mklog: add subject line skeleton
[official-gcc.git] / gcc / tree-cfg.c
blob4c32f83257f3284d3413904c2c5a8332db482f3f
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2021 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
65 #include "profile.h"
67 /* This file contains functions for building the Control Flow Graph (CFG)
68 for a function tree. */
70 /* Local declarations. */
72 /* Initial capacity for the basic block array. */
73 static const int initial_cfg_capacity = 20;
75 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
76 which use a particular edge. The CASE_LABEL_EXPRs are chained together
77 via their CASE_CHAIN field, which we clear after we're done with the
78 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
80 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
81 update the case vector in response to edge redirections.
83 Right now this table is set up and torn down at key points in the
84 compilation process. It would be nice if we could make the table
85 more persistent. The key is getting notification of changes to
86 the CFG (particularly edge removal, creation and redirection). */
88 static hash_map<edge, tree> *edge_to_cases;
90 /* If we record edge_to_cases, this bitmap will hold indexes
91 of basic blocks that end in a GIMPLE_SWITCH which we touched
92 due to edge manipulations. */
94 static bitmap touched_switch_bbs;
96 /* OpenMP region idxs for blocks during cfg pass. */
97 static vec<int> bb_to_omp_idx;
99 /* CFG statistics. */
100 struct cfg_stats_d
102 long num_merged_labels;
105 static struct cfg_stats_d cfg_stats;
107 /* Data to pass to replace_block_vars_by_duplicates_1. */
108 struct replace_decls_d
110 hash_map<tree, tree> *vars_map;
111 tree to_context;
114 /* Hash table to store last discriminator assigned for each locus. */
115 struct locus_discrim_map
117 int location_line;
118 int discriminator;
121 /* Hashtable helpers. */
123 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
125 static inline hashval_t hash (const locus_discrim_map *);
126 static inline bool equal (const locus_discrim_map *,
127 const locus_discrim_map *);
130 /* Trivial hash function for a location_t. ITEM is a pointer to
131 a hash table entry that maps a location_t to a discriminator. */
133 inline hashval_t
134 locus_discrim_hasher::hash (const locus_discrim_map *item)
136 return item->location_line;
139 /* Equality function for the locus-to-discriminator map. A and B
140 point to the two hash table entries to compare. */
142 inline bool
143 locus_discrim_hasher::equal (const locus_discrim_map *a,
144 const locus_discrim_map *b)
146 return a->location_line == b->location_line;
149 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
151 /* Basic blocks and flowgraphs. */
152 static void make_blocks (gimple_seq);
154 /* Edges. */
155 static void make_edges (void);
156 static void assign_discriminators (void);
157 static void make_cond_expr_edges (basic_block);
158 static void make_gimple_switch_edges (gswitch *, basic_block);
159 static bool make_goto_expr_edges (basic_block);
160 static void make_gimple_asm_edges (basic_block);
161 static edge gimple_redirect_edge_and_branch (edge, basic_block);
162 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
164 /* Various helpers. */
165 static inline bool stmt_starts_bb_p (gimple *, gimple *);
166 static int gimple_verify_flow_info (void);
167 static void gimple_make_forwarder_block (edge);
168 static gimple *first_non_label_stmt (basic_block);
169 static bool verify_gimple_transaction (gtransaction *);
170 static bool call_can_make_abnormal_goto (gimple *);
172 /* Flowgraph optimization and cleanup. */
173 static void gimple_merge_blocks (basic_block, basic_block);
174 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
175 static void remove_bb (basic_block);
176 static edge find_taken_edge_computed_goto (basic_block, tree);
177 static edge find_taken_edge_cond_expr (const gcond *, tree);
179 void
180 init_empty_tree_cfg_for_function (struct function *fn)
182 /* Initialize the basic block array. */
183 init_flow (fn);
184 profile_status_for_fn (fn) = PROFILE_ABSENT;
185 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
186 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity, true);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
192 initial_cfg_capacity, true);
194 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
195 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
197 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
198 = EXIT_BLOCK_PTR_FOR_FN (fn);
199 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
200 = ENTRY_BLOCK_PTR_FOR_FN (fn);
203 void
204 init_empty_tree_cfg (void)
206 init_empty_tree_cfg_for_function (cfun);
209 /*---------------------------------------------------------------------------
210 Create basic blocks
211 ---------------------------------------------------------------------------*/
213 /* Entry point to the CFG builder for trees. SEQ is the sequence of
214 statements to be added to the flowgraph. */
216 static void
217 build_gimple_cfg (gimple_seq seq)
219 /* Register specific gimple functions. */
220 gimple_register_cfg_hooks ();
222 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
224 init_empty_tree_cfg ();
226 make_blocks (seq);
228 /* Make sure there is always at least one block, even if it's empty. */
229 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
230 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
232 /* Adjust the size of the array. */
233 if (basic_block_info_for_fn (cfun)->length ()
234 < (size_t) n_basic_blocks_for_fn (cfun))
235 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
236 n_basic_blocks_for_fn (cfun));
238 /* To speed up statement iterator walks, we first purge dead labels. */
239 cleanup_dead_labels ();
241 /* Group case nodes to reduce the number of edges.
242 We do this after cleaning up dead labels because otherwise we miss
243 a lot of obvious case merging opportunities. */
244 group_case_labels ();
246 /* Create the edges of the flowgraph. */
247 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
248 make_edges ();
249 assign_discriminators ();
250 cleanup_dead_labels ();
251 delete discriminator_per_locus;
252 discriminator_per_locus = NULL;
255 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
256 them and propagate the information to LOOP. We assume that the annotations
257 come immediately before the condition in BB, if any. */
259 static void
260 replace_loop_annotate_in_block (basic_block bb, class loop *loop)
262 gimple_stmt_iterator gsi = gsi_last_bb (bb);
263 gimple *stmt = gsi_stmt (gsi);
265 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
266 return;
268 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
270 stmt = gsi_stmt (gsi);
271 if (gimple_code (stmt) != GIMPLE_CALL)
272 break;
273 if (!gimple_call_internal_p (stmt)
274 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
275 break;
277 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
279 case annot_expr_ivdep_kind:
280 loop->safelen = INT_MAX;
281 break;
282 case annot_expr_unroll_kind:
283 loop->unroll
284 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
285 cfun->has_unroll = true;
286 break;
287 case annot_expr_no_vector_kind:
288 loop->dont_vectorize = true;
289 break;
290 case annot_expr_vector_kind:
291 loop->force_vectorize = true;
292 cfun->has_force_vectorize_loops = true;
293 break;
294 case annot_expr_parallel_kind:
295 loop->can_be_parallel = true;
296 loop->safelen = INT_MAX;
297 break;
298 default:
299 gcc_unreachable ();
302 stmt = gimple_build_assign (gimple_call_lhs (stmt),
303 gimple_call_arg (stmt, 0));
304 gsi_replace (&gsi, stmt, true);
308 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
309 them and propagate the information to the loop. We assume that the
310 annotations come immediately before the condition of the loop. */
312 static void
313 replace_loop_annotate (void)
315 class loop *loop;
316 basic_block bb;
317 gimple_stmt_iterator gsi;
318 gimple *stmt;
320 FOR_EACH_LOOP (loop, 0)
322 /* First look into the header. */
323 replace_loop_annotate_in_block (loop->header, loop);
325 /* Then look into the latch, if any. */
326 if (loop->latch)
327 replace_loop_annotate_in_block (loop->latch, loop);
329 /* Push the global flag_finite_loops state down to individual loops. */
330 loop->finite_p = flag_finite_loops;
333 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
334 FOR_EACH_BB_FN (bb, cfun)
336 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
338 stmt = gsi_stmt (gsi);
339 if (gimple_code (stmt) != GIMPLE_CALL)
340 continue;
341 if (!gimple_call_internal_p (stmt)
342 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
343 continue;
345 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
347 case annot_expr_ivdep_kind:
348 case annot_expr_unroll_kind:
349 case annot_expr_no_vector_kind:
350 case annot_expr_vector_kind:
351 case annot_expr_parallel_kind:
352 break;
353 default:
354 gcc_unreachable ();
357 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
358 stmt = gimple_build_assign (gimple_call_lhs (stmt),
359 gimple_call_arg (stmt, 0));
360 gsi_replace (&gsi, stmt, true);
365 static unsigned int
366 execute_build_cfg (void)
368 gimple_seq body = gimple_body (current_function_decl);
370 build_gimple_cfg (body);
371 gimple_set_body (current_function_decl, NULL);
372 if (dump_file && (dump_flags & TDF_DETAILS))
374 fprintf (dump_file, "Scope blocks:\n");
375 dump_scope_blocks (dump_file, dump_flags);
377 cleanup_tree_cfg ();
379 bb_to_omp_idx.release ();
381 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
382 replace_loop_annotate ();
383 return 0;
386 namespace {
388 const pass_data pass_data_build_cfg =
390 GIMPLE_PASS, /* type */
391 "cfg", /* name */
392 OPTGROUP_NONE, /* optinfo_flags */
393 TV_TREE_CFG, /* tv_id */
394 PROP_gimple_leh, /* properties_required */
395 ( PROP_cfg | PROP_loops ), /* properties_provided */
396 0, /* properties_destroyed */
397 0, /* todo_flags_start */
398 0, /* todo_flags_finish */
401 class pass_build_cfg : public gimple_opt_pass
403 public:
404 pass_build_cfg (gcc::context *ctxt)
405 : gimple_opt_pass (pass_data_build_cfg, ctxt)
408 /* opt_pass methods: */
409 virtual unsigned int execute (function *) { return execute_build_cfg (); }
411 }; // class pass_build_cfg
413 } // anon namespace
415 gimple_opt_pass *
416 make_pass_build_cfg (gcc::context *ctxt)
418 return new pass_build_cfg (ctxt);
422 /* Return true if T is a computed goto. */
424 bool
425 computed_goto_p (gimple *t)
427 return (gimple_code (t) == GIMPLE_GOTO
428 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
431 /* Returns true if the sequence of statements STMTS only contains
432 a call to __builtin_unreachable (). */
434 bool
435 gimple_seq_unreachable_p (gimple_seq stmts)
437 if (stmts == NULL
438 /* Return false if -fsanitize=unreachable, we don't want to
439 optimize away those calls, but rather turn them into
440 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
441 later. */
442 || sanitize_flags_p (SANITIZE_UNREACHABLE))
443 return false;
445 gimple_stmt_iterator gsi = gsi_last (stmts);
447 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
448 return false;
450 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
452 gimple *stmt = gsi_stmt (gsi);
453 if (gimple_code (stmt) != GIMPLE_LABEL
454 && !is_gimple_debug (stmt)
455 && !gimple_clobber_p (stmt))
456 return false;
458 return true;
461 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
462 the other edge points to a bb with just __builtin_unreachable ().
463 I.e. return true for C->M edge in:
464 <bb C>:
466 if (something)
467 goto <bb N>;
468 else
469 goto <bb M>;
470 <bb N>:
471 __builtin_unreachable ();
472 <bb M>: */
474 bool
475 assert_unreachable_fallthru_edge_p (edge e)
477 basic_block pred_bb = e->src;
478 gimple *last = last_stmt (pred_bb);
479 if (last && gimple_code (last) == GIMPLE_COND)
481 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
482 if (other_bb == e->dest)
483 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
484 if (EDGE_COUNT (other_bb->succs) == 0)
485 return gimple_seq_unreachable_p (bb_seq (other_bb));
487 return false;
491 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
492 could alter control flow except via eh. We initialize the flag at
493 CFG build time and only ever clear it later. */
495 static void
496 gimple_call_initialize_ctrl_altering (gimple *stmt)
498 int flags = gimple_call_flags (stmt);
500 /* A call alters control flow if it can make an abnormal goto. */
501 if (call_can_make_abnormal_goto (stmt)
502 /* A call also alters control flow if it does not return. */
503 || flags & ECF_NORETURN
504 /* TM ending statements have backedges out of the transaction.
505 Return true so we split the basic block containing them.
506 Note that the TM_BUILTIN test is merely an optimization. */
507 || ((flags & ECF_TM_BUILTIN)
508 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
509 /* BUILT_IN_RETURN call is same as return statement. */
510 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
511 /* IFN_UNIQUE should be the last insn, to make checking for it
512 as cheap as possible. */
513 || (gimple_call_internal_p (stmt)
514 && gimple_call_internal_unique_p (stmt)))
515 gimple_call_set_ctrl_altering (stmt, true);
516 else
517 gimple_call_set_ctrl_altering (stmt, false);
521 /* Insert SEQ after BB and build a flowgraph. */
523 static basic_block
524 make_blocks_1 (gimple_seq seq, basic_block bb)
526 gimple_stmt_iterator i = gsi_start (seq);
527 gimple *stmt = NULL;
528 gimple *prev_stmt = NULL;
529 bool start_new_block = true;
530 bool first_stmt_of_seq = true;
532 while (!gsi_end_p (i))
534 /* PREV_STMT should only be set to a debug stmt if the debug
535 stmt is before nondebug stmts. Once stmt reaches a nondebug
536 nonlabel, prev_stmt will be set to it, so that
537 stmt_starts_bb_p will know to start a new block if a label is
538 found. However, if stmt was a label after debug stmts only,
539 keep the label in prev_stmt even if we find further debug
540 stmts, for there may be other labels after them, and they
541 should land in the same block. */
542 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
543 prev_stmt = stmt;
544 stmt = gsi_stmt (i);
546 if (stmt && is_gimple_call (stmt))
547 gimple_call_initialize_ctrl_altering (stmt);
549 /* If the statement starts a new basic block or if we have determined
550 in a previous pass that we need to create a new block for STMT, do
551 so now. */
552 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
554 if (!first_stmt_of_seq)
555 gsi_split_seq_before (&i, &seq);
556 bb = create_basic_block (seq, bb);
557 start_new_block = false;
558 prev_stmt = NULL;
561 /* Now add STMT to BB and create the subgraphs for special statement
562 codes. */
563 gimple_set_bb (stmt, bb);
565 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
566 next iteration. */
567 if (stmt_ends_bb_p (stmt))
569 /* If the stmt can make abnormal goto use a new temporary
570 for the assignment to the LHS. This makes sure the old value
571 of the LHS is available on the abnormal edge. Otherwise
572 we will end up with overlapping life-ranges for abnormal
573 SSA names. */
574 if (gimple_has_lhs (stmt)
575 && stmt_can_make_abnormal_goto (stmt)
576 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
578 tree lhs = gimple_get_lhs (stmt);
579 tree tmp = create_tmp_var (TREE_TYPE (lhs));
580 gimple *s = gimple_build_assign (lhs, tmp);
581 gimple_set_location (s, gimple_location (stmt));
582 gimple_set_block (s, gimple_block (stmt));
583 gimple_set_lhs (stmt, tmp);
584 gsi_insert_after (&i, s, GSI_SAME_STMT);
586 start_new_block = true;
589 gsi_next (&i);
590 first_stmt_of_seq = false;
592 return bb;
595 /* Build a flowgraph for the sequence of stmts SEQ. */
597 static void
598 make_blocks (gimple_seq seq)
600 /* Look for debug markers right before labels, and move the debug
601 stmts after the labels. Accepting labels among debug markers
602 adds no value, just complexity; if we wanted to annotate labels
603 with view numbers (so sequencing among markers would matter) or
604 somesuch, we're probably better off still moving the labels, but
605 adding other debug annotations in their original positions or
606 emitting nonbind or bind markers associated with the labels in
607 the original position of the labels.
609 Moving labels would probably be simpler, but we can't do that:
610 moving labels assigns label ids to them, and doing so because of
611 debug markers makes for -fcompare-debug and possibly even codegen
612 differences. So, we have to move the debug stmts instead. To
613 that end, we scan SEQ backwards, marking the position of the
614 latest (earliest we find) label, and moving debug stmts that are
615 not separated from it by nondebug nonlabel stmts after the
616 label. */
617 if (MAY_HAVE_DEBUG_MARKER_STMTS)
619 gimple_stmt_iterator label = gsi_none ();
621 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
623 gimple *stmt = gsi_stmt (i);
625 /* If this is the first label we encounter (latest in SEQ)
626 before nondebug stmts, record its position. */
627 if (is_a <glabel *> (stmt))
629 if (gsi_end_p (label))
630 label = i;
631 continue;
634 /* Without a recorded label position to move debug stmts to,
635 there's nothing to do. */
636 if (gsi_end_p (label))
637 continue;
639 /* Move the debug stmt at I after LABEL. */
640 if (is_gimple_debug (stmt))
642 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
643 /* As STMT is removed, I advances to the stmt after
644 STMT, so the gsi_prev in the for "increment"
645 expression gets us to the stmt we're to visit after
646 STMT. LABEL, however, would advance to the moved
647 stmt if we passed it to gsi_move_after, so pass it a
648 copy instead, so as to keep LABEL pointing to the
649 LABEL. */
650 gimple_stmt_iterator copy = label;
651 gsi_move_after (&i, &copy);
652 continue;
655 /* There aren't any (more?) debug stmts before label, so
656 there isn't anything else to move after it. */
657 label = gsi_none ();
661 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
664 /* Create and return a new empty basic block after bb AFTER. */
666 static basic_block
667 create_bb (void *h, void *e, basic_block after)
669 basic_block bb;
671 gcc_assert (!e);
673 /* Create and initialize a new basic block. Since alloc_block uses
674 GC allocation that clears memory to allocate a basic block, we do
675 not have to clear the newly allocated basic block here. */
676 bb = alloc_block ();
678 bb->index = last_basic_block_for_fn (cfun);
679 bb->flags = BB_NEW;
680 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
682 /* Add the new block to the linked list of blocks. */
683 link_block (bb, after);
685 /* Grow the basic block array if needed. */
686 if ((size_t) last_basic_block_for_fn (cfun)
687 == basic_block_info_for_fn (cfun)->length ())
688 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
689 last_basic_block_for_fn (cfun) + 1);
691 /* Add the newly created block to the array. */
692 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
694 n_basic_blocks_for_fn (cfun)++;
695 last_basic_block_for_fn (cfun)++;
697 return bb;
701 /*---------------------------------------------------------------------------
702 Edge creation
703 ---------------------------------------------------------------------------*/
705 /* If basic block BB has an abnormal edge to a basic block
706 containing IFN_ABNORMAL_DISPATCHER internal call, return
707 that the dispatcher's basic block, otherwise return NULL. */
709 basic_block
710 get_abnormal_succ_dispatcher (basic_block bb)
712 edge e;
713 edge_iterator ei;
715 FOR_EACH_EDGE (e, ei, bb->succs)
716 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
718 gimple_stmt_iterator gsi
719 = gsi_start_nondebug_after_labels_bb (e->dest);
720 gimple *g = gsi_stmt (gsi);
721 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
722 return e->dest;
724 return NULL;
727 /* Helper function for make_edges. Create a basic block with
728 with ABNORMAL_DISPATCHER internal call in it if needed, and
729 create abnormal edges from BBS to it and from it to FOR_BB
730 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
732 static void
733 handle_abnormal_edges (basic_block *dispatcher_bbs, basic_block for_bb,
734 auto_vec<basic_block> *bbs, bool computed_goto)
736 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
737 unsigned int idx = 0;
738 basic_block bb;
739 bool inner = false;
741 if (!bb_to_omp_idx.is_empty ())
743 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
744 if (bb_to_omp_idx[for_bb->index] != 0)
745 inner = true;
748 /* If the dispatcher has been created already, then there are basic
749 blocks with abnormal edges to it, so just make a new edge to
750 for_bb. */
751 if (*dispatcher == NULL)
753 /* Check if there are any basic blocks that need to have
754 abnormal edges to this dispatcher. If there are none, return
755 early. */
756 if (bb_to_omp_idx.is_empty ())
758 if (bbs->is_empty ())
759 return;
761 else
763 FOR_EACH_VEC_ELT (*bbs, idx, bb)
764 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
765 break;
766 if (bb == NULL)
767 return;
770 /* Create the dispatcher bb. */
771 *dispatcher = create_basic_block (NULL, for_bb);
772 if (computed_goto)
774 /* Factor computed gotos into a common computed goto site. Also
775 record the location of that site so that we can un-factor the
776 gotos after we have converted back to normal form. */
777 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
779 /* Create the destination of the factored goto. Each original
780 computed goto will put its desired destination into this
781 variable and jump to the label we create immediately below. */
782 tree var = create_tmp_var (ptr_type_node, "gotovar");
784 /* Build a label for the new block which will contain the
785 factored computed goto. */
786 tree factored_label_decl
787 = create_artificial_label (UNKNOWN_LOCATION);
788 gimple *factored_computed_goto_label
789 = gimple_build_label (factored_label_decl);
790 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
792 /* Build our new computed goto. */
793 gimple *factored_computed_goto = gimple_build_goto (var);
794 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
796 FOR_EACH_VEC_ELT (*bbs, idx, bb)
798 if (!bb_to_omp_idx.is_empty ()
799 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
800 continue;
802 gsi = gsi_last_bb (bb);
803 gimple *last = gsi_stmt (gsi);
805 gcc_assert (computed_goto_p (last));
807 /* Copy the original computed goto's destination into VAR. */
808 gimple *assignment
809 = gimple_build_assign (var, gimple_goto_dest (last));
810 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
812 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
813 e->goto_locus = gimple_location (last);
814 gsi_remove (&gsi, true);
817 else
819 tree arg = inner ? boolean_true_node : boolean_false_node;
820 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
821 1, arg);
822 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
823 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
825 /* Create predecessor edges of the dispatcher. */
826 FOR_EACH_VEC_ELT (*bbs, idx, bb)
828 if (!bb_to_omp_idx.is_empty ()
829 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
830 continue;
831 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
836 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
839 /* Creates outgoing edges for BB. Returns 1 when it ends with an
840 computed goto, returns 2 when it ends with a statement that
841 might return to this function via an nonlocal goto, otherwise
842 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
844 static int
845 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
847 gimple *last = last_stmt (bb);
848 bool fallthru = false;
849 int ret = 0;
851 if (!last)
852 return ret;
854 switch (gimple_code (last))
856 case GIMPLE_GOTO:
857 if (make_goto_expr_edges (bb))
858 ret = 1;
859 fallthru = false;
860 break;
861 case GIMPLE_RETURN:
863 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
864 e->goto_locus = gimple_location (last);
865 fallthru = false;
867 break;
868 case GIMPLE_COND:
869 make_cond_expr_edges (bb);
870 fallthru = false;
871 break;
872 case GIMPLE_SWITCH:
873 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
874 fallthru = false;
875 break;
876 case GIMPLE_RESX:
877 make_eh_edges (last);
878 fallthru = false;
879 break;
880 case GIMPLE_EH_DISPATCH:
881 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
882 break;
884 case GIMPLE_CALL:
885 /* If this function receives a nonlocal goto, then we need to
886 make edges from this call site to all the nonlocal goto
887 handlers. */
888 if (stmt_can_make_abnormal_goto (last))
889 ret = 2;
891 /* If this statement has reachable exception handlers, then
892 create abnormal edges to them. */
893 make_eh_edges (last);
895 /* BUILTIN_RETURN is really a return statement. */
896 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
898 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
899 fallthru = false;
901 /* Some calls are known not to return. */
902 else
903 fallthru = !gimple_call_noreturn_p (last);
904 break;
906 case GIMPLE_ASSIGN:
907 /* A GIMPLE_ASSIGN may throw internally and thus be considered
908 control-altering. */
909 if (is_ctrl_altering_stmt (last))
910 make_eh_edges (last);
911 fallthru = true;
912 break;
914 case GIMPLE_ASM:
915 make_gimple_asm_edges (bb);
916 fallthru = true;
917 break;
919 CASE_GIMPLE_OMP:
920 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
921 break;
923 case GIMPLE_TRANSACTION:
925 gtransaction *txn = as_a <gtransaction *> (last);
926 tree label1 = gimple_transaction_label_norm (txn);
927 tree label2 = gimple_transaction_label_uninst (txn);
929 if (label1)
930 make_edge (bb, label_to_block (cfun, label1), EDGE_FALLTHRU);
931 if (label2)
932 make_edge (bb, label_to_block (cfun, label2),
933 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
935 tree label3 = gimple_transaction_label_over (txn);
936 if (gimple_transaction_subcode (txn)
937 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
938 make_edge (bb, label_to_block (cfun, label3), EDGE_TM_ABORT);
940 fallthru = false;
942 break;
944 default:
945 gcc_assert (!stmt_ends_bb_p (last));
946 fallthru = true;
947 break;
950 if (fallthru)
951 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
953 return ret;
956 /* Join all the blocks in the flowgraph. */
958 static void
959 make_edges (void)
961 basic_block bb;
962 struct omp_region *cur_region = NULL;
963 auto_vec<basic_block> ab_edge_goto;
964 auto_vec<basic_block> ab_edge_call;
965 int cur_omp_region_idx = 0;
967 /* Create an edge from entry to the first block with executable
968 statements in it. */
969 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
970 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
971 EDGE_FALLTHRU);
973 /* Traverse the basic block array placing edges. */
974 FOR_EACH_BB_FN (bb, cfun)
976 int mer;
978 if (!bb_to_omp_idx.is_empty ())
979 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
981 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
982 if (mer == 1)
983 ab_edge_goto.safe_push (bb);
984 else if (mer == 2)
985 ab_edge_call.safe_push (bb);
987 if (cur_region && bb_to_omp_idx.is_empty ())
988 bb_to_omp_idx.safe_grow_cleared (n_basic_blocks_for_fn (cfun), true);
991 /* Computed gotos are hell to deal with, especially if there are
992 lots of them with a large number of destinations. So we factor
993 them to a common computed goto location before we build the
994 edge list. After we convert back to normal form, we will un-factor
995 the computed gotos since factoring introduces an unwanted jump.
996 For non-local gotos and abnormal edges from calls to calls that return
997 twice or forced labels, factor the abnormal edges too, by having all
998 abnormal edges from the calls go to a common artificial basic block
999 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1000 basic block to all forced labels and calls returning twice.
1001 We do this per-OpenMP structured block, because those regions
1002 are guaranteed to be single entry single exit by the standard,
1003 so it is not allowed to enter or exit such regions abnormally this way,
1004 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1005 must not transfer control across SESE region boundaries. */
1006 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1008 gimple_stmt_iterator gsi;
1009 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1010 basic_block *dispatcher_bbs = dispatcher_bb_array;
1011 int count = n_basic_blocks_for_fn (cfun);
1013 if (!bb_to_omp_idx.is_empty ())
1014 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1016 FOR_EACH_BB_FN (bb, cfun)
1018 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1020 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1021 tree target;
1023 if (!label_stmt)
1024 break;
1026 target = gimple_label_label (label_stmt);
1028 /* Make an edge to every label block that has been marked as a
1029 potential target for a computed goto or a non-local goto. */
1030 if (FORCED_LABEL (target))
1031 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_goto,
1032 true);
1033 if (DECL_NONLOCAL (target))
1035 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_call,
1036 false);
1037 break;
1041 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1042 gsi_next_nondebug (&gsi);
1043 if (!gsi_end_p (gsi))
1045 /* Make an edge to every setjmp-like call. */
1046 gimple *call_stmt = gsi_stmt (gsi);
1047 if (is_gimple_call (call_stmt)
1048 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1049 || gimple_call_builtin_p (call_stmt,
1050 BUILT_IN_SETJMP_RECEIVER)))
1051 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_call,
1052 false);
1056 if (!bb_to_omp_idx.is_empty ())
1057 XDELETE (dispatcher_bbs);
1060 omp_free_regions ();
1063 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1064 needed. Returns true if new bbs were created.
1065 Note: This is transitional code, and should not be used for new code. We
1066 should be able to get rid of this by rewriting all target va-arg
1067 gimplification hooks to use an interface gimple_build_cond_value as described
1068 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1070 bool
1071 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1073 gimple *stmt = gsi_stmt (*gsi);
1074 basic_block bb = gimple_bb (stmt);
1075 basic_block lastbb, afterbb;
1076 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1077 edge e;
1078 lastbb = make_blocks_1 (seq, bb);
1079 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1080 return false;
1081 e = split_block (bb, stmt);
1082 /* Move e->dest to come after the new basic blocks. */
1083 afterbb = e->dest;
1084 unlink_block (afterbb);
1085 link_block (afterbb, lastbb);
1086 redirect_edge_succ (e, bb->next_bb);
1087 bb = bb->next_bb;
1088 while (bb != afterbb)
1090 struct omp_region *cur_region = NULL;
1091 profile_count cnt = profile_count::zero ();
1092 bool all = true;
1094 int cur_omp_region_idx = 0;
1095 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1096 gcc_assert (!mer && !cur_region);
1097 add_bb_to_loop (bb, afterbb->loop_father);
1099 edge e;
1100 edge_iterator ei;
1101 FOR_EACH_EDGE (e, ei, bb->preds)
1103 if (e->count ().initialized_p ())
1104 cnt += e->count ();
1105 else
1106 all = false;
1108 tree_guess_outgoing_edge_probabilities (bb);
1109 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1110 bb->count = cnt;
1112 bb = bb->next_bb;
1114 return true;
1117 /* Find the next available discriminator value for LOCUS. The
1118 discriminator distinguishes among several basic blocks that
1119 share a common locus, allowing for more accurate sample-based
1120 profiling. */
1122 static int
1123 next_discriminator_for_locus (int line)
1125 struct locus_discrim_map item;
1126 struct locus_discrim_map **slot;
1128 item.location_line = line;
1129 item.discriminator = 0;
1130 slot = discriminator_per_locus->find_slot_with_hash (&item, line, INSERT);
1131 gcc_assert (slot);
1132 if (*slot == HTAB_EMPTY_ENTRY)
1134 *slot = XNEW (struct locus_discrim_map);
1135 gcc_assert (*slot);
1136 (*slot)->location_line = line;
1137 (*slot)->discriminator = 0;
1139 (*slot)->discriminator++;
1140 return (*slot)->discriminator;
1143 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1145 static bool
1146 same_line_p (location_t locus1, expanded_location *from, location_t locus2)
1148 expanded_location to;
1150 if (locus1 == locus2)
1151 return true;
1153 to = expand_location (locus2);
1155 if (from->line != to.line)
1156 return false;
1157 if (from->file == to.file)
1158 return true;
1159 return (from->file != NULL
1160 && to.file != NULL
1161 && filename_cmp (from->file, to.file) == 0);
1164 /* Assign discriminators to each basic block. */
1166 static void
1167 assign_discriminators (void)
1169 basic_block bb;
1171 FOR_EACH_BB_FN (bb, cfun)
1173 edge e;
1174 edge_iterator ei;
1175 gimple *last = last_stmt (bb);
1176 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1178 if (locus == UNKNOWN_LOCATION)
1179 continue;
1181 expanded_location locus_e = expand_location (locus);
1183 FOR_EACH_EDGE (e, ei, bb->succs)
1185 gimple *first = first_non_label_stmt (e->dest);
1186 gimple *last = last_stmt (e->dest);
1187 if ((first && same_line_p (locus, &locus_e,
1188 gimple_location (first)))
1189 || (last && same_line_p (locus, &locus_e,
1190 gimple_location (last))))
1192 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1193 bb->discriminator
1194 = next_discriminator_for_locus (locus_e.line);
1195 else
1196 e->dest->discriminator
1197 = next_discriminator_for_locus (locus_e.line);
1203 /* Create the edges for a GIMPLE_COND starting at block BB. */
1205 static void
1206 make_cond_expr_edges (basic_block bb)
1208 gcond *entry = as_a <gcond *> (last_stmt (bb));
1209 gimple *then_stmt, *else_stmt;
1210 basic_block then_bb, else_bb;
1211 tree then_label, else_label;
1212 edge e;
1214 gcc_assert (entry);
1215 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1217 /* Entry basic blocks for each component. */
1218 then_label = gimple_cond_true_label (entry);
1219 else_label = gimple_cond_false_label (entry);
1220 then_bb = label_to_block (cfun, then_label);
1221 else_bb = label_to_block (cfun, else_label);
1222 then_stmt = first_stmt (then_bb);
1223 else_stmt = first_stmt (else_bb);
1225 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1226 e->goto_locus = gimple_location (then_stmt);
1227 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1228 if (e)
1229 e->goto_locus = gimple_location (else_stmt);
1231 /* We do not need the labels anymore. */
1232 gimple_cond_set_true_label (entry, NULL_TREE);
1233 gimple_cond_set_false_label (entry, NULL_TREE);
1237 /* Called for each element in the hash table (P) as we delete the
1238 edge to cases hash table.
1240 Clear all the CASE_CHAINs to prevent problems with copying of
1241 SWITCH_EXPRs and structure sharing rules, then free the hash table
1242 element. */
1244 bool
1245 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1247 tree t, next;
1249 for (t = value; t; t = next)
1251 next = CASE_CHAIN (t);
1252 CASE_CHAIN (t) = NULL;
1255 return true;
1258 /* Start recording information mapping edges to case labels. */
1260 void
1261 start_recording_case_labels (void)
1263 gcc_assert (edge_to_cases == NULL);
1264 edge_to_cases = new hash_map<edge, tree>;
1265 touched_switch_bbs = BITMAP_ALLOC (NULL);
1268 /* Return nonzero if we are recording information for case labels. */
1270 static bool
1271 recording_case_labels_p (void)
1273 return (edge_to_cases != NULL);
1276 /* Stop recording information mapping edges to case labels and
1277 remove any information we have recorded. */
1278 void
1279 end_recording_case_labels (void)
1281 bitmap_iterator bi;
1282 unsigned i;
1283 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1284 delete edge_to_cases;
1285 edge_to_cases = NULL;
1286 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1288 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1289 if (bb)
1291 gimple *stmt = last_stmt (bb);
1292 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1293 group_case_labels_stmt (as_a <gswitch *> (stmt));
1296 BITMAP_FREE (touched_switch_bbs);
1299 /* If we are inside a {start,end}_recording_cases block, then return
1300 a chain of CASE_LABEL_EXPRs from T which reference E.
1302 Otherwise return NULL. */
1304 static tree
1305 get_cases_for_edge (edge e, gswitch *t)
1307 tree *slot;
1308 size_t i, n;
1310 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1311 chains available. Return NULL so the caller can detect this case. */
1312 if (!recording_case_labels_p ())
1313 return NULL;
1315 slot = edge_to_cases->get (e);
1316 if (slot)
1317 return *slot;
1319 /* If we did not find E in the hash table, then this must be the first
1320 time we have been queried for information about E & T. Add all the
1321 elements from T to the hash table then perform the query again. */
1323 n = gimple_switch_num_labels (t);
1324 for (i = 0; i < n; i++)
1326 tree elt = gimple_switch_label (t, i);
1327 tree lab = CASE_LABEL (elt);
1328 basic_block label_bb = label_to_block (cfun, lab);
1329 edge this_edge = find_edge (e->src, label_bb);
1331 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1332 a new chain. */
1333 tree &s = edge_to_cases->get_or_insert (this_edge);
1334 CASE_CHAIN (elt) = s;
1335 s = elt;
1338 return *edge_to_cases->get (e);
1341 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1343 static void
1344 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1346 size_t i, n;
1348 n = gimple_switch_num_labels (entry);
1350 for (i = 0; i < n; ++i)
1352 basic_block label_bb = gimple_switch_label_bb (cfun, entry, i);
1353 make_edge (bb, label_bb, 0);
1358 /* Return the basic block holding label DEST. */
1360 basic_block
1361 label_to_block (struct function *ifun, tree dest)
1363 int uid = LABEL_DECL_UID (dest);
1365 /* We would die hard when faced by an undefined label. Emit a label to
1366 the very first basic block. This will hopefully make even the dataflow
1367 and undefined variable warnings quite right. */
1368 if (seen_error () && uid < 0)
1370 gimple_stmt_iterator gsi =
1371 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1372 gimple *stmt;
1374 stmt = gimple_build_label (dest);
1375 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1376 uid = LABEL_DECL_UID (dest);
1378 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1379 return NULL;
1380 return (*ifun->cfg->x_label_to_block_map)[uid];
1383 /* Create edges for a goto statement at block BB. Returns true
1384 if abnormal edges should be created. */
1386 static bool
1387 make_goto_expr_edges (basic_block bb)
1389 gimple_stmt_iterator last = gsi_last_bb (bb);
1390 gimple *goto_t = gsi_stmt (last);
1392 /* A simple GOTO creates normal edges. */
1393 if (simple_goto_p (goto_t))
1395 tree dest = gimple_goto_dest (goto_t);
1396 basic_block label_bb = label_to_block (cfun, dest);
1397 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1398 e->goto_locus = gimple_location (goto_t);
1399 gsi_remove (&last, true);
1400 return false;
1403 /* A computed GOTO creates abnormal edges. */
1404 return true;
1407 /* Create edges for an asm statement with labels at block BB. */
1409 static void
1410 make_gimple_asm_edges (basic_block bb)
1412 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1413 int i, n = gimple_asm_nlabels (stmt);
1415 for (i = 0; i < n; ++i)
1417 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1418 basic_block label_bb = label_to_block (cfun, label);
1419 make_edge (bb, label_bb, 0);
1423 /*---------------------------------------------------------------------------
1424 Flowgraph analysis
1425 ---------------------------------------------------------------------------*/
1427 /* Cleanup useless labels in basic blocks. This is something we wish
1428 to do early because it allows us to group case labels before creating
1429 the edges for the CFG, and it speeds up block statement iterators in
1430 all passes later on.
1431 We rerun this pass after CFG is created, to get rid of the labels that
1432 are no longer referenced. After then we do not run it any more, since
1433 (almost) no new labels should be created. */
1435 /* A map from basic block index to the leading label of that block. */
1436 struct label_record
1438 /* The label. */
1439 tree label;
1441 /* True if the label is referenced from somewhere. */
1442 bool used;
1445 /* Given LABEL return the first label in the same basic block. */
1447 static tree
1448 main_block_label (tree label, label_record *label_for_bb)
1450 basic_block bb = label_to_block (cfun, label);
1451 tree main_label = label_for_bb[bb->index].label;
1453 /* label_to_block possibly inserted undefined label into the chain. */
1454 if (!main_label)
1456 label_for_bb[bb->index].label = label;
1457 main_label = label;
1460 label_for_bb[bb->index].used = true;
1461 return main_label;
1464 /* Clean up redundant labels within the exception tree. */
1466 static void
1467 cleanup_dead_labels_eh (label_record *label_for_bb)
1469 eh_landing_pad lp;
1470 eh_region r;
1471 tree lab;
1472 int i;
1474 if (cfun->eh == NULL)
1475 return;
1477 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1478 if (lp && lp->post_landing_pad)
1480 lab = main_block_label (lp->post_landing_pad, label_for_bb);
1481 if (lab != lp->post_landing_pad)
1483 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1484 EH_LANDING_PAD_NR (lab) = lp->index;
1488 FOR_ALL_EH_REGION (r)
1489 switch (r->type)
1491 case ERT_CLEANUP:
1492 case ERT_MUST_NOT_THROW:
1493 break;
1495 case ERT_TRY:
1497 eh_catch c;
1498 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1500 lab = c->label;
1501 if (lab)
1502 c->label = main_block_label (lab, label_for_bb);
1505 break;
1507 case ERT_ALLOWED_EXCEPTIONS:
1508 lab = r->u.allowed.label;
1509 if (lab)
1510 r->u.allowed.label = main_block_label (lab, label_for_bb);
1511 break;
1516 /* Cleanup redundant labels. This is a three-step process:
1517 1) Find the leading label for each block.
1518 2) Redirect all references to labels to the leading labels.
1519 3) Cleanup all useless labels. */
1521 void
1522 cleanup_dead_labels (void)
1524 basic_block bb;
1525 label_record *label_for_bb = XCNEWVEC (struct label_record,
1526 last_basic_block_for_fn (cfun));
1528 /* Find a suitable label for each block. We use the first user-defined
1529 label if there is one, or otherwise just the first label we see. */
1530 FOR_EACH_BB_FN (bb, cfun)
1532 gimple_stmt_iterator i;
1534 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1536 tree label;
1537 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1539 if (!label_stmt)
1540 break;
1542 label = gimple_label_label (label_stmt);
1544 /* If we have not yet seen a label for the current block,
1545 remember this one and see if there are more labels. */
1546 if (!label_for_bb[bb->index].label)
1548 label_for_bb[bb->index].label = label;
1549 continue;
1552 /* If we did see a label for the current block already, but it
1553 is an artificially created label, replace it if the current
1554 label is a user defined label. */
1555 if (!DECL_ARTIFICIAL (label)
1556 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1558 label_for_bb[bb->index].label = label;
1559 break;
1564 /* Now redirect all jumps/branches to the selected label.
1565 First do so for each block ending in a control statement. */
1566 FOR_EACH_BB_FN (bb, cfun)
1568 gimple *stmt = last_stmt (bb);
1569 tree label, new_label;
1571 if (!stmt)
1572 continue;
1574 switch (gimple_code (stmt))
1576 case GIMPLE_COND:
1578 gcond *cond_stmt = as_a <gcond *> (stmt);
1579 label = gimple_cond_true_label (cond_stmt);
1580 if (label)
1582 new_label = main_block_label (label, label_for_bb);
1583 if (new_label != label)
1584 gimple_cond_set_true_label (cond_stmt, new_label);
1587 label = gimple_cond_false_label (cond_stmt);
1588 if (label)
1590 new_label = main_block_label (label, label_for_bb);
1591 if (new_label != label)
1592 gimple_cond_set_false_label (cond_stmt, new_label);
1595 break;
1597 case GIMPLE_SWITCH:
1599 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1600 size_t i, n = gimple_switch_num_labels (switch_stmt);
1602 /* Replace all destination labels. */
1603 for (i = 0; i < n; ++i)
1605 tree case_label = gimple_switch_label (switch_stmt, i);
1606 label = CASE_LABEL (case_label);
1607 new_label = main_block_label (label, label_for_bb);
1608 if (new_label != label)
1609 CASE_LABEL (case_label) = new_label;
1611 break;
1614 case GIMPLE_ASM:
1616 gasm *asm_stmt = as_a <gasm *> (stmt);
1617 int i, n = gimple_asm_nlabels (asm_stmt);
1619 for (i = 0; i < n; ++i)
1621 tree cons = gimple_asm_label_op (asm_stmt, i);
1622 tree label = main_block_label (TREE_VALUE (cons), label_for_bb);
1623 TREE_VALUE (cons) = label;
1625 break;
1628 /* We have to handle gotos until they're removed, and we don't
1629 remove them until after we've created the CFG edges. */
1630 case GIMPLE_GOTO:
1631 if (!computed_goto_p (stmt))
1633 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1634 label = gimple_goto_dest (goto_stmt);
1635 new_label = main_block_label (label, label_for_bb);
1636 if (new_label != label)
1637 gimple_goto_set_dest (goto_stmt, new_label);
1639 break;
1641 case GIMPLE_TRANSACTION:
1643 gtransaction *txn = as_a <gtransaction *> (stmt);
1645 label = gimple_transaction_label_norm (txn);
1646 if (label)
1648 new_label = main_block_label (label, label_for_bb);
1649 if (new_label != label)
1650 gimple_transaction_set_label_norm (txn, new_label);
1653 label = gimple_transaction_label_uninst (txn);
1654 if (label)
1656 new_label = main_block_label (label, label_for_bb);
1657 if (new_label != label)
1658 gimple_transaction_set_label_uninst (txn, new_label);
1661 label = gimple_transaction_label_over (txn);
1662 if (label)
1664 new_label = main_block_label (label, label_for_bb);
1665 if (new_label != label)
1666 gimple_transaction_set_label_over (txn, new_label);
1669 break;
1671 default:
1672 break;
1676 /* Do the same for the exception region tree labels. */
1677 cleanup_dead_labels_eh (label_for_bb);
1679 /* Finally, purge dead labels. All user-defined labels and labels that
1680 can be the target of non-local gotos and labels which have their
1681 address taken are preserved. */
1682 FOR_EACH_BB_FN (bb, cfun)
1684 gimple_stmt_iterator i;
1685 tree label_for_this_bb = label_for_bb[bb->index].label;
1687 if (!label_for_this_bb)
1688 continue;
1690 /* If the main label of the block is unused, we may still remove it. */
1691 if (!label_for_bb[bb->index].used)
1692 label_for_this_bb = NULL;
1694 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1696 tree label;
1697 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1699 if (!label_stmt)
1700 break;
1702 label = gimple_label_label (label_stmt);
1704 if (label == label_for_this_bb
1705 || !DECL_ARTIFICIAL (label)
1706 || DECL_NONLOCAL (label)
1707 || FORCED_LABEL (label))
1708 gsi_next (&i);
1709 else
1710 gsi_remove (&i, true);
1714 free (label_for_bb);
1717 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1718 the ones jumping to the same label.
1719 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1721 bool
1722 group_case_labels_stmt (gswitch *stmt)
1724 int old_size = gimple_switch_num_labels (stmt);
1725 int i, next_index, new_size;
1726 basic_block default_bb = NULL;
1727 hash_set<tree> *removed_labels = NULL;
1729 default_bb = gimple_switch_default_bb (cfun, stmt);
1731 /* Look for possible opportunities to merge cases. */
1732 new_size = i = 1;
1733 while (i < old_size)
1735 tree base_case, base_high;
1736 basic_block base_bb;
1738 base_case = gimple_switch_label (stmt, i);
1740 gcc_assert (base_case);
1741 base_bb = label_to_block (cfun, CASE_LABEL (base_case));
1743 /* Discard cases that have the same destination as the default case or
1744 whose destination blocks have already been removed as unreachable. */
1745 if (base_bb == NULL
1746 || base_bb == default_bb
1747 || (removed_labels
1748 && removed_labels->contains (CASE_LABEL (base_case))))
1750 i++;
1751 continue;
1754 base_high = CASE_HIGH (base_case)
1755 ? CASE_HIGH (base_case)
1756 : CASE_LOW (base_case);
1757 next_index = i + 1;
1759 /* Try to merge case labels. Break out when we reach the end
1760 of the label vector or when we cannot merge the next case
1761 label with the current one. */
1762 while (next_index < old_size)
1764 tree merge_case = gimple_switch_label (stmt, next_index);
1765 basic_block merge_bb = label_to_block (cfun, CASE_LABEL (merge_case));
1766 wide_int bhp1 = wi::to_wide (base_high) + 1;
1768 /* Merge the cases if they jump to the same place,
1769 and their ranges are consecutive. */
1770 if (merge_bb == base_bb
1771 && (removed_labels == NULL
1772 || !removed_labels->contains (CASE_LABEL (merge_case)))
1773 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1775 base_high
1776 = (CASE_HIGH (merge_case)
1777 ? CASE_HIGH (merge_case) : CASE_LOW (merge_case));
1778 CASE_HIGH (base_case) = base_high;
1779 next_index++;
1781 else
1782 break;
1785 /* Discard cases that have an unreachable destination block. */
1786 if (EDGE_COUNT (base_bb->succs) == 0
1787 && gimple_seq_unreachable_p (bb_seq (base_bb))
1788 /* Don't optimize this if __builtin_unreachable () is the
1789 implicitly added one by the C++ FE too early, before
1790 -Wreturn-type can be diagnosed. We'll optimize it later
1791 during switchconv pass or any other cfg cleanup. */
1792 && (gimple_in_ssa_p (cfun)
1793 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1794 != BUILTINS_LOCATION)))
1796 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1797 if (base_edge != NULL)
1799 for (gimple_stmt_iterator gsi = gsi_start_bb (base_bb);
1800 !gsi_end_p (gsi); gsi_next (&gsi))
1801 if (glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi)))
1803 if (FORCED_LABEL (gimple_label_label (stmt))
1804 || DECL_NONLOCAL (gimple_label_label (stmt)))
1806 /* Forced/non-local labels aren't going to be removed,
1807 but they will be moved to some neighbouring basic
1808 block. If some later case label refers to one of
1809 those labels, we should throw that case away rather
1810 than keeping it around and refering to some random
1811 other basic block without an edge to it. */
1812 if (removed_labels == NULL)
1813 removed_labels = new hash_set<tree>;
1814 removed_labels->add (gimple_label_label (stmt));
1817 else
1818 break;
1819 remove_edge_and_dominated_blocks (base_edge);
1821 i = next_index;
1822 continue;
1825 if (new_size < i)
1826 gimple_switch_set_label (stmt, new_size,
1827 gimple_switch_label (stmt, i));
1828 i = next_index;
1829 new_size++;
1832 gcc_assert (new_size <= old_size);
1834 if (new_size < old_size)
1835 gimple_switch_set_num_labels (stmt, new_size);
1837 delete removed_labels;
1838 return new_size < old_size;
1841 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1842 and scan the sorted vector of cases. Combine the ones jumping to the
1843 same label. */
1845 bool
1846 group_case_labels (void)
1848 basic_block bb;
1849 bool changed = false;
1851 FOR_EACH_BB_FN (bb, cfun)
1853 gimple *stmt = last_stmt (bb);
1854 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1855 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1858 return changed;
1861 /* Checks whether we can merge block B into block A. */
1863 static bool
1864 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1866 gimple *stmt;
1868 if (!single_succ_p (a))
1869 return false;
1871 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1872 return false;
1874 if (single_succ (a) != b)
1875 return false;
1877 if (!single_pred_p (b))
1878 return false;
1880 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1881 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1882 return false;
1884 /* If A ends by a statement causing exceptions or something similar, we
1885 cannot merge the blocks. */
1886 stmt = last_stmt (a);
1887 if (stmt && stmt_ends_bb_p (stmt))
1888 return false;
1890 /* Do not allow a block with only a non-local label to be merged. */
1891 if (stmt)
1892 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1893 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1894 return false;
1896 /* Examine the labels at the beginning of B. */
1897 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1898 gsi_next (&gsi))
1900 tree lab;
1901 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1902 if (!label_stmt)
1903 break;
1904 lab = gimple_label_label (label_stmt);
1906 /* Do not remove user forced labels or for -O0 any user labels. */
1907 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1908 return false;
1911 /* Protect simple loop latches. We only want to avoid merging
1912 the latch with the loop header or with a block in another
1913 loop in this case. */
1914 if (current_loops
1915 && b->loop_father->latch == b
1916 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1917 && (b->loop_father->header == a
1918 || b->loop_father != a->loop_father))
1919 return false;
1921 /* It must be possible to eliminate all phi nodes in B. If ssa form
1922 is not up-to-date and a name-mapping is registered, we cannot eliminate
1923 any phis. Symbols marked for renaming are never a problem though. */
1924 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1925 gsi_next (&gsi))
1927 gphi *phi = gsi.phi ();
1928 /* Technically only new names matter. */
1929 if (name_registered_for_update_p (PHI_RESULT (phi)))
1930 return false;
1933 /* When not optimizing, don't merge if we'd lose goto_locus. */
1934 if (!optimize
1935 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1937 location_t goto_locus = single_succ_edge (a)->goto_locus;
1938 gimple_stmt_iterator prev, next;
1939 prev = gsi_last_nondebug_bb (a);
1940 next = gsi_after_labels (b);
1941 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1942 gsi_next_nondebug (&next);
1943 if ((gsi_end_p (prev)
1944 || gimple_location (gsi_stmt (prev)) != goto_locus)
1945 && (gsi_end_p (next)
1946 || gimple_location (gsi_stmt (next)) != goto_locus))
1947 return false;
1950 return true;
1953 /* Replaces all uses of NAME by VAL. */
1955 void
1956 replace_uses_by (tree name, tree val)
1958 imm_use_iterator imm_iter;
1959 use_operand_p use;
1960 gimple *stmt;
1961 edge e;
1963 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1965 /* Mark the block if we change the last stmt in it. */
1966 if (cfgcleanup_altered_bbs
1967 && stmt_ends_bb_p (stmt))
1968 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1970 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1972 replace_exp (use, val);
1974 if (gimple_code (stmt) == GIMPLE_PHI)
1976 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1977 PHI_ARG_INDEX_FROM_USE (use));
1978 if (e->flags & EDGE_ABNORMAL
1979 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1981 /* This can only occur for virtual operands, since
1982 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1983 would prevent replacement. */
1984 gcc_checking_assert (virtual_operand_p (name));
1985 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1990 if (gimple_code (stmt) != GIMPLE_PHI)
1992 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1993 gimple *orig_stmt = stmt;
1994 size_t i;
1996 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1997 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1998 only change sth from non-invariant to invariant, and only
1999 when propagating constants. */
2000 if (is_gimple_min_invariant (val))
2001 for (i = 0; i < gimple_num_ops (stmt); i++)
2003 tree op = gimple_op (stmt, i);
2004 /* Operands may be empty here. For example, the labels
2005 of a GIMPLE_COND are nulled out following the creation
2006 of the corresponding CFG edges. */
2007 if (op && TREE_CODE (op) == ADDR_EXPR)
2008 recompute_tree_invariant_for_addr_expr (op);
2011 if (fold_stmt (&gsi))
2012 stmt = gsi_stmt (gsi);
2014 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2015 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2017 update_stmt (stmt);
2021 gcc_checking_assert (has_zero_uses (name));
2023 /* Also update the trees stored in loop structures. */
2024 if (current_loops)
2026 class loop *loop;
2028 FOR_EACH_LOOP (loop, 0)
2030 substitute_in_loop_info (loop, name, val);
2035 /* Merge block B into block A. */
2037 static void
2038 gimple_merge_blocks (basic_block a, basic_block b)
2040 gimple_stmt_iterator last, gsi;
2041 gphi_iterator psi;
2043 if (dump_file)
2044 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2046 /* Remove all single-valued PHI nodes from block B of the form
2047 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2048 gsi = gsi_last_bb (a);
2049 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2051 gimple *phi = gsi_stmt (psi);
2052 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2053 gimple *copy;
2054 bool may_replace_uses = (virtual_operand_p (def)
2055 || may_propagate_copy (def, use));
2057 /* In case we maintain loop closed ssa form, do not propagate arguments
2058 of loop exit phi nodes. */
2059 if (current_loops
2060 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2061 && !virtual_operand_p (def)
2062 && TREE_CODE (use) == SSA_NAME
2063 && a->loop_father != b->loop_father)
2064 may_replace_uses = false;
2066 if (!may_replace_uses)
2068 gcc_assert (!virtual_operand_p (def));
2070 /* Note that just emitting the copies is fine -- there is no problem
2071 with ordering of phi nodes. This is because A is the single
2072 predecessor of B, therefore results of the phi nodes cannot
2073 appear as arguments of the phi nodes. */
2074 copy = gimple_build_assign (def, use);
2075 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2076 remove_phi_node (&psi, false);
2078 else
2080 /* If we deal with a PHI for virtual operands, we can simply
2081 propagate these without fussing with folding or updating
2082 the stmt. */
2083 if (virtual_operand_p (def))
2085 imm_use_iterator iter;
2086 use_operand_p use_p;
2087 gimple *stmt;
2089 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2090 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2091 SET_USE (use_p, use);
2093 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2094 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2096 else
2097 replace_uses_by (def, use);
2099 remove_phi_node (&psi, true);
2103 /* Ensure that B follows A. */
2104 move_block_after (b, a);
2106 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2107 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2109 /* Remove labels from B and set gimple_bb to A for other statements. */
2110 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2112 gimple *stmt = gsi_stmt (gsi);
2113 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2115 tree label = gimple_label_label (label_stmt);
2116 int lp_nr;
2118 gsi_remove (&gsi, false);
2120 /* Now that we can thread computed gotos, we might have
2121 a situation where we have a forced label in block B
2122 However, the label at the start of block B might still be
2123 used in other ways (think about the runtime checking for
2124 Fortran assigned gotos). So we cannot just delete the
2125 label. Instead we move the label to the start of block A. */
2126 if (FORCED_LABEL (label))
2128 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2129 tree first_label = NULL_TREE;
2130 if (!gsi_end_p (dest_gsi))
2131 if (glabel *first_label_stmt
2132 = dyn_cast <glabel *> (gsi_stmt (dest_gsi)))
2133 first_label = gimple_label_label (first_label_stmt);
2134 if (first_label
2135 && (DECL_NONLOCAL (first_label)
2136 || EH_LANDING_PAD_NR (first_label) != 0))
2137 gsi_insert_after (&dest_gsi, stmt, GSI_NEW_STMT);
2138 else
2139 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2141 /* Other user labels keep around in a form of a debug stmt. */
2142 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2144 gimple *dbg = gimple_build_debug_bind (label,
2145 integer_zero_node,
2146 stmt);
2147 gimple_debug_bind_reset_value (dbg);
2148 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2151 lp_nr = EH_LANDING_PAD_NR (label);
2152 if (lp_nr)
2154 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2155 lp->post_landing_pad = NULL;
2158 else
2160 gimple_set_bb (stmt, a);
2161 gsi_next (&gsi);
2165 /* When merging two BBs, if their counts are different, the larger count
2166 is selected as the new bb count. This is to handle inconsistent
2167 profiles. */
2168 if (a->loop_father == b->loop_father)
2170 a->count = a->count.merge (b->count);
2173 /* Merge the sequences. */
2174 last = gsi_last_bb (a);
2175 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2176 set_bb_seq (b, NULL);
2178 if (cfgcleanup_altered_bbs)
2179 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2183 /* Return the one of two successors of BB that is not reachable by a
2184 complex edge, if there is one. Else, return BB. We use
2185 this in optimizations that use post-dominators for their heuristics,
2186 to catch the cases in C++ where function calls are involved. */
2188 basic_block
2189 single_noncomplex_succ (basic_block bb)
2191 edge e0, e1;
2192 if (EDGE_COUNT (bb->succs) != 2)
2193 return bb;
2195 e0 = EDGE_SUCC (bb, 0);
2196 e1 = EDGE_SUCC (bb, 1);
2197 if (e0->flags & EDGE_COMPLEX)
2198 return e1->dest;
2199 if (e1->flags & EDGE_COMPLEX)
2200 return e0->dest;
2202 return bb;
2205 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2207 void
2208 notice_special_calls (gcall *call)
2210 int flags = gimple_call_flags (call);
2212 if (flags & ECF_MAY_BE_ALLOCA)
2213 cfun->calls_alloca = true;
2214 if (flags & ECF_RETURNS_TWICE)
2215 cfun->calls_setjmp = true;
2219 /* Clear flags set by notice_special_calls. Used by dead code removal
2220 to update the flags. */
2222 void
2223 clear_special_calls (void)
2225 cfun->calls_alloca = false;
2226 cfun->calls_setjmp = false;
2229 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2231 static void
2232 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2234 /* Since this block is no longer reachable, we can just delete all
2235 of its PHI nodes. */
2236 remove_phi_nodes (bb);
2238 /* Remove edges to BB's successors. */
2239 while (EDGE_COUNT (bb->succs) > 0)
2240 remove_edge (EDGE_SUCC (bb, 0));
2244 /* Remove statements of basic block BB. */
2246 static void
2247 remove_bb (basic_block bb)
2249 gimple_stmt_iterator i;
2251 if (dump_file)
2253 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2254 if (dump_flags & TDF_DETAILS)
2256 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2257 fprintf (dump_file, "\n");
2261 if (current_loops)
2263 class loop *loop = bb->loop_father;
2265 /* If a loop gets removed, clean up the information associated
2266 with it. */
2267 if (loop->latch == bb
2268 || loop->header == bb)
2269 free_numbers_of_iterations_estimates (loop);
2272 /* Remove all the instructions in the block. */
2273 if (bb_seq (bb) != NULL)
2275 /* Walk backwards so as to get a chance to substitute all
2276 released DEFs into debug stmts. See
2277 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2278 details. */
2279 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2281 gimple *stmt = gsi_stmt (i);
2282 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2283 if (label_stmt
2284 && (FORCED_LABEL (gimple_label_label (label_stmt))
2285 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2287 basic_block new_bb;
2288 gimple_stmt_iterator new_gsi;
2290 /* A non-reachable non-local label may still be referenced.
2291 But it no longer needs to carry the extra semantics of
2292 non-locality. */
2293 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2295 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2296 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2299 new_bb = bb->prev_bb;
2300 /* Don't move any labels into ENTRY block. */
2301 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2303 new_bb = single_succ (new_bb);
2304 gcc_assert (new_bb != bb);
2306 if ((unsigned) bb->index < bb_to_omp_idx.length ()
2307 && ((unsigned) new_bb->index >= bb_to_omp_idx.length ()
2308 || (bb_to_omp_idx[bb->index]
2309 != bb_to_omp_idx[new_bb->index])))
2311 /* During cfg pass make sure to put orphaned labels
2312 into the right OMP region. */
2313 unsigned int i;
2314 int idx;
2315 new_bb = NULL;
2316 FOR_EACH_VEC_ELT (bb_to_omp_idx, i, idx)
2317 if (i >= NUM_FIXED_BLOCKS
2318 && idx == bb_to_omp_idx[bb->index]
2319 && i != (unsigned) bb->index)
2321 new_bb = BASIC_BLOCK_FOR_FN (cfun, i);
2322 break;
2324 if (new_bb == NULL)
2326 new_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2327 gcc_assert (new_bb != bb);
2330 new_gsi = gsi_after_labels (new_bb);
2331 gsi_remove (&i, false);
2332 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2334 else
2336 /* Release SSA definitions. */
2337 release_defs (stmt);
2338 gsi_remove (&i, true);
2341 if (gsi_end_p (i))
2342 i = gsi_last_bb (bb);
2343 else
2344 gsi_prev (&i);
2348 if ((unsigned) bb->index < bb_to_omp_idx.length ())
2349 bb_to_omp_idx[bb->index] = -1;
2350 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2351 bb->il.gimple.seq = NULL;
2352 bb->il.gimple.phi_nodes = NULL;
2356 /* Given a basic block BB and a value VAL for use in the final statement
2357 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2358 the edge that will be taken out of the block.
2359 If VAL is NULL_TREE, then the current value of the final statement's
2360 predicate or index is used.
2361 If the value does not match a unique edge, NULL is returned. */
2363 edge
2364 find_taken_edge (basic_block bb, tree val)
2366 gimple *stmt;
2368 stmt = last_stmt (bb);
2370 /* Handle ENTRY and EXIT. */
2371 if (!stmt)
2372 return NULL;
2374 if (gimple_code (stmt) == GIMPLE_COND)
2375 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2377 if (gimple_code (stmt) == GIMPLE_SWITCH)
2378 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2380 if (computed_goto_p (stmt))
2382 /* Only optimize if the argument is a label, if the argument is
2383 not a label then we cannot construct a proper CFG.
2385 It may be the case that we only need to allow the LABEL_REF to
2386 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2387 appear inside a LABEL_EXPR just to be safe. */
2388 if (val
2389 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2390 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2391 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2394 /* Otherwise we only know the taken successor edge if it's unique. */
2395 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2398 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2399 statement, determine which of the outgoing edges will be taken out of the
2400 block. Return NULL if either edge may be taken. */
2402 static edge
2403 find_taken_edge_computed_goto (basic_block bb, tree val)
2405 basic_block dest;
2406 edge e = NULL;
2408 dest = label_to_block (cfun, val);
2409 if (dest)
2410 e = find_edge (bb, dest);
2412 /* It's possible for find_edge to return NULL here on invalid code
2413 that abuses the labels-as-values extension (e.g. code that attempts to
2414 jump *between* functions via stored labels-as-values; PR 84136).
2415 If so, then we simply return that NULL for the edge.
2416 We don't currently have a way of detecting such invalid code, so we
2417 can't assert that it was the case when a NULL edge occurs here. */
2419 return e;
2422 /* Given COND_STMT and a constant value VAL for use as the predicate,
2423 determine which of the two edges will be taken out of
2424 the statement's block. Return NULL if either edge may be taken.
2425 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2426 is used. */
2428 static edge
2429 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2431 edge true_edge, false_edge;
2433 if (val == NULL_TREE)
2435 /* Use the current value of the predicate. */
2436 if (gimple_cond_true_p (cond_stmt))
2437 val = integer_one_node;
2438 else if (gimple_cond_false_p (cond_stmt))
2439 val = integer_zero_node;
2440 else
2441 return NULL;
2443 else if (TREE_CODE (val) != INTEGER_CST)
2444 return NULL;
2446 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2447 &true_edge, &false_edge);
2449 return (integer_zerop (val) ? false_edge : true_edge);
2452 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2453 which edge will be taken out of the statement's block. Return NULL if any
2454 edge may be taken.
2455 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2456 is used. */
2458 edge
2459 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2461 basic_block dest_bb;
2462 edge e;
2463 tree taken_case;
2465 if (gimple_switch_num_labels (switch_stmt) == 1)
2466 taken_case = gimple_switch_default_label (switch_stmt);
2467 else
2469 if (val == NULL_TREE)
2470 val = gimple_switch_index (switch_stmt);
2471 if (TREE_CODE (val) != INTEGER_CST)
2472 return NULL;
2473 else
2474 taken_case = find_case_label_for_value (switch_stmt, val);
2476 dest_bb = label_to_block (cfun, CASE_LABEL (taken_case));
2478 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2479 gcc_assert (e);
2480 return e;
2484 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2485 We can make optimal use here of the fact that the case labels are
2486 sorted: We can do a binary search for a case matching VAL. */
2488 tree
2489 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2491 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2492 tree default_case = gimple_switch_default_label (switch_stmt);
2494 for (low = 0, high = n; high - low > 1; )
2496 size_t i = (high + low) / 2;
2497 tree t = gimple_switch_label (switch_stmt, i);
2498 int cmp;
2500 /* Cache the result of comparing CASE_LOW and val. */
2501 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2503 if (cmp > 0)
2504 high = i;
2505 else
2506 low = i;
2508 if (CASE_HIGH (t) == NULL)
2510 /* A singe-valued case label. */
2511 if (cmp == 0)
2512 return t;
2514 else
2516 /* A case range. We can only handle integer ranges. */
2517 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2518 return t;
2522 return default_case;
2526 /* Dump a basic block on stderr. */
2528 void
2529 gimple_debug_bb (basic_block bb)
2531 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2535 /* Dump basic block with index N on stderr. */
2537 basic_block
2538 gimple_debug_bb_n (int n)
2540 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2541 return BASIC_BLOCK_FOR_FN (cfun, n);
2545 /* Dump the CFG on stderr.
2547 FLAGS are the same used by the tree dumping functions
2548 (see TDF_* in dumpfile.h). */
2550 void
2551 gimple_debug_cfg (dump_flags_t flags)
2553 gimple_dump_cfg (stderr, flags);
2557 /* Dump the program showing basic block boundaries on the given FILE.
2559 FLAGS are the same used by the tree dumping functions (see TDF_* in
2560 tree.h). */
2562 void
2563 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2565 if (flags & TDF_DETAILS)
2567 dump_function_header (file, current_function_decl, flags);
2568 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2569 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2570 last_basic_block_for_fn (cfun));
2572 brief_dump_cfg (file, flags);
2573 fprintf (file, "\n");
2576 if (flags & TDF_STATS)
2577 dump_cfg_stats (file);
2579 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2583 /* Dump CFG statistics on FILE. */
2585 void
2586 dump_cfg_stats (FILE *file)
2588 static long max_num_merged_labels = 0;
2589 unsigned long size, total = 0;
2590 long num_edges;
2591 basic_block bb;
2592 const char * const fmt_str = "%-30s%-13s%12s\n";
2593 const char * const fmt_str_1 = "%-30s%13d" PRsa (11) "\n";
2594 const char * const fmt_str_2 = "%-30s%13ld" PRsa (11) "\n";
2595 const char * const fmt_str_3 = "%-43s" PRsa (11) "\n";
2596 const char *funcname = current_function_name ();
2598 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2600 fprintf (file, "---------------------------------------------------------\n");
2601 fprintf (file, fmt_str, "", " Number of ", "Memory");
2602 fprintf (file, fmt_str, "", " instances ", "used ");
2603 fprintf (file, "---------------------------------------------------------\n");
2605 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2606 total += size;
2607 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2608 SIZE_AMOUNT (size));
2610 num_edges = 0;
2611 FOR_EACH_BB_FN (bb, cfun)
2612 num_edges += EDGE_COUNT (bb->succs);
2613 size = num_edges * sizeof (class edge_def);
2614 total += size;
2615 fprintf (file, fmt_str_2, "Edges", num_edges, SIZE_AMOUNT (size));
2617 fprintf (file, "---------------------------------------------------------\n");
2618 fprintf (file, fmt_str_3, "Total memory used by CFG data",
2619 SIZE_AMOUNT (total));
2620 fprintf (file, "---------------------------------------------------------\n");
2621 fprintf (file, "\n");
2623 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2624 max_num_merged_labels = cfg_stats.num_merged_labels;
2626 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2627 cfg_stats.num_merged_labels, max_num_merged_labels);
2629 fprintf (file, "\n");
2633 /* Dump CFG statistics on stderr. Keep extern so that it's always
2634 linked in the final executable. */
2636 DEBUG_FUNCTION void
2637 debug_cfg_stats (void)
2639 dump_cfg_stats (stderr);
2642 /*---------------------------------------------------------------------------
2643 Miscellaneous helpers
2644 ---------------------------------------------------------------------------*/
2646 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2647 flow. Transfers of control flow associated with EH are excluded. */
2649 static bool
2650 call_can_make_abnormal_goto (gimple *t)
2652 /* If the function has no non-local labels, then a call cannot make an
2653 abnormal transfer of control. */
2654 if (!cfun->has_nonlocal_label
2655 && !cfun->calls_setjmp)
2656 return false;
2658 /* Likewise if the call has no side effects. */
2659 if (!gimple_has_side_effects (t))
2660 return false;
2662 /* Likewise if the called function is leaf. */
2663 if (gimple_call_flags (t) & ECF_LEAF)
2664 return false;
2666 return true;
2670 /* Return true if T can make an abnormal transfer of control flow.
2671 Transfers of control flow associated with EH are excluded. */
2673 bool
2674 stmt_can_make_abnormal_goto (gimple *t)
2676 if (computed_goto_p (t))
2677 return true;
2678 if (is_gimple_call (t))
2679 return call_can_make_abnormal_goto (t);
2680 return false;
2684 /* Return true if T represents a stmt that always transfers control. */
2686 bool
2687 is_ctrl_stmt (gimple *t)
2689 switch (gimple_code (t))
2691 case GIMPLE_COND:
2692 case GIMPLE_SWITCH:
2693 case GIMPLE_GOTO:
2694 case GIMPLE_RETURN:
2695 case GIMPLE_RESX:
2696 return true;
2697 default:
2698 return false;
2703 /* Return true if T is a statement that may alter the flow of control
2704 (e.g., a call to a non-returning function). */
2706 bool
2707 is_ctrl_altering_stmt (gimple *t)
2709 gcc_assert (t);
2711 switch (gimple_code (t))
2713 case GIMPLE_CALL:
2714 /* Per stmt call flag indicates whether the call could alter
2715 controlflow. */
2716 if (gimple_call_ctrl_altering_p (t))
2717 return true;
2718 break;
2720 case GIMPLE_EH_DISPATCH:
2721 /* EH_DISPATCH branches to the individual catch handlers at
2722 this level of a try or allowed-exceptions region. It can
2723 fallthru to the next statement as well. */
2724 return true;
2726 case GIMPLE_ASM:
2727 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2728 return true;
2729 break;
2731 CASE_GIMPLE_OMP:
2732 /* OpenMP directives alter control flow. */
2733 return true;
2735 case GIMPLE_TRANSACTION:
2736 /* A transaction start alters control flow. */
2737 return true;
2739 default:
2740 break;
2743 /* If a statement can throw, it alters control flow. */
2744 return stmt_can_throw_internal (cfun, t);
2748 /* Return true if T is a simple local goto. */
2750 bool
2751 simple_goto_p (gimple *t)
2753 return (gimple_code (t) == GIMPLE_GOTO
2754 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2758 /* Return true if STMT should start a new basic block. PREV_STMT is
2759 the statement preceding STMT. It is used when STMT is a label or a
2760 case label. Labels should only start a new basic block if their
2761 previous statement wasn't a label. Otherwise, sequence of labels
2762 would generate unnecessary basic blocks that only contain a single
2763 label. */
2765 static inline bool
2766 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2768 if (stmt == NULL)
2769 return false;
2771 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2772 any nondebug stmts in the block. We don't want to start another
2773 block in this case: the debug stmt will already have started the
2774 one STMT would start if we weren't outputting debug stmts. */
2775 if (prev_stmt && is_gimple_debug (prev_stmt))
2776 return false;
2778 /* Labels start a new basic block only if the preceding statement
2779 wasn't a label of the same type. This prevents the creation of
2780 consecutive blocks that have nothing but a single label. */
2781 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2783 /* Nonlocal and computed GOTO targets always start a new block. */
2784 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2785 || FORCED_LABEL (gimple_label_label (label_stmt)))
2786 return true;
2788 if (glabel *plabel = safe_dyn_cast <glabel *> (prev_stmt))
2790 if (DECL_NONLOCAL (gimple_label_label (plabel))
2791 || !DECL_ARTIFICIAL (gimple_label_label (plabel)))
2792 return true;
2794 cfg_stats.num_merged_labels++;
2795 return false;
2797 else
2798 return true;
2800 else if (gimple_code (stmt) == GIMPLE_CALL)
2802 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2803 /* setjmp acts similar to a nonlocal GOTO target and thus should
2804 start a new block. */
2805 return true;
2806 if (gimple_call_internal_p (stmt, IFN_PHI)
2807 && prev_stmt
2808 && gimple_code (prev_stmt) != GIMPLE_LABEL
2809 && (gimple_code (prev_stmt) != GIMPLE_CALL
2810 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2811 /* PHI nodes start a new block unless preceeded by a label
2812 or another PHI. */
2813 return true;
2816 return false;
2820 /* Return true if T should end a basic block. */
2822 bool
2823 stmt_ends_bb_p (gimple *t)
2825 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2828 /* Remove block annotations and other data structures. */
2830 void
2831 delete_tree_cfg_annotations (struct function *fn)
2833 vec_free (label_to_block_map_for_fn (fn));
2836 /* Return the virtual phi in BB. */
2838 gphi *
2839 get_virtual_phi (basic_block bb)
2841 for (gphi_iterator gsi = gsi_start_phis (bb);
2842 !gsi_end_p (gsi);
2843 gsi_next (&gsi))
2845 gphi *phi = gsi.phi ();
2847 if (virtual_operand_p (PHI_RESULT (phi)))
2848 return phi;
2851 return NULL;
2854 /* Return the first statement in basic block BB. */
2856 gimple *
2857 first_stmt (basic_block bb)
2859 gimple_stmt_iterator i = gsi_start_bb (bb);
2860 gimple *stmt = NULL;
2862 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2864 gsi_next (&i);
2865 stmt = NULL;
2867 return stmt;
2870 /* Return the first non-label statement in basic block BB. */
2872 static gimple *
2873 first_non_label_stmt (basic_block bb)
2875 gimple_stmt_iterator i = gsi_start_bb (bb);
2876 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2877 gsi_next (&i);
2878 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2881 /* Return the last statement in basic block BB. */
2883 gimple *
2884 last_stmt (basic_block bb)
2886 gimple_stmt_iterator i = gsi_last_bb (bb);
2887 gimple *stmt = NULL;
2889 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2891 gsi_prev (&i);
2892 stmt = NULL;
2894 return stmt;
2897 /* Return the last statement of an otherwise empty block. Return NULL
2898 if the block is totally empty, or if it contains more than one
2899 statement. */
2901 gimple *
2902 last_and_only_stmt (basic_block bb)
2904 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2905 gimple *last, *prev;
2907 if (gsi_end_p (i))
2908 return NULL;
2910 last = gsi_stmt (i);
2911 gsi_prev_nondebug (&i);
2912 if (gsi_end_p (i))
2913 return last;
2915 /* Empty statements should no longer appear in the instruction stream.
2916 Everything that might have appeared before should be deleted by
2917 remove_useless_stmts, and the optimizers should just gsi_remove
2918 instead of smashing with build_empty_stmt.
2920 Thus the only thing that should appear here in a block containing
2921 one executable statement is a label. */
2922 prev = gsi_stmt (i);
2923 if (gimple_code (prev) == GIMPLE_LABEL)
2924 return last;
2925 else
2926 return NULL;
2929 /* Returns the basic block after which the new basic block created
2930 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2931 near its "logical" location. This is of most help to humans looking
2932 at debugging dumps. */
2934 basic_block
2935 split_edge_bb_loc (edge edge_in)
2937 basic_block dest = edge_in->dest;
2938 basic_block dest_prev = dest->prev_bb;
2940 if (dest_prev)
2942 edge e = find_edge (dest_prev, dest);
2943 if (e && !(e->flags & EDGE_COMPLEX))
2944 return edge_in->src;
2946 return dest_prev;
2949 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2950 Abort on abnormal edges. */
2952 static basic_block
2953 gimple_split_edge (edge edge_in)
2955 basic_block new_bb, after_bb, dest;
2956 edge new_edge, e;
2958 /* Abnormal edges cannot be split. */
2959 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2961 dest = edge_in->dest;
2963 after_bb = split_edge_bb_loc (edge_in);
2965 new_bb = create_empty_bb (after_bb);
2966 new_bb->count = edge_in->count ();
2968 /* We want to avoid re-allocating PHIs when we first
2969 add the fallthru edge from new_bb to dest but we also
2970 want to avoid changing PHI argument order when
2971 first redirecting edge_in away from dest. The former
2972 avoids changing PHI argument order by adding them
2973 last and then the redirection swapping it back into
2974 place by means of unordered remove.
2975 So hack around things by temporarily removing all PHIs
2976 from the destination during the edge redirection and then
2977 making sure the edges stay in order. */
2978 gimple_seq saved_phis = phi_nodes (dest);
2979 unsigned old_dest_idx = edge_in->dest_idx;
2980 set_phi_nodes (dest, NULL);
2981 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2982 e = redirect_edge_and_branch (edge_in, new_bb);
2983 gcc_assert (e == edge_in && new_edge->dest_idx == old_dest_idx);
2984 /* set_phi_nodes sets the BB of the PHI nodes, so do it manually here. */
2985 dest->il.gimple.phi_nodes = saved_phis;
2987 return new_bb;
2991 /* Verify properties of the address expression T whose base should be
2992 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2994 static bool
2995 verify_address (tree t, bool verify_addressable)
2997 bool old_constant;
2998 bool old_side_effects;
2999 bool new_constant;
3000 bool new_side_effects;
3002 old_constant = TREE_CONSTANT (t);
3003 old_side_effects = TREE_SIDE_EFFECTS (t);
3005 recompute_tree_invariant_for_addr_expr (t);
3006 new_side_effects = TREE_SIDE_EFFECTS (t);
3007 new_constant = TREE_CONSTANT (t);
3009 if (old_constant != new_constant)
3011 error ("constant not recomputed when %<ADDR_EXPR%> changed");
3012 return true;
3014 if (old_side_effects != new_side_effects)
3016 error ("side effects not recomputed when %<ADDR_EXPR%> changed");
3017 return true;
3020 tree base = TREE_OPERAND (t, 0);
3021 while (handled_component_p (base))
3022 base = TREE_OPERAND (base, 0);
3024 if (!(VAR_P (base)
3025 || TREE_CODE (base) == PARM_DECL
3026 || TREE_CODE (base) == RESULT_DECL))
3027 return false;
3029 if (verify_addressable && !TREE_ADDRESSABLE (base))
3031 error ("address taken but %<TREE_ADDRESSABLE%> bit not set");
3032 return true;
3035 return false;
3039 /* Verify if EXPR is a valid GIMPLE reference expression. If
3040 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3041 if there is an error, otherwise false. */
3043 static bool
3044 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3046 const char *code_name = get_tree_code_name (TREE_CODE (expr));
3048 if (TREE_CODE (expr) == REALPART_EXPR
3049 || TREE_CODE (expr) == IMAGPART_EXPR
3050 || TREE_CODE (expr) == BIT_FIELD_REF)
3052 tree op = TREE_OPERAND (expr, 0);
3053 if (!is_gimple_reg_type (TREE_TYPE (expr)))
3055 error ("non-scalar %qs", code_name);
3056 return true;
3059 if (TREE_CODE (expr) == BIT_FIELD_REF)
3061 tree t1 = TREE_OPERAND (expr, 1);
3062 tree t2 = TREE_OPERAND (expr, 2);
3063 poly_uint64 size, bitpos;
3064 if (!poly_int_tree_p (t1, &size)
3065 || !poly_int_tree_p (t2, &bitpos)
3066 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3067 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3069 error ("invalid position or size operand to %qs", code_name);
3070 return true;
3072 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
3073 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size))
3075 error ("integral result type precision does not match "
3076 "field size of %qs", code_name);
3077 return true;
3079 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3080 && TYPE_MODE (TREE_TYPE (expr)) != BLKmode
3081 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))),
3082 size))
3084 error ("mode size of non-integral result does not "
3085 "match field size of %qs",
3086 code_name);
3087 return true;
3089 if (INTEGRAL_TYPE_P (TREE_TYPE (op))
3090 && !type_has_mode_precision_p (TREE_TYPE (op)))
3092 error ("%qs of non-mode-precision operand", code_name);
3093 return true;
3095 if (!AGGREGATE_TYPE_P (TREE_TYPE (op))
3096 && maybe_gt (size + bitpos,
3097 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op)))))
3099 error ("position plus size exceeds size of referenced object in "
3100 "%qs", code_name);
3101 return true;
3105 if ((TREE_CODE (expr) == REALPART_EXPR
3106 || TREE_CODE (expr) == IMAGPART_EXPR)
3107 && !useless_type_conversion_p (TREE_TYPE (expr),
3108 TREE_TYPE (TREE_TYPE (op))))
3110 error ("type mismatch in %qs reference", code_name);
3111 debug_generic_stmt (TREE_TYPE (expr));
3112 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3113 return true;
3115 expr = op;
3118 while (handled_component_p (expr))
3120 code_name = get_tree_code_name (TREE_CODE (expr));
3122 if (TREE_CODE (expr) == REALPART_EXPR
3123 || TREE_CODE (expr) == IMAGPART_EXPR
3124 || TREE_CODE (expr) == BIT_FIELD_REF)
3126 error ("non-top-level %qs", code_name);
3127 return true;
3130 tree op = TREE_OPERAND (expr, 0);
3132 if (TREE_CODE (expr) == ARRAY_REF
3133 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3135 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3136 || (TREE_OPERAND (expr, 2)
3137 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3138 || (TREE_OPERAND (expr, 3)
3139 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3141 error ("invalid operands to %qs", code_name);
3142 debug_generic_stmt (expr);
3143 return true;
3147 /* Verify if the reference array element types are compatible. */
3148 if (TREE_CODE (expr) == ARRAY_REF
3149 && !useless_type_conversion_p (TREE_TYPE (expr),
3150 TREE_TYPE (TREE_TYPE (op))))
3152 error ("type mismatch in %qs", code_name);
3153 debug_generic_stmt (TREE_TYPE (expr));
3154 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3155 return true;
3157 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3158 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3159 TREE_TYPE (TREE_TYPE (op))))
3161 error ("type mismatch in %qs", code_name);
3162 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3163 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3164 return true;
3167 if (TREE_CODE (expr) == COMPONENT_REF)
3169 if (TREE_OPERAND (expr, 2)
3170 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3172 error ("invalid %qs offset operator", code_name);
3173 return true;
3175 if (!useless_type_conversion_p (TREE_TYPE (expr),
3176 TREE_TYPE (TREE_OPERAND (expr, 1))))
3178 error ("type mismatch in %qs", code_name);
3179 debug_generic_stmt (TREE_TYPE (expr));
3180 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3181 return true;
3185 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3187 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3188 that their operand is not an SSA name or an invariant when
3189 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3190 bug). Otherwise there is nothing to verify, gross mismatches at
3191 most invoke undefined behavior. */
3192 if (require_lvalue
3193 && (TREE_CODE (op) == SSA_NAME
3194 || is_gimple_min_invariant (op)))
3196 error ("conversion of %qs on the left hand side of %qs",
3197 get_tree_code_name (TREE_CODE (op)), code_name);
3198 debug_generic_stmt (expr);
3199 return true;
3201 else if (TREE_CODE (op) == SSA_NAME
3202 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3204 error ("conversion of register to a different size in %qs",
3205 code_name);
3206 debug_generic_stmt (expr);
3207 return true;
3209 else if (!handled_component_p (op))
3210 return false;
3213 expr = op;
3216 code_name = get_tree_code_name (TREE_CODE (expr));
3218 if (TREE_CODE (expr) == MEM_REF)
3220 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))
3221 || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
3222 && verify_address (TREE_OPERAND (expr, 0), false)))
3224 error ("invalid address operand in %qs", code_name);
3225 debug_generic_stmt (expr);
3226 return true;
3228 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3229 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3231 error ("invalid offset operand in %qs", code_name);
3232 debug_generic_stmt (expr);
3233 return true;
3235 if (MR_DEPENDENCE_CLIQUE (expr) != 0
3236 && MR_DEPENDENCE_CLIQUE (expr) > cfun->last_clique)
3238 error ("invalid clique in %qs", code_name);
3239 debug_generic_stmt (expr);
3240 return true;
3243 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3245 if (!TMR_BASE (expr)
3246 || !is_gimple_mem_ref_addr (TMR_BASE (expr))
3247 || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
3248 && verify_address (TMR_BASE (expr), false)))
3250 error ("invalid address operand in %qs", code_name);
3251 return true;
3253 if (!TMR_OFFSET (expr)
3254 || !poly_int_tree_p (TMR_OFFSET (expr))
3255 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3257 error ("invalid offset operand in %qs", code_name);
3258 debug_generic_stmt (expr);
3259 return true;
3261 if (MR_DEPENDENCE_CLIQUE (expr) != 0
3262 && MR_DEPENDENCE_CLIQUE (expr) > cfun->last_clique)
3264 error ("invalid clique in %qs", code_name);
3265 debug_generic_stmt (expr);
3266 return true;
3269 else if (TREE_CODE (expr) == INDIRECT_REF)
3271 error ("%qs in gimple IL", code_name);
3272 debug_generic_stmt (expr);
3273 return true;
3276 if (!require_lvalue
3277 && (TREE_CODE (expr) == SSA_NAME || is_gimple_min_invariant (expr)))
3278 return false;
3280 if (TREE_CODE (expr) != SSA_NAME && is_gimple_id (expr))
3281 return false;
3283 if (TREE_CODE (expr) != TARGET_MEM_REF
3284 && TREE_CODE (expr) != MEM_REF)
3286 error ("invalid expression for min lvalue");
3287 return true;
3290 return false;
3293 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3294 list of pointer-to types that is trivially convertible to DEST. */
3296 static bool
3297 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3299 tree src;
3301 if (!TYPE_POINTER_TO (src_obj))
3302 return true;
3304 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3305 if (useless_type_conversion_p (dest, src))
3306 return true;
3308 return false;
3311 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3312 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3314 static bool
3315 valid_fixed_convert_types_p (tree type1, tree type2)
3317 return (FIXED_POINT_TYPE_P (type1)
3318 && (INTEGRAL_TYPE_P (type2)
3319 || SCALAR_FLOAT_TYPE_P (type2)
3320 || FIXED_POINT_TYPE_P (type2)));
3323 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3324 is a problem, otherwise false. */
3326 static bool
3327 verify_gimple_call (gcall *stmt)
3329 tree fn = gimple_call_fn (stmt);
3330 tree fntype, fndecl;
3331 unsigned i;
3333 if (gimple_call_internal_p (stmt))
3335 if (fn)
3337 error ("gimple call has two targets");
3338 debug_generic_stmt (fn);
3339 return true;
3342 else
3344 if (!fn)
3346 error ("gimple call has no target");
3347 return true;
3351 if (fn && !is_gimple_call_addr (fn))
3353 error ("invalid function in gimple call");
3354 debug_generic_stmt (fn);
3355 return true;
3358 if (fn
3359 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3360 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3361 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3363 error ("non-function in gimple call");
3364 return true;
3367 fndecl = gimple_call_fndecl (stmt);
3368 if (fndecl
3369 && TREE_CODE (fndecl) == FUNCTION_DECL
3370 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3371 && !DECL_PURE_P (fndecl)
3372 && !TREE_READONLY (fndecl))
3374 error ("invalid pure const state for function");
3375 return true;
3378 tree lhs = gimple_call_lhs (stmt);
3379 if (lhs
3380 && (!is_gimple_reg (lhs)
3381 && (!is_gimple_lvalue (lhs)
3382 || verify_types_in_gimple_reference
3383 (TREE_CODE (lhs) == WITH_SIZE_EXPR
3384 ? TREE_OPERAND (lhs, 0) : lhs, true))))
3386 error ("invalid LHS in gimple call");
3387 return true;
3390 if (gimple_call_ctrl_altering_p (stmt)
3391 && gimple_call_noreturn_p (stmt)
3392 && should_remove_lhs_p (lhs))
3394 error ("LHS in %<noreturn%> call");
3395 return true;
3398 fntype = gimple_call_fntype (stmt);
3399 if (fntype
3400 && lhs
3401 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3402 /* ??? At least C++ misses conversions at assignments from
3403 void * call results.
3404 For now simply allow arbitrary pointer type conversions. */
3405 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3406 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3408 error ("invalid conversion in gimple call");
3409 debug_generic_stmt (TREE_TYPE (lhs));
3410 debug_generic_stmt (TREE_TYPE (fntype));
3411 return true;
3414 if (gimple_call_chain (stmt)
3415 && !is_gimple_val (gimple_call_chain (stmt)))
3417 error ("invalid static chain in gimple call");
3418 debug_generic_stmt (gimple_call_chain (stmt));
3419 return true;
3422 /* If there is a static chain argument, the call should either be
3423 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3424 if (gimple_call_chain (stmt)
3425 && fndecl
3426 && !DECL_STATIC_CHAIN (fndecl))
3428 error ("static chain with function that doesn%'t use one");
3429 return true;
3432 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
3434 switch (DECL_FUNCTION_CODE (fndecl))
3436 case BUILT_IN_UNREACHABLE:
3437 case BUILT_IN_TRAP:
3438 if (gimple_call_num_args (stmt) > 0)
3440 /* Built-in unreachable with parameters might not be caught by
3441 undefined behavior sanitizer. Front-ends do check users do not
3442 call them that way but we also produce calls to
3443 __builtin_unreachable internally, for example when IPA figures
3444 out a call cannot happen in a legal program. In such cases,
3445 we must make sure arguments are stripped off. */
3446 error ("%<__builtin_unreachable%> or %<__builtin_trap%> call "
3447 "with arguments");
3448 return true;
3450 break;
3451 default:
3452 break;
3456 /* ??? The C frontend passes unpromoted arguments in case it
3457 didn't see a function declaration before the call. So for now
3458 leave the call arguments mostly unverified. Once we gimplify
3459 unit-at-a-time we have a chance to fix this. */
3461 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3463 tree arg = gimple_call_arg (stmt, i);
3464 if ((is_gimple_reg_type (TREE_TYPE (arg))
3465 && !is_gimple_val (arg))
3466 || (!is_gimple_reg_type (TREE_TYPE (arg))
3467 && !is_gimple_lvalue (arg)))
3469 error ("invalid argument to gimple call");
3470 debug_generic_expr (arg);
3471 return true;
3473 if (!is_gimple_reg (arg))
3475 if (TREE_CODE (arg) == WITH_SIZE_EXPR)
3476 arg = TREE_OPERAND (arg, 0);
3477 if (verify_types_in_gimple_reference (arg, false))
3478 return true;
3482 return false;
3485 /* Verifies the gimple comparison with the result type TYPE and
3486 the operands OP0 and OP1, comparison code is CODE. */
3488 static bool
3489 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3491 tree op0_type = TREE_TYPE (op0);
3492 tree op1_type = TREE_TYPE (op1);
3494 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3496 error ("invalid operands in gimple comparison");
3497 return true;
3500 /* For comparisons we do not have the operations type as the
3501 effective type the comparison is carried out in. Instead
3502 we require that either the first operand is trivially
3503 convertible into the second, or the other way around. */
3504 if (!useless_type_conversion_p (op0_type, op1_type)
3505 && !useless_type_conversion_p (op1_type, op0_type))
3507 error ("mismatching comparison operand types");
3508 debug_generic_expr (op0_type);
3509 debug_generic_expr (op1_type);
3510 return true;
3513 /* The resulting type of a comparison may be an effective boolean type. */
3514 if (INTEGRAL_TYPE_P (type)
3515 && (TREE_CODE (type) == BOOLEAN_TYPE
3516 || TYPE_PRECISION (type) == 1))
3518 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3519 || TREE_CODE (op1_type) == VECTOR_TYPE)
3520 && code != EQ_EXPR && code != NE_EXPR
3521 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3522 && !VECTOR_INTEGER_TYPE_P (op0_type))
3524 error ("unsupported operation or type for vector comparison"
3525 " returning a boolean");
3526 debug_generic_expr (op0_type);
3527 debug_generic_expr (op1_type);
3528 return true;
3531 /* Or a boolean vector type with the same element count
3532 as the comparison operand types. */
3533 else if (TREE_CODE (type) == VECTOR_TYPE
3534 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3536 if (TREE_CODE (op0_type) != VECTOR_TYPE
3537 || TREE_CODE (op1_type) != VECTOR_TYPE)
3539 error ("non-vector operands in vector comparison");
3540 debug_generic_expr (op0_type);
3541 debug_generic_expr (op1_type);
3542 return true;
3545 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3546 TYPE_VECTOR_SUBPARTS (op0_type)))
3548 error ("invalid vector comparison resulting type");
3549 debug_generic_expr (type);
3550 return true;
3553 else
3555 error ("bogus comparison result type");
3556 debug_generic_expr (type);
3557 return true;
3560 return false;
3563 /* Verify a gimple assignment statement STMT with an unary rhs.
3564 Returns true if anything is wrong. */
3566 static bool
3567 verify_gimple_assign_unary (gassign *stmt)
3569 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3570 tree lhs = gimple_assign_lhs (stmt);
3571 tree lhs_type = TREE_TYPE (lhs);
3572 tree rhs1 = gimple_assign_rhs1 (stmt);
3573 tree rhs1_type = TREE_TYPE (rhs1);
3575 if (!is_gimple_reg (lhs))
3577 error ("non-register as LHS of unary operation");
3578 return true;
3581 if (!is_gimple_val (rhs1))
3583 error ("invalid operand in unary operation");
3584 return true;
3587 const char* const code_name = get_tree_code_name (rhs_code);
3589 /* First handle conversions. */
3590 switch (rhs_code)
3592 CASE_CONVERT:
3594 /* Allow conversions between vectors with the same number of elements,
3595 provided that the conversion is OK for the element types too. */
3596 if (VECTOR_TYPE_P (lhs_type)
3597 && VECTOR_TYPE_P (rhs1_type)
3598 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
3599 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3601 lhs_type = TREE_TYPE (lhs_type);
3602 rhs1_type = TREE_TYPE (rhs1_type);
3604 else if (VECTOR_TYPE_P (lhs_type) || VECTOR_TYPE_P (rhs1_type))
3606 error ("invalid vector types in nop conversion");
3607 debug_generic_expr (lhs_type);
3608 debug_generic_expr (rhs1_type);
3609 return true;
3612 /* Allow conversions from pointer type to integral type only if
3613 there is no sign or zero extension involved.
3614 For targets were the precision of ptrofftype doesn't match that
3615 of pointers we allow conversions to types where
3616 POINTERS_EXTEND_UNSIGNED specifies how that works. */
3617 if ((POINTER_TYPE_P (lhs_type)
3618 && INTEGRAL_TYPE_P (rhs1_type))
3619 || (POINTER_TYPE_P (rhs1_type)
3620 && INTEGRAL_TYPE_P (lhs_type)
3621 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3622 #if defined(POINTERS_EXTEND_UNSIGNED)
3623 || (TYPE_MODE (rhs1_type) == ptr_mode
3624 && (TYPE_PRECISION (lhs_type)
3625 == BITS_PER_WORD /* word_mode */
3626 || (TYPE_PRECISION (lhs_type)
3627 == GET_MODE_PRECISION (Pmode))))
3628 #endif
3630 return false;
3632 /* Allow conversion from integral to offset type and vice versa. */
3633 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3634 && INTEGRAL_TYPE_P (rhs1_type))
3635 || (INTEGRAL_TYPE_P (lhs_type)
3636 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3637 return false;
3639 /* Otherwise assert we are converting between types of the
3640 same kind. */
3641 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3643 error ("invalid types in nop conversion");
3644 debug_generic_expr (lhs_type);
3645 debug_generic_expr (rhs1_type);
3646 return true;
3649 return false;
3652 case ADDR_SPACE_CONVERT_EXPR:
3654 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3655 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3656 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3658 error ("invalid types in address space conversion");
3659 debug_generic_expr (lhs_type);
3660 debug_generic_expr (rhs1_type);
3661 return true;
3664 return false;
3667 case FIXED_CONVERT_EXPR:
3669 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3670 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3672 error ("invalid types in fixed-point conversion");
3673 debug_generic_expr (lhs_type);
3674 debug_generic_expr (rhs1_type);
3675 return true;
3678 return false;
3681 case FLOAT_EXPR:
3683 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3684 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3685 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3687 error ("invalid types in conversion to floating-point");
3688 debug_generic_expr (lhs_type);
3689 debug_generic_expr (rhs1_type);
3690 return true;
3693 return false;
3696 case FIX_TRUNC_EXPR:
3698 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3699 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3700 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3702 error ("invalid types in conversion to integer");
3703 debug_generic_expr (lhs_type);
3704 debug_generic_expr (rhs1_type);
3705 return true;
3708 return false;
3711 case VEC_UNPACK_HI_EXPR:
3712 case VEC_UNPACK_LO_EXPR:
3713 case VEC_UNPACK_FLOAT_HI_EXPR:
3714 case VEC_UNPACK_FLOAT_LO_EXPR:
3715 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
3716 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
3717 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3718 || TREE_CODE (lhs_type) != VECTOR_TYPE
3719 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3720 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)))
3721 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3722 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3723 || ((rhs_code == VEC_UNPACK_HI_EXPR
3724 || rhs_code == VEC_UNPACK_LO_EXPR)
3725 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3726 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3727 || ((rhs_code == VEC_UNPACK_FLOAT_HI_EXPR
3728 || rhs_code == VEC_UNPACK_FLOAT_LO_EXPR)
3729 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3730 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))))
3731 || ((rhs_code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
3732 || rhs_code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
3733 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3734 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))))
3735 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3736 2 * GET_MODE_SIZE (element_mode (rhs1_type)))
3737 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type)
3738 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type)))
3739 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type),
3740 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3742 error ("type mismatch in %qs expression", code_name);
3743 debug_generic_expr (lhs_type);
3744 debug_generic_expr (rhs1_type);
3745 return true;
3748 return false;
3750 case NEGATE_EXPR:
3751 case ABS_EXPR:
3752 case BIT_NOT_EXPR:
3753 case PAREN_EXPR:
3754 case CONJ_EXPR:
3755 break;
3757 case ABSU_EXPR:
3758 if (!ANY_INTEGRAL_TYPE_P (lhs_type)
3759 || !TYPE_UNSIGNED (lhs_type)
3760 || !ANY_INTEGRAL_TYPE_P (rhs1_type)
3761 || TYPE_UNSIGNED (rhs1_type)
3762 || element_precision (lhs_type) != element_precision (rhs1_type))
3764 error ("invalid types for %qs", code_name);
3765 debug_generic_expr (lhs_type);
3766 debug_generic_expr (rhs1_type);
3767 return true;
3769 return false;
3771 case VEC_DUPLICATE_EXPR:
3772 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3773 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3775 error ("%qs should be from a scalar to a like vector", code_name);
3776 debug_generic_expr (lhs_type);
3777 debug_generic_expr (rhs1_type);
3778 return true;
3780 return false;
3782 default:
3783 gcc_unreachable ();
3786 /* For the remaining codes assert there is no conversion involved. */
3787 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3789 error ("non-trivial conversion in unary operation");
3790 debug_generic_expr (lhs_type);
3791 debug_generic_expr (rhs1_type);
3792 return true;
3795 return false;
3798 /* Verify a gimple assignment statement STMT with a binary rhs.
3799 Returns true if anything is wrong. */
3801 static bool
3802 verify_gimple_assign_binary (gassign *stmt)
3804 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3805 tree lhs = gimple_assign_lhs (stmt);
3806 tree lhs_type = TREE_TYPE (lhs);
3807 tree rhs1 = gimple_assign_rhs1 (stmt);
3808 tree rhs1_type = TREE_TYPE (rhs1);
3809 tree rhs2 = gimple_assign_rhs2 (stmt);
3810 tree rhs2_type = TREE_TYPE (rhs2);
3812 if (!is_gimple_reg (lhs))
3814 error ("non-register as LHS of binary operation");
3815 return true;
3818 if (!is_gimple_val (rhs1)
3819 || !is_gimple_val (rhs2))
3821 error ("invalid operands in binary operation");
3822 return true;
3825 const char* const code_name = get_tree_code_name (rhs_code);
3827 /* First handle operations that involve different types. */
3828 switch (rhs_code)
3830 case COMPLEX_EXPR:
3832 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3833 || !(INTEGRAL_TYPE_P (rhs1_type)
3834 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3835 || !(INTEGRAL_TYPE_P (rhs2_type)
3836 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3838 error ("type mismatch in %qs", code_name);
3839 debug_generic_expr (lhs_type);
3840 debug_generic_expr (rhs1_type);
3841 debug_generic_expr (rhs2_type);
3842 return true;
3845 return false;
3848 case LSHIFT_EXPR:
3849 case RSHIFT_EXPR:
3850 case LROTATE_EXPR:
3851 case RROTATE_EXPR:
3853 /* Shifts and rotates are ok on integral types, fixed point
3854 types and integer vector types. */
3855 if ((!INTEGRAL_TYPE_P (rhs1_type)
3856 && !FIXED_POINT_TYPE_P (rhs1_type)
3857 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3858 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3859 || (!INTEGRAL_TYPE_P (rhs2_type)
3860 /* Vector shifts of vectors are also ok. */
3861 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3862 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3863 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3864 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3865 || !useless_type_conversion_p (lhs_type, rhs1_type))
3867 error ("type mismatch in %qs", code_name);
3868 debug_generic_expr (lhs_type);
3869 debug_generic_expr (rhs1_type);
3870 debug_generic_expr (rhs2_type);
3871 return true;
3874 return false;
3877 case WIDEN_LSHIFT_EXPR:
3879 if (!INTEGRAL_TYPE_P (lhs_type)
3880 || !INTEGRAL_TYPE_P (rhs1_type)
3881 || TREE_CODE (rhs2) != INTEGER_CST
3882 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3884 error ("type mismatch in %qs", code_name);
3885 debug_generic_expr (lhs_type);
3886 debug_generic_expr (rhs1_type);
3887 debug_generic_expr (rhs2_type);
3888 return true;
3891 return false;
3894 case VEC_WIDEN_LSHIFT_HI_EXPR:
3895 case VEC_WIDEN_LSHIFT_LO_EXPR:
3897 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3898 || TREE_CODE (lhs_type) != VECTOR_TYPE
3899 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3900 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3901 || TREE_CODE (rhs2) != INTEGER_CST
3902 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3903 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3905 error ("type mismatch in %qs", code_name);
3906 debug_generic_expr (lhs_type);
3907 debug_generic_expr (rhs1_type);
3908 debug_generic_expr (rhs2_type);
3909 return true;
3912 return false;
3915 case WIDEN_PLUS_EXPR:
3916 case WIDEN_MINUS_EXPR:
3917 case PLUS_EXPR:
3918 case MINUS_EXPR:
3920 tree lhs_etype = lhs_type;
3921 tree rhs1_etype = rhs1_type;
3922 tree rhs2_etype = rhs2_type;
3923 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3925 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3926 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3928 error ("invalid non-vector operands to %qs", code_name);
3929 return true;
3931 lhs_etype = TREE_TYPE (lhs_type);
3932 rhs1_etype = TREE_TYPE (rhs1_type);
3933 rhs2_etype = TREE_TYPE (rhs2_type);
3935 if (POINTER_TYPE_P (lhs_etype)
3936 || POINTER_TYPE_P (rhs1_etype)
3937 || POINTER_TYPE_P (rhs2_etype))
3939 error ("invalid (pointer) operands %qs", code_name);
3940 return true;
3943 /* Continue with generic binary expression handling. */
3944 break;
3947 case POINTER_PLUS_EXPR:
3949 if (!POINTER_TYPE_P (rhs1_type)
3950 || !useless_type_conversion_p (lhs_type, rhs1_type)
3951 || !ptrofftype_p (rhs2_type))
3953 error ("type mismatch in %qs", code_name);
3954 debug_generic_stmt (lhs_type);
3955 debug_generic_stmt (rhs1_type);
3956 debug_generic_stmt (rhs2_type);
3957 return true;
3960 return false;
3963 case POINTER_DIFF_EXPR:
3965 if (!POINTER_TYPE_P (rhs1_type)
3966 || !POINTER_TYPE_P (rhs2_type)
3967 /* Because we special-case pointers to void we allow difference
3968 of arbitrary pointers with the same mode. */
3969 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
3970 || !INTEGRAL_TYPE_P (lhs_type)
3971 || TYPE_UNSIGNED (lhs_type)
3972 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
3974 error ("type mismatch in %qs", code_name);
3975 debug_generic_stmt (lhs_type);
3976 debug_generic_stmt (rhs1_type);
3977 debug_generic_stmt (rhs2_type);
3978 return true;
3981 return false;
3984 case TRUTH_ANDIF_EXPR:
3985 case TRUTH_ORIF_EXPR:
3986 case TRUTH_AND_EXPR:
3987 case TRUTH_OR_EXPR:
3988 case TRUTH_XOR_EXPR:
3990 gcc_unreachable ();
3992 case LT_EXPR:
3993 case LE_EXPR:
3994 case GT_EXPR:
3995 case GE_EXPR:
3996 case EQ_EXPR:
3997 case NE_EXPR:
3998 case UNORDERED_EXPR:
3999 case ORDERED_EXPR:
4000 case UNLT_EXPR:
4001 case UNLE_EXPR:
4002 case UNGT_EXPR:
4003 case UNGE_EXPR:
4004 case UNEQ_EXPR:
4005 case LTGT_EXPR:
4006 /* Comparisons are also binary, but the result type is not
4007 connected to the operand types. */
4008 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4010 case WIDEN_MULT_EXPR:
4011 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4012 return true;
4013 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4014 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4016 case WIDEN_SUM_EXPR:
4018 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4019 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4020 && ((!INTEGRAL_TYPE_P (rhs1_type)
4021 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4022 || (!INTEGRAL_TYPE_P (lhs_type)
4023 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4024 || !useless_type_conversion_p (lhs_type, rhs2_type)
4025 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
4026 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4028 error ("type mismatch in %qs", code_name);
4029 debug_generic_expr (lhs_type);
4030 debug_generic_expr (rhs1_type);
4031 debug_generic_expr (rhs2_type);
4032 return true;
4034 return false;
4037 case VEC_WIDEN_MINUS_HI_EXPR:
4038 case VEC_WIDEN_MINUS_LO_EXPR:
4039 case VEC_WIDEN_PLUS_HI_EXPR:
4040 case VEC_WIDEN_PLUS_LO_EXPR:
4041 case VEC_WIDEN_MULT_HI_EXPR:
4042 case VEC_WIDEN_MULT_LO_EXPR:
4043 case VEC_WIDEN_MULT_EVEN_EXPR:
4044 case VEC_WIDEN_MULT_ODD_EXPR:
4046 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4047 || TREE_CODE (lhs_type) != VECTOR_TYPE
4048 || !types_compatible_p (rhs1_type, rhs2_type)
4049 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4050 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4052 error ("type mismatch in %qs", code_name);
4053 debug_generic_expr (lhs_type);
4054 debug_generic_expr (rhs1_type);
4055 debug_generic_expr (rhs2_type);
4056 return true;
4058 return false;
4061 case VEC_PACK_TRUNC_EXPR:
4062 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4063 vector boolean types. */
4064 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4065 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4066 && types_compatible_p (rhs1_type, rhs2_type)
4067 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4068 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4069 return false;
4071 /* Fallthru. */
4072 case VEC_PACK_SAT_EXPR:
4073 case VEC_PACK_FIX_TRUNC_EXPR:
4075 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4076 || TREE_CODE (lhs_type) != VECTOR_TYPE
4077 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4078 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4079 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4080 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4081 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4082 || !types_compatible_p (rhs1_type, rhs2_type)
4083 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4084 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4085 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4086 TYPE_VECTOR_SUBPARTS (lhs_type)))
4088 error ("type mismatch in %qs", code_name);
4089 debug_generic_expr (lhs_type);
4090 debug_generic_expr (rhs1_type);
4091 debug_generic_expr (rhs2_type);
4092 return true;
4095 return false;
4098 case VEC_PACK_FLOAT_EXPR:
4099 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4100 || TREE_CODE (lhs_type) != VECTOR_TYPE
4101 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4102 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))
4103 || !types_compatible_p (rhs1_type, rhs2_type)
4104 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4105 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4106 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4107 TYPE_VECTOR_SUBPARTS (lhs_type)))
4109 error ("type mismatch in %qs", code_name);
4110 debug_generic_expr (lhs_type);
4111 debug_generic_expr (rhs1_type);
4112 debug_generic_expr (rhs2_type);
4113 return true;
4116 return false;
4118 case MULT_EXPR:
4119 case MULT_HIGHPART_EXPR:
4120 case TRUNC_DIV_EXPR:
4121 case CEIL_DIV_EXPR:
4122 case FLOOR_DIV_EXPR:
4123 case ROUND_DIV_EXPR:
4124 case TRUNC_MOD_EXPR:
4125 case CEIL_MOD_EXPR:
4126 case FLOOR_MOD_EXPR:
4127 case ROUND_MOD_EXPR:
4128 case RDIV_EXPR:
4129 case EXACT_DIV_EXPR:
4130 case MIN_EXPR:
4131 case MAX_EXPR:
4132 case BIT_IOR_EXPR:
4133 case BIT_XOR_EXPR:
4134 case BIT_AND_EXPR:
4135 /* Continue with generic binary expression handling. */
4136 break;
4138 case VEC_SERIES_EXPR:
4139 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4141 error ("type mismatch in %qs", code_name);
4142 debug_generic_expr (rhs1_type);
4143 debug_generic_expr (rhs2_type);
4144 return true;
4146 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4147 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4149 error ("vector type expected in %qs", code_name);
4150 debug_generic_expr (lhs_type);
4151 return true;
4153 return false;
4155 default:
4156 gcc_unreachable ();
4159 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4160 || !useless_type_conversion_p (lhs_type, rhs2_type))
4162 error ("type mismatch in binary expression");
4163 debug_generic_stmt (lhs_type);
4164 debug_generic_stmt (rhs1_type);
4165 debug_generic_stmt (rhs2_type);
4166 return true;
4169 return false;
4172 /* Verify a gimple assignment statement STMT with a ternary rhs.
4173 Returns true if anything is wrong. */
4175 static bool
4176 verify_gimple_assign_ternary (gassign *stmt)
4178 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4179 tree lhs = gimple_assign_lhs (stmt);
4180 tree lhs_type = TREE_TYPE (lhs);
4181 tree rhs1 = gimple_assign_rhs1 (stmt);
4182 tree rhs1_type = TREE_TYPE (rhs1);
4183 tree rhs2 = gimple_assign_rhs2 (stmt);
4184 tree rhs2_type = TREE_TYPE (rhs2);
4185 tree rhs3 = gimple_assign_rhs3 (stmt);
4186 tree rhs3_type = TREE_TYPE (rhs3);
4188 if (!is_gimple_reg (lhs))
4190 error ("non-register as LHS of ternary operation");
4191 return true;
4194 if ((rhs_code == COND_EXPR
4195 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4196 || !is_gimple_val (rhs2)
4197 || !is_gimple_val (rhs3))
4199 error ("invalid operands in ternary operation");
4200 return true;
4203 const char* const code_name = get_tree_code_name (rhs_code);
4205 /* First handle operations that involve different types. */
4206 switch (rhs_code)
4208 case WIDEN_MULT_PLUS_EXPR:
4209 case WIDEN_MULT_MINUS_EXPR:
4210 if ((!INTEGRAL_TYPE_P (rhs1_type)
4211 && !FIXED_POINT_TYPE_P (rhs1_type))
4212 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4213 || !useless_type_conversion_p (lhs_type, rhs3_type)
4214 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4215 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4217 error ("type mismatch in %qs", code_name);
4218 debug_generic_expr (lhs_type);
4219 debug_generic_expr (rhs1_type);
4220 debug_generic_expr (rhs2_type);
4221 debug_generic_expr (rhs3_type);
4222 return true;
4224 break;
4226 case VEC_COND_EXPR:
4227 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4228 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4229 TYPE_VECTOR_SUBPARTS (lhs_type)))
4231 error ("the first argument of a %qs must be of a "
4232 "boolean vector type of the same number of elements "
4233 "as the result", code_name);
4234 debug_generic_expr (lhs_type);
4235 debug_generic_expr (rhs1_type);
4236 return true;
4238 if (!is_gimple_val (rhs1))
4239 return true;
4240 /* Fallthrough. */
4241 case COND_EXPR:
4242 if (!is_gimple_val (rhs1)
4243 && verify_gimple_comparison (TREE_TYPE (rhs1),
4244 TREE_OPERAND (rhs1, 0),
4245 TREE_OPERAND (rhs1, 1),
4246 TREE_CODE (rhs1)))
4247 return true;
4248 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4249 || !useless_type_conversion_p (lhs_type, rhs3_type))
4251 error ("type mismatch in %qs", code_name);
4252 debug_generic_expr (lhs_type);
4253 debug_generic_expr (rhs2_type);
4254 debug_generic_expr (rhs3_type);
4255 return true;
4257 break;
4259 case VEC_PERM_EXPR:
4260 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4261 || !useless_type_conversion_p (lhs_type, rhs2_type))
4263 error ("type mismatch in %qs", code_name);
4264 debug_generic_expr (lhs_type);
4265 debug_generic_expr (rhs1_type);
4266 debug_generic_expr (rhs2_type);
4267 debug_generic_expr (rhs3_type);
4268 return true;
4271 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4272 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4273 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4275 error ("vector types expected in %qs", code_name);
4276 debug_generic_expr (lhs_type);
4277 debug_generic_expr (rhs1_type);
4278 debug_generic_expr (rhs2_type);
4279 debug_generic_expr (rhs3_type);
4280 return true;
4283 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4284 TYPE_VECTOR_SUBPARTS (rhs2_type))
4285 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4286 TYPE_VECTOR_SUBPARTS (rhs3_type))
4287 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4288 TYPE_VECTOR_SUBPARTS (lhs_type)))
4290 error ("vectors with different element number found in %qs",
4291 code_name);
4292 debug_generic_expr (lhs_type);
4293 debug_generic_expr (rhs1_type);
4294 debug_generic_expr (rhs2_type);
4295 debug_generic_expr (rhs3_type);
4296 return true;
4299 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4300 || (TREE_CODE (rhs3) != VECTOR_CST
4301 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4302 (TREE_TYPE (rhs3_type)))
4303 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4304 (TREE_TYPE (rhs1_type))))))
4306 error ("invalid mask type in %qs", code_name);
4307 debug_generic_expr (lhs_type);
4308 debug_generic_expr (rhs1_type);
4309 debug_generic_expr (rhs2_type);
4310 debug_generic_expr (rhs3_type);
4311 return true;
4314 return false;
4316 case SAD_EXPR:
4317 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4318 || !useless_type_conversion_p (lhs_type, rhs3_type)
4319 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4320 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4322 error ("type mismatch in %qs", code_name);
4323 debug_generic_expr (lhs_type);
4324 debug_generic_expr (rhs1_type);
4325 debug_generic_expr (rhs2_type);
4326 debug_generic_expr (rhs3_type);
4327 return true;
4330 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4331 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4332 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4334 error ("vector types expected in %qs", code_name);
4335 debug_generic_expr (lhs_type);
4336 debug_generic_expr (rhs1_type);
4337 debug_generic_expr (rhs2_type);
4338 debug_generic_expr (rhs3_type);
4339 return true;
4342 return false;
4344 case BIT_INSERT_EXPR:
4345 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4347 error ("type mismatch in %qs", code_name);
4348 debug_generic_expr (lhs_type);
4349 debug_generic_expr (rhs1_type);
4350 return true;
4352 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4353 && INTEGRAL_TYPE_P (rhs2_type))
4354 /* Vector element insert. */
4355 || (VECTOR_TYPE_P (rhs1_type)
4356 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))
4357 /* Aligned sub-vector insert. */
4358 || (VECTOR_TYPE_P (rhs1_type)
4359 && VECTOR_TYPE_P (rhs2_type)
4360 && types_compatible_p (TREE_TYPE (rhs1_type),
4361 TREE_TYPE (rhs2_type))
4362 && multiple_p (TYPE_VECTOR_SUBPARTS (rhs1_type),
4363 TYPE_VECTOR_SUBPARTS (rhs2_type))
4364 && multiple_of_p (bitsizetype, rhs3, TYPE_SIZE (rhs2_type)))))
4366 error ("not allowed type combination in %qs", code_name);
4367 debug_generic_expr (rhs1_type);
4368 debug_generic_expr (rhs2_type);
4369 return true;
4371 if (! tree_fits_uhwi_p (rhs3)
4372 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4373 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4375 error ("invalid position or size in %qs", code_name);
4376 return true;
4378 if (INTEGRAL_TYPE_P (rhs1_type)
4379 && !type_has_mode_precision_p (rhs1_type))
4381 error ("%qs into non-mode-precision operand", code_name);
4382 return true;
4384 if (INTEGRAL_TYPE_P (rhs1_type))
4386 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4387 if (bitpos >= TYPE_PRECISION (rhs1_type)
4388 || (bitpos + TYPE_PRECISION (rhs2_type)
4389 > TYPE_PRECISION (rhs1_type)))
4391 error ("insertion out of range in %qs", code_name);
4392 return true;
4395 else if (VECTOR_TYPE_P (rhs1_type))
4397 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4398 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4399 if (bitpos % bitsize != 0)
4401 error ("%qs not at element boundary", code_name);
4402 return true;
4405 return false;
4407 case DOT_PROD_EXPR:
4409 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4410 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4411 && ((!INTEGRAL_TYPE_P (rhs1_type)
4412 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4413 || (!INTEGRAL_TYPE_P (lhs_type)
4414 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4415 || !types_compatible_p (rhs1_type, rhs2_type)
4416 || !useless_type_conversion_p (lhs_type, rhs3_type)
4417 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4418 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4420 error ("type mismatch in %qs", code_name);
4421 debug_generic_expr (lhs_type);
4422 debug_generic_expr (rhs1_type);
4423 debug_generic_expr (rhs2_type);
4424 return true;
4426 return false;
4429 case REALIGN_LOAD_EXPR:
4430 /* FIXME. */
4431 return false;
4433 default:
4434 gcc_unreachable ();
4436 return false;
4439 /* Verify a gimple assignment statement STMT with a single rhs.
4440 Returns true if anything is wrong. */
4442 static bool
4443 verify_gimple_assign_single (gassign *stmt)
4445 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4446 tree lhs = gimple_assign_lhs (stmt);
4447 tree lhs_type = TREE_TYPE (lhs);
4448 tree rhs1 = gimple_assign_rhs1 (stmt);
4449 tree rhs1_type = TREE_TYPE (rhs1);
4450 bool res = false;
4452 const char* const code_name = get_tree_code_name (rhs_code);
4454 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4456 error ("non-trivial conversion in %qs", code_name);
4457 debug_generic_expr (lhs_type);
4458 debug_generic_expr (rhs1_type);
4459 return true;
4462 if (gimple_clobber_p (stmt)
4463 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4465 error ("%qs LHS in clobber statement",
4466 get_tree_code_name (TREE_CODE (lhs)));
4467 debug_generic_expr (lhs);
4468 return true;
4471 if (TREE_CODE (lhs) == WITH_SIZE_EXPR)
4473 error ("%qs LHS in assignment statement",
4474 get_tree_code_name (TREE_CODE (lhs)));
4475 debug_generic_expr (lhs);
4476 return true;
4479 if (handled_component_p (lhs)
4480 || TREE_CODE (lhs) == MEM_REF
4481 || TREE_CODE (lhs) == TARGET_MEM_REF)
4482 res |= verify_types_in_gimple_reference (lhs, true);
4484 /* Special codes we cannot handle via their class. */
4485 switch (rhs_code)
4487 case ADDR_EXPR:
4489 tree op = TREE_OPERAND (rhs1, 0);
4490 if (!is_gimple_addressable (op))
4492 error ("invalid operand in %qs", code_name);
4493 return true;
4496 /* Technically there is no longer a need for matching types, but
4497 gimple hygiene asks for this check. In LTO we can end up
4498 combining incompatible units and thus end up with addresses
4499 of globals that change their type to a common one. */
4500 if (!in_lto_p
4501 && !types_compatible_p (TREE_TYPE (op),
4502 TREE_TYPE (TREE_TYPE (rhs1)))
4503 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4504 TREE_TYPE (op)))
4506 error ("type mismatch in %qs", code_name);
4507 debug_generic_stmt (TREE_TYPE (rhs1));
4508 debug_generic_stmt (TREE_TYPE (op));
4509 return true;
4512 return (verify_address (rhs1, true)
4513 || verify_types_in_gimple_reference (op, true));
4516 /* tcc_reference */
4517 case INDIRECT_REF:
4518 error ("%qs in gimple IL", code_name);
4519 return true;
4521 case COMPONENT_REF:
4522 case BIT_FIELD_REF:
4523 case ARRAY_REF:
4524 case ARRAY_RANGE_REF:
4525 case VIEW_CONVERT_EXPR:
4526 case REALPART_EXPR:
4527 case IMAGPART_EXPR:
4528 case TARGET_MEM_REF:
4529 case MEM_REF:
4530 if (!is_gimple_reg (lhs)
4531 && is_gimple_reg_type (TREE_TYPE (lhs)))
4533 error ("invalid RHS for gimple memory store: %qs", code_name);
4534 debug_generic_stmt (lhs);
4535 debug_generic_stmt (rhs1);
4536 return true;
4538 return res || verify_types_in_gimple_reference (rhs1, false);
4540 /* tcc_constant */
4541 case SSA_NAME:
4542 case INTEGER_CST:
4543 case REAL_CST:
4544 case FIXED_CST:
4545 case COMPLEX_CST:
4546 case VECTOR_CST:
4547 case STRING_CST:
4548 return res;
4550 /* tcc_declaration */
4551 case CONST_DECL:
4552 return res;
4553 case VAR_DECL:
4554 case PARM_DECL:
4555 if (!is_gimple_reg (lhs)
4556 && !is_gimple_reg (rhs1)
4557 && is_gimple_reg_type (TREE_TYPE (lhs)))
4559 error ("invalid RHS for gimple memory store: %qs", code_name);
4560 debug_generic_stmt (lhs);
4561 debug_generic_stmt (rhs1);
4562 return true;
4564 return res;
4566 case CONSTRUCTOR:
4567 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4569 unsigned int i;
4570 tree elt_i, elt_v, elt_t = NULL_TREE;
4572 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4573 return res;
4574 /* For vector CONSTRUCTORs we require that either it is empty
4575 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4576 (then the element count must be correct to cover the whole
4577 outer vector and index must be NULL on all elements, or it is
4578 a CONSTRUCTOR of scalar elements, where we as an exception allow
4579 smaller number of elements (assuming zero filling) and
4580 consecutive indexes as compared to NULL indexes (such
4581 CONSTRUCTORs can appear in the IL from FEs). */
4582 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4584 if (elt_t == NULL_TREE)
4586 elt_t = TREE_TYPE (elt_v);
4587 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4589 tree elt_t = TREE_TYPE (elt_v);
4590 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4591 TREE_TYPE (elt_t)))
4593 error ("incorrect type of vector %qs elements",
4594 code_name);
4595 debug_generic_stmt (rhs1);
4596 return true;
4598 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4599 * TYPE_VECTOR_SUBPARTS (elt_t),
4600 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4602 error ("incorrect number of vector %qs elements",
4603 code_name);
4604 debug_generic_stmt (rhs1);
4605 return true;
4608 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4609 elt_t))
4611 error ("incorrect type of vector %qs elements",
4612 code_name);
4613 debug_generic_stmt (rhs1);
4614 return true;
4616 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4617 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4619 error ("incorrect number of vector %qs elements",
4620 code_name);
4621 debug_generic_stmt (rhs1);
4622 return true;
4625 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4627 error ("incorrect type of vector CONSTRUCTOR elements");
4628 debug_generic_stmt (rhs1);
4629 return true;
4631 if (elt_i != NULL_TREE
4632 && (TREE_CODE (elt_t) == VECTOR_TYPE
4633 || TREE_CODE (elt_i) != INTEGER_CST
4634 || compare_tree_int (elt_i, i) != 0))
4636 error ("vector %qs with non-NULL element index",
4637 code_name);
4638 debug_generic_stmt (rhs1);
4639 return true;
4641 if (!is_gimple_val (elt_v))
4643 error ("vector %qs element is not a GIMPLE value",
4644 code_name);
4645 debug_generic_stmt (rhs1);
4646 return true;
4650 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4652 error ("non-vector %qs with elements", code_name);
4653 debug_generic_stmt (rhs1);
4654 return true;
4656 return res;
4658 case ASSERT_EXPR:
4659 /* FIXME. */
4660 rhs1 = fold (ASSERT_EXPR_COND (rhs1));
4661 if (rhs1 == boolean_false_node)
4663 error ("%qs with an always-false condition", code_name);
4664 debug_generic_stmt (rhs1);
4665 return true;
4667 break;
4669 case WITH_SIZE_EXPR:
4670 error ("%qs RHS in assignment statement",
4671 get_tree_code_name (rhs_code));
4672 debug_generic_expr (rhs1);
4673 return true;
4675 case OBJ_TYPE_REF:
4676 /* FIXME. */
4677 return res;
4679 default:;
4682 return res;
4685 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4686 is a problem, otherwise false. */
4688 static bool
4689 verify_gimple_assign (gassign *stmt)
4691 switch (gimple_assign_rhs_class (stmt))
4693 case GIMPLE_SINGLE_RHS:
4694 return verify_gimple_assign_single (stmt);
4696 case GIMPLE_UNARY_RHS:
4697 return verify_gimple_assign_unary (stmt);
4699 case GIMPLE_BINARY_RHS:
4700 return verify_gimple_assign_binary (stmt);
4702 case GIMPLE_TERNARY_RHS:
4703 return verify_gimple_assign_ternary (stmt);
4705 default:
4706 gcc_unreachable ();
4710 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4711 is a problem, otherwise false. */
4713 static bool
4714 verify_gimple_return (greturn *stmt)
4716 tree op = gimple_return_retval (stmt);
4717 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4719 /* We cannot test for present return values as we do not fix up missing
4720 return values from the original source. */
4721 if (op == NULL)
4722 return false;
4724 if (!is_gimple_val (op)
4725 && TREE_CODE (op) != RESULT_DECL)
4727 error ("invalid operand in return statement");
4728 debug_generic_stmt (op);
4729 return true;
4732 if ((TREE_CODE (op) == RESULT_DECL
4733 && DECL_BY_REFERENCE (op))
4734 || (TREE_CODE (op) == SSA_NAME
4735 && SSA_NAME_VAR (op)
4736 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4737 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4738 op = TREE_TYPE (op);
4740 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4742 error ("invalid conversion in return statement");
4743 debug_generic_stmt (restype);
4744 debug_generic_stmt (TREE_TYPE (op));
4745 return true;
4748 return false;
4752 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4753 is a problem, otherwise false. */
4755 static bool
4756 verify_gimple_goto (ggoto *stmt)
4758 tree dest = gimple_goto_dest (stmt);
4760 /* ??? We have two canonical forms of direct goto destinations, a
4761 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4762 if (TREE_CODE (dest) != LABEL_DECL
4763 && (!is_gimple_val (dest)
4764 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4766 error ("goto destination is neither a label nor a pointer");
4767 return true;
4770 return false;
4773 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4774 is a problem, otherwise false. */
4776 static bool
4777 verify_gimple_switch (gswitch *stmt)
4779 unsigned int i, n;
4780 tree elt, prev_upper_bound = NULL_TREE;
4781 tree index_type, elt_type = NULL_TREE;
4783 if (!is_gimple_val (gimple_switch_index (stmt)))
4785 error ("invalid operand to switch statement");
4786 debug_generic_stmt (gimple_switch_index (stmt));
4787 return true;
4790 index_type = TREE_TYPE (gimple_switch_index (stmt));
4791 if (! INTEGRAL_TYPE_P (index_type))
4793 error ("non-integral type switch statement");
4794 debug_generic_expr (index_type);
4795 return true;
4798 elt = gimple_switch_label (stmt, 0);
4799 if (CASE_LOW (elt) != NULL_TREE
4800 || CASE_HIGH (elt) != NULL_TREE
4801 || CASE_CHAIN (elt) != NULL_TREE)
4803 error ("invalid default case label in switch statement");
4804 debug_generic_expr (elt);
4805 return true;
4808 n = gimple_switch_num_labels (stmt);
4809 for (i = 1; i < n; i++)
4811 elt = gimple_switch_label (stmt, i);
4813 if (CASE_CHAIN (elt))
4815 error ("invalid %<CASE_CHAIN%>");
4816 debug_generic_expr (elt);
4817 return true;
4819 if (! CASE_LOW (elt))
4821 error ("invalid case label in switch statement");
4822 debug_generic_expr (elt);
4823 return true;
4825 if (CASE_HIGH (elt)
4826 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4828 error ("invalid case range in switch statement");
4829 debug_generic_expr (elt);
4830 return true;
4833 if (! elt_type)
4835 elt_type = TREE_TYPE (CASE_LOW (elt));
4836 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4838 error ("type precision mismatch in switch statement");
4839 return true;
4842 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4843 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4845 error ("type mismatch for case label in switch statement");
4846 debug_generic_expr (elt);
4847 return true;
4850 if (prev_upper_bound)
4852 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4854 error ("case labels not sorted in switch statement");
4855 return true;
4859 prev_upper_bound = CASE_HIGH (elt);
4860 if (! prev_upper_bound)
4861 prev_upper_bound = CASE_LOW (elt);
4864 return false;
4867 /* Verify a gimple debug statement STMT.
4868 Returns true if anything is wrong. */
4870 static bool
4871 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4873 /* There isn't much that could be wrong in a gimple debug stmt. A
4874 gimple debug bind stmt, for example, maps a tree, that's usually
4875 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4876 component or member of an aggregate type, to another tree, that
4877 can be an arbitrary expression. These stmts expand into debug
4878 insns, and are converted to debug notes by var-tracking.c. */
4879 return false;
4882 /* Verify a gimple label statement STMT.
4883 Returns true if anything is wrong. */
4885 static bool
4886 verify_gimple_label (glabel *stmt)
4888 tree decl = gimple_label_label (stmt);
4889 int uid;
4890 bool err = false;
4892 if (TREE_CODE (decl) != LABEL_DECL)
4893 return true;
4894 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4895 && DECL_CONTEXT (decl) != current_function_decl)
4897 error ("label context is not the current function declaration");
4898 err |= true;
4901 uid = LABEL_DECL_UID (decl);
4902 if (cfun->cfg
4903 && (uid == -1
4904 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4906 error ("incorrect entry in %<label_to_block_map%>");
4907 err |= true;
4910 uid = EH_LANDING_PAD_NR (decl);
4911 if (uid)
4913 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4914 if (decl != lp->post_landing_pad)
4916 error ("incorrect setting of landing pad number");
4917 err |= true;
4921 return err;
4924 /* Verify a gimple cond statement STMT.
4925 Returns true if anything is wrong. */
4927 static bool
4928 verify_gimple_cond (gcond *stmt)
4930 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4932 error ("invalid comparison code in gimple cond");
4933 return true;
4935 if (!(!gimple_cond_true_label (stmt)
4936 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4937 || !(!gimple_cond_false_label (stmt)
4938 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4940 error ("invalid labels in gimple cond");
4941 return true;
4944 return verify_gimple_comparison (boolean_type_node,
4945 gimple_cond_lhs (stmt),
4946 gimple_cond_rhs (stmt),
4947 gimple_cond_code (stmt));
4950 /* Verify the GIMPLE statement STMT. Returns true if there is an
4951 error, otherwise false. */
4953 static bool
4954 verify_gimple_stmt (gimple *stmt)
4956 switch (gimple_code (stmt))
4958 case GIMPLE_ASSIGN:
4959 return verify_gimple_assign (as_a <gassign *> (stmt));
4961 case GIMPLE_LABEL:
4962 return verify_gimple_label (as_a <glabel *> (stmt));
4964 case GIMPLE_CALL:
4965 return verify_gimple_call (as_a <gcall *> (stmt));
4967 case GIMPLE_COND:
4968 return verify_gimple_cond (as_a <gcond *> (stmt));
4970 case GIMPLE_GOTO:
4971 return verify_gimple_goto (as_a <ggoto *> (stmt));
4973 case GIMPLE_SWITCH:
4974 return verify_gimple_switch (as_a <gswitch *> (stmt));
4976 case GIMPLE_RETURN:
4977 return verify_gimple_return (as_a <greturn *> (stmt));
4979 case GIMPLE_ASM:
4980 return false;
4982 case GIMPLE_TRANSACTION:
4983 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4985 /* Tuples that do not have tree operands. */
4986 case GIMPLE_NOP:
4987 case GIMPLE_PREDICT:
4988 case GIMPLE_RESX:
4989 case GIMPLE_EH_DISPATCH:
4990 case GIMPLE_EH_MUST_NOT_THROW:
4991 return false;
4993 CASE_GIMPLE_OMP:
4994 /* OpenMP directives are validated by the FE and never operated
4995 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4996 non-gimple expressions when the main index variable has had
4997 its address taken. This does not affect the loop itself
4998 because the header of an GIMPLE_OMP_FOR is merely used to determine
4999 how to setup the parallel iteration. */
5000 return false;
5002 case GIMPLE_DEBUG:
5003 return verify_gimple_debug (stmt);
5005 default:
5006 gcc_unreachable ();
5010 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5011 and false otherwise. */
5013 static bool
5014 verify_gimple_phi (gphi *phi)
5016 bool err = false;
5017 unsigned i;
5018 tree phi_result = gimple_phi_result (phi);
5019 bool virtual_p;
5021 if (!phi_result)
5023 error ("invalid %<PHI%> result");
5024 return true;
5027 virtual_p = virtual_operand_p (phi_result);
5028 if (TREE_CODE (phi_result) != SSA_NAME
5029 || (virtual_p
5030 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5032 error ("invalid %<PHI%> result");
5033 err = true;
5036 for (i = 0; i < gimple_phi_num_args (phi); i++)
5038 tree t = gimple_phi_arg_def (phi, i);
5040 if (!t)
5042 error ("missing %<PHI%> def");
5043 err |= true;
5044 continue;
5046 /* Addressable variables do have SSA_NAMEs but they
5047 are not considered gimple values. */
5048 else if ((TREE_CODE (t) == SSA_NAME
5049 && virtual_p != virtual_operand_p (t))
5050 || (virtual_p
5051 && (TREE_CODE (t) != SSA_NAME
5052 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5053 || (!virtual_p
5054 && !is_gimple_val (t)))
5056 error ("invalid %<PHI%> argument");
5057 debug_generic_expr (t);
5058 err |= true;
5060 #ifdef ENABLE_TYPES_CHECKING
5061 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5063 error ("incompatible types in %<PHI%> argument %u", i);
5064 debug_generic_stmt (TREE_TYPE (phi_result));
5065 debug_generic_stmt (TREE_TYPE (t));
5066 err |= true;
5068 #endif
5071 return err;
5074 /* Verify the GIMPLE statements inside the sequence STMTS. */
5076 static bool
5077 verify_gimple_in_seq_2 (gimple_seq stmts)
5079 gimple_stmt_iterator ittr;
5080 bool err = false;
5082 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5084 gimple *stmt = gsi_stmt (ittr);
5086 switch (gimple_code (stmt))
5088 case GIMPLE_BIND:
5089 err |= verify_gimple_in_seq_2 (
5090 gimple_bind_body (as_a <gbind *> (stmt)));
5091 break;
5093 case GIMPLE_TRY:
5094 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5095 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5096 break;
5098 case GIMPLE_EH_FILTER:
5099 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5100 break;
5102 case GIMPLE_EH_ELSE:
5104 geh_else *eh_else = as_a <geh_else *> (stmt);
5105 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5106 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5108 break;
5110 case GIMPLE_CATCH:
5111 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5112 as_a <gcatch *> (stmt)));
5113 break;
5115 case GIMPLE_TRANSACTION:
5116 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5117 break;
5119 default:
5121 bool err2 = verify_gimple_stmt (stmt);
5122 if (err2)
5123 debug_gimple_stmt (stmt);
5124 err |= err2;
5129 return err;
5132 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5133 is a problem, otherwise false. */
5135 static bool
5136 verify_gimple_transaction (gtransaction *stmt)
5138 tree lab;
5140 lab = gimple_transaction_label_norm (stmt);
5141 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5142 return true;
5143 lab = gimple_transaction_label_uninst (stmt);
5144 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5145 return true;
5146 lab = gimple_transaction_label_over (stmt);
5147 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5148 return true;
5150 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5154 /* Verify the GIMPLE statements inside the statement list STMTS. */
5156 DEBUG_FUNCTION void
5157 verify_gimple_in_seq (gimple_seq stmts)
5159 timevar_push (TV_TREE_STMT_VERIFY);
5160 if (verify_gimple_in_seq_2 (stmts))
5161 internal_error ("%<verify_gimple%> failed");
5162 timevar_pop (TV_TREE_STMT_VERIFY);
5165 /* Return true when the T can be shared. */
5167 static bool
5168 tree_node_can_be_shared (tree t)
5170 if (IS_TYPE_OR_DECL_P (t)
5171 || TREE_CODE (t) == SSA_NAME
5172 || TREE_CODE (t) == IDENTIFIER_NODE
5173 || TREE_CODE (t) == CASE_LABEL_EXPR
5174 || is_gimple_min_invariant (t))
5175 return true;
5177 if (t == error_mark_node)
5178 return true;
5180 return false;
5183 /* Called via walk_tree. Verify tree sharing. */
5185 static tree
5186 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5188 hash_set<void *> *visited = (hash_set<void *> *) data;
5190 if (tree_node_can_be_shared (*tp))
5192 *walk_subtrees = false;
5193 return NULL;
5196 if (visited->add (*tp))
5197 return *tp;
5199 return NULL;
5202 /* Called via walk_gimple_stmt. Verify tree sharing. */
5204 static tree
5205 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5207 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5208 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5211 static bool eh_error_found;
5212 bool
5213 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5214 hash_set<gimple *> *visited)
5216 if (!visited->contains (stmt))
5218 error ("dead statement in EH table");
5219 debug_gimple_stmt (stmt);
5220 eh_error_found = true;
5222 return true;
5225 /* Verify if the location LOCs block is in BLOCKS. */
5227 static bool
5228 verify_location (hash_set<tree> *blocks, location_t loc)
5230 tree block = LOCATION_BLOCK (loc);
5231 if (block != NULL_TREE
5232 && !blocks->contains (block))
5234 error ("location references block not in block tree");
5235 return true;
5237 if (block != NULL_TREE)
5238 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5239 return false;
5242 /* Called via walk_tree. Verify that expressions have no blocks. */
5244 static tree
5245 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5247 if (!EXPR_P (*tp))
5249 *walk_subtrees = false;
5250 return NULL;
5253 location_t loc = EXPR_LOCATION (*tp);
5254 if (LOCATION_BLOCK (loc) != NULL)
5255 return *tp;
5257 return NULL;
5260 /* Called via walk_tree. Verify locations of expressions. */
5262 static tree
5263 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5265 hash_set<tree> *blocks = (hash_set<tree> *) data;
5266 tree t = *tp;
5268 /* ??? This doesn't really belong here but there's no good place to
5269 stick this remainder of old verify_expr. */
5270 /* ??? This barfs on debug stmts which contain binds to vars with
5271 different function context. */
5272 #if 0
5273 if (VAR_P (t)
5274 || TREE_CODE (t) == PARM_DECL
5275 || TREE_CODE (t) == RESULT_DECL)
5277 tree context = decl_function_context (t);
5278 if (context != cfun->decl
5279 && !SCOPE_FILE_SCOPE_P (context)
5280 && !TREE_STATIC (t)
5281 && !DECL_EXTERNAL (t))
5283 error ("local declaration from a different function");
5284 return t;
5287 #endif
5289 if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t))
5291 tree x = DECL_DEBUG_EXPR (t);
5292 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5293 if (addr)
5294 return addr;
5296 if ((VAR_P (t)
5297 || TREE_CODE (t) == PARM_DECL
5298 || TREE_CODE (t) == RESULT_DECL)
5299 && DECL_HAS_VALUE_EXPR_P (t))
5301 tree x = DECL_VALUE_EXPR (t);
5302 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5303 if (addr)
5304 return addr;
5307 if (!EXPR_P (t))
5309 *walk_subtrees = false;
5310 return NULL;
5313 location_t loc = EXPR_LOCATION (t);
5314 if (verify_location (blocks, loc))
5315 return t;
5317 return NULL;
5320 /* Called via walk_gimple_op. Verify locations of expressions. */
5322 static tree
5323 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5325 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5326 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5329 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5331 static void
5332 collect_subblocks (hash_set<tree> *blocks, tree block)
5334 tree t;
5335 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5337 blocks->add (t);
5338 collect_subblocks (blocks, t);
5342 /* Disable warnings about missing quoting in GCC diagnostics for
5343 the verification errors. Their format strings don't follow
5344 GCC diagnostic conventions and trigger an ICE in the end. */
5345 #if __GNUC__ >= 10
5346 # pragma GCC diagnostic push
5347 # pragma GCC diagnostic ignored "-Wformat-diag"
5348 #endif
5350 /* Verify the GIMPLE statements in the CFG of FN. */
5352 DEBUG_FUNCTION void
5353 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5355 basic_block bb;
5356 bool err = false;
5358 timevar_push (TV_TREE_STMT_VERIFY);
5359 hash_set<void *> visited;
5360 hash_set<gimple *> visited_throwing_stmts;
5362 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5363 hash_set<tree> blocks;
5364 if (DECL_INITIAL (fn->decl))
5366 blocks.add (DECL_INITIAL (fn->decl));
5367 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5370 FOR_EACH_BB_FN (bb, fn)
5372 gimple_stmt_iterator gsi;
5373 edge_iterator ei;
5374 edge e;
5376 for (gphi_iterator gpi = gsi_start_phis (bb);
5377 !gsi_end_p (gpi);
5378 gsi_next (&gpi))
5380 gphi *phi = gpi.phi ();
5381 bool err2 = false;
5382 unsigned i;
5384 if (gimple_bb (phi) != bb)
5386 error ("gimple_bb (phi) is set to a wrong basic block");
5387 err2 = true;
5390 err2 |= verify_gimple_phi (phi);
5392 /* Only PHI arguments have locations. */
5393 if (gimple_location (phi) != UNKNOWN_LOCATION)
5395 error ("PHI node with location");
5396 err2 = true;
5399 for (i = 0; i < gimple_phi_num_args (phi); i++)
5401 tree arg = gimple_phi_arg_def (phi, i);
5402 tree addr = walk_tree (&arg, verify_node_sharing_1,
5403 &visited, NULL);
5404 if (addr)
5406 error ("incorrect sharing of tree nodes");
5407 debug_generic_expr (addr);
5408 err2 |= true;
5410 location_t loc = gimple_phi_arg_location (phi, i);
5411 if (virtual_operand_p (gimple_phi_result (phi))
5412 && loc != UNKNOWN_LOCATION)
5414 error ("virtual PHI with argument locations");
5415 err2 = true;
5417 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5418 if (addr)
5420 debug_generic_expr (addr);
5421 err2 = true;
5423 err2 |= verify_location (&blocks, loc);
5426 if (err2)
5427 debug_gimple_stmt (phi);
5428 err |= err2;
5431 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5433 gimple *stmt = gsi_stmt (gsi);
5434 bool err2 = false;
5435 struct walk_stmt_info wi;
5436 tree addr;
5437 int lp_nr;
5439 if (gimple_bb (stmt) != bb)
5441 error ("gimple_bb (stmt) is set to a wrong basic block");
5442 err2 = true;
5445 err2 |= verify_gimple_stmt (stmt);
5446 err2 |= verify_location (&blocks, gimple_location (stmt));
5448 memset (&wi, 0, sizeof (wi));
5449 wi.info = (void *) &visited;
5450 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5451 if (addr)
5453 error ("incorrect sharing of tree nodes");
5454 debug_generic_expr (addr);
5455 err2 |= true;
5458 memset (&wi, 0, sizeof (wi));
5459 wi.info = (void *) &blocks;
5460 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5461 if (addr)
5463 debug_generic_expr (addr);
5464 err2 |= true;
5467 /* If the statement is marked as part of an EH region, then it is
5468 expected that the statement could throw. Verify that when we
5469 have optimizations that simplify statements such that we prove
5470 that they cannot throw, that we update other data structures
5471 to match. */
5472 lp_nr = lookup_stmt_eh_lp (stmt);
5473 if (lp_nr != 0)
5474 visited_throwing_stmts.add (stmt);
5475 if (lp_nr > 0)
5477 if (!stmt_could_throw_p (cfun, stmt))
5479 if (verify_nothrow)
5481 error ("statement marked for throw, but doesn%'t");
5482 err2 |= true;
5485 else if (!gsi_one_before_end_p (gsi))
5487 error ("statement marked for throw in middle of block");
5488 err2 |= true;
5492 if (err2)
5493 debug_gimple_stmt (stmt);
5494 err |= err2;
5497 FOR_EACH_EDGE (e, ei, bb->succs)
5498 if (e->goto_locus != UNKNOWN_LOCATION)
5499 err |= verify_location (&blocks, e->goto_locus);
5502 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5503 eh_error_found = false;
5504 if (eh_table)
5505 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5506 (&visited_throwing_stmts);
5508 if (err || eh_error_found)
5509 internal_error ("verify_gimple failed");
5511 verify_histograms ();
5512 timevar_pop (TV_TREE_STMT_VERIFY);
5516 /* Verifies that the flow information is OK. */
5518 static int
5519 gimple_verify_flow_info (void)
5521 int err = 0;
5522 basic_block bb;
5523 gimple_stmt_iterator gsi;
5524 gimple *stmt;
5525 edge e;
5526 edge_iterator ei;
5528 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5529 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5531 error ("ENTRY_BLOCK has IL associated with it");
5532 err = 1;
5535 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5536 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5538 error ("EXIT_BLOCK has IL associated with it");
5539 err = 1;
5542 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5543 if (e->flags & EDGE_FALLTHRU)
5545 error ("fallthru to exit from bb %d", e->src->index);
5546 err = 1;
5549 FOR_EACH_BB_FN (bb, cfun)
5551 bool found_ctrl_stmt = false;
5553 stmt = NULL;
5555 /* Skip labels on the start of basic block. */
5556 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5558 tree label;
5559 gimple *prev_stmt = stmt;
5561 stmt = gsi_stmt (gsi);
5563 if (gimple_code (stmt) != GIMPLE_LABEL)
5564 break;
5566 label = gimple_label_label (as_a <glabel *> (stmt));
5567 if (prev_stmt && DECL_NONLOCAL (label))
5569 error ("nonlocal label %qD is not first in a sequence "
5570 "of labels in bb %d", label, bb->index);
5571 err = 1;
5574 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5576 error ("EH landing pad label %qD is not first in a sequence "
5577 "of labels in bb %d", label, bb->index);
5578 err = 1;
5581 if (label_to_block (cfun, label) != bb)
5583 error ("label %qD to block does not match in bb %d",
5584 label, bb->index);
5585 err = 1;
5588 if (decl_function_context (label) != current_function_decl)
5590 error ("label %qD has incorrect context in bb %d",
5591 label, bb->index);
5592 err = 1;
5596 /* Verify that body of basic block BB is free of control flow. */
5597 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5599 gimple *stmt = gsi_stmt (gsi);
5601 if (found_ctrl_stmt)
5603 error ("control flow in the middle of basic block %d",
5604 bb->index);
5605 err = 1;
5608 if (stmt_ends_bb_p (stmt))
5609 found_ctrl_stmt = true;
5611 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5613 error ("label %qD in the middle of basic block %d",
5614 gimple_label_label (label_stmt), bb->index);
5615 err = 1;
5619 gsi = gsi_last_nondebug_bb (bb);
5620 if (gsi_end_p (gsi))
5621 continue;
5623 stmt = gsi_stmt (gsi);
5625 if (gimple_code (stmt) == GIMPLE_LABEL)
5626 continue;
5628 err |= verify_eh_edges (stmt);
5630 if (is_ctrl_stmt (stmt))
5632 FOR_EACH_EDGE (e, ei, bb->succs)
5633 if (e->flags & EDGE_FALLTHRU)
5635 error ("fallthru edge after a control statement in bb %d",
5636 bb->index);
5637 err = 1;
5641 if (gimple_code (stmt) != GIMPLE_COND)
5643 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5644 after anything else but if statement. */
5645 FOR_EACH_EDGE (e, ei, bb->succs)
5646 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5648 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5649 bb->index);
5650 err = 1;
5654 switch (gimple_code (stmt))
5656 case GIMPLE_COND:
5658 edge true_edge;
5659 edge false_edge;
5661 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5663 if (!true_edge
5664 || !false_edge
5665 || !(true_edge->flags & EDGE_TRUE_VALUE)
5666 || !(false_edge->flags & EDGE_FALSE_VALUE)
5667 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5668 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5669 || EDGE_COUNT (bb->succs) >= 3)
5671 error ("wrong outgoing edge flags at end of bb %d",
5672 bb->index);
5673 err = 1;
5676 break;
5678 case GIMPLE_GOTO:
5679 if (simple_goto_p (stmt))
5681 error ("explicit goto at end of bb %d", bb->index);
5682 err = 1;
5684 else
5686 /* FIXME. We should double check that the labels in the
5687 destination blocks have their address taken. */
5688 FOR_EACH_EDGE (e, ei, bb->succs)
5689 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5690 | EDGE_FALSE_VALUE))
5691 || !(e->flags & EDGE_ABNORMAL))
5693 error ("wrong outgoing edge flags at end of bb %d",
5694 bb->index);
5695 err = 1;
5698 break;
5700 case GIMPLE_CALL:
5701 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5702 break;
5703 /* fallthru */
5704 case GIMPLE_RETURN:
5705 if (!single_succ_p (bb)
5706 || (single_succ_edge (bb)->flags
5707 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5708 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5710 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5711 err = 1;
5713 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5715 error ("return edge does not point to exit in bb %d",
5716 bb->index);
5717 err = 1;
5719 break;
5721 case GIMPLE_SWITCH:
5723 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5724 tree prev;
5725 edge e;
5726 size_t i, n;
5728 n = gimple_switch_num_labels (switch_stmt);
5730 /* Mark all the destination basic blocks. */
5731 for (i = 0; i < n; ++i)
5733 basic_block label_bb = gimple_switch_label_bb (cfun, switch_stmt, i);
5734 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5735 label_bb->aux = (void *)1;
5738 /* Verify that the case labels are sorted. */
5739 prev = gimple_switch_label (switch_stmt, 0);
5740 for (i = 1; i < n; ++i)
5742 tree c = gimple_switch_label (switch_stmt, i);
5743 if (!CASE_LOW (c))
5745 error ("found default case not at the start of "
5746 "case vector");
5747 err = 1;
5748 continue;
5750 if (CASE_LOW (prev)
5751 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5753 error ("case labels not sorted: ");
5754 print_generic_expr (stderr, prev);
5755 fprintf (stderr," is greater than ");
5756 print_generic_expr (stderr, c);
5757 fprintf (stderr," but comes before it.\n");
5758 err = 1;
5760 prev = c;
5762 /* VRP will remove the default case if it can prove it will
5763 never be executed. So do not verify there always exists
5764 a default case here. */
5766 FOR_EACH_EDGE (e, ei, bb->succs)
5768 if (!e->dest->aux)
5770 error ("extra outgoing edge %d->%d",
5771 bb->index, e->dest->index);
5772 err = 1;
5775 e->dest->aux = (void *)2;
5776 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5777 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5779 error ("wrong outgoing edge flags at end of bb %d",
5780 bb->index);
5781 err = 1;
5785 /* Check that we have all of them. */
5786 for (i = 0; i < n; ++i)
5788 basic_block label_bb = gimple_switch_label_bb (cfun,
5789 switch_stmt, i);
5791 if (label_bb->aux != (void *)2)
5793 error ("missing edge %i->%i", bb->index, label_bb->index);
5794 err = 1;
5798 FOR_EACH_EDGE (e, ei, bb->succs)
5799 e->dest->aux = (void *)0;
5801 break;
5803 case GIMPLE_EH_DISPATCH:
5804 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5805 break;
5807 default:
5808 break;
5812 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5813 verify_dominators (CDI_DOMINATORS);
5815 return err;
5818 #if __GNUC__ >= 10
5819 # pragma GCC diagnostic pop
5820 #endif
5822 /* Updates phi nodes after creating a forwarder block joined
5823 by edge FALLTHRU. */
5825 static void
5826 gimple_make_forwarder_block (edge fallthru)
5828 edge e;
5829 edge_iterator ei;
5830 basic_block dummy, bb;
5831 tree var;
5832 gphi_iterator gsi;
5833 bool forward_location_p;
5835 dummy = fallthru->src;
5836 bb = fallthru->dest;
5838 if (single_pred_p (bb))
5839 return;
5841 /* We can forward location info if we have only one predecessor. */
5842 forward_location_p = single_pred_p (dummy);
5844 /* If we redirected a branch we must create new PHI nodes at the
5845 start of BB. */
5846 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5848 gphi *phi, *new_phi;
5850 phi = gsi.phi ();
5851 var = gimple_phi_result (phi);
5852 new_phi = create_phi_node (var, bb);
5853 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5854 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5855 forward_location_p
5856 ? gimple_phi_arg_location (phi, 0) : UNKNOWN_LOCATION);
5859 /* Add the arguments we have stored on edges. */
5860 FOR_EACH_EDGE (e, ei, bb->preds)
5862 if (e == fallthru)
5863 continue;
5865 flush_pending_stmts (e);
5870 /* Return a non-special label in the head of basic block BLOCK.
5871 Create one if it doesn't exist. */
5873 tree
5874 gimple_block_label (basic_block bb)
5876 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5877 bool first = true;
5878 tree label;
5879 glabel *stmt;
5881 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5883 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5884 if (!stmt)
5885 break;
5886 label = gimple_label_label (stmt);
5887 if (!DECL_NONLOCAL (label))
5889 if (!first)
5890 gsi_move_before (&i, &s);
5891 return label;
5895 label = create_artificial_label (UNKNOWN_LOCATION);
5896 stmt = gimple_build_label (label);
5897 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5898 return label;
5902 /* Attempt to perform edge redirection by replacing a possibly complex
5903 jump instruction by a goto or by removing the jump completely.
5904 This can apply only if all edges now point to the same block. The
5905 parameters and return values are equivalent to
5906 redirect_edge_and_branch. */
5908 static edge
5909 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5911 basic_block src = e->src;
5912 gimple_stmt_iterator i;
5913 gimple *stmt;
5915 /* We can replace or remove a complex jump only when we have exactly
5916 two edges. */
5917 if (EDGE_COUNT (src->succs) != 2
5918 /* Verify that all targets will be TARGET. Specifically, the
5919 edge that is not E must also go to TARGET. */
5920 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5921 return NULL;
5923 i = gsi_last_bb (src);
5924 if (gsi_end_p (i))
5925 return NULL;
5927 stmt = gsi_stmt (i);
5929 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5931 gsi_remove (&i, true);
5932 e = ssa_redirect_edge (e, target);
5933 e->flags = EDGE_FALLTHRU;
5934 return e;
5937 return NULL;
5941 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5942 edge representing the redirected branch. */
5944 static edge
5945 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5947 basic_block bb = e->src;
5948 gimple_stmt_iterator gsi;
5949 edge ret;
5950 gimple *stmt;
5952 if (e->flags & EDGE_ABNORMAL)
5953 return NULL;
5955 if (e->dest == dest)
5956 return NULL;
5958 if (e->flags & EDGE_EH)
5959 return redirect_eh_edge (e, dest);
5961 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5963 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5964 if (ret)
5965 return ret;
5968 gsi = gsi_last_nondebug_bb (bb);
5969 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5971 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5973 case GIMPLE_COND:
5974 /* For COND_EXPR, we only need to redirect the edge. */
5975 break;
5977 case GIMPLE_GOTO:
5978 /* No non-abnormal edges should lead from a non-simple goto, and
5979 simple ones should be represented implicitly. */
5980 gcc_unreachable ();
5982 case GIMPLE_SWITCH:
5984 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5985 tree label = gimple_block_label (dest);
5986 tree cases = get_cases_for_edge (e, switch_stmt);
5988 /* If we have a list of cases associated with E, then use it
5989 as it's a lot faster than walking the entire case vector. */
5990 if (cases)
5992 edge e2 = find_edge (e->src, dest);
5993 tree last, first;
5995 first = cases;
5996 while (cases)
5998 last = cases;
5999 CASE_LABEL (cases) = label;
6000 cases = CASE_CHAIN (cases);
6003 /* If there was already an edge in the CFG, then we need
6004 to move all the cases associated with E to E2. */
6005 if (e2)
6007 tree cases2 = get_cases_for_edge (e2, switch_stmt);
6009 CASE_CHAIN (last) = CASE_CHAIN (cases2);
6010 CASE_CHAIN (cases2) = first;
6012 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6014 else
6016 size_t i, n = gimple_switch_num_labels (switch_stmt);
6018 for (i = 0; i < n; i++)
6020 tree elt = gimple_switch_label (switch_stmt, i);
6021 if (label_to_block (cfun, CASE_LABEL (elt)) == e->dest)
6022 CASE_LABEL (elt) = label;
6026 break;
6028 case GIMPLE_ASM:
6030 gasm *asm_stmt = as_a <gasm *> (stmt);
6031 int i, n = gimple_asm_nlabels (asm_stmt);
6032 tree label = NULL;
6034 for (i = 0; i < n; ++i)
6036 tree cons = gimple_asm_label_op (asm_stmt, i);
6037 if (label_to_block (cfun, TREE_VALUE (cons)) == e->dest)
6039 if (!label)
6040 label = gimple_block_label (dest);
6041 TREE_VALUE (cons) = label;
6045 /* If we didn't find any label matching the former edge in the
6046 asm labels, we must be redirecting the fallthrough
6047 edge. */
6048 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6050 break;
6052 case GIMPLE_RETURN:
6053 gsi_remove (&gsi, true);
6054 e->flags |= EDGE_FALLTHRU;
6055 break;
6057 case GIMPLE_OMP_RETURN:
6058 case GIMPLE_OMP_CONTINUE:
6059 case GIMPLE_OMP_SECTIONS_SWITCH:
6060 case GIMPLE_OMP_FOR:
6061 /* The edges from OMP constructs can be simply redirected. */
6062 break;
6064 case GIMPLE_EH_DISPATCH:
6065 if (!(e->flags & EDGE_FALLTHRU))
6066 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6067 break;
6069 case GIMPLE_TRANSACTION:
6070 if (e->flags & EDGE_TM_ABORT)
6071 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6072 gimple_block_label (dest));
6073 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6074 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6075 gimple_block_label (dest));
6076 else
6077 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6078 gimple_block_label (dest));
6079 break;
6081 default:
6082 /* Otherwise it must be a fallthru edge, and we don't need to
6083 do anything besides redirecting it. */
6084 gcc_assert (e->flags & EDGE_FALLTHRU);
6085 break;
6088 /* Update/insert PHI nodes as necessary. */
6090 /* Now update the edges in the CFG. */
6091 e = ssa_redirect_edge (e, dest);
6093 return e;
6096 /* Returns true if it is possible to remove edge E by redirecting
6097 it to the destination of the other edge from E->src. */
6099 static bool
6100 gimple_can_remove_branch_p (const_edge e)
6102 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6103 return false;
6105 return true;
6108 /* Simple wrapper, as we can always redirect fallthru edges. */
6110 static basic_block
6111 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6113 e = gimple_redirect_edge_and_branch (e, dest);
6114 gcc_assert (e);
6116 return NULL;
6120 /* Splits basic block BB after statement STMT (but at least after the
6121 labels). If STMT is NULL, BB is split just after the labels. */
6123 static basic_block
6124 gimple_split_block (basic_block bb, void *stmt)
6126 gimple_stmt_iterator gsi;
6127 gimple_stmt_iterator gsi_tgt;
6128 gimple_seq list;
6129 basic_block new_bb;
6130 edge e;
6131 edge_iterator ei;
6133 new_bb = create_empty_bb (bb);
6135 /* Redirect the outgoing edges. */
6136 new_bb->succs = bb->succs;
6137 bb->succs = NULL;
6138 FOR_EACH_EDGE (e, ei, new_bb->succs)
6139 e->src = new_bb;
6141 /* Get a stmt iterator pointing to the first stmt to move. */
6142 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6143 gsi = gsi_after_labels (bb);
6144 else
6146 gsi = gsi_for_stmt ((gimple *) stmt);
6147 gsi_next (&gsi);
6150 /* Move everything from GSI to the new basic block. */
6151 if (gsi_end_p (gsi))
6152 return new_bb;
6154 /* Split the statement list - avoid re-creating new containers as this
6155 brings ugly quadratic memory consumption in the inliner.
6156 (We are still quadratic since we need to update stmt BB pointers,
6157 sadly.) */
6158 gsi_split_seq_before (&gsi, &list);
6159 set_bb_seq (new_bb, list);
6160 for (gsi_tgt = gsi_start (list);
6161 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6162 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6164 return new_bb;
6168 /* Moves basic block BB after block AFTER. */
6170 static bool
6171 gimple_move_block_after (basic_block bb, basic_block after)
6173 if (bb->prev_bb == after)
6174 return true;
6176 unlink_block (bb);
6177 link_block (bb, after);
6179 return true;
6183 /* Return TRUE if block BB has no executable statements, otherwise return
6184 FALSE. */
6186 static bool
6187 gimple_empty_block_p (basic_block bb)
6189 /* BB must have no executable statements. */
6190 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6191 if (phi_nodes (bb))
6192 return false;
6193 while (!gsi_end_p (gsi))
6195 gimple *stmt = gsi_stmt (gsi);
6196 if (is_gimple_debug (stmt))
6198 else if (gimple_code (stmt) == GIMPLE_NOP
6199 || gimple_code (stmt) == GIMPLE_PREDICT)
6201 else
6202 return false;
6203 gsi_next (&gsi);
6205 return true;
6209 /* Split a basic block if it ends with a conditional branch and if the
6210 other part of the block is not empty. */
6212 static basic_block
6213 gimple_split_block_before_cond_jump (basic_block bb)
6215 gimple *last, *split_point;
6216 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6217 if (gsi_end_p (gsi))
6218 return NULL;
6219 last = gsi_stmt (gsi);
6220 if (gimple_code (last) != GIMPLE_COND
6221 && gimple_code (last) != GIMPLE_SWITCH)
6222 return NULL;
6223 gsi_prev (&gsi);
6224 split_point = gsi_stmt (gsi);
6225 return split_block (bb, split_point)->dest;
6229 /* Return true if basic_block can be duplicated. */
6231 static bool
6232 gimple_can_duplicate_bb_p (const_basic_block bb)
6234 gimple *last = last_stmt (CONST_CAST_BB (bb));
6236 /* Do checks that can only fail for the last stmt, to minimize the work in the
6237 stmt loop. */
6238 if (last) {
6239 /* A transaction is a single entry multiple exit region. It
6240 must be duplicated in its entirety or not at all. */
6241 if (gimple_code (last) == GIMPLE_TRANSACTION)
6242 return false;
6244 /* An IFN_UNIQUE call must be duplicated as part of its group,
6245 or not at all. */
6246 if (is_gimple_call (last)
6247 && gimple_call_internal_p (last)
6248 && gimple_call_internal_unique_p (last))
6249 return false;
6252 for (gimple_stmt_iterator gsi = gsi_start_bb (CONST_CAST_BB (bb));
6253 !gsi_end_p (gsi); gsi_next (&gsi))
6255 gimple *g = gsi_stmt (gsi);
6257 /* An IFN_GOMP_SIMT_ENTER_ALLOC/IFN_GOMP_SIMT_EXIT call must be
6258 duplicated as part of its group, or not at all.
6259 The IFN_GOMP_SIMT_VOTE_ANY and IFN_GOMP_SIMT_XCHG_* are part of such a
6260 group, so the same holds there. */
6261 if (is_gimple_call (g)
6262 && (gimple_call_internal_p (g, IFN_GOMP_SIMT_ENTER_ALLOC)
6263 || gimple_call_internal_p (g, IFN_GOMP_SIMT_EXIT)
6264 || gimple_call_internal_p (g, IFN_GOMP_SIMT_VOTE_ANY)
6265 || gimple_call_internal_p (g, IFN_GOMP_SIMT_XCHG_BFLY)
6266 || gimple_call_internal_p (g, IFN_GOMP_SIMT_XCHG_IDX)))
6267 return false;
6270 return true;
6273 /* Create a duplicate of the basic block BB. NOTE: This does not
6274 preserve SSA form. */
6276 static basic_block
6277 gimple_duplicate_bb (basic_block bb, copy_bb_data *id)
6279 basic_block new_bb;
6280 gimple_stmt_iterator gsi_tgt;
6282 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6284 /* Copy the PHI nodes. We ignore PHI node arguments here because
6285 the incoming edges have not been setup yet. */
6286 for (gphi_iterator gpi = gsi_start_phis (bb);
6287 !gsi_end_p (gpi);
6288 gsi_next (&gpi))
6290 gphi *phi, *copy;
6291 phi = gpi.phi ();
6292 copy = create_phi_node (NULL_TREE, new_bb);
6293 create_new_def_for (gimple_phi_result (phi), copy,
6294 gimple_phi_result_ptr (copy));
6295 gimple_set_uid (copy, gimple_uid (phi));
6298 gsi_tgt = gsi_start_bb (new_bb);
6299 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6300 !gsi_end_p (gsi);
6301 gsi_next (&gsi))
6303 def_operand_p def_p;
6304 ssa_op_iter op_iter;
6305 tree lhs;
6306 gimple *stmt, *copy;
6308 stmt = gsi_stmt (gsi);
6309 if (gimple_code (stmt) == GIMPLE_LABEL)
6310 continue;
6312 /* Don't duplicate label debug stmts. */
6313 if (gimple_debug_bind_p (stmt)
6314 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6315 == LABEL_DECL)
6316 continue;
6318 /* Create a new copy of STMT and duplicate STMT's virtual
6319 operands. */
6320 copy = gimple_copy (stmt);
6321 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6323 maybe_duplicate_eh_stmt (copy, stmt);
6324 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6326 /* When copying around a stmt writing into a local non-user
6327 aggregate, make sure it won't share stack slot with other
6328 vars. */
6329 lhs = gimple_get_lhs (stmt);
6330 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6332 tree base = get_base_address (lhs);
6333 if (base
6334 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6335 && DECL_IGNORED_P (base)
6336 && !TREE_STATIC (base)
6337 && !DECL_EXTERNAL (base)
6338 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6339 DECL_NONSHAREABLE (base) = 1;
6342 /* If requested remap dependence info of cliques brought in
6343 via inlining. */
6344 if (id)
6345 for (unsigned i = 0; i < gimple_num_ops (copy); ++i)
6347 tree op = gimple_op (copy, i);
6348 if (!op)
6349 continue;
6350 if (TREE_CODE (op) == ADDR_EXPR
6351 || TREE_CODE (op) == WITH_SIZE_EXPR)
6352 op = TREE_OPERAND (op, 0);
6353 while (handled_component_p (op))
6354 op = TREE_OPERAND (op, 0);
6355 if ((TREE_CODE (op) == MEM_REF
6356 || TREE_CODE (op) == TARGET_MEM_REF)
6357 && MR_DEPENDENCE_CLIQUE (op) > 1
6358 && MR_DEPENDENCE_CLIQUE (op) != bb->loop_father->owned_clique)
6360 if (!id->dependence_map)
6361 id->dependence_map = new hash_map<dependence_hash,
6362 unsigned short>;
6363 bool existed;
6364 unsigned short &newc = id->dependence_map->get_or_insert
6365 (MR_DEPENDENCE_CLIQUE (op), &existed);
6366 if (!existed)
6368 gcc_assert (MR_DEPENDENCE_CLIQUE (op) <= cfun->last_clique);
6369 newc = ++cfun->last_clique;
6371 MR_DEPENDENCE_CLIQUE (op) = newc;
6375 /* Create new names for all the definitions created by COPY and
6376 add replacement mappings for each new name. */
6377 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6378 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6381 return new_bb;
6384 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6386 static void
6387 add_phi_args_after_copy_edge (edge e_copy)
6389 basic_block bb, bb_copy = e_copy->src, dest;
6390 edge e;
6391 edge_iterator ei;
6392 gphi *phi, *phi_copy;
6393 tree def;
6394 gphi_iterator psi, psi_copy;
6396 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6397 return;
6399 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6401 if (e_copy->dest->flags & BB_DUPLICATED)
6402 dest = get_bb_original (e_copy->dest);
6403 else
6404 dest = e_copy->dest;
6406 e = find_edge (bb, dest);
6407 if (!e)
6409 /* During loop unrolling the target of the latch edge is copied.
6410 In this case we are not looking for edge to dest, but to
6411 duplicated block whose original was dest. */
6412 FOR_EACH_EDGE (e, ei, bb->succs)
6414 if ((e->dest->flags & BB_DUPLICATED)
6415 && get_bb_original (e->dest) == dest)
6416 break;
6419 gcc_assert (e != NULL);
6422 for (psi = gsi_start_phis (e->dest),
6423 psi_copy = gsi_start_phis (e_copy->dest);
6424 !gsi_end_p (psi);
6425 gsi_next (&psi), gsi_next (&psi_copy))
6427 phi = psi.phi ();
6428 phi_copy = psi_copy.phi ();
6429 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6430 add_phi_arg (phi_copy, def, e_copy,
6431 gimple_phi_arg_location_from_edge (phi, e));
6436 /* Basic block BB_COPY was created by code duplication. Add phi node
6437 arguments for edges going out of BB_COPY. The blocks that were
6438 duplicated have BB_DUPLICATED set. */
6440 void
6441 add_phi_args_after_copy_bb (basic_block bb_copy)
6443 edge e_copy;
6444 edge_iterator ei;
6446 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6448 add_phi_args_after_copy_edge (e_copy);
6452 /* Blocks in REGION_COPY array of length N_REGION were created by
6453 duplication of basic blocks. Add phi node arguments for edges
6454 going from these blocks. If E_COPY is not NULL, also add
6455 phi node arguments for its destination.*/
6457 void
6458 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6459 edge e_copy)
6461 unsigned i;
6463 for (i = 0; i < n_region; i++)
6464 region_copy[i]->flags |= BB_DUPLICATED;
6466 for (i = 0; i < n_region; i++)
6467 add_phi_args_after_copy_bb (region_copy[i]);
6468 if (e_copy)
6469 add_phi_args_after_copy_edge (e_copy);
6471 for (i = 0; i < n_region; i++)
6472 region_copy[i]->flags &= ~BB_DUPLICATED;
6475 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6476 important exit edge EXIT. By important we mean that no SSA name defined
6477 inside region is live over the other exit edges of the region. All entry
6478 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6479 to the duplicate of the region. Dominance and loop information is
6480 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6481 UPDATE_DOMINANCE is false then we assume that the caller will update the
6482 dominance information after calling this function. The new basic
6483 blocks are stored to REGION_COPY in the same order as they had in REGION,
6484 provided that REGION_COPY is not NULL.
6485 The function returns false if it is unable to copy the region,
6486 true otherwise. */
6488 bool
6489 gimple_duplicate_sese_region (edge entry, edge exit,
6490 basic_block *region, unsigned n_region,
6491 basic_block *region_copy,
6492 bool update_dominance)
6494 unsigned i;
6495 bool free_region_copy = false, copying_header = false;
6496 class loop *loop = entry->dest->loop_father;
6497 edge exit_copy;
6498 edge redirected;
6499 profile_count total_count = profile_count::uninitialized ();
6500 profile_count entry_count = profile_count::uninitialized ();
6502 if (!can_copy_bbs_p (region, n_region))
6503 return false;
6505 /* Some sanity checking. Note that we do not check for all possible
6506 missuses of the functions. I.e. if you ask to copy something weird,
6507 it will work, but the state of structures probably will not be
6508 correct. */
6509 for (i = 0; i < n_region; i++)
6511 /* We do not handle subloops, i.e. all the blocks must belong to the
6512 same loop. */
6513 if (region[i]->loop_father != loop)
6514 return false;
6516 if (region[i] != entry->dest
6517 && region[i] == loop->header)
6518 return false;
6521 /* In case the function is used for loop header copying (which is the primary
6522 use), ensure that EXIT and its copy will be new latch and entry edges. */
6523 if (loop->header == entry->dest)
6525 copying_header = true;
6527 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6528 return false;
6530 for (i = 0; i < n_region; i++)
6531 if (region[i] != exit->src
6532 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6533 return false;
6536 initialize_original_copy_tables ();
6538 if (copying_header)
6539 set_loop_copy (loop, loop_outer (loop));
6540 else
6541 set_loop_copy (loop, loop);
6543 if (!region_copy)
6545 region_copy = XNEWVEC (basic_block, n_region);
6546 free_region_copy = true;
6549 /* Record blocks outside the region that are dominated by something
6550 inside. */
6551 auto_vec<basic_block> doms;
6552 if (update_dominance)
6554 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6557 if (entry->dest->count.initialized_p ())
6559 total_count = entry->dest->count;
6560 entry_count = entry->count ();
6561 /* Fix up corner cases, to avoid division by zero or creation of negative
6562 frequencies. */
6563 if (entry_count > total_count)
6564 entry_count = total_count;
6567 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6568 split_edge_bb_loc (entry), update_dominance);
6569 if (total_count.initialized_p () && entry_count.initialized_p ())
6571 scale_bbs_frequencies_profile_count (region, n_region,
6572 total_count - entry_count,
6573 total_count);
6574 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6575 total_count);
6578 if (copying_header)
6580 loop->header = exit->dest;
6581 loop->latch = exit->src;
6584 /* Redirect the entry and add the phi node arguments. */
6585 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6586 gcc_assert (redirected != NULL);
6587 flush_pending_stmts (entry);
6589 /* Concerning updating of dominators: We must recount dominators
6590 for entry block and its copy. Anything that is outside of the
6591 region, but was dominated by something inside needs recounting as
6592 well. */
6593 if (update_dominance)
6595 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6596 doms.safe_push (get_bb_original (entry->dest));
6597 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6600 /* Add the other PHI node arguments. */
6601 add_phi_args_after_copy (region_copy, n_region, NULL);
6603 if (free_region_copy)
6604 free (region_copy);
6606 free_original_copy_tables ();
6607 return true;
6610 /* Checks if BB is part of the region defined by N_REGION BBS. */
6611 static bool
6612 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6614 unsigned int n;
6616 for (n = 0; n < n_region; n++)
6618 if (bb == bbs[n])
6619 return true;
6621 return false;
6624 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6625 are stored to REGION_COPY in the same order in that they appear
6626 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6627 the region, EXIT an exit from it. The condition guarding EXIT
6628 is moved to ENTRY. Returns true if duplication succeeds, false
6629 otherwise.
6631 For example,
6633 some_code;
6634 if (cond)
6636 else
6639 is transformed to
6641 if (cond)
6643 some_code;
6646 else
6648 some_code;
6653 bool
6654 gimple_duplicate_sese_tail (edge entry, edge exit,
6655 basic_block *region, unsigned n_region,
6656 basic_block *region_copy)
6658 unsigned i;
6659 bool free_region_copy = false;
6660 class loop *loop = exit->dest->loop_father;
6661 class loop *orig_loop = entry->dest->loop_father;
6662 basic_block switch_bb, entry_bb, nentry_bb;
6663 profile_count total_count = profile_count::uninitialized (),
6664 exit_count = profile_count::uninitialized ();
6665 edge exits[2], nexits[2], e;
6666 gimple_stmt_iterator gsi;
6667 gimple *cond_stmt;
6668 edge sorig, snew;
6669 basic_block exit_bb;
6670 gphi_iterator psi;
6671 gphi *phi;
6672 tree def;
6673 class loop *target, *aloop, *cloop;
6675 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6676 exits[0] = exit;
6677 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6679 if (!can_copy_bbs_p (region, n_region))
6680 return false;
6682 initialize_original_copy_tables ();
6683 set_loop_copy (orig_loop, loop);
6685 target= loop;
6686 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6688 if (bb_part_of_region_p (aloop->header, region, n_region))
6690 cloop = duplicate_loop (aloop, target);
6691 duplicate_subloops (aloop, cloop);
6695 if (!region_copy)
6697 region_copy = XNEWVEC (basic_block, n_region);
6698 free_region_copy = true;
6701 gcc_assert (!need_ssa_update_p (cfun));
6703 /* Record blocks outside the region that are dominated by something
6704 inside. */
6705 auto_vec<basic_block> doms = get_dominated_by_region (CDI_DOMINATORS, region,
6706 n_region);
6708 total_count = exit->src->count;
6709 exit_count = exit->count ();
6710 /* Fix up corner cases, to avoid division by zero or creation of negative
6711 frequencies. */
6712 if (exit_count > total_count)
6713 exit_count = total_count;
6715 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6716 split_edge_bb_loc (exit), true);
6717 if (total_count.initialized_p () && exit_count.initialized_p ())
6719 scale_bbs_frequencies_profile_count (region, n_region,
6720 total_count - exit_count,
6721 total_count);
6722 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6723 total_count);
6726 /* Create the switch block, and put the exit condition to it. */
6727 entry_bb = entry->dest;
6728 nentry_bb = get_bb_copy (entry_bb);
6729 if (!last_stmt (entry->src)
6730 || !stmt_ends_bb_p (last_stmt (entry->src)))
6731 switch_bb = entry->src;
6732 else
6733 switch_bb = split_edge (entry);
6734 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6736 gsi = gsi_last_bb (switch_bb);
6737 cond_stmt = last_stmt (exit->src);
6738 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6739 cond_stmt = gimple_copy (cond_stmt);
6741 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6743 sorig = single_succ_edge (switch_bb);
6744 sorig->flags = exits[1]->flags;
6745 sorig->probability = exits[1]->probability;
6746 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6747 snew->probability = exits[0]->probability;
6750 /* Register the new edge from SWITCH_BB in loop exit lists. */
6751 rescan_loop_exit (snew, true, false);
6753 /* Add the PHI node arguments. */
6754 add_phi_args_after_copy (region_copy, n_region, snew);
6756 /* Get rid of now superfluous conditions and associated edges (and phi node
6757 arguments). */
6758 exit_bb = exit->dest;
6760 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6761 PENDING_STMT (e) = NULL;
6763 /* The latch of ORIG_LOOP was copied, and so was the backedge
6764 to the original header. We redirect this backedge to EXIT_BB. */
6765 for (i = 0; i < n_region; i++)
6766 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6768 gcc_assert (single_succ_edge (region_copy[i]));
6769 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6770 PENDING_STMT (e) = NULL;
6771 for (psi = gsi_start_phis (exit_bb);
6772 !gsi_end_p (psi);
6773 gsi_next (&psi))
6775 phi = psi.phi ();
6776 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6777 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6780 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6781 PENDING_STMT (e) = NULL;
6783 /* Anything that is outside of the region, but was dominated by something
6784 inside needs to update dominance info. */
6785 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6786 /* Update the SSA web. */
6787 update_ssa (TODO_update_ssa);
6789 if (free_region_copy)
6790 free (region_copy);
6792 free_original_copy_tables ();
6793 return true;
6796 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6797 adding blocks when the dominator traversal reaches EXIT. This
6798 function silently assumes that ENTRY strictly dominates EXIT. */
6800 void
6801 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6802 vec<basic_block> *bbs_p)
6804 basic_block son;
6806 for (son = first_dom_son (CDI_DOMINATORS, entry);
6807 son;
6808 son = next_dom_son (CDI_DOMINATORS, son))
6810 bbs_p->safe_push (son);
6811 if (son != exit)
6812 gather_blocks_in_sese_region (son, exit, bbs_p);
6816 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6817 The duplicates are recorded in VARS_MAP. */
6819 static void
6820 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6821 tree to_context)
6823 tree t = *tp, new_t;
6824 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6826 if (DECL_CONTEXT (t) == to_context)
6827 return;
6829 bool existed;
6830 tree &loc = vars_map->get_or_insert (t, &existed);
6832 if (!existed)
6834 if (SSA_VAR_P (t))
6836 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6837 add_local_decl (f, new_t);
6839 else
6841 gcc_assert (TREE_CODE (t) == CONST_DECL);
6842 new_t = copy_node (t);
6844 DECL_CONTEXT (new_t) = to_context;
6846 loc = new_t;
6848 else
6849 new_t = loc;
6851 *tp = new_t;
6855 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6856 VARS_MAP maps old ssa names and var_decls to the new ones. */
6858 static tree
6859 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6860 tree to_context)
6862 tree new_name;
6864 gcc_assert (!virtual_operand_p (name));
6866 tree *loc = vars_map->get (name);
6868 if (!loc)
6870 tree decl = SSA_NAME_VAR (name);
6871 if (decl)
6873 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6874 replace_by_duplicate_decl (&decl, vars_map, to_context);
6875 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6876 decl, SSA_NAME_DEF_STMT (name));
6878 else
6879 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6880 name, SSA_NAME_DEF_STMT (name));
6882 /* Now that we've used the def stmt to define new_name, make sure it
6883 doesn't define name anymore. */
6884 SSA_NAME_DEF_STMT (name) = NULL;
6886 vars_map->put (name, new_name);
6888 else
6889 new_name = *loc;
6891 return new_name;
6894 struct move_stmt_d
6896 tree orig_block;
6897 tree new_block;
6898 tree from_context;
6899 tree to_context;
6900 hash_map<tree, tree> *vars_map;
6901 htab_t new_label_map;
6902 hash_map<void *, void *> *eh_map;
6903 bool remap_decls_p;
6906 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6907 contained in *TP if it has been ORIG_BLOCK previously and change the
6908 DECL_CONTEXT of every local variable referenced in *TP. */
6910 static tree
6911 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6913 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6914 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6915 tree t = *tp;
6917 if (EXPR_P (t))
6919 tree block = TREE_BLOCK (t);
6920 if (block == NULL_TREE)
6922 else if (block == p->orig_block
6923 || p->orig_block == NULL_TREE)
6925 /* tree_node_can_be_shared says we can share invariant
6926 addresses but unshare_expr copies them anyways. Make sure
6927 to unshare before adjusting the block in place - we do not
6928 always see a copy here. */
6929 if (TREE_CODE (t) == ADDR_EXPR
6930 && is_gimple_min_invariant (t))
6931 *tp = t = unshare_expr (t);
6932 TREE_SET_BLOCK (t, p->new_block);
6934 else if (flag_checking)
6936 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6937 block = BLOCK_SUPERCONTEXT (block);
6938 gcc_assert (block == p->orig_block);
6941 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6943 if (TREE_CODE (t) == SSA_NAME)
6944 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6945 else if (TREE_CODE (t) == PARM_DECL
6946 && gimple_in_ssa_p (cfun))
6947 *tp = *(p->vars_map->get (t));
6948 else if (TREE_CODE (t) == LABEL_DECL)
6950 if (p->new_label_map)
6952 struct tree_map in, *out;
6953 in.base.from = t;
6954 out = (struct tree_map *)
6955 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6956 if (out)
6957 *tp = t = out->to;
6960 /* For FORCED_LABELs we can end up with references from other
6961 functions if some SESE regions are outlined. It is UB to
6962 jump in between them, but they could be used just for printing
6963 addresses etc. In that case, DECL_CONTEXT on the label should
6964 be the function containing the glabel stmt with that LABEL_DECL,
6965 rather than whatever function a reference to the label was seen
6966 last time. */
6967 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6968 DECL_CONTEXT (t) = p->to_context;
6970 else if (p->remap_decls_p)
6972 /* Replace T with its duplicate. T should no longer appear in the
6973 parent function, so this looks wasteful; however, it may appear
6974 in referenced_vars, and more importantly, as virtual operands of
6975 statements, and in alias lists of other variables. It would be
6976 quite difficult to expunge it from all those places. ??? It might
6977 suffice to do this for addressable variables. */
6978 if ((VAR_P (t) && !is_global_var (t))
6979 || TREE_CODE (t) == CONST_DECL)
6980 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6982 *walk_subtrees = 0;
6984 else if (TYPE_P (t))
6985 *walk_subtrees = 0;
6987 return NULL_TREE;
6990 /* Helper for move_stmt_r. Given an EH region number for the source
6991 function, map that to the duplicate EH regio number in the dest. */
6993 static int
6994 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6996 eh_region old_r, new_r;
6998 old_r = get_eh_region_from_number (old_nr);
6999 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
7001 return new_r->index;
7004 /* Similar, but operate on INTEGER_CSTs. */
7006 static tree
7007 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
7009 int old_nr, new_nr;
7011 old_nr = tree_to_shwi (old_t_nr);
7012 new_nr = move_stmt_eh_region_nr (old_nr, p);
7014 return build_int_cst (integer_type_node, new_nr);
7017 /* Like move_stmt_op, but for gimple statements.
7019 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
7020 contained in the current statement in *GSI_P and change the
7021 DECL_CONTEXT of every local variable referenced in the current
7022 statement. */
7024 static tree
7025 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
7026 struct walk_stmt_info *wi)
7028 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
7029 gimple *stmt = gsi_stmt (*gsi_p);
7030 tree block = gimple_block (stmt);
7032 if (block == p->orig_block
7033 || (p->orig_block == NULL_TREE
7034 && block != NULL_TREE))
7035 gimple_set_block (stmt, p->new_block);
7037 switch (gimple_code (stmt))
7039 case GIMPLE_CALL:
7040 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
7042 tree r, fndecl = gimple_call_fndecl (stmt);
7043 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
7044 switch (DECL_FUNCTION_CODE (fndecl))
7046 case BUILT_IN_EH_COPY_VALUES:
7047 r = gimple_call_arg (stmt, 1);
7048 r = move_stmt_eh_region_tree_nr (r, p);
7049 gimple_call_set_arg (stmt, 1, r);
7050 /* FALLTHRU */
7052 case BUILT_IN_EH_POINTER:
7053 case BUILT_IN_EH_FILTER:
7054 r = gimple_call_arg (stmt, 0);
7055 r = move_stmt_eh_region_tree_nr (r, p);
7056 gimple_call_set_arg (stmt, 0, r);
7057 break;
7059 default:
7060 break;
7063 break;
7065 case GIMPLE_RESX:
7067 gresx *resx_stmt = as_a <gresx *> (stmt);
7068 int r = gimple_resx_region (resx_stmt);
7069 r = move_stmt_eh_region_nr (r, p);
7070 gimple_resx_set_region (resx_stmt, r);
7072 break;
7074 case GIMPLE_EH_DISPATCH:
7076 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7077 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7078 r = move_stmt_eh_region_nr (r, p);
7079 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7081 break;
7083 case GIMPLE_OMP_RETURN:
7084 case GIMPLE_OMP_CONTINUE:
7085 break;
7087 case GIMPLE_LABEL:
7089 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7090 so that such labels can be referenced from other regions.
7091 Make sure to update it when seeing a GIMPLE_LABEL though,
7092 that is the owner of the label. */
7093 walk_gimple_op (stmt, move_stmt_op, wi);
7094 *handled_ops_p = true;
7095 tree label = gimple_label_label (as_a <glabel *> (stmt));
7096 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7097 DECL_CONTEXT (label) = p->to_context;
7099 break;
7101 default:
7102 if (is_gimple_omp (stmt))
7104 /* Do not remap variables inside OMP directives. Variables
7105 referenced in clauses and directive header belong to the
7106 parent function and should not be moved into the child
7107 function. */
7108 bool save_remap_decls_p = p->remap_decls_p;
7109 p->remap_decls_p = false;
7110 *handled_ops_p = true;
7112 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7113 move_stmt_op, wi);
7115 p->remap_decls_p = save_remap_decls_p;
7117 break;
7120 return NULL_TREE;
7123 /* Move basic block BB from function CFUN to function DEST_FN. The
7124 block is moved out of the original linked list and placed after
7125 block AFTER in the new list. Also, the block is removed from the
7126 original array of blocks and placed in DEST_FN's array of blocks.
7127 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7128 updated to reflect the moved edges.
7130 The local variables are remapped to new instances, VARS_MAP is used
7131 to record the mapping. */
7133 static void
7134 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7135 basic_block after, bool update_edge_count_p,
7136 struct move_stmt_d *d)
7138 struct control_flow_graph *cfg;
7139 edge_iterator ei;
7140 edge e;
7141 gimple_stmt_iterator si;
7142 unsigned old_len;
7144 /* Remove BB from dominance structures. */
7145 delete_from_dominance_info (CDI_DOMINATORS, bb);
7147 /* Move BB from its current loop to the copy in the new function. */
7148 if (current_loops)
7150 class loop *new_loop = (class loop *)bb->loop_father->aux;
7151 if (new_loop)
7152 bb->loop_father = new_loop;
7155 /* Link BB to the new linked list. */
7156 move_block_after (bb, after);
7158 /* Update the edge count in the corresponding flowgraphs. */
7159 if (update_edge_count_p)
7160 FOR_EACH_EDGE (e, ei, bb->succs)
7162 cfun->cfg->x_n_edges--;
7163 dest_cfun->cfg->x_n_edges++;
7166 /* Remove BB from the original basic block array. */
7167 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7168 cfun->cfg->x_n_basic_blocks--;
7170 /* Grow DEST_CFUN's basic block array if needed. */
7171 cfg = dest_cfun->cfg;
7172 cfg->x_n_basic_blocks++;
7173 if (bb->index >= cfg->x_last_basic_block)
7174 cfg->x_last_basic_block = bb->index + 1;
7176 old_len = vec_safe_length (cfg->x_basic_block_info);
7177 if ((unsigned) cfg->x_last_basic_block >= old_len)
7178 vec_safe_grow_cleared (cfg->x_basic_block_info,
7179 cfg->x_last_basic_block + 1);
7181 (*cfg->x_basic_block_info)[bb->index] = bb;
7183 /* Remap the variables in phi nodes. */
7184 for (gphi_iterator psi = gsi_start_phis (bb);
7185 !gsi_end_p (psi); )
7187 gphi *phi = psi.phi ();
7188 use_operand_p use;
7189 tree op = PHI_RESULT (phi);
7190 ssa_op_iter oi;
7191 unsigned i;
7193 if (virtual_operand_p (op))
7195 /* Remove the phi nodes for virtual operands (alias analysis will be
7196 run for the new function, anyway). But replace all uses that
7197 might be outside of the region we move. */
7198 use_operand_p use_p;
7199 imm_use_iterator iter;
7200 gimple *use_stmt;
7201 FOR_EACH_IMM_USE_STMT (use_stmt, iter, op)
7202 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7203 SET_USE (use_p, SSA_NAME_VAR (op));
7204 remove_phi_node (&psi, true);
7205 continue;
7208 SET_PHI_RESULT (phi,
7209 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7210 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7212 op = USE_FROM_PTR (use);
7213 if (TREE_CODE (op) == SSA_NAME)
7214 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7217 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7219 location_t locus = gimple_phi_arg_location (phi, i);
7220 tree block = LOCATION_BLOCK (locus);
7222 if (locus == UNKNOWN_LOCATION)
7223 continue;
7224 if (d->orig_block == NULL_TREE || block == d->orig_block)
7226 locus = set_block (locus, d->new_block);
7227 gimple_phi_arg_set_location (phi, i, locus);
7231 gsi_next (&psi);
7234 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7236 gimple *stmt = gsi_stmt (si);
7237 struct walk_stmt_info wi;
7239 memset (&wi, 0, sizeof (wi));
7240 wi.info = d;
7241 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7243 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7245 tree label = gimple_label_label (label_stmt);
7246 int uid = LABEL_DECL_UID (label);
7248 gcc_assert (uid > -1);
7250 old_len = vec_safe_length (cfg->x_label_to_block_map);
7251 if (old_len <= (unsigned) uid)
7252 vec_safe_grow_cleared (cfg->x_label_to_block_map, uid + 1);
7254 (*cfg->x_label_to_block_map)[uid] = bb;
7255 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7257 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7259 if (uid >= dest_cfun->cfg->last_label_uid)
7260 dest_cfun->cfg->last_label_uid = uid + 1;
7263 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7264 remove_stmt_from_eh_lp_fn (cfun, stmt);
7266 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7267 gimple_remove_stmt_histograms (cfun, stmt);
7269 /* We cannot leave any operands allocated from the operand caches of
7270 the current function. */
7271 free_stmt_operands (cfun, stmt);
7272 push_cfun (dest_cfun);
7273 update_stmt (stmt);
7274 if (is_gimple_call (stmt))
7275 notice_special_calls (as_a <gcall *> (stmt));
7276 pop_cfun ();
7279 FOR_EACH_EDGE (e, ei, bb->succs)
7280 if (e->goto_locus != UNKNOWN_LOCATION)
7282 tree block = LOCATION_BLOCK (e->goto_locus);
7283 if (d->orig_block == NULL_TREE
7284 || block == d->orig_block)
7285 e->goto_locus = set_block (e->goto_locus, d->new_block);
7289 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7290 the outermost EH region. Use REGION as the incoming base EH region.
7291 If there is no single outermost region, return NULL and set *ALL to
7292 true. */
7294 static eh_region
7295 find_outermost_region_in_block (struct function *src_cfun,
7296 basic_block bb, eh_region region,
7297 bool *all)
7299 gimple_stmt_iterator si;
7301 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7303 gimple *stmt = gsi_stmt (si);
7304 eh_region stmt_region;
7305 int lp_nr;
7307 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7308 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7309 if (stmt_region)
7311 if (region == NULL)
7312 region = stmt_region;
7313 else if (stmt_region != region)
7315 region = eh_region_outermost (src_cfun, stmt_region, region);
7316 if (region == NULL)
7318 *all = true;
7319 return NULL;
7325 return region;
7328 static tree
7329 new_label_mapper (tree decl, void *data)
7331 htab_t hash = (htab_t) data;
7332 struct tree_map *m;
7333 void **slot;
7335 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7337 m = XNEW (struct tree_map);
7338 m->hash = DECL_UID (decl);
7339 m->base.from = decl;
7340 m->to = create_artificial_label (UNKNOWN_LOCATION);
7341 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7342 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7343 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7345 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7346 gcc_assert (*slot == NULL);
7348 *slot = m;
7350 return m->to;
7353 /* Tree walker to replace the decls used inside value expressions by
7354 duplicates. */
7356 static tree
7357 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7359 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7361 switch (TREE_CODE (*tp))
7363 case VAR_DECL:
7364 case PARM_DECL:
7365 case RESULT_DECL:
7366 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7367 break;
7368 default:
7369 break;
7372 if (IS_TYPE_OR_DECL_P (*tp))
7373 *walk_subtrees = false;
7375 return NULL;
7378 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7379 subblocks. */
7381 static void
7382 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7383 tree to_context)
7385 tree *tp, t;
7387 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7389 t = *tp;
7390 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7391 continue;
7392 replace_by_duplicate_decl (&t, vars_map, to_context);
7393 if (t != *tp)
7395 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7397 tree x = DECL_VALUE_EXPR (*tp);
7398 struct replace_decls_d rd = { vars_map, to_context };
7399 unshare_expr (x);
7400 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7401 SET_DECL_VALUE_EXPR (t, x);
7402 DECL_HAS_VALUE_EXPR_P (t) = 1;
7404 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7405 *tp = t;
7409 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7410 replace_block_vars_by_duplicates (block, vars_map, to_context);
7413 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7414 from FN1 to FN2. */
7416 static void
7417 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7418 class loop *loop)
7420 /* Discard it from the old loop array. */
7421 (*get_loops (fn1))[loop->num] = NULL;
7423 /* Place it in the new loop array, assigning it a new number. */
7424 loop->num = number_of_loops (fn2);
7425 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7427 /* Recurse to children. */
7428 for (loop = loop->inner; loop; loop = loop->next)
7429 fixup_loop_arrays_after_move (fn1, fn2, loop);
7432 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7433 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7435 DEBUG_FUNCTION void
7436 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7438 basic_block bb;
7439 edge_iterator ei;
7440 edge e;
7441 bitmap bbs = BITMAP_ALLOC (NULL);
7442 int i;
7444 gcc_assert (entry != NULL);
7445 gcc_assert (entry != exit);
7446 gcc_assert (bbs_p != NULL);
7448 gcc_assert (bbs_p->length () > 0);
7450 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7451 bitmap_set_bit (bbs, bb->index);
7453 gcc_assert (bitmap_bit_p (bbs, entry->index));
7454 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7456 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7458 if (bb == entry)
7460 gcc_assert (single_pred_p (entry));
7461 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7463 else
7464 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7466 e = ei_edge (ei);
7467 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7470 if (bb == exit)
7472 gcc_assert (single_succ_p (exit));
7473 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7475 else
7476 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7478 e = ei_edge (ei);
7479 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7483 BITMAP_FREE (bbs);
7486 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7488 bool
7489 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7491 bitmap release_names = (bitmap)data;
7493 if (TREE_CODE (from) != SSA_NAME)
7494 return true;
7496 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7497 return true;
7500 /* Return LOOP_DIST_ALIAS call if present in BB. */
7502 static gimple *
7503 find_loop_dist_alias (basic_block bb)
7505 gimple *g = last_stmt (bb);
7506 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7507 return NULL;
7509 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7510 gsi_prev (&gsi);
7511 if (gsi_end_p (gsi))
7512 return NULL;
7514 g = gsi_stmt (gsi);
7515 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7516 return g;
7517 return NULL;
7520 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7521 to VALUE and update any immediate uses of it's LHS. */
7523 void
7524 fold_loop_internal_call (gimple *g, tree value)
7526 tree lhs = gimple_call_lhs (g);
7527 use_operand_p use_p;
7528 imm_use_iterator iter;
7529 gimple *use_stmt;
7530 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7532 replace_call_with_value (&gsi, value);
7533 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7535 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7536 SET_USE (use_p, value);
7537 update_stmt (use_stmt);
7541 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7542 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7543 single basic block in the original CFG and the new basic block is
7544 returned. DEST_CFUN must not have a CFG yet.
7546 Note that the region need not be a pure SESE region. Blocks inside
7547 the region may contain calls to abort/exit. The only restriction
7548 is that ENTRY_BB should be the only entry point and it must
7549 dominate EXIT_BB.
7551 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7552 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7553 to the new function.
7555 All local variables referenced in the region are assumed to be in
7556 the corresponding BLOCK_VARS and unexpanded variable lists
7557 associated with DEST_CFUN.
7559 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7560 reimplement move_sese_region_to_fn by duplicating the region rather than
7561 moving it. */
7563 basic_block
7564 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7565 basic_block exit_bb, tree orig_block)
7567 vec<basic_block> bbs;
7568 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7569 basic_block after, bb, *entry_pred, *exit_succ, abb;
7570 struct function *saved_cfun = cfun;
7571 int *entry_flag, *exit_flag;
7572 profile_probability *entry_prob, *exit_prob;
7573 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7574 edge e;
7575 edge_iterator ei;
7576 htab_t new_label_map;
7577 hash_map<void *, void *> *eh_map;
7578 class loop *loop = entry_bb->loop_father;
7579 class loop *loop0 = get_loop (saved_cfun, 0);
7580 struct move_stmt_d d;
7582 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7583 region. */
7584 gcc_assert (entry_bb != exit_bb
7585 && (!exit_bb
7586 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7588 /* Collect all the blocks in the region. Manually add ENTRY_BB
7589 because it won't be added by dfs_enumerate_from. */
7590 bbs.create (0);
7591 bbs.safe_push (entry_bb);
7592 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7594 if (flag_checking)
7595 verify_sese (entry_bb, exit_bb, &bbs);
7597 /* The blocks that used to be dominated by something in BBS will now be
7598 dominated by the new block. */
7599 auto_vec<basic_block> dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7600 bbs.address (),
7601 bbs.length ());
7603 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7604 the predecessor edges to ENTRY_BB and the successor edges to
7605 EXIT_BB so that we can re-attach them to the new basic block that
7606 will replace the region. */
7607 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7608 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7609 entry_flag = XNEWVEC (int, num_entry_edges);
7610 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7611 i = 0;
7612 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7614 entry_prob[i] = e->probability;
7615 entry_flag[i] = e->flags;
7616 entry_pred[i++] = e->src;
7617 remove_edge (e);
7620 if (exit_bb)
7622 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7623 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7624 exit_flag = XNEWVEC (int, num_exit_edges);
7625 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7626 i = 0;
7627 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7629 exit_prob[i] = e->probability;
7630 exit_flag[i] = e->flags;
7631 exit_succ[i++] = e->dest;
7632 remove_edge (e);
7635 else
7637 num_exit_edges = 0;
7638 exit_succ = NULL;
7639 exit_flag = NULL;
7640 exit_prob = NULL;
7643 /* Switch context to the child function to initialize DEST_FN's CFG. */
7644 gcc_assert (dest_cfun->cfg == NULL);
7645 push_cfun (dest_cfun);
7647 init_empty_tree_cfg ();
7649 /* Initialize EH information for the new function. */
7650 eh_map = NULL;
7651 new_label_map = NULL;
7652 if (saved_cfun->eh)
7654 eh_region region = NULL;
7655 bool all = false;
7657 FOR_EACH_VEC_ELT (bbs, i, bb)
7659 region = find_outermost_region_in_block (saved_cfun, bb, region, &all);
7660 if (all)
7661 break;
7664 init_eh_for_function ();
7665 if (region != NULL || all)
7667 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7668 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7669 new_label_mapper, new_label_map);
7673 /* Initialize an empty loop tree. */
7674 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7675 init_loops_structure (dest_cfun, loops, 1);
7676 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7677 set_loops_for_fn (dest_cfun, loops);
7679 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7681 /* Move the outlined loop tree part. */
7682 num_nodes = bbs.length ();
7683 FOR_EACH_VEC_ELT (bbs, i, bb)
7685 if (bb->loop_father->header == bb)
7687 class loop *this_loop = bb->loop_father;
7688 class loop *outer = loop_outer (this_loop);
7689 if (outer == loop
7690 /* If the SESE region contains some bbs ending with
7691 a noreturn call, those are considered to belong
7692 to the outermost loop in saved_cfun, rather than
7693 the entry_bb's loop_father. */
7694 || outer == loop0)
7696 if (outer != loop)
7697 num_nodes -= this_loop->num_nodes;
7698 flow_loop_tree_node_remove (bb->loop_father);
7699 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7700 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7703 else if (bb->loop_father == loop0 && loop0 != loop)
7704 num_nodes--;
7706 /* Remove loop exits from the outlined region. */
7707 if (loops_for_fn (saved_cfun)->exits)
7708 FOR_EACH_EDGE (e, ei, bb->succs)
7710 struct loops *l = loops_for_fn (saved_cfun);
7711 loop_exit **slot
7712 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7713 NO_INSERT);
7714 if (slot)
7715 l->exits->clear_slot (slot);
7719 /* Adjust the number of blocks in the tree root of the outlined part. */
7720 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7722 /* Setup a mapping to be used by move_block_to_fn. */
7723 loop->aux = current_loops->tree_root;
7724 loop0->aux = current_loops->tree_root;
7726 /* Fix up orig_loop_num. If the block referenced in it has been moved
7727 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7728 class loop *dloop;
7729 signed char *moved_orig_loop_num = NULL;
7730 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7731 if (dloop->orig_loop_num)
7733 if (moved_orig_loop_num == NULL)
7734 moved_orig_loop_num
7735 = XCNEWVEC (signed char, vec_safe_length (larray));
7736 if ((*larray)[dloop->orig_loop_num] != NULL
7737 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7739 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7740 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7741 moved_orig_loop_num[dloop->orig_loop_num]++;
7742 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7744 else
7746 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7747 dloop->orig_loop_num = 0;
7750 pop_cfun ();
7752 if (moved_orig_loop_num)
7754 FOR_EACH_VEC_ELT (bbs, i, bb)
7756 gimple *g = find_loop_dist_alias (bb);
7757 if (g == NULL)
7758 continue;
7760 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7761 gcc_assert (orig_loop_num
7762 && (unsigned) orig_loop_num < vec_safe_length (larray));
7763 if (moved_orig_loop_num[orig_loop_num] == 2)
7765 /* If we have moved both loops with this orig_loop_num into
7766 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7767 too, update the first argument. */
7768 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7769 && (get_loop (saved_cfun, dloop->orig_loop_num)
7770 == NULL));
7771 tree t = build_int_cst (integer_type_node,
7772 (*larray)[dloop->orig_loop_num]->num);
7773 gimple_call_set_arg (g, 0, t);
7774 update_stmt (g);
7775 /* Make sure the following loop will not update it. */
7776 moved_orig_loop_num[orig_loop_num] = 0;
7778 else
7779 /* Otherwise at least one of the loops stayed in saved_cfun.
7780 Remove the LOOP_DIST_ALIAS call. */
7781 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7783 FOR_EACH_BB_FN (bb, saved_cfun)
7785 gimple *g = find_loop_dist_alias (bb);
7786 if (g == NULL)
7787 continue;
7788 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7789 gcc_assert (orig_loop_num
7790 && (unsigned) orig_loop_num < vec_safe_length (larray));
7791 if (moved_orig_loop_num[orig_loop_num])
7792 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7793 of the corresponding loops was moved, remove it. */
7794 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7796 XDELETEVEC (moved_orig_loop_num);
7798 ggc_free (larray);
7800 /* Move blocks from BBS into DEST_CFUN. */
7801 gcc_assert (bbs.length () >= 2);
7802 after = dest_cfun->cfg->x_entry_block_ptr;
7803 hash_map<tree, tree> vars_map;
7805 memset (&d, 0, sizeof (d));
7806 d.orig_block = orig_block;
7807 d.new_block = DECL_INITIAL (dest_cfun->decl);
7808 d.from_context = cfun->decl;
7809 d.to_context = dest_cfun->decl;
7810 d.vars_map = &vars_map;
7811 d.new_label_map = new_label_map;
7812 d.eh_map = eh_map;
7813 d.remap_decls_p = true;
7815 if (gimple_in_ssa_p (cfun))
7816 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7818 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7819 set_ssa_default_def (dest_cfun, arg, narg);
7820 vars_map.put (arg, narg);
7823 FOR_EACH_VEC_ELT (bbs, i, bb)
7825 /* No need to update edge counts on the last block. It has
7826 already been updated earlier when we detached the region from
7827 the original CFG. */
7828 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7829 after = bb;
7832 /* Adjust the maximum clique used. */
7833 dest_cfun->last_clique = saved_cfun->last_clique;
7835 loop->aux = NULL;
7836 loop0->aux = NULL;
7837 /* Loop sizes are no longer correct, fix them up. */
7838 loop->num_nodes -= num_nodes;
7839 for (class loop *outer = loop_outer (loop);
7840 outer; outer = loop_outer (outer))
7841 outer->num_nodes -= num_nodes;
7842 loop0->num_nodes -= bbs.length () - num_nodes;
7844 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7846 class loop *aloop;
7847 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7848 if (aloop != NULL)
7850 if (aloop->simduid)
7852 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7853 d.to_context);
7854 dest_cfun->has_simduid_loops = true;
7856 if (aloop->force_vectorize)
7857 dest_cfun->has_force_vectorize_loops = true;
7861 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7862 if (orig_block)
7864 tree block;
7865 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7866 == NULL_TREE);
7867 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7868 = BLOCK_SUBBLOCKS (orig_block);
7869 for (block = BLOCK_SUBBLOCKS (orig_block);
7870 block; block = BLOCK_CHAIN (block))
7871 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7872 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7875 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7876 &vars_map, dest_cfun->decl);
7878 if (new_label_map)
7879 htab_delete (new_label_map);
7880 if (eh_map)
7881 delete eh_map;
7883 if (gimple_in_ssa_p (cfun))
7885 /* We need to release ssa-names in a defined order, so first find them,
7886 and then iterate in ascending version order. */
7887 bitmap release_names = BITMAP_ALLOC (NULL);
7888 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7889 bitmap_iterator bi;
7890 unsigned i;
7891 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7892 release_ssa_name (ssa_name (i));
7893 BITMAP_FREE (release_names);
7896 /* Rewire the entry and exit blocks. The successor to the entry
7897 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7898 the child function. Similarly, the predecessor of DEST_FN's
7899 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7900 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7901 various CFG manipulation function get to the right CFG.
7903 FIXME, this is silly. The CFG ought to become a parameter to
7904 these helpers. */
7905 push_cfun (dest_cfun);
7906 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7907 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7908 if (exit_bb)
7910 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7911 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7913 else
7914 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7915 pop_cfun ();
7917 /* Back in the original function, the SESE region has disappeared,
7918 create a new basic block in its place. */
7919 bb = create_empty_bb (entry_pred[0]);
7920 if (current_loops)
7921 add_bb_to_loop (bb, loop);
7922 for (i = 0; i < num_entry_edges; i++)
7924 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7925 e->probability = entry_prob[i];
7928 for (i = 0; i < num_exit_edges; i++)
7930 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7931 e->probability = exit_prob[i];
7934 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7935 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7936 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7938 if (exit_bb)
7940 free (exit_prob);
7941 free (exit_flag);
7942 free (exit_succ);
7944 free (entry_prob);
7945 free (entry_flag);
7946 free (entry_pred);
7947 bbs.release ();
7949 return bb;
7952 /* Dump default def DEF to file FILE using FLAGS and indentation
7953 SPC. */
7955 static void
7956 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7958 for (int i = 0; i < spc; ++i)
7959 fprintf (file, " ");
7960 dump_ssaname_info_to_file (file, def, spc);
7962 print_generic_expr (file, TREE_TYPE (def), flags);
7963 fprintf (file, " ");
7964 print_generic_expr (file, def, flags);
7965 fprintf (file, " = ");
7966 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7967 fprintf (file, ";\n");
7970 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7972 static void
7973 print_no_sanitize_attr_value (FILE *file, tree value)
7975 unsigned int flags = tree_to_uhwi (value);
7976 bool first = true;
7977 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7979 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7981 if (!first)
7982 fprintf (file, " | ");
7983 fprintf (file, "%s", sanitizer_opts[i].name);
7984 first = false;
7989 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7992 void
7993 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7995 tree arg, var, old_current_fndecl = current_function_decl;
7996 struct function *dsf;
7997 bool ignore_topmost_bind = false, any_var = false;
7998 basic_block bb;
7999 tree chain;
8000 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
8001 && decl_is_tm_clone (fndecl));
8002 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
8004 tree fntype = TREE_TYPE (fndecl);
8005 tree attrs[] = { DECL_ATTRIBUTES (fndecl), TYPE_ATTRIBUTES (fntype) };
8007 for (int i = 0; i != 2; ++i)
8009 if (!attrs[i])
8010 continue;
8012 fprintf (file, "__attribute__((");
8014 bool first = true;
8015 tree chain;
8016 for (chain = attrs[i]; chain; first = false, chain = TREE_CHAIN (chain))
8018 if (!first)
8019 fprintf (file, ", ");
8021 tree name = get_attribute_name (chain);
8022 print_generic_expr (file, name, dump_flags);
8023 if (TREE_VALUE (chain) != NULL_TREE)
8025 fprintf (file, " (");
8027 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
8028 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
8029 else
8030 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
8031 fprintf (file, ")");
8035 fprintf (file, "))\n");
8038 current_function_decl = fndecl;
8039 if (flags & TDF_GIMPLE)
8041 static bool hotness_bb_param_printed = false;
8042 if (profile_info != NULL
8043 && !hotness_bb_param_printed)
8045 hotness_bb_param_printed = true;
8046 fprintf (file,
8047 "/* --param=gimple-fe-computed-hot-bb-threshold=%" PRId64
8048 " */\n", get_hot_bb_threshold ());
8051 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
8052 dump_flags | TDF_SLIM);
8053 fprintf (file, " __GIMPLE (%s",
8054 (fun->curr_properties & PROP_ssa) ? "ssa"
8055 : (fun->curr_properties & PROP_cfg) ? "cfg"
8056 : "");
8058 if (cfun->cfg)
8060 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8061 if (bb->count.initialized_p ())
8062 fprintf (file, ",%s(%d)",
8063 profile_quality_as_string (bb->count.quality ()),
8064 bb->count.value ());
8065 fprintf (file, ")\n%s (", function_name (fun));
8068 else
8070 print_generic_expr (file, TREE_TYPE (fntype), dump_flags);
8071 fprintf (file, " %s %s(", function_name (fun),
8072 tmclone ? "[tm-clone] " : "");
8075 arg = DECL_ARGUMENTS (fndecl);
8076 while (arg)
8078 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
8079 fprintf (file, " ");
8080 print_generic_expr (file, arg, dump_flags);
8081 if (DECL_CHAIN (arg))
8082 fprintf (file, ", ");
8083 arg = DECL_CHAIN (arg);
8085 fprintf (file, ")\n");
8087 dsf = DECL_STRUCT_FUNCTION (fndecl);
8088 if (dsf && (flags & TDF_EH))
8089 dump_eh_tree (file, dsf);
8091 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
8093 dump_node (fndecl, TDF_SLIM | flags, file);
8094 current_function_decl = old_current_fndecl;
8095 return;
8098 /* When GIMPLE is lowered, the variables are no longer available in
8099 BIND_EXPRs, so display them separately. */
8100 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
8102 unsigned ix;
8103 ignore_topmost_bind = true;
8105 fprintf (file, "{\n");
8106 if (gimple_in_ssa_p (fun)
8107 && (flags & TDF_ALIAS))
8109 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
8110 arg = DECL_CHAIN (arg))
8112 tree def = ssa_default_def (fun, arg);
8113 if (def)
8114 dump_default_def (file, def, 2, flags);
8117 tree res = DECL_RESULT (fun->decl);
8118 if (res != NULL_TREE
8119 && DECL_BY_REFERENCE (res))
8121 tree def = ssa_default_def (fun, res);
8122 if (def)
8123 dump_default_def (file, def, 2, flags);
8126 tree static_chain = fun->static_chain_decl;
8127 if (static_chain != NULL_TREE)
8129 tree def = ssa_default_def (fun, static_chain);
8130 if (def)
8131 dump_default_def (file, def, 2, flags);
8135 if (!vec_safe_is_empty (fun->local_decls))
8136 FOR_EACH_LOCAL_DECL (fun, ix, var)
8138 print_generic_decl (file, var, flags);
8139 fprintf (file, "\n");
8141 any_var = true;
8144 tree name;
8146 if (gimple_in_ssa_p (cfun))
8147 FOR_EACH_SSA_NAME (ix, name, cfun)
8149 if (!SSA_NAME_VAR (name)
8150 /* SSA name with decls without a name still get
8151 dumped as _N, list those explicitely as well even
8152 though we've dumped the decl declaration as D.xxx
8153 above. */
8154 || !SSA_NAME_IDENTIFIER (name))
8156 fprintf (file, " ");
8157 print_generic_expr (file, TREE_TYPE (name), flags);
8158 fprintf (file, " ");
8159 print_generic_expr (file, name, flags);
8160 fprintf (file, ";\n");
8162 any_var = true;
8167 if (fun && fun->decl == fndecl
8168 && fun->cfg
8169 && basic_block_info_for_fn (fun))
8171 /* If the CFG has been built, emit a CFG-based dump. */
8172 if (!ignore_topmost_bind)
8173 fprintf (file, "{\n");
8175 if (any_var && n_basic_blocks_for_fn (fun))
8176 fprintf (file, "\n");
8178 FOR_EACH_BB_FN (bb, fun)
8179 dump_bb (file, bb, 2, flags);
8181 fprintf (file, "}\n");
8183 else if (fun->curr_properties & PROP_gimple_any)
8185 /* The function is now in GIMPLE form but the CFG has not been
8186 built yet. Emit the single sequence of GIMPLE statements
8187 that make up its body. */
8188 gimple_seq body = gimple_body (fndecl);
8190 if (gimple_seq_first_stmt (body)
8191 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8192 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8193 print_gimple_seq (file, body, 0, flags);
8194 else
8196 if (!ignore_topmost_bind)
8197 fprintf (file, "{\n");
8199 if (any_var)
8200 fprintf (file, "\n");
8202 print_gimple_seq (file, body, 2, flags);
8203 fprintf (file, "}\n");
8206 else
8208 int indent;
8210 /* Make a tree based dump. */
8211 chain = DECL_SAVED_TREE (fndecl);
8212 if (chain && TREE_CODE (chain) == BIND_EXPR)
8214 if (ignore_topmost_bind)
8216 chain = BIND_EXPR_BODY (chain);
8217 indent = 2;
8219 else
8220 indent = 0;
8222 else
8224 if (!ignore_topmost_bind)
8226 fprintf (file, "{\n");
8227 /* No topmost bind, pretend it's ignored for later. */
8228 ignore_topmost_bind = true;
8230 indent = 2;
8233 if (any_var)
8234 fprintf (file, "\n");
8236 print_generic_stmt_indented (file, chain, flags, indent);
8237 if (ignore_topmost_bind)
8238 fprintf (file, "}\n");
8241 if (flags & TDF_ENUMERATE_LOCALS)
8242 dump_enumerated_decls (file, flags);
8243 fprintf (file, "\n\n");
8245 current_function_decl = old_current_fndecl;
8248 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8250 DEBUG_FUNCTION void
8251 debug_function (tree fn, dump_flags_t flags)
8253 dump_function_to_file (fn, stderr, flags);
8257 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8259 static void
8260 print_pred_bbs (FILE *file, basic_block bb)
8262 edge e;
8263 edge_iterator ei;
8265 FOR_EACH_EDGE (e, ei, bb->preds)
8266 fprintf (file, "bb_%d ", e->src->index);
8270 /* Print on FILE the indexes for the successors of basic_block BB. */
8272 static void
8273 print_succ_bbs (FILE *file, basic_block bb)
8275 edge e;
8276 edge_iterator ei;
8278 FOR_EACH_EDGE (e, ei, bb->succs)
8279 fprintf (file, "bb_%d ", e->dest->index);
8282 /* Print to FILE the basic block BB following the VERBOSITY level. */
8284 void
8285 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8287 char *s_indent = (char *) alloca ((size_t) indent + 1);
8288 memset ((void *) s_indent, ' ', (size_t) indent);
8289 s_indent[indent] = '\0';
8291 /* Print basic_block's header. */
8292 if (verbosity >= 2)
8294 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8295 print_pred_bbs (file, bb);
8296 fprintf (file, "}, succs = {");
8297 print_succ_bbs (file, bb);
8298 fprintf (file, "})\n");
8301 /* Print basic_block's body. */
8302 if (verbosity >= 3)
8304 fprintf (file, "%s {\n", s_indent);
8305 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8306 fprintf (file, "%s }\n", s_indent);
8310 static void print_loop_and_siblings (FILE *, class loop *, int, int);
8312 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8313 VERBOSITY level this outputs the contents of the loop, or just its
8314 structure. */
8316 static void
8317 print_loop (FILE *file, class loop *loop, int indent, int verbosity)
8319 char *s_indent;
8320 basic_block bb;
8322 if (loop == NULL)
8323 return;
8325 s_indent = (char *) alloca ((size_t) indent + 1);
8326 memset ((void *) s_indent, ' ', (size_t) indent);
8327 s_indent[indent] = '\0';
8329 /* Print loop's header. */
8330 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8331 if (loop->header)
8332 fprintf (file, "header = %d", loop->header->index);
8333 else
8335 fprintf (file, "deleted)\n");
8336 return;
8338 if (loop->latch)
8339 fprintf (file, ", latch = %d", loop->latch->index);
8340 else
8341 fprintf (file, ", multiple latches");
8342 fprintf (file, ", niter = ");
8343 print_generic_expr (file, loop->nb_iterations);
8345 if (loop->any_upper_bound)
8347 fprintf (file, ", upper_bound = ");
8348 print_decu (loop->nb_iterations_upper_bound, file);
8350 if (loop->any_likely_upper_bound)
8352 fprintf (file, ", likely_upper_bound = ");
8353 print_decu (loop->nb_iterations_likely_upper_bound, file);
8356 if (loop->any_estimate)
8358 fprintf (file, ", estimate = ");
8359 print_decu (loop->nb_iterations_estimate, file);
8361 if (loop->unroll)
8362 fprintf (file, ", unroll = %d", loop->unroll);
8363 fprintf (file, ")\n");
8365 /* Print loop's body. */
8366 if (verbosity >= 1)
8368 fprintf (file, "%s{\n", s_indent);
8369 FOR_EACH_BB_FN (bb, cfun)
8370 if (bb->loop_father == loop)
8371 print_loops_bb (file, bb, indent, verbosity);
8373 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8374 fprintf (file, "%s}\n", s_indent);
8378 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8379 spaces. Following VERBOSITY level this outputs the contents of the
8380 loop, or just its structure. */
8382 static void
8383 print_loop_and_siblings (FILE *file, class loop *loop, int indent,
8384 int verbosity)
8386 if (loop == NULL)
8387 return;
8389 print_loop (file, loop, indent, verbosity);
8390 print_loop_and_siblings (file, loop->next, indent, verbosity);
8393 /* Follow a CFG edge from the entry point of the program, and on entry
8394 of a loop, pretty print the loop structure on FILE. */
8396 void
8397 print_loops (FILE *file, int verbosity)
8399 basic_block bb;
8401 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8402 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8403 if (bb && bb->loop_father)
8404 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8407 /* Dump a loop. */
8409 DEBUG_FUNCTION void
8410 debug (class loop &ref)
8412 print_loop (stderr, &ref, 0, /*verbosity*/0);
8415 DEBUG_FUNCTION void
8416 debug (class loop *ptr)
8418 if (ptr)
8419 debug (*ptr);
8420 else
8421 fprintf (stderr, "<nil>\n");
8424 /* Dump a loop verbosely. */
8426 DEBUG_FUNCTION void
8427 debug_verbose (class loop &ref)
8429 print_loop (stderr, &ref, 0, /*verbosity*/3);
8432 DEBUG_FUNCTION void
8433 debug_verbose (class loop *ptr)
8435 if (ptr)
8436 debug (*ptr);
8437 else
8438 fprintf (stderr, "<nil>\n");
8442 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8444 DEBUG_FUNCTION void
8445 debug_loops (int verbosity)
8447 print_loops (stderr, verbosity);
8450 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8452 DEBUG_FUNCTION void
8453 debug_loop (class loop *loop, int verbosity)
8455 print_loop (stderr, loop, 0, verbosity);
8458 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8459 level. */
8461 DEBUG_FUNCTION void
8462 debug_loop_num (unsigned num, int verbosity)
8464 debug_loop (get_loop (cfun, num), verbosity);
8467 /* Return true if BB ends with a call, possibly followed by some
8468 instructions that must stay with the call. Return false,
8469 otherwise. */
8471 static bool
8472 gimple_block_ends_with_call_p (basic_block bb)
8474 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8475 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8479 /* Return true if BB ends with a conditional branch. Return false,
8480 otherwise. */
8482 static bool
8483 gimple_block_ends_with_condjump_p (const_basic_block bb)
8485 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8486 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8490 /* Return true if statement T may terminate execution of BB in ways not
8491 explicitly represtented in the CFG. */
8493 bool
8494 stmt_can_terminate_bb_p (gimple *t)
8496 tree fndecl = NULL_TREE;
8497 int call_flags = 0;
8499 /* Eh exception not handled internally terminates execution of the whole
8500 function. */
8501 if (stmt_can_throw_external (cfun, t))
8502 return true;
8504 /* NORETURN and LONGJMP calls already have an edge to exit.
8505 CONST and PURE calls do not need one.
8506 We don't currently check for CONST and PURE here, although
8507 it would be a good idea, because those attributes are
8508 figured out from the RTL in mark_constant_function, and
8509 the counter incrementation code from -fprofile-arcs
8510 leads to different results from -fbranch-probabilities. */
8511 if (is_gimple_call (t))
8513 fndecl = gimple_call_fndecl (t);
8514 call_flags = gimple_call_flags (t);
8517 if (is_gimple_call (t)
8518 && fndecl
8519 && fndecl_built_in_p (fndecl)
8520 && (call_flags & ECF_NOTHROW)
8521 && !(call_flags & ECF_RETURNS_TWICE)
8522 /* fork() doesn't really return twice, but the effect of
8523 wrapping it in __gcov_fork() which calls __gcov_dump() and
8524 __gcov_reset() and clears the counters before forking has the same
8525 effect as returning twice. Force a fake edge. */
8526 && !fndecl_built_in_p (fndecl, BUILT_IN_FORK))
8527 return false;
8529 if (is_gimple_call (t))
8531 edge_iterator ei;
8532 edge e;
8533 basic_block bb;
8535 if (call_flags & (ECF_PURE | ECF_CONST)
8536 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8537 return false;
8539 /* Function call may do longjmp, terminate program or do other things.
8540 Special case noreturn that have non-abnormal edges out as in this case
8541 the fact is sufficiently represented by lack of edges out of T. */
8542 if (!(call_flags & ECF_NORETURN))
8543 return true;
8545 bb = gimple_bb (t);
8546 FOR_EACH_EDGE (e, ei, bb->succs)
8547 if ((e->flags & EDGE_FAKE) == 0)
8548 return true;
8551 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8552 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8553 return true;
8555 return false;
8559 /* Add fake edges to the function exit for any non constant and non
8560 noreturn calls (or noreturn calls with EH/abnormal edges),
8561 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8562 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8563 that were split.
8565 The goal is to expose cases in which entering a basic block does
8566 not imply that all subsequent instructions must be executed. */
8568 static int
8569 gimple_flow_call_edges_add (sbitmap blocks)
8571 int i;
8572 int blocks_split = 0;
8573 int last_bb = last_basic_block_for_fn (cfun);
8574 bool check_last_block = false;
8576 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8577 return 0;
8579 if (! blocks)
8580 check_last_block = true;
8581 else
8582 check_last_block = bitmap_bit_p (blocks,
8583 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8585 /* In the last basic block, before epilogue generation, there will be
8586 a fallthru edge to EXIT. Special care is required if the last insn
8587 of the last basic block is a call because make_edge folds duplicate
8588 edges, which would result in the fallthru edge also being marked
8589 fake, which would result in the fallthru edge being removed by
8590 remove_fake_edges, which would result in an invalid CFG.
8592 Moreover, we can't elide the outgoing fake edge, since the block
8593 profiler needs to take this into account in order to solve the minimal
8594 spanning tree in the case that the call doesn't return.
8596 Handle this by adding a dummy instruction in a new last basic block. */
8597 if (check_last_block)
8599 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8600 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8601 gimple *t = NULL;
8603 if (!gsi_end_p (gsi))
8604 t = gsi_stmt (gsi);
8606 if (t && stmt_can_terminate_bb_p (t))
8608 edge e;
8610 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8611 if (e)
8613 gsi_insert_on_edge (e, gimple_build_nop ());
8614 gsi_commit_edge_inserts ();
8619 /* Now add fake edges to the function exit for any non constant
8620 calls since there is no way that we can determine if they will
8621 return or not... */
8622 for (i = 0; i < last_bb; i++)
8624 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8625 gimple_stmt_iterator gsi;
8626 gimple *stmt, *last_stmt;
8628 if (!bb)
8629 continue;
8631 if (blocks && !bitmap_bit_p (blocks, i))
8632 continue;
8634 gsi = gsi_last_nondebug_bb (bb);
8635 if (!gsi_end_p (gsi))
8637 last_stmt = gsi_stmt (gsi);
8640 stmt = gsi_stmt (gsi);
8641 if (stmt_can_terminate_bb_p (stmt))
8643 edge e;
8645 /* The handling above of the final block before the
8646 epilogue should be enough to verify that there is
8647 no edge to the exit block in CFG already.
8648 Calling make_edge in such case would cause us to
8649 mark that edge as fake and remove it later. */
8650 if (flag_checking && stmt == last_stmt)
8652 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8653 gcc_assert (e == NULL);
8656 /* Note that the following may create a new basic block
8657 and renumber the existing basic blocks. */
8658 if (stmt != last_stmt)
8660 e = split_block (bb, stmt);
8661 if (e)
8662 blocks_split++;
8664 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8665 e->probability = profile_probability::guessed_never ();
8667 gsi_prev (&gsi);
8669 while (!gsi_end_p (gsi));
8673 if (blocks_split)
8674 checking_verify_flow_info ();
8676 return blocks_split;
8679 /* Removes edge E and all the blocks dominated by it, and updates dominance
8680 information. The IL in E->src needs to be updated separately.
8681 If dominance info is not available, only the edge E is removed.*/
8683 void
8684 remove_edge_and_dominated_blocks (edge e)
8686 vec<basic_block> bbs_to_fix_dom = vNULL;
8687 edge f;
8688 edge_iterator ei;
8689 bool none_removed = false;
8690 unsigned i;
8691 basic_block bb, dbb;
8692 bitmap_iterator bi;
8694 /* If we are removing a path inside a non-root loop that may change
8695 loop ownership of blocks or remove loops. Mark loops for fixup. */
8696 if (current_loops
8697 && loop_outer (e->src->loop_father) != NULL
8698 && e->src->loop_father == e->dest->loop_father)
8699 loops_state_set (LOOPS_NEED_FIXUP);
8701 if (!dom_info_available_p (CDI_DOMINATORS))
8703 remove_edge (e);
8704 return;
8707 /* No updating is needed for edges to exit. */
8708 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8710 if (cfgcleanup_altered_bbs)
8711 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8712 remove_edge (e);
8713 return;
8716 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8717 that is not dominated by E->dest, then this set is empty. Otherwise,
8718 all the basic blocks dominated by E->dest are removed.
8720 Also, to DF_IDOM we store the immediate dominators of the blocks in
8721 the dominance frontier of E (i.e., of the successors of the
8722 removed blocks, if there are any, and of E->dest otherwise). */
8723 FOR_EACH_EDGE (f, ei, e->dest->preds)
8725 if (f == e)
8726 continue;
8728 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8730 none_removed = true;
8731 break;
8735 auto_bitmap df, df_idom;
8736 auto_vec<basic_block> bbs_to_remove;
8737 if (none_removed)
8738 bitmap_set_bit (df_idom,
8739 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8740 else
8742 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8743 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8745 FOR_EACH_EDGE (f, ei, bb->succs)
8747 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8748 bitmap_set_bit (df, f->dest->index);
8751 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8752 bitmap_clear_bit (df, bb->index);
8754 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8756 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8757 bitmap_set_bit (df_idom,
8758 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8762 if (cfgcleanup_altered_bbs)
8764 /* Record the set of the altered basic blocks. */
8765 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8766 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8769 /* Remove E and the cancelled blocks. */
8770 if (none_removed)
8771 remove_edge (e);
8772 else
8774 /* Walk backwards so as to get a chance to substitute all
8775 released DEFs into debug stmts. See
8776 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8777 details. */
8778 for (i = bbs_to_remove.length (); i-- > 0; )
8779 delete_basic_block (bbs_to_remove[i]);
8782 /* Update the dominance information. The immediate dominator may change only
8783 for blocks whose immediate dominator belongs to DF_IDOM:
8785 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8786 removal. Let Z the arbitrary block such that idom(Z) = Y and
8787 Z dominates X after the removal. Before removal, there exists a path P
8788 from Y to X that avoids Z. Let F be the last edge on P that is
8789 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8790 dominates W, and because of P, Z does not dominate W), and W belongs to
8791 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8792 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8794 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8795 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8796 dbb;
8797 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8798 bbs_to_fix_dom.safe_push (dbb);
8801 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8803 bbs_to_fix_dom.release ();
8806 /* Purge dead EH edges from basic block BB. */
8808 bool
8809 gimple_purge_dead_eh_edges (basic_block bb)
8811 bool changed = false;
8812 edge e;
8813 edge_iterator ei;
8814 gimple *stmt = last_stmt (bb);
8816 if (stmt && stmt_can_throw_internal (cfun, stmt))
8817 return false;
8819 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8821 if (e->flags & EDGE_EH)
8823 remove_edge_and_dominated_blocks (e);
8824 changed = true;
8826 else
8827 ei_next (&ei);
8830 return changed;
8833 /* Purge dead EH edges from basic block listed in BLOCKS. */
8835 bool
8836 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8838 bool changed = false;
8839 unsigned i;
8840 bitmap_iterator bi;
8842 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8844 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8846 /* Earlier gimple_purge_dead_eh_edges could have removed
8847 this basic block already. */
8848 gcc_assert (bb || changed);
8849 if (bb != NULL)
8850 changed |= gimple_purge_dead_eh_edges (bb);
8853 return changed;
8856 /* Purge dead abnormal call edges from basic block BB. */
8858 bool
8859 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8861 bool changed = false;
8862 edge e;
8863 edge_iterator ei;
8864 gimple *stmt = last_stmt (bb);
8866 if (!cfun->has_nonlocal_label
8867 && !cfun->calls_setjmp)
8868 return false;
8870 if (stmt && stmt_can_make_abnormal_goto (stmt))
8871 return false;
8873 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8875 if (e->flags & EDGE_ABNORMAL)
8877 if (e->flags & EDGE_FALLTHRU)
8878 e->flags &= ~EDGE_ABNORMAL;
8879 else
8880 remove_edge_and_dominated_blocks (e);
8881 changed = true;
8883 else
8884 ei_next (&ei);
8887 return changed;
8890 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8892 bool
8893 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8895 bool changed = false;
8896 unsigned i;
8897 bitmap_iterator bi;
8899 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8901 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8903 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8904 this basic block already. */
8905 gcc_assert (bb || changed);
8906 if (bb != NULL)
8907 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8910 return changed;
8913 /* This function is called whenever a new edge is created or
8914 redirected. */
8916 static void
8917 gimple_execute_on_growing_pred (edge e)
8919 basic_block bb = e->dest;
8921 if (!gimple_seq_empty_p (phi_nodes (bb)))
8922 reserve_phi_args_for_new_edge (bb);
8925 /* This function is called immediately before edge E is removed from
8926 the edge vector E->dest->preds. */
8928 static void
8929 gimple_execute_on_shrinking_pred (edge e)
8931 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8932 remove_phi_args (e);
8935 /*---------------------------------------------------------------------------
8936 Helper functions for Loop versioning
8937 ---------------------------------------------------------------------------*/
8939 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8940 of 'first'. Both of them are dominated by 'new_head' basic block. When
8941 'new_head' was created by 'second's incoming edge it received phi arguments
8942 on the edge by split_edge(). Later, additional edge 'e' was created to
8943 connect 'new_head' and 'first'. Now this routine adds phi args on this
8944 additional edge 'e' that new_head to second edge received as part of edge
8945 splitting. */
8947 static void
8948 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8949 basic_block new_head, edge e)
8951 gphi *phi1, *phi2;
8952 gphi_iterator psi1, psi2;
8953 tree def;
8954 edge e2 = find_edge (new_head, second);
8956 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8957 edge, we should always have an edge from NEW_HEAD to SECOND. */
8958 gcc_assert (e2 != NULL);
8960 /* Browse all 'second' basic block phi nodes and add phi args to
8961 edge 'e' for 'first' head. PHI args are always in correct order. */
8963 for (psi2 = gsi_start_phis (second),
8964 psi1 = gsi_start_phis (first);
8965 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8966 gsi_next (&psi2), gsi_next (&psi1))
8968 phi1 = psi1.phi ();
8969 phi2 = psi2.phi ();
8970 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8971 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8976 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8977 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8978 the destination of the ELSE part. */
8980 static void
8981 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8982 basic_block second_head ATTRIBUTE_UNUSED,
8983 basic_block cond_bb, void *cond_e)
8985 gimple_stmt_iterator gsi;
8986 gimple *new_cond_expr;
8987 tree cond_expr = (tree) cond_e;
8988 edge e0;
8990 /* Build new conditional expr */
8991 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8992 NULL_TREE, NULL_TREE);
8994 /* Add new cond in cond_bb. */
8995 gsi = gsi_last_bb (cond_bb);
8996 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8998 /* Adjust edges appropriately to connect new head with first head
8999 as well as second head. */
9000 e0 = single_succ_edge (cond_bb);
9001 e0->flags &= ~EDGE_FALLTHRU;
9002 e0->flags |= EDGE_FALSE_VALUE;
9006 /* Do book-keeping of basic block BB for the profile consistency checker.
9007 Store the counting in RECORD. */
9008 static void
9009 gimple_account_profile_record (basic_block bb,
9010 struct profile_record *record)
9012 gimple_stmt_iterator i;
9013 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
9015 record->size
9016 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
9017 if (bb->count.initialized_p ())
9018 record->time
9019 += estimate_num_insns (gsi_stmt (i),
9020 &eni_time_weights) * bb->count.to_gcov_type ();
9021 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
9022 record->time
9023 += estimate_num_insns (gsi_stmt (i),
9024 &eni_time_weights) * bb->count.to_frequency (cfun);
9028 struct cfg_hooks gimple_cfg_hooks = {
9029 "gimple",
9030 gimple_verify_flow_info,
9031 gimple_dump_bb, /* dump_bb */
9032 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
9033 create_bb, /* create_basic_block */
9034 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
9035 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
9036 gimple_can_remove_branch_p, /* can_remove_branch_p */
9037 remove_bb, /* delete_basic_block */
9038 gimple_split_block, /* split_block */
9039 gimple_move_block_after, /* move_block_after */
9040 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
9041 gimple_merge_blocks, /* merge_blocks */
9042 gimple_predict_edge, /* predict_edge */
9043 gimple_predicted_by_p, /* predicted_by_p */
9044 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
9045 gimple_duplicate_bb, /* duplicate_block */
9046 gimple_split_edge, /* split_edge */
9047 gimple_make_forwarder_block, /* make_forward_block */
9048 NULL, /* tidy_fallthru_edge */
9049 NULL, /* force_nonfallthru */
9050 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
9051 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
9052 gimple_flow_call_edges_add, /* flow_call_edges_add */
9053 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
9054 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
9055 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
9056 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
9057 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
9058 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
9059 flush_pending_stmts, /* flush_pending_stmts */
9060 gimple_empty_block_p, /* block_empty_p */
9061 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
9062 gimple_account_profile_record,
9066 /* Split all critical edges. Split some extra (not necessarily critical) edges
9067 if FOR_EDGE_INSERTION_P is true. */
9069 unsigned int
9070 split_critical_edges (bool for_edge_insertion_p /* = false */)
9072 basic_block bb;
9073 edge e;
9074 edge_iterator ei;
9076 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9077 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
9078 mappings around the calls to split_edge. */
9079 start_recording_case_labels ();
9080 FOR_ALL_BB_FN (bb, cfun)
9082 FOR_EACH_EDGE (e, ei, bb->succs)
9084 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
9085 split_edge (e);
9086 /* PRE inserts statements to edges and expects that
9087 since split_critical_edges was done beforehand, committing edge
9088 insertions will not split more edges. In addition to critical
9089 edges we must split edges that have multiple successors and
9090 end by control flow statements, such as RESX.
9091 Go ahead and split them too. This matches the logic in
9092 gimple_find_edge_insert_loc. */
9093 else if (for_edge_insertion_p
9094 && (!single_pred_p (e->dest)
9095 || !gimple_seq_empty_p (phi_nodes (e->dest))
9096 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
9097 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
9098 && !(e->flags & EDGE_ABNORMAL))
9100 gimple_stmt_iterator gsi;
9102 gsi = gsi_last_bb (e->src);
9103 if (!gsi_end_p (gsi)
9104 && stmt_ends_bb_p (gsi_stmt (gsi))
9105 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
9106 && !gimple_call_builtin_p (gsi_stmt (gsi),
9107 BUILT_IN_RETURN)))
9108 split_edge (e);
9112 end_recording_case_labels ();
9113 return 0;
9116 namespace {
9118 const pass_data pass_data_split_crit_edges =
9120 GIMPLE_PASS, /* type */
9121 "crited", /* name */
9122 OPTGROUP_NONE, /* optinfo_flags */
9123 TV_TREE_SPLIT_EDGES, /* tv_id */
9124 PROP_cfg, /* properties_required */
9125 PROP_no_crit_edges, /* properties_provided */
9126 0, /* properties_destroyed */
9127 0, /* todo_flags_start */
9128 0, /* todo_flags_finish */
9131 class pass_split_crit_edges : public gimple_opt_pass
9133 public:
9134 pass_split_crit_edges (gcc::context *ctxt)
9135 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9138 /* opt_pass methods: */
9139 virtual unsigned int execute (function *) { return split_critical_edges (); }
9141 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
9142 }; // class pass_split_crit_edges
9144 } // anon namespace
9146 gimple_opt_pass *
9147 make_pass_split_crit_edges (gcc::context *ctxt)
9149 return new pass_split_crit_edges (ctxt);
9153 /* Insert COND expression which is GIMPLE_COND after STMT
9154 in basic block BB with appropriate basic block split
9155 and creation of a new conditionally executed basic block.
9156 Update profile so the new bb is visited with probability PROB.
9157 Return created basic block. */
9158 basic_block
9159 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9160 profile_probability prob)
9162 edge fall = split_block (bb, stmt);
9163 gimple_stmt_iterator iter = gsi_last_bb (bb);
9164 basic_block new_bb;
9166 /* Insert cond statement. */
9167 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9168 if (gsi_end_p (iter))
9169 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9170 else
9171 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9173 /* Create conditionally executed block. */
9174 new_bb = create_empty_bb (bb);
9175 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9176 e->probability = prob;
9177 new_bb->count = e->count ();
9178 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9180 /* Fix edge for split bb. */
9181 fall->flags = EDGE_FALSE_VALUE;
9182 fall->probability -= e->probability;
9184 /* Update dominance info. */
9185 if (dom_info_available_p (CDI_DOMINATORS))
9187 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9188 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9191 /* Update loop info. */
9192 if (current_loops)
9193 add_bb_to_loop (new_bb, bb->loop_father);
9195 return new_bb;
9200 /* Given a basic block B which ends with a conditional and has
9201 precisely two successors, determine which of the edges is taken if
9202 the conditional is true and which is taken if the conditional is
9203 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9205 void
9206 extract_true_false_edges_from_block (basic_block b,
9207 edge *true_edge,
9208 edge *false_edge)
9210 edge e = EDGE_SUCC (b, 0);
9212 if (e->flags & EDGE_TRUE_VALUE)
9214 *true_edge = e;
9215 *false_edge = EDGE_SUCC (b, 1);
9217 else
9219 *false_edge = e;
9220 *true_edge = EDGE_SUCC (b, 1);
9225 /* From a controlling predicate in the immediate dominator DOM of
9226 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9227 predicate evaluates to true and false and store them to
9228 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9229 they are non-NULL. Returns true if the edges can be determined,
9230 else return false. */
9232 bool
9233 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9234 edge *true_controlled_edge,
9235 edge *false_controlled_edge)
9237 basic_block bb = phiblock;
9238 edge true_edge, false_edge, tem;
9239 edge e0 = NULL, e1 = NULL;
9241 /* We have to verify that one edge into the PHI node is dominated
9242 by the true edge of the predicate block and the other edge
9243 dominated by the false edge. This ensures that the PHI argument
9244 we are going to take is completely determined by the path we
9245 take from the predicate block.
9246 We can only use BB dominance checks below if the destination of
9247 the true/false edges are dominated by their edge, thus only
9248 have a single predecessor. */
9249 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9250 tem = EDGE_PRED (bb, 0);
9251 if (tem == true_edge
9252 || (single_pred_p (true_edge->dest)
9253 && (tem->src == true_edge->dest
9254 || dominated_by_p (CDI_DOMINATORS,
9255 tem->src, true_edge->dest))))
9256 e0 = tem;
9257 else if (tem == false_edge
9258 || (single_pred_p (false_edge->dest)
9259 && (tem->src == false_edge->dest
9260 || dominated_by_p (CDI_DOMINATORS,
9261 tem->src, false_edge->dest))))
9262 e1 = tem;
9263 else
9264 return false;
9265 tem = EDGE_PRED (bb, 1);
9266 if (tem == true_edge
9267 || (single_pred_p (true_edge->dest)
9268 && (tem->src == true_edge->dest
9269 || dominated_by_p (CDI_DOMINATORS,
9270 tem->src, true_edge->dest))))
9271 e0 = tem;
9272 else if (tem == false_edge
9273 || (single_pred_p (false_edge->dest)
9274 && (tem->src == false_edge->dest
9275 || dominated_by_p (CDI_DOMINATORS,
9276 tem->src, false_edge->dest))))
9277 e1 = tem;
9278 else
9279 return false;
9280 if (!e0 || !e1)
9281 return false;
9283 if (true_controlled_edge)
9284 *true_controlled_edge = e0;
9285 if (false_controlled_edge)
9286 *false_controlled_edge = e1;
9288 return true;
9291 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9292 range [low, high]. Place associated stmts before *GSI. */
9294 void
9295 generate_range_test (basic_block bb, tree index, tree low, tree high,
9296 tree *lhs, tree *rhs)
9298 tree type = TREE_TYPE (index);
9299 tree utype = range_check_type (type);
9301 low = fold_convert (utype, low);
9302 high = fold_convert (utype, high);
9304 gimple_seq seq = NULL;
9305 index = gimple_convert (&seq, utype, index);
9306 *lhs = gimple_build (&seq, MINUS_EXPR, utype, index, low);
9307 *rhs = const_binop (MINUS_EXPR, utype, high, low);
9309 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9310 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
9313 /* Return the basic block that belongs to label numbered INDEX
9314 of a switch statement. */
9316 basic_block
9317 gimple_switch_label_bb (function *ifun, gswitch *gs, unsigned index)
9319 return label_to_block (ifun, CASE_LABEL (gimple_switch_label (gs, index)));
9322 /* Return the default basic block of a switch statement. */
9324 basic_block
9325 gimple_switch_default_bb (function *ifun, gswitch *gs)
9327 return gimple_switch_label_bb (ifun, gs, 0);
9330 /* Return the edge that belongs to label numbered INDEX
9331 of a switch statement. */
9333 edge
9334 gimple_switch_edge (function *ifun, gswitch *gs, unsigned index)
9336 return find_edge (gimple_bb (gs), gimple_switch_label_bb (ifun, gs, index));
9339 /* Return the default edge of a switch statement. */
9341 edge
9342 gimple_switch_default_edge (function *ifun, gswitch *gs)
9344 return gimple_switch_edge (ifun, gs, 0);
9348 /* Emit return warnings. */
9350 namespace {
9352 const pass_data pass_data_warn_function_return =
9354 GIMPLE_PASS, /* type */
9355 "*warn_function_return", /* name */
9356 OPTGROUP_NONE, /* optinfo_flags */
9357 TV_NONE, /* tv_id */
9358 PROP_cfg, /* properties_required */
9359 0, /* properties_provided */
9360 0, /* properties_destroyed */
9361 0, /* todo_flags_start */
9362 0, /* todo_flags_finish */
9365 class pass_warn_function_return : public gimple_opt_pass
9367 public:
9368 pass_warn_function_return (gcc::context *ctxt)
9369 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9372 /* opt_pass methods: */
9373 virtual unsigned int execute (function *);
9375 }; // class pass_warn_function_return
9377 unsigned int
9378 pass_warn_function_return::execute (function *fun)
9380 location_t location;
9381 gimple *last;
9382 edge e;
9383 edge_iterator ei;
9385 if (!targetm.warn_func_return (fun->decl))
9386 return 0;
9388 /* If we have a path to EXIT, then we do return. */
9389 if (TREE_THIS_VOLATILE (fun->decl)
9390 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9392 location = UNKNOWN_LOCATION;
9393 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9394 (e = ei_safe_edge (ei)); )
9396 last = last_stmt (e->src);
9397 if ((gimple_code (last) == GIMPLE_RETURN
9398 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9399 && location == UNKNOWN_LOCATION
9400 && ((location = LOCATION_LOCUS (gimple_location (last)))
9401 != UNKNOWN_LOCATION)
9402 && !optimize)
9403 break;
9404 /* When optimizing, replace return stmts in noreturn functions
9405 with __builtin_unreachable () call. */
9406 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9408 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9409 gimple *new_stmt = gimple_build_call (fndecl, 0);
9410 gimple_set_location (new_stmt, gimple_location (last));
9411 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9412 gsi_replace (&gsi, new_stmt, true);
9413 remove_edge (e);
9415 else
9416 ei_next (&ei);
9418 if (location == UNKNOWN_LOCATION)
9419 location = cfun->function_end_locus;
9420 warning_at (location, 0, "%<noreturn%> function does return");
9423 /* If we see "return;" in some basic block, then we do reach the end
9424 without returning a value. */
9425 else if (warn_return_type > 0
9426 && !TREE_NO_WARNING (fun->decl)
9427 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9429 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9431 gimple *last = last_stmt (e->src);
9432 greturn *return_stmt = dyn_cast <greturn *> (last);
9433 if (return_stmt
9434 && gimple_return_retval (return_stmt) == NULL
9435 && !gimple_no_warning_p (last))
9437 location = gimple_location (last);
9438 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9439 location = fun->function_end_locus;
9440 if (warning_at (location, OPT_Wreturn_type,
9441 "control reaches end of non-void function"))
9442 TREE_NO_WARNING (fun->decl) = 1;
9443 break;
9446 /* The C++ FE turns fallthrough from the end of non-void function
9447 into __builtin_unreachable () call with BUILTINS_LOCATION.
9448 Recognize those too. */
9449 basic_block bb;
9450 if (!TREE_NO_WARNING (fun->decl))
9451 FOR_EACH_BB_FN (bb, fun)
9452 if (EDGE_COUNT (bb->succs) == 0)
9454 gimple *last = last_stmt (bb);
9455 const enum built_in_function ubsan_missing_ret
9456 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9457 if (last
9458 && ((LOCATION_LOCUS (gimple_location (last))
9459 == BUILTINS_LOCATION
9460 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9461 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9463 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9464 gsi_prev_nondebug (&gsi);
9465 gimple *prev = gsi_stmt (gsi);
9466 if (prev == NULL)
9467 location = UNKNOWN_LOCATION;
9468 else
9469 location = gimple_location (prev);
9470 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9471 location = fun->function_end_locus;
9472 if (warning_at (location, OPT_Wreturn_type,
9473 "control reaches end of non-void function"))
9474 TREE_NO_WARNING (fun->decl) = 1;
9475 break;
9479 return 0;
9482 } // anon namespace
9484 gimple_opt_pass *
9485 make_pass_warn_function_return (gcc::context *ctxt)
9487 return new pass_warn_function_return (ctxt);
9490 /* Walk a gimplified function and warn for functions whose return value is
9491 ignored and attribute((warn_unused_result)) is set. This is done before
9492 inlining, so we don't have to worry about that. */
9494 static void
9495 do_warn_unused_result (gimple_seq seq)
9497 tree fdecl, ftype;
9498 gimple_stmt_iterator i;
9500 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9502 gimple *g = gsi_stmt (i);
9504 switch (gimple_code (g))
9506 case GIMPLE_BIND:
9507 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9508 break;
9509 case GIMPLE_TRY:
9510 do_warn_unused_result (gimple_try_eval (g));
9511 do_warn_unused_result (gimple_try_cleanup (g));
9512 break;
9513 case GIMPLE_CATCH:
9514 do_warn_unused_result (gimple_catch_handler (
9515 as_a <gcatch *> (g)));
9516 break;
9517 case GIMPLE_EH_FILTER:
9518 do_warn_unused_result (gimple_eh_filter_failure (g));
9519 break;
9521 case GIMPLE_CALL:
9522 if (gimple_call_lhs (g))
9523 break;
9524 if (gimple_call_internal_p (g))
9525 break;
9527 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9528 LHS. All calls whose value is ignored should be
9529 represented like this. Look for the attribute. */
9530 fdecl = gimple_call_fndecl (g);
9531 ftype = gimple_call_fntype (g);
9533 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9535 location_t loc = gimple_location (g);
9537 if (fdecl)
9538 warning_at (loc, OPT_Wunused_result,
9539 "ignoring return value of %qD "
9540 "declared with attribute %<warn_unused_result%>",
9541 fdecl);
9542 else
9543 warning_at (loc, OPT_Wunused_result,
9544 "ignoring return value of function "
9545 "declared with attribute %<warn_unused_result%>");
9547 break;
9549 default:
9550 /* Not a container, not a call, or a call whose value is used. */
9551 break;
9556 namespace {
9558 const pass_data pass_data_warn_unused_result =
9560 GIMPLE_PASS, /* type */
9561 "*warn_unused_result", /* name */
9562 OPTGROUP_NONE, /* optinfo_flags */
9563 TV_NONE, /* tv_id */
9564 PROP_gimple_any, /* properties_required */
9565 0, /* properties_provided */
9566 0, /* properties_destroyed */
9567 0, /* todo_flags_start */
9568 0, /* todo_flags_finish */
9571 class pass_warn_unused_result : public gimple_opt_pass
9573 public:
9574 pass_warn_unused_result (gcc::context *ctxt)
9575 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9578 /* opt_pass methods: */
9579 virtual bool gate (function *) { return flag_warn_unused_result; }
9580 virtual unsigned int execute (function *)
9582 do_warn_unused_result (gimple_body (current_function_decl));
9583 return 0;
9586 }; // class pass_warn_unused_result
9588 } // anon namespace
9590 gimple_opt_pass *
9591 make_pass_warn_unused_result (gcc::context *ctxt)
9593 return new pass_warn_unused_result (ctxt);
9596 /* IPA passes, compilation of earlier functions or inlining
9597 might have changed some properties, such as marked functions nothrow,
9598 pure, const or noreturn.
9599 Remove redundant edges and basic blocks, and create new ones if necessary.
9601 This pass can't be executed as stand alone pass from pass manager, because
9602 in between inlining and this fixup the verify_flow_info would fail. */
9604 unsigned int
9605 execute_fixup_cfg (void)
9607 basic_block bb;
9608 gimple_stmt_iterator gsi;
9609 int todo = 0;
9610 cgraph_node *node = cgraph_node::get (current_function_decl);
9611 /* Same scaling is also done by ipa_merge_profiles. */
9612 profile_count num = node->count;
9613 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9614 bool scale = num.initialized_p () && !(num == den);
9616 if (scale)
9618 profile_count::adjust_for_ipa_scaling (&num, &den);
9619 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9620 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9621 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9624 FOR_EACH_BB_FN (bb, cfun)
9626 if (scale)
9627 bb->count = bb->count.apply_scale (num, den);
9628 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9630 gimple *stmt = gsi_stmt (gsi);
9631 tree decl = is_gimple_call (stmt)
9632 ? gimple_call_fndecl (stmt)
9633 : NULL;
9634 if (decl)
9636 int flags = gimple_call_flags (stmt);
9637 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9639 if (gimple_purge_dead_abnormal_call_edges (bb))
9640 todo |= TODO_cleanup_cfg;
9642 if (gimple_in_ssa_p (cfun))
9644 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9645 update_stmt (stmt);
9649 if (flags & ECF_NORETURN
9650 && fixup_noreturn_call (stmt))
9651 todo |= TODO_cleanup_cfg;
9654 /* Remove stores to variables we marked write-only.
9655 Keep access when store has side effect, i.e. in case when source
9656 is volatile. */
9657 if (gimple_store_p (stmt)
9658 && !gimple_has_side_effects (stmt)
9659 && !optimize_debug)
9661 tree lhs = get_base_address (gimple_get_lhs (stmt));
9663 if (VAR_P (lhs)
9664 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9665 && varpool_node::get (lhs)->writeonly)
9667 unlink_stmt_vdef (stmt);
9668 gsi_remove (&gsi, true);
9669 release_defs (stmt);
9670 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9671 continue;
9674 /* For calls we can simply remove LHS when it is known
9675 to be write-only. */
9676 if (is_gimple_call (stmt)
9677 && gimple_get_lhs (stmt))
9679 tree lhs = get_base_address (gimple_get_lhs (stmt));
9681 if (VAR_P (lhs)
9682 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9683 && varpool_node::get (lhs)->writeonly)
9685 gimple_call_set_lhs (stmt, NULL);
9686 update_stmt (stmt);
9687 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9691 if (maybe_clean_eh_stmt (stmt)
9692 && gimple_purge_dead_eh_edges (bb))
9693 todo |= TODO_cleanup_cfg;
9694 gsi_next (&gsi);
9697 /* If we have a basic block with no successors that does not
9698 end with a control statement or a noreturn call end it with
9699 a call to __builtin_unreachable. This situation can occur
9700 when inlining a noreturn call that does in fact return. */
9701 if (EDGE_COUNT (bb->succs) == 0)
9703 gimple *stmt = last_stmt (bb);
9704 if (!stmt
9705 || (!is_ctrl_stmt (stmt)
9706 && (!is_gimple_call (stmt)
9707 || !gimple_call_noreturn_p (stmt))))
9709 if (stmt && is_gimple_call (stmt))
9710 gimple_call_set_ctrl_altering (stmt, false);
9711 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9712 stmt = gimple_build_call (fndecl, 0);
9713 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9714 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9715 if (!cfun->after_inlining)
9717 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9718 node->create_edge (cgraph_node::get_create (fndecl),
9719 call_stmt, bb->count);
9724 if (scale)
9726 update_max_bb_count ();
9727 compute_function_frequency ();
9730 if (current_loops
9731 && (todo & TODO_cleanup_cfg))
9732 loops_state_set (LOOPS_NEED_FIXUP);
9734 return todo;
9737 namespace {
9739 const pass_data pass_data_fixup_cfg =
9741 GIMPLE_PASS, /* type */
9742 "fixup_cfg", /* name */
9743 OPTGROUP_NONE, /* optinfo_flags */
9744 TV_NONE, /* tv_id */
9745 PROP_cfg, /* properties_required */
9746 0, /* properties_provided */
9747 0, /* properties_destroyed */
9748 0, /* todo_flags_start */
9749 0, /* todo_flags_finish */
9752 class pass_fixup_cfg : public gimple_opt_pass
9754 public:
9755 pass_fixup_cfg (gcc::context *ctxt)
9756 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9759 /* opt_pass methods: */
9760 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9761 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9763 }; // class pass_fixup_cfg
9765 } // anon namespace
9767 gimple_opt_pass *
9768 make_pass_fixup_cfg (gcc::context *ctxt)
9770 return new pass_fixup_cfg (ctxt);
9773 /* Garbage collection support for edge_def. */
9775 extern void gt_ggc_mx (tree&);
9776 extern void gt_ggc_mx (gimple *&);
9777 extern void gt_ggc_mx (rtx&);
9778 extern void gt_ggc_mx (basic_block&);
9780 static void
9781 gt_ggc_mx (rtx_insn *& x)
9783 if (x)
9784 gt_ggc_mx_rtx_def ((void *) x);
9787 void
9788 gt_ggc_mx (edge_def *e)
9790 tree block = LOCATION_BLOCK (e->goto_locus);
9791 gt_ggc_mx (e->src);
9792 gt_ggc_mx (e->dest);
9793 if (current_ir_type () == IR_GIMPLE)
9794 gt_ggc_mx (e->insns.g);
9795 else
9796 gt_ggc_mx (e->insns.r);
9797 gt_ggc_mx (block);
9800 /* PCH support for edge_def. */
9802 extern void gt_pch_nx (tree&);
9803 extern void gt_pch_nx (gimple *&);
9804 extern void gt_pch_nx (rtx&);
9805 extern void gt_pch_nx (basic_block&);
9807 static void
9808 gt_pch_nx (rtx_insn *& x)
9810 if (x)
9811 gt_pch_nx_rtx_def ((void *) x);
9814 void
9815 gt_pch_nx (edge_def *e)
9817 tree block = LOCATION_BLOCK (e->goto_locus);
9818 gt_pch_nx (e->src);
9819 gt_pch_nx (e->dest);
9820 if (current_ir_type () == IR_GIMPLE)
9821 gt_pch_nx (e->insns.g);
9822 else
9823 gt_pch_nx (e->insns.r);
9824 gt_pch_nx (block);
9827 void
9828 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9830 tree block = LOCATION_BLOCK (e->goto_locus);
9831 op (&(e->src), cookie);
9832 op (&(e->dest), cookie);
9833 if (current_ir_type () == IR_GIMPLE)
9834 op (&(e->insns.g), cookie);
9835 else
9836 op (&(e->insns.r), cookie);
9837 op (&(block), cookie);
9840 #if CHECKING_P
9842 namespace selftest {
9844 /* Helper function for CFG selftests: create a dummy function decl
9845 and push it as cfun. */
9847 static tree
9848 push_fndecl (const char *name)
9850 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9851 /* FIXME: this uses input_location: */
9852 tree fndecl = build_fn_decl (name, fn_type);
9853 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9854 NULL_TREE, integer_type_node);
9855 DECL_RESULT (fndecl) = retval;
9856 push_struct_function (fndecl);
9857 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9858 ASSERT_TRUE (fun != NULL);
9859 init_empty_tree_cfg_for_function (fun);
9860 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9861 ASSERT_EQ (0, n_edges_for_fn (fun));
9862 return fndecl;
9865 /* These tests directly create CFGs.
9866 Compare with the static fns within tree-cfg.c:
9867 - build_gimple_cfg
9868 - make_blocks: calls create_basic_block (seq, bb);
9869 - make_edges. */
9871 /* Verify a simple cfg of the form:
9872 ENTRY -> A -> B -> C -> EXIT. */
9874 static void
9875 test_linear_chain ()
9877 gimple_register_cfg_hooks ();
9879 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9880 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9882 /* Create some empty blocks. */
9883 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9884 basic_block bb_b = create_empty_bb (bb_a);
9885 basic_block bb_c = create_empty_bb (bb_b);
9887 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9888 ASSERT_EQ (0, n_edges_for_fn (fun));
9890 /* Create some edges: a simple linear chain of BBs. */
9891 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9892 make_edge (bb_a, bb_b, 0);
9893 make_edge (bb_b, bb_c, 0);
9894 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9896 /* Verify the edges. */
9897 ASSERT_EQ (4, n_edges_for_fn (fun));
9898 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9899 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9900 ASSERT_EQ (1, bb_a->preds->length ());
9901 ASSERT_EQ (1, bb_a->succs->length ());
9902 ASSERT_EQ (1, bb_b->preds->length ());
9903 ASSERT_EQ (1, bb_b->succs->length ());
9904 ASSERT_EQ (1, bb_c->preds->length ());
9905 ASSERT_EQ (1, bb_c->succs->length ());
9906 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9907 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9909 /* Verify the dominance information
9910 Each BB in our simple chain should be dominated by the one before
9911 it. */
9912 calculate_dominance_info (CDI_DOMINATORS);
9913 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9914 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9915 auto_vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9916 ASSERT_EQ (1, dom_by_b.length ());
9917 ASSERT_EQ (bb_c, dom_by_b[0]);
9918 free_dominance_info (CDI_DOMINATORS);
9920 /* Similarly for post-dominance: each BB in our chain is post-dominated
9921 by the one after it. */
9922 calculate_dominance_info (CDI_POST_DOMINATORS);
9923 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9924 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9925 auto_vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9926 ASSERT_EQ (1, postdom_by_b.length ());
9927 ASSERT_EQ (bb_a, postdom_by_b[0]);
9928 free_dominance_info (CDI_POST_DOMINATORS);
9930 pop_cfun ();
9933 /* Verify a simple CFG of the form:
9934 ENTRY
9938 /t \f
9944 EXIT. */
9946 static void
9947 test_diamond ()
9949 gimple_register_cfg_hooks ();
9951 tree fndecl = push_fndecl ("cfg_test_diamond");
9952 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9954 /* Create some empty blocks. */
9955 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9956 basic_block bb_b = create_empty_bb (bb_a);
9957 basic_block bb_c = create_empty_bb (bb_a);
9958 basic_block bb_d = create_empty_bb (bb_b);
9960 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9961 ASSERT_EQ (0, n_edges_for_fn (fun));
9963 /* Create the edges. */
9964 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9965 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9966 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9967 make_edge (bb_b, bb_d, 0);
9968 make_edge (bb_c, bb_d, 0);
9969 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9971 /* Verify the edges. */
9972 ASSERT_EQ (6, n_edges_for_fn (fun));
9973 ASSERT_EQ (1, bb_a->preds->length ());
9974 ASSERT_EQ (2, bb_a->succs->length ());
9975 ASSERT_EQ (1, bb_b->preds->length ());
9976 ASSERT_EQ (1, bb_b->succs->length ());
9977 ASSERT_EQ (1, bb_c->preds->length ());
9978 ASSERT_EQ (1, bb_c->succs->length ());
9979 ASSERT_EQ (2, bb_d->preds->length ());
9980 ASSERT_EQ (1, bb_d->succs->length ());
9982 /* Verify the dominance information. */
9983 calculate_dominance_info (CDI_DOMINATORS);
9984 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9985 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9986 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9987 auto_vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9988 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9989 dom_by_a.release ();
9990 auto_vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9991 ASSERT_EQ (0, dom_by_b.length ());
9992 dom_by_b.release ();
9993 free_dominance_info (CDI_DOMINATORS);
9995 /* Similarly for post-dominance. */
9996 calculate_dominance_info (CDI_POST_DOMINATORS);
9997 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9998 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9999 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
10000 auto_vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
10001 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
10002 postdom_by_d.release ();
10003 auto_vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
10004 ASSERT_EQ (0, postdom_by_b.length ());
10005 postdom_by_b.release ();
10006 free_dominance_info (CDI_POST_DOMINATORS);
10008 pop_cfun ();
10011 /* Verify that we can handle a CFG containing a "complete" aka
10012 fully-connected subgraph (where A B C D below all have edges
10013 pointing to each other node, also to themselves).
10014 e.g.:
10015 ENTRY EXIT
10021 A<--->B
10022 ^^ ^^
10023 | \ / |
10024 | X |
10025 | / \ |
10026 VV VV
10027 C<--->D
10030 static void
10031 test_fully_connected ()
10033 gimple_register_cfg_hooks ();
10035 tree fndecl = push_fndecl ("cfg_fully_connected");
10036 function *fun = DECL_STRUCT_FUNCTION (fndecl);
10038 const int n = 4;
10040 /* Create some empty blocks. */
10041 auto_vec <basic_block> subgraph_nodes;
10042 for (int i = 0; i < n; i++)
10043 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
10045 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
10046 ASSERT_EQ (0, n_edges_for_fn (fun));
10048 /* Create the edges. */
10049 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
10050 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10051 for (int i = 0; i < n; i++)
10052 for (int j = 0; j < n; j++)
10053 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
10055 /* Verify the edges. */
10056 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
10057 /* The first one is linked to ENTRY/EXIT as well as itself and
10058 everything else. */
10059 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
10060 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
10061 /* The other ones in the subgraph are linked to everything in
10062 the subgraph (including themselves). */
10063 for (int i = 1; i < n; i++)
10065 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
10066 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
10069 /* Verify the dominance information. */
10070 calculate_dominance_info (CDI_DOMINATORS);
10071 /* The initial block in the subgraph should be dominated by ENTRY. */
10072 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
10073 get_immediate_dominator (CDI_DOMINATORS,
10074 subgraph_nodes[0]));
10075 /* Every other block in the subgraph should be dominated by the
10076 initial block. */
10077 for (int i = 1; i < n; i++)
10078 ASSERT_EQ (subgraph_nodes[0],
10079 get_immediate_dominator (CDI_DOMINATORS,
10080 subgraph_nodes[i]));
10081 free_dominance_info (CDI_DOMINATORS);
10083 /* Similarly for post-dominance. */
10084 calculate_dominance_info (CDI_POST_DOMINATORS);
10085 /* The initial block in the subgraph should be postdominated by EXIT. */
10086 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
10087 get_immediate_dominator (CDI_POST_DOMINATORS,
10088 subgraph_nodes[0]));
10089 /* Every other block in the subgraph should be postdominated by the
10090 initial block, since that leads to EXIT. */
10091 for (int i = 1; i < n; i++)
10092 ASSERT_EQ (subgraph_nodes[0],
10093 get_immediate_dominator (CDI_POST_DOMINATORS,
10094 subgraph_nodes[i]));
10095 free_dominance_info (CDI_POST_DOMINATORS);
10097 pop_cfun ();
10100 /* Run all of the selftests within this file. */
10102 void
10103 tree_cfg_c_tests ()
10105 test_linear_chain ();
10106 test_diamond ();
10107 test_fully_connected ();
10110 } // namespace selftest
10112 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10113 - loop
10114 - nested loops
10115 - switch statement (a block with many out-edges)
10116 - something that jumps to itself
10117 - etc */
10119 #endif /* CHECKING_P */