2014-01-30 Alangi Derick <alangiderick@gmail.com>
[official-gcc.git] / gcc / sel-sched.c
blobad4a0aa50206a06b8a45905fdccfd9ef4f9d88f8
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h"
44 #include "ira.h"
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
66 Terminology
67 ===========
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
93 High-level overview
94 ===================
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
116 Computing available expressions
117 ===============================
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
133 Choosing the best expression
134 ============================
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
147 Scheduling the best expression
148 ==============================
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
160 Finalizing the schedule
161 =======================
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
167 Dependence analysis changes
168 ===========================
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
179 Initialization changes
180 ======================
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
191 Target contexts
192 ===============
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
202 Various speedups
203 ================
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
261 /* Definitions of local types and macros. */
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
282 /* What we are searching for. */
283 rtx x;
285 /* The occurrence counter. */
286 int n;
289 typedef struct rtx_search_arg *rtx_search_arg_p;
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
347 /* Local params used in move_op_* functions. */
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
369 /* Destination register. */
370 rtx dest;
372 /* Current C_EXPR. */
373 expr_t c_expr;
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
461 /* Current fences. */
462 flist_t fences;
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
502 /* A vector of expressions is used to be able to sort them. */
503 static vec<expr_t> vec_av_set = vNULL;
505 /* A vector of vinsns is used to hold temporary lists of vinsns. */
506 typedef vec<vinsn_t> vinsn_vec_t;
508 /* This vector has the exprs which may still present in av_sets, but actually
509 can't be moved up due to bookkeeping created during code motion to another
510 fence. See comment near the call to update_and_record_unavailable_insns
511 for the detailed explanations. */
512 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
514 /* This vector has vinsns which are scheduled with renaming on the first fence
515 and then seen on the second. For expressions with such vinsns, target
516 availability information may be wrong. */
517 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
519 /* Vector to store temporary nops inserted in move_op to prevent removal
520 of empty bbs. */
521 static vec<insn_t> vec_temp_moveop_nops = vNULL;
523 /* These bitmaps record original instructions scheduled on the current
524 iteration and bookkeeping copies created by them. */
525 static bitmap current_originators = NULL;
526 static bitmap current_copies = NULL;
528 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
529 visit them afterwards. */
530 static bitmap code_motion_visited_blocks = NULL;
532 /* Variables to accumulate different statistics. */
534 /* The number of bookkeeping copies created. */
535 static int stat_bookkeeping_copies;
537 /* The number of insns that required bookkeeiping for their scheduling. */
538 static int stat_insns_needed_bookkeeping;
540 /* The number of insns that got renamed. */
541 static int stat_renamed_scheduled;
543 /* The number of substitutions made during scheduling. */
544 static int stat_substitutions_total;
547 /* Forward declarations of static functions. */
548 static bool rtx_ok_for_substitution_p (rtx, rtx);
549 static int sel_rank_for_schedule (const void *, const void *);
550 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
551 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
553 static rtx get_dest_from_orig_ops (av_set_t);
554 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
555 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
556 def_list_t *);
557 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
558 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
559 cmpd_local_params_p, void *);
560 static void sel_sched_region_1 (void);
561 static void sel_sched_region_2 (int);
562 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
564 static void debug_state (state_t);
567 /* Functions that work with fences. */
569 /* Advance one cycle on FENCE. */
570 static void
571 advance_one_cycle (fence_t fence)
573 unsigned i;
574 int cycle;
575 rtx insn;
577 advance_state (FENCE_STATE (fence));
578 cycle = ++FENCE_CYCLE (fence);
579 FENCE_ISSUED_INSNS (fence) = 0;
580 FENCE_STARTS_CYCLE_P (fence) = 1;
581 can_issue_more = issue_rate;
582 FENCE_ISSUE_MORE (fence) = can_issue_more;
584 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
586 if (INSN_READY_CYCLE (insn) < cycle)
588 remove_from_deps (FENCE_DC (fence), insn);
589 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
590 continue;
592 i++;
594 if (sched_verbose >= 2)
596 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
597 debug_state (FENCE_STATE (fence));
601 /* Returns true when SUCC in a fallthru bb of INSN, possibly
602 skipping empty basic blocks. */
603 static bool
604 in_fallthru_bb_p (rtx insn, rtx succ)
606 basic_block bb = BLOCK_FOR_INSN (insn);
607 edge e;
609 if (bb == BLOCK_FOR_INSN (succ))
610 return true;
612 e = find_fallthru_edge_from (bb);
613 if (e)
614 bb = e->dest;
615 else
616 return false;
618 while (sel_bb_empty_p (bb))
619 bb = bb->next_bb;
621 return bb == BLOCK_FOR_INSN (succ);
624 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
625 When a successor will continue a ebb, transfer all parameters of a fence
626 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
627 of scheduling helping to distinguish between the old and the new code. */
628 static void
629 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
630 int orig_max_seqno)
632 bool was_here_p = false;
633 insn_t insn = NULL_RTX;
634 insn_t succ;
635 succ_iterator si;
636 ilist_iterator ii;
637 fence_t fence = FLIST_FENCE (old_fences);
638 basic_block bb;
640 /* Get the only element of FENCE_BNDS (fence). */
641 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
643 gcc_assert (!was_here_p);
644 was_here_p = true;
646 gcc_assert (was_here_p && insn != NULL_RTX);
648 /* When in the "middle" of the block, just move this fence
649 to the new list. */
650 bb = BLOCK_FOR_INSN (insn);
651 if (! sel_bb_end_p (insn)
652 || (single_succ_p (bb)
653 && single_pred_p (single_succ (bb))))
655 insn_t succ;
657 succ = (sel_bb_end_p (insn)
658 ? sel_bb_head (single_succ (bb))
659 : NEXT_INSN (insn));
661 if (INSN_SEQNO (succ) > 0
662 && INSN_SEQNO (succ) <= orig_max_seqno
663 && INSN_SCHED_TIMES (succ) <= 0)
665 FENCE_INSN (fence) = succ;
666 move_fence_to_fences (old_fences, new_fences);
668 if (sched_verbose >= 1)
669 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
670 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
672 return;
675 /* Otherwise copy fence's structures to (possibly) multiple successors. */
676 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
678 int seqno = INSN_SEQNO (succ);
680 if (0 < seqno && seqno <= orig_max_seqno
681 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
683 bool b = (in_same_ebb_p (insn, succ)
684 || in_fallthru_bb_p (insn, succ));
686 if (sched_verbose >= 1)
687 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
688 INSN_UID (insn), INSN_UID (succ),
689 BLOCK_NUM (succ), b ? "continue" : "reset");
691 if (b)
692 add_dirty_fence_to_fences (new_fences, succ, fence);
693 else
695 /* Mark block of the SUCC as head of the new ebb. */
696 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
697 add_clean_fence_to_fences (new_fences, succ, fence);
704 /* Functions to support substitution. */
706 /* Returns whether INSN with dependence status DS is eligible for
707 substitution, i.e. it's a copy operation x := y, and RHS that is
708 moved up through this insn should be substituted. */
709 static bool
710 can_substitute_through_p (insn_t insn, ds_t ds)
712 /* We can substitute only true dependencies. */
713 if ((ds & DEP_OUTPUT)
714 || (ds & DEP_ANTI)
715 || ! INSN_RHS (insn)
716 || ! INSN_LHS (insn))
717 return false;
719 /* Now we just need to make sure the INSN_RHS consists of only one
720 simple REG rtx. */
721 if (REG_P (INSN_LHS (insn))
722 && REG_P (INSN_RHS (insn)))
723 return true;
724 return false;
727 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
728 source (if INSN is eligible for substitution). Returns TRUE if
729 substitution was actually performed, FALSE otherwise. Substitution might
730 be not performed because it's either EXPR' vinsn doesn't contain INSN's
731 destination or the resulting insn is invalid for the target machine.
732 When UNDO is true, perform unsubstitution instead (the difference is in
733 the part of rtx on which validate_replace_rtx is called). */
734 static bool
735 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
737 rtx *where;
738 bool new_insn_valid;
739 vinsn_t *vi = &EXPR_VINSN (expr);
740 bool has_rhs = VINSN_RHS (*vi) != NULL;
741 rtx old, new_rtx;
743 /* Do not try to replace in SET_DEST. Although we'll choose new
744 register for the RHS, we don't want to change RHS' original reg.
745 If the insn is not SET, we may still be able to substitute something
746 in it, and if we're here (don't have deps), it doesn't write INSN's
747 dest. */
748 where = (has_rhs
749 ? &VINSN_RHS (*vi)
750 : &PATTERN (VINSN_INSN_RTX (*vi)));
751 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
753 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
754 if (rtx_ok_for_substitution_p (old, *where))
756 rtx new_insn;
757 rtx *where_replace;
759 /* We should copy these rtxes before substitution. */
760 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
761 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
763 /* Where we'll replace.
764 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
765 used instead of SET_SRC. */
766 where_replace = (has_rhs
767 ? &SET_SRC (PATTERN (new_insn))
768 : &PATTERN (new_insn));
770 new_insn_valid
771 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
772 new_insn);
774 /* ??? Actually, constrain_operands result depends upon choice of
775 destination register. E.g. if we allow single register to be an rhs,
776 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
777 in invalid insn dx=dx, so we'll loose this rhs here.
778 Just can't come up with significant testcase for this, so just
779 leaving it for now. */
780 if (new_insn_valid)
782 change_vinsn_in_expr (expr,
783 create_vinsn_from_insn_rtx (new_insn, false));
785 /* Do not allow clobbering the address register of speculative
786 insns. */
787 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
788 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
789 expr_dest_reg (expr)))
790 EXPR_TARGET_AVAILABLE (expr) = false;
792 return true;
794 else
795 return false;
797 else
798 return false;
801 /* Helper function for count_occurences_equiv. */
802 static int
803 count_occurrences_1 (rtx *cur_rtx, void *arg)
805 rtx_search_arg_p p = (rtx_search_arg_p) arg;
807 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
809 /* Bail out if mode is different or more than one register is used. */
810 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
811 || (HARD_REGISTER_P (*cur_rtx)
812 && hard_regno_nregs[REGNO (*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
814 p->n = 0;
815 return 1;
818 p->n++;
820 /* Do not traverse subexprs. */
821 return -1;
824 if (GET_CODE (*cur_rtx) == SUBREG
825 && (!REG_P (SUBREG_REG (*cur_rtx))
826 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
828 /* ??? Do not support substituting regs inside subregs. In that case,
829 simplify_subreg will be called by validate_replace_rtx, and
830 unsubstitution will fail later. */
831 p->n = 0;
832 return 1;
835 /* Continue search. */
836 return 0;
839 /* Return the number of places WHAT appears within WHERE.
840 Bail out when we found a reference occupying several hard registers. */
841 static int
842 count_occurrences_equiv (rtx what, rtx where)
844 struct rtx_search_arg arg;
846 gcc_assert (REG_P (what));
847 arg.x = what;
848 arg.n = 0;
850 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
852 return arg.n;
855 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
856 static bool
857 rtx_ok_for_substitution_p (rtx what, rtx where)
859 return (count_occurrences_equiv (what, where) > 0);
863 /* Functions to support register renaming. */
865 /* Substitute VI's set source with REGNO. Returns newly created pattern
866 that has REGNO as its source. */
867 static rtx
868 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
870 rtx lhs_rtx;
871 rtx pattern;
872 rtx insn_rtx;
874 lhs_rtx = copy_rtx (VINSN_LHS (vi));
876 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
877 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
879 return insn_rtx;
882 /* Returns whether INSN's src can be replaced with register number
883 NEW_SRC_REG. E.g. the following insn is valid for i386:
885 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
886 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
887 (reg:SI 0 ax [orig:770 c1 ] [770]))
888 (const_int 288 [0x120])) [0 str S1 A8])
889 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
890 (nil))
892 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
893 because of operand constraints:
895 (define_insn "*movqi_1"
896 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
897 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
900 So do constrain_operands here, before choosing NEW_SRC_REG as best
901 reg for rhs. */
903 static bool
904 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
906 vinsn_t vi = INSN_VINSN (insn);
907 enum machine_mode mode;
908 rtx dst_loc;
909 bool res;
911 gcc_assert (VINSN_SEPARABLE_P (vi));
913 get_dest_and_mode (insn, &dst_loc, &mode);
914 gcc_assert (mode == GET_MODE (new_src_reg));
916 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
917 return true;
919 /* See whether SET_SRC can be replaced with this register. */
920 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
921 res = verify_changes (0);
922 cancel_changes (0);
924 return res;
927 /* Returns whether INSN still be valid after replacing it's DEST with
928 register NEW_REG. */
929 static bool
930 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
932 vinsn_t vi = INSN_VINSN (insn);
933 bool res;
935 /* We should deal here only with separable insns. */
936 gcc_assert (VINSN_SEPARABLE_P (vi));
937 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
939 /* See whether SET_DEST can be replaced with this register. */
940 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
941 res = verify_changes (0);
942 cancel_changes (0);
944 return res;
947 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
948 static rtx
949 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
951 rtx rhs_rtx;
952 rtx pattern;
953 rtx insn_rtx;
955 rhs_rtx = copy_rtx (VINSN_RHS (vi));
957 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
958 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
960 return insn_rtx;
963 /* Substitute lhs in the given expression EXPR for the register with number
964 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
965 static void
966 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
968 rtx insn_rtx;
969 vinsn_t vinsn;
971 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
972 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
974 change_vinsn_in_expr (expr, vinsn);
975 EXPR_WAS_RENAMED (expr) = 1;
976 EXPR_TARGET_AVAILABLE (expr) = 1;
979 /* Returns whether VI writes either one of the USED_REGS registers or,
980 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
981 static bool
982 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
983 HARD_REG_SET unavailable_hard_regs)
985 unsigned regno;
986 reg_set_iterator rsi;
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1006 return false;
1009 /* Returns register class of the output register in INSN.
1010 Returns NO_REGS for call insns because some targets have constraints on
1011 destination register of a call insn.
1013 Code adopted from regrename.c::build_def_use. */
1014 static enum reg_class
1015 get_reg_class (rtx insn)
1017 int alt, i, n_ops;
1019 extract_insn (insn);
1020 if (! constrain_operands (1))
1021 fatal_insn_not_found (insn);
1022 preprocess_constraints ();
1023 alt = which_alternative;
1024 n_ops = recog_data.n_operands;
1026 for (i = 0; i < n_ops; ++i)
1028 int matches = recog_op_alt[i][alt].matches;
1029 if (matches >= 0)
1030 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1033 if (asm_noperands (PATTERN (insn)) > 0)
1035 for (i = 0; i < n_ops; i++)
1036 if (recog_data.operand_type[i] == OP_OUT)
1038 rtx *loc = recog_data.operand_loc[i];
1039 rtx op = *loc;
1040 enum reg_class cl = recog_op_alt[i][alt].cl;
1042 if (REG_P (op)
1043 && REGNO (op) == ORIGINAL_REGNO (op))
1044 continue;
1046 return cl;
1049 else if (!CALL_P (insn))
1051 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1053 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1054 enum reg_class cl = recog_op_alt[opn][alt].cl;
1056 if (recog_data.operand_type[opn] == OP_OUT ||
1057 recog_data.operand_type[opn] == OP_INOUT)
1058 return cl;
1062 /* Insns like
1063 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1064 may result in returning NO_REGS, cause flags is written implicitly through
1065 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1066 return NO_REGS;
1069 #ifdef HARD_REGNO_RENAME_OK
1070 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1071 static void
1072 init_hard_regno_rename (int regno)
1074 int cur_reg;
1076 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1078 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1080 /* We are not interested in renaming in other regs. */
1081 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1082 continue;
1084 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1088 #endif
1090 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1091 data first. */
1092 static inline bool
1093 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1095 #ifdef HARD_REGNO_RENAME_OK
1096 /* Check whether this is all calculated. */
1097 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1098 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1100 init_hard_regno_rename (from);
1102 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1103 #else
1104 return true;
1105 #endif
1108 /* Calculate set of registers that are capable of holding MODE. */
1109 static void
1110 init_regs_for_mode (enum machine_mode mode)
1112 int cur_reg;
1114 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1115 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1117 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1119 int nregs = hard_regno_nregs[cur_reg][mode];
1120 int i;
1122 for (i = nregs - 1; i >= 0; --i)
1123 if (fixed_regs[cur_reg + i]
1124 || global_regs[cur_reg + i]
1125 /* Can't use regs which aren't saved by
1126 the prologue. */
1127 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1128 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1129 it affects aliasing globally and invalidates all AV sets. */
1130 || get_reg_base_value (cur_reg + i)
1131 #ifdef LEAF_REGISTERS
1132 /* We can't use a non-leaf register if we're in a
1133 leaf function. */
1134 || (crtl->is_leaf
1135 && !LEAF_REGISTERS[cur_reg + i])
1136 #endif
1138 break;
1140 if (i >= 0)
1141 continue;
1143 /* See whether it accepts all modes that occur in
1144 original insns. */
1145 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1146 continue;
1148 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1149 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1150 cur_reg);
1152 /* If the CUR_REG passed all the checks above,
1153 then it's ok. */
1154 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1157 sel_hrd.regs_for_mode_ok[mode] = true;
1160 /* Init all register sets gathered in HRD. */
1161 static void
1162 init_hard_regs_data (void)
1164 int cur_reg = 0;
1165 int cur_mode = 0;
1167 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1168 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1169 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1170 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1172 /* Initialize registers that are valid based on mode when this is
1173 really needed. */
1174 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1175 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1177 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1178 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1179 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1181 #ifdef STACK_REGS
1182 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1184 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1185 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1186 #endif
1189 /* Mark hardware regs in REG_RENAME_P that are not suitable
1190 for renaming rhs in INSN due to hardware restrictions (register class,
1191 modes compatibility etc). This doesn't affect original insn's dest reg,
1192 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1193 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1194 Registers that are in used_regs are always marked in
1195 unavailable_hard_regs as well. */
1197 static void
1198 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1199 regset used_regs ATTRIBUTE_UNUSED)
1201 enum machine_mode mode;
1202 enum reg_class cl = NO_REGS;
1203 rtx orig_dest;
1204 unsigned cur_reg, regno;
1205 hard_reg_set_iterator hrsi;
1207 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1208 gcc_assert (reg_rename_p);
1210 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1212 /* We have decided not to rename 'mem = something;' insns, as 'something'
1213 is usually a register. */
1214 if (!REG_P (orig_dest))
1215 return;
1217 regno = REGNO (orig_dest);
1219 /* If before reload, don't try to work with pseudos. */
1220 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1221 return;
1223 if (reload_completed)
1224 cl = get_reg_class (def->orig_insn);
1226 /* Stop if the original register is one of the fixed_regs, global_regs or
1227 frame pointer, or we could not discover its class. */
1228 if (fixed_regs[regno]
1229 || global_regs[regno]
1230 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1231 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1232 #else
1233 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1234 #endif
1235 || (reload_completed && cl == NO_REGS))
1237 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1239 /* Give a chance for original register, if it isn't in used_regs. */
1240 if (!def->crosses_call)
1241 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1243 return;
1246 /* If something allocated on stack in this function, mark frame pointer
1247 register unavailable, considering also modes.
1248 FIXME: it is enough to do this once per all original defs. */
1249 if (frame_pointer_needed)
1251 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1252 Pmode, FRAME_POINTER_REGNUM);
1254 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1255 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1256 Pmode, HARD_FRAME_POINTER_REGNUM);
1259 #ifdef STACK_REGS
1260 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1261 is equivalent to as if all stack regs were in this set.
1262 I.e. no stack register can be renamed, and even if it's an original
1263 register here we make sure it won't be lifted over it's previous def
1264 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1265 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1266 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1267 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1268 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1269 sel_hrd.stack_regs);
1270 #endif
1272 /* If there's a call on this path, make regs from call_used_reg_set
1273 unavailable. */
1274 if (def->crosses_call)
1275 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1276 call_used_reg_set);
1278 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1279 but not register classes. */
1280 if (!reload_completed)
1281 return;
1283 /* Leave regs as 'available' only from the current
1284 register class. */
1285 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1286 reg_class_contents[cl]);
1288 mode = GET_MODE (orig_dest);
1290 /* Leave only registers available for this mode. */
1291 if (!sel_hrd.regs_for_mode_ok[mode])
1292 init_regs_for_mode (mode);
1293 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1294 sel_hrd.regs_for_mode[mode]);
1296 /* Exclude registers that are partially call clobbered. */
1297 if (def->crosses_call
1298 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1299 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 sel_hrd.regs_for_call_clobbered[mode]);
1302 /* Leave only those that are ok to rename. */
1303 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1304 0, cur_reg, hrsi)
1306 int nregs;
1307 int i;
1309 nregs = hard_regno_nregs[cur_reg][mode];
1310 gcc_assert (nregs > 0);
1312 for (i = nregs - 1; i >= 0; --i)
1313 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1314 break;
1316 if (i >= 0)
1317 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1318 cur_reg);
1321 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1322 reg_rename_p->unavailable_hard_regs);
1324 /* Regno is always ok from the renaming part of view, but it really
1325 could be in *unavailable_hard_regs already, so set it here instead
1326 of there. */
1327 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1330 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1331 best register more recently than REG2. */
1332 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1334 /* Indicates the number of times renaming happened before the current one. */
1335 static int reg_rename_this_tick;
1337 /* Choose the register among free, that is suitable for storing
1338 the rhs value.
1340 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1341 originally appears. There could be multiple original operations
1342 for single rhs since we moving it up and merging along different
1343 paths.
1345 Some code is adapted from regrename.c (regrename_optimize).
1346 If original register is available, function returns it.
1347 Otherwise it performs the checks, so the new register should
1348 comply with the following:
1349 - it should not violate any live ranges (such registers are in
1350 REG_RENAME_P->available_for_renaming set);
1351 - it should not be in the HARD_REGS_USED regset;
1352 - it should be in the class compatible with original uses;
1353 - it should not be clobbered through reference with different mode;
1354 - if we're in the leaf function, then the new register should
1355 not be in the LEAF_REGISTERS;
1356 - etc.
1358 If several registers meet the conditions, the register with smallest
1359 tick is returned to achieve more even register allocation.
1361 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1363 If no register satisfies the above conditions, NULL_RTX is returned. */
1364 static rtx
1365 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1366 struct reg_rename *reg_rename_p,
1367 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1369 int best_new_reg;
1370 unsigned cur_reg;
1371 enum machine_mode mode = VOIDmode;
1372 unsigned regno, i, n;
1373 hard_reg_set_iterator hrsi;
1374 def_list_iterator di;
1375 def_t def;
1377 /* If original register is available, return it. */
1378 *is_orig_reg_p_ptr = true;
1380 FOR_EACH_DEF (def, di, original_insns)
1382 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1384 gcc_assert (REG_P (orig_dest));
1386 /* Check that all original operations have the same mode.
1387 This is done for the next loop; if we'd return from this
1388 loop, we'd check only part of them, but in this case
1389 it doesn't matter. */
1390 if (mode == VOIDmode)
1391 mode = GET_MODE (orig_dest);
1392 gcc_assert (mode == GET_MODE (orig_dest));
1394 regno = REGNO (orig_dest);
1395 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1396 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1397 break;
1399 /* All hard registers are available. */
1400 if (i == n)
1402 gcc_assert (mode != VOIDmode);
1404 /* Hard registers should not be shared. */
1405 return gen_rtx_REG (mode, regno);
1409 *is_orig_reg_p_ptr = false;
1410 best_new_reg = -1;
1412 /* Among all available regs choose the register that was
1413 allocated earliest. */
1414 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1415 0, cur_reg, hrsi)
1416 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1418 /* Check that all hard regs for mode are available. */
1419 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1420 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1421 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1422 cur_reg + i))
1423 break;
1425 if (i < n)
1426 continue;
1428 /* All hard registers are available. */
1429 if (best_new_reg < 0
1430 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1432 best_new_reg = cur_reg;
1434 /* Return immediately when we know there's no better reg. */
1435 if (! reg_rename_tick[best_new_reg])
1436 break;
1440 if (best_new_reg >= 0)
1442 /* Use the check from the above loop. */
1443 gcc_assert (mode != VOIDmode);
1444 return gen_rtx_REG (mode, best_new_reg);
1447 return NULL_RTX;
1450 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1451 assumptions about available registers in the function. */
1452 static rtx
1453 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1454 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1456 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1457 original_insns, is_orig_reg_p_ptr);
1459 /* FIXME loop over hard_regno_nregs here. */
1460 gcc_assert (best_reg == NULL_RTX
1461 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1463 return best_reg;
1466 /* Choose the pseudo register for storing rhs value. As this is supposed
1467 to work before reload, we return either the original register or make
1468 the new one. The parameters are the same that in choose_nest_reg_1
1469 functions, except that USED_REGS may contain pseudos.
1470 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1472 TODO: take into account register pressure while doing this. Up to this
1473 moment, this function would never return NULL for pseudos, but we should
1474 not rely on this. */
1475 static rtx
1476 choose_best_pseudo_reg (regset used_regs,
1477 struct reg_rename *reg_rename_p,
1478 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1480 def_list_iterator i;
1481 def_t def;
1482 enum machine_mode mode = VOIDmode;
1483 bool bad_hard_regs = false;
1485 /* We should not use this after reload. */
1486 gcc_assert (!reload_completed);
1488 /* If original register is available, return it. */
1489 *is_orig_reg_p_ptr = true;
1491 FOR_EACH_DEF (def, i, original_insns)
1493 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1494 int orig_regno;
1496 gcc_assert (REG_P (dest));
1498 /* Check that all original operations have the same mode. */
1499 if (mode == VOIDmode)
1500 mode = GET_MODE (dest);
1501 else
1502 gcc_assert (mode == GET_MODE (dest));
1503 orig_regno = REGNO (dest);
1505 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1507 if (orig_regno < FIRST_PSEUDO_REGISTER)
1509 gcc_assert (df_regs_ever_live_p (orig_regno));
1511 /* For hard registers, we have to check hardware imposed
1512 limitations (frame/stack registers, calls crossed). */
1513 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1514 orig_regno))
1516 /* Don't let register cross a call if it doesn't already
1517 cross one. This condition is written in accordance with
1518 that in sched-deps.c sched_analyze_reg(). */
1519 if (!reg_rename_p->crosses_call
1520 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1521 return gen_rtx_REG (mode, orig_regno);
1524 bad_hard_regs = true;
1526 else
1527 return dest;
1531 *is_orig_reg_p_ptr = false;
1533 /* We had some original hard registers that couldn't be used.
1534 Those were likely special. Don't try to create a pseudo. */
1535 if (bad_hard_regs)
1536 return NULL_RTX;
1538 /* We haven't found a register from original operations. Get a new one.
1539 FIXME: control register pressure somehow. */
1541 rtx new_reg = gen_reg_rtx (mode);
1543 gcc_assert (mode != VOIDmode);
1545 max_regno = max_reg_num ();
1546 maybe_extend_reg_info_p ();
1547 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1549 return new_reg;
1553 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1554 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1555 static void
1556 verify_target_availability (expr_t expr, regset used_regs,
1557 struct reg_rename *reg_rename_p)
1559 unsigned n, i, regno;
1560 enum machine_mode mode;
1561 bool target_available, live_available, hard_available;
1563 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1564 return;
1566 regno = expr_dest_regno (expr);
1567 mode = GET_MODE (EXPR_LHS (expr));
1568 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1569 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1571 live_available = hard_available = true;
1572 for (i = 0; i < n; i++)
1574 if (bitmap_bit_p (used_regs, regno + i))
1575 live_available = false;
1576 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1577 hard_available = false;
1580 /* When target is not available, it may be due to hard register
1581 restrictions, e.g. crosses calls, so we check hard_available too. */
1582 if (target_available)
1583 gcc_assert (live_available);
1584 else
1585 /* Check only if we haven't scheduled something on the previous fence,
1586 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1587 and having more than one fence, we may end having targ_un in a block
1588 in which successors target register is actually available.
1590 The last condition handles the case when a dependence from a call insn
1591 was created in sched-deps.c for insns with destination registers that
1592 never crossed a call before, but do cross one after our code motion.
1594 FIXME: in the latter case, we just uselessly called find_used_regs,
1595 because we can't move this expression with any other register
1596 as well. */
1597 gcc_assert (scheduled_something_on_previous_fence || !live_available
1598 || !hard_available
1599 || (!reload_completed && reg_rename_p->crosses_call
1600 && REG_N_CALLS_CROSSED (regno) == 0));
1603 /* Collect unavailable registers due to liveness for EXPR from BNDS
1604 into USED_REGS. Save additional information about available
1605 registers and unavailable due to hardware restriction registers
1606 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1607 list. */
1608 static void
1609 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1610 struct reg_rename *reg_rename_p,
1611 def_list_t *original_insns)
1613 for (; bnds; bnds = BLIST_NEXT (bnds))
1615 bool res;
1616 av_set_t orig_ops = NULL;
1617 bnd_t bnd = BLIST_BND (bnds);
1619 /* If the chosen best expr doesn't belong to current boundary,
1620 skip it. */
1621 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1622 continue;
1624 /* Put in ORIG_OPS all exprs from this boundary that became
1625 RES on top. */
1626 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1628 /* Compute used regs and OR it into the USED_REGS. */
1629 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1630 reg_rename_p, original_insns);
1632 /* FIXME: the assert is true until we'd have several boundaries. */
1633 gcc_assert (res);
1634 av_set_clear (&orig_ops);
1638 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1639 If BEST_REG is valid, replace LHS of EXPR with it. */
1640 static bool
1641 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1643 /* Try whether we'll be able to generate the insn
1644 'dest := best_reg' at the place of the original operation. */
1645 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1647 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1649 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1651 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1652 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1653 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1654 return false;
1657 /* Make sure that EXPR has the right destination
1658 register. */
1659 if (expr_dest_regno (expr) != REGNO (best_reg))
1660 replace_dest_with_reg_in_expr (expr, best_reg);
1661 else
1662 EXPR_TARGET_AVAILABLE (expr) = 1;
1664 return true;
1667 /* Select and assign best register to EXPR searching from BNDS.
1668 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1669 Return FALSE if no register can be chosen, which could happen when:
1670 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1671 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1672 that are used on the moving path. */
1673 static bool
1674 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1676 static struct reg_rename reg_rename_data;
1678 regset used_regs;
1679 def_list_t original_insns = NULL;
1680 bool reg_ok;
1682 *is_orig_reg_p = false;
1684 /* Don't bother to do anything if this insn doesn't set any registers. */
1685 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1686 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1687 return true;
1689 used_regs = get_clear_regset_from_pool ();
1690 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1692 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1693 &original_insns);
1695 #ifdef ENABLE_CHECKING
1696 /* If after reload, make sure we're working with hard regs here. */
1697 if (reload_completed)
1699 reg_set_iterator rsi;
1700 unsigned i;
1702 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1703 gcc_unreachable ();
1705 #endif
1707 if (EXPR_SEPARABLE_P (expr))
1709 rtx best_reg = NULL_RTX;
1710 /* Check that we have computed availability of a target register
1711 correctly. */
1712 verify_target_availability (expr, used_regs, &reg_rename_data);
1714 /* Turn everything in hard regs after reload. */
1715 if (reload_completed)
1717 HARD_REG_SET hard_regs_used;
1718 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1720 /* Join hard registers unavailable due to register class
1721 restrictions and live range intersection. */
1722 IOR_HARD_REG_SET (hard_regs_used,
1723 reg_rename_data.unavailable_hard_regs);
1725 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1726 original_insns, is_orig_reg_p);
1728 else
1729 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1730 original_insns, is_orig_reg_p);
1732 if (!best_reg)
1733 reg_ok = false;
1734 else if (*is_orig_reg_p)
1736 /* In case of unification BEST_REG may be different from EXPR's LHS
1737 when EXPR's LHS is unavailable, and there is another LHS among
1738 ORIGINAL_INSNS. */
1739 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1741 else
1743 /* Forbid renaming of low-cost insns. */
1744 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1745 reg_ok = false;
1746 else
1747 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1750 else
1752 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1753 any of the HARD_REGS_USED set. */
1754 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1755 reg_rename_data.unavailable_hard_regs))
1757 reg_ok = false;
1758 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1760 else
1762 reg_ok = true;
1763 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1767 ilist_clear (&original_insns);
1768 return_regset_to_pool (used_regs);
1770 return reg_ok;
1774 /* Return true if dependence described by DS can be overcomed. */
1775 static bool
1776 can_speculate_dep_p (ds_t ds)
1778 if (spec_info == NULL)
1779 return false;
1781 /* Leave only speculative data. */
1782 ds &= SPECULATIVE;
1784 if (ds == 0)
1785 return false;
1788 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1789 that we can overcome. */
1790 ds_t spec_mask = spec_info->mask;
1792 if ((ds & spec_mask) != ds)
1793 return false;
1796 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1797 return false;
1799 return true;
1802 /* Get a speculation check instruction.
1803 C_EXPR is a speculative expression,
1804 CHECK_DS describes speculations that should be checked,
1805 ORIG_INSN is the original non-speculative insn in the stream. */
1806 static insn_t
1807 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1809 rtx check_pattern;
1810 rtx insn_rtx;
1811 insn_t insn;
1812 basic_block recovery_block;
1813 rtx label;
1815 /* Create a recovery block if target is going to emit branchy check, or if
1816 ORIG_INSN was speculative already. */
1817 if (targetm.sched.needs_block_p (check_ds)
1818 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1820 recovery_block = sel_create_recovery_block (orig_insn);
1821 label = BB_HEAD (recovery_block);
1823 else
1825 recovery_block = NULL;
1826 label = NULL_RTX;
1829 /* Get pattern of the check. */
1830 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1831 check_ds);
1833 gcc_assert (check_pattern != NULL);
1835 /* Emit check. */
1836 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1838 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1839 INSN_SEQNO (orig_insn), orig_insn);
1841 /* Make check to be non-speculative. */
1842 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1843 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1845 /* Decrease priority of check by difference of load/check instruction
1846 latencies. */
1847 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1848 - sel_vinsn_cost (INSN_VINSN (insn)));
1850 /* Emit copy of original insn (though with replaced target register,
1851 if needed) to the recovery block. */
1852 if (recovery_block != NULL)
1854 rtx twin_rtx;
1856 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1857 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1858 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1859 INSN_EXPR (orig_insn),
1860 INSN_SEQNO (insn),
1861 bb_note (recovery_block));
1864 /* If we've generated a data speculation check, make sure
1865 that all the bookkeeping instruction we'll create during
1866 this move_op () will allocate an ALAT entry so that the
1867 check won't fail.
1868 In case of control speculation we must convert C_EXPR to control
1869 speculative mode, because failing to do so will bring us an exception
1870 thrown by the non-control-speculative load. */
1871 check_ds = ds_get_max_dep_weak (check_ds);
1872 speculate_expr (c_expr, check_ds);
1874 return insn;
1877 /* True when INSN is a "regN = regN" copy. */
1878 static bool
1879 identical_copy_p (rtx insn)
1881 rtx lhs, rhs, pat;
1883 pat = PATTERN (insn);
1885 if (GET_CODE (pat) != SET)
1886 return false;
1888 lhs = SET_DEST (pat);
1889 if (!REG_P (lhs))
1890 return false;
1892 rhs = SET_SRC (pat);
1893 if (!REG_P (rhs))
1894 return false;
1896 return REGNO (lhs) == REGNO (rhs);
1899 /* Undo all transformations on *AV_PTR that were done when
1900 moving through INSN. */
1901 static void
1902 undo_transformations (av_set_t *av_ptr, rtx insn)
1904 av_set_iterator av_iter;
1905 expr_t expr;
1906 av_set_t new_set = NULL;
1908 /* First, kill any EXPR that uses registers set by an insn. This is
1909 required for correctness. */
1910 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1911 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1912 && bitmap_intersect_p (INSN_REG_SETS (insn),
1913 VINSN_REG_USES (EXPR_VINSN (expr)))
1914 /* When an insn looks like 'r1 = r1', we could substitute through
1915 it, but the above condition will still hold. This happened with
1916 gcc.c-torture/execute/961125-1.c. */
1917 && !identical_copy_p (insn))
1919 if (sched_verbose >= 6)
1920 sel_print ("Expr %d removed due to use/set conflict\n",
1921 INSN_UID (EXPR_INSN_RTX (expr)));
1922 av_set_iter_remove (&av_iter);
1925 /* Undo transformations looking at the history vector. */
1926 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1928 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1929 insn, EXPR_VINSN (expr), true);
1931 if (index >= 0)
1933 expr_history_def *phist;
1935 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1937 switch (phist->type)
1939 case TRANS_SPECULATION:
1941 ds_t old_ds, new_ds;
1943 /* Compute the difference between old and new speculative
1944 statuses: that's what we need to check.
1945 Earlier we used to assert that the status will really
1946 change. This no longer works because only the probability
1947 bits in the status may have changed during compute_av_set,
1948 and in the case of merging different probabilities of the
1949 same speculative status along different paths we do not
1950 record this in the history vector. */
1951 old_ds = phist->spec_ds;
1952 new_ds = EXPR_SPEC_DONE_DS (expr);
1954 old_ds &= SPECULATIVE;
1955 new_ds &= SPECULATIVE;
1956 new_ds &= ~old_ds;
1958 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1959 break;
1961 case TRANS_SUBSTITUTION:
1963 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1964 vinsn_t new_vi;
1965 bool add = true;
1967 new_vi = phist->old_expr_vinsn;
1969 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1970 == EXPR_SEPARABLE_P (expr));
1971 copy_expr (tmp_expr, expr);
1973 if (vinsn_equal_p (phist->new_expr_vinsn,
1974 EXPR_VINSN (tmp_expr)))
1975 change_vinsn_in_expr (tmp_expr, new_vi);
1976 else
1977 /* This happens when we're unsubstituting on a bookkeeping
1978 copy, which was in turn substituted. The history is wrong
1979 in this case. Do it the hard way. */
1980 add = substitute_reg_in_expr (tmp_expr, insn, true);
1981 if (add)
1982 av_set_add (&new_set, tmp_expr);
1983 clear_expr (tmp_expr);
1984 break;
1986 default:
1987 gcc_unreachable ();
1993 av_set_union_and_clear (av_ptr, &new_set, NULL);
1997 /* Moveup_* helpers for code motion and computing av sets. */
1999 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2000 The difference from the below function is that only substitution is
2001 performed. */
2002 static enum MOVEUP_EXPR_CODE
2003 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2005 vinsn_t vi = EXPR_VINSN (expr);
2006 ds_t *has_dep_p;
2007 ds_t full_ds;
2009 /* Do this only inside insn group. */
2010 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2012 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2013 if (full_ds == 0)
2014 return MOVEUP_EXPR_SAME;
2016 /* Substitution is the possible choice in this case. */
2017 if (has_dep_p[DEPS_IN_RHS])
2019 /* Can't substitute UNIQUE VINSNs. */
2020 gcc_assert (!VINSN_UNIQUE_P (vi));
2022 if (can_substitute_through_p (through_insn,
2023 has_dep_p[DEPS_IN_RHS])
2024 && substitute_reg_in_expr (expr, through_insn, false))
2026 EXPR_WAS_SUBSTITUTED (expr) = true;
2027 return MOVEUP_EXPR_CHANGED;
2030 /* Don't care about this, as even true dependencies may be allowed
2031 in an insn group. */
2032 return MOVEUP_EXPR_SAME;
2035 /* This can catch output dependencies in COND_EXECs. */
2036 if (has_dep_p[DEPS_IN_INSN])
2037 return MOVEUP_EXPR_NULL;
2039 /* This is either an output or an anti dependence, which usually have
2040 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2041 will fix this. */
2042 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2043 return MOVEUP_EXPR_AS_RHS;
2046 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2047 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2048 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2049 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2050 && !sel_insn_is_speculation_check (through_insn))
2052 /* True when a conflict on a target register was found during moveup_expr. */
2053 static bool was_target_conflict = false;
2055 /* Return true when moving a debug INSN across THROUGH_INSN will
2056 create a bookkeeping block. We don't want to create such blocks,
2057 for they would cause codegen differences between compilations with
2058 and without debug info. */
2060 static bool
2061 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2062 insn_t through_insn)
2064 basic_block bbi, bbt;
2065 edge e1, e2;
2066 edge_iterator ei1, ei2;
2068 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2070 if (sched_verbose >= 9)
2071 sel_print ("no bookkeeping required: ");
2072 return FALSE;
2075 bbi = BLOCK_FOR_INSN (insn);
2077 if (EDGE_COUNT (bbi->preds) == 1)
2079 if (sched_verbose >= 9)
2080 sel_print ("only one pred edge: ");
2081 return TRUE;
2084 bbt = BLOCK_FOR_INSN (through_insn);
2086 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2088 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2090 if (find_block_for_bookkeeping (e1, e2, TRUE))
2092 if (sched_verbose >= 9)
2093 sel_print ("found existing block: ");
2094 return FALSE;
2099 if (sched_verbose >= 9)
2100 sel_print ("would create bookkeeping block: ");
2102 return TRUE;
2105 /* Return true when the conflict with newly created implicit clobbers
2106 between EXPR and THROUGH_INSN is found because of renaming. */
2107 static bool
2108 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2110 HARD_REG_SET temp;
2111 rtx insn, reg, rhs, pat;
2112 hard_reg_set_iterator hrsi;
2113 unsigned regno;
2114 bool valid;
2116 /* Make a new pseudo register. */
2117 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2118 max_regno = max_reg_num ();
2119 maybe_extend_reg_info_p ();
2121 /* Validate a change and bail out early. */
2122 insn = EXPR_INSN_RTX (expr);
2123 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2124 valid = verify_changes (0);
2125 cancel_changes (0);
2126 if (!valid)
2128 if (sched_verbose >= 6)
2129 sel_print ("implicit clobbers failed validation, ");
2130 return true;
2133 /* Make a new insn with it. */
2134 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2135 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2136 start_sequence ();
2137 insn = emit_insn (pat);
2138 end_sequence ();
2140 /* Calculate implicit clobbers. */
2141 extract_insn (insn);
2142 preprocess_constraints ();
2143 ira_implicitly_set_insn_hard_regs (&temp);
2144 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2146 /* If any implicit clobber registers intersect with regular ones in
2147 through_insn, we have a dependency and thus bail out. */
2148 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2150 vinsn_t vi = INSN_VINSN (through_insn);
2151 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2152 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2153 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2154 return true;
2157 return false;
2160 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2161 performing necessary transformations. Record the type of transformation
2162 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2163 permit all dependencies except true ones, and try to remove those
2164 too via forward substitution. All cases when a non-eliminable
2165 non-zero cost dependency exists inside an insn group will be fixed
2166 in tick_check_p instead. */
2167 static enum MOVEUP_EXPR_CODE
2168 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2169 enum local_trans_type *ptrans_type)
2171 vinsn_t vi = EXPR_VINSN (expr);
2172 insn_t insn = VINSN_INSN_RTX (vi);
2173 bool was_changed = false;
2174 bool as_rhs = false;
2175 ds_t *has_dep_p;
2176 ds_t full_ds;
2178 /* ??? We use dependencies of non-debug insns on debug insns to
2179 indicate that the debug insns need to be reset if the non-debug
2180 insn is pulled ahead of it. It's hard to figure out how to
2181 introduce such a notion in sel-sched, but it already fails to
2182 support debug insns in other ways, so we just go ahead and
2183 let the deug insns go corrupt for now. */
2184 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2185 return MOVEUP_EXPR_SAME;
2187 /* When inside_insn_group, delegate to the helper. */
2188 if (inside_insn_group)
2189 return moveup_expr_inside_insn_group (expr, through_insn);
2191 /* Deal with unique insns and control dependencies. */
2192 if (VINSN_UNIQUE_P (vi))
2194 /* We can move jumps without side-effects or jumps that are
2195 mutually exclusive with instruction THROUGH_INSN (all in cases
2196 dependencies allow to do so and jump is not speculative). */
2197 if (control_flow_insn_p (insn))
2199 basic_block fallthru_bb;
2201 /* Do not move checks and do not move jumps through other
2202 jumps. */
2203 if (control_flow_insn_p (through_insn)
2204 || sel_insn_is_speculation_check (insn))
2205 return MOVEUP_EXPR_NULL;
2207 /* Don't move jumps through CFG joins. */
2208 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2209 return MOVEUP_EXPR_NULL;
2211 /* The jump should have a clear fallthru block, and
2212 this block should be in the current region. */
2213 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2214 || ! in_current_region_p (fallthru_bb))
2215 return MOVEUP_EXPR_NULL;
2217 /* And it should be mutually exclusive with through_insn. */
2218 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2219 && ! DEBUG_INSN_P (through_insn))
2220 return MOVEUP_EXPR_NULL;
2223 /* Don't move what we can't move. */
2224 if (EXPR_CANT_MOVE (expr)
2225 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2226 return MOVEUP_EXPR_NULL;
2228 /* Don't move SCHED_GROUP instruction through anything.
2229 If we don't force this, then it will be possible to start
2230 scheduling a sched_group before all its dependencies are
2231 resolved.
2232 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2233 as late as possible through rank_for_schedule. */
2234 if (SCHED_GROUP_P (insn))
2235 return MOVEUP_EXPR_NULL;
2237 else
2238 gcc_assert (!control_flow_insn_p (insn));
2240 /* Don't move debug insns if this would require bookkeeping. */
2241 if (DEBUG_INSN_P (insn)
2242 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2243 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2244 return MOVEUP_EXPR_NULL;
2246 /* Deal with data dependencies. */
2247 was_target_conflict = false;
2248 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2249 if (full_ds == 0)
2251 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2252 return MOVEUP_EXPR_SAME;
2254 else
2256 /* We can move UNIQUE insn up only as a whole and unchanged,
2257 so it shouldn't have any dependencies. */
2258 if (VINSN_UNIQUE_P (vi))
2259 return MOVEUP_EXPR_NULL;
2262 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2264 int res;
2266 res = speculate_expr (expr, full_ds);
2267 if (res >= 0)
2269 /* Speculation was successful. */
2270 full_ds = 0;
2271 was_changed = (res > 0);
2272 if (res == 2)
2273 was_target_conflict = true;
2274 if (ptrans_type)
2275 *ptrans_type = TRANS_SPECULATION;
2276 sel_clear_has_dependence ();
2280 if (has_dep_p[DEPS_IN_INSN])
2281 /* We have some dependency that cannot be discarded. */
2282 return MOVEUP_EXPR_NULL;
2284 if (has_dep_p[DEPS_IN_LHS])
2286 /* Only separable insns can be moved up with the new register.
2287 Anyways, we should mark that the original register is
2288 unavailable. */
2289 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2290 return MOVEUP_EXPR_NULL;
2292 /* When renaming a hard register to a pseudo before reload, extra
2293 dependencies can occur from the implicit clobbers of the insn.
2294 Filter out such cases here. */
2295 if (!reload_completed && REG_P (EXPR_LHS (expr))
2296 && HARD_REGISTER_P (EXPR_LHS (expr))
2297 && implicit_clobber_conflict_p (through_insn, expr))
2299 if (sched_verbose >= 6)
2300 sel_print ("implicit clobbers conflict detected, ");
2301 return MOVEUP_EXPR_NULL;
2303 EXPR_TARGET_AVAILABLE (expr) = false;
2304 was_target_conflict = true;
2305 as_rhs = true;
2308 /* At this point we have either separable insns, that will be lifted
2309 up only as RHSes, or non-separable insns with no dependency in lhs.
2310 If dependency is in RHS, then try to perform substitution and move up
2311 substituted RHS:
2313 Ex. 1: Ex.2
2314 y = x; y = x;
2315 z = y*2; y = y*2;
2317 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2318 moved above y=x assignment as z=x*2.
2320 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2321 side can be moved because of the output dependency. The operation was
2322 cropped to its rhs above. */
2323 if (has_dep_p[DEPS_IN_RHS])
2325 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2327 /* Can't substitute UNIQUE VINSNs. */
2328 gcc_assert (!VINSN_UNIQUE_P (vi));
2330 if (can_speculate_dep_p (*rhs_dsp))
2332 int res;
2334 res = speculate_expr (expr, *rhs_dsp);
2335 if (res >= 0)
2337 /* Speculation was successful. */
2338 *rhs_dsp = 0;
2339 was_changed = (res > 0);
2340 if (res == 2)
2341 was_target_conflict = true;
2342 if (ptrans_type)
2343 *ptrans_type = TRANS_SPECULATION;
2345 else
2346 return MOVEUP_EXPR_NULL;
2348 else if (can_substitute_through_p (through_insn,
2349 *rhs_dsp)
2350 && substitute_reg_in_expr (expr, through_insn, false))
2352 /* ??? We cannot perform substitution AND speculation on the same
2353 insn. */
2354 gcc_assert (!was_changed);
2355 was_changed = true;
2356 if (ptrans_type)
2357 *ptrans_type = TRANS_SUBSTITUTION;
2358 EXPR_WAS_SUBSTITUTED (expr) = true;
2360 else
2361 return MOVEUP_EXPR_NULL;
2364 /* Don't move trapping insns through jumps.
2365 This check should be at the end to give a chance to control speculation
2366 to perform its duties. */
2367 if (CANT_MOVE_TRAPPING (expr, through_insn))
2368 return MOVEUP_EXPR_NULL;
2370 return (was_changed
2371 ? MOVEUP_EXPR_CHANGED
2372 : (as_rhs
2373 ? MOVEUP_EXPR_AS_RHS
2374 : MOVEUP_EXPR_SAME));
2377 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2378 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2379 that can exist within a parallel group. Write to RES the resulting
2380 code for moveup_expr. */
2381 static bool
2382 try_bitmap_cache (expr_t expr, insn_t insn,
2383 bool inside_insn_group,
2384 enum MOVEUP_EXPR_CODE *res)
2386 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2388 /* First check whether we've analyzed this situation already. */
2389 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2391 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2393 if (sched_verbose >= 6)
2394 sel_print ("removed (cached)\n");
2395 *res = MOVEUP_EXPR_NULL;
2396 return true;
2398 else
2400 if (sched_verbose >= 6)
2401 sel_print ("unchanged (cached)\n");
2402 *res = MOVEUP_EXPR_SAME;
2403 return true;
2406 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2408 if (inside_insn_group)
2410 if (sched_verbose >= 6)
2411 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2412 *res = MOVEUP_EXPR_SAME;
2413 return true;
2416 else
2417 EXPR_TARGET_AVAILABLE (expr) = false;
2419 /* This is the only case when propagation result can change over time,
2420 as we can dynamically switch off scheduling as RHS. In this case,
2421 just check the flag to reach the correct decision. */
2422 if (enable_schedule_as_rhs_p)
2424 if (sched_verbose >= 6)
2425 sel_print ("unchanged (as RHS, cached)\n");
2426 *res = MOVEUP_EXPR_AS_RHS;
2427 return true;
2429 else
2431 if (sched_verbose >= 6)
2432 sel_print ("removed (cached as RHS, but renaming"
2433 " is now disabled)\n");
2434 *res = MOVEUP_EXPR_NULL;
2435 return true;
2439 return false;
2442 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2443 if successful. Write to RES the resulting code for moveup_expr. */
2444 static bool
2445 try_transformation_cache (expr_t expr, insn_t insn,
2446 enum MOVEUP_EXPR_CODE *res)
2448 struct transformed_insns *pti
2449 = (struct transformed_insns *)
2450 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2451 &EXPR_VINSN (expr),
2452 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2453 if (pti)
2455 /* This EXPR was already moved through this insn and was
2456 changed as a result. Fetch the proper data from
2457 the hashtable. */
2458 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2459 INSN_UID (insn), pti->type,
2460 pti->vinsn_old, pti->vinsn_new,
2461 EXPR_SPEC_DONE_DS (expr));
2463 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2464 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2465 change_vinsn_in_expr (expr, pti->vinsn_new);
2466 if (pti->was_target_conflict)
2467 EXPR_TARGET_AVAILABLE (expr) = false;
2468 if (pti->type == TRANS_SPECULATION)
2470 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2471 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2474 if (sched_verbose >= 6)
2476 sel_print ("changed (cached): ");
2477 dump_expr (expr);
2478 sel_print ("\n");
2481 *res = MOVEUP_EXPR_CHANGED;
2482 return true;
2485 return false;
2488 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2489 static void
2490 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2491 enum MOVEUP_EXPR_CODE res)
2493 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2495 /* Do not cache result of propagating jumps through an insn group,
2496 as it is always true, which is not useful outside the group. */
2497 if (inside_insn_group)
2498 return;
2500 if (res == MOVEUP_EXPR_NULL)
2502 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2503 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2505 else if (res == MOVEUP_EXPR_SAME)
2507 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2508 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2510 else if (res == MOVEUP_EXPR_AS_RHS)
2512 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2513 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2515 else
2516 gcc_unreachable ();
2519 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2520 and transformation type TRANS_TYPE. */
2521 static void
2522 update_transformation_cache (expr_t expr, insn_t insn,
2523 bool inside_insn_group,
2524 enum local_trans_type trans_type,
2525 vinsn_t expr_old_vinsn)
2527 struct transformed_insns *pti;
2529 if (inside_insn_group)
2530 return;
2532 pti = XNEW (struct transformed_insns);
2533 pti->vinsn_old = expr_old_vinsn;
2534 pti->vinsn_new = EXPR_VINSN (expr);
2535 pti->type = trans_type;
2536 pti->was_target_conflict = was_target_conflict;
2537 pti->ds = EXPR_SPEC_DONE_DS (expr);
2538 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2539 vinsn_attach (pti->vinsn_old);
2540 vinsn_attach (pti->vinsn_new);
2541 *((struct transformed_insns **)
2542 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2543 pti, VINSN_HASH_RTX (expr_old_vinsn),
2544 INSERT)) = pti;
2547 /* Same as moveup_expr, but first looks up the result of
2548 transformation in caches. */
2549 static enum MOVEUP_EXPR_CODE
2550 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2552 enum MOVEUP_EXPR_CODE res;
2553 bool got_answer = false;
2555 if (sched_verbose >= 6)
2557 sel_print ("Moving ");
2558 dump_expr (expr);
2559 sel_print (" through %d: ", INSN_UID (insn));
2562 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2563 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2564 == EXPR_INSN_RTX (expr)))
2565 /* Don't use cached information for debug insns that are heads of
2566 basic blocks. */;
2567 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2568 /* When inside insn group, we do not want remove stores conflicting
2569 with previosly issued loads. */
2570 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2571 else if (try_transformation_cache (expr, insn, &res))
2572 got_answer = true;
2574 if (! got_answer)
2576 /* Invoke moveup_expr and record the results. */
2577 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2578 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2579 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2580 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2581 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2583 /* ??? Invent something better than this. We can't allow old_vinsn
2584 to go, we need it for the history vector. */
2585 vinsn_attach (expr_old_vinsn);
2587 res = moveup_expr (expr, insn, inside_insn_group,
2588 &trans_type);
2589 switch (res)
2591 case MOVEUP_EXPR_NULL:
2592 update_bitmap_cache (expr, insn, inside_insn_group, res);
2593 if (sched_verbose >= 6)
2594 sel_print ("removed\n");
2595 break;
2597 case MOVEUP_EXPR_SAME:
2598 update_bitmap_cache (expr, insn, inside_insn_group, res);
2599 if (sched_verbose >= 6)
2600 sel_print ("unchanged\n");
2601 break;
2603 case MOVEUP_EXPR_AS_RHS:
2604 gcc_assert (!unique_p || inside_insn_group);
2605 update_bitmap_cache (expr, insn, inside_insn_group, res);
2606 if (sched_verbose >= 6)
2607 sel_print ("unchanged (as RHS)\n");
2608 break;
2610 case MOVEUP_EXPR_CHANGED:
2611 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2612 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2613 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2614 INSN_UID (insn), trans_type,
2615 expr_old_vinsn, EXPR_VINSN (expr),
2616 expr_old_spec_ds);
2617 update_transformation_cache (expr, insn, inside_insn_group,
2618 trans_type, expr_old_vinsn);
2619 if (sched_verbose >= 6)
2621 sel_print ("changed: ");
2622 dump_expr (expr);
2623 sel_print ("\n");
2625 break;
2626 default:
2627 gcc_unreachable ();
2630 vinsn_detach (expr_old_vinsn);
2633 return res;
2636 /* Moves an av set AVP up through INSN, performing necessary
2637 transformations. */
2638 static void
2639 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2641 av_set_iterator i;
2642 expr_t expr;
2644 FOR_EACH_EXPR_1 (expr, i, avp)
2647 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2649 case MOVEUP_EXPR_SAME:
2650 case MOVEUP_EXPR_AS_RHS:
2651 break;
2653 case MOVEUP_EXPR_NULL:
2654 av_set_iter_remove (&i);
2655 break;
2657 case MOVEUP_EXPR_CHANGED:
2658 expr = merge_with_other_exprs (avp, &i, expr);
2659 break;
2661 default:
2662 gcc_unreachable ();
2667 /* Moves AVP set along PATH. */
2668 static void
2669 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2671 int last_cycle;
2673 if (sched_verbose >= 6)
2674 sel_print ("Moving expressions up in the insn group...\n");
2675 if (! path)
2676 return;
2677 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2678 while (path
2679 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2681 moveup_set_expr (avp, ILIST_INSN (path), true);
2682 path = ILIST_NEXT (path);
2686 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2687 static bool
2688 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2690 expr_def _tmp, *tmp = &_tmp;
2691 int last_cycle;
2692 bool res = true;
2694 copy_expr_onside (tmp, expr);
2695 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2696 while (path
2697 && res
2698 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2700 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2701 != MOVEUP_EXPR_NULL);
2702 path = ILIST_NEXT (path);
2705 if (res)
2707 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2708 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2710 if (tmp_vinsn != expr_vliw_vinsn)
2711 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2714 clear_expr (tmp);
2715 return res;
2719 /* Functions that compute av and lv sets. */
2721 /* Returns true if INSN is not a downward continuation of the given path P in
2722 the current stage. */
2723 static bool
2724 is_ineligible_successor (insn_t insn, ilist_t p)
2726 insn_t prev_insn;
2728 /* Check if insn is not deleted. */
2729 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2730 gcc_unreachable ();
2731 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2732 gcc_unreachable ();
2734 /* If it's the first insn visited, then the successor is ok. */
2735 if (!p)
2736 return false;
2738 prev_insn = ILIST_INSN (p);
2740 if (/* a backward edge. */
2741 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2742 /* is already visited. */
2743 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2744 && (ilist_is_in_p (p, insn)
2745 /* We can reach another fence here and still seqno of insn
2746 would be equal to seqno of prev_insn. This is possible
2747 when prev_insn is a previously created bookkeeping copy.
2748 In that case it'd get a seqno of insn. Thus, check here
2749 whether insn is in current fence too. */
2750 || IN_CURRENT_FENCE_P (insn)))
2751 /* Was already scheduled on this round. */
2752 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2753 && IN_CURRENT_FENCE_P (insn))
2754 /* An insn from another fence could also be
2755 scheduled earlier even if this insn is not in
2756 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2757 || (!pipelining_p
2758 && INSN_SCHED_TIMES (insn) > 0))
2759 return true;
2760 else
2761 return false;
2764 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2765 of handling multiple successors and properly merging its av_sets. P is
2766 the current path traversed. WS is the size of lookahead window.
2767 Return the av set computed. */
2768 static av_set_t
2769 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2771 struct succs_info *sinfo;
2772 av_set_t expr_in_all_succ_branches = NULL;
2773 int is;
2774 insn_t succ, zero_succ = NULL;
2775 av_set_t av1 = NULL;
2777 gcc_assert (sel_bb_end_p (insn));
2779 /* Find different kind of successors needed for correct computing of
2780 SPEC and TARGET_AVAILABLE attributes. */
2781 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2783 /* Debug output. */
2784 if (sched_verbose >= 6)
2786 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2787 dump_insn_vector (sinfo->succs_ok);
2788 sel_print ("\n");
2789 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2790 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2793 /* Add insn to the tail of current path. */
2794 ilist_add (&p, insn);
2796 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2798 av_set_t succ_set;
2800 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2801 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2803 av_set_split_usefulness (succ_set,
2804 sinfo->probs_ok[is],
2805 sinfo->all_prob);
2807 if (sinfo->all_succs_n > 1)
2809 /* Find EXPR'es that came from *all* successors and save them
2810 into expr_in_all_succ_branches. This set will be used later
2811 for calculating speculation attributes of EXPR'es. */
2812 if (is == 0)
2814 expr_in_all_succ_branches = av_set_copy (succ_set);
2816 /* Remember the first successor for later. */
2817 zero_succ = succ;
2819 else
2821 av_set_iterator i;
2822 expr_t expr;
2824 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2825 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2826 av_set_iter_remove (&i);
2830 /* Union the av_sets. Check liveness restrictions on target registers
2831 in special case of two successors. */
2832 if (sinfo->succs_ok_n == 2 && is == 1)
2834 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2835 basic_block bb1 = BLOCK_FOR_INSN (succ);
2837 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2838 av_set_union_and_live (&av1, &succ_set,
2839 BB_LV_SET (bb0),
2840 BB_LV_SET (bb1),
2841 insn);
2843 else
2844 av_set_union_and_clear (&av1, &succ_set, insn);
2847 /* Check liveness restrictions via hard way when there are more than
2848 two successors. */
2849 if (sinfo->succs_ok_n > 2)
2850 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2852 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2854 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2855 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2856 BB_LV_SET (succ_bb));
2859 /* Finally, check liveness restrictions on paths leaving the region. */
2860 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2861 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2862 mark_unavailable_targets
2863 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2865 if (sinfo->all_succs_n > 1)
2867 av_set_iterator i;
2868 expr_t expr;
2870 /* Increase the spec attribute of all EXPR'es that didn't come
2871 from all successors. */
2872 FOR_EACH_EXPR (expr, i, av1)
2873 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2874 EXPR_SPEC (expr)++;
2876 av_set_clear (&expr_in_all_succ_branches);
2878 /* Do not move conditional branches through other
2879 conditional branches. So, remove all conditional
2880 branches from av_set if current operator is a conditional
2881 branch. */
2882 av_set_substract_cond_branches (&av1);
2885 ilist_remove (&p);
2886 free_succs_info (sinfo);
2888 if (sched_verbose >= 6)
2890 sel_print ("av_succs (%d): ", INSN_UID (insn));
2891 dump_av_set (av1);
2892 sel_print ("\n");
2895 return av1;
2898 /* This function computes av_set for the FIRST_INSN by dragging valid
2899 av_set through all basic block insns either from the end of basic block
2900 (computed using compute_av_set_at_bb_end) or from the insn on which
2901 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2902 below the basic block and handling conditional branches.
2903 FIRST_INSN - the basic block head, P - path consisting of the insns
2904 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2905 and bb ends are added to the path), WS - current window size,
2906 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2907 static av_set_t
2908 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2909 bool need_copy_p)
2911 insn_t cur_insn;
2912 int end_ws = ws;
2913 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2914 insn_t after_bb_end = NEXT_INSN (bb_end);
2915 insn_t last_insn;
2916 av_set_t av = NULL;
2917 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2919 /* Return NULL if insn is not on the legitimate downward path. */
2920 if (is_ineligible_successor (first_insn, p))
2922 if (sched_verbose >= 6)
2923 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2925 return NULL;
2928 /* If insn already has valid av(insn) computed, just return it. */
2929 if (AV_SET_VALID_P (first_insn))
2931 av_set_t av_set;
2933 if (sel_bb_head_p (first_insn))
2934 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2935 else
2936 av_set = NULL;
2938 if (sched_verbose >= 6)
2940 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2941 dump_av_set (av_set);
2942 sel_print ("\n");
2945 return need_copy_p ? av_set_copy (av_set) : av_set;
2948 ilist_add (&p, first_insn);
2950 /* As the result after this loop have completed, in LAST_INSN we'll
2951 have the insn which has valid av_set to start backward computation
2952 from: it either will be NULL because on it the window size was exceeded
2953 or other valid av_set as returned by compute_av_set for the last insn
2954 of the basic block. */
2955 for (last_insn = first_insn; last_insn != after_bb_end;
2956 last_insn = NEXT_INSN (last_insn))
2958 /* We may encounter valid av_set not only on bb_head, but also on
2959 those insns on which previously MAX_WS was exceeded. */
2960 if (AV_SET_VALID_P (last_insn))
2962 if (sched_verbose >= 6)
2963 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2964 break;
2967 /* The special case: the last insn of the BB may be an
2968 ineligible_successor due to its SEQ_NO that was set on
2969 it as a bookkeeping. */
2970 if (last_insn != first_insn
2971 && is_ineligible_successor (last_insn, p))
2973 if (sched_verbose >= 6)
2974 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2975 break;
2978 if (DEBUG_INSN_P (last_insn))
2979 continue;
2981 if (end_ws > max_ws)
2983 /* We can reach max lookahead size at bb_header, so clean av_set
2984 first. */
2985 INSN_WS_LEVEL (last_insn) = global_level;
2987 if (sched_verbose >= 6)
2988 sel_print ("Insn %d is beyond the software lookahead window size\n",
2989 INSN_UID (last_insn));
2990 break;
2993 end_ws++;
2996 /* Get the valid av_set into AV above the LAST_INSN to start backward
2997 computation from. It either will be empty av_set or av_set computed from
2998 the successors on the last insn of the current bb. */
2999 if (last_insn != after_bb_end)
3001 av = NULL;
3003 /* This is needed only to obtain av_sets that are identical to
3004 those computed by the old compute_av_set version. */
3005 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
3006 av_set_add (&av, INSN_EXPR (last_insn));
3008 else
3009 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
3010 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
3012 /* Compute av_set in AV starting from below the LAST_INSN up to
3013 location above the FIRST_INSN. */
3014 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3015 cur_insn = PREV_INSN (cur_insn))
3016 if (!INSN_NOP_P (cur_insn))
3018 expr_t expr;
3020 moveup_set_expr (&av, cur_insn, false);
3022 /* If the expression for CUR_INSN is already in the set,
3023 replace it by the new one. */
3024 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3025 if (expr != NULL)
3027 clear_expr (expr);
3028 copy_expr (expr, INSN_EXPR (cur_insn));
3030 else
3031 av_set_add (&av, INSN_EXPR (cur_insn));
3034 /* Clear stale bb_av_set. */
3035 if (sel_bb_head_p (first_insn))
3037 av_set_clear (&BB_AV_SET (cur_bb));
3038 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3039 BB_AV_LEVEL (cur_bb) = global_level;
3042 if (sched_verbose >= 6)
3044 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3045 dump_av_set (av);
3046 sel_print ("\n");
3049 ilist_remove (&p);
3050 return av;
3053 /* Compute av set before INSN.
3054 INSN - the current operation (actual rtx INSN)
3055 P - the current path, which is list of insns visited so far
3056 WS - software lookahead window size.
3057 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3058 if we want to save computed av_set in s_i_d, we should make a copy of it.
3060 In the resulting set we will have only expressions that don't have delay
3061 stalls and nonsubstitutable dependences. */
3062 static av_set_t
3063 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3065 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3068 /* Propagate a liveness set LV through INSN. */
3069 static void
3070 propagate_lv_set (regset lv, insn_t insn)
3072 gcc_assert (INSN_P (insn));
3074 if (INSN_NOP_P (insn))
3075 return;
3077 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3080 /* Return livness set at the end of BB. */
3081 static regset
3082 compute_live_after_bb (basic_block bb)
3084 edge e;
3085 edge_iterator ei;
3086 regset lv = get_clear_regset_from_pool ();
3088 gcc_assert (!ignore_first);
3090 FOR_EACH_EDGE (e, ei, bb->succs)
3091 if (sel_bb_empty_p (e->dest))
3093 if (! BB_LV_SET_VALID_P (e->dest))
3095 gcc_unreachable ();
3096 gcc_assert (BB_LV_SET (e->dest) == NULL);
3097 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3098 BB_LV_SET_VALID_P (e->dest) = true;
3100 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3102 else
3103 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3105 return lv;
3108 /* Compute the set of all live registers at the point before INSN and save
3109 it at INSN if INSN is bb header. */
3110 regset
3111 compute_live (insn_t insn)
3113 basic_block bb = BLOCK_FOR_INSN (insn);
3114 insn_t final, temp;
3115 regset lv;
3117 /* Return the valid set if we're already on it. */
3118 if (!ignore_first)
3120 regset src = NULL;
3122 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3123 src = BB_LV_SET (bb);
3124 else
3126 gcc_assert (in_current_region_p (bb));
3127 if (INSN_LIVE_VALID_P (insn))
3128 src = INSN_LIVE (insn);
3131 if (src)
3133 lv = get_regset_from_pool ();
3134 COPY_REG_SET (lv, src);
3136 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3138 COPY_REG_SET (BB_LV_SET (bb), lv);
3139 BB_LV_SET_VALID_P (bb) = true;
3142 return_regset_to_pool (lv);
3143 return lv;
3147 /* We've skipped the wrong lv_set. Don't skip the right one. */
3148 ignore_first = false;
3149 gcc_assert (in_current_region_p (bb));
3151 /* Find a valid LV set in this block or below, if needed.
3152 Start searching from the next insn: either ignore_first is true, or
3153 INSN doesn't have a correct live set. */
3154 temp = NEXT_INSN (insn);
3155 final = NEXT_INSN (BB_END (bb));
3156 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3157 temp = NEXT_INSN (temp);
3158 if (temp == final)
3160 lv = compute_live_after_bb (bb);
3161 temp = PREV_INSN (temp);
3163 else
3165 lv = get_regset_from_pool ();
3166 COPY_REG_SET (lv, INSN_LIVE (temp));
3169 /* Put correct lv sets on the insns which have bad sets. */
3170 final = PREV_INSN (insn);
3171 while (temp != final)
3173 propagate_lv_set (lv, temp);
3174 COPY_REG_SET (INSN_LIVE (temp), lv);
3175 INSN_LIVE_VALID_P (temp) = true;
3176 temp = PREV_INSN (temp);
3179 /* Also put it in a BB. */
3180 if (sel_bb_head_p (insn))
3182 basic_block bb = BLOCK_FOR_INSN (insn);
3184 COPY_REG_SET (BB_LV_SET (bb), lv);
3185 BB_LV_SET_VALID_P (bb) = true;
3188 /* We return LV to the pool, but will not clear it there. Thus we can
3189 legimatelly use LV till the next use of regset_pool_get (). */
3190 return_regset_to_pool (lv);
3191 return lv;
3194 /* Update liveness sets for INSN. */
3195 static inline void
3196 update_liveness_on_insn (rtx insn)
3198 ignore_first = true;
3199 compute_live (insn);
3202 /* Compute liveness below INSN and write it into REGS. */
3203 static inline void
3204 compute_live_below_insn (rtx insn, regset regs)
3206 rtx succ;
3207 succ_iterator si;
3209 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3210 IOR_REG_SET (regs, compute_live (succ));
3213 /* Update the data gathered in av and lv sets starting from INSN. */
3214 static void
3215 update_data_sets (rtx insn)
3217 update_liveness_on_insn (insn);
3218 if (sel_bb_head_p (insn))
3220 gcc_assert (AV_LEVEL (insn) != 0);
3221 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3222 compute_av_set (insn, NULL, 0, 0);
3227 /* Helper for move_op () and find_used_regs ().
3228 Return speculation type for which a check should be created on the place
3229 of INSN. EXPR is one of the original ops we are searching for. */
3230 static ds_t
3231 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3233 ds_t to_check_ds;
3234 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3236 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3238 if (targetm.sched.get_insn_checked_ds)
3239 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3241 if (spec_info != NULL
3242 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3243 already_checked_ds |= BEGIN_CONTROL;
3245 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3247 to_check_ds &= ~already_checked_ds;
3249 return to_check_ds;
3252 /* Find the set of registers that are unavailable for storing expres
3253 while moving ORIG_OPS up on the path starting from INSN due to
3254 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3256 All the original operations found during the traversal are saved in the
3257 ORIGINAL_INSNS list.
3259 REG_RENAME_P denotes the set of hardware registers that
3260 can not be used with renaming due to the register class restrictions,
3261 mode restrictions and other (the register we'll choose should be
3262 compatible class with the original uses, shouldn't be in call_used_regs,
3263 should be HARD_REGNO_RENAME_OK etc).
3265 Returns TRUE if we've found all original insns, FALSE otherwise.
3267 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3268 to traverse the code motion paths. This helper function finds registers
3269 that are not available for storing expres while moving ORIG_OPS up on the
3270 path starting from INSN. A register considered as used on the moving path,
3271 if one of the following conditions is not satisfied:
3273 (1) a register not set or read on any path from xi to an instance of
3274 the original operation,
3275 (2) not among the live registers of the point immediately following the
3276 first original operation on a given downward path, except for the
3277 original target register of the operation,
3278 (3) not live on the other path of any conditional branch that is passed
3279 by the operation, in case original operations are not present on
3280 both paths of the conditional branch.
3282 All the original operations found during the traversal are saved in the
3283 ORIGINAL_INSNS list.
3285 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3286 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3287 to unavailable hard regs at the point original operation is found. */
3289 static bool
3290 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3291 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3293 def_list_iterator i;
3294 def_t def;
3295 int res;
3296 bool needs_spec_check_p = false;
3297 expr_t expr;
3298 av_set_iterator expr_iter;
3299 struct fur_static_params sparams;
3300 struct cmpd_local_params lparams;
3302 /* We haven't visited any blocks yet. */
3303 bitmap_clear (code_motion_visited_blocks);
3305 /* Init parameters for code_motion_path_driver. */
3306 sparams.crosses_call = false;
3307 sparams.original_insns = original_insns;
3308 sparams.used_regs = used_regs;
3310 /* Set the appropriate hooks and data. */
3311 code_motion_path_driver_info = &fur_hooks;
3313 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3315 reg_rename_p->crosses_call |= sparams.crosses_call;
3317 gcc_assert (res == 1);
3318 gcc_assert (original_insns && *original_insns);
3320 /* ??? We calculate whether an expression needs a check when computing
3321 av sets. This information is not as precise as it could be due to
3322 merging this bit in merge_expr. We can do better in find_used_regs,
3323 but we want to avoid multiple traversals of the same code motion
3324 paths. */
3325 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3326 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3328 /* Mark hardware regs in REG_RENAME_P that are not suitable
3329 for renaming expr in INSN due to hardware restrictions (register class,
3330 modes compatibility etc). */
3331 FOR_EACH_DEF (def, i, *original_insns)
3333 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3335 if (VINSN_SEPARABLE_P (vinsn))
3336 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3338 /* Do not allow clobbering of ld.[sa] address in case some of the
3339 original operations need a check. */
3340 if (needs_spec_check_p)
3341 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3344 return true;
3348 /* Functions to choose the best insn from available ones. */
3350 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3351 static int
3352 sel_target_adjust_priority (expr_t expr)
3354 int priority = EXPR_PRIORITY (expr);
3355 int new_priority;
3357 if (targetm.sched.adjust_priority)
3358 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3359 else
3360 new_priority = priority;
3362 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3363 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3365 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3367 if (sched_verbose >= 4)
3368 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3369 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3370 EXPR_PRIORITY_ADJ (expr), new_priority);
3372 return new_priority;
3375 /* Rank two available exprs for schedule. Never return 0 here. */
3376 static int
3377 sel_rank_for_schedule (const void *x, const void *y)
3379 expr_t tmp = *(const expr_t *) y;
3380 expr_t tmp2 = *(const expr_t *) x;
3381 insn_t tmp_insn, tmp2_insn;
3382 vinsn_t tmp_vinsn, tmp2_vinsn;
3383 int val;
3385 tmp_vinsn = EXPR_VINSN (tmp);
3386 tmp2_vinsn = EXPR_VINSN (tmp2);
3387 tmp_insn = EXPR_INSN_RTX (tmp);
3388 tmp2_insn = EXPR_INSN_RTX (tmp2);
3390 /* Schedule debug insns as early as possible. */
3391 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3392 return -1;
3393 else if (DEBUG_INSN_P (tmp2_insn))
3394 return 1;
3396 /* Prefer SCHED_GROUP_P insns to any others. */
3397 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3399 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3400 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3402 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3403 cannot be cloned. */
3404 if (VINSN_UNIQUE_P (tmp2_vinsn))
3405 return 1;
3406 return -1;
3409 /* Discourage scheduling of speculative checks. */
3410 val = (sel_insn_is_speculation_check (tmp_insn)
3411 - sel_insn_is_speculation_check (tmp2_insn));
3412 if (val)
3413 return val;
3415 /* Prefer not scheduled insn over scheduled one. */
3416 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3418 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3419 if (val)
3420 return val;
3423 /* Prefer jump over non-jump instruction. */
3424 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3425 return -1;
3426 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3427 return 1;
3429 /* Prefer an expr with greater priority. */
3430 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3432 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3433 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3435 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3437 else
3438 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3439 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3440 if (val)
3441 return val;
3443 if (spec_info != NULL && spec_info->mask != 0)
3444 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3446 ds_t ds1, ds2;
3447 dw_t dw1, dw2;
3448 int dw;
3450 ds1 = EXPR_SPEC_DONE_DS (tmp);
3451 if (ds1)
3452 dw1 = ds_weak (ds1);
3453 else
3454 dw1 = NO_DEP_WEAK;
3456 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3457 if (ds2)
3458 dw2 = ds_weak (ds2);
3459 else
3460 dw2 = NO_DEP_WEAK;
3462 dw = dw2 - dw1;
3463 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3464 return dw;
3467 /* Prefer an old insn to a bookkeeping insn. */
3468 if (INSN_UID (tmp_insn) < first_emitted_uid
3469 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3470 return -1;
3471 if (INSN_UID (tmp_insn) >= first_emitted_uid
3472 && INSN_UID (tmp2_insn) < first_emitted_uid)
3473 return 1;
3475 /* Prefer an insn with smaller UID, as a last resort.
3476 We can't safely use INSN_LUID as it is defined only for those insns
3477 that are in the stream. */
3478 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3481 /* Filter out expressions from av set pointed to by AV_PTR
3482 that are pipelined too many times. */
3483 static void
3484 process_pipelined_exprs (av_set_t *av_ptr)
3486 expr_t expr;
3487 av_set_iterator si;
3489 /* Don't pipeline already pipelined code as that would increase
3490 number of unnecessary register moves. */
3491 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3493 if (EXPR_SCHED_TIMES (expr)
3494 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3495 av_set_iter_remove (&si);
3499 /* Filter speculative insns from AV_PTR if we don't want them. */
3500 static void
3501 process_spec_exprs (av_set_t *av_ptr)
3503 bool try_data_p = true;
3504 bool try_control_p = true;
3505 expr_t expr;
3506 av_set_iterator si;
3508 if (spec_info == NULL)
3509 return;
3511 /* Scan *AV_PTR to find out if we want to consider speculative
3512 instructions for scheduling. */
3513 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3515 ds_t ds;
3517 ds = EXPR_SPEC_DONE_DS (expr);
3519 /* The probability of a success is too low - don't speculate. */
3520 if ((ds & SPECULATIVE)
3521 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3522 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3523 || (pipelining_p && false
3524 && (ds & DATA_SPEC)
3525 && (ds & CONTROL_SPEC))))
3527 av_set_iter_remove (&si);
3528 continue;
3531 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3532 && !(ds & BEGIN_DATA))
3533 try_data_p = false;
3535 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3536 && !(ds & BEGIN_CONTROL))
3537 try_control_p = false;
3540 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3542 ds_t ds;
3544 ds = EXPR_SPEC_DONE_DS (expr);
3546 if (ds & SPECULATIVE)
3548 if ((ds & BEGIN_DATA) && !try_data_p)
3549 /* We don't want any data speculative instructions right
3550 now. */
3551 av_set_iter_remove (&si);
3553 if ((ds & BEGIN_CONTROL) && !try_control_p)
3554 /* We don't want any control speculative instructions right
3555 now. */
3556 av_set_iter_remove (&si);
3561 /* Search for any use-like insns in AV_PTR and decide on scheduling
3562 them. Return one when found, and NULL otherwise.
3563 Note that we check here whether a USE could be scheduled to avoid
3564 an infinite loop later. */
3565 static expr_t
3566 process_use_exprs (av_set_t *av_ptr)
3568 expr_t expr;
3569 av_set_iterator si;
3570 bool uses_present_p = false;
3571 bool try_uses_p = true;
3573 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3575 /* This will also initialize INSN_CODE for later use. */
3576 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3578 /* If we have a USE in *AV_PTR that was not scheduled yet,
3579 do so because it will do good only. */
3580 if (EXPR_SCHED_TIMES (expr) <= 0)
3582 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3583 return expr;
3585 av_set_iter_remove (&si);
3587 else
3589 gcc_assert (pipelining_p);
3591 uses_present_p = true;
3594 else
3595 try_uses_p = false;
3598 if (uses_present_p)
3600 /* If we don't want to schedule any USEs right now and we have some
3601 in *AV_PTR, remove them, else just return the first one found. */
3602 if (!try_uses_p)
3604 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3605 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3606 av_set_iter_remove (&si);
3608 else
3610 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3612 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3614 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3615 return expr;
3617 av_set_iter_remove (&si);
3622 return NULL;
3625 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3626 EXPR's history of changes. */
3627 static bool
3628 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3630 vinsn_t vinsn, expr_vinsn;
3631 int n;
3632 unsigned i;
3634 /* Start with checking expr itself and then proceed with all the old forms
3635 of expr taken from its history vector. */
3636 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3637 expr_vinsn;
3638 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3639 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3640 : NULL))
3641 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3642 if (VINSN_SEPARABLE_P (vinsn))
3644 if (vinsn_equal_p (vinsn, expr_vinsn))
3645 return true;
3647 else
3649 /* For non-separable instructions, the blocking insn can have
3650 another pattern due to substitution, and we can't choose
3651 different register as in the above case. Check all registers
3652 being written instead. */
3653 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3654 VINSN_REG_SETS (expr_vinsn)))
3655 return true;
3658 return false;
3661 #ifdef ENABLE_CHECKING
3662 /* Return true if either of expressions from ORIG_OPS can be blocked
3663 by previously created bookkeeping code. STATIC_PARAMS points to static
3664 parameters of move_op. */
3665 static bool
3666 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3668 expr_t expr;
3669 av_set_iterator iter;
3670 moveop_static_params_p sparams;
3672 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3673 created while scheduling on another fence. */
3674 FOR_EACH_EXPR (expr, iter, orig_ops)
3675 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3676 return true;
3678 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3679 sparams = (moveop_static_params_p) static_params;
3681 /* Expressions can be also blocked by bookkeeping created during current
3682 move_op. */
3683 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3684 FOR_EACH_EXPR (expr, iter, orig_ops)
3685 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3686 return true;
3688 /* Expressions in ORIG_OPS may have wrong destination register due to
3689 renaming. Check with the right register instead. */
3690 if (sparams->dest && REG_P (sparams->dest))
3692 rtx reg = sparams->dest;
3693 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3695 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3696 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3697 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3698 return true;
3701 return false;
3703 #endif
3705 /* Clear VINSN_VEC and detach vinsns. */
3706 static void
3707 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3709 unsigned len = vinsn_vec->length ();
3710 if (len > 0)
3712 vinsn_t vinsn;
3713 int n;
3715 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3716 vinsn_detach (vinsn);
3717 vinsn_vec->block_remove (0, len);
3721 /* Add the vinsn of EXPR to the VINSN_VEC. */
3722 static void
3723 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3725 vinsn_attach (EXPR_VINSN (expr));
3726 vinsn_vec->safe_push (EXPR_VINSN (expr));
3729 /* Free the vector representing blocked expressions. */
3730 static void
3731 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3733 vinsn_vec.release ();
3736 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3738 void sel_add_to_insn_priority (rtx insn, int amount)
3740 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3742 if (sched_verbose >= 2)
3743 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3744 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3745 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3748 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3749 true if there is something to schedule. BNDS and FENCE are current
3750 boundaries and fence, respectively. If we need to stall for some cycles
3751 before an expr from AV would become available, write this number to
3752 *PNEED_STALL. */
3753 static bool
3754 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3755 int *pneed_stall)
3757 av_set_iterator si;
3758 expr_t expr;
3759 int sched_next_worked = 0, stalled, n;
3760 static int av_max_prio, est_ticks_till_branch;
3761 int min_need_stall = -1;
3762 deps_t dc = BND_DC (BLIST_BND (bnds));
3764 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3765 already scheduled. */
3766 if (av == NULL)
3767 return false;
3769 /* Empty vector from the previous stuff. */
3770 if (vec_av_set.length () > 0)
3771 vec_av_set.block_remove (0, vec_av_set.length ());
3773 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3774 for each insn. */
3775 gcc_assert (vec_av_set.is_empty ());
3776 FOR_EACH_EXPR (expr, si, av)
3778 vec_av_set.safe_push (expr);
3780 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3782 /* Adjust priority using target backend hook. */
3783 sel_target_adjust_priority (expr);
3786 /* Sort the vector. */
3787 vec_av_set.qsort (sel_rank_for_schedule);
3789 /* We record maximal priority of insns in av set for current instruction
3790 group. */
3791 if (FENCE_STARTS_CYCLE_P (fence))
3792 av_max_prio = est_ticks_till_branch = INT_MIN;
3794 /* Filter out inappropriate expressions. Loop's direction is reversed to
3795 visit "best" instructions first. We assume that vec::unordered_remove
3796 moves last element in place of one being deleted. */
3797 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3799 expr_t expr = vec_av_set[n];
3800 insn_t insn = EXPR_INSN_RTX (expr);
3801 signed char target_available;
3802 bool is_orig_reg_p = true;
3803 int need_cycles, new_prio;
3804 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3806 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3807 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3809 vec_av_set.unordered_remove (n);
3810 continue;
3813 /* Set number of sched_next insns (just in case there
3814 could be several). */
3815 if (FENCE_SCHED_NEXT (fence))
3816 sched_next_worked++;
3818 /* Check all liveness requirements and try renaming.
3819 FIXME: try to minimize calls to this. */
3820 target_available = EXPR_TARGET_AVAILABLE (expr);
3822 /* If insn was already scheduled on the current fence,
3823 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3824 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3825 target_available = -1;
3827 /* If the availability of the EXPR is invalidated by the insertion of
3828 bookkeeping earlier, make sure that we won't choose this expr for
3829 scheduling if it's not separable, and if it is separable, then
3830 we have to recompute the set of available registers for it. */
3831 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3833 vec_av_set.unordered_remove (n);
3834 if (sched_verbose >= 4)
3835 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3836 INSN_UID (insn));
3837 continue;
3840 if (target_available == true)
3842 /* Do nothing -- we can use an existing register. */
3843 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3845 else if (/* Non-separable instruction will never
3846 get another register. */
3847 (target_available == false
3848 && !EXPR_SEPARABLE_P (expr))
3849 /* Don't try to find a register for low-priority expression. */
3850 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3851 /* ??? FIXME: Don't try to rename data speculation. */
3852 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3853 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3855 vec_av_set.unordered_remove (n);
3856 if (sched_verbose >= 4)
3857 sel_print ("Expr %d has no suitable target register\n",
3858 INSN_UID (insn));
3860 /* A fence insn should not get here. */
3861 gcc_assert (!fence_insn_p);
3862 continue;
3865 /* At this point a fence insn should always be available. */
3866 gcc_assert (!fence_insn_p
3867 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3869 /* Filter expressions that need to be renamed or speculated when
3870 pipelining, because compensating register copies or speculation
3871 checks are likely to be placed near the beginning of the loop,
3872 causing a stall. */
3873 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3874 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3876 /* Estimation of number of cycles until loop branch for
3877 renaming/speculation to be successful. */
3878 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3880 if ((int) current_loop_nest->ninsns < 9)
3882 vec_av_set.unordered_remove (n);
3883 if (sched_verbose >= 4)
3884 sel_print ("Pipelining expr %d will likely cause stall\n",
3885 INSN_UID (insn));
3886 continue;
3889 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3890 < need_n_ticks_till_branch * issue_rate / 2
3891 && est_ticks_till_branch < need_n_ticks_till_branch)
3893 vec_av_set.unordered_remove (n);
3894 if (sched_verbose >= 4)
3895 sel_print ("Pipelining expr %d will likely cause stall\n",
3896 INSN_UID (insn));
3897 continue;
3901 /* We want to schedule speculation checks as late as possible. Discard
3902 them from av set if there are instructions with higher priority. */
3903 if (sel_insn_is_speculation_check (insn)
3904 && EXPR_PRIORITY (expr) < av_max_prio)
3906 stalled++;
3907 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3908 vec_av_set.unordered_remove (n);
3909 if (sched_verbose >= 4)
3910 sel_print ("Delaying speculation check %d until its first use\n",
3911 INSN_UID (insn));
3912 continue;
3915 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3916 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3917 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3919 /* Don't allow any insns whose data is not yet ready.
3920 Check first whether we've already tried them and failed. */
3921 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3923 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3924 - FENCE_CYCLE (fence));
3925 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3926 est_ticks_till_branch = MAX (est_ticks_till_branch,
3927 EXPR_PRIORITY (expr) + need_cycles);
3929 if (need_cycles > 0)
3931 stalled++;
3932 min_need_stall = (min_need_stall < 0
3933 ? need_cycles
3934 : MIN (min_need_stall, need_cycles));
3935 vec_av_set.unordered_remove (n);
3937 if (sched_verbose >= 4)
3938 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3939 INSN_UID (insn),
3940 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3941 continue;
3945 /* Now resort to dependence analysis to find whether EXPR might be
3946 stalled due to dependencies from FENCE's context. */
3947 need_cycles = tick_check_p (expr, dc, fence);
3948 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3950 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3951 est_ticks_till_branch = MAX (est_ticks_till_branch,
3952 new_prio);
3954 if (need_cycles > 0)
3956 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3958 int new_size = INSN_UID (insn) * 3 / 2;
3960 FENCE_READY_TICKS (fence)
3961 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3962 new_size, FENCE_READY_TICKS_SIZE (fence),
3963 sizeof (int));
3965 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3966 = FENCE_CYCLE (fence) + need_cycles;
3968 stalled++;
3969 min_need_stall = (min_need_stall < 0
3970 ? need_cycles
3971 : MIN (min_need_stall, need_cycles));
3973 vec_av_set.unordered_remove (n);
3975 if (sched_verbose >= 4)
3976 sel_print ("Expr %d is not ready yet until cycle %d\n",
3977 INSN_UID (insn),
3978 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3979 continue;
3982 if (sched_verbose >= 4)
3983 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3984 min_need_stall = 0;
3987 /* Clear SCHED_NEXT. */
3988 if (FENCE_SCHED_NEXT (fence))
3990 gcc_assert (sched_next_worked == 1);
3991 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3994 /* No need to stall if this variable was not initialized. */
3995 if (min_need_stall < 0)
3996 min_need_stall = 0;
3998 if (vec_av_set.is_empty ())
4000 /* We need to set *pneed_stall here, because later we skip this code
4001 when ready list is empty. */
4002 *pneed_stall = min_need_stall;
4003 return false;
4005 else
4006 gcc_assert (min_need_stall == 0);
4008 /* Sort the vector. */
4009 vec_av_set.qsort (sel_rank_for_schedule);
4011 if (sched_verbose >= 4)
4013 sel_print ("Total ready exprs: %d, stalled: %d\n",
4014 vec_av_set.length (), stalled);
4015 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
4016 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4017 dump_expr (expr);
4018 sel_print ("\n");
4021 *pneed_stall = 0;
4022 return true;
4025 /* Convert a vectored and sorted av set to the ready list that
4026 the rest of the backend wants to see. */
4027 static void
4028 convert_vec_av_set_to_ready (void)
4030 int n;
4031 expr_t expr;
4033 /* Allocate and fill the ready list from the sorted vector. */
4034 ready.n_ready = vec_av_set.length ();
4035 ready.first = ready.n_ready - 1;
4037 gcc_assert (ready.n_ready > 0);
4039 if (ready.n_ready > max_issue_size)
4041 max_issue_size = ready.n_ready;
4042 sched_extend_ready_list (ready.n_ready);
4045 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4047 vinsn_t vi = EXPR_VINSN (expr);
4048 insn_t insn = VINSN_INSN_RTX (vi);
4050 ready_try[n] = 0;
4051 ready.vec[n] = insn;
4055 /* Initialize ready list from *AV_PTR for the max_issue () call.
4056 If any unrecognizable insn found in *AV_PTR, return it (and skip
4057 max_issue). BND and FENCE are current boundary and fence,
4058 respectively. If we need to stall for some cycles before an expr
4059 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4060 static expr_t
4061 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4062 int *pneed_stall)
4064 expr_t expr;
4066 /* We do not support multiple boundaries per fence. */
4067 gcc_assert (BLIST_NEXT (bnds) == NULL);
4069 /* Process expressions required special handling, i.e. pipelined,
4070 speculative and recog() < 0 expressions first. */
4071 process_pipelined_exprs (av_ptr);
4072 process_spec_exprs (av_ptr);
4074 /* A USE could be scheduled immediately. */
4075 expr = process_use_exprs (av_ptr);
4076 if (expr)
4078 *pneed_stall = 0;
4079 return expr;
4082 /* Turn the av set to a vector for sorting. */
4083 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4085 ready.n_ready = 0;
4086 return NULL;
4089 /* Build the final ready list. */
4090 convert_vec_av_set_to_ready ();
4091 return NULL;
4094 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4095 static bool
4096 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4098 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4099 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4100 : FENCE_CYCLE (fence) - 1;
4101 bool res = false;
4102 int sort_p = 0;
4104 if (!targetm.sched.dfa_new_cycle)
4105 return false;
4107 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4109 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4110 insn, last_scheduled_cycle,
4111 FENCE_CYCLE (fence), &sort_p))
4113 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4114 advance_one_cycle (fence);
4115 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4116 res = true;
4119 return res;
4122 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4123 we can issue. FENCE is the current fence. */
4124 static int
4125 invoke_reorder_hooks (fence_t fence)
4127 int issue_more;
4128 bool ran_hook = false;
4130 /* Call the reorder hook at the beginning of the cycle, and call
4131 the reorder2 hook in the middle of the cycle. */
4132 if (FENCE_ISSUED_INSNS (fence) == 0)
4134 if (targetm.sched.reorder
4135 && !SCHED_GROUP_P (ready_element (&ready, 0))
4136 && ready.n_ready > 1)
4138 /* Don't give reorder the most prioritized insn as it can break
4139 pipelining. */
4140 if (pipelining_p)
4141 --ready.n_ready;
4143 issue_more
4144 = targetm.sched.reorder (sched_dump, sched_verbose,
4145 ready_lastpos (&ready),
4146 &ready.n_ready, FENCE_CYCLE (fence));
4148 if (pipelining_p)
4149 ++ready.n_ready;
4151 ran_hook = true;
4153 else
4154 /* Initialize can_issue_more for variable_issue. */
4155 issue_more = issue_rate;
4157 else if (targetm.sched.reorder2
4158 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4160 if (ready.n_ready == 1)
4161 issue_more =
4162 targetm.sched.reorder2 (sched_dump, sched_verbose,
4163 ready_lastpos (&ready),
4164 &ready.n_ready, FENCE_CYCLE (fence));
4165 else
4167 if (pipelining_p)
4168 --ready.n_ready;
4170 issue_more =
4171 targetm.sched.reorder2 (sched_dump, sched_verbose,
4172 ready.n_ready
4173 ? ready_lastpos (&ready) : NULL,
4174 &ready.n_ready, FENCE_CYCLE (fence));
4176 if (pipelining_p)
4177 ++ready.n_ready;
4180 ran_hook = true;
4182 else
4183 issue_more = FENCE_ISSUE_MORE (fence);
4185 /* Ensure that ready list and vec_av_set are in line with each other,
4186 i.e. vec_av_set[i] == ready_element (&ready, i). */
4187 if (issue_more && ran_hook)
4189 int i, j, n;
4190 rtx *arr = ready.vec;
4191 expr_t *vec = vec_av_set.address ();
4193 for (i = 0, n = ready.n_ready; i < n; i++)
4194 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4196 expr_t tmp;
4198 for (j = i; j < n; j++)
4199 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4200 break;
4201 gcc_assert (j < n);
4203 tmp = vec[i];
4204 vec[i] = vec[j];
4205 vec[j] = tmp;
4209 return issue_more;
4212 /* Return an EXPR corresponding to INDEX element of ready list, if
4213 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4214 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4215 ready.vec otherwise. */
4216 static inline expr_t
4217 find_expr_for_ready (int index, bool follow_ready_element)
4219 expr_t expr;
4220 int real_index;
4222 real_index = follow_ready_element ? ready.first - index : index;
4224 expr = vec_av_set[real_index];
4225 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4227 return expr;
4230 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4231 of such insns found. */
4232 static int
4233 invoke_dfa_lookahead_guard (void)
4235 int i, n;
4236 bool have_hook
4237 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4239 if (sched_verbose >= 2)
4240 sel_print ("ready after reorder: ");
4242 for (i = 0, n = 0; i < ready.n_ready; i++)
4244 expr_t expr;
4245 insn_t insn;
4246 int r;
4248 /* In this loop insn is Ith element of the ready list given by
4249 ready_element, not Ith element of ready.vec. */
4250 insn = ready_element (&ready, i);
4252 if (! have_hook || i == 0)
4253 r = 0;
4254 else
4255 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4257 gcc_assert (INSN_CODE (insn) >= 0);
4259 /* Only insns with ready_try = 0 can get here
4260 from fill_ready_list. */
4261 gcc_assert (ready_try [i] == 0);
4262 ready_try[i] = r;
4263 if (!r)
4264 n++;
4266 expr = find_expr_for_ready (i, true);
4268 if (sched_verbose >= 2)
4270 dump_vinsn (EXPR_VINSN (expr));
4271 sel_print (":%d; ", ready_try[i]);
4275 if (sched_verbose >= 2)
4276 sel_print ("\n");
4277 return n;
4280 /* Calculate the number of privileged insns and return it. */
4281 static int
4282 calculate_privileged_insns (void)
4284 expr_t cur_expr, min_spec_expr = NULL;
4285 int privileged_n = 0, i;
4287 for (i = 0; i < ready.n_ready; i++)
4289 if (ready_try[i])
4290 continue;
4292 if (! min_spec_expr)
4293 min_spec_expr = find_expr_for_ready (i, true);
4295 cur_expr = find_expr_for_ready (i, true);
4297 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4298 break;
4300 ++privileged_n;
4303 if (i == ready.n_ready)
4304 privileged_n = 0;
4306 if (sched_verbose >= 2)
4307 sel_print ("privileged_n: %d insns with SPEC %d\n",
4308 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4309 return privileged_n;
4312 /* Call the rest of the hooks after the choice was made. Return
4313 the number of insns that still can be issued given that the current
4314 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4315 and the insn chosen for scheduling, respectively. */
4316 static int
4317 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4319 gcc_assert (INSN_P (best_insn));
4321 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4322 sel_dfa_new_cycle (best_insn, fence);
4324 if (targetm.sched.variable_issue)
4326 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4327 issue_more =
4328 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4329 issue_more);
4330 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4332 else if (GET_CODE (PATTERN (best_insn)) != USE
4333 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4334 issue_more--;
4336 return issue_more;
4339 /* Estimate the cost of issuing INSN on DFA state STATE. */
4340 static int
4341 estimate_insn_cost (rtx insn, state_t state)
4343 static state_t temp = NULL;
4344 int cost;
4346 if (!temp)
4347 temp = xmalloc (dfa_state_size);
4349 memcpy (temp, state, dfa_state_size);
4350 cost = state_transition (temp, insn);
4352 if (cost < 0)
4353 return 0;
4354 else if (cost == 0)
4355 return 1;
4356 return cost;
4359 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4360 This function properly handles ASMs, USEs etc. */
4361 static int
4362 get_expr_cost (expr_t expr, fence_t fence)
4364 rtx insn = EXPR_INSN_RTX (expr);
4366 if (recog_memoized (insn) < 0)
4368 if (!FENCE_STARTS_CYCLE_P (fence)
4369 && INSN_ASM_P (insn))
4370 /* This is asm insn which is tryed to be issued on the
4371 cycle not first. Issue it on the next cycle. */
4372 return 1;
4373 else
4374 /* A USE insn, or something else we don't need to
4375 understand. We can't pass these directly to
4376 state_transition because it will trigger a
4377 fatal error for unrecognizable insns. */
4378 return 0;
4380 else
4381 return estimate_insn_cost (insn, FENCE_STATE (fence));
4384 /* Find the best insn for scheduling, either via max_issue or just take
4385 the most prioritized available. */
4386 static int
4387 choose_best_insn (fence_t fence, int privileged_n, int *index)
4389 int can_issue = 0;
4391 if (dfa_lookahead > 0)
4393 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4394 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4395 can_issue = max_issue (&ready, privileged_n,
4396 FENCE_STATE (fence), true, index);
4397 if (sched_verbose >= 2)
4398 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4399 can_issue, FENCE_ISSUED_INSNS (fence));
4401 else
4403 /* We can't use max_issue; just return the first available element. */
4404 int i;
4406 for (i = 0; i < ready.n_ready; i++)
4408 expr_t expr = find_expr_for_ready (i, true);
4410 if (get_expr_cost (expr, fence) < 1)
4412 can_issue = can_issue_more;
4413 *index = i;
4415 if (sched_verbose >= 2)
4416 sel_print ("using %dth insn from the ready list\n", i + 1);
4418 break;
4422 if (i == ready.n_ready)
4424 can_issue = 0;
4425 *index = -1;
4429 return can_issue;
4432 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4433 BNDS and FENCE are current boundaries and scheduling fence respectively.
4434 Return the expr found and NULL if nothing can be issued atm.
4435 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4436 static expr_t
4437 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4438 int *pneed_stall)
4440 expr_t best;
4442 /* Choose the best insn for scheduling via:
4443 1) sorting the ready list based on priority;
4444 2) calling the reorder hook;
4445 3) calling max_issue. */
4446 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4447 if (best == NULL && ready.n_ready > 0)
4449 int privileged_n, index;
4451 can_issue_more = invoke_reorder_hooks (fence);
4452 if (can_issue_more > 0)
4454 /* Try choosing the best insn until we find one that is could be
4455 scheduled due to liveness restrictions on its destination register.
4456 In the future, we'd like to choose once and then just probe insns
4457 in the order of their priority. */
4458 invoke_dfa_lookahead_guard ();
4459 privileged_n = calculate_privileged_insns ();
4460 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4461 if (can_issue_more)
4462 best = find_expr_for_ready (index, true);
4464 /* We had some available insns, so if we can't issue them,
4465 we have a stall. */
4466 if (can_issue_more == 0)
4468 best = NULL;
4469 *pneed_stall = 1;
4473 if (best != NULL)
4475 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4476 can_issue_more);
4477 if (targetm.sched.variable_issue
4478 && can_issue_more == 0)
4479 *pneed_stall = 1;
4482 if (sched_verbose >= 2)
4484 if (best != NULL)
4486 sel_print ("Best expression (vliw form): ");
4487 dump_expr (best);
4488 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4490 else
4491 sel_print ("No best expr found!\n");
4494 return best;
4498 /* Functions that implement the core of the scheduler. */
4501 /* Emit an instruction from EXPR with SEQNO and VINSN after
4502 PLACE_TO_INSERT. */
4503 static insn_t
4504 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4505 insn_t place_to_insert)
4507 /* This assert fails when we have identical instructions
4508 one of which dominates the other. In this case move_op ()
4509 finds the first instruction and doesn't search for second one.
4510 The solution would be to compute av_set after the first found
4511 insn and, if insn present in that set, continue searching.
4512 For now we workaround this issue in move_op. */
4513 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4515 if (EXPR_WAS_RENAMED (expr))
4517 unsigned regno = expr_dest_regno (expr);
4519 if (HARD_REGISTER_NUM_P (regno))
4521 df_set_regs_ever_live (regno, true);
4522 reg_rename_tick[regno] = ++reg_rename_this_tick;
4526 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4527 place_to_insert);
4530 /* Return TRUE if BB can hold bookkeeping code. */
4531 static bool
4532 block_valid_for_bookkeeping_p (basic_block bb)
4534 insn_t bb_end = BB_END (bb);
4536 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4537 return false;
4539 if (INSN_P (bb_end))
4541 if (INSN_SCHED_TIMES (bb_end) > 0)
4542 return false;
4544 else
4545 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4547 return true;
4550 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4551 into E2->dest, except from E1->src (there may be a sequence of empty basic
4552 blocks between E1->src and E2->dest). Return found block, or NULL if new
4553 one must be created. If LAX holds, don't assume there is a simple path
4554 from E1->src to E2->dest. */
4555 static basic_block
4556 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4558 basic_block candidate_block = NULL;
4559 edge e;
4561 /* Loop over edges from E1 to E2, inclusive. */
4562 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4563 EDGE_SUCC (e->dest, 0))
4565 if (EDGE_COUNT (e->dest->preds) == 2)
4567 if (candidate_block == NULL)
4568 candidate_block = (EDGE_PRED (e->dest, 0) == e
4569 ? EDGE_PRED (e->dest, 1)->src
4570 : EDGE_PRED (e->dest, 0)->src);
4571 else
4572 /* Found additional edge leading to path from e1 to e2
4573 from aside. */
4574 return NULL;
4576 else if (EDGE_COUNT (e->dest->preds) > 2)
4577 /* Several edges leading to path from e1 to e2 from aside. */
4578 return NULL;
4580 if (e == e2)
4581 return ((!lax || candidate_block)
4582 && block_valid_for_bookkeeping_p (candidate_block)
4583 ? candidate_block
4584 : NULL);
4586 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4587 return NULL;
4590 if (lax)
4591 return NULL;
4593 gcc_unreachable ();
4596 /* Create new basic block for bookkeeping code for path(s) incoming into
4597 E2->dest, except from E1->src. Return created block. */
4598 static basic_block
4599 create_block_for_bookkeeping (edge e1, edge e2)
4601 basic_block new_bb, bb = e2->dest;
4603 /* Check that we don't spoil the loop structure. */
4604 if (current_loop_nest)
4606 basic_block latch = current_loop_nest->latch;
4608 /* We do not split header. */
4609 gcc_assert (e2->dest != current_loop_nest->header);
4611 /* We do not redirect the only edge to the latch block. */
4612 gcc_assert (e1->dest != latch
4613 || !single_pred_p (latch)
4614 || e1 != single_pred_edge (latch));
4617 /* Split BB to insert BOOK_INSN there. */
4618 new_bb = sched_split_block (bb, NULL);
4620 /* Move note_list from the upper bb. */
4621 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4622 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4623 BB_NOTE_LIST (bb) = NULL_RTX;
4625 gcc_assert (e2->dest == bb);
4627 /* Skip block for bookkeeping copy when leaving E1->src. */
4628 if (e1->flags & EDGE_FALLTHRU)
4629 sel_redirect_edge_and_branch_force (e1, new_bb);
4630 else
4631 sel_redirect_edge_and_branch (e1, new_bb);
4633 gcc_assert (e1->dest == new_bb);
4634 gcc_assert (sel_bb_empty_p (bb));
4636 /* To keep basic block numbers in sync between debug and non-debug
4637 compilations, we have to rotate blocks here. Consider that we
4638 started from (a,b)->d, (c,d)->e, and d contained only debug
4639 insns. It would have been removed before if the debug insns
4640 weren't there, so we'd have split e rather than d. So what we do
4641 now is to swap the block numbers of new_bb and
4642 single_succ(new_bb) == e, so that the insns that were in e before
4643 get the new block number. */
4645 if (MAY_HAVE_DEBUG_INSNS)
4647 basic_block succ;
4648 insn_t insn = sel_bb_head (new_bb);
4649 insn_t last;
4651 if (DEBUG_INSN_P (insn)
4652 && single_succ_p (new_bb)
4653 && (succ = single_succ (new_bb))
4654 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4655 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4657 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4658 insn = NEXT_INSN (insn);
4660 if (insn == last)
4662 sel_global_bb_info_def gbi;
4663 sel_region_bb_info_def rbi;
4664 int i;
4666 if (sched_verbose >= 2)
4667 sel_print ("Swapping block ids %i and %i\n",
4668 new_bb->index, succ->index);
4670 i = new_bb->index;
4671 new_bb->index = succ->index;
4672 succ->index = i;
4674 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4675 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4677 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4678 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4679 sizeof (gbi));
4680 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4682 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4683 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4684 sizeof (rbi));
4685 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4687 i = BLOCK_TO_BB (new_bb->index);
4688 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4689 BLOCK_TO_BB (succ->index) = i;
4691 i = CONTAINING_RGN (new_bb->index);
4692 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4693 CONTAINING_RGN (succ->index) = i;
4695 for (i = 0; i < current_nr_blocks; i++)
4696 if (BB_TO_BLOCK (i) == succ->index)
4697 BB_TO_BLOCK (i) = new_bb->index;
4698 else if (BB_TO_BLOCK (i) == new_bb->index)
4699 BB_TO_BLOCK (i) = succ->index;
4701 FOR_BB_INSNS (new_bb, insn)
4702 if (INSN_P (insn))
4703 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4705 FOR_BB_INSNS (succ, insn)
4706 if (INSN_P (insn))
4707 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4709 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4710 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4712 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4713 && LABEL_P (BB_HEAD (succ)));
4715 if (sched_verbose >= 4)
4716 sel_print ("Swapping code labels %i and %i\n",
4717 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4718 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4720 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4721 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4722 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4723 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4728 return bb;
4731 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4732 into E2->dest, except from E1->src. If the returned insn immediately
4733 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4734 static insn_t
4735 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4737 insn_t place_to_insert;
4738 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4739 create new basic block, but insert bookkeeping there. */
4740 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4742 if (book_block)
4744 place_to_insert = BB_END (book_block);
4746 /* Don't use a block containing only debug insns for
4747 bookkeeping, this causes scheduling differences between debug
4748 and non-debug compilations, for the block would have been
4749 removed already. */
4750 if (DEBUG_INSN_P (place_to_insert))
4752 rtx insn = sel_bb_head (book_block);
4754 while (insn != place_to_insert &&
4755 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4756 insn = NEXT_INSN (insn);
4758 if (insn == place_to_insert)
4759 book_block = NULL;
4763 if (!book_block)
4765 book_block = create_block_for_bookkeeping (e1, e2);
4766 place_to_insert = BB_END (book_block);
4767 if (sched_verbose >= 9)
4768 sel_print ("New block is %i, split from bookkeeping block %i\n",
4769 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4771 else
4773 if (sched_verbose >= 9)
4774 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4777 *fence_to_rewind = NULL;
4778 /* If basic block ends with a jump, insert bookkeeping code right before it.
4779 Notice if we are crossing a fence when taking PREV_INSN. */
4780 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4782 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4783 place_to_insert = PREV_INSN (place_to_insert);
4786 return place_to_insert;
4789 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4790 for JOIN_POINT. */
4791 static int
4792 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4794 int seqno;
4795 rtx next;
4797 /* Check if we are about to insert bookkeeping copy before a jump, and use
4798 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4799 next = NEXT_INSN (place_to_insert);
4800 if (INSN_P (next)
4801 && JUMP_P (next)
4802 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4804 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4805 seqno = INSN_SEQNO (next);
4807 else if (INSN_SEQNO (join_point) > 0)
4808 seqno = INSN_SEQNO (join_point);
4809 else
4811 seqno = get_seqno_by_preds (place_to_insert);
4813 /* Sometimes the fences can move in such a way that there will be
4814 no instructions with positive seqno around this bookkeeping.
4815 This means that there will be no way to get to it by a regular
4816 fence movement. Never mind because we pick up such pieces for
4817 rescheduling anyways, so any positive value will do for now. */
4818 if (seqno < 0)
4820 gcc_assert (pipelining_p);
4821 seqno = 1;
4825 gcc_assert (seqno > 0);
4826 return seqno;
4829 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4830 NEW_SEQNO to it. Return created insn. */
4831 static insn_t
4832 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4834 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4836 vinsn_t new_vinsn
4837 = create_vinsn_from_insn_rtx (new_insn_rtx,
4838 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4840 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4841 place_to_insert);
4843 INSN_SCHED_TIMES (new_insn) = 0;
4844 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4846 return new_insn;
4849 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4850 E2->dest, except from E1->src (there may be a sequence of empty blocks
4851 between E1->src and E2->dest). Return block containing the copy.
4852 All scheduler data is initialized for the newly created insn. */
4853 static basic_block
4854 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4856 insn_t join_point, place_to_insert, new_insn;
4857 int new_seqno;
4858 bool need_to_exchange_data_sets;
4859 fence_t fence_to_rewind;
4861 if (sched_verbose >= 4)
4862 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4863 e2->dest->index);
4865 join_point = sel_bb_head (e2->dest);
4866 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4867 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4868 need_to_exchange_data_sets
4869 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4871 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4873 if (fence_to_rewind)
4874 FENCE_INSN (fence_to_rewind) = new_insn;
4876 /* When inserting bookkeeping insn in new block, av sets should be
4877 following: old basic block (that now holds bookkeeping) data sets are
4878 the same as was before generation of bookkeeping, and new basic block
4879 (that now hold all other insns of old basic block) data sets are
4880 invalid. So exchange data sets for these basic blocks as sel_split_block
4881 mistakenly exchanges them in this case. Cannot do it earlier because
4882 when single instruction is added to new basic block it should hold NULL
4883 lv_set. */
4884 if (need_to_exchange_data_sets)
4885 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4886 BLOCK_FOR_INSN (join_point));
4888 stat_bookkeeping_copies++;
4889 return BLOCK_FOR_INSN (new_insn);
4892 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4893 on FENCE, but we are unable to copy them. */
4894 static void
4895 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4897 expr_t expr;
4898 av_set_iterator i;
4900 /* An expression does not need bookkeeping if it is available on all paths
4901 from current block to original block and current block dominates
4902 original block. We check availability on all paths by examining
4903 EXPR_SPEC; this is not equivalent, because it may be positive even
4904 if expr is available on all paths (but if expr is not available on
4905 any path, EXPR_SPEC will be positive). */
4907 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4909 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4910 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4911 && (EXPR_SPEC (expr)
4912 || !EXPR_ORIG_BB_INDEX (expr)
4913 || !dominated_by_p (CDI_DOMINATORS,
4914 BASIC_BLOCK_FOR_FN (cfun,
4915 EXPR_ORIG_BB_INDEX (expr)),
4916 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4918 if (sched_verbose >= 4)
4919 sel_print ("Expr %d removed because it would need bookkeeping, which "
4920 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4921 av_set_iter_remove (&i);
4926 /* Moving conditional jump through some instructions.
4928 Consider example:
4930 ... <- current scheduling point
4931 NOTE BASIC BLOCK: <- bb header
4932 (p8) add r14=r14+0x9;;
4933 (p8) mov [r14]=r23
4934 (!p8) jump L1;;
4935 NOTE BASIC BLOCK:
4938 We can schedule jump one cycle earlier, than mov, because they cannot be
4939 executed together as their predicates are mutually exclusive.
4941 This is done in this way: first, new fallthrough basic block is created
4942 after jump (it is always can be done, because there already should be a
4943 fallthrough block, where control flow goes in case of predicate being true -
4944 in our example; otherwise there should be a dependence between those
4945 instructions and jump and we cannot schedule jump right now);
4946 next, all instructions between jump and current scheduling point are moved
4947 to this new block. And the result is this:
4949 NOTE BASIC BLOCK:
4950 (!p8) jump L1 <- current scheduling point
4951 NOTE BASIC BLOCK: <- bb header
4952 (p8) add r14=r14+0x9;;
4953 (p8) mov [r14]=r23
4954 NOTE BASIC BLOCK:
4957 static void
4958 move_cond_jump (rtx insn, bnd_t bnd)
4960 edge ft_edge;
4961 basic_block block_from, block_next, block_new, block_bnd, bb;
4962 rtx next, prev, link, head;
4964 block_from = BLOCK_FOR_INSN (insn);
4965 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4966 prev = BND_TO (bnd);
4968 #ifdef ENABLE_CHECKING
4969 /* Moving of jump should not cross any other jumps or beginnings of new
4970 basic blocks. The only exception is when we move a jump through
4971 mutually exclusive insns along fallthru edges. */
4972 if (block_from != block_bnd)
4974 bb = block_from;
4975 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4976 link = PREV_INSN (link))
4978 if (INSN_P (link))
4979 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4980 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4982 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4983 bb = BLOCK_FOR_INSN (link);
4987 #endif
4989 /* Jump is moved to the boundary. */
4990 next = PREV_INSN (insn);
4991 BND_TO (bnd) = insn;
4993 ft_edge = find_fallthru_edge_from (block_from);
4994 block_next = ft_edge->dest;
4995 /* There must be a fallthrough block (or where should go
4996 control flow in case of false jump predicate otherwise?). */
4997 gcc_assert (block_next);
4999 /* Create new empty basic block after source block. */
5000 block_new = sel_split_edge (ft_edge);
5001 gcc_assert (block_new->next_bb == block_next
5002 && block_from->next_bb == block_new);
5004 /* Move all instructions except INSN to BLOCK_NEW. */
5005 bb = block_bnd;
5006 head = BB_HEAD (block_new);
5007 while (bb != block_from->next_bb)
5009 rtx from, to;
5010 from = bb == block_bnd ? prev : sel_bb_head (bb);
5011 to = bb == block_from ? next : sel_bb_end (bb);
5013 /* The jump being moved can be the first insn in the block.
5014 In this case we don't have to move anything in this block. */
5015 if (NEXT_INSN (to) != from)
5017 reorder_insns (from, to, head);
5019 for (link = to; link != head; link = PREV_INSN (link))
5020 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
5021 head = to;
5024 /* Cleanup possibly empty blocks left. */
5025 block_next = bb->next_bb;
5026 if (bb != block_from)
5027 tidy_control_flow (bb, false);
5028 bb = block_next;
5031 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
5032 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
5034 gcc_assert (!sel_bb_empty_p (block_from)
5035 && !sel_bb_empty_p (block_new));
5037 /* Update data sets for BLOCK_NEW to represent that INSN and
5038 instructions from the other branch of INSN is no longer
5039 available at BLOCK_NEW. */
5040 BB_AV_LEVEL (block_new) = global_level;
5041 gcc_assert (BB_LV_SET (block_new) == NULL);
5042 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5043 update_data_sets (sel_bb_head (block_new));
5045 /* INSN is a new basic block header - so prepare its data
5046 structures and update availability and liveness sets. */
5047 update_data_sets (insn);
5049 if (sched_verbose >= 4)
5050 sel_print ("Moving jump %d\n", INSN_UID (insn));
5053 /* Remove nops generated during move_op for preventing removal of empty
5054 basic blocks. */
5055 static void
5056 remove_temp_moveop_nops (bool full_tidying)
5058 int i;
5059 insn_t insn;
5061 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5063 gcc_assert (INSN_NOP_P (insn));
5064 return_nop_to_pool (insn, full_tidying);
5067 /* Empty the vector. */
5068 if (vec_temp_moveop_nops.length () > 0)
5069 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5072 /* Records the maximal UID before moving up an instruction. Used for
5073 distinguishing between bookkeeping copies and original insns. */
5074 static int max_uid_before_move_op = 0;
5076 /* Remove from AV_VLIW_P all instructions but next when debug counter
5077 tells us so. Next instruction is fetched from BNDS. */
5078 static void
5079 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5081 if (! dbg_cnt (sel_sched_insn_cnt))
5082 /* Leave only the next insn in av_vliw. */
5084 av_set_iterator av_it;
5085 expr_t expr;
5086 bnd_t bnd = BLIST_BND (bnds);
5087 insn_t next = BND_TO (bnd);
5089 gcc_assert (BLIST_NEXT (bnds) == NULL);
5091 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5092 if (EXPR_INSN_RTX (expr) != next)
5093 av_set_iter_remove (&av_it);
5097 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5098 the computed set to *AV_VLIW_P. */
5099 static void
5100 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5102 if (sched_verbose >= 2)
5104 sel_print ("Boundaries: ");
5105 dump_blist (bnds);
5106 sel_print ("\n");
5109 for (; bnds; bnds = BLIST_NEXT (bnds))
5111 bnd_t bnd = BLIST_BND (bnds);
5112 av_set_t av1_copy;
5113 insn_t bnd_to = BND_TO (bnd);
5115 /* Rewind BND->TO to the basic block header in case some bookkeeping
5116 instructions were inserted before BND->TO and it needs to be
5117 adjusted. */
5118 if (sel_bb_head_p (bnd_to))
5119 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5120 else
5121 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5123 bnd_to = PREV_INSN (bnd_to);
5124 if (sel_bb_head_p (bnd_to))
5125 break;
5128 if (BND_TO (bnd) != bnd_to)
5130 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5131 FENCE_INSN (fence) = bnd_to;
5132 BND_TO (bnd) = bnd_to;
5135 av_set_clear (&BND_AV (bnd));
5136 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5138 av_set_clear (&BND_AV1 (bnd));
5139 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5141 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5143 av1_copy = av_set_copy (BND_AV1 (bnd));
5144 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5147 if (sched_verbose >= 2)
5149 sel_print ("Available exprs (vliw form): ");
5150 dump_av_set (*av_vliw_p);
5151 sel_print ("\n");
5155 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5156 expression. When FOR_MOVEOP is true, also replace the register of
5157 expressions found with the register from EXPR_VLIW. */
5158 static av_set_t
5159 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5161 av_set_t expr_seq = NULL;
5162 expr_t expr;
5163 av_set_iterator i;
5165 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5167 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5169 if (for_moveop)
5171 /* The sequential expression has the right form to pass
5172 to move_op except when renaming happened. Put the
5173 correct register in EXPR then. */
5174 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5176 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5178 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5179 stat_renamed_scheduled++;
5181 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5182 This is needed when renaming came up with original
5183 register. */
5184 else if (EXPR_TARGET_AVAILABLE (expr)
5185 != EXPR_TARGET_AVAILABLE (expr_vliw))
5187 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5188 EXPR_TARGET_AVAILABLE (expr) = 1;
5191 if (EXPR_WAS_SUBSTITUTED (expr))
5192 stat_substitutions_total++;
5195 av_set_add (&expr_seq, expr);
5197 /* With substitution inside insn group, it is possible
5198 that more than one expression in expr_seq will correspond
5199 to expr_vliw. In this case, choose one as the attempt to
5200 move both leads to miscompiles. */
5201 break;
5205 if (for_moveop && sched_verbose >= 2)
5207 sel_print ("Best expression(s) (sequential form): ");
5208 dump_av_set (expr_seq);
5209 sel_print ("\n");
5212 return expr_seq;
5216 /* Move nop to previous block. */
5217 static void ATTRIBUTE_UNUSED
5218 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5220 insn_t prev_insn, next_insn, note;
5222 gcc_assert (sel_bb_head_p (nop)
5223 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5224 note = bb_note (BLOCK_FOR_INSN (nop));
5225 prev_insn = sel_bb_end (prev_bb);
5226 next_insn = NEXT_INSN (nop);
5227 gcc_assert (prev_insn != NULL_RTX
5228 && PREV_INSN (note) == prev_insn);
5230 NEXT_INSN (prev_insn) = nop;
5231 PREV_INSN (nop) = prev_insn;
5233 PREV_INSN (note) = nop;
5234 NEXT_INSN (note) = next_insn;
5236 NEXT_INSN (nop) = note;
5237 PREV_INSN (next_insn) = note;
5239 BB_END (prev_bb) = nop;
5240 BLOCK_FOR_INSN (nop) = prev_bb;
5243 /* Prepare a place to insert the chosen expression on BND. */
5244 static insn_t
5245 prepare_place_to_insert (bnd_t bnd)
5247 insn_t place_to_insert;
5249 /* Init place_to_insert before calling move_op, as the later
5250 can possibly remove BND_TO (bnd). */
5251 if (/* If this is not the first insn scheduled. */
5252 BND_PTR (bnd))
5254 /* Add it after last scheduled. */
5255 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5256 if (DEBUG_INSN_P (place_to_insert))
5258 ilist_t l = BND_PTR (bnd);
5259 while ((l = ILIST_NEXT (l)) &&
5260 DEBUG_INSN_P (ILIST_INSN (l)))
5262 if (!l)
5263 place_to_insert = NULL;
5266 else
5267 place_to_insert = NULL;
5269 if (!place_to_insert)
5271 /* Add it before BND_TO. The difference is in the
5272 basic block, where INSN will be added. */
5273 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5274 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5275 == BLOCK_FOR_INSN (BND_TO (bnd)));
5278 return place_to_insert;
5281 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5282 Return the expression to emit in C_EXPR. */
5283 static bool
5284 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5285 av_set_t expr_seq, expr_t c_expr)
5287 bool b, should_move;
5288 unsigned book_uid;
5289 bitmap_iterator bi;
5290 int n_bookkeeping_copies_before_moveop;
5292 /* Make a move. This call will remove the original operation,
5293 insert all necessary bookkeeping instructions and update the
5294 data sets. After that all we have to do is add the operation
5295 at before BND_TO (BND). */
5296 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5297 max_uid_before_move_op = get_max_uid ();
5298 bitmap_clear (current_copies);
5299 bitmap_clear (current_originators);
5301 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5302 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5304 /* We should be able to find the expression we've chosen for
5305 scheduling. */
5306 gcc_assert (b);
5308 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5309 stat_insns_needed_bookkeeping++;
5311 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5313 unsigned uid;
5314 bitmap_iterator bi;
5316 /* We allocate these bitmaps lazily. */
5317 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5318 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5320 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5321 current_originators);
5323 /* Transitively add all originators' originators. */
5324 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5325 if (INSN_ORIGINATORS_BY_UID (uid))
5326 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5327 INSN_ORIGINATORS_BY_UID (uid));
5330 return should_move;
5334 /* Debug a DFA state as an array of bytes. */
5335 static void
5336 debug_state (state_t state)
5338 unsigned char *p;
5339 unsigned int i, size = dfa_state_size;
5341 sel_print ("state (%u):", size);
5342 for (i = 0, p = (unsigned char *) state; i < size; i++)
5343 sel_print (" %d", p[i]);
5344 sel_print ("\n");
5347 /* Advance state on FENCE with INSN. Return true if INSN is
5348 an ASM, and we should advance state once more. */
5349 static bool
5350 advance_state_on_fence (fence_t fence, insn_t insn)
5352 bool asm_p;
5354 if (recog_memoized (insn) >= 0)
5356 int res;
5357 state_t temp_state = alloca (dfa_state_size);
5359 gcc_assert (!INSN_ASM_P (insn));
5360 asm_p = false;
5362 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5363 res = state_transition (FENCE_STATE (fence), insn);
5364 gcc_assert (res < 0);
5366 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5368 FENCE_ISSUED_INSNS (fence)++;
5370 /* We should never issue more than issue_rate insns. */
5371 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5372 gcc_unreachable ();
5375 else
5377 /* This could be an ASM insn which we'd like to schedule
5378 on the next cycle. */
5379 asm_p = INSN_ASM_P (insn);
5380 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5381 advance_one_cycle (fence);
5384 if (sched_verbose >= 2)
5385 debug_state (FENCE_STATE (fence));
5386 if (!DEBUG_INSN_P (insn))
5387 FENCE_STARTS_CYCLE_P (fence) = 0;
5388 FENCE_ISSUE_MORE (fence) = can_issue_more;
5389 return asm_p;
5392 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5393 is nonzero if we need to stall after issuing INSN. */
5394 static void
5395 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5397 bool asm_p;
5399 /* First, reflect that something is scheduled on this fence. */
5400 asm_p = advance_state_on_fence (fence, insn);
5401 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5402 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5403 if (SCHED_GROUP_P (insn))
5405 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5406 SCHED_GROUP_P (insn) = 0;
5408 else
5409 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5410 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5411 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5413 /* Set instruction scheduling info. This will be used in bundling,
5414 pipelining, tick computations etc. */
5415 ++INSN_SCHED_TIMES (insn);
5416 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5417 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5418 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5419 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5421 /* This does not account for adjust_cost hooks, just add the biggest
5422 constant the hook may add to the latency. TODO: make this
5423 a target dependent constant. */
5424 INSN_READY_CYCLE (insn)
5425 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5427 : maximal_insn_latency (insn) + 1);
5429 /* Change these fields last, as they're used above. */
5430 FENCE_AFTER_STALL_P (fence) = 0;
5431 if (asm_p || need_stall)
5432 advance_one_cycle (fence);
5434 /* Indicate that we've scheduled something on this fence. */
5435 FENCE_SCHEDULED_P (fence) = true;
5436 scheduled_something_on_previous_fence = true;
5438 /* Print debug information when insn's fields are updated. */
5439 if (sched_verbose >= 2)
5441 sel_print ("Scheduling insn: ");
5442 dump_insn_1 (insn, 1);
5443 sel_print ("\n");
5447 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5448 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5449 return it. */
5450 static blist_t *
5451 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5452 blist_t *bnds_tailp)
5454 succ_iterator si;
5455 insn_t succ;
5457 advance_deps_context (BND_DC (bnd), insn);
5458 FOR_EACH_SUCC_1 (succ, si, insn,
5459 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5461 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5463 ilist_add (&ptr, insn);
5465 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5466 && is_ineligible_successor (succ, ptr))
5468 ilist_clear (&ptr);
5469 continue;
5472 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5474 if (sched_verbose >= 9)
5475 sel_print ("Updating fence insn from %i to %i\n",
5476 INSN_UID (insn), INSN_UID (succ));
5477 FENCE_INSN (fence) = succ;
5479 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5480 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5483 blist_remove (bndsp);
5484 return bnds_tailp;
5487 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5488 static insn_t
5489 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5491 av_set_t expr_seq;
5492 expr_t c_expr = XALLOCA (expr_def);
5493 insn_t place_to_insert;
5494 insn_t insn;
5495 bool should_move;
5497 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5499 /* In case of scheduling a jump skipping some other instructions,
5500 prepare CFG. After this, jump is at the boundary and can be
5501 scheduled as usual insn by MOVE_OP. */
5502 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5504 insn = EXPR_INSN_RTX (expr_vliw);
5506 /* Speculative jumps are not handled. */
5507 if (insn != BND_TO (bnd)
5508 && !sel_insn_is_speculation_check (insn))
5509 move_cond_jump (insn, bnd);
5512 /* Find a place for C_EXPR to schedule. */
5513 place_to_insert = prepare_place_to_insert (bnd);
5514 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5515 clear_expr (c_expr);
5517 /* Add the instruction. The corner case to care about is when
5518 the expr_seq set has more than one expr, and we chose the one that
5519 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5520 we can't use it. Generate the new vinsn. */
5521 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5523 vinsn_t vinsn_new;
5525 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5526 change_vinsn_in_expr (expr_vliw, vinsn_new);
5527 should_move = false;
5529 if (should_move)
5530 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5531 else
5532 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5533 place_to_insert);
5535 /* Return the nops generated for preserving of data sets back
5536 into pool. */
5537 if (INSN_NOP_P (place_to_insert))
5538 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5539 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5541 av_set_clear (&expr_seq);
5543 /* Save the expression scheduled so to reset target availability if we'll
5544 meet it later on the same fence. */
5545 if (EXPR_WAS_RENAMED (expr_vliw))
5546 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5548 /* Check that the recent movement didn't destroyed loop
5549 structure. */
5550 gcc_assert (!pipelining_p
5551 || current_loop_nest == NULL
5552 || loop_latch_edge (current_loop_nest));
5553 return insn;
5556 /* Stall for N cycles on FENCE. */
5557 static void
5558 stall_for_cycles (fence_t fence, int n)
5560 int could_more;
5562 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5563 while (n--)
5564 advance_one_cycle (fence);
5565 if (could_more)
5566 FENCE_AFTER_STALL_P (fence) = 1;
5569 /* Gather a parallel group of insns at FENCE and assign their seqno
5570 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5571 list for later recalculation of seqnos. */
5572 static void
5573 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5575 blist_t bnds = NULL, *bnds_tailp;
5576 av_set_t av_vliw = NULL;
5577 insn_t insn = FENCE_INSN (fence);
5579 if (sched_verbose >= 2)
5580 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5581 INSN_UID (insn), FENCE_CYCLE (fence));
5583 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5584 bnds_tailp = &BLIST_NEXT (bnds);
5585 set_target_context (FENCE_TC (fence));
5586 can_issue_more = FENCE_ISSUE_MORE (fence);
5587 target_bb = INSN_BB (insn);
5589 /* Do while we can add any operation to the current group. */
5592 blist_t *bnds_tailp1, *bndsp;
5593 expr_t expr_vliw;
5594 int need_stall = false;
5595 int was_stall = 0, scheduled_insns = 0;
5596 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5597 int max_stall = pipelining_p ? 1 : 3;
5598 bool last_insn_was_debug = false;
5599 bool was_debug_bb_end_p = false;
5601 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5602 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5603 remove_insns_for_debug (bnds, &av_vliw);
5605 /* Return early if we have nothing to schedule. */
5606 if (av_vliw == NULL)
5607 break;
5609 /* Choose the best expression and, if needed, destination register
5610 for it. */
5613 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5614 if (! expr_vliw && need_stall)
5616 /* All expressions required a stall. Do not recompute av sets
5617 as we'll get the same answer (modulo the insns between
5618 the fence and its boundary, which will not be available for
5619 pipelining).
5620 If we are going to stall for too long, break to recompute av
5621 sets and bring more insns for pipelining. */
5622 was_stall++;
5623 if (need_stall <= 3)
5624 stall_for_cycles (fence, need_stall);
5625 else
5627 stall_for_cycles (fence, 1);
5628 break;
5632 while (! expr_vliw && need_stall);
5634 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5635 if (!expr_vliw)
5637 av_set_clear (&av_vliw);
5638 break;
5641 bndsp = &bnds;
5642 bnds_tailp1 = bnds_tailp;
5645 /* This code will be executed only once until we'd have several
5646 boundaries per fence. */
5648 bnd_t bnd = BLIST_BND (*bndsp);
5650 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5652 bndsp = &BLIST_NEXT (*bndsp);
5653 continue;
5656 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5657 last_insn_was_debug = DEBUG_INSN_P (insn);
5658 if (last_insn_was_debug)
5659 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5660 update_fence_and_insn (fence, insn, need_stall);
5661 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5663 /* Add insn to the list of scheduled on this cycle instructions. */
5664 ilist_add (*scheduled_insns_tailpp, insn);
5665 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5667 while (*bndsp != *bnds_tailp1);
5669 av_set_clear (&av_vliw);
5670 if (!last_insn_was_debug)
5671 scheduled_insns++;
5673 /* We currently support information about candidate blocks only for
5674 one 'target_bb' block. Hence we can't schedule after jump insn,
5675 as this will bring two boundaries and, hence, necessity to handle
5676 information for two or more blocks concurrently. */
5677 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5678 || (was_stall
5679 && (was_stall >= max_stall
5680 || scheduled_insns >= max_insns)))
5681 break;
5683 while (bnds);
5685 gcc_assert (!FENCE_BNDS (fence));
5687 /* Update boundaries of the FENCE. */
5688 while (bnds)
5690 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5692 if (ptr)
5694 insn = ILIST_INSN (ptr);
5696 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5697 ilist_add (&FENCE_BNDS (fence), insn);
5700 blist_remove (&bnds);
5703 /* Update target context on the fence. */
5704 reset_target_context (FENCE_TC (fence), false);
5707 /* All exprs in ORIG_OPS must have the same destination register or memory.
5708 Return that destination. */
5709 static rtx
5710 get_dest_from_orig_ops (av_set_t orig_ops)
5712 rtx dest = NULL_RTX;
5713 av_set_iterator av_it;
5714 expr_t expr;
5715 bool first_p = true;
5717 FOR_EACH_EXPR (expr, av_it, orig_ops)
5719 rtx x = EXPR_LHS (expr);
5721 if (first_p)
5723 first_p = false;
5724 dest = x;
5726 else
5727 gcc_assert (dest == x
5728 || (dest != NULL_RTX && x != NULL_RTX
5729 && rtx_equal_p (dest, x)));
5732 return dest;
5735 /* Update data sets for the bookkeeping block and record those expressions
5736 which become no longer available after inserting this bookkeeping. */
5737 static void
5738 update_and_record_unavailable_insns (basic_block book_block)
5740 av_set_iterator i;
5741 av_set_t old_av_set = NULL;
5742 expr_t cur_expr;
5743 rtx bb_end = sel_bb_end (book_block);
5745 /* First, get correct liveness in the bookkeeping block. The problem is
5746 the range between the bookeeping insn and the end of block. */
5747 update_liveness_on_insn (bb_end);
5748 if (control_flow_insn_p (bb_end))
5749 update_liveness_on_insn (PREV_INSN (bb_end));
5751 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5752 fence above, where we may choose to schedule an insn which is
5753 actually blocked from moving up with the bookkeeping we create here. */
5754 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5756 old_av_set = av_set_copy (BB_AV_SET (book_block));
5757 update_data_sets (sel_bb_head (book_block));
5759 /* Traverse all the expressions in the old av_set and check whether
5760 CUR_EXPR is in new AV_SET. */
5761 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5763 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5764 EXPR_VINSN (cur_expr));
5766 if (! new_expr
5767 /* In this case, we can just turn off the E_T_A bit, but we can't
5768 represent this information with the current vector. */
5769 || EXPR_TARGET_AVAILABLE (new_expr)
5770 != EXPR_TARGET_AVAILABLE (cur_expr))
5771 /* Unfortunately, the below code could be also fired up on
5772 separable insns, e.g. when moving insns through the new
5773 speculation check as in PR 53701. */
5774 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5777 av_set_clear (&old_av_set);
5781 /* The main effect of this function is that sparams->c_expr is merged
5782 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5783 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5784 lparams->c_expr_merged is copied back to sparams->c_expr after all
5785 successors has been traversed. lparams->c_expr_local is an expr allocated
5786 on stack in the caller function, and is used if there is more than one
5787 successor.
5789 SUCC is one of the SUCCS_NORMAL successors of INSN,
5790 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5791 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5792 static void
5793 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5794 insn_t succ ATTRIBUTE_UNUSED,
5795 int moveop_drv_call_res,
5796 cmpd_local_params_p lparams, void *static_params)
5798 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5800 /* Nothing to do, if original expr wasn't found below. */
5801 if (moveop_drv_call_res != 1)
5802 return;
5804 /* If this is a first successor. */
5805 if (!lparams->c_expr_merged)
5807 lparams->c_expr_merged = sparams->c_expr;
5808 sparams->c_expr = lparams->c_expr_local;
5810 else
5812 /* We must merge all found expressions to get reasonable
5813 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5814 do so then we can first find the expr with epsilon
5815 speculation success probability and only then with the
5816 good probability. As a result the insn will get epsilon
5817 probability and will never be scheduled because of
5818 weakness_cutoff in find_best_expr.
5820 We call merge_expr_data here instead of merge_expr
5821 because due to speculation C_EXPR and X may have the
5822 same insns with different speculation types. And as of
5823 now such insns are considered non-equal.
5825 However, EXPR_SCHED_TIMES is different -- we must get
5826 SCHED_TIMES from a real insn, not a bookkeeping copy.
5827 We force this here. Instead, we may consider merging
5828 SCHED_TIMES to the maximum instead of minimum in the
5829 below function. */
5830 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5832 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5833 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5834 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5836 clear_expr (sparams->c_expr);
5840 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5842 SUCC is one of the SUCCS_NORMAL successors of INSN,
5843 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5844 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5845 STATIC_PARAMS contain USED_REGS set. */
5846 static void
5847 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5848 int moveop_drv_call_res,
5849 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5850 void *static_params)
5852 regset succ_live;
5853 fur_static_params_p sparams = (fur_static_params_p) static_params;
5855 /* Here we compute live regsets only for branches that do not lie
5856 on the code motion paths. These branches correspond to value
5857 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5858 for such branches code_motion_path_driver is not called. */
5859 if (moveop_drv_call_res != 0)
5860 return;
5862 /* Mark all registers that do not meet the following condition:
5863 (3) not live on the other path of any conditional branch
5864 that is passed by the operation, in case original
5865 operations are not present on both paths of the
5866 conditional branch. */
5867 succ_live = compute_live (succ);
5868 IOR_REG_SET (sparams->used_regs, succ_live);
5871 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5872 into SP->CEXPR. */
5873 static void
5874 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5876 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5878 sp->c_expr = lp->c_expr_merged;
5881 /* Track bookkeeping copies created, insns scheduled, and blocks for
5882 rescheduling when INSN is found by move_op. */
5883 static void
5884 track_scheduled_insns_and_blocks (rtx insn)
5886 /* Even if this insn can be a copy that will be removed during current move_op,
5887 we still need to count it as an originator. */
5888 bitmap_set_bit (current_originators, INSN_UID (insn));
5890 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5892 /* Note that original block needs to be rescheduled, as we pulled an
5893 instruction out of it. */
5894 if (INSN_SCHED_TIMES (insn) > 0)
5895 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5896 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5897 num_insns_scheduled++;
5900 /* For instructions we must immediately remove insn from the
5901 stream, so subsequent update_data_sets () won't include this
5902 insn into av_set.
5903 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5904 if (INSN_UID (insn) > max_uid_before_move_op)
5905 stat_bookkeeping_copies--;
5908 /* Emit a register-register copy for INSN if needed. Return true if
5909 emitted one. PARAMS is the move_op static parameters. */
5910 static bool
5911 maybe_emit_renaming_copy (rtx insn,
5912 moveop_static_params_p params)
5914 bool insn_emitted = false;
5915 rtx cur_reg;
5917 /* Bail out early when expression can not be renamed at all. */
5918 if (!EXPR_SEPARABLE_P (params->c_expr))
5919 return false;
5921 cur_reg = expr_dest_reg (params->c_expr);
5922 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5924 /* If original operation has expr and the register chosen for
5925 that expr is not original operation's dest reg, substitute
5926 operation's right hand side with the register chosen. */
5927 if (REGNO (params->dest) != REGNO (cur_reg))
5929 insn_t reg_move_insn, reg_move_insn_rtx;
5931 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5932 params->dest);
5933 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5934 INSN_EXPR (insn),
5935 INSN_SEQNO (insn),
5936 insn);
5937 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5938 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5940 insn_emitted = true;
5941 params->was_renamed = true;
5944 return insn_emitted;
5947 /* Emit a speculative check for INSN speculated as EXPR if needed.
5948 Return true if we've emitted one. PARAMS is the move_op static
5949 parameters. */
5950 static bool
5951 maybe_emit_speculative_check (rtx insn, expr_t expr,
5952 moveop_static_params_p params)
5954 bool insn_emitted = false;
5955 insn_t x;
5956 ds_t check_ds;
5958 check_ds = get_spec_check_type_for_insn (insn, expr);
5959 if (check_ds != 0)
5961 /* A speculation check should be inserted. */
5962 x = create_speculation_check (params->c_expr, check_ds, insn);
5963 insn_emitted = true;
5965 else
5967 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5968 x = insn;
5971 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5972 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5973 return insn_emitted;
5976 /* Handle transformations that leave an insn in place of original
5977 insn such as renaming/speculation. Return true if one of such
5978 transformations actually happened, and we have emitted this insn. */
5979 static bool
5980 handle_emitting_transformations (rtx insn, expr_t expr,
5981 moveop_static_params_p params)
5983 bool insn_emitted = false;
5985 insn_emitted = maybe_emit_renaming_copy (insn, params);
5986 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5988 return insn_emitted;
5991 /* If INSN is the only insn in the basic block (not counting JUMP,
5992 which may be a jump to next insn, and DEBUG_INSNs), we want to
5993 leave a NOP there till the return to fill_insns. */
5995 static bool
5996 need_nop_to_preserve_insn_bb (rtx insn)
5998 insn_t bb_head, bb_end, bb_next, in_next;
5999 basic_block bb = BLOCK_FOR_INSN (insn);
6001 bb_head = sel_bb_head (bb);
6002 bb_end = sel_bb_end (bb);
6004 if (bb_head == bb_end)
6005 return true;
6007 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
6008 bb_head = NEXT_INSN (bb_head);
6010 if (bb_head == bb_end)
6011 return true;
6013 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
6014 bb_end = PREV_INSN (bb_end);
6016 if (bb_head == bb_end)
6017 return true;
6019 bb_next = NEXT_INSN (bb_head);
6020 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
6021 bb_next = NEXT_INSN (bb_next);
6023 if (bb_next == bb_end && JUMP_P (bb_end))
6024 return true;
6026 in_next = NEXT_INSN (insn);
6027 while (DEBUG_INSN_P (in_next))
6028 in_next = NEXT_INSN (in_next);
6030 if (IN_CURRENT_FENCE_P (in_next))
6031 return true;
6033 return false;
6036 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
6037 is not removed but reused when INSN is re-emitted. */
6038 static void
6039 remove_insn_from_stream (rtx insn, bool only_disconnect)
6041 /* If there's only one insn in the BB, make sure that a nop is
6042 inserted into it, so the basic block won't disappear when we'll
6043 delete INSN below with sel_remove_insn. It should also survive
6044 till the return to fill_insns. */
6045 if (need_nop_to_preserve_insn_bb (insn))
6047 insn_t nop = get_nop_from_pool (insn);
6048 gcc_assert (INSN_NOP_P (nop));
6049 vec_temp_moveop_nops.safe_push (nop);
6052 sel_remove_insn (insn, only_disconnect, false);
6055 /* This function is called when original expr is found.
6056 INSN - current insn traversed, EXPR - the corresponding expr found.
6057 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6058 is static parameters of move_op. */
6059 static void
6060 move_op_orig_expr_found (insn_t insn, expr_t expr,
6061 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6062 void *static_params)
6064 bool only_disconnect;
6065 moveop_static_params_p params = (moveop_static_params_p) static_params;
6067 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6068 track_scheduled_insns_and_blocks (insn);
6069 handle_emitting_transformations (insn, expr, params);
6070 only_disconnect = params->uid == INSN_UID (insn);
6072 /* Mark that we've disconnected an insn. */
6073 if (only_disconnect)
6074 params->uid = -1;
6075 remove_insn_from_stream (insn, only_disconnect);
6078 /* The function is called when original expr is found.
6079 INSN - current insn traversed, EXPR - the corresponding expr found,
6080 crosses_call and original_insns in STATIC_PARAMS are updated. */
6081 static void
6082 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6083 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6084 void *static_params)
6086 fur_static_params_p params = (fur_static_params_p) static_params;
6087 regset tmp;
6089 if (CALL_P (insn))
6090 params->crosses_call = true;
6092 def_list_add (params->original_insns, insn, params->crosses_call);
6094 /* Mark the registers that do not meet the following condition:
6095 (2) not among the live registers of the point
6096 immediately following the first original operation on
6097 a given downward path, except for the original target
6098 register of the operation. */
6099 tmp = get_clear_regset_from_pool ();
6100 compute_live_below_insn (insn, tmp);
6101 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6102 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6103 IOR_REG_SET (params->used_regs, tmp);
6104 return_regset_to_pool (tmp);
6106 /* (*1) We need to add to USED_REGS registers that are read by
6107 INSN's lhs. This may lead to choosing wrong src register.
6108 E.g. (scheduling const expr enabled):
6110 429: ax=0x0 <- Can't use AX for this expr (0x0)
6111 433: dx=[bp-0x18]
6112 427: [ax+dx+0x1]=ax
6113 REG_DEAD: ax
6114 168: di=dx
6115 REG_DEAD: dx
6117 /* FIXME: see comment above and enable MEM_P
6118 in vinsn_separable_p. */
6119 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6120 || !MEM_P (INSN_LHS (insn)));
6123 /* This function is called on the ascending pass, before returning from
6124 current basic block. */
6125 static void
6126 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6127 void *static_params)
6129 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6130 basic_block book_block = NULL;
6132 /* When we have removed the boundary insn for scheduling, which also
6133 happened to be the end insn in its bb, we don't need to update sets. */
6134 if (!lparams->removed_last_insn
6135 && lparams->e1
6136 && sel_bb_head_p (insn))
6138 /* We should generate bookkeeping code only if we are not at the
6139 top level of the move_op. */
6140 if (sel_num_cfg_preds_gt_1 (insn))
6141 book_block = generate_bookkeeping_insn (sparams->c_expr,
6142 lparams->e1, lparams->e2);
6143 /* Update data sets for the current insn. */
6144 update_data_sets (insn);
6147 /* If bookkeeping code was inserted, we need to update av sets of basic
6148 block that received bookkeeping. After generation of bookkeeping insn,
6149 bookkeeping block does not contain valid av set because we are not following
6150 the original algorithm in every detail with regards to e.g. renaming
6151 simple reg-reg copies. Consider example:
6153 bookkeeping block scheduling fence
6155 \ join /
6156 ----------
6158 ----------
6161 r1 := r2 r1 := r3
6163 We try to schedule insn "r1 := r3" on the current
6164 scheduling fence. Also, note that av set of bookkeeping block
6165 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6166 been scheduled, the CFG is as follows:
6168 r1 := r3 r1 := r3
6169 bookkeeping block scheduling fence
6171 \ join /
6172 ----------
6174 ----------
6177 r1 := r2
6179 Here, insn "r1 := r3" was scheduled at the current scheduling point
6180 and bookkeeping code was generated at the bookeeping block. This
6181 way insn "r1 := r2" is no longer available as a whole instruction
6182 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6183 This situation is handled by calling update_data_sets.
6185 Since update_data_sets is called only on the bookkeeping block, and
6186 it also may have predecessors with av_sets, containing instructions that
6187 are no longer available, we save all such expressions that become
6188 unavailable during data sets update on the bookkeeping block in
6189 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6190 expressions for scheduling. This allows us to avoid recomputation of
6191 av_sets outside the code motion path. */
6193 if (book_block)
6194 update_and_record_unavailable_insns (book_block);
6196 /* If INSN was previously marked for deletion, it's time to do it. */
6197 if (lparams->removed_last_insn)
6198 insn = PREV_INSN (insn);
6200 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6201 kill a block with a single nop in which the insn should be emitted. */
6202 if (lparams->e1)
6203 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6206 /* This function is called on the ascending pass, before returning from the
6207 current basic block. */
6208 static void
6209 fur_at_first_insn (insn_t insn,
6210 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6211 void *static_params ATTRIBUTE_UNUSED)
6213 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6214 || AV_LEVEL (insn) == -1);
6217 /* Called on the backward stage of recursion to call moveup_expr for insn
6218 and sparams->c_expr. */
6219 static void
6220 move_op_ascend (insn_t insn, void *static_params)
6222 enum MOVEUP_EXPR_CODE res;
6223 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6225 if (! INSN_NOP_P (insn))
6227 res = moveup_expr_cached (sparams->c_expr, insn, false);
6228 gcc_assert (res != MOVEUP_EXPR_NULL);
6231 /* Update liveness for this insn as it was invalidated. */
6232 update_liveness_on_insn (insn);
6235 /* This function is called on enter to the basic block.
6236 Returns TRUE if this block already have been visited and
6237 code_motion_path_driver should return 1, FALSE otherwise. */
6238 static int
6239 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6240 void *static_params, bool visited_p)
6242 fur_static_params_p sparams = (fur_static_params_p) static_params;
6244 if (visited_p)
6246 /* If we have found something below this block, there should be at
6247 least one insn in ORIGINAL_INSNS. */
6248 gcc_assert (*sparams->original_insns);
6250 /* Adjust CROSSES_CALL, since we may have come to this block along
6251 different path. */
6252 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6253 |= sparams->crosses_call;
6255 else
6256 local_params->old_original_insns = *sparams->original_insns;
6258 return 1;
6261 /* Same as above but for move_op. */
6262 static int
6263 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6264 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6265 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6267 if (visited_p)
6268 return -1;
6269 return 1;
6272 /* This function is called while descending current basic block if current
6273 insn is not the original EXPR we're searching for.
6275 Return value: FALSE, if code_motion_path_driver should perform a local
6276 cleanup and return 0 itself;
6277 TRUE, if code_motion_path_driver should continue. */
6278 static bool
6279 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6280 void *static_params)
6282 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6284 #ifdef ENABLE_CHECKING
6285 sparams->failed_insn = insn;
6286 #endif
6288 /* If we're scheduling separate expr, in order to generate correct code
6289 we need to stop the search at bookkeeping code generated with the
6290 same destination register or memory. */
6291 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6292 return false;
6293 return true;
6296 /* This function is called while descending current basic block if current
6297 insn is not the original EXPR we're searching for.
6299 Return value: TRUE (code_motion_path_driver should continue). */
6300 static bool
6301 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6303 bool mutexed;
6304 expr_t r;
6305 av_set_iterator avi;
6306 fur_static_params_p sparams = (fur_static_params_p) static_params;
6308 if (CALL_P (insn))
6309 sparams->crosses_call = true;
6310 else if (DEBUG_INSN_P (insn))
6311 return true;
6313 /* If current insn we are looking at cannot be executed together
6314 with original insn, then we can skip it safely.
6316 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6317 INSN = (!p6) r14 = r14 + 1;
6319 Here we can schedule ORIG_OP with lhs = r14, though only
6320 looking at the set of used and set registers of INSN we must
6321 forbid it. So, add set/used in INSN registers to the
6322 untouchable set only if there is an insn in ORIG_OPS that can
6323 affect INSN. */
6324 mutexed = true;
6325 FOR_EACH_EXPR (r, avi, orig_ops)
6326 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6328 mutexed = false;
6329 break;
6332 /* Mark all registers that do not meet the following condition:
6333 (1) Not set or read on any path from xi to an instance of the
6334 original operation. */
6335 if (!mutexed)
6337 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6338 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6339 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6342 return true;
6345 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6346 struct code_motion_path_driver_info_def move_op_hooks = {
6347 move_op_on_enter,
6348 move_op_orig_expr_found,
6349 move_op_orig_expr_not_found,
6350 move_op_merge_succs,
6351 move_op_after_merge_succs,
6352 move_op_ascend,
6353 move_op_at_first_insn,
6354 SUCCS_NORMAL,
6355 "move_op"
6358 /* Hooks and data to perform find_used_regs operations
6359 with code_motion_path_driver. */
6360 struct code_motion_path_driver_info_def fur_hooks = {
6361 fur_on_enter,
6362 fur_orig_expr_found,
6363 fur_orig_expr_not_found,
6364 fur_merge_succs,
6365 NULL, /* fur_after_merge_succs */
6366 NULL, /* fur_ascend */
6367 fur_at_first_insn,
6368 SUCCS_ALL,
6369 "find_used_regs"
6372 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6373 code_motion_path_driver is called recursively. Original operation
6374 was found at least on one path that is starting with one of INSN's
6375 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6376 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6377 of either move_op or find_used_regs depending on the caller.
6379 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6380 know for sure at this point. */
6381 static int
6382 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6383 ilist_t path, void *static_params)
6385 int res = 0;
6386 succ_iterator succ_i;
6387 rtx succ;
6388 basic_block bb;
6389 int old_index;
6390 unsigned old_succs;
6392 struct cmpd_local_params lparams;
6393 expr_def _x;
6395 lparams.c_expr_local = &_x;
6396 lparams.c_expr_merged = NULL;
6398 /* We need to process only NORMAL succs for move_op, and collect live
6399 registers from ALL branches (including those leading out of the
6400 region) for find_used_regs.
6402 In move_op, there can be a case when insn's bb number has changed
6403 due to created bookkeeping. This happens very rare, as we need to
6404 move expression from the beginning to the end of the same block.
6405 Rescan successors in this case. */
6407 rescan:
6408 bb = BLOCK_FOR_INSN (insn);
6409 old_index = bb->index;
6410 old_succs = EDGE_COUNT (bb->succs);
6412 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6414 int b;
6416 lparams.e1 = succ_i.e1;
6417 lparams.e2 = succ_i.e2;
6419 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6420 current region). */
6421 if (succ_i.current_flags == SUCCS_NORMAL)
6422 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6423 static_params);
6424 else
6425 b = 0;
6427 /* Merge c_expres found or unify live register sets from different
6428 successors. */
6429 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6430 static_params);
6431 if (b == 1)
6432 res = b;
6433 else if (b == -1 && res != 1)
6434 res = b;
6436 /* We have simplified the control flow below this point. In this case,
6437 the iterator becomes invalid. We need to try again.
6438 If we have removed the insn itself, it could be only an
6439 unconditional jump. Thus, do not rescan but break immediately --
6440 we have already visited the only successor block. */
6441 if (!BLOCK_FOR_INSN (insn))
6443 if (sched_verbose >= 6)
6444 sel_print ("Not doing rescan: already visited the only successor"
6445 " of block %d\n", old_index);
6446 break;
6448 if (BLOCK_FOR_INSN (insn)->index != old_index
6449 || EDGE_COUNT (bb->succs) != old_succs)
6451 if (sched_verbose >= 6)
6452 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6453 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6454 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6455 goto rescan;
6459 #ifdef ENABLE_CHECKING
6460 /* Here, RES==1 if original expr was found at least for one of the
6461 successors. After the loop, RES may happen to have zero value
6462 only if at some point the expr searched is present in av_set, but is
6463 not found below. In most cases, this situation is an error.
6464 The exception is when the original operation is blocked by
6465 bookkeeping generated for another fence or for another path in current
6466 move_op. */
6467 gcc_assert (res == 1
6468 || (res == 0
6469 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6470 static_params))
6471 || res == -1);
6472 #endif
6474 /* Merge data, clean up, etc. */
6475 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6476 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6478 return res;
6482 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6483 is the pointer to the av set with expressions we were looking for,
6484 PATH_P is the pointer to the traversed path. */
6485 static inline void
6486 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6488 ilist_remove (path_p);
6489 av_set_clear (orig_ops_p);
6492 /* The driver function that implements move_op or find_used_regs
6493 functionality dependent whether code_motion_path_driver_INFO is set to
6494 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6495 of code (CFG traversal etc) that are shared among both functions. INSN
6496 is the insn we're starting the search from, ORIG_OPS are the expressions
6497 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6498 parameters of the driver, and STATIC_PARAMS are static parameters of
6499 the caller.
6501 Returns whether original instructions were found. Note that top-level
6502 code_motion_path_driver always returns true. */
6503 static int
6504 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6505 cmpd_local_params_p local_params_in,
6506 void *static_params)
6508 expr_t expr = NULL;
6509 basic_block bb = BLOCK_FOR_INSN (insn);
6510 insn_t first_insn, bb_tail, before_first;
6511 bool removed_last_insn = false;
6513 if (sched_verbose >= 6)
6515 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6516 dump_insn (insn);
6517 sel_print (",");
6518 dump_av_set (orig_ops);
6519 sel_print (")\n");
6522 gcc_assert (orig_ops);
6524 /* If no original operations exist below this insn, return immediately. */
6525 if (is_ineligible_successor (insn, path))
6527 if (sched_verbose >= 6)
6528 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6529 return false;
6532 /* The block can have invalid av set, in which case it was created earlier
6533 during move_op. Return immediately. */
6534 if (sel_bb_head_p (insn))
6536 if (! AV_SET_VALID_P (insn))
6538 if (sched_verbose >= 6)
6539 sel_print ("Returned from block %d as it had invalid av set\n",
6540 bb->index);
6541 return false;
6544 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6546 /* We have already found an original operation on this branch, do not
6547 go any further and just return TRUE here. If we don't stop here,
6548 function can have exponential behaviour even on the small code
6549 with many different paths (e.g. with data speculation and
6550 recovery blocks). */
6551 if (sched_verbose >= 6)
6552 sel_print ("Block %d already visited in this traversal\n", bb->index);
6553 if (code_motion_path_driver_info->on_enter)
6554 return code_motion_path_driver_info->on_enter (insn,
6555 local_params_in,
6556 static_params,
6557 true);
6561 if (code_motion_path_driver_info->on_enter)
6562 code_motion_path_driver_info->on_enter (insn, local_params_in,
6563 static_params, false);
6564 orig_ops = av_set_copy (orig_ops);
6566 /* Filter the orig_ops set. */
6567 if (AV_SET_VALID_P (insn))
6568 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6570 /* If no more original ops, return immediately. */
6571 if (!orig_ops)
6573 if (sched_verbose >= 6)
6574 sel_print ("No intersection with av set of block %d\n", bb->index);
6575 return false;
6578 /* For non-speculative insns we have to leave only one form of the
6579 original operation, because if we don't, we may end up with
6580 different C_EXPRes and, consequently, with bookkeepings for different
6581 expression forms along the same code motion path. That may lead to
6582 generation of incorrect code. So for each code motion we stick to
6583 the single form of the instruction, except for speculative insns
6584 which we need to keep in different forms with all speculation
6585 types. */
6586 av_set_leave_one_nonspec (&orig_ops);
6588 /* It is not possible that all ORIG_OPS are filtered out. */
6589 gcc_assert (orig_ops);
6591 /* It is enough to place only heads and tails of visited basic blocks into
6592 the PATH. */
6593 ilist_add (&path, insn);
6594 first_insn = insn;
6595 bb_tail = sel_bb_end (bb);
6597 /* Descend the basic block in search of the original expr; this part
6598 corresponds to the part of the original move_op procedure executed
6599 before the recursive call. */
6600 for (;;)
6602 /* Look at the insn and decide if it could be an ancestor of currently
6603 scheduling operation. If it is so, then the insn "dest = op" could
6604 either be replaced with "dest = reg", because REG now holds the result
6605 of OP, or just removed, if we've scheduled the insn as a whole.
6607 If this insn doesn't contain currently scheduling OP, then proceed
6608 with searching and look at its successors. Operations we're searching
6609 for could have changed when moving up through this insn via
6610 substituting. In this case, perform unsubstitution on them first.
6612 When traversing the DAG below this insn is finished, insert
6613 bookkeeping code, if the insn is a joint point, and remove
6614 leftovers. */
6616 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6617 if (expr)
6619 insn_t last_insn = PREV_INSN (insn);
6621 /* We have found the original operation. */
6622 if (sched_verbose >= 6)
6623 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6625 code_motion_path_driver_info->orig_expr_found
6626 (insn, expr, local_params_in, static_params);
6628 /* Step back, so on the way back we'll start traversing from the
6629 previous insn (or we'll see that it's bb_note and skip that
6630 loop). */
6631 if (insn == first_insn)
6633 first_insn = NEXT_INSN (last_insn);
6634 removed_last_insn = sel_bb_end_p (last_insn);
6636 insn = last_insn;
6637 break;
6639 else
6641 /* We haven't found the original expr, continue descending the basic
6642 block. */
6643 if (code_motion_path_driver_info->orig_expr_not_found
6644 (insn, orig_ops, static_params))
6646 /* Av set ops could have been changed when moving through this
6647 insn. To find them below it, we have to un-substitute them. */
6648 undo_transformations (&orig_ops, insn);
6650 else
6652 /* Clean up and return, if the hook tells us to do so. It may
6653 happen if we've encountered the previously created
6654 bookkeeping. */
6655 code_motion_path_driver_cleanup (&orig_ops, &path);
6656 return -1;
6659 gcc_assert (orig_ops);
6662 /* Stop at insn if we got to the end of BB. */
6663 if (insn == bb_tail)
6664 break;
6666 insn = NEXT_INSN (insn);
6669 /* Here INSN either points to the insn before the original insn (may be
6670 bb_note, if original insn was a bb_head) or to the bb_end. */
6671 if (!expr)
6673 int res;
6674 rtx last_insn = PREV_INSN (insn);
6675 bool added_to_path;
6677 gcc_assert (insn == sel_bb_end (bb));
6679 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6680 it's already in PATH then). */
6681 if (insn != first_insn)
6683 ilist_add (&path, insn);
6684 added_to_path = true;
6686 else
6687 added_to_path = false;
6689 /* Process_successors should be able to find at least one
6690 successor for which code_motion_path_driver returns TRUE. */
6691 res = code_motion_process_successors (insn, orig_ops,
6692 path, static_params);
6694 /* Jump in the end of basic block could have been removed or replaced
6695 during code_motion_process_successors, so recompute insn as the
6696 last insn in bb. */
6697 if (NEXT_INSN (last_insn) != insn)
6699 insn = sel_bb_end (bb);
6700 first_insn = sel_bb_head (bb);
6703 /* Remove bb tail from path. */
6704 if (added_to_path)
6705 ilist_remove (&path);
6707 if (res != 1)
6709 /* This is the case when one of the original expr is no longer available
6710 due to bookkeeping created on this branch with the same register.
6711 In the original algorithm, which doesn't have update_data_sets call
6712 on a bookkeeping block, it would simply result in returning
6713 FALSE when we've encountered a previously generated bookkeeping
6714 insn in moveop_orig_expr_not_found. */
6715 code_motion_path_driver_cleanup (&orig_ops, &path);
6716 return res;
6720 /* Don't need it any more. */
6721 av_set_clear (&orig_ops);
6723 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6724 the beginning of the basic block. */
6725 before_first = PREV_INSN (first_insn);
6726 while (insn != before_first)
6728 if (code_motion_path_driver_info->ascend)
6729 code_motion_path_driver_info->ascend (insn, static_params);
6731 insn = PREV_INSN (insn);
6734 /* Now we're at the bb head. */
6735 insn = first_insn;
6736 ilist_remove (&path);
6737 local_params_in->removed_last_insn = removed_last_insn;
6738 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6740 /* This should be the very last operation as at bb head we could change
6741 the numbering by creating bookkeeping blocks. */
6742 if (removed_last_insn)
6743 insn = PREV_INSN (insn);
6744 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6745 return true;
6748 /* Move up the operations from ORIG_OPS set traversing the dag starting
6749 from INSN. PATH represents the edges traversed so far.
6750 DEST is the register chosen for scheduling the current expr. Insert
6751 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6752 C_EXPR is how it looks like at the given cfg point.
6753 Set *SHOULD_MOVE to indicate whether we have only disconnected
6754 one of the insns found.
6756 Returns whether original instructions were found, which is asserted
6757 to be true in the caller. */
6758 static bool
6759 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6760 rtx dest, expr_t c_expr, bool *should_move)
6762 struct moveop_static_params sparams;
6763 struct cmpd_local_params lparams;
6764 int res;
6766 /* Init params for code_motion_path_driver. */
6767 sparams.dest = dest;
6768 sparams.c_expr = c_expr;
6769 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6770 #ifdef ENABLE_CHECKING
6771 sparams.failed_insn = NULL;
6772 #endif
6773 sparams.was_renamed = false;
6774 lparams.e1 = NULL;
6776 /* We haven't visited any blocks yet. */
6777 bitmap_clear (code_motion_visited_blocks);
6779 /* Set appropriate hooks and data. */
6780 code_motion_path_driver_info = &move_op_hooks;
6781 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6783 gcc_assert (res != -1);
6785 if (sparams.was_renamed)
6786 EXPR_WAS_RENAMED (expr_vliw) = true;
6788 *should_move = (sparams.uid == -1);
6790 return res;
6794 /* Functions that work with regions. */
6796 /* Current number of seqno used in init_seqno and init_seqno_1. */
6797 static int cur_seqno;
6799 /* A helper for init_seqno. Traverse the region starting from BB and
6800 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6801 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6802 static void
6803 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6805 int bbi = BLOCK_TO_BB (bb->index);
6806 insn_t insn, note = bb_note (bb);
6807 insn_t succ_insn;
6808 succ_iterator si;
6810 bitmap_set_bit (visited_bbs, bbi);
6811 if (blocks_to_reschedule)
6812 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6814 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6815 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6817 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6818 int succ_bbi = BLOCK_TO_BB (succ->index);
6820 gcc_assert (in_current_region_p (succ));
6822 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6824 gcc_assert (succ_bbi > bbi);
6826 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6828 else if (blocks_to_reschedule)
6829 bitmap_set_bit (forced_ebb_heads, succ->index);
6832 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6833 INSN_SEQNO (insn) = cur_seqno--;
6836 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6837 blocks on which we're rescheduling when pipelining, FROM is the block where
6838 traversing region begins (it may not be the head of the region when
6839 pipelining, but the head of the loop instead).
6841 Returns the maximal seqno found. */
6842 static int
6843 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6845 sbitmap visited_bbs;
6846 bitmap_iterator bi;
6847 unsigned bbi;
6849 visited_bbs = sbitmap_alloc (current_nr_blocks);
6851 if (blocks_to_reschedule)
6853 bitmap_ones (visited_bbs);
6854 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6856 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6857 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6860 else
6862 bitmap_clear (visited_bbs);
6863 from = EBB_FIRST_BB (0);
6866 cur_seqno = sched_max_luid - 1;
6867 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6869 /* cur_seqno may be positive if the number of instructions is less than
6870 sched_max_luid - 1 (when rescheduling or if some instructions have been
6871 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6872 gcc_assert (cur_seqno >= 0);
6874 sbitmap_free (visited_bbs);
6875 return sched_max_luid - 1;
6878 /* Initialize scheduling parameters for current region. */
6879 static void
6880 sel_setup_region_sched_flags (void)
6882 enable_schedule_as_rhs_p = 1;
6883 bookkeeping_p = 1;
6884 pipelining_p = (bookkeeping_p
6885 && (flag_sel_sched_pipelining != 0)
6886 && current_loop_nest != NULL
6887 && loop_has_exit_edges (current_loop_nest));
6888 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6889 max_ws = MAX_WS;
6892 /* Return true if all basic blocks of current region are empty. */
6893 static bool
6894 current_region_empty_p (void)
6896 int i;
6897 for (i = 0; i < current_nr_blocks; i++)
6898 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6899 return false;
6901 return true;
6904 /* Prepare and verify loop nest for pipelining. */
6905 static void
6906 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6908 current_loop_nest = get_loop_nest_for_rgn (rgn);
6910 if (!current_loop_nest)
6911 return;
6913 /* If this loop has any saved loop preheaders from nested loops,
6914 add these basic blocks to the current region. */
6915 sel_add_loop_preheaders (bbs);
6917 /* Check that we're starting with a valid information. */
6918 gcc_assert (loop_latch_edge (current_loop_nest));
6919 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6922 /* Compute instruction priorities for current region. */
6923 static void
6924 sel_compute_priorities (int rgn)
6926 sched_rgn_compute_dependencies (rgn);
6928 /* Compute insn priorities in haifa style. Then free haifa style
6929 dependencies that we've calculated for this. */
6930 compute_priorities ();
6932 if (sched_verbose >= 5)
6933 debug_rgn_dependencies (0);
6935 free_rgn_deps ();
6938 /* Init scheduling data for RGN. Returns true when this region should not
6939 be scheduled. */
6940 static bool
6941 sel_region_init (int rgn)
6943 int i;
6944 bb_vec_t bbs;
6946 rgn_setup_region (rgn);
6948 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6949 do region initialization here so the region can be bundled correctly,
6950 but we'll skip the scheduling in sel_sched_region (). */
6951 if (current_region_empty_p ())
6952 return true;
6954 bbs.create (current_nr_blocks);
6956 for (i = 0; i < current_nr_blocks; i++)
6957 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6959 sel_init_bbs (bbs);
6961 if (flag_sel_sched_pipelining)
6962 setup_current_loop_nest (rgn, &bbs);
6964 sel_setup_region_sched_flags ();
6966 /* Initialize luids and dependence analysis which both sel-sched and haifa
6967 need. */
6968 sched_init_luids (bbs);
6969 sched_deps_init (false);
6971 /* Initialize haifa data. */
6972 rgn_setup_sched_infos ();
6973 sel_set_sched_flags ();
6974 haifa_init_h_i_d (bbs);
6976 sel_compute_priorities (rgn);
6977 init_deps_global ();
6979 /* Main initialization. */
6980 sel_setup_sched_infos ();
6981 sel_init_global_and_expr (bbs);
6983 bbs.release ();
6985 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6987 /* Init correct liveness sets on each instruction of a single-block loop.
6988 This is the only situation when we can't update liveness when calling
6989 compute_live for the first insn of the loop. */
6990 if (current_loop_nest)
6992 int header =
6993 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6995 : 0);
6997 if (current_nr_blocks == header + 1)
6998 update_liveness_on_insn
6999 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
7002 /* Set hooks so that no newly generated insn will go out unnoticed. */
7003 sel_register_cfg_hooks ();
7005 /* !!! We call target.sched.init () for the whole region, but we invoke
7006 targetm.sched.finish () for every ebb. */
7007 if (targetm.sched.init)
7008 /* None of the arguments are actually used in any target. */
7009 targetm.sched.init (sched_dump, sched_verbose, -1);
7011 first_emitted_uid = get_max_uid () + 1;
7012 preheader_removed = false;
7014 /* Reset register allocation ticks array. */
7015 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
7016 reg_rename_this_tick = 0;
7018 bitmap_initialize (forced_ebb_heads, 0);
7019 bitmap_clear (forced_ebb_heads);
7021 setup_nop_vinsn ();
7022 current_copies = BITMAP_ALLOC (NULL);
7023 current_originators = BITMAP_ALLOC (NULL);
7024 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
7026 return false;
7029 /* Simplify insns after the scheduling. */
7030 static void
7031 simplify_changed_insns (void)
7033 int i;
7035 for (i = 0; i < current_nr_blocks; i++)
7037 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
7038 rtx insn;
7040 FOR_BB_INSNS (bb, insn)
7041 if (INSN_P (insn))
7043 expr_t expr = INSN_EXPR (insn);
7045 if (EXPR_WAS_SUBSTITUTED (expr))
7046 validate_simplify_insn (insn);
7051 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7052 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7053 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7054 static void
7055 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7057 insn_t head, tail;
7058 basic_block bb1 = bb;
7059 if (sched_verbose >= 2)
7060 sel_print ("Finishing schedule in bbs: ");
7064 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7066 if (sched_verbose >= 2)
7067 sel_print ("%d; ", bb1->index);
7069 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7071 if (sched_verbose >= 2)
7072 sel_print ("\n");
7074 get_ebb_head_tail (bb, bb1, &head, &tail);
7076 current_sched_info->head = head;
7077 current_sched_info->tail = tail;
7078 current_sched_info->prev_head = PREV_INSN (head);
7079 current_sched_info->next_tail = NEXT_INSN (tail);
7082 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7083 static void
7084 reset_sched_cycles_in_current_ebb (void)
7086 int last_clock = 0;
7087 int haifa_last_clock = -1;
7088 int haifa_clock = 0;
7089 int issued_insns = 0;
7090 insn_t insn;
7092 if (targetm.sched.init)
7094 /* None of the arguments are actually used in any target.
7095 NB: We should have md_reset () hook for cases like this. */
7096 targetm.sched.init (sched_dump, sched_verbose, -1);
7099 state_reset (curr_state);
7100 advance_state (curr_state);
7102 for (insn = current_sched_info->head;
7103 insn != current_sched_info->next_tail;
7104 insn = NEXT_INSN (insn))
7106 int cost, haifa_cost;
7107 int sort_p;
7108 bool asm_p, real_insn, after_stall, all_issued;
7109 int clock;
7111 if (!INSN_P (insn))
7112 continue;
7114 asm_p = false;
7115 real_insn = recog_memoized (insn) >= 0;
7116 clock = INSN_SCHED_CYCLE (insn);
7118 cost = clock - last_clock;
7120 /* Initialize HAIFA_COST. */
7121 if (! real_insn)
7123 asm_p = INSN_ASM_P (insn);
7125 if (asm_p)
7126 /* This is asm insn which *had* to be scheduled first
7127 on the cycle. */
7128 haifa_cost = 1;
7129 else
7130 /* This is a use/clobber insn. It should not change
7131 cost. */
7132 haifa_cost = 0;
7134 else
7135 haifa_cost = estimate_insn_cost (insn, curr_state);
7137 /* Stall for whatever cycles we've stalled before. */
7138 after_stall = 0;
7139 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7141 haifa_cost = cost;
7142 after_stall = 1;
7144 all_issued = issued_insns == issue_rate;
7145 if (haifa_cost == 0 && all_issued)
7146 haifa_cost = 1;
7147 if (haifa_cost > 0)
7149 int i = 0;
7151 while (haifa_cost--)
7153 advance_state (curr_state);
7154 issued_insns = 0;
7155 i++;
7157 if (sched_verbose >= 2)
7159 sel_print ("advance_state (state_transition)\n");
7160 debug_state (curr_state);
7163 /* The DFA may report that e.g. insn requires 2 cycles to be
7164 issued, but on the next cycle it says that insn is ready
7165 to go. Check this here. */
7166 if (!after_stall
7167 && real_insn
7168 && haifa_cost > 0
7169 && estimate_insn_cost (insn, curr_state) == 0)
7170 break;
7172 /* When the data dependency stall is longer than the DFA stall,
7173 and when we have issued exactly issue_rate insns and stalled,
7174 it could be that after this longer stall the insn will again
7175 become unavailable to the DFA restrictions. Looks strange
7176 but happens e.g. on x86-64. So recheck DFA on the last
7177 iteration. */
7178 if ((after_stall || all_issued)
7179 && real_insn
7180 && haifa_cost == 0)
7181 haifa_cost = estimate_insn_cost (insn, curr_state);
7184 haifa_clock += i;
7185 if (sched_verbose >= 2)
7186 sel_print ("haifa clock: %d\n", haifa_clock);
7188 else
7189 gcc_assert (haifa_cost == 0);
7191 if (sched_verbose >= 2)
7192 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7194 if (targetm.sched.dfa_new_cycle)
7195 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7196 haifa_last_clock, haifa_clock,
7197 &sort_p))
7199 advance_state (curr_state);
7200 issued_insns = 0;
7201 haifa_clock++;
7202 if (sched_verbose >= 2)
7204 sel_print ("advance_state (dfa_new_cycle)\n");
7205 debug_state (curr_state);
7206 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7210 if (real_insn)
7212 static state_t temp = NULL;
7214 if (!temp)
7215 temp = xmalloc (dfa_state_size);
7216 memcpy (temp, curr_state, dfa_state_size);
7218 cost = state_transition (curr_state, insn);
7219 if (memcmp (temp, curr_state, dfa_state_size))
7220 issued_insns++;
7222 if (sched_verbose >= 2)
7224 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7225 haifa_clock + 1);
7226 debug_state (curr_state);
7228 gcc_assert (cost < 0);
7231 if (targetm.sched.variable_issue)
7232 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7234 INSN_SCHED_CYCLE (insn) = haifa_clock;
7236 last_clock = clock;
7237 haifa_last_clock = haifa_clock;
7241 /* Put TImode markers on insns starting a new issue group. */
7242 static void
7243 put_TImodes (void)
7245 int last_clock = -1;
7246 insn_t insn;
7248 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7249 insn = NEXT_INSN (insn))
7251 int cost, clock;
7253 if (!INSN_P (insn))
7254 continue;
7256 clock = INSN_SCHED_CYCLE (insn);
7257 cost = (last_clock == -1) ? 1 : clock - last_clock;
7259 gcc_assert (cost >= 0);
7261 if (issue_rate > 1
7262 && GET_CODE (PATTERN (insn)) != USE
7263 && GET_CODE (PATTERN (insn)) != CLOBBER)
7265 if (reload_completed && cost > 0)
7266 PUT_MODE (insn, TImode);
7268 last_clock = clock;
7271 if (sched_verbose >= 2)
7272 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7276 /* Perform MD_FINISH on EBBs comprising current region. When
7277 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7278 to produce correct sched cycles on insns. */
7279 static void
7280 sel_region_target_finish (bool reset_sched_cycles_p)
7282 int i;
7283 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7285 for (i = 0; i < current_nr_blocks; i++)
7287 if (bitmap_bit_p (scheduled_blocks, i))
7288 continue;
7290 /* While pipelining outer loops, skip bundling for loop
7291 preheaders. Those will be rescheduled in the outer loop. */
7292 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7293 continue;
7295 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7297 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7298 continue;
7300 if (reset_sched_cycles_p)
7301 reset_sched_cycles_in_current_ebb ();
7303 if (targetm.sched.init)
7304 targetm.sched.init (sched_dump, sched_verbose, -1);
7306 put_TImodes ();
7308 if (targetm.sched.finish)
7310 targetm.sched.finish (sched_dump, sched_verbose);
7312 /* Extend luids so that insns generated by the target will
7313 get zero luid. */
7314 sched_extend_luids ();
7318 BITMAP_FREE (scheduled_blocks);
7321 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7322 is true, make an additional pass emulating scheduler to get correct insn
7323 cycles for md_finish calls. */
7324 static void
7325 sel_region_finish (bool reset_sched_cycles_p)
7327 simplify_changed_insns ();
7328 sched_finish_ready_list ();
7329 free_nop_pool ();
7331 /* Free the vectors. */
7332 vec_av_set.release ();
7333 BITMAP_FREE (current_copies);
7334 BITMAP_FREE (current_originators);
7335 BITMAP_FREE (code_motion_visited_blocks);
7336 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7337 vinsn_vec_free (vec_target_unavailable_vinsns);
7339 /* If LV_SET of the region head should be updated, do it now because
7340 there will be no other chance. */
7342 succ_iterator si;
7343 insn_t insn;
7345 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7346 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7348 basic_block bb = BLOCK_FOR_INSN (insn);
7350 if (!BB_LV_SET_VALID_P (bb))
7351 compute_live (insn);
7355 /* Emulate the Haifa scheduler for bundling. */
7356 if (reload_completed)
7357 sel_region_target_finish (reset_sched_cycles_p);
7359 sel_finish_global_and_expr ();
7361 bitmap_clear (forced_ebb_heads);
7363 free_nop_vinsn ();
7365 finish_deps_global ();
7366 sched_finish_luids ();
7367 h_d_i_d.release ();
7369 sel_finish_bbs ();
7370 BITMAP_FREE (blocks_to_reschedule);
7372 sel_unregister_cfg_hooks ();
7374 max_issue_size = 0;
7378 /* Functions that implement the scheduler driver. */
7380 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7381 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7382 of insns scheduled -- these would be postprocessed later. */
7383 static void
7384 schedule_on_fences (flist_t fences, int max_seqno,
7385 ilist_t **scheduled_insns_tailpp)
7387 flist_t old_fences = fences;
7389 if (sched_verbose >= 1)
7391 sel_print ("\nScheduling on fences: ");
7392 dump_flist (fences);
7393 sel_print ("\n");
7396 scheduled_something_on_previous_fence = false;
7397 for (; fences; fences = FLIST_NEXT (fences))
7399 fence_t fence = NULL;
7400 int seqno = 0;
7401 flist_t fences2;
7402 bool first_p = true;
7404 /* Choose the next fence group to schedule.
7405 The fact that insn can be scheduled only once
7406 on the cycle is guaranteed by two properties:
7407 1. seqnos of parallel groups decrease with each iteration.
7408 2. If is_ineligible_successor () sees the larger seqno, it
7409 checks if candidate insn is_in_current_fence_p (). */
7410 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7412 fence_t f = FLIST_FENCE (fences2);
7414 if (!FENCE_PROCESSED_P (f))
7416 int i = INSN_SEQNO (FENCE_INSN (f));
7418 if (first_p || i > seqno)
7420 seqno = i;
7421 fence = f;
7422 first_p = false;
7424 else
7425 /* ??? Seqnos of different groups should be different. */
7426 gcc_assert (1 || i != seqno);
7430 gcc_assert (fence);
7432 /* As FENCE is nonnull, SEQNO is initialized. */
7433 seqno -= max_seqno + 1;
7434 fill_insns (fence, seqno, scheduled_insns_tailpp);
7435 FENCE_PROCESSED_P (fence) = true;
7438 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7439 don't need to keep bookkeeping-invalidated and target-unavailable
7440 vinsns any more. */
7441 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7442 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7445 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7446 static void
7447 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7449 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7451 /* The first element is already processed. */
7452 while ((fences = FLIST_NEXT (fences)))
7454 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7456 if (*min_seqno > seqno)
7457 *min_seqno = seqno;
7458 else if (*max_seqno < seqno)
7459 *max_seqno = seqno;
7463 /* Calculate new fences from FENCES. */
7464 static flist_t
7465 calculate_new_fences (flist_t fences, int orig_max_seqno)
7467 flist_t old_fences = fences;
7468 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7470 flist_tail_init (new_fences);
7471 for (; fences; fences = FLIST_NEXT (fences))
7473 fence_t fence = FLIST_FENCE (fences);
7474 insn_t insn;
7476 if (!FENCE_BNDS (fence))
7478 /* This fence doesn't have any successors. */
7479 if (!FENCE_SCHEDULED_P (fence))
7481 /* Nothing was scheduled on this fence. */
7482 int seqno;
7484 insn = FENCE_INSN (fence);
7485 seqno = INSN_SEQNO (insn);
7486 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7488 if (sched_verbose >= 1)
7489 sel_print ("Fence %d[%d] has not changed\n",
7490 INSN_UID (insn),
7491 BLOCK_NUM (insn));
7492 move_fence_to_fences (fences, new_fences);
7495 else
7496 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7499 flist_clear (&old_fences);
7500 return FLIST_TAIL_HEAD (new_fences);
7503 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7504 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7505 the highest seqno used in a region. Return the updated highest seqno. */
7506 static int
7507 update_seqnos_and_stage (int min_seqno, int max_seqno,
7508 int highest_seqno_in_use,
7509 ilist_t *pscheduled_insns)
7511 int new_hs;
7512 ilist_iterator ii;
7513 insn_t insn;
7515 /* Actually, new_hs is the seqno of the instruction, that was
7516 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7517 if (*pscheduled_insns)
7519 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7520 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7521 gcc_assert (new_hs > highest_seqno_in_use);
7523 else
7524 new_hs = highest_seqno_in_use;
7526 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7528 gcc_assert (INSN_SEQNO (insn) < 0);
7529 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7530 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7532 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7533 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7534 require > 1GB of memory e.g. on limit-fnargs.c. */
7535 if (! pipelining_p)
7536 free_data_for_scheduled_insn (insn);
7539 ilist_clear (pscheduled_insns);
7540 global_level++;
7542 return new_hs;
7545 /* The main driver for scheduling a region. This function is responsible
7546 for correct propagation of fences (i.e. scheduling points) and creating
7547 a group of parallel insns at each of them. It also supports
7548 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7549 of scheduling. */
7550 static void
7551 sel_sched_region_2 (int orig_max_seqno)
7553 int highest_seqno_in_use = orig_max_seqno;
7555 stat_bookkeeping_copies = 0;
7556 stat_insns_needed_bookkeeping = 0;
7557 stat_renamed_scheduled = 0;
7558 stat_substitutions_total = 0;
7559 num_insns_scheduled = 0;
7561 while (fences)
7563 int min_seqno, max_seqno;
7564 ilist_t scheduled_insns = NULL;
7565 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7567 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7568 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7569 fences = calculate_new_fences (fences, orig_max_seqno);
7570 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7571 highest_seqno_in_use,
7572 &scheduled_insns);
7575 if (sched_verbose >= 1)
7576 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7577 "bookkeeping, %d insns renamed, %d insns substituted\n",
7578 stat_bookkeeping_copies,
7579 stat_insns_needed_bookkeeping,
7580 stat_renamed_scheduled,
7581 stat_substitutions_total);
7584 /* Schedule a region. When pipelining, search for possibly never scheduled
7585 bookkeeping code and schedule it. Reschedule pipelined code without
7586 pipelining after. */
7587 static void
7588 sel_sched_region_1 (void)
7590 int orig_max_seqno;
7592 /* Remove empty blocks that might be in the region from the beginning. */
7593 purge_empty_blocks ();
7595 orig_max_seqno = init_seqno (NULL, NULL);
7596 gcc_assert (orig_max_seqno >= 1);
7598 /* When pipelining outer loops, create fences on the loop header,
7599 not preheader. */
7600 fences = NULL;
7601 if (current_loop_nest)
7602 init_fences (BB_END (EBB_FIRST_BB (0)));
7603 else
7604 init_fences (bb_note (EBB_FIRST_BB (0)));
7605 global_level = 1;
7607 sel_sched_region_2 (orig_max_seqno);
7609 gcc_assert (fences == NULL);
7611 if (pipelining_p)
7613 int i;
7614 basic_block bb;
7615 struct flist_tail_def _new_fences;
7616 flist_tail_t new_fences = &_new_fences;
7617 bool do_p = true;
7619 pipelining_p = false;
7620 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7621 bookkeeping_p = false;
7622 enable_schedule_as_rhs_p = false;
7624 /* Schedule newly created code, that has not been scheduled yet. */
7625 do_p = true;
7627 while (do_p)
7629 do_p = false;
7631 for (i = 0; i < current_nr_blocks; i++)
7633 basic_block bb = EBB_FIRST_BB (i);
7635 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7637 if (! bb_ends_ebb_p (bb))
7638 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7639 if (sel_bb_empty_p (bb))
7641 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7642 continue;
7644 clear_outdated_rtx_info (bb);
7645 if (sel_insn_is_speculation_check (BB_END (bb))
7646 && JUMP_P (BB_END (bb)))
7647 bitmap_set_bit (blocks_to_reschedule,
7648 BRANCH_EDGE (bb)->dest->index);
7650 else if (! sel_bb_empty_p (bb)
7651 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7652 bitmap_set_bit (blocks_to_reschedule, bb->index);
7655 for (i = 0; i < current_nr_blocks; i++)
7657 bb = EBB_FIRST_BB (i);
7659 /* While pipelining outer loops, skip bundling for loop
7660 preheaders. Those will be rescheduled in the outer
7661 loop. */
7662 if (sel_is_loop_preheader_p (bb))
7664 clear_outdated_rtx_info (bb);
7665 continue;
7668 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7670 flist_tail_init (new_fences);
7672 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7674 /* Mark BB as head of the new ebb. */
7675 bitmap_set_bit (forced_ebb_heads, bb->index);
7677 gcc_assert (fences == NULL);
7679 init_fences (bb_note (bb));
7681 sel_sched_region_2 (orig_max_seqno);
7683 do_p = true;
7684 break;
7691 /* Schedule the RGN region. */
7692 void
7693 sel_sched_region (int rgn)
7695 bool schedule_p;
7696 bool reset_sched_cycles_p;
7698 if (sel_region_init (rgn))
7699 return;
7701 if (sched_verbose >= 1)
7702 sel_print ("Scheduling region %d\n", rgn);
7704 schedule_p = (!sched_is_disabled_for_current_region_p ()
7705 && dbg_cnt (sel_sched_region_cnt));
7706 reset_sched_cycles_p = pipelining_p;
7707 if (schedule_p)
7708 sel_sched_region_1 ();
7709 else
7710 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7711 reset_sched_cycles_p = true;
7713 sel_region_finish (reset_sched_cycles_p);
7716 /* Perform global init for the scheduler. */
7717 static void
7718 sel_global_init (void)
7720 calculate_dominance_info (CDI_DOMINATORS);
7721 alloc_sched_pools ();
7723 /* Setup the infos for sched_init. */
7724 sel_setup_sched_infos ();
7725 setup_sched_dump ();
7727 sched_rgn_init (false);
7728 sched_init ();
7730 sched_init_bbs ();
7731 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7732 after_recovery = 0;
7733 can_issue_more = issue_rate;
7735 sched_extend_target ();
7736 sched_deps_init (true);
7737 setup_nop_and_exit_insns ();
7738 sel_extend_global_bb_info ();
7739 init_lv_sets ();
7740 init_hard_regs_data ();
7743 /* Free the global data of the scheduler. */
7744 static void
7745 sel_global_finish (void)
7747 free_bb_note_pool ();
7748 free_lv_sets ();
7749 sel_finish_global_bb_info ();
7751 free_regset_pool ();
7752 free_nop_and_exit_insns ();
7754 sched_rgn_finish ();
7755 sched_deps_finish ();
7756 sched_finish ();
7758 if (current_loops)
7759 sel_finish_pipelining ();
7761 free_sched_pools ();
7762 free_dominance_info (CDI_DOMINATORS);
7765 /* Return true when we need to skip selective scheduling. Used for debugging. */
7766 bool
7767 maybe_skip_selective_scheduling (void)
7769 return ! dbg_cnt (sel_sched_cnt);
7772 /* The entry point. */
7773 void
7774 run_selective_scheduling (void)
7776 int rgn;
7778 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7779 return;
7781 sel_global_init ();
7783 for (rgn = 0; rgn < nr_regions; rgn++)
7784 sel_sched_region (rgn);
7786 sel_global_finish ();
7789 #endif