
2400 return stmt_can_throw_internal (t);
2404 /* Return true if T is a simple local goto. */
2406 bool
2407 simple_goto_p (gimple t)
2409 return (gimple_code (t) == GIMPLE_GOTO
2410 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2414 /* Return true if STMT should start a new basic block. PREV_STMT is
2415 the statement preceding STMT. It is used when STMT is a label or a
2416 case label. Labels should only start a new basic block if their
2417 previous statement wasn't a label. Otherwise, sequence of labels
2418 would generate unnecessary basic blocks that only contain a single
2419 label. */
2421 static inline bool
2422 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2424 if (stmt == NULL)
2425 return false;
2427 /* Labels start a new basic block only if the preceding statement
2428 wasn't a label of the same type. This prevents the creation of
2429 consecutive blocks that have nothing but a single label. */
2430 if (gimple_code (stmt) == GIMPLE_LABEL)
2432 /* Nonlocal and computed GOTO targets always start a new block. */
2433 if (DECL_NONLOCAL (gimple_label_label (stmt))
2434 || FORCED_LABEL (gimple_label_label (stmt)))
2435 return true;
2437 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2439 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2440 return true;
2442 cfg_stats.num_merged_labels++;
2443 return false;
2445 else
2446 return true;
2448 else if (gimple_code (stmt) == GIMPLE_CALL
2449 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2450 /* setjmp acts similar to a nonlocal GOTO target and thus should
2451 start a new block. */
2452 return true;
2454 return false;
2458 /* Return true if T should end a basic block. */
2460 bool
2461 stmt_ends_bb_p (gimple t)
2463 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2466 /* Remove block annotations and other data structures. */
2468 void
2469 delete_tree_cfg_annotations (void)
2471 vec_free (label_to_block_map_for_fn (cfun));
2475 /* Return the first statement in basic block BB. */
2477 gimple
2478 first_stmt (basic_block bb)
2480 gimple_stmt_iterator i = gsi_start_bb (bb);
2481 gimple stmt = NULL;
2483 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2485 gsi_next (&i);
2486 stmt = NULL;
2488 return stmt;
2491 /* Return the first non-label statement in basic block BB. */
2493 static gimple
2494 first_non_label_stmt (basic_block bb)
2496 gimple_stmt_iterator i = gsi_start_bb (bb);
2497 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2498 gsi_next (&i);
2499 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2502 /* Return the last statement in basic block BB. */
2504 gimple
2505 last_stmt (basic_block bb)
2507 gimple_stmt_iterator i = gsi_last_bb (bb);
2508 gimple stmt = NULL;
2510 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2512 gsi_prev (&i);
2513 stmt = NULL;
2515 return stmt;
2518 /* Return the last statement of an otherwise empty block. Return NULL
2519 if the block is totally empty, or if it contains more than one
2520 statement. */
2522 gimple
2523 last_and_only_stmt (basic_block bb)
2525 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2526 gimple last, prev;
2528 if (gsi_end_p (i))
2529 return NULL;
2531 last = gsi_stmt (i);
2532 gsi_prev_nondebug (&i);
2533 if (gsi_end_p (i))
2534 return last;
2536 /* Empty statements should no longer appear in the instruction stream.
2537 Everything that might have appeared before should be deleted by
2538 remove_useless_stmts, and the optimizers should just gsi_remove
2539 instead of smashing with build_empty_stmt.
2541 Thus the only thing that should appear here in a block containing
2542 one executable statement is a label. */
2543 prev = gsi_stmt (i);
2544 if (gimple_code (prev) == GIMPLE_LABEL)
2545 return last;
2546 else
2547 return NULL;
2550 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2552 static void
2553 reinstall_phi_args (edge new_edge, edge old_edge)
2555 edge_var_map_vector *v;
2556 edge_var_map *vm;
2557 int i;
2558 gimple_stmt_iterator phis;
2560 v = redirect_edge_var_map_vector (old_edge);
2561 if (!v)
2562 return;
2564 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2565 v->iterate (i, &vm) && !gsi_end_p (phis);
2566 i++, gsi_next (&phis))
2568 gimple phi = gsi_stmt (phis);
2569 tree result = redirect_edge_var_map_result (vm);
2570 tree arg = redirect_edge_var_map_def (vm);
2572 gcc_assert (result == gimple_phi_result (phi));
2574 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2577 redirect_edge_var_map_clear (old_edge);
2580 /* Returns the basic block after which the new basic block created
2581 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2582 near its "logical" location. This is of most help to humans looking
2583 at debugging dumps. */
2585 static basic_block
2586 split_edge_bb_loc (edge edge_in)
2588 basic_block dest = edge_in->dest;
2589 basic_block dest_prev = dest->prev_bb;
2591 if (dest_prev)
2593 edge e = find_edge (dest_prev, dest);
2594 if (e && !(e->flags & EDGE_COMPLEX))
2595 return edge_in->src;
2597 return dest_prev;
2600 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2601 Abort on abnormal edges. */
2603 static basic_block
2604 gimple_split_edge (edge edge_in)
2606 basic_block new_bb, after_bb, dest;
2607 edge new_edge, e;
2609 /* Abnormal edges cannot be split. */
2610 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2612 dest = edge_in->dest;
2614 after_bb = split_edge_bb_loc (edge_in);
2616 new_bb = create_empty_bb (after_bb);
2617 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2618 new_bb->count = edge_in->count;
2619 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2620 new_edge->probability = REG_BR_PROB_BASE;
2621 new_edge->count = edge_in->count;
2623 e = redirect_edge_and_branch (edge_in, new_bb);
2624 gcc_assert (e == edge_in);
2625 reinstall_phi_args (new_edge, e);
2627 return new_bb;
2631 /* Verify properties of the address expression T with base object BASE. */
2633 static tree
2634 verify_address (tree t, tree base)
2636 bool old_constant;
2637 bool old_side_effects;
2638 bool new_constant;
2639 bool new_side_effects;
2641 old_constant = TREE_CONSTANT (t);
2642 old_side_effects = TREE_SIDE_EFFECTS (t);
2644 recompute_tree_invariant_for_addr_expr (t);
2645 new_side_effects = TREE_SIDE_EFFECTS (t);
2646 new_constant = TREE_CONSTANT (t);
2648 if (old_constant != new_constant)
2650 error ("constant not recomputed when ADDR_EXPR changed");
2651 return t;
2653 if (old_side_effects != new_side_effects)
2655 error ("side effects not recomputed when ADDR_EXPR changed");
2656 return t;
2659 if (!(TREE_CODE (base) == VAR_DECL
2660 || TREE_CODE (base) == PARM_DECL
2661 || TREE_CODE (base) == RESULT_DECL))
2662 return NULL_TREE;
2664 if (DECL_GIMPLE_REG_P (base))
2666 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2667 return base;
2670 return NULL_TREE;
2673 /* Callback for walk_tree, check that all elements with address taken are
2674 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2675 inside a PHI node. */
2677 static tree
2678 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2680 tree t = *tp, x;
2682 if (TYPE_P (t))
2683 *walk_subtrees = 0;
2685 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2686 #define CHECK_OP(N, MSG) \
2687 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2688 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2690 switch (TREE_CODE (t))
2692 case SSA_NAME:
2693 if (SSA_NAME_IN_FREE_LIST (t))
2695 error ("SSA name in freelist but still referenced");
2696 return *tp;
2698 break;
2700 case INDIRECT_REF:
2701 error ("INDIRECT_REF in gimple IL");
2702 return t;
2704 case MEM_REF:
2705 x = TREE_OPERAND (t, 0);
2706 if (!POINTER_TYPE_P (TREE_TYPE (x))
2707 || !is_gimple_mem_ref_addr (x))
2709 error ("invalid first operand of MEM_REF");
2710 return x;
2712 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2713 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2715 error ("invalid offset operand of MEM_REF");
2716 return TREE_OPERAND (t, 1);
2718 if (TREE_CODE (x) == ADDR_EXPR
2719 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2720 return x;
2721 *walk_subtrees = 0;
2722 break;
2724 case ASSERT_EXPR:
2725 x = fold (ASSERT_EXPR_COND (t));
2726 if (x == boolean_false_node)
2728 error ("ASSERT_EXPR with an always-false condition");
2729 return *tp;
2731 break;
2733 case MODIFY_EXPR:
2734 error ("MODIFY_EXPR not expected while having tuples");
2735 return *tp;
2737 case ADDR_EXPR:
2739 tree tem;
2741 gcc_assert (is_gimple_address (t));
2743 /* Skip any references (they will be checked when we recurse down the
2744 tree) and ensure that any variable used as a prefix is marked
2745 addressable. */
2746 for (x = TREE_OPERAND (t, 0);
2747 handled_component_p (x);
2748 x = TREE_OPERAND (x, 0))
2751 if ((tem = verify_address (t, x)))
2752 return tem;
2754 if (!(TREE_CODE (x) == VAR_DECL
2755 || TREE_CODE (x) == PARM_DECL
2756 || TREE_CODE (x) == RESULT_DECL))
2757 return NULL;
2759 if (!TREE_ADDRESSABLE (x))
2761 error ("address taken, but ADDRESSABLE bit not set");
2762 return x;
2765 break;
2768 case COND_EXPR:
2769 x = COND_EXPR_COND (t);
2770 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2772 error ("non-integral used in condition");
2773 return x;
2775 if (!is_gimple_condexpr (x))
2777 error ("invalid conditional operand");
2778 return x;
2780 break;
2782 case NON_LVALUE_EXPR:
2783 case TRUTH_NOT_EXPR:
2784 gcc_unreachable ();
2786 CASE_CONVERT:
2787 case FIX_TRUNC_EXPR:
2788 case FLOAT_EXPR:
2789 case NEGATE_EXPR:
2790 case ABS_EXPR:
2791 case BIT_NOT_EXPR:
2792 CHECK_OP (0, "invalid operand to unary operator");
2793 break;
2795 case REALPART_EXPR:
2796 case IMAGPART_EXPR:
2797 case BIT_FIELD_REF:
2798 if (!is_gimple_reg_type (TREE_TYPE (t)))
2800 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2801 return t;
2804 if (TREE_CODE (t) == BIT_FIELD_REF)
2806 tree t0 = TREE_OPERAND (t, 0);
2807 tree t1 = TREE_OPERAND (t, 1);
2808 tree t2 = TREE_OPERAND (t, 2);
2809 if (!tree_fits_uhwi_p (t1)
2810 || !tree_fits_uhwi_p (t2))
2812 error ("invalid position or size operand to BIT_FIELD_REF");
2813 return t;
2815 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2816 && (TYPE_PRECISION (TREE_TYPE (t))
2817 != tree_to_uhwi (t1)))
2819 error ("integral result type precision does not match "
2820 "field size of BIT_FIELD_REF");
2821 return t;
2823 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2824 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2825 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2826 != tree_to_uhwi (t1)))
2828 error ("mode precision of non-integral result does not "
2829 "match field size of BIT_FIELD_REF");
2830 return t;
2832 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2833 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2834 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2836 error ("position plus size exceeds size of referenced object in "
2837 "BIT_FIELD_REF");
2838 return t;
2841 t = TREE_OPERAND (t, 0);
2843 /* Fall-through. */
2844 case COMPONENT_REF:
2845 case ARRAY_REF:
2846 case ARRAY_RANGE_REF:
2847 case VIEW_CONVERT_EXPR:
2848 /* We have a nest of references. Verify that each of the operands
2849 that determine where to reference is either a constant or a variable,
2850 verify that the base is valid, and then show we've already checked
2851 the subtrees. */
2852 while (handled_component_p (t))
2854 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2855 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2856 else if (TREE_CODE (t) == ARRAY_REF
2857 || TREE_CODE (t) == ARRAY_RANGE_REF)
2859 CHECK_OP (1, "invalid array index");
2860 if (TREE_OPERAND (t, 2))
2861 CHECK_OP (2, "invalid array lower bound");
2862 if (TREE_OPERAND (t, 3))
2863 CHECK_OP (3, "invalid array stride");
2865 else if (TREE_CODE (t) == BIT_FIELD_REF
2866 || TREE_CODE (t) == REALPART_EXPR
2867 || TREE_CODE (t) == IMAGPART_EXPR)
2869 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2870 "REALPART_EXPR");
2871 return t;
2874 t = TREE_OPERAND (t, 0);
2877 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2879 error ("invalid reference prefix");
2880 return t;
2882 *walk_subtrees = 0;
2883 break;
2884 case PLUS_EXPR:
2885 case MINUS_EXPR:
2886 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2887 POINTER_PLUS_EXPR. */
2888 if (POINTER_TYPE_P (TREE_TYPE (t)))
2890 error ("invalid operand to plus/minus, type is a pointer");
2891 return t;
2893 CHECK_OP (0, "invalid operand to binary operator");
2894 CHECK_OP (1, "invalid operand to binary operator");
2895 break;
2897 case POINTER_PLUS_EXPR:
2898 /* Check to make sure the first operand is a pointer or reference type. */
2899 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2901 error ("invalid operand to pointer plus, first operand is not a pointer");
2902 return t;
2904 /* Check to make sure the second operand is a ptrofftype. */
2905 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2907 error ("invalid operand to pointer plus, second operand is not an "
2908 "integer type of appropriate width");
2909 return t;
2911 /* FALLTHROUGH */
2912 case LT_EXPR:
2913 case LE_EXPR:
2914 case GT_EXPR:
2915 case GE_EXPR:
2916 case EQ_EXPR:
2917 case NE_EXPR:
2918 case UNORDERED_EXPR:
2919 case ORDERED_EXPR:
2920 case UNLT_EXPR:
2921 case UNLE_EXPR:
2922 case UNGT_EXPR:
2923 case UNGE_EXPR:
2924 case UNEQ_EXPR:
2925 case LTGT_EXPR:
2926 case MULT_EXPR:
2927 case TRUNC_DIV_EXPR:
2928 case CEIL_DIV_EXPR:
2929 case FLOOR_DIV_EXPR:
2930 case ROUND_DIV_EXPR:
2931 case TRUNC_MOD_EXPR:
2932 case CEIL_MOD_EXPR:
2933 case FLOOR_MOD_EXPR:
2934 case ROUND_MOD_EXPR:
2935 case RDIV_EXPR:
2936 case EXACT_DIV_EXPR:
2937 case MIN_EXPR:
2938 case MAX_EXPR:
2939 case LSHIFT_EXPR:
2940 case RSHIFT_EXPR:
2941 case LROTATE_EXPR:
2942 case RROTATE_EXPR:
2943 case BIT_IOR_EXPR:
2944 case BIT_XOR_EXPR:
2945 case BIT_AND_EXPR:
2946 CHECK_OP (0, "invalid operand to binary operator");
2947 CHECK_OP (1, "invalid operand to binary operator");
2948 break;
2950 case CONSTRUCTOR:
2951 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2952 *walk_subtrees = 0;
2953 break;
2955 case CASE_LABEL_EXPR:
2956 if (CASE_CHAIN (t))
2958 error ("invalid CASE_CHAIN");
2959 return t;
2961 break;
2963 default:
2964 break;
2966 return NULL;
2968 #undef CHECK_OP
2972 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2973 Returns true if there is an error, otherwise false. */
2975 static bool
2976 verify_types_in_gimple_min_lval (tree expr)
2978 tree op;
2980 if (is_gimple_id (expr))
2981 return false;
2983 if (TREE_CODE (expr) != TARGET_MEM_REF
2984 && TREE_CODE (expr) != MEM_REF)
2986 error ("invalid expression for min lvalue");
2987 return true;
2990 /* TARGET_MEM_REFs are strange beasts. */
2991 if (TREE_CODE (expr) == TARGET_MEM_REF)
2992 return false;
2994 op = TREE_OPERAND (expr, 0);
2995 if (!is_gimple_val (op))
2997 error ("invalid operand in indirect reference");
2998 debug_generic_stmt (op);
2999 return true;
3001 /* Memory references now generally can involve a value conversion. */
3003 return false;
3006 /* Verify if EXPR is a valid GIMPLE reference expression. If
3007 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3008 if there is an error, otherwise false. */
3010 static bool
3011 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3013 while (handled_component_p (expr))
3015 tree op = TREE_OPERAND (expr, 0);
3017 if (TREE_CODE (expr) == ARRAY_REF
3018 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3020 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3021 || (TREE_OPERAND (expr, 2)
3022 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3023 || (TREE_OPERAND (expr, 3)
3024 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3026 error ("invalid operands to array reference");
3027 debug_generic_stmt (expr);
3028 return true;
3032 /* Verify if the reference array element types are compatible. */
3033 if (TREE_CODE (expr) == ARRAY_REF
3034 && !useless_type_conversion_p (TREE_TYPE (expr),
3035 TREE_TYPE (TREE_TYPE (op))))
3037 error ("type mismatch in array reference");
3038 debug_generic_stmt (TREE_TYPE (expr));
3039 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3040 return true;
3042 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3043 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3044 TREE_TYPE (TREE_TYPE (op))))
3046 error ("type mismatch in array range reference");
3047 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3048 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3049 return true;
3052 if ((TREE_CODE (expr) == REALPART_EXPR
3053 || TREE_CODE (expr) == IMAGPART_EXPR)
3054 && !useless_type_conversion_p (TREE_TYPE (expr),
3055 TREE_TYPE (TREE_TYPE (op))))
3057 error ("type mismatch in real/imagpart reference");
3058 debug_generic_stmt (TREE_TYPE (expr));
3059 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3060 return true;
3063 if (TREE_CODE (expr) == COMPONENT_REF
3064 && !useless_type_conversion_p (TREE_TYPE (expr),
3065 TREE_TYPE (TREE_OPERAND (expr, 1))))
3067 error ("type mismatch in component reference");
3068 debug_generic_stmt (TREE_TYPE (expr));
3069 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3070 return true;
3073 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3075 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3076 that their operand is not an SSA name or an invariant when
3077 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3078 bug). Otherwise there is nothing to verify, gross mismatches at
3079 most invoke undefined behavior. */
3080 if (require_lvalue
3081 && (TREE_CODE (op) == SSA_NAME
3082 || is_gimple_min_invariant (op)))
3084 error ("conversion of an SSA_NAME on the left hand side");
3085 debug_generic_stmt (expr);
3086 return true;
3088 else if (TREE_CODE (op) == SSA_NAME
3089 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3091 error ("conversion of register to a different size");
3092 debug_generic_stmt (expr);
3093 return true;
3095 else if (!handled_component_p (op))
3096 return false;
3099 expr = op;
3102 if (TREE_CODE (expr) == MEM_REF)
3104 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3106 error ("invalid address operand in MEM_REF");
3107 debug_generic_stmt (expr);
3108 return true;
3110 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3111 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3113 error ("invalid offset operand in MEM_REF");
3114 debug_generic_stmt (expr);
3115 return true;
3118 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3120 if (!TMR_BASE (expr)
3121 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3123 error ("invalid address operand in TARGET_MEM_REF");
3124 return true;
3126 if (!TMR_OFFSET (expr)
3127 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3128 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3130 error ("invalid offset operand in TARGET_MEM_REF");
3131 debug_generic_stmt (expr);
3132 return true;
3136 return ((require_lvalue || !is_gimple_min_invariant (expr))
3137 && verify_types_in_gimple_min_lval (expr));
3140 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3141 list of pointer-to types that is trivially convertible to DEST. */
3143 static bool
3144 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3146 tree src;
3148 if (!TYPE_POINTER_TO (src_obj))
3149 return true;
3151 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3152 if (useless_type_conversion_p (dest, src))
3153 return true;
3155 return false;
3158 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3159 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3161 static bool
3162 valid_fixed_convert_types_p (tree type1, tree type2)
3164 return (FIXED_POINT_TYPE_P (type1)
3165 && (INTEGRAL_TYPE_P (type2)
3166 || SCALAR_FLOAT_TYPE_P (type2)
3167 || FIXED_POINT_TYPE_P (type2)));
3170 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3171 is a problem, otherwise false. */
3173 static bool
3174 verify_gimple_call (gimple stmt)
3176 tree fn = gimple_call_fn (stmt);
3177 tree fntype, fndecl;
3178 unsigned i;
3180 if (gimple_call_internal_p (stmt))
3182 if (fn)
3184 error ("gimple call has two targets");
3185 debug_generic_stmt (fn);
3186 return true;
3189 else
3191 if (!fn)
3193 error ("gimple call has no target");
3194 return true;
3198 if (fn && !is_gimple_call_addr (fn))
3200 error ("invalid function in gimple call");
3201 debug_generic_stmt (fn);
3202 return true;
3205 if (fn
3206 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3207 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3208 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3210 error ("non-function in gimple call");
3211 return true;
3214 fndecl = gimple_call_fndecl (stmt);
3215 if (fndecl
3216 && TREE_CODE (fndecl) == FUNCTION_DECL
3217 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3218 && !DECL_PURE_P (fndecl)
3219 && !TREE_READONLY (fndecl))
3221 error ("invalid pure const state for function");
3222 return true;
3225 if (gimple_call_lhs (stmt)
3226 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3227 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3229 error ("invalid LHS in gimple call");
3230 return true;
3233 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3235 error ("LHS in noreturn call");
3236 return true;
3239 fntype = gimple_call_fntype (stmt);
3240 if (fntype
3241 && gimple_call_lhs (stmt)
3242 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3243 TREE_TYPE (fntype))
3244 /* ??? At least C++ misses conversions at assignments from
3245 void * call results.
3246 ??? Java is completely off. Especially with functions
3247 returning java.lang.Object.
3248 For now simply allow arbitrary pointer type conversions. */
3249 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3250 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3252 error ("invalid conversion in gimple call");
3253 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3254 debug_generic_stmt (TREE_TYPE (fntype));
3255 return true;
3258 if (gimple_call_chain (stmt)
3259 && !is_gimple_val (gimple_call_chain (stmt)))
3261 error ("invalid static chain in gimple call");
3262 debug_generic_stmt (gimple_call_chain (stmt));
3263 return true;
3266 /* If there is a static chain argument, this should not be an indirect
3267 call, and the decl should have DECL_STATIC_CHAIN set. */
3268 if (gimple_call_chain (stmt))
3270 if (!gimple_call_fndecl (stmt))
3272 error ("static chain in indirect gimple call");
3273 return true;
3275 fn = TREE_OPERAND (fn, 0);
3277 if (!DECL_STATIC_CHAIN (fn))
3279 error ("static chain with function that doesn%'t use one");
3280 return true;
3284 /* ??? The C frontend passes unpromoted arguments in case it
3285 didn't see a function declaration before the call. So for now
3286 leave the call arguments mostly unverified. Once we gimplify
3287 unit-at-a-time we have a chance to fix this. */
3289 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3291 tree arg = gimple_call_arg (stmt, i);
3292 if ((is_gimple_reg_type (TREE_TYPE (arg))
3293 && !is_gimple_val (arg))
3294 || (!is_gimple_reg_type (TREE_TYPE (arg))
3295 && !is_gimple_lvalue (arg)))
3297 error ("invalid argument to gimple call");
3298 debug_generic_expr (arg);
3299 return true;
3303 return false;
3306 /* Verifies the gimple comparison with the result type TYPE and
3307 the operands OP0 and OP1. */
3309 static bool
3310 verify_gimple_comparison (tree type, tree op0, tree op1)
3312 tree op0_type = TREE_TYPE (op0);
3313 tree op1_type = TREE_TYPE (op1);
3315 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3317 error ("invalid operands in gimple comparison");
3318 return true;
3321 /* For comparisons we do not have the operations type as the
3322 effective type the comparison is carried out in. Instead
3323 we require that either the first operand is trivially
3324 convertible into the second, or the other way around.
3325 Because we special-case pointers to void we allow
3326 comparisons of pointers with the same mode as well. */
3327 if (!useless_type_conversion_p (op0_type, op1_type)
3328 && !useless_type_conversion_p (op1_type, op0_type)
3329 && (!POINTER_TYPE_P (op0_type)
3330 || !POINTER_TYPE_P (op1_type)
3331 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3333 error ("mismatching comparison operand types");
3334 debug_generic_expr (op0_type);
3335 debug_generic_expr (op1_type);
3336 return true;
3339 /* The resulting type of a comparison may be an effective boolean type. */
3340 if (INTEGRAL_TYPE_P (type)
3341 && (TREE_CODE (type) == BOOLEAN_TYPE
3342 || TYPE_PRECISION (type) == 1))
3344 if (TREE_CODE (op0_type) == VECTOR_TYPE
3345 || TREE_CODE (op1_type) == VECTOR_TYPE)
3347 error ("vector comparison returning a boolean");
3348 debug_generic_expr (op0_type);
3349 debug_generic_expr (op1_type);
3350 return true;
3353 /* Or an integer vector type with the same size and element count
3354 as the comparison operand types. */
3355 else if (TREE_CODE (type) == VECTOR_TYPE
3356 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3358 if (TREE_CODE (op0_type) != VECTOR_TYPE
3359 || TREE_CODE (op1_type) != VECTOR_TYPE)
3361 error ("non-vector operands in vector comparison");
3362 debug_generic_expr (op0_type);
3363 debug_generic_expr (op1_type);
3364 return true;
3367 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3368 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3369 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3370 /* The result of a vector comparison is of signed
3371 integral type. */
3372 || TYPE_UNSIGNED (TREE_TYPE (type)))
3374 error ("invalid vector comparison resulting type");
3375 debug_generic_expr (type);
3376 return true;
3379 else
3381 error ("bogus comparison result type");
3382 debug_generic_expr (type);
3383 return true;
3386 return false;
3389 /* Verify a gimple assignment statement STMT with an unary rhs.
3390 Returns true if anything is wrong. */
3392 static bool
3393 verify_gimple_assign_unary (gimple stmt)
3395 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3396 tree lhs = gimple_assign_lhs (stmt);
3397 tree lhs_type = TREE_TYPE (lhs);
3398 tree rhs1 = gimple_assign_rhs1 (stmt);
3399 tree rhs1_type = TREE_TYPE (rhs1);
3401 if (!is_gimple_reg (lhs))
3403 error ("non-register as LHS of unary operation");
3404 return true;
3407 if (!is_gimple_val (rhs1))
3409 error ("invalid operand in unary operation");
3410 return true;
3413 /* First handle conversions. */
3414 switch (rhs_code)
3416 CASE_CONVERT:
3418 /* Allow conversions from pointer type to integral type only if
3419 there is no sign or zero extension involved.
3420 For targets were the precision of ptrofftype doesn't match that
3421 of pointers we need to allow arbitrary conversions to ptrofftype. */
3422 if ((POINTER_TYPE_P (lhs_type)
3423 && INTEGRAL_TYPE_P (rhs1_type))
3424 || (POINTER_TYPE_P (rhs1_type)
3425 && INTEGRAL_TYPE_P (lhs_type)
3426 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3427 || ptrofftype_p (sizetype))))
3428 return false;
3430 /* Allow conversion from integral to offset type and vice versa. */
3431 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3432 && INTEGRAL_TYPE_P (rhs1_type))
3433 || (INTEGRAL_TYPE_P (lhs_type)
3434 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3435 return false;
3437 /* Otherwise assert we are converting between types of the
3438 same kind. */
3439 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3441 error ("invalid types in nop conversion");
3442 debug_generic_expr (lhs_type);
3443 debug_generic_expr (rhs1_type);
3444 return true;
3447 return false;
3450 case ADDR_SPACE_CONVERT_EXPR:
3452 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3453 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3454 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3456 error ("invalid types in address space conversion");
3457 debug_generic_expr (lhs_type);
3458 debug_generic_expr (rhs1_type);
3459 return true;
3462 return false;
3465 case FIXED_CONVERT_EXPR:
3467 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3468 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3470 error ("invalid types in fixed-point conversion");
3471 debug_generic_expr (lhs_type);
3472 debug_generic_expr (rhs1_type);
3473 return true;
3476 return false;
3479 case FLOAT_EXPR:
3481 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3482 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3483 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3485 error ("invalid types in conversion to floating point");
3486 debug_generic_expr (lhs_type);
3487 debug_generic_expr (rhs1_type);
3488 return true;
3491 return false;
3494 case FIX_TRUNC_EXPR:
3496 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3497 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3498 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3500 error ("invalid types in conversion to integer");
3501 debug_generic_expr (lhs_type);
3502 debug_generic_expr (rhs1_type);
3503 return true;
3506 return false;
3509 case VEC_UNPACK_HI_EXPR:
3510 case VEC_UNPACK_LO_EXPR:
3511 case REDUC_MAX_EXPR:
3512 case REDUC_MIN_EXPR:
3513 case REDUC_PLUS_EXPR:
3514 case VEC_UNPACK_FLOAT_HI_EXPR:
3515 case VEC_UNPACK_FLOAT_LO_EXPR:
3516 /* FIXME. */
3517 return false;
3519 case NEGATE_EXPR:
3520 case ABS_EXPR:
3521 case BIT_NOT_EXPR:
3522 case PAREN_EXPR:
3523 case NON_LVALUE_EXPR:
3524 case CONJ_EXPR:
3525 break;
3527 default:
3528 gcc_unreachable ();
3531 /* For the remaining codes assert there is no conversion involved. */
3532 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3534 error ("non-trivial conversion in unary operation");
3535 debug_generic_expr (lhs_type);
3536 debug_generic_expr (rhs1_type);
3537 return true;
3540 return false;
3543 /* Verify a gimple assignment statement STMT with a binary rhs.
3544 Returns true if anything is wrong. */
3546 static bool
3547 verify_gimple_assign_binary (gimple stmt)
3549 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3550 tree lhs = gimple_assign_lhs (stmt);
3551 tree lhs_type = TREE_TYPE (lhs);
3552 tree rhs1 = gimple_assign_rhs1 (stmt);
3553 tree rhs1_type = TREE_TYPE (rhs1);
3554 tree rhs2 = gimple_assign_rhs2 (stmt);
3555 tree rhs2_type = TREE_TYPE (rhs2);
3557 if (!is_gimple_reg (lhs))
3559 error ("non-register as LHS of binary operation");
3560 return true;
3563 if (!is_gimple_val (rhs1)
3564 || !is_gimple_val (rhs2))
3566 error ("invalid operands in binary operation");
3567 return true;
3570 /* First handle operations that involve different types. */
3571 switch (rhs_code)
3573 case COMPLEX_EXPR:
3575 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3576 || !(INTEGRAL_TYPE_P (rhs1_type)
3577 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3578 || !(INTEGRAL_TYPE_P (rhs2_type)
3579 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3581 error ("type mismatch in complex expression");
3582 debug_generic_expr (lhs_type);
3583 debug_generic_expr (rhs1_type);
3584 debug_generic_expr (rhs2_type);
3585 return true;
3588 return false;
3591 case LSHIFT_EXPR:
3592 case RSHIFT_EXPR:
3593 case LROTATE_EXPR:
3594 case RROTATE_EXPR:
3596 /* Shifts and rotates are ok on integral types, fixed point
3597 types and integer vector types. */
3598 if ((!INTEGRAL_TYPE_P (rhs1_type)
3599 && !FIXED_POINT_TYPE_P (rhs1_type)
3600 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3601 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3602 || (!INTEGRAL_TYPE_P (rhs2_type)
3603 /* Vector shifts of vectors are also ok. */
3604 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3605 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3606 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3607 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3608 || !useless_type_conversion_p (lhs_type, rhs1_type))
3610 error ("type mismatch in shift expression");
3611 debug_generic_expr (lhs_type);
3612 debug_generic_expr (rhs1_type);
3613 debug_generic_expr (rhs2_type);
3614 return true;
3617 return false;
3620 case VEC_LSHIFT_EXPR:
3621 case VEC_RSHIFT_EXPR:
3623 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3624 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3625 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3626 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3627 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3628 || (!INTEGRAL_TYPE_P (rhs2_type)
3629 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3630 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3631 || !useless_type_conversion_p (lhs_type, rhs1_type))
3633 error ("type mismatch in vector shift expression");
3634 debug_generic_expr (lhs_type);
3635 debug_generic_expr (rhs1_type);
3636 debug_generic_expr (rhs2_type);
3637 return true;
3639 /* For shifting a vector of non-integral components we
3640 only allow shifting by a constant multiple of the element size. */
3641 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3642 && (TREE_CODE (rhs2) != INTEGER_CST
3643 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3644 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3646 error ("non-element sized vector shift of floating point vector");
3647 return true;
3650 return false;
3653 case WIDEN_LSHIFT_EXPR:
3655 if (!INTEGRAL_TYPE_P (lhs_type)
3656 || !INTEGRAL_TYPE_P (rhs1_type)
3657 || TREE_CODE (rhs2) != INTEGER_CST
3658 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3660 error ("type mismatch in widening vector shift expression");
3661 debug_generic_expr (lhs_type);
3662 debug_generic_expr (rhs1_type);
3663 debug_generic_expr (rhs2_type);
3664 return true;
3667 return false;
3670 case VEC_WIDEN_LSHIFT_HI_EXPR:
3671 case VEC_WIDEN_LSHIFT_LO_EXPR:
3673 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3674 || TREE_CODE (lhs_type) != VECTOR_TYPE
3675 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3676 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3677 || TREE_CODE (rhs2) != INTEGER_CST
3678 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3679 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3681 error ("type mismatch in widening vector shift expression");
3682 debug_generic_expr (lhs_type);
3683 debug_generic_expr (rhs1_type);
3684 debug_generic_expr (rhs2_type);
3685 return true;
3688 return false;
3691 case PLUS_EXPR:
3692 case MINUS_EXPR:
3694 tree lhs_etype = lhs_type;
3695 tree rhs1_etype = rhs1_type;
3696 tree rhs2_etype = rhs2_type;
3697 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3699 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3700 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3702 error ("invalid non-vector operands to vector valued plus");
3703 return true;
3705 lhs_etype = TREE_TYPE (lhs_type);
3706 rhs1_etype = TREE_TYPE (rhs1_type);
3707 rhs2_etype = TREE_TYPE (rhs2_type);
3709 if (POINTER_TYPE_P (lhs_etype)
3710 || POINTER_TYPE_P (rhs1_etype)
3711 || POINTER_TYPE_P (rhs2_etype))
3713 error ("invalid (pointer) operands to plus/minus");
3714 return true;
3717 /* Continue with generic binary expression handling. */
3718 break;
3721 case POINTER_PLUS_EXPR:
3723 if (!POINTER_TYPE_P (rhs1_type)
3724 || !useless_type_conversion_p (lhs_type, rhs1_type)
3725 || !ptrofftype_p (rhs2_type))
3727 error ("type mismatch in pointer plus expression");
3728 debug_generic_stmt (lhs_type);
3729 debug_generic_stmt (rhs1_type);
3730 debug_generic_stmt (rhs2_type);
3731 return true;
3734 return false;
3737 case TRUTH_ANDIF_EXPR:
3738 case TRUTH_ORIF_EXPR:
3739 case TRUTH_AND_EXPR:
3740 case TRUTH_OR_EXPR:
3741 case TRUTH_XOR_EXPR:
3743 gcc_unreachable ();
3745 case LT_EXPR:
3746 case LE_EXPR:
3747 case GT_EXPR:
3748 case GE_EXPR:
3749 case EQ_EXPR:
3750 case NE_EXPR:
3751 case UNORDERED_EXPR:
3752 case ORDERED_EXPR:
3753 case UNLT_EXPR:
3754 case UNLE_EXPR:
3755 case UNGT_EXPR:
3756 case UNGE_EXPR:
3757 case UNEQ_EXPR:
3758 case LTGT_EXPR:
3759 /* Comparisons are also binary, but the result type is not
3760 connected to the operand types. */
3761 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3763 case WIDEN_MULT_EXPR:
3764 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3765 return true;
3766 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3767 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3769 case WIDEN_SUM_EXPR:
3770 case VEC_WIDEN_MULT_HI_EXPR:
3771 case VEC_WIDEN_MULT_LO_EXPR:
3772 case VEC_WIDEN_MULT_EVEN_EXPR:
3773 case VEC_WIDEN_MULT_ODD_EXPR:
3774 case VEC_PACK_TRUNC_EXPR:
3775 case VEC_PACK_SAT_EXPR:
3776 case VEC_PACK_FIX_TRUNC_EXPR:
3777 /* FIXME. */
3778 return false;
3780 case MULT_EXPR:
3781 case MULT_HIGHPART_EXPR:
3782 case TRUNC_DIV_EXPR:
3783 case CEIL_DIV_EXPR:
3784 case FLOOR_DIV_EXPR:
3785 case ROUND_DIV_EXPR:
3786 case TRUNC_MOD_EXPR:
3787 case CEIL_MOD_EXPR:
3788 case FLOOR_MOD_EXPR:
3789 case ROUND_MOD_EXPR:
3790 case RDIV_EXPR:
3791 case EXACT_DIV_EXPR:
3792 case MIN_EXPR:
3793 case MAX_EXPR:
3794 case BIT_IOR_EXPR:
3795 case BIT_XOR_EXPR:
3796 case BIT_AND_EXPR:
3797 /* Continue with generic binary expression handling. */
3798 break;
3800 default:
3801 gcc_unreachable ();
3804 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3805 || !useless_type_conversion_p (lhs_type, rhs2_type))
3807 error ("type mismatch in binary expression");
3808 debug_generic_stmt (lhs_type);
3809 debug_generic_stmt (rhs1_type);
3810 debug_generic_stmt (rhs2_type);
3811 return true;
3814 return false;
3817 /* Verify a gimple assignment statement STMT with a ternary rhs.
3818 Returns true if anything is wrong. */
3820 static bool
3821 verify_gimple_assign_ternary (gimple stmt)
3823 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3824 tree lhs = gimple_assign_lhs (stmt);
3825 tree lhs_type = TREE_TYPE (lhs);
3826 tree rhs1 = gimple_assign_rhs1 (stmt);
3827 tree rhs1_type = TREE_TYPE (rhs1);
3828 tree rhs2 = gimple_assign_rhs2 (stmt);
3829 tree rhs2_type = TREE_TYPE (rhs2);
3830 tree rhs3 = gimple_assign_rhs3 (stmt);
3831 tree rhs3_type = TREE_TYPE (rhs3);
3833 if (!is_gimple_reg (lhs))
3835 error ("non-register as LHS of ternary operation");
3836 return true;
3839 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3840 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3841 || !is_gimple_val (rhs2)
3842 || !is_gimple_val (rhs3))
3844 error ("invalid operands in ternary operation");
3845 return true;
3848 /* First handle operations that involve different types. */
3849 switch (rhs_code)
3851 case WIDEN_MULT_PLUS_EXPR:
3852 case WIDEN_MULT_MINUS_EXPR:
3853 if ((!INTEGRAL_TYPE_P (rhs1_type)
3854 && !FIXED_POINT_TYPE_P (rhs1_type))
3855 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3856 || !useless_type_conversion_p (lhs_type, rhs3_type)
3857 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3858 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3860 error ("type mismatch in widening multiply-accumulate expression");
3861 debug_generic_expr (lhs_type);
3862 debug_generic_expr (rhs1_type);
3863 debug_generic_expr (rhs2_type);
3864 debug_generic_expr (rhs3_type);
3865 return true;
3867 break;
3869 case FMA_EXPR:
3870 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3871 || !useless_type_conversion_p (lhs_type, rhs2_type)
3872 || !useless_type_conversion_p (lhs_type, rhs3_type))
3874 error ("type mismatch in fused multiply-add expression");
3875 debug_generic_expr (lhs_type);
3876 debug_generic_expr (rhs1_type);
3877 debug_generic_expr (rhs2_type);
3878 debug_generic_expr (rhs3_type);
3879 return true;
3881 break;
3883 case COND_EXPR:
3884 case VEC_COND_EXPR:
3885 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3886 || !useless_type_conversion_p (lhs_type, rhs3_type))
3888 error ("type mismatch in conditional expression");
3889 debug_generic_expr (lhs_type);
3890 debug_generic_expr (rhs2_type);
3891 debug_generic_expr (rhs3_type);
3892 return true;
3894 break;
3896 case VEC_PERM_EXPR:
3897 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3898 || !useless_type_conversion_p (lhs_type, rhs2_type))
3900 error ("type mismatch in vector permute expression");
3901 debug_generic_expr (lhs_type);
3902 debug_generic_expr (rhs1_type);
3903 debug_generic_expr (rhs2_type);
3904 debug_generic_expr (rhs3_type);
3905 return true;
3908 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3909 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3910 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3912 error ("vector types expected in vector permute expression");
3913 debug_generic_expr (lhs_type);
3914 debug_generic_expr (rhs1_type);
3915 debug_generic_expr (rhs2_type);
3916 debug_generic_expr (rhs3_type);
3917 return true;
3920 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3921 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3922 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3923 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3924 != TYPE_VECTOR_SUBPARTS (lhs_type))
3926 error ("vectors with different element number found "
3927 "in vector permute expression");
3928 debug_generic_expr (lhs_type);
3929 debug_generic_expr (rhs1_type);
3930 debug_generic_expr (rhs2_type);
3931 debug_generic_expr (rhs3_type);
3932 return true;
3935 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3936 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3937 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3939 error ("invalid mask type in vector permute expression");
3940 debug_generic_expr (lhs_type);
3941 debug_generic_expr (rhs1_type);
3942 debug_generic_expr (rhs2_type);
3943 debug_generic_expr (rhs3_type);
3944 return true;
3947 return false;
3949 case DOT_PROD_EXPR:
3950 case REALIGN_LOAD_EXPR:
3951 /* FIXME. */
3952 return false;
3954 default:
3955 gcc_unreachable ();
3957 return false;
3960 /* Verify a gimple assignment statement STMT with a single rhs.
3961 Returns true if anything is wrong. */
3963 static bool
3964 verify_gimple_assign_single (gimple stmt)
3966 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3967 tree lhs = gimple_assign_lhs (stmt);
3968 tree lhs_type = TREE_TYPE (lhs);
3969 tree rhs1 = gimple_assign_rhs1 (stmt);
3970 tree rhs1_type = TREE_TYPE (rhs1);
3971 bool res = false;
3973 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3975 error ("non-trivial conversion at assignment");
3976 debug_generic_expr (lhs_type);
3977 debug_generic_expr (rhs1_type);
3978 return true;
3981 if (gimple_clobber_p (stmt)
3982 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3984 error ("non-decl/MEM_REF LHS in clobber statement");
3985 debug_generic_expr (lhs);
3986 return true;
3989 if (handled_component_p (lhs))
3990 res |= verify_types_in_gimple_reference (lhs, true);
3992 /* Special codes we cannot handle via their class. */
3993 switch (rhs_code)
3995 case ADDR_EXPR:
3997 tree op = TREE_OPERAND (rhs1, 0);
3998 if (!is_gimple_addressable (op))
4000 error ("invalid operand in unary expression");
4001 return true;
4004 /* Technically there is no longer a need for matching types, but
4005 gimple hygiene asks for this check. In LTO we can end up
4006 combining incompatible units and thus end up with addresses
4007 of globals that change their type to a common one. */
4008 if (!in_lto_p
4009 && !types_compatible_p (TREE_TYPE (op),
4010 TREE_TYPE (TREE_TYPE (rhs1)))
4011 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4012 TREE_TYPE (op)))
4014 error ("type mismatch in address expression");
4015 debug_generic_stmt (TREE_TYPE (rhs1));
4016 debug_generic_stmt (TREE_TYPE (op));
4017 return true;
4020 return verify_types_in_gimple_reference (op, true);
4023 /* tcc_reference */
4024 case INDIRECT_REF:
4025 error ("INDIRECT_REF in gimple IL");
4026 return true;
4028 case COMPONENT_REF:
4029 case BIT_FIELD_REF:
4030 case ARRAY_REF:
4031 case ARRAY_RANGE_REF:
4032 case VIEW_CONVERT_EXPR:
4033 case REALPART_EXPR:
4034 case IMAGPART_EXPR:
4035 case TARGET_MEM_REF:
4036 case MEM_REF:
4037 if (!is_gimple_reg (lhs)
4038 && is_gimple_reg_type (TREE_TYPE (lhs)))
4040 error ("invalid rhs for gimple memory store");
4041 debug_generic_stmt (lhs);
4042 debug_generic_stmt (rhs1);
4043 return true;
4045 return res || verify_types_in_gimple_reference (rhs1, false);
4047 /* tcc_constant */
4048 case SSA_NAME:
4049 case INTEGER_CST:
4050 case REAL_CST:
4051 case FIXED_CST:
4052 case COMPLEX_CST:
4053 case VECTOR_CST:
4054 case STRING_CST:
4055 return res;
4057 /* tcc_declaration */
4058 case CONST_DECL:
4059 return res;
4060 case VAR_DECL:
4061 case PARM_DECL:
4062 if (!is_gimple_reg (lhs)
4063 && !is_gimple_reg (rhs1)
4064 && is_gimple_reg_type (TREE_TYPE (lhs)))
4066 error ("invalid rhs for gimple memory store");
4067 debug_generic_stmt (lhs);
4068 debug_generic_stmt (rhs1);
4069 return true;
4071 return res;
4073 case CONSTRUCTOR:
4074 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4076 unsigned int i;
4077 tree elt_i, elt_v, elt_t = NULL_TREE;
4079 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4080 return res;
4081 /* For vector CONSTRUCTORs we require that either it is empty
4082 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4083 (then the element count must be correct to cover the whole
4084 outer vector and index must be NULL on all elements, or it is
4085 a CONSTRUCTOR of scalar elements, where we as an exception allow
4086 smaller number of elements (assuming zero filling) and
4087 consecutive indexes as compared to NULL indexes (such
4088 CONSTRUCTORs can appear in the IL from FEs). */
4089 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4091 if (elt_t == NULL_TREE)
4093 elt_t = TREE_TYPE (elt_v);
4094 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4096 tree elt_t = TREE_TYPE (elt_v);
4097 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4098 TREE_TYPE (elt_t)))
4100 error ("incorrect type of vector CONSTRUCTOR"
4101 " elements");
4102 debug_generic_stmt (rhs1);
4103 return true;
4105 else if (CONSTRUCTOR_NELTS (rhs1)
4106 * TYPE_VECTOR_SUBPARTS (elt_t)
4107 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4109 error ("incorrect number of vector CONSTRUCTOR"
4110 " elements");
4111 debug_generic_stmt (rhs1);
4112 return true;
4115 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4116 elt_t))
4118 error ("incorrect type of vector CONSTRUCTOR elements");
4119 debug_generic_stmt (rhs1);
4120 return true;
4122 else if (CONSTRUCTOR_NELTS (rhs1)
4123 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4125 error ("incorrect number of vector CONSTRUCTOR elements");
4126 debug_generic_stmt (rhs1);
4127 return true;
4130 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4132 error ("incorrect type of vector CONSTRUCTOR elements");
4133 debug_generic_stmt (rhs1);
4134 return true;
4136 if (elt_i != NULL_TREE
4137 && (TREE_CODE (elt_t) == VECTOR_TYPE
4138 || TREE_CODE (elt_i) != INTEGER_CST
4139 || compare_tree_int (elt_i, i) != 0))
4141 error ("vector CONSTRUCTOR with non-NULL element index");
4142 debug_generic_stmt (rhs1);
4143 return true;
4147 return res;
4148 case OBJ_TYPE_REF:
4149 case ASSERT_EXPR:
4150 case WITH_SIZE_EXPR:
4151 /* FIXME. */
4152 return res;
4154 default:;
4157 return res;
4160 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4161 is a problem, otherwise false. */
4163 static bool
4164 verify_gimple_assign (gimple stmt)
4166 switch (gimple_assign_rhs_class (stmt))
4168 case GIMPLE_SINGLE_RHS:
4169 return verify_gimple_assign_single (stmt);
4171 case GIMPLE_UNARY_RHS:
4172 return verify_gimple_assign_unary (stmt);
4174 case GIMPLE_BINARY_RHS:
4175 return verify_gimple_assign_binary (stmt);
4177 case GIMPLE_TERNARY_RHS:
4178 return verify_gimple_assign_ternary (stmt);
4180 default:
4181 gcc_unreachable ();
4185 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4186 is a problem, otherwise false. */
4188 static bool
4189 verify_gimple_return (gimple stmt)
4191 tree op = gimple_return_retval (stmt);
4192 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4194 /* We cannot test for present return values as we do not fix up missing
4195 return values from the original source. */
4196 if (op == NULL)
4197 return false;
4199 if (!is_gimple_val (op)
4200 && TREE_CODE (op) != RESULT_DECL)
4202 error ("invalid operand in return statement");
4203 debug_generic_stmt (op);
4204 return true;
4207 if ((TREE_CODE (op) == RESULT_DECL
4208 && DECL_BY_REFERENCE (op))
4209 || (TREE_CODE (op) == SSA_NAME
4210 && SSA_NAME_VAR (op)
4211 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4212 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4213 op = TREE_TYPE (op);
4215 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4217 error ("invalid conversion in return statement");
4218 debug_generic_stmt (restype);
4219 debug_generic_stmt (TREE_TYPE (op));
4220 return true;
4223 return false;
4227 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4228 is a problem, otherwise false. */
4230 static bool
4231 verify_gimple_goto (gimple stmt)
4233 tree dest = gimple_goto_dest (stmt);
4235 /* ??? We have two canonical forms of direct goto destinations, a
4236 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4237 if (TREE_CODE (dest) != LABEL_DECL
4238 && (!is_gimple_val (dest)
4239 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4241 error ("goto destination is neither a label nor a pointer");
4242 return true;
4245 return false;
4248 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4249 is a problem, otherwise false. */
4251 static bool
4252 verify_gimple_switch (gimple stmt)
4254 unsigned int i, n;
4255 tree elt, prev_upper_bound = NULL_TREE;
4256 tree index_type, elt_type = NULL_TREE;
4258 if (!is_gimple_val (gimple_switch_index (stmt)))
4260 error ("invalid operand to switch statement");
4261 debug_generic_stmt (gimple_switch_index (stmt));
4262 return true;
4265 index_type = TREE_TYPE (gimple_switch_index (stmt));
4266 if (! INTEGRAL_TYPE_P (index_type))
4268 error ("non-integral type switch statement");
4269 debug_generic_expr (index_type);
4270 return true;
4273 elt = gimple_switch_label (stmt, 0);
4274 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4276 error ("invalid default case label in switch statement");
4277 debug_generic_expr (elt);
4278 return true;
4281 n = gimple_switch_num_labels (stmt);
4282 for (i = 1; i < n; i++)
4284 elt = gimple_switch_label (stmt, i);
4286 if (! CASE_LOW (elt))
4288 error ("invalid case label in switch statement");
4289 debug_generic_expr (elt);
4290 return true;
4292 if (CASE_HIGH (elt)
4293 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4295 error ("invalid case range in switch statement");
4296 debug_generic_expr (elt);
4297 return true;
4300 if (elt_type)
4302 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4303 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4305 error ("type mismatch for case label in switch statement");
4306 debug_generic_expr (elt);
4307 return true;
4310 else
4312 elt_type = TREE_TYPE (CASE_LOW (elt));
4313 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4315 error ("type precision mismatch in switch statement");
4316 return true;
4320 if (prev_upper_bound)
4322 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4324 error ("case labels not sorted in switch statement");
4325 return true;
4329 prev_upper_bound = CASE_HIGH (elt);
4330 if (! prev_upper_bound)
4331 prev_upper_bound = CASE_LOW (elt);
4334 return false;
4337 /* Verify a gimple debug statement STMT.
4338 Returns true if anything is wrong. */
4340 static bool
4341 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4343 /* There isn't much that could be wrong in a gimple debug stmt. A
4344 gimple debug bind stmt, for example, maps a tree, that's usually
4345 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4346 component or member of an aggregate type, to another tree, that
4347 can be an arbitrary expression. These stmts expand into debug
4348 insns, and are converted to debug notes by var-tracking.c. */
4349 return false;
4352 /* Verify a gimple label statement STMT.
4353 Returns true if anything is wrong. */
4355 static bool
4356 verify_gimple_label (gimple stmt)
4358 tree decl = gimple_label_label (stmt);
4359 int uid;
4360 bool err = false;
4362 if (TREE_CODE (decl) != LABEL_DECL)
4363 return true;
4364 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4365 && DECL_CONTEXT (decl) != current_function_decl)
4367 error ("label's context is not the current function decl");
4368 err |= true;
4371 uid = LABEL_DECL_UID (decl);
4372 if (cfun->cfg
4373 && (uid == -1
4374 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4376 error ("incorrect entry in label_to_block_map");
4377 err |= true;
4380 uid = EH_LANDING_PAD_NR (decl);
4381 if (uid)
4383 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4384 if (decl != lp->post_landing_pad)
4386 error ("incorrect setting of landing pad number");
4387 err |= true;
4391 return err;
4394 /* Verify the GIMPLE statement STMT. Returns true if there is an
4395 error, otherwise false. */
4397 static bool
4398 verify_gimple_stmt (gimple stmt)
4400 switch (gimple_code (stmt))
4402 case GIMPLE_ASSIGN:
4403 return verify_gimple_assign (stmt);
4405 case GIMPLE_LABEL:
4406 return verify_gimple_label (stmt);
4408 case GIMPLE_CALL:
4409 return verify_gimple_call (stmt);
4411 case GIMPLE_COND:
4412 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4414 error ("invalid comparison code in gimple cond");
4415 return true;
4417 if (!(!gimple_cond_true_label (stmt)
4418 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4419 || !(!gimple_cond_false_label (stmt)
4420 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4422 error ("invalid labels in gimple cond");
4423 return true;
4426 return verify_gimple_comparison (boolean_type_node,
4427 gimple_cond_lhs (stmt),
4428 gimple_cond_rhs (stmt));
4430 case GIMPLE_GOTO:
4431 return verify_gimple_goto (stmt);
4433 case GIMPLE_SWITCH:
4434 return verify_gimple_switch (stmt);
4436 case GIMPLE_RETURN:
4437 return verify_gimple_return (stmt);
4439 case GIMPLE_ASM:
4440 return false;
4442 case GIMPLE_TRANSACTION:
4443 return verify_gimple_transaction (stmt);
4445 /* Tuples that do not have tree operands. */
4446 case GIMPLE_NOP:
4447 case GIMPLE_PREDICT:
4448 case GIMPLE_RESX:
4449 case GIMPLE_EH_DISPATCH:
4450 case GIMPLE_EH_MUST_NOT_THROW:
4451 return false;
4453 CASE_GIMPLE_OMP:
4454 /* OpenMP directives are validated by the FE and never operated
4455 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4456 non-gimple expressions when the main index variable has had
4457 its address taken. This does not affect the loop itself
4458 because the header of an GIMPLE_OMP_FOR is merely used to determine
4459 how to setup the parallel iteration. */
4460 return false;
4462 case GIMPLE_DEBUG:
4463 return verify_gimple_debug (stmt);
4465 default:
4466 gcc_unreachable ();
4470 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4471 and false otherwise. */
4473 static bool
4474 verify_gimple_phi (gimple phi)
4476 bool err = false;
4477 unsigned i;
4478 tree phi_result = gimple_phi_result (phi);
4479 bool virtual_p;
4481 if (!phi_result)
4483 error ("invalid PHI result");
4484 return true;
4487 virtual_p = virtual_operand_p (phi_result);
4488 if (TREE_CODE (phi_result) != SSA_NAME
4489 || (virtual_p
4490 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4492 error ("invalid PHI result");
4493 err = true;
4496 for (i = 0; i < gimple_phi_num_args (phi); i++)
4498 tree t = gimple_phi_arg_def (phi, i);
4500 if (!t)
4502 error ("missing PHI def");
4503 err |= true;
4504 continue;
4506 /* Addressable variables do have SSA_NAMEs but they
4507 are not considered gimple values. */
4508 else if ((TREE_CODE (t) == SSA_NAME
4509 && virtual_p != virtual_operand_p (t))
4510 || (virtual_p
4511 && (TREE_CODE (t) != SSA_NAME
4512 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4513 || (!virtual_p
4514 && !is_gimple_val (t)))
4516 error ("invalid PHI argument");
4517 debug_generic_expr (t);
4518 err |= true;
4520 #ifdef ENABLE_TYPES_CHECKING
4521 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4523 error ("incompatible types in PHI argument %u", i);
4524 debug_generic_stmt (TREE_TYPE (phi_result));
4525 debug_generic_stmt (TREE_TYPE (t));
4526 err |= true;
4528 #endif
4531 return err;
4534 /* Verify the GIMPLE statements inside the sequence STMTS. */
4536 static bool
4537 verify_gimple_in_seq_2 (gimple_seq stmts)
4539 gimple_stmt_iterator ittr;
4540 bool err = false;
4542 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4544 gimple stmt = gsi_stmt (ittr);
4546 switch (gimple_code (stmt))
4548 case GIMPLE_BIND:
4549 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4550 break;
4552 case GIMPLE_TRY:
4553 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4554 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4555 break;
4557 case GIMPLE_EH_FILTER:
4558 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4559 break;
4561 case GIMPLE_EH_ELSE:
4562 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4563 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4564 break;
4566 case GIMPLE_CATCH:
4567 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4568 break;
4570 case GIMPLE_TRANSACTION:
4571 err |= verify_gimple_transaction (stmt);
4572 break;
4574 default:
4576 bool err2 = verify_gimple_stmt (stmt);
4577 if (err2)
4578 debug_gimple_stmt (stmt);
4579 err |= err2;
4584 return err;
4587 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4588 is a problem, otherwise false. */
4590 static bool
4591 verify_gimple_transaction (gimple stmt)
4593 tree lab = gimple_transaction_label (stmt);
4594 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4595 return true;
4596 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4600 /* Verify the GIMPLE statements inside the statement list STMTS. */
4602 DEBUG_FUNCTION void
4603 verify_gimple_in_seq (gimple_seq stmts)
4605 timevar_push (TV_TREE_STMT_VERIFY);
4606 if (verify_gimple_in_seq_2 (stmts))
4607 internal_error ("verify_gimple failed");
4608 timevar_pop (TV_TREE_STMT_VERIFY);
4611 /* Return true when the T can be shared. */
4613 static bool
4614 tree_node_can_be_shared (tree t)
4616 if (IS_TYPE_OR_DECL_P (t)
4617 || is_gimple_min_invariant (t)
4618 || TREE_CODE (t) == SSA_NAME
4619 || t == error_mark_node
4620 || TREE_CODE (t) == IDENTIFIER_NODE)
4621 return true;
4623 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4624 return true;
4626 if (DECL_P (t))
4627 return true;
4629 return false;
4632 /* Called via walk_tree. Verify tree sharing. */
4634 static tree
4635 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4637 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4639 if (tree_node_can_be_shared (*tp))
4641 *walk_subtrees = false;
4642 return NULL;
4645 if (pointer_set_insert (visited, *tp))
4646 return *tp;
4648 return NULL;
4651 /* Called via walk_gimple_stmt. Verify tree sharing. */
4653 static tree
4654 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4656 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4657 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4660 static bool eh_error_found;
4661 static int
4662 verify_eh_throw_stmt_node (void **slot, void *data)
4664 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4665 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4667 if (!pointer_set_contains (visited, node->stmt))
4669 error ("dead STMT in EH table");
4670 debug_gimple_stmt (node->stmt);
4671 eh_error_found = true;
4673 return 1;
4676 /* Verify if the location LOCs block is in BLOCKS. */
4678 static bool
4679 verify_location (pointer_set_t *blocks, location_t loc)
4681 tree block = LOCATION_BLOCK (loc);
4682 if (block != NULL_TREE
4683 && !pointer_set_contains (blocks, block))
4685 error ("location references block not in block tree");
4686 return true;
4688 if (block != NULL_TREE)
4689 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4690 return false;
4693 /* Called via walk_tree. Verify that expressions have no blocks. */
4695 static tree
4696 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4698 if (!EXPR_P (*tp))
4700 *walk_subtrees = false;
4701 return NULL;
4704 location_t loc = EXPR_LOCATION (*tp);
4705 if (LOCATION_BLOCK (loc) != NULL)
4706 return *tp;
4708 return NULL;
4711 /* Called via walk_tree. Verify locations of expressions. */
4713 static tree
4714 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4716 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4718 if (TREE_CODE (*tp) == VAR_DECL
4719 && DECL_HAS_DEBUG_EXPR_P (*tp))
4721 tree t = DECL_DEBUG_EXPR (*tp);
4722 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4723 if (addr)
4724 return addr;
4726 if ((TREE_CODE (*tp) == VAR_DECL
4727 || TREE_CODE (*tp) == PARM_DECL
4728 || TREE_CODE (*tp) == RESULT_DECL)
4729 && DECL_HAS_VALUE_EXPR_P (*tp))
4731 tree t = DECL_VALUE_EXPR (*tp);
4732 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4733 if (addr)
4734 return addr;
4737 if (!EXPR_P (*tp))
4739 *walk_subtrees = false;
4740 return NULL;
4743 location_t loc = EXPR_LOCATION (*tp);
4744 if (verify_location (blocks, loc))
4745 return *tp;
4747 return NULL;
4750 /* Called via walk_gimple_op. Verify locations of expressions. */
4752 static tree
4753 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4755 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4756 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4759 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4761 static void
4762 collect_subblocks (pointer_set_t *blocks, tree block)
4764 tree t;
4765 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4767 pointer_set_insert (blocks, t);
4768 collect_subblocks (blocks, t);
4772 /* Verify the GIMPLE statements in the CFG of FN. */
4774 DEBUG_FUNCTION void
4775 verify_gimple_in_cfg (struct function *fn)
4777 basic_block bb;
4778 bool err = false;
4779 struct pointer_set_t *visited, *visited_stmts, *blocks;
4781 timevar_push (TV_TREE_STMT_VERIFY);
4782 visited = pointer_set_create ();
4783 visited_stmts = pointer_set_create ();
4785 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4786 blocks = pointer_set_create ();
4787 if (DECL_INITIAL (fn->decl))
4789 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4790 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4793 FOR_EACH_BB_FN (bb, fn)
4795 gimple_stmt_iterator gsi;
4797 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4799 gimple phi = gsi_stmt (gsi);
4800 bool err2 = false;
4801 unsigned i;
4803 pointer_set_insert (visited_stmts, phi);
4805 if (gimple_bb (phi) != bb)
4807 error ("gimple_bb (phi) is set to a wrong basic block");
4808 err2 = true;
4811 err2 |= verify_gimple_phi (phi);
4813 /* Only PHI arguments have locations. */
4814 if (gimple_location (phi) != UNKNOWN_LOCATION)
4816 error ("PHI node with location");
4817 err2 = true;
4820 for (i = 0; i < gimple_phi_num_args (phi); i++)
4822 tree arg = gimple_phi_arg_def (phi, i);
4823 tree addr = walk_tree (&arg, verify_node_sharing_1,
4824 visited, NULL);
4825 if (addr)
4827 error ("incorrect sharing of tree nodes");
4828 debug_generic_expr (addr);
4829 err2 |= true;
4831 location_t loc = gimple_phi_arg_location (phi, i);
4832 if (virtual_operand_p (gimple_phi_result (phi))
4833 && loc != UNKNOWN_LOCATION)
4835 error ("virtual PHI with argument locations");
4836 err2 = true;
4838 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4839 if (addr)
4841 debug_generic_expr (addr);
4842 err2 = true;
4844 err2 |= verify_location (blocks, loc);
4847 if (err2)
4848 debug_gimple_stmt (phi);
4849 err |= err2;
4852 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4854 gimple stmt = gsi_stmt (gsi);
4855 bool err2 = false;
4856 struct walk_stmt_info wi;
4857 tree addr;
4858 int lp_nr;
4860 pointer_set_insert (visited_stmts, stmt);
4862 if (gimple_bb (stmt) != bb)
4864 error ("gimple_bb (stmt) is set to a wrong basic block");
4865 err2 = true;
4868 err2 |= verify_gimple_stmt (stmt);
4869 err2 |= verify_location (blocks, gimple_location (stmt));
4871 memset (&wi, 0, sizeof (wi));
4872 wi.info = (void *) visited;
4873 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4874 if (addr)
4876 error ("incorrect sharing of tree nodes");
4877 debug_generic_expr (addr);
4878 err2 |= true;
4881 memset (&wi, 0, sizeof (wi));
4882 wi.info = (void *) blocks;
4883 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4884 if (addr)
4886 debug_generic_expr (addr);
4887 err2 |= true;
4890 /* ??? Instead of not checking these stmts at all the walker
4891 should know its context via wi. */
4892 if (!is_gimple_debug (stmt)
4893 && !is_gimple_omp (stmt))
4895 memset (&wi, 0, sizeof (wi));
4896 addr = walk_gimple_op (stmt, verify_expr, &wi);
4897 if (addr)
4899 debug_generic_expr (addr);
4900 inform (gimple_location (stmt), "in statement");
4901 err2 |= true;
4905 /* If the statement is marked as part of an EH region, then it is
4906 expected that the statement could throw. Verify that when we
4907 have optimizations that simplify statements such that we prove
4908 that they cannot throw, that we update other data structures
4909 to match. */
4910 lp_nr = lookup_stmt_eh_lp (stmt);
4911 if (lp_nr != 0)
4913 if (!stmt_could_throw_p (stmt))
4915 error ("statement marked for throw, but doesn%'t");
4916 err2 |= true;
4918 else if (lp_nr > 0
4919 && !gsi_one_before_end_p (gsi)
4920 && stmt_can_throw_internal (stmt))
4922 error ("statement marked for throw in middle of block");
4923 err2 |= true;
4927 if (err2)
4928 debug_gimple_stmt (stmt);
4929 err |= err2;
4933 eh_error_found = false;
4934 if (get_eh_throw_stmt_table (cfun))
4935 htab_traverse (get_eh_throw_stmt_table (cfun),
4936 verify_eh_throw_stmt_node,
4937 visited_stmts);
4939 if (err || eh_error_found)
4940 internal_error ("verify_gimple failed");
4942 pointer_set_destroy (visited);
4943 pointer_set_destroy (visited_stmts);
4944 pointer_set_destroy (blocks);
4945 verify_histograms ();
4946 timevar_pop (TV_TREE_STMT_VERIFY);
4950 /* Verifies that the flow information is OK. */
4952 static int
4953 gimple_verify_flow_info (void)
4955 int err = 0;
4956 basic_block bb;
4957 gimple_stmt_iterator gsi;
4958 gimple stmt;
4959 edge e;
4960 edge_iterator ei;
4962 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4963 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4965 error ("ENTRY_BLOCK has IL associated with it");
4966 err = 1;
4969 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4970 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4972 error ("EXIT_BLOCK has IL associated with it");
4973 err = 1;
4976 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4977 if (e->flags & EDGE_FALLTHRU)
4979 error ("fallthru to exit from bb %d", e->src->index);
4980 err = 1;
4983 FOR_EACH_BB_FN (bb, cfun)
4985 bool found_ctrl_stmt = false;
4987 stmt = NULL;
4989 /* Skip labels on the start of basic block. */
4990 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4992 tree label;
4993 gimple prev_stmt = stmt;
4995 stmt = gsi_stmt (gsi);
4997 if (gimple_code (stmt) != GIMPLE_LABEL)
4998 break;
5000 label = gimple_label_label (stmt);
5001 if (prev_stmt && DECL_NONLOCAL (label))
5003 error ("nonlocal label ");
5004 print_generic_expr (stderr, label, 0);
5005 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5006 bb->index);
5007 err = 1;
5010 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5012 error ("EH landing pad label ");
5013 print_generic_expr (stderr, label, 0);
5014 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5015 bb->index);
5016 err = 1;
5019 if (label_to_block (label) != bb)
5021 error ("label ");
5022 print_generic_expr (stderr, label, 0);
5023 fprintf (stderr, " to block does not match in bb %d",
5024 bb->index);
5025 err = 1;
5028 if (decl_function_context (label) != current_function_decl)
5030 error ("label ");
5031 print_generic_expr (stderr, label, 0);
5032 fprintf (stderr, " has incorrect context in bb %d",
5033 bb->index);
5034 err = 1;
5038 /* Verify that body of basic block BB is free of control flow. */
5039 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5041 gimple stmt = gsi_stmt (gsi);
5043 if (found_ctrl_stmt)
5045 error ("control flow in the middle of basic block %d",
5046 bb->index);
5047 err = 1;
5050 if (stmt_ends_bb_p (stmt))
5051 found_ctrl_stmt = true;
5053 if (gimple_code (stmt) == GIMPLE_LABEL)
5055 error ("label ");
5056 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5057 fprintf (stderr, " in the middle of basic block %d", bb->index);
5058 err = 1;
5062 gsi = gsi_last_bb (bb);
5063 if (gsi_end_p (gsi))
5064 continue;
5066 stmt = gsi_stmt (gsi);
5068 if (gimple_code (stmt) == GIMPLE_LABEL)
5069 continue;
5071 err |= verify_eh_edges (stmt);
5073 if (is_ctrl_stmt (stmt))
5075 FOR_EACH_EDGE (e, ei, bb->succs)
5076 if (e->flags & EDGE_FALLTHRU)
5078 error ("fallthru edge after a control statement in bb %d",
5079 bb->index);
5080 err = 1;
5084 if (gimple_code (stmt) != GIMPLE_COND)
5086 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5087 after anything else but if statement. */
5088 FOR_EACH_EDGE (e, ei, bb->succs)
5089 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5091 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5092 bb->index);
5093 err = 1;
5097 switch (gimple_code (stmt))
5099 case GIMPLE_COND:
5101 edge true_edge;
5102 edge false_edge;
5104 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5106 if (!true_edge
5107 || !false_edge
5108 || !(true_edge->flags & EDGE_TRUE_VALUE)
5109 || !(false_edge->flags & EDGE_FALSE_VALUE)
5110 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5111 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5112 || EDGE_COUNT (bb->succs) >= 3)
5114 error ("wrong outgoing edge flags at end of bb %d",
5115 bb->index);
5116 err = 1;
5119 break;
5121 case GIMPLE_GOTO:
5122 if (simple_goto_p (stmt))
5124 error ("explicit goto at end of bb %d", bb->index);
5125 err = 1;
5127 else
5129 /* FIXME. We should double check that the labels in the
5130 destination blocks have their address taken. */
5131 FOR_EACH_EDGE (e, ei, bb->succs)
5132 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5133 | EDGE_FALSE_VALUE))
5134 || !(e->flags & EDGE_ABNORMAL))
5136 error ("wrong outgoing edge flags at end of bb %d",
5137 bb->index);
5138 err = 1;
5141 break;
5143 case GIMPLE_CALL:
5144 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5145 break;
5146 /* ... fallthru ... */
5147 case GIMPLE_RETURN:
5148 if (!single_succ_p (bb)
5149 || (single_succ_edge (bb)->flags
5150 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5151 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5153 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5154 err = 1;
5156 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5158 error ("return edge does not point to exit in bb %d",
5159 bb->index);
5160 err = 1;
5162 break;
5164 case GIMPLE_SWITCH:
5166 tree prev;
5167 edge e;
5168 size_t i, n;
5170 n = gimple_switch_num_labels (stmt);
5172 /* Mark all the destination basic blocks. */
5173 for (i = 0; i < n; ++i)
5175 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5176 basic_block label_bb = label_to_block (lab);
5177 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5178 label_bb->aux = (void *)1;
5181 /* Verify that the case labels are sorted. */
5182 prev = gimple_switch_label (stmt, 0);
5183 for (i = 1; i < n; ++i)
5185 tree c = gimple_switch_label (stmt, i);
5186 if (!CASE_LOW (c))
5188 error ("found default case not at the start of "
5189 "case vector");
5190 err = 1;
5191 continue;
5193 if (CASE_LOW (prev)
5194 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5196 error ("case labels not sorted: ");
5197 print_generic_expr (stderr, prev, 0);
5198 fprintf (stderr," is greater than ");
5199 print_generic_expr (stderr, c, 0);
5200 fprintf (stderr," but comes before it.\n");
5201 err = 1;
5203 prev = c;
5205 /* VRP will remove the default case if it can prove it will
5206 never be executed. So do not verify there always exists
5207 a default case here. */
5209 FOR_EACH_EDGE (e, ei, bb->succs)
5211 if (!e->dest->aux)
5213 error ("extra outgoing edge %d->%d",
5214 bb->index, e->dest->index);
5215 err = 1;
5218 e->dest->aux = (void *)2;
5219 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5220 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5222 error ("wrong outgoing edge flags at end of bb %d",
5223 bb->index);
5224 err = 1;
5228 /* Check that we have all of them. */
5229 for (i = 0; i < n; ++i)
5231 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5232 basic_block label_bb = label_to_block (lab);
5234 if (label_bb->aux != (void *)2)
5236 error ("missing edge %i->%i", bb->index, label_bb->index);
5237 err = 1;
5241 FOR_EACH_EDGE (e, ei, bb->succs)
5242 e->dest->aux = (void *)0;
5244 break;
5246 case GIMPLE_EH_DISPATCH:
5247 err |= verify_eh_dispatch_edge (stmt);
5248 break;
5250 default:
5251 break;
5255 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5256 verify_dominators (CDI_DOMINATORS);
5258 return err;
5262 /* Updates phi nodes after creating a forwarder block joined
5263 by edge FALLTHRU. */
5265 static void
5266 gimple_make_forwarder_block (edge fallthru)
5268 edge e;
5269 edge_iterator ei;
5270 basic_block dummy, bb;
5271 tree var;
5272 gimple_stmt_iterator gsi;
5274 dummy = fallthru->src;
5275 bb = fallthru->dest;
5277 if (single_pred_p (bb))
5278 return;
5280 /* If we redirected a branch we must create new PHI nodes at the
5281 start of BB. */
5282 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5284 gimple phi, new_phi;
5286 phi = gsi_stmt (gsi);
5287 var = gimple_phi_result (phi);
5288 new_phi = create_phi_node (var, bb);
5289 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5290 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5291 UNKNOWN_LOCATION);
5294 /* Add the arguments we have stored on edges. */
5295 FOR_EACH_EDGE (e, ei, bb->preds)
5297 if (e == fallthru)
5298 continue;
5300 flush_pending_stmts (e);
5305 /* Return a non-special label in the head of basic block BLOCK.
5306 Create one if it doesn't exist. */
5308 tree
5309 gimple_block_label (basic_block bb)
5311 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5312 bool first = true;
5313 tree label;
5314 gimple stmt;
5316 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5318 stmt = gsi_stmt (i);
5319 if (gimple_code (stmt) != GIMPLE_LABEL)
5320 break;
5321 label = gimple_label_label (stmt);
5322 if (!DECL_NONLOCAL (label))
5324 if (!first)
5325 gsi_move_before (&i, &s);
5326 return label;
5330 label = create_artificial_label (UNKNOWN_LOCATION);
5331 stmt = gimple_build_label (label);
5332 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5333 return label;
5337 /* Attempt to perform edge redirection by replacing a possibly complex
5338 jump instruction by a goto or by removing the jump completely.
5339 This can apply only if all edges now point to the same block. The
5340 parameters and return values are equivalent to
5341 redirect_edge_and_branch. */
5343 static edge
5344 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5346 basic_block src = e->src;
5347 gimple_stmt_iterator i;
5348 gimple stmt;
5350 /* We can replace or remove a complex jump only when we have exactly
5351 two edges. */
5352 if (EDGE_COUNT (src->succs) != 2
5353 /* Verify that all targets will be TARGET. Specifically, the
5354 edge that is not E must also go to TARGET. */
5355 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5356 return NULL;
5358 i = gsi_last_bb (src);
5359 if (gsi_end_p (i))
5360 return NULL;
5362 stmt = gsi_stmt (i);
5364 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5366 gsi_remove (&i, true);
5367 e = ssa_redirect_edge (e, target);
5368 e->flags = EDGE_FALLTHRU;
5369 return e;
5372 return NULL;
5376 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5377 edge representing the redirected branch. */
5379 static edge
5380 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5382 basic_block bb = e->src;
5383 gimple_stmt_iterator gsi;
5384 edge ret;
5385 gimple stmt;
5387 if (e->flags & EDGE_ABNORMAL)
5388 return NULL;
5390 if (e->dest == dest)
5391 return NULL;
5393 if (e->flags & EDGE_EH)
5394 return redirect_eh_edge (e, dest);
5396 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5398 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5399 if (ret)
5400 return ret;
5403 gsi = gsi_last_bb (bb);
5404 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5406 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5408 case GIMPLE_COND:
5409 /* For COND_EXPR, we only need to redirect the edge. */
5410 break;
5412 case GIMPLE_GOTO:
5413 /* No non-abnormal edges should lead from a non-simple goto, and
5414 simple ones should be represented implicitly. */
5415 gcc_unreachable ();
5417 case GIMPLE_SWITCH:
5419 tree label = gimple_block_label (dest);
5420 tree cases = get_cases_for_edge (e, stmt);
5422 /* If we have a list of cases associated with E, then use it
5423 as it's a lot faster than walking the entire case vector. */
5424 if (cases)
5426 edge e2 = find_edge (e->src, dest);
5427 tree last, first;
5429 first = cases;
5430 while (cases)
5432 last = cases;
5433 CASE_LABEL (cases) = label;
5434 cases = CASE_CHAIN (cases);
5437 /* If there was already an edge in the CFG, then we need
5438 to move all the cases associated with E to E2. */
5439 if (e2)
5441 tree cases2 = get_cases_for_edge (e2, stmt);
5443 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5444 CASE_CHAIN (cases2) = first;
5446 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5448 else
5450 size_t i, n = gimple_switch_num_labels (stmt);
5452 for (i = 0; i < n; i++)
5454 tree elt = gimple_switch_label (stmt, i);
5455 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5456 CASE_LABEL (elt) = label;
5460 break;
5462 case GIMPLE_ASM:
5464 int i, n = gimple_asm_nlabels (stmt);
5465 tree label = NULL;
5467 for (i = 0; i < n; ++i)
5469 tree cons = gimple_asm_label_op (stmt, i);
5470 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5472 if (!label)
5473 label = gimple_block_label (dest);
5474 TREE_VALUE (cons) = label;
5478 /* If we didn't find any label matching the former edge in the
5479 asm labels, we must be redirecting the fallthrough
5480 edge. */
5481 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5483 break;
5485 case GIMPLE_RETURN:
5486 gsi_remove (&gsi, true);
5487 e->flags |= EDGE_FALLTHRU;
5488 break;
5490 case GIMPLE_OMP_RETURN:
5491 case GIMPLE_OMP_CONTINUE:
5492 case GIMPLE_OMP_SECTIONS_SWITCH:
5493 case GIMPLE_OMP_FOR:
5494 /* The edges from OMP constructs can be simply redirected. */
5495 break;
5497 case GIMPLE_EH_DISPATCH:
5498 if (!(e->flags & EDGE_FALLTHRU))
5499 redirect_eh_dispatch_edge (stmt, e, dest);
5500 break;
5502 case GIMPLE_TRANSACTION:
5503 /* The ABORT edge has a stored label associated with it, otherwise
5504 the edges are simply redirectable. */
5505 if (e->flags == 0)
5506 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5507 break;
5509 default:
5510 /* Otherwise it must be a fallthru edge, and we don't need to
5511 do anything besides redirecting it. */
5512 gcc_assert (e->flags & EDGE_FALLTHRU);
5513 break;
5516 /* Update/insert PHI nodes as necessary. */
5518 /* Now update the edges in the CFG. */
5519 e = ssa_redirect_edge (e, dest);
5521 return e;
5524 /* Returns true if it is possible to remove edge E by redirecting
5525 it to the destination of the other edge from E->src. */
5527 static bool
5528 gimple_can_remove_branch_p (const_edge e)
5530 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5531 return false;
5533 return true;
5536 /* Simple wrapper, as we can always redirect fallthru edges. */
5538 static basic_block
5539 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5541 e = gimple_redirect_edge_and_branch (e, dest);
5542 gcc_assert (e);
5544 return NULL;
5548 /* Splits basic block BB after statement STMT (but at least after the
5549 labels). If STMT is NULL, BB is split just after the labels. */
5551 static basic_block
5552 gimple_split_block (basic_block bb, void *stmt)
5554 gimple_stmt_iterator gsi;
5555 gimple_stmt_iterator gsi_tgt;
5556 gimple act;
5557 gimple_seq list;
5558 basic_block new_bb;
5559 edge e;
5560 edge_iterator ei;
5562 new_bb = create_empty_bb (bb);
5564 /* Redirect the outgoing edges. */
5565 new_bb->succs = bb->succs;
5566 bb->succs = NULL;
5567 FOR_EACH_EDGE (e, ei, new_bb->succs)
5568 e->src = new_bb;
5570 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5571 stmt = NULL;
5573 /* Move everything from GSI to the new basic block. */
5574 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5576 act = gsi_stmt (gsi);
5577 if (gimple_code (act) == GIMPLE_LABEL)
5578 continue;
5580 if (!stmt)
5581 break;
5583 if (stmt == act)
5585 gsi_next (&gsi);
5586 break;
5590 if (gsi_end_p (gsi))
5591 return new_bb;
5593 /* Split the statement list - avoid re-creating new containers as this
5594 brings ugly quadratic memory consumption in the inliner.
5595 (We are still quadratic since we need to update stmt BB pointers,
5596 sadly.) */
5597 gsi_split_seq_before (&gsi, &list);
5598 set_bb_seq (new_bb, list);
5599 for (gsi_tgt = gsi_start (list);
5600 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5601 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5603 return new_bb;
5607 /* Moves basic block BB after block AFTER. */
5609 static bool
5610 gimple_move_block_after (basic_block bb, basic_block after)
5612 if (bb->prev_bb == after)
5613 return true;
5615 unlink_block (bb);
5616 link_block (bb, after);
5618 return true;
5622 /* Return TRUE if block BB has no executable statements, otherwise return
5623 FALSE. */
5625 static bool
5626 gimple_empty_block_p (basic_block bb)
5628 /* BB must have no executable statements. */
5629 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5630 if (phi_nodes (bb))
5631 return false;
5632 if (gsi_end_p (gsi))
5633 return true;
5634 if (is_gimple_debug (gsi_stmt (gsi)))
5635 gsi_next_nondebug (&gsi);
5636 return gsi_end_p (gsi);
5640 /* Split a basic block if it ends with a conditional branch and if the
5641 other part of the block is not empty. */
5643 static basic_block
5644 gimple_split_block_before_cond_jump (basic_block bb)
5646 gimple last, split_point;
5647 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5648 if (gsi_end_p (gsi))
5649 return NULL;
5650 last = gsi_stmt (gsi);
5651 if (gimple_code (last) != GIMPLE_COND
5652 && gimple_code (last) != GIMPLE_SWITCH)
5653 return NULL;
5654 gsi_prev_nondebug (&gsi);
5655 split_point = gsi_stmt (gsi);
5656 return split_block (bb, split_point)->dest;
5660 /* Return true if basic_block can be duplicated. */
5662 static bool
5663 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5665 return true;
5668 /* Create a duplicate of the basic block BB. NOTE: This does not
5669 preserve SSA form. */
5671 static basic_block
5672 gimple_duplicate_bb (basic_block bb)
5674 basic_block new_bb;
5675 gimple_stmt_iterator gsi, gsi_tgt;
5676 gimple_seq phis = phi_nodes (bb);
5677 gimple phi, stmt, copy;
5679 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5681 /* Copy the PHI nodes. We ignore PHI node arguments here because
5682 the incoming edges have not been setup yet. */
5683 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5685 phi = gsi_stmt (gsi);
5686 copy = create_phi_node (NULL_TREE, new_bb);
5687 create_new_def_for (gimple_phi_result (phi), copy,
5688 gimple_phi_result_ptr (copy));
5689 gimple_set_uid (copy, gimple_uid (phi));
5692 gsi_tgt = gsi_start_bb (new_bb);
5693 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5695 def_operand_p def_p;
5696 ssa_op_iter op_iter;
5697 tree lhs;
5699 stmt = gsi_stmt (gsi);
5700 if (gimple_code (stmt) == GIMPLE_LABEL)
5701 continue;
5703 /* Don't duplicate label debug stmts. */
5704 if (gimple_debug_bind_p (stmt)
5705 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5706 == LABEL_DECL)
5707 continue;
5709 /* Create a new copy of STMT and duplicate STMT's virtual
5710 operands. */
5711 copy = gimple_copy (stmt);
5712 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5714 maybe_duplicate_eh_stmt (copy, stmt);
5715 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5717 /* When copying around a stmt writing into a local non-user
5718 aggregate, make sure it won't share stack slot with other
5719 vars. */
5720 lhs = gimple_get_lhs (stmt);
5721 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5723 tree base = get_base_address (lhs);
5724 if (base
5725 && (TREE_CODE (base) == VAR_DECL
5726 || TREE_CODE (base) == RESULT_DECL)
5727 && DECL_IGNORED_P (base)
5728 && !TREE_STATIC (base)
5729 && !DECL_EXTERNAL (base)
5730 && (TREE_CODE (base) != VAR_DECL
5731 || !DECL_HAS_VALUE_EXPR_P (base)))
5732 DECL_NONSHAREABLE (base) = 1;
5735 /* Create new names for all the definitions created by COPY and
5736 add replacement mappings for each new name. */
5737 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5738 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5741 return new_bb;
5744 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5746 static void
5747 add_phi_args_after_copy_edge (edge e_copy)
5749 basic_block bb, bb_copy = e_copy->src, dest;
5750 edge e;
5751 edge_iterator ei;
5752 gimple phi, phi_copy;
5753 tree def;
5754 gimple_stmt_iterator psi, psi_copy;
5756 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5757 return;
5759 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5761 if (e_copy->dest->flags & BB_DUPLICATED)
5762 dest = get_bb_original (e_copy->dest);
5763 else
5764 dest = e_copy->dest;
5766 e = find_edge (bb, dest);
5767 if (!e)
5769 /* During loop unrolling the target of the latch edge is copied.
5770 In this case we are not looking for edge to dest, but to
5771 duplicated block whose original was dest. */
5772 FOR_EACH_EDGE (e, ei, bb->succs)
5774 if ((e->dest->flags & BB_DUPLICATED)
5775 && get_bb_original (e->dest) == dest)
5776 break;
5779 gcc_assert (e != NULL);
5782 for (psi = gsi_start_phis (e->dest),
5783 psi_copy = gsi_start_phis (e_copy->dest);
5784 !gsi_end_p (psi);
5785 gsi_next (&psi), gsi_next (&psi_copy))
5787 phi = gsi_stmt (psi);
5788 phi_copy = gsi_stmt (psi_copy);
5789 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5790 add_phi_arg (phi_copy, def, e_copy,
5791 gimple_phi_arg_location_from_edge (phi, e));
5796 /* Basic block BB_COPY was created by code duplication. Add phi node
5797 arguments for edges going out of BB_COPY. The blocks that were
5798 duplicated have BB_DUPLICATED set. */
5800 void
5801 add_phi_args_after_copy_bb (basic_block bb_copy)
5803 edge e_copy;
5804 edge_iterator ei;
5806 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5808 add_phi_args_after_copy_edge (e_copy);
5812 /* Blocks in REGION_COPY array of length N_REGION were created by
5813 duplication of basic blocks. Add phi node arguments for edges
5814 going from these blocks. If E_COPY is not NULL, also add
5815 phi node arguments for its destination.*/
5817 void
5818 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5819 edge e_copy)
5821 unsigned i;
5823 for (i = 0; i < n_region; i++)
5824 region_copy[i]->flags |= BB_DUPLICATED;
5826 for (i = 0; i < n_region; i++)
5827 add_phi_args_after_copy_bb (region_copy[i]);
5828 if (e_copy)
5829 add_phi_args_after_copy_edge (e_copy);
5831 for (i = 0; i < n_region; i++)
5832 region_copy[i]->flags &= ~BB_DUPLICATED;
5835 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5836 important exit edge EXIT. By important we mean that no SSA name defined
5837 inside region is live over the other exit edges of the region. All entry
5838 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5839 to the duplicate of the region. Dominance and loop information is
5840 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5841 UPDATE_DOMINANCE is false then we assume that the caller will update the
5842 dominance information after calling this function. The new basic
5843 blocks are stored to REGION_COPY in the same order as they had in REGION,
5844 provided that REGION_COPY is not NULL.
5845 The function returns false if it is unable to copy the region,
5846 true otherwise. */
5848 bool
5849 gimple_duplicate_sese_region (edge entry, edge exit,
5850 basic_block *region, unsigned n_region,
5851 basic_block *region_copy,
5852 bool update_dominance)
5854 unsigned i;
5855 bool free_region_copy = false, copying_header = false;
5856 struct loop *loop = entry->dest->loop_father;
5857 edge exit_copy;
5858 vec<basic_block> doms;
5859 edge redirected;
5860 int total_freq = 0, entry_freq = 0;
5861 gcov_type total_count = 0, entry_count = 0;
5863 if (!can_copy_bbs_p (region, n_region))
5864 return false;
5866 /* Some sanity checking. Note that we do not check for all possible
5867 missuses of the functions. I.e. if you ask to copy something weird,
5868 it will work, but the state of structures probably will not be
5869 correct. */
5870 for (i = 0; i < n_region; i++)
5872 /* We do not handle subloops, i.e. all the blocks must belong to the
5873 same loop. */
5874 if (region[i]->loop_father != loop)
5875 return false;
5877 if (region[i] != entry->dest
5878 && region[i] == loop->header)
5879 return false;
5882 set_loop_copy (loop, loop);
5884 /* In case the function is used for loop header copying (which is the primary
5885 use), ensure that EXIT and its copy will be new latch and entry edges. */
5886 if (loop->header == entry->dest)
5888 copying_header = true;
5889 set_loop_copy (loop, loop_outer (loop));
5891 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5892 return false;
5894 for (i = 0; i < n_region; i++)
5895 if (region[i] != exit->src
5896 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5897 return false;
5900 if (!region_copy)
5902 region_copy = XNEWVEC (basic_block, n_region);
5903 free_region_copy = true;
5906 initialize_original_copy_tables ();
5908 /* Record blocks outside the region that are dominated by something
5909 inside. */
5910 if (update_dominance)
5912 doms.create (0);
5913 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5916 if (entry->dest->count)
5918 total_count = entry->dest->count;
5919 entry_count = entry->count;
5920 /* Fix up corner cases, to avoid division by zero or creation of negative
5921 frequencies. */
5922 if (entry_count > total_count)
5923 entry_count = total_count;
5925 else
5927 total_freq = entry->dest->frequency;
5928 entry_freq = EDGE_FREQUENCY (entry);
5929 /* Fix up corner cases, to avoid division by zero or creation of negative
5930 frequencies. */
5931 if (total_freq == 0)
5932 total_freq = 1;
5933 else if (entry_freq > total_freq)
5934 entry_freq = total_freq;
5937 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5938 split_edge_bb_loc (entry), update_dominance);
5939 if (total_count)
5941 scale_bbs_frequencies_gcov_type (region, n_region,
5942 total_count - entry_count,
5943 total_count);
5944 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5945 total_count);
5947 else
5949 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5950 total_freq);
5951 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5954 if (copying_header)
5956 loop->header = exit->dest;
5957 loop->latch = exit->src;
5960 /* Redirect the entry and add the phi node arguments. */
5961 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5962 gcc_assert (redirected != NULL);
5963 flush_pending_stmts (entry);
5965 /* Concerning updating of dominators: We must recount dominators
5966 for entry block and its copy. Anything that is outside of the
5967 region, but was dominated by something inside needs recounting as
5968 well. */
5969 if (update_dominance)
5971 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5972 doms.safe_push (get_bb_original (entry->dest));
5973 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5974 doms.release ();
5977 /* Add the other PHI node arguments. */
5978 add_phi_args_after_copy (region_copy, n_region, NULL);
5980 if (free_region_copy)
5981 free (region_copy);
5983 free_original_copy_tables ();
5984 return true;
5987 /* Checks if BB is part of the region defined by N_REGION BBS. */
5988 static bool
5989 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5991 unsigned int n;
5993 for (n = 0; n < n_region; n++)
5995 if (bb == bbs[n])
5996 return true;
5998 return false;
6001 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6002 are stored to REGION_COPY in the same order in that they appear
6003 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6004 the region, EXIT an exit from it. The condition guarding EXIT
6005 is moved to ENTRY. Returns true if duplication succeeds, false
6006 otherwise.
6008 For example,
6010 some_code;
6011 if (cond)
6013 else
6016 is transformed to
6018 if (cond)
6020 some_code;
6023 else
6025 some_code;
6030 bool
6031 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6032 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6033 basic_block *region_copy ATTRIBUTE_UNUSED)
6035 unsigned i;
6036 bool free_region_copy = false;
6037 struct loop *loop = exit->dest->loop_father;
6038 struct loop *orig_loop = entry->dest->loop_father;
6039 basic_block switch_bb, entry_bb, nentry_bb;
6040 vec<basic_block> doms;
6041 int total_freq = 0, exit_freq = 0;
6042 gcov_type total_count = 0, exit_count = 0;
6043 edge exits[2], nexits[2], e;
6044 gimple_stmt_iterator gsi;
6045 gimple cond_stmt;
6046 edge sorig, snew;
6047 basic_block exit_bb;
6048 gimple_stmt_iterator psi;
6049 gimple phi;
6050 tree def;
6051 struct loop *target, *aloop, *cloop;
6053 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6054 exits[0] = exit;
6055 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6057 if (!can_copy_bbs_p (region, n_region))
6058 return false;
6060 initialize_original_copy_tables ();
6061 set_loop_copy (orig_loop, loop);
6063 target= loop;
6064 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6066 if (bb_part_of_region_p (aloop->header, region, n_region))
6068 cloop = duplicate_loop (aloop, target);
6069 duplicate_subloops (aloop, cloop);
6073 if (!region_copy)
6075 region_copy = XNEWVEC (basic_block, n_region);
6076 free_region_copy = true;
6079 gcc_assert (!need_ssa_update_p (cfun));
6081 /* Record blocks outside the region that are dominated by something
6082 inside. */
6083 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6085 if (exit->src->count)
6087 total_count = exit->src->count;
6088 exit_count = exit->count;
6089 /* Fix up corner cases, to avoid division by zero or creation of negative
6090 frequencies. */
6091 if (exit_count > total_count)
6092 exit_count = total_count;
6094 else
6096 total_freq = exit->src->frequency;
6097 exit_freq = EDGE_FREQUENCY (exit);
6098 /* Fix up corner cases, to avoid division by zero or creation of negative
6099 frequencies. */
6100 if (total_freq == 0)
6101 total_freq = 1;
6102 if (exit_freq > total_freq)
6103 exit_freq = total_freq;
6106 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6107 split_edge_bb_loc (exit), true);
6108 if (total_count)
6110 scale_bbs_frequencies_gcov_type (region, n_region,
6111 total_count - exit_count,
6112 total_count);
6113 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6114 total_count);
6116 else
6118 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6119 total_freq);
6120 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6123 /* Create the switch block, and put the exit condition to it. */
6124 entry_bb = entry->dest;
6125 nentry_bb = get_bb_copy (entry_bb);
6126 if (!last_stmt (entry->src)
6127 || !stmt_ends_bb_p (last_stmt (entry->src)))
6128 switch_bb = entry->src;
6129 else
6130 switch_bb = split_edge (entry);
6131 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6133 gsi = gsi_last_bb (switch_bb);
6134 cond_stmt = last_stmt (exit->src);
6135 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6136 cond_stmt = gimple_copy (cond_stmt);
6138 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6140 sorig = single_succ_edge (switch_bb);
6141 sorig->flags = exits[1]->flags;
6142 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6144 /* Register the new edge from SWITCH_BB in loop exit lists. */
6145 rescan_loop_exit (snew, true, false);
6147 /* Add the PHI node arguments. */
6148 add_phi_args_after_copy (region_copy, n_region, snew);
6150 /* Get rid of now superfluous conditions and associated edges (and phi node
6151 arguments). */
6152 exit_bb = exit->dest;
6154 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6155 PENDING_STMT (e) = NULL;
6157 /* The latch of ORIG_LOOP was copied, and so was the backedge
6158 to the original header. We redirect this backedge to EXIT_BB. */
6159 for (i = 0; i < n_region; i++)
6160 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6162 gcc_assert (single_succ_edge (region_copy[i]));
6163 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6164 PENDING_STMT (e) = NULL;
6165 for (psi = gsi_start_phis (exit_bb);
6166 !gsi_end_p (psi);
6167 gsi_next (&psi))
6169 phi = gsi_stmt (psi);
6170 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6171 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6174 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6175 PENDING_STMT (e) = NULL;
6177 /* Anything that is outside of the region, but was dominated by something
6178 inside needs to update dominance info. */
6179 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6180 doms.release ();
6181 /* Update the SSA web. */
6182 update_ssa (TODO_update_ssa);
6184 if (free_region_copy)
6185 free (region_copy);
6187 free_original_copy_tables ();
6188 return true;
6191 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6192 adding blocks when the dominator traversal reaches EXIT. This
6193 function silently assumes that ENTRY strictly dominates EXIT. */
6195 void
6196 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6197 vec<basic_block> *bbs_p)
6199 basic_block son;
6201 for (son = first_dom_son (CDI_DOMINATORS, entry);
6202 son;
6203 son = next_dom_son (CDI_DOMINATORS, son))
6205 bbs_p->safe_push (son);
6206 if (son != exit)
6207 gather_blocks_in_sese_region (son, exit, bbs_p);
6211 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6212 The duplicates are recorded in VARS_MAP. */
6214 static void
6215 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6216 tree to_context)
6218 tree t = *tp, new_t;
6219 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6220 void **loc;
6222 if (DECL_CONTEXT (t) == to_context)
6223 return;
6225 loc = pointer_map_contains (vars_map, t);
6227 if (!loc)
6229 loc = pointer_map_insert (vars_map, t);
6231 if (SSA_VAR_P (t))
6233 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6234 add_local_decl (f, new_t);
6236 else
6238 gcc_assert (TREE_CODE (t) == CONST_DECL);
6239 new_t = copy_node (t);
6241 DECL_CONTEXT (new_t) = to_context;
6243 *loc = new_t;
6245 else
6246 new_t = (tree) *loc;
6248 *tp = new_t;
6252 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6253 VARS_MAP maps old ssa names and var_decls to the new ones. */
6255 static tree
6256 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6257 tree to_context)
6259 void **loc;
6260 tree new_name;
6262 gcc_assert (!virtual_operand_p (name));
6264 loc = pointer_map_contains (vars_map, name);
6266 if (!loc)
6268 tree decl = SSA_NAME_VAR (name);
6269 if (decl)
6271 replace_by_duplicate_decl (&decl, vars_map, to_context);
6272 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6273 decl, SSA_NAME_DEF_STMT (name));
6274 if (SSA_NAME_IS_DEFAULT_DEF (name))
6275 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6276 decl, new_name);
6278 else
6279 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6280 name, SSA_NAME_DEF_STMT (name));
6282 loc = pointer_map_insert (vars_map, name);
6283 *loc = new_name;
6285 else
6286 new_name = (tree) *loc;
6288 return new_name;
6291 struct move_stmt_d
6293 tree orig_block;
6294 tree new_block;
6295 tree from_context;
6296 tree to_context;
6297 struct pointer_map_t *vars_map;
6298 htab_t new_label_map;
6299 struct pointer_map_t *eh_map;
6300 bool remap_decls_p;
6303 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6304 contained in *TP if it has been ORIG_BLOCK previously and change the
6305 DECL_CONTEXT of every local variable referenced in *TP. */
6307 static tree
6308 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6310 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6311 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6312 tree t = *tp;
6314 if (EXPR_P (t))
6316 tree block = TREE_BLOCK (t);
6317 if (block == p->orig_block
6318 || (p->orig_block == NULL_TREE
6319 && block != NULL_TREE))
6320 TREE_SET_BLOCK (t, p->new_block);
6321 #ifdef ENABLE_CHECKING
6322 else if (block != NULL_TREE)
6324 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6325 block = BLOCK_SUPERCONTEXT (block);
6326 gcc_assert (block == p->orig_block);
6328 #endif
6330 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6332 if (TREE_CODE (t) == SSA_NAME)
6333 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6334 else if (TREE_CODE (t) == LABEL_DECL)
6336 if (p->new_label_map)
6338 struct tree_map in, *out;
6339 in.base.from = t;
6340 out = (struct tree_map *)
6341 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6342 if (out)
6343 *tp = t = out->to;
6346 DECL_CONTEXT (t) = p->to_context;
6348 else if (p->remap_decls_p)
6350 /* Replace T with its duplicate. T should no longer appear in the
6351 parent function, so this looks wasteful; however, it may appear
6352 in referenced_vars, and more importantly, as virtual operands of
6353 statements, and in alias lists of other variables. It would be
6354 quite difficult to expunge it from all those places. ??? It might
6355 suffice to do this for addressable variables. */
6356 if ((TREE_CODE (t) == VAR_DECL
6357 && !is_global_var (t))
6358 || TREE_CODE (t) == CONST_DECL)
6359 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6361 *walk_subtrees = 0;
6363 else if (TYPE_P (t))
6364 *walk_subtrees = 0;
6366 return NULL_TREE;
6369 /* Helper for move_stmt_r. Given an EH region number for the source
6370 function, map that to the duplicate EH regio number in the dest. */
6372 static int
6373 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6375 eh_region old_r, new_r;
6376 void **slot;
6378 old_r = get_eh_region_from_number (old_nr);
6379 slot = pointer_map_contains (p->eh_map, old_r);
6380 new_r = (eh_region) *slot;
6382 return new_r->index;
6385 /* Similar, but operate on INTEGER_CSTs. */
6387 static tree
6388 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6390 int old_nr, new_nr;
6392 old_nr = tree_to_shwi (old_t_nr);
6393 new_nr = move_stmt_eh_region_nr (old_nr, p);
6395 return build_int_cst (integer_type_node, new_nr);
6398 /* Like move_stmt_op, but for gimple statements.
6400 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6401 contained in the current statement in *GSI_P and change the
6402 DECL_CONTEXT of every local variable referenced in the current
6403 statement. */
6405 static tree
6406 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6407 struct walk_stmt_info *wi)
6409 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6410 gimple stmt = gsi_stmt (*gsi_p);
6411 tree block = gimple_block (stmt);
6413 if (block == p->orig_block
6414 || (p->orig_block == NULL_TREE
6415 && block != NULL_TREE))
6416 gimple_set_block (stmt, p->new_block);
6418 switch (gimple_code (stmt))
6420 case GIMPLE_CALL:
6421 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6423 tree r, fndecl = gimple_call_fndecl (stmt);
6424 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6425 switch (DECL_FUNCTION_CODE (fndecl))
6427 case BUILT_IN_EH_COPY_VALUES:
6428 r = gimple_call_arg (stmt, 1);
6429 r = move_stmt_eh_region_tree_nr (r, p);
6430 gimple_call_set_arg (stmt, 1, r);
6431 /* FALLTHRU */
6433 case BUILT_IN_EH_POINTER:
6434 case BUILT_IN_EH_FILTER:
6435 r = gimple_call_arg (stmt, 0);
6436 r = move_stmt_eh_region_tree_nr (r, p);
6437 gimple_call_set_arg (stmt, 0, r);
6438 break;
6440 default:
6441 break;
6444 break;
6446 case GIMPLE_RESX:
6448 int r = gimple_resx_region (stmt);
6449 r = move_stmt_eh_region_nr (r, p);
6450 gimple_resx_set_region (stmt, r);
6452 break;
6454 case GIMPLE_EH_DISPATCH:
6456 int r = gimple_eh_dispatch_region (stmt);
6457 r = move_stmt_eh_region_nr (r, p);
6458 gimple_eh_dispatch_set_region (stmt, r);
6460 break;
6462 case GIMPLE_OMP_RETURN:
6463 case GIMPLE_OMP_CONTINUE:
6464 break;
6465 default:
6466 if (is_gimple_omp (stmt))
6468 /* Do not remap variables inside OMP directives. Variables
6469 referenced in clauses and directive header belong to the
6470 parent function and should not be moved into the child
6471 function. */
6472 bool save_remap_decls_p = p->remap_decls_p;
6473 p->remap_decls_p = false;
6474 *handled_ops_p = true;
6476 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6477 move_stmt_op, wi);
6479 p->remap_decls_p = save_remap_decls_p;
6481 break;
6484 return NULL_TREE;
6487 /* Move basic block BB from function CFUN to function DEST_FN. The
6488 block is moved out of the original linked list and placed after
6489 block AFTER in the new list. Also, the block is removed from the
6490 original array of blocks and placed in DEST_FN's array of blocks.
6491 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6492 updated to reflect the moved edges.
6494 The local variables are remapped to new instances, VARS_MAP is used
6495 to record the mapping. */
6497 static void
6498 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6499 basic_block after, bool update_edge_count_p,
6500 struct move_stmt_d *d)
6502 struct control_flow_graph *cfg;
6503 edge_iterator ei;
6504 edge e;
6505 gimple_stmt_iterator si;
6506 unsigned old_len, new_len;
6508 /* Remove BB from dominance structures. */
6509 delete_from_dominance_info (CDI_DOMINATORS, bb);
6511 /* Move BB from its current loop to the copy in the new function. */
6512 if (current_loops)
6514 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6515 if (new_loop)
6516 bb->loop_father = new_loop;
6519 /* Link BB to the new linked list. */
6520 move_block_after (bb, after);
6522 /* Update the edge count in the corresponding flowgraphs. */
6523 if (update_edge_count_p)
6524 FOR_EACH_EDGE (e, ei, bb->succs)
6526 cfun->cfg->x_n_edges--;
6527 dest_cfun->cfg->x_n_edges++;
6530 /* Remove BB from the original basic block array. */
6531 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6532 cfun->cfg->x_n_basic_blocks--;
6534 /* Grow DEST_CFUN's basic block array if needed. */
6535 cfg = dest_cfun->cfg;
6536 cfg->x_n_basic_blocks++;
6537 if (bb->index >= cfg->x_last_basic_block)
6538 cfg->x_last_basic_block = bb->index + 1;
6540 old_len = vec_safe_length (cfg->x_basic_block_info);
6541 if ((unsigned) cfg->x_last_basic_block >= old_len)
6543 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6544 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6547 (*cfg->x_basic_block_info)[bb->index] = bb;
6549 /* Remap the variables in phi nodes. */
6550 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6552 gimple phi = gsi_stmt (si);
6553 use_operand_p use;
6554 tree op = PHI_RESULT (phi);
6555 ssa_op_iter oi;
6556 unsigned i;
6558 if (virtual_operand_p (op))
6560 /* Remove the phi nodes for virtual operands (alias analysis will be
6561 run for the new function, anyway). */
6562 remove_phi_node (&si, true);
6563 continue;
6566 SET_PHI_RESULT (phi,
6567 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6568 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6570 op = USE_FROM_PTR (use);
6571 if (TREE_CODE (op) == SSA_NAME)
6572 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6575 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6577 location_t locus = gimple_phi_arg_location (phi, i);
6578 tree block = LOCATION_BLOCK (locus);
6580 if (locus == UNKNOWN_LOCATION)
6581 continue;
6582 if (d->orig_block == NULL_TREE || block == d->orig_block)
6584 if (d->new_block == NULL_TREE)
6585 locus = LOCATION_LOCUS (locus);
6586 else
6587 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6588 gimple_phi_arg_set_location (phi, i, locus);
6592 gsi_next (&si);
6595 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6597 gimple stmt = gsi_stmt (si);
6598 struct walk_stmt_info wi;
6600 memset (&wi, 0, sizeof (wi));
6601 wi.info = d;
6602 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6604 if (gimple_code (stmt) == GIMPLE_LABEL)
6606 tree label = gimple_label_label (stmt);
6607 int uid = LABEL_DECL_UID (label);
6609 gcc_assert (uid > -1);
6611 old_len = vec_safe_length (cfg->x_label_to_block_map);
6612 if (old_len <= (unsigned) uid)
6614 new_len = 3 * uid / 2 + 1;
6615 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6618 (*cfg->x_label_to_block_map)[uid] = bb;
6619 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6621 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6623 if (uid >= dest_cfun->cfg->last_label_uid)
6624 dest_cfun->cfg->last_label_uid = uid + 1;
6627 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6628 remove_stmt_from_eh_lp_fn (cfun, stmt);
6630 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6631 gimple_remove_stmt_histograms (cfun, stmt);
6633 /* We cannot leave any operands allocated from the operand caches of
6634 the current function. */
6635 free_stmt_operands (cfun, stmt);
6636 push_cfun (dest_cfun);
6637 update_stmt (stmt);
6638 pop_cfun ();
6641 FOR_EACH_EDGE (e, ei, bb->succs)
6642 if (e->goto_locus != UNKNOWN_LOCATION)
6644 tree block = LOCATION_BLOCK (e->goto_locus);
6645 if (d->orig_block == NULL_TREE
6646 || block == d->orig_block)
6647 e->goto_locus = d->new_block ?
6648 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6649 LOCATION_LOCUS (e->goto_locus);
6653 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6654 the outermost EH region. Use REGION as the incoming base EH region. */
6656 static eh_region
6657 find_outermost_region_in_block (struct function *src_cfun,
6658 basic_block bb, eh_region region)
6660 gimple_stmt_iterator si;
6662 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6664 gimple stmt = gsi_stmt (si);
6665 eh_region stmt_region;
6666 int lp_nr;
6668 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6669 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6670 if (stmt_region)
6672 if (region == NULL)
6673 region = stmt_region;
6674 else if (stmt_region != region)
6676 region = eh_region_outermost (src_cfun, stmt_region, region);
6677 gcc_assert (region != NULL);
6682 return region;
6685 static tree
6686 new_label_mapper (tree decl, void *data)
6688 htab_t hash = (htab_t) data;
6689 struct tree_map *m;
6690 void **slot;
6692 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6694 m = XNEW (struct tree_map);
6695 m->hash = DECL_UID (decl);
6696 m->base.from = decl;
6697 m->to = create_artificial_label (UNKNOWN_LOCATION);
6698 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6699 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6700 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6702 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6703 gcc_assert (*slot == NULL);
6705 *slot = m;
6707 return m->to;
6710 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6711 subblocks. */
6713 static void
6714 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6715 tree to_context)
6717 tree *tp, t;
6719 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6721 t = *tp;
6722 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6723 continue;
6724 replace_by_duplicate_decl (&t, vars_map, to_context);
6725 if (t != *tp)
6727 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6729 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6730 DECL_HAS_VALUE_EXPR_P (t) = 1;
6732 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6733 *tp = t;
6737 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6738 replace_block_vars_by_duplicates (block, vars_map, to_context);
6741 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6742 from FN1 to FN2. */
6744 static void
6745 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6746 struct loop *loop)
6748 /* Discard it from the old loop array. */
6749 (*get_loops (fn1))[loop->num] = NULL;
6751 /* Place it in the new loop array, assigning it a new number. */
6752 loop->num = number_of_loops (fn2);
6753 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6755 /* Recurse to children. */
6756 for (loop = loop->inner; loop; loop = loop->next)
6757 fixup_loop_arrays_after_move (fn1, fn2, loop);
6760 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6761 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6762 single basic block in the original CFG and the new basic block is
6763 returned. DEST_CFUN must not have a CFG yet.
6765 Note that the region need not be a pure SESE region. Blocks inside
6766 the region may contain calls to abort/exit. The only restriction
6767 is that ENTRY_BB should be the only entry point and it must
6768 dominate EXIT_BB.
6770 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6771 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6772 to the new function.
6774 All local variables referenced in the region are assumed to be in
6775 the corresponding BLOCK_VARS and unexpanded variable lists
6776 associated with DEST_CFUN. */
6778 basic_block
6779 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6780 basic_block exit_bb, tree orig_block)
6782 vec<basic_block> bbs, dom_bbs;
6783 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6784 basic_block after, bb, *entry_pred, *exit_succ, abb;
6785 struct function *saved_cfun = cfun;
6786 int *entry_flag, *exit_flag;
6787 unsigned *entry_prob, *exit_prob;
6788 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6789 edge e;
6790 edge_iterator ei;
6791 htab_t new_label_map;
6792 struct pointer_map_t *vars_map, *eh_map;
6793 struct loop *loop = entry_bb->loop_father;
6794 struct loop *loop0 = get_loop (saved_cfun, 0);
6795 struct move_stmt_d d;
6797 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6798 region. */
6799 gcc_assert (entry_bb != exit_bb
6800 && (!exit_bb
6801 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6803 /* Collect all the blocks in the region. Manually add ENTRY_BB
6804 because it won't be added by dfs_enumerate_from. */
6805 bbs.create (0);
6806 bbs.safe_push (entry_bb);
6807 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6809 /* The blocks that used to be dominated by something in BBS will now be
6810 dominated by the new block. */
6811 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6812 bbs.address (),
6813 bbs.length ());
6815 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6816 the predecessor edges to ENTRY_BB and the successor edges to
6817 EXIT_BB so that we can re-attach them to the new basic block that
6818 will replace the region. */
6819 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6820 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6821 entry_flag = XNEWVEC (int, num_entry_edges);
6822 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6823 i = 0;
6824 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6826 entry_prob[i] = e->probability;
6827 entry_flag[i] = e->flags;
6828 entry_pred[i++] = e->src;
6829 remove_edge (e);
6832 if (exit_bb)
6834 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6835 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6836 exit_flag = XNEWVEC (int, num_exit_edges);
6837 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6838 i = 0;
6839 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6841 exit_prob[i] = e->probability;
6842 exit_flag[i] = e->flags;
6843 exit_succ[i++] = e->dest;
6844 remove_edge (e);
6847 else
6849 num_exit_edges = 0;
6850 exit_succ = NULL;
6851 exit_flag = NULL;
6852 exit_prob = NULL;
6855 /* Switch context to the child function to initialize DEST_FN's CFG. */
6856 gcc_assert (dest_cfun->cfg == NULL);
6857 push_cfun (dest_cfun);
6859 init_empty_tree_cfg ();
6861 /* Initialize EH information for the new function. */
6862 eh_map = NULL;
6863 new_label_map = NULL;
6864 if (saved_cfun->eh)
6866 eh_region region = NULL;
6868 FOR_EACH_VEC_ELT (bbs, i, bb)
6869 region = find_outermost_region_in_block (saved_cfun, bb, region);
6871 init_eh_for_function ();
6872 if (region != NULL)
6874 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6875 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6876 new_label_mapper, new_label_map);
6880 /* Initialize an empty loop tree. */
6881 struct loops *loops = ggc_alloc_cleared_loops ();
6882 init_loops_structure (dest_cfun, loops, 1);
6883 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6884 set_loops_for_fn (dest_cfun, loops);
6886 /* Move the outlined loop tree part. */
6887 num_nodes = bbs.length ();
6888 FOR_EACH_VEC_ELT (bbs, i, bb)
6890 if (bb->loop_father->header == bb)
6892 struct loop *this_loop = bb->loop_father;
6893 struct loop *outer = loop_outer (this_loop);
6894 if (outer == loop
6895 /* If the SESE region contains some bbs ending with
6896 a noreturn call, those are considered to belong
6897 to the outermost loop in saved_cfun, rather than
6898 the entry_bb's loop_father. */
6899 || outer == loop0)
6901 if (outer != loop)
6902 num_nodes -= this_loop->num_nodes;
6903 flow_loop_tree_node_remove (bb->loop_father);
6904 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6905 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6908 else if (bb->loop_father == loop0 && loop0 != loop)
6909 num_nodes--;
6911 /* Remove loop exits from the outlined region. */
6912 if (loops_for_fn (saved_cfun)->exits)
6913 FOR_EACH_EDGE (e, ei, bb->succs)
6915 void **slot = htab_find_slot_with_hash
6916 (loops_for_fn (saved_cfun)->exits, e,
6917 htab_hash_pointer (e), NO_INSERT);
6918 if (slot)
6919 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6924 /* Adjust the number of blocks in the tree root of the outlined part. */
6925 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6927 /* Setup a mapping to be used by move_block_to_fn. */
6928 loop->aux = current_loops->tree_root;
6929 loop0->aux = current_loops->tree_root;
6931 pop_cfun ();
6933 /* Move blocks from BBS into DEST_CFUN. */
6934 gcc_assert (bbs.length () >= 2);
6935 after = dest_cfun->cfg->x_entry_block_ptr;
6936 vars_map = pointer_map_create ();
6938 memset (&d, 0, sizeof (d));
6939 d.orig_block = orig_block;
6940 d.new_block = DECL_INITIAL (dest_cfun->decl);
6941 d.from_context = cfun->decl;
6942 d.to_context = dest_cfun->decl;
6943 d.vars_map = vars_map;
6944 d.new_label_map = new_label_map;
6945 d.eh_map = eh_map;
6946 d.remap_decls_p = true;
6948 FOR_EACH_VEC_ELT (bbs, i, bb)
6950 /* No need to update edge counts on the last block. It has
6951 already been updated earlier when we detached the region from
6952 the original CFG. */
6953 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6954 after = bb;
6957 loop->aux = NULL;
6958 loop0->aux = NULL;
6959 /* Loop sizes are no longer correct, fix them up. */
6960 loop->num_nodes -= num_nodes;
6961 for (struct loop *outer = loop_outer (loop);
6962 outer; outer = loop_outer (outer))
6963 outer->num_nodes -= num_nodes;
6964 loop0->num_nodes -= bbs.length () - num_nodes;
6966 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6968 struct loop *aloop;
6969 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6970 if (aloop != NULL)
6972 if (aloop->simduid)
6974 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6975 d.to_context);
6976 dest_cfun->has_simduid_loops = true;
6978 if (aloop->force_vect)
6979 dest_cfun->has_force_vect_loops = true;
6983 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6984 if (orig_block)
6986 tree block;
6987 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6988 == NULL_TREE);
6989 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6990 = BLOCK_SUBBLOCKS (orig_block);
6991 for (block = BLOCK_SUBBLOCKS (orig_block);
6992 block; block = BLOCK_CHAIN (block))
6993 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6994 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6997 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6998 vars_map, dest_cfun->decl);
7000 if (new_label_map)
7001 htab_delete (new_label_map);
7002 if (eh_map)
7003 pointer_map_destroy (eh_map);
7004 pointer_map_destroy (vars_map);
7006 /* Rewire the entry and exit blocks. The successor to the entry
7007 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7008 the child function. Similarly, the predecessor of DEST_FN's
7009 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7010 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7011 various CFG manipulation function get to the right CFG.
7013 FIXME, this is silly. The CFG ought to become a parameter to
7014 these helpers. */
7015 push_cfun (dest_cfun);
7016 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7017 if (exit_bb)
7018 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7019 pop_cfun ();
7021 /* Back in the original function, the SESE region has disappeared,
7022 create a new basic block in its place. */
7023 bb = create_empty_bb (entry_pred[0]);
7024 if (current_loops)
7025 add_bb_to_loop (bb, loop);
7026 for (i = 0; i < num_entry_edges; i++)
7028 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7029 e->probability = entry_prob[i];
7032 for (i = 0; i < num_exit_edges; i++)
7034 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7035 e->probability = exit_prob[i];
7038 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7039 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7040 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7041 dom_bbs.release ();
7043 if (exit_bb)
7045 free (exit_prob);
7046 free (exit_flag);
7047 free (exit_succ);
7049 free (entry_prob);
7050 free (entry_flag);
7051 free (entry_pred);
7052 bbs.release ();
7054 return bb;
7058 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7061 void
7062 dump_function_to_file (tree fndecl, FILE *file, int flags)
7064 tree arg, var, old_current_fndecl = current_function_decl;
7065 struct function *dsf;
7066 bool ignore_topmost_bind = false, any_var = false;
7067 basic_block bb;
7068 tree chain;
7069 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7070 && decl_is_tm_clone (fndecl));
7071 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7073 current_function_decl = fndecl;
7074 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7076 arg = DECL_ARGUMENTS (fndecl);
7077 while (arg)
7079 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7080 fprintf (file, " ");
7081 print_generic_expr (file, arg, dump_flags);
7082 if (flags & TDF_VERBOSE)
7083 print_node (file, "", arg, 4);
7084 if (DECL_CHAIN (arg))
7085 fprintf (file, ", ");
7086 arg = DECL_CHAIN (arg);
7088 fprintf (file, ")\n");
7090 if (flags & TDF_VERBOSE)
7091 print_node (file, "", fndecl, 2);
7093 dsf = DECL_STRUCT_FUNCTION (fndecl);
7094 if (dsf && (flags & TDF_EH))
7095 dump_eh_tree (file, dsf);
7097 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7099 dump_node (fndecl, TDF_SLIM | flags, file);
7100 current_function_decl = old_current_fndecl;
7101 return;
7104 /* When GIMPLE is lowered, the variables are no longer available in
7105 BIND_EXPRs, so display them separately. */
7106 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7108 unsigned ix;
7109 ignore_topmost_bind = true;
7111 fprintf (file, "{\n");
7112 if (!vec_safe_is_empty (fun->local_decls))
7113 FOR_EACH_LOCAL_DECL (fun, ix, var)
7115 print_generic_decl (file, var, flags);
7116 if (flags & TDF_VERBOSE)
7117 print_node (file, "", var, 4);
7118 fprintf (file, "\n");
7120 any_var = true;
7122 if (gimple_in_ssa_p (cfun))
7123 for (ix = 1; ix < num_ssa_names; ++ix)
7125 tree name = ssa_name (ix);
7126 if (name && !SSA_NAME_VAR (name))
7128 fprintf (file, " ");
7129 print_generic_expr (file, TREE_TYPE (name), flags);
7130 fprintf (file, " ");
7131 print_generic_expr (file, name, flags);
7132 fprintf (file, ";\n");
7134 any_var = true;
7139 if (fun && fun->decl == fndecl
7140 && fun->cfg
7141 && basic_block_info_for_fn (fun))
7143 /* If the CFG has been built, emit a CFG-based dump. */
7144 if (!ignore_topmost_bind)
7145 fprintf (file, "{\n");
7147 if (any_var && n_basic_blocks_for_fn (fun))
7148 fprintf (file, "\n");
7150 FOR_EACH_BB_FN (bb, fun)
7151 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7153 fprintf (file, "}\n");
7155 else if (DECL_SAVED_TREE (fndecl) == NULL)
7157 /* The function is now in GIMPLE form but the CFG has not been
7158 built yet. Emit the single sequence of GIMPLE statements
7159 that make up its body. */
7160 gimple_seq body = gimple_body (fndecl);
7162 if (gimple_seq_first_stmt (body)
7163 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7164 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7165 print_gimple_seq (file, body, 0, flags);
7166 else
7168 if (!ignore_topmost_bind)
7169 fprintf (file, "{\n");
7171 if (any_var)
7172 fprintf (file, "\n");
7174 print_gimple_seq (file, body, 2, flags);
7175 fprintf (file, "}\n");
7178 else
7180 int indent;
7182 /* Make a tree based dump. */
7183 chain = DECL_SAVED_TREE (fndecl);
7184 if (chain && TREE_CODE (chain) == BIND_EXPR)
7186 if (ignore_topmost_bind)
7188 chain = BIND_EXPR_BODY (chain);
7189 indent = 2;
7191 else
7192 indent = 0;
7194 else
7196 if (!ignore_topmost_bind)
7197 fprintf (file, "{\n");
7198 indent = 2;
7201 if (any_var)
7202 fprintf (file, "\n");
7204 print_generic_stmt_indented (file, chain, flags, indent);
7205 if (ignore_topmost_bind)
7206 fprintf (file, "}\n");
7209 if (flags & TDF_ENUMERATE_LOCALS)
7210 dump_enumerated_decls (file, flags);
7211 fprintf (file, "\n\n");
7213 current_function_decl = old_current_fndecl;
7216 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7218 DEBUG_FUNCTION void
7219 debug_function (tree fn, int flags)
7221 dump_function_to_file (fn, stderr, flags);
7225 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7227 static void
7228 print_pred_bbs (FILE *file, basic_block bb)
7230 edge e;
7231 edge_iterator ei;
7233 FOR_EACH_EDGE (e, ei, bb->preds)
7234 fprintf (file, "bb_%d ", e->src->index);
7238 /* Print on FILE the indexes for the successors of basic_block BB. */
7240 static void
7241 print_succ_bbs (FILE *file, basic_block bb)
7243 edge e;
7244 edge_iterator ei;
7246 FOR_EACH_EDGE (e, ei, bb->succs)
7247 fprintf (file, "bb_%d ", e->dest->index);
7250 /* Print to FILE the basic block BB following the VERBOSITY level. */
7252 void
7253 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7255 char *s_indent = (char *) alloca ((size_t) indent + 1);
7256 memset ((void *) s_indent, ' ', (size_t) indent);
7257 s_indent[indent] = '\0';
7259 /* Print basic_block's header. */
7260 if (verbosity >= 2)
7262 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7263 print_pred_bbs (file, bb);
7264 fprintf (file, "}, succs = {");
7265 print_succ_bbs (file, bb);
7266 fprintf (file, "})\n");
7269 /* Print basic_block's body. */
7270 if (verbosity >= 3)
7272 fprintf (file, "%s {\n", s_indent);
7273 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7274 fprintf (file, "%s }\n", s_indent);
7278 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7280 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7281 VERBOSITY level this outputs the contents of the loop, or just its
7282 structure. */
7284 static void
7285 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7287 char *s_indent;
7288 basic_block bb;
7290 if (loop == NULL)
7291 return;
7293 s_indent = (char *) alloca ((size_t) indent + 1);
7294 memset ((void *) s_indent, ' ', (size_t) indent);
7295 s_indent[indent] = '\0';
7297 /* Print loop's header. */
7298 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7299 if (loop->header)
7300 fprintf (file, "header = %d", loop->header->index);
7301 else
7303 fprintf (file, "deleted)\n");
7304 return;
7306 if (loop->latch)
7307 fprintf (file, ", latch = %d", loop->latch->index);
7308 else
7309 fprintf (file, ", multiple latches");
7310 fprintf (file, ", niter = ");
7311 print_generic_expr (file, loop->nb_iterations, 0);
7313 if (loop->any_upper_bound)
7315 fprintf (file, ", upper_bound = ");
7316 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7319 if (loop->any_estimate)
7321 fprintf (file, ", estimate = ");
7322 dump_double_int (file, loop->nb_iterations_estimate, true);
7324 fprintf (file, ")\n");
7326 /* Print loop's body. */
7327 if (verbosity >= 1)
7329 fprintf (file, "%s{\n", s_indent);
7330 FOR_EACH_BB_FN (bb, cfun)
7331 if (bb->loop_father == loop)
7332 print_loops_bb (file, bb, indent, verbosity);
7334 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7335 fprintf (file, "%s}\n", s_indent);
7339 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7340 spaces. Following VERBOSITY level this outputs the contents of the
7341 loop, or just its structure. */
7343 static void
7344 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7345 int verbosity)
7347 if (loop == NULL)
7348 return;
7350 print_loop (file, loop, indent, verbosity);
7351 print_loop_and_siblings (file, loop->next, indent, verbosity);
7354 /* Follow a CFG edge from the entry point of the program, and on entry
7355 of a loop, pretty print the loop structure on FILE. */
7357 void
7358 print_loops (FILE *file, int verbosity)
7360 basic_block bb;
7362 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7363 if (bb && bb->loop_father)
7364 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7367 /* Dump a loop. */
7369 DEBUG_FUNCTION void
7370 debug (struct loop &ref)
7372 print_loop (stderr, &ref, 0, /*verbosity*/0);
7375 DEBUG_FUNCTION void
7376 debug (struct loop *ptr)
7378 if (ptr)
7379 debug (*ptr);
7380 else
7381 fprintf (stderr, "<nil>\n");
7384 /* Dump a loop verbosely. */
7386 DEBUG_FUNCTION void
7387 debug_verbose (struct loop &ref)
7389 print_loop (stderr, &ref, 0, /*verbosity*/3);
7392 DEBUG_FUNCTION void
7393 debug_verbose (struct loop *ptr)
7395 if (ptr)
7396 debug (*ptr);
7397 else
7398 fprintf (stderr, "<nil>\n");
7402 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7404 DEBUG_FUNCTION void
7405 debug_loops (int verbosity)
7407 print_loops (stderr, verbosity);
7410 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7412 DEBUG_FUNCTION void
7413 debug_loop (struct loop *loop, int verbosity)
7415 print_loop (stderr, loop, 0, verbosity);
7418 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7419 level. */
7421 DEBUG_FUNCTION void
7422 debug_loop_num (unsigned num, int verbosity)
7424 debug_loop (get_loop (cfun, num), verbosity);
7427 /* Return true if BB ends with a call, possibly followed by some
7428 instructions that must stay with the call. Return false,
7429 otherwise. */
7431 static bool
7432 gimple_block_ends_with_call_p (basic_block bb)
7434 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7435 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7439 /* Return true if BB ends with a conditional branch. Return false,
7440 otherwise. */
7442 static bool
7443 gimple_block_ends_with_condjump_p (const_basic_block bb)
7445 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7446 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7450 /* Return true if we need to add fake edge to exit at statement T.
7451 Helper function for gimple_flow_call_edges_add. */
7453 static bool
7454 need_fake_edge_p (gimple t)
7456 tree fndecl = NULL_TREE;
7457 int call_flags = 0;
7459 /* NORETURN and LONGJMP calls already have an edge to exit.
7460 CONST and PURE calls do not need one.
7461 We don't currently check for CONST and PURE here, although
7462 it would be a good idea, because those attributes are
7463 figured out from the RTL in mark_constant_function, and
7464 the counter incrementation code from -fprofile-arcs
7465 leads to different results from -fbranch-probabilities. */
7466 if (is_gimple_call (t))
7468 fndecl = gimple_call_fndecl (t);
7469 call_flags = gimple_call_flags (t);
7472 if (is_gimple_call (t)
7473 && fndecl
7474 && DECL_BUILT_IN (fndecl)
7475 && (call_flags & ECF_NOTHROW)
7476 && !(call_flags & ECF_RETURNS_TWICE)
7477 /* fork() doesn't really return twice, but the effect of
7478 wrapping it in __gcov_fork() which calls __gcov_flush()
7479 and clears the counters before forking has the same
7480 effect as returning twice. Force a fake edge. */
7481 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7482 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7483 return false;
7485 if (is_gimple_call (t))
7487 edge_iterator ei;
7488 edge e;
7489 basic_block bb;
7491 if (!(call_flags & ECF_NORETURN))
7492 return true;
7494 bb = gimple_bb (t);
7495 FOR_EACH_EDGE (e, ei, bb->succs)
7496 if ((e->flags & EDGE_FAKE) == 0)
7497 return true;
7500 if (gimple_code (t) == GIMPLE_ASM
7501 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7502 return true;
7504 return false;
7508 /* Add fake edges to the function exit for any non constant and non
7509 noreturn calls (or noreturn calls with EH/abnormal edges),
7510 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7511 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7512 that were split.
7514 The goal is to expose cases in which entering a basic block does
7515 not imply that all subsequent instructions must be executed. */
7517 static int
7518 gimple_flow_call_edges_add (sbitmap blocks)
7520 int i;
7521 int blocks_split = 0;
7522 int last_bb = last_basic_block_for_fn (cfun);
7523 bool check_last_block = false;
7525 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7526 return 0;
7528 if (! blocks)
7529 check_last_block = true;
7530 else
7531 check_last_block = bitmap_bit_p (blocks,
7532 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7534 /* In the last basic block, before epilogue generation, there will be
7535 a fallthru edge to EXIT. Special care is required if the last insn
7536 of the last basic block is a call because make_edge folds duplicate
7537 edges, which would result in the fallthru edge also being marked
7538 fake, which would result in the fallthru edge being removed by
7539 remove_fake_edges, which would result in an invalid CFG.
7541 Moreover, we can't elide the outgoing fake edge, since the block
7542 profiler needs to take this into account in order to solve the minimal
7543 spanning tree in the case that the call doesn't return.
7545 Handle this by adding a dummy instruction in a new last basic block. */
7546 if (check_last_block)
7548 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7549 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7550 gimple t = NULL;
7552 if (!gsi_end_p (gsi))
7553 t = gsi_stmt (gsi);
7555 if (t && need_fake_edge_p (t))
7557 edge e;
7559 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7560 if (e)
7562 gsi_insert_on_edge (e, gimple_build_nop ());
7563 gsi_commit_edge_inserts ();
7568 /* Now add fake edges to the function exit for any non constant
7569 calls since there is no way that we can determine if they will
7570 return or not... */
7571 for (i = 0; i < last_bb; i++)
7573 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7574 gimple_stmt_iterator gsi;
7575 gimple stmt, last_stmt;
7577 if (!bb)
7578 continue;
7580 if (blocks && !bitmap_bit_p (blocks, i))
7581 continue;
7583 gsi = gsi_last_nondebug_bb (bb);
7584 if (!gsi_end_p (gsi))
7586 last_stmt = gsi_stmt (gsi);
7589 stmt = gsi_stmt (gsi);
7590 if (need_fake_edge_p (stmt))
7592 edge e;
7594 /* The handling above of the final block before the
7595 epilogue should be enough to verify that there is
7596 no edge to the exit block in CFG already.
7597 Calling make_edge in such case would cause us to
7598 mark that edge as fake and remove it later. */
7599 #ifdef ENABLE_CHECKING
7600 if (stmt == last_stmt)
7602 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7603 gcc_assert (e == NULL);
7605 #endif
7607 /* Note that the following may create a new basic block
7608 and renumber the existing basic blocks. */
7609 if (stmt != last_stmt)
7611 e = split_block (bb, stmt);
7612 if (e)
7613 blocks_split++;
7615 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7617 gsi_prev (&gsi);
7619 while (!gsi_end_p (gsi));
7623 if (blocks_split)
7624 verify_flow_info ();
7626 return blocks_split;
7629 /* Removes edge E and all the blocks dominated by it, and updates dominance
7630 information. The IL in E->src needs to be updated separately.
7631 If dominance info is not available, only the edge E is removed.*/
7633 void
7634 remove_edge_and_dominated_blocks (edge e)
7636 vec<basic_block> bbs_to_remove = vNULL;
7637 vec<basic_block> bbs_to_fix_dom = vNULL;
7638 bitmap df, df_idom;
7639 edge f;
7640 edge_iterator ei;
7641 bool none_removed = false;
7642 unsigned i;
7643 basic_block bb, dbb;
7644 bitmap_iterator bi;
7646 if (!dom_info_available_p (CDI_DOMINATORS))
7648 remove_edge (e);
7649 return;
7652 /* No updating is needed for edges to exit. */
7653 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7655 if (cfgcleanup_altered_bbs)
7656 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7657 remove_edge (e);
7658 return;
7661 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7662 that is not dominated by E->dest, then this set is empty. Otherwise,
7663 all the basic blocks dominated by E->dest are removed.
7665 Also, to DF_IDOM we store the immediate dominators of the blocks in
7666 the dominance frontier of E (i.e., of the successors of the
7667 removed blocks, if there are any, and of E->dest otherwise). */
7668 FOR_EACH_EDGE (f, ei, e->dest->preds)
7670 if (f == e)
7671 continue;
7673 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7675 none_removed = true;
7676 break;
7680 df = BITMAP_ALLOC (NULL);
7681 df_idom = BITMAP_ALLOC (NULL);
7683 if (none_removed)
7684 bitmap_set_bit (df_idom,
7685 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7686 else
7688 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7689 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7691 FOR_EACH_EDGE (f, ei, bb->succs)
7693 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7694 bitmap_set_bit (df, f->dest->index);
7697 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7698 bitmap_clear_bit (df, bb->index);
7700 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7702 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7703 bitmap_set_bit (df_idom,
7704 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7708 if (cfgcleanup_altered_bbs)
7710 /* Record the set of the altered basic blocks. */
7711 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7712 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7715 /* Remove E and the cancelled blocks. */
7716 if (none_removed)
7717 remove_edge (e);
7718 else
7720 /* Walk backwards so as to get a chance to substitute all
7721 released DEFs into debug stmts. See
7722 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7723 details. */
7724 for (i = bbs_to_remove.length (); i-- > 0; )
7725 delete_basic_block (bbs_to_remove[i]);
7728 /* Update the dominance information. The immediate dominator may change only
7729 for blocks whose immediate dominator belongs to DF_IDOM:
7731 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7732 removal. Let Z the arbitrary block such that idom(Z) = Y and
7733 Z dominates X after the removal. Before removal, there exists a path P
7734 from Y to X that avoids Z. Let F be the last edge on P that is
7735 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7736 dominates W, and because of P, Z does not dominate W), and W belongs to
7737 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7738 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7740 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7741 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7742 dbb;
7743 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7744 bbs_to_fix_dom.safe_push (dbb);
7747 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7749 BITMAP_FREE (df);
7750 BITMAP_FREE (df_idom);
7751 bbs_to_remove.release ();
7752 bbs_to_fix_dom.release ();
7755 /* Purge dead EH edges from basic block BB. */
7757 bool
7758 gimple_purge_dead_eh_edges (basic_block bb)
7760 bool changed = false;
7761 edge e;
7762 edge_iterator ei;
7763 gimple stmt = last_stmt (bb);
7765 if (stmt && stmt_can_throw_internal (stmt))
7766 return false;
7768 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7770 if (e->flags & EDGE_EH)
7772 remove_edge_and_dominated_blocks (e);
7773 changed = true;
7775 else
7776 ei_next (&ei);
7779 return changed;
7782 /* Purge dead EH edges from basic block listed in BLOCKS. */
7784 bool
7785 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7787 bool changed = false;
7788 unsigned i;
7789 bitmap_iterator bi;
7791 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7793 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7795 /* Earlier gimple_purge_dead_eh_edges could have removed
7796 this basic block already. */
7797 gcc_assert (bb || changed);
7798 if (bb != NULL)
7799 changed |= gimple_purge_dead_eh_edges (bb);
7802 return changed;
7805 /* Purge dead abnormal call edges from basic block BB. */
7807 bool
7808 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7810 bool changed = false;
7811 edge e;
7812 edge_iterator ei;
7813 gimple stmt = last_stmt (bb);
7815 if (!cfun->has_nonlocal_label
7816 && !cfun->calls_setjmp)
7817 return false;
7819 if (stmt && stmt_can_make_abnormal_goto (stmt))
7820 return false;
7822 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7824 if (e->flags & EDGE_ABNORMAL)
7826 if (e->flags & EDGE_FALLTHRU)
7827 e->flags &= ~EDGE_ABNORMAL;
7828 else
7829 remove_edge_and_dominated_blocks (e);
7830 changed = true;
7832 else
7833 ei_next (&ei);
7836 return changed;
7839 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7841 bool
7842 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7844 bool changed = false;
7845 unsigned i;
7846 bitmap_iterator bi;
7848 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7850 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7852 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7853 this basic block already. */
7854 gcc_assert (bb || changed);
7855 if (bb != NULL)
7856 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7859 return changed;
7862 /* This function is called whenever a new edge is created or
7863 redirected. */
7865 static void
7866 gimple_execute_on_growing_pred (edge e)
7868 basic_block bb = e->dest;
7870 if (!gimple_seq_empty_p (phi_nodes (bb)))
7871 reserve_phi_args_for_new_edge (bb);
7874 /* This function is called immediately before edge E is removed from
7875 the edge vector E->dest->preds. */
7877 static void
7878 gimple_execute_on_shrinking_pred (edge e)
7880 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7881 remove_phi_args (e);
7884 /*---------------------------------------------------------------------------
7885 Helper functions for Loop versioning
7886 ---------------------------------------------------------------------------*/
7888 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7889 of 'first'. Both of them are dominated by 'new_head' basic block. When
7890 'new_head' was created by 'second's incoming edge it received phi arguments
7891 on the edge by split_edge(). Later, additional edge 'e' was created to
7892 connect 'new_head' and 'first'. Now this routine adds phi args on this
7893 additional edge 'e' that new_head to second edge received as part of edge
7894 splitting. */
7896 static void
7897 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7898 basic_block new_head, edge e)
7900 gimple phi1, phi2;
7901 gimple_stmt_iterator psi1, psi2;
7902 tree def;
7903 edge e2 = find_edge (new_head, second);
7905 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7906 edge, we should always have an edge from NEW_HEAD to SECOND. */
7907 gcc_assert (e2 != NULL);
7909 /* Browse all 'second' basic block phi nodes and add phi args to
7910 edge 'e' for 'first' head. PHI args are always in correct order. */
7912 for (psi2 = gsi_start_phis (second),
7913 psi1 = gsi_start_phis (first);
7914 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7915 gsi_next (&psi2), gsi_next (&psi1))
7917 phi1 = gsi_stmt (psi1);
7918 phi2 = gsi_stmt (psi2);
7919 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7920 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7925 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7926 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7927 the destination of the ELSE part. */
7929 static void
7930 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7931 basic_block second_head ATTRIBUTE_UNUSED,
7932 basic_block cond_bb, void *cond_e)
7934 gimple_stmt_iterator gsi;
7935 gimple new_cond_expr;
7936 tree cond_expr = (tree) cond_e;
7937 edge e0;
7939 /* Build new conditional expr */
7940 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7941 NULL_TREE, NULL_TREE);
7943 /* Add new cond in cond_bb. */
7944 gsi = gsi_last_bb (cond_bb);
7945 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7947 /* Adjust edges appropriately to connect new head with first head
7948 as well as second head. */
7949 e0 = single_succ_edge (cond_bb);
7950 e0->flags &= ~EDGE_FALLTHRU;
7951 e0->flags |= EDGE_FALSE_VALUE;
7955 /* Do book-keeping of basic block BB for the profile consistency checker.
7956 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7957 then do post-pass accounting. Store the counting in RECORD. */
7958 static void
7959 gimple_account_profile_record (basic_block bb, int after_pass,
7960 struct profile_record *record)
7962 gimple_stmt_iterator i;
7963 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7965 record->size[after_pass]
7966 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7967 if (profile_status_for_fn (cfun) == PROFILE_READ)
7968 record->time[after_pass]
7969 += estimate_num_insns (gsi_stmt (i),
7970 &eni_time_weights) * bb->count;
7971 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
7972 record->time[after_pass]
7973 += estimate_num_insns (gsi_stmt (i),
7974 &eni_time_weights) * bb->frequency;
7978 struct cfg_hooks gimple_cfg_hooks = {
7979 "gimple",
7980 gimple_verify_flow_info,
7981 gimple_dump_bb, /* dump_bb */
7982 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7983 create_bb, /* create_basic_block */
7984 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7985 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7986 gimple_can_remove_branch_p, /* can_remove_branch_p */
7987 remove_bb, /* delete_basic_block */
7988 gimple_split_block, /* split_block */
7989 gimple_move_block_after, /* move_block_after */
7990 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7991 gimple_merge_blocks, /* merge_blocks */
7992 gimple_predict_edge, /* predict_edge */
7993 gimple_predicted_by_p, /* predicted_by_p */
7994 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7995 gimple_duplicate_bb, /* duplicate_block */
7996 gimple_split_edge, /* split_edge */
7997 gimple_make_forwarder_block, /* make_forward_block */
7998 NULL, /* tidy_fallthru_edge */
7999 NULL, /* force_nonfallthru */
8000 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8001 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8002 gimple_flow_call_edges_add, /* flow_call_edges_add */
8003 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8004 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8005 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8006 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8007 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8008 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8009 flush_pending_stmts, /* flush_pending_stmts */
8010 gimple_empty_block_p, /* block_empty_p */
8011 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8012 gimple_account_profile_record,
8016 /* Split all critical edges. */
8018 unsigned int
8019 split_critical_edges (void)
8021 basic_block bb;
8022 edge e;
8023 edge_iterator ei;
8025 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8026 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8027 mappings around the calls to split_edge. */
8028 start_recording_case_labels ();
8029 FOR_ALL_BB_FN (bb, cfun)
8031 FOR_EACH_EDGE (e, ei, bb->succs)
8033 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8034 split_edge (e);
8035 /* PRE inserts statements to edges and expects that
8036 since split_critical_edges was done beforehand, committing edge
8037 insertions will not split more edges. In addition to critical
8038 edges we must split edges that have multiple successors and
8039 end by control flow statements, such as RESX.
8040 Go ahead and split them too. This matches the logic in
8041 gimple_find_edge_insert_loc. */
8042 else if ((!single_pred_p (e->dest)
8043 || !gimple_seq_empty_p (phi_nodes (e->dest))
8044 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8045 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8046 && !(e->flags & EDGE_ABNORMAL))
8048 gimple_stmt_iterator gsi;
8050 gsi = gsi_last_bb (e->src);
8051 if (!gsi_end_p (gsi)
8052 && stmt_ends_bb_p (gsi_stmt (gsi))
8053 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8054 && !gimple_call_builtin_p (gsi_stmt (gsi),
8055 BUILT_IN_RETURN)))
8056 split_edge (e);
8060 end_recording_case_labels ();
8061 return 0;
8064 namespace {
8066 const pass_data pass_data_split_crit_edges =
8068 GIMPLE_PASS, /* type */
8069 "crited", /* name */
8070 OPTGROUP_NONE, /* optinfo_flags */
8071 false, /* has_gate */
8072 true, /* has_execute */
8073 TV_TREE_SPLIT_EDGES, /* tv_id */
8074 PROP_cfg, /* properties_required */
8075 PROP_no_crit_edges, /* properties_provided */
8076 0, /* properties_destroyed */
8077 0, /* todo_flags_start */
8078 TODO_verify_flow, /* todo_flags_finish */
8081 class pass_split_crit_edges : public gimple_opt_pass
8083 public:
8084 pass_split_crit_edges (gcc::context *ctxt)
8085 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8088 /* opt_pass methods: */
8089 unsigned int execute () { return split_critical_edges (); }
8091 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8092 }; // class pass_split_crit_edges
8094 } // anon namespace
8096 gimple_opt_pass *
8097 make_pass_split_crit_edges (gcc::context *ctxt)
8099 return new pass_split_crit_edges (ctxt);
8103 /* Build a ternary operation and gimplify it. Emit code before GSI.
8104 Return the gimple_val holding the result. */
8106 tree
8107 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8108 tree type, tree a, tree b, tree c)
8110 tree ret;
8111 location_t loc = gimple_location (gsi_stmt (*gsi));
8113 ret = fold_build3_loc (loc, code, type, a, b, c);
8114 STRIP_NOPS (ret);
8116 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8117 GSI_SAME_STMT);
8120 /* Build a binary operation and gimplify it. Emit code before GSI.
8121 Return the gimple_val holding the result. */
8123 tree
8124 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8125 tree type, tree a, tree b)
8127 tree ret;
8129 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8130 STRIP_NOPS (ret);
8132 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8133 GSI_SAME_STMT);
8136 /* Build a unary operation and gimplify it. Emit code before GSI.
8137 Return the gimple_val holding the result. */
8139 tree
8140 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8141 tree a)
8143 tree ret;
8145 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8146 STRIP_NOPS (ret);
8148 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8149 GSI_SAME_STMT);
8154 /* Emit return warnings. */
8156 static unsigned int
8157 execute_warn_function_return (void)
8159 source_location location;
8160 gimple last;
8161 edge e;
8162 edge_iterator ei;
8164 if (!targetm.warn_func_return (cfun->decl))
8165 return 0;
8167 /* If we have a path to EXIT, then we do return. */
8168 if (TREE_THIS_VOLATILE (cfun->decl)
8169 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
8171 location = UNKNOWN_LOCATION;
8172 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8174 last = last_stmt (e->src);
8175 if ((gimple_code (last) == GIMPLE_RETURN
8176 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8177 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8178 break;
8180 if (location == UNKNOWN_LOCATION)
8181 location = cfun->function_end_locus;
8182 warning_at (location, 0, "%<noreturn%> function does return");
8185 /* If we see "return;" in some basic block, then we do reach the end
8186 without returning a value. */
8187 else if (warn_return_type
8188 && !TREE_NO_WARNING (cfun->decl)
8189 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
8190 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8192 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8194 gimple last = last_stmt (e->src);
8195 if (gimple_code (last) == GIMPLE_RETURN
8196 && gimple_return_retval (last) == NULL
8197 && !gimple_no_warning_p (last))
8199 location = gimple_location (last);
8200 if (location == UNKNOWN_LOCATION)
8201 location = cfun->function_end_locus;
8202 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8203 TREE_NO_WARNING (cfun->decl) = 1;
8204 break;
8208 return 0;
8212 /* Given a basic block B which ends with a conditional and has
8213 precisely two successors, determine which of the edges is taken if
8214 the conditional is true and which is taken if the conditional is
8215 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8217 void
8218 extract_true_false_edges_from_block (basic_block b,
8219 edge *true_edge,
8220 edge *false_edge)
8222 edge e = EDGE_SUCC (b, 0);
8224 if (e->flags & EDGE_TRUE_VALUE)
8226 *true_edge = e;
8227 *false_edge = EDGE_SUCC (b, 1);
8229 else
8231 *false_edge = e;
8232 *true_edge = EDGE_SUCC (b, 1);
8236 namespace {
8238 const pass_data pass_data_warn_function_return =
8240 GIMPLE_PASS, /* type */
8241 "*warn_function_return", /* name */
8242 OPTGROUP_NONE, /* optinfo_flags */
8243 false, /* has_gate */
8244 true, /* has_execute */
8245 TV_NONE, /* tv_id */
8246 PROP_cfg, /* properties_required */
8247 0, /* properties_provided */
8248 0, /* properties_destroyed */
8249 0, /* todo_flags_start */
8250 0, /* todo_flags_finish */
8253 class pass_warn_function_return : public gimple_opt_pass
8255 public:
8256 pass_warn_function_return (gcc::context *ctxt)
8257 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8260 /* opt_pass methods: */
8261 unsigned int execute () { return execute_warn_function_return (); }
8263 }; // class pass_warn_function_return
8265 } // anon namespace
8267 gimple_opt_pass *
8268 make_pass_warn_function_return (gcc::context *ctxt)
8270 return new pass_warn_function_return (ctxt);
8273 /* Walk a gimplified function and warn for functions whose return value is
8274 ignored and attribute((warn_unused_result)) is set. This is done before
8275 inlining, so we don't have to worry about that. */
8277 static void
8278 do_warn_unused_result (gimple_seq seq)
8280 tree fdecl, ftype;
8281 gimple_stmt_iterator i;
8283 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8285 gimple g = gsi_stmt (i);
8287 switch (gimple_code (g))
8289 case GIMPLE_BIND:
8290 do_warn_unused_result (gimple_bind_body (g));
8291 break;
8292 case GIMPLE_TRY:
8293 do_warn_unused_result (gimple_try_eval (g));
8294 do_warn_unused_result (gimple_try_cleanup (g));
8295 break;
8296 case GIMPLE_CATCH:
8297 do_warn_unused_result (gimple_catch_handler (g));
8298 break;
8299 case GIMPLE_EH_FILTER:
8300 do_warn_unused_result (gimple_eh_filter_failure (g));
8301 break;
8303 case GIMPLE_CALL:
8304 if (gimple_call_lhs (g))
8305 break;
8306 if (gimple_call_internal_p (g))
8307 break;
8309 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8310 LHS. All calls whose value is ignored should be
8311 represented like this. Look for the attribute. */
8312 fdecl = gimple_call_fndecl (g);
8313 ftype = gimple_call_fntype (g);
8315 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8317 location_t loc = gimple_location (g);
8319 if (fdecl)
8320 warning_at (loc, OPT_Wunused_result,
8321 "ignoring return value of %qD, "
8322 "declared with attribute warn_unused_result",
8323 fdecl);
8324 else
8325 warning_at (loc, OPT_Wunused_result,
8326 "ignoring return value of function "
8327 "declared with attribute warn_unused_result");
8329 break;
8331 default:
8332 /* Not a container, not a call, or a call whose value is used. */
8333 break;
8338 static unsigned int
8339 run_warn_unused_result (void)
8341 do_warn_unused_result (gimple_body (current_function_decl));
8342 return 0;
8345 static bool
8346 gate_warn_unused_result (void)
8348 return flag_warn_unused_result;
8351 namespace {
8353 const pass_data pass_data_warn_unused_result =
8355 GIMPLE_PASS, /* type */
8356 "*warn_unused_result", /* name */
8357 OPTGROUP_NONE, /* optinfo_flags */
8358 true, /* has_gate */
8359 true, /* has_execute */
8360 TV_NONE, /* tv_id */
8361 PROP_gimple_any, /* properties_required */
8362 0, /* properties_provided */
8363 0, /* properties_destroyed */
8364 0, /* todo_flags_start */
8365 0, /* todo_flags_finish */
8368 class pass_warn_unused_result : public gimple_opt_pass
8370 public:
8371 pass_warn_unused_result (gcc::context *ctxt)
8372 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8375 /* opt_pass methods: */
8376 bool gate () { return gate_warn_unused_result (); }
8377 unsigned int execute () { return run_warn_unused_result (); }
8379 }; // class pass_warn_unused_result
8381 } // anon namespace
8383 gimple_opt_pass *
8384 make_pass_warn_unused_result (gcc::context *ctxt)
8386 return new pass_warn_unused_result (ctxt);
8389 /* IPA passes, compilation of earlier functions or inlining
8390 might have changed some properties, such as marked functions nothrow,
8391 pure, const or noreturn.
8392 Remove redundant edges and basic blocks, and create new ones if necessary.
8394 This pass can't be executed as stand alone pass from pass manager, because
8395 in between inlining and this fixup the verify_flow_info would fail. */
8397 unsigned int
8398 execute_fixup_cfg (void)
8400 basic_block bb;
8401 gimple_stmt_iterator gsi;
8402 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8403 gcov_type count_scale;
8404 edge e;
8405 edge_iterator ei;
8407 count_scale
8408 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8409 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8411 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8412 cgraph_get_node (current_function_decl)->count;
8413 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8414 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8415 count_scale);
8417 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8418 e->count = apply_scale (e->count, count_scale);
8420 FOR_EACH_BB_FN (bb, cfun)
8422 bb->count = apply_scale (bb->count, count_scale);
8423 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8425 gimple stmt = gsi_stmt (gsi);
8426 tree decl = is_gimple_call (stmt)
8427 ? gimple_call_fndecl (stmt)
8428 : NULL;
8429 if (decl)
8431 int flags = gimple_call_flags (stmt);
8432 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8434 if (gimple_purge_dead_abnormal_call_edges (bb))
8435 todo |= TODO_cleanup_cfg;
8437 if (gimple_in_ssa_p (cfun))
8439 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8440 update_stmt (stmt);
8444 if (flags & ECF_NORETURN
8445 && fixup_noreturn_call (stmt))
8446 todo |= TODO_cleanup_cfg;
8449 if (maybe_clean_eh_stmt (stmt)
8450 && gimple_purge_dead_eh_edges (bb))
8451 todo |= TODO_cleanup_cfg;
8454 FOR_EACH_EDGE (e, ei, bb->succs)
8455 e->count = apply_scale (e->count, count_scale);
8457 /* If we have a basic block with no successors that does not
8458 end with a control statement or a noreturn call end it with
8459 a call to __builtin_unreachable. This situation can occur
8460 when inlining a noreturn call that does in fact return. */
8461 if (EDGE_COUNT (bb->succs) == 0)
8463 gimple stmt = last_stmt (bb);
8464 if (!stmt
8465 || (!is_ctrl_stmt (stmt)
8466 && (!is_gimple_call (stmt)
8467 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8469 stmt = gimple_build_call
8470 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8471 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8472 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8476 if (count_scale != REG_BR_PROB_BASE)
8477 compute_function_frequency ();
8479 /* We just processed all calls. */
8480 if (cfun->gimple_df)
8481 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8483 /* Dump a textual representation of the flowgraph. */
8484 if (dump_file)
8485 gimple_dump_cfg (dump_file, dump_flags);
8487 if (current_loops
8488 && (todo & TODO_cleanup_cfg))
8489 loops_state_set (LOOPS_NEED_FIXUP);
8491 return todo;
8494 namespace {
8496 const pass_data pass_data_fixup_cfg =
8498 GIMPLE_PASS, /* type */
8499 "*free_cfg_annotations", /* name */
8500 OPTGROUP_NONE, /* optinfo_flags */
8501 false, /* has_gate */
8502 true, /* has_execute */
8503 TV_NONE, /* tv_id */
8504 PROP_cfg, /* properties_required */
8505 0, /* properties_provided */
8506 0, /* properties_destroyed */
8507 0, /* todo_flags_start */
8508 0, /* todo_flags_finish */
8511 class pass_fixup_cfg : public gimple_opt_pass
8513 public:
8514 pass_fixup_cfg (gcc::context *ctxt)
8515 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8518 /* opt_pass methods: */
8519 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8520 unsigned int execute () { return execute_fixup_cfg (); }
8522 }; // class pass_fixup_cfg
8524 } // anon namespace
8526 gimple_opt_pass *
8527 make_pass_fixup_cfg (gcc::context *ctxt)
8529 return new pass_fixup_cfg (ctxt);
8532 /* Garbage collection support for edge_def. */
8534 extern void gt_ggc_mx (tree&);
8535 extern void gt_ggc_mx (gimple&);
8536 extern void gt_ggc_mx (rtx&);
8537 extern void gt_ggc_mx (basic_block&);
8539 void
8540 gt_ggc_mx (edge_def *e)
8542 tree block = LOCATION_BLOCK (e->goto_locus);
8543 gt_ggc_mx (e->src);
8544 gt_ggc_mx (e->dest);
8545 if (current_ir_type () == IR_GIMPLE)
8546 gt_ggc_mx (e->insns.g);
8547 else
8548 gt_ggc_mx (e->insns.r);
8549 gt_ggc_mx (block);
8552 /* PCH support for edge_def. */
8554 extern void gt_pch_nx (tree&);
8555 extern void gt_pch_nx (gimple&);
8556 extern void gt_pch_nx (rtx&);
8557 extern void gt_pch_nx (basic_block&);
8559 void
8560 gt_pch_nx (edge_def *e)
8562 tree block = LOCATION_BLOCK (e->goto_locus);
8563 gt_pch_nx (e->src);
8564 gt_pch_nx (e->dest);
8565 if (current_ir_type () == IR_GIMPLE)
8566 gt_pch_nx (e->insns.g);
8567 else
8568 gt_pch_nx (e->insns.r);
8569 gt_pch_nx (block);
8572 void
8573 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8575 tree block = LOCATION_BLOCK (e->goto_locus);
8576 op (&(e->src), cookie);
8577 op (&(e->dest), cookie);
8578 if (current_ir_type () == IR_GIMPLE)
8579 op (&(e->insns.g), cookie);
8580 else
8581 op (&(e->insns.r), cookie);
8582 op (&(block), cookie);