1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
37 #include "sched-int.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
40 #ifdef INSN_SCHEDULING
43 #include "sel-sched-ir.h"
44 /* We don't have to use it except for sel_print_insn. */
45 #include "sel-sched-dump.h"
47 /* A vector holding bb info for whole scheduling pass. */
48 vec
<sel_global_bb_info_def
> sel_global_bb_info
;
50 /* A vector holding bb info. */
51 vec
<sel_region_bb_info_def
> sel_region_bb_info
;
53 /* A pool for allocating all lists. */
54 object_allocator
<_list_node
> sched_lists_pool ("sel-sched-lists");
56 /* This contains information about successors for compute_av_set. */
57 struct succs_info current_succs
;
59 /* Data structure to describe interaction with the generic scheduler utils. */
60 static struct common_sched_info_def sel_common_sched_info
;
62 /* The loop nest being pipelined. */
63 class loop
*current_loop_nest
;
65 /* LOOP_NESTS is a vector containing the corresponding loop nest for
67 static vec
<loop_p
> loop_nests
;
69 /* Saves blocks already in loop regions, indexed by bb->index. */
70 static sbitmap bbs_in_loop_rgns
= NULL
;
72 /* CFG hooks that are saved before changing create_basic_block hook. */
73 static struct cfg_hooks orig_cfg_hooks
;
76 /* Array containing reverse topological index of function basic blocks,
77 indexed by BB->INDEX. */
78 static int *rev_top_order_index
= NULL
;
80 /* Length of the above array. */
81 static int rev_top_order_index_len
= -1;
83 /* A regset pool structure. */
86 /* The stack to which regsets are returned. */
95 /* In VV we save all generated regsets so that, when destructing the
96 pool, we can compare it with V and check that every regset was returned
100 /* The pointer of VV stack. */
106 /* The difference between allocated and returned regsets. */
108 } regset_pool
= { NULL
, 0, 0, NULL
, 0, 0, 0 };
110 /* This represents the nop pool. */
113 /* The vector which holds previously emitted nops. */
121 } nop_pool
= { NULL
, 0, 0 };
123 /* The pool for basic block notes. */
124 static vec
<rtx_note
*> bb_note_pool
;
126 /* A NOP pattern used to emit placeholder insns. */
127 rtx nop_pattern
= NULL_RTX
;
128 /* A special instruction that resides in EXIT_BLOCK.
129 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
130 rtx_insn
*exit_insn
= NULL
;
132 /* TRUE if while scheduling current region, which is loop, its preheader
134 bool preheader_removed
= false;
137 /* Forward static declarations. */
138 static void fence_clear (fence_t
);
140 static void deps_init_id (idata_t
, insn_t
, bool);
141 static void init_id_from_df (idata_t
, insn_t
, bool);
142 static expr_t
set_insn_init (expr_t
, vinsn_t
, int);
144 static void cfg_preds (basic_block
, insn_t
**, int *);
145 static void prepare_insn_expr (insn_t
, int);
146 static void free_history_vect (vec
<expr_history_def
> &);
148 static void move_bb_info (basic_block
, basic_block
);
149 static void remove_empty_bb (basic_block
, bool);
150 static void sel_merge_blocks (basic_block
, basic_block
);
151 static void sel_remove_loop_preheader (void);
152 static bool bb_has_removable_jump_to_p (basic_block
, basic_block
);
154 static bool insn_is_the_only_one_in_bb_p (insn_t
);
155 static void create_initial_data_sets (basic_block
);
157 static void free_av_set (basic_block
);
158 static void invalidate_av_set (basic_block
);
159 static void extend_insn_data (void);
160 static void sel_init_new_insn (insn_t
, int, int = -1);
161 static void finish_insns (void);
163 /* Various list functions. */
165 /* Copy an instruction list L. */
167 ilist_copy (ilist_t l
)
169 ilist_t head
= NULL
, *tailp
= &head
;
173 ilist_add (tailp
, ILIST_INSN (l
));
174 tailp
= &ILIST_NEXT (*tailp
);
181 /* Invert an instruction list L. */
183 ilist_invert (ilist_t l
)
189 ilist_add (&res
, ILIST_INSN (l
));
196 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
198 blist_add (blist_t
*lp
, insn_t to
, ilist_t ptr
, deps_t dc
)
203 bnd
= BLIST_BND (*lp
);
208 BND_AV1 (bnd
) = NULL
;
212 /* Remove the list note pointed to by LP. */
214 blist_remove (blist_t
*lp
)
216 bnd_t b
= BLIST_BND (*lp
);
218 av_set_clear (&BND_AV (b
));
219 av_set_clear (&BND_AV1 (b
));
220 ilist_clear (&BND_PTR (b
));
225 /* Init a fence tail L. */
227 flist_tail_init (flist_tail_t l
)
229 FLIST_TAIL_HEAD (l
) = NULL
;
230 FLIST_TAIL_TAILP (l
) = &FLIST_TAIL_HEAD (l
);
233 /* Try to find fence corresponding to INSN in L. */
235 flist_lookup (flist_t l
, insn_t insn
)
239 if (FENCE_INSN (FLIST_FENCE (l
)) == insn
)
240 return FLIST_FENCE (l
);
248 /* Init the fields of F before running fill_insns. */
250 init_fence_for_scheduling (fence_t f
)
252 FENCE_BNDS (f
) = NULL
;
253 FENCE_PROCESSED_P (f
) = false;
254 FENCE_SCHEDULED_P (f
) = false;
257 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
259 flist_add (flist_t
*lp
, insn_t insn
, state_t state
, deps_t dc
, void *tc
,
260 insn_t last_scheduled_insn
, vec
<rtx_insn
*, va_gc
> *executing_insns
,
261 int *ready_ticks
, int ready_ticks_size
, insn_t sched_next
,
262 int cycle
, int cycle_issued_insns
, int issue_more
,
263 bool starts_cycle_p
, bool after_stall_p
)
268 f
= FLIST_FENCE (*lp
);
270 FENCE_INSN (f
) = insn
;
272 gcc_assert (state
!= NULL
);
273 FENCE_STATE (f
) = state
;
275 FENCE_CYCLE (f
) = cycle
;
276 FENCE_ISSUED_INSNS (f
) = cycle_issued_insns
;
277 FENCE_STARTS_CYCLE_P (f
) = starts_cycle_p
;
278 FENCE_AFTER_STALL_P (f
) = after_stall_p
;
280 gcc_assert (dc
!= NULL
);
283 gcc_assert (tc
!= NULL
|| targetm
.sched
.alloc_sched_context
== NULL
);
286 FENCE_LAST_SCHEDULED_INSN (f
) = last_scheduled_insn
;
287 FENCE_ISSUE_MORE (f
) = issue_more
;
288 FENCE_EXECUTING_INSNS (f
) = executing_insns
;
289 FENCE_READY_TICKS (f
) = ready_ticks
;
290 FENCE_READY_TICKS_SIZE (f
) = ready_ticks_size
;
291 FENCE_SCHED_NEXT (f
) = sched_next
;
293 init_fence_for_scheduling (f
);
296 /* Remove the head node of the list pointed to by LP. */
298 flist_remove (flist_t
*lp
)
300 if (FENCE_INSN (FLIST_FENCE (*lp
)))
301 fence_clear (FLIST_FENCE (*lp
));
305 /* Clear the fence list pointed to by LP. */
307 flist_clear (flist_t
*lp
)
313 /* Add ORIGINAL_INSN the def list DL honoring CROSSED_CALL_ABIS. */
315 def_list_add (def_list_t
*dl
, insn_t original_insn
,
316 unsigned int crossed_call_abis
)
321 d
= DEF_LIST_DEF (*dl
);
323 d
->orig_insn
= original_insn
;
324 d
->crossed_call_abis
= crossed_call_abis
;
328 /* Functions to work with target contexts. */
330 /* Bulk target context. It is convenient for debugging purposes to ensure
331 that there are no uninitialized (null) target contexts. */
332 static tc_t bulk_tc
= (tc_t
) 1;
334 /* Target hooks wrappers. In the future we can provide some default
335 implementations for them. */
337 /* Allocate a store for the target context. */
339 alloc_target_context (void)
341 return (targetm
.sched
.alloc_sched_context
342 ? targetm
.sched
.alloc_sched_context () : bulk_tc
);
345 /* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
349 init_target_context (tc_t tc
, bool clean_p
)
351 if (targetm
.sched
.init_sched_context
)
352 targetm
.sched
.init_sched_context (tc
, clean_p
);
355 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
358 create_target_context (bool clean_p
)
360 tc_t tc
= alloc_target_context ();
362 init_target_context (tc
, clean_p
);
366 /* Copy TC to the current backend context. */
368 set_target_context (tc_t tc
)
370 if (targetm
.sched
.set_sched_context
)
371 targetm
.sched
.set_sched_context (tc
);
374 /* TC is about to be destroyed. Free any internal data. */
376 clear_target_context (tc_t tc
)
378 if (targetm
.sched
.clear_sched_context
)
379 targetm
.sched
.clear_sched_context (tc
);
382 /* Clear and free it. */
384 delete_target_context (tc_t tc
)
386 clear_target_context (tc
);
388 if (targetm
.sched
.free_sched_context
)
389 targetm
.sched
.free_sched_context (tc
);
392 /* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
395 copy_target_context (tc_t to
, tc_t from
)
397 tc_t tmp
= create_target_context (false);
399 set_target_context (from
);
400 init_target_context (to
, false);
402 set_target_context (tmp
);
403 delete_target_context (tmp
);
406 /* Create a copy of TC. */
408 create_copy_of_target_context (tc_t tc
)
410 tc_t copy
= alloc_target_context ();
412 copy_target_context (copy
, tc
);
417 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
420 reset_target_context (tc_t tc
, bool clean_p
)
422 clear_target_context (tc
);
423 init_target_context (tc
, clean_p
);
426 /* Functions to work with dependence contexts.
427 Dc (aka deps context, aka deps_t, aka class deps_desc *) is short for dependence
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
431 /* Make a copy of FROM in TO. */
433 copy_deps_context (deps_t to
, deps_t from
)
435 init_deps (to
, false);
436 deps_join (to
, from
);
439 /* Allocate store for dep context. */
441 alloc_deps_context (void)
443 return XNEW (class deps_desc
);
446 /* Allocate and initialize dep context. */
448 create_deps_context (void)
450 deps_t dc
= alloc_deps_context ();
452 init_deps (dc
, false);
456 /* Create a copy of FROM. */
458 create_copy_of_deps_context (deps_t from
)
460 deps_t to
= alloc_deps_context ();
462 copy_deps_context (to
, from
);
466 /* Clean up internal data of DC. */
468 clear_deps_context (deps_t dc
)
473 /* Clear and free DC. */
475 delete_deps_context (deps_t dc
)
477 clear_deps_context (dc
);
481 /* Clear and init DC. */
483 reset_deps_context (deps_t dc
)
485 clear_deps_context (dc
);
486 init_deps (dc
, false);
489 /* This structure describes the dependence analysis hooks for advancing
490 dependence context. */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info
=
495 NULL
, /* start_insn */
496 NULL
, /* finish_insn */
497 NULL
, /* start_lhs */
498 NULL
, /* finish_lhs */
499 NULL
, /* start_rhs */
500 NULL
, /* finish_rhs */
502 haifa_note_reg_clobber
,
504 NULL
, /* note_mem_dep */
510 /* Process INSN and add its impact on DC. */
512 advance_deps_context (deps_t dc
, insn_t insn
)
514 sched_deps_info
= &advance_deps_context_sched_deps_info
;
515 deps_analyze_insn (dc
, insn
);
519 /* Functions to work with DFA states. */
521 /* Allocate store for a DFA state. */
525 return xmalloc (dfa_state_size
);
528 /* Allocate and initialize DFA state. */
532 state_t state
= state_alloc ();
535 advance_state (state
);
539 /* Free DFA state. */
541 state_free (state_t state
)
546 /* Make a copy of FROM in TO. */
548 state_copy (state_t to
, state_t from
)
550 memcpy (to
, from
, dfa_state_size
);
553 /* Create a copy of FROM. */
555 state_create_copy (state_t from
)
557 state_t to
= state_alloc ();
559 state_copy (to
, from
);
564 /* Functions to work with fences. */
566 /* Clear the fence. */
568 fence_clear (fence_t f
)
570 state_t s
= FENCE_STATE (f
);
571 deps_t dc
= FENCE_DC (f
);
572 void *tc
= FENCE_TC (f
);
574 ilist_clear (&FENCE_BNDS (f
));
576 gcc_assert ((s
!= NULL
&& dc
!= NULL
&& tc
!= NULL
)
577 || (s
== NULL
&& dc
== NULL
&& tc
== NULL
));
582 delete_deps_context (dc
);
585 delete_target_context (tc
);
586 vec_free (FENCE_EXECUTING_INSNS (f
));
587 free (FENCE_READY_TICKS (f
));
588 FENCE_READY_TICKS (f
) = NULL
;
591 /* Init a list of fences with successors of OLD_FENCE. */
593 init_fences (insn_t old_fence
)
598 int ready_ticks_size
= get_max_uid () + 1;
600 FOR_EACH_SUCC_1 (succ
, si
, old_fence
,
601 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
607 gcc_assert (flag_sel_sched_pipelining_outer_loops
);
609 flist_add (&fences
, succ
,
611 create_deps_context () /* dc */,
612 create_target_context (true) /* tc */,
613 NULL
/* last_scheduled_insn */,
614 NULL
, /* executing_insns */
615 XCNEWVEC (int, ready_ticks_size
), /* ready_ticks */
617 NULL
/* sched_next */,
618 1 /* cycle */, 0 /* cycle_issued_insns */,
619 issue_rate
, /* issue_more */
620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
624 /* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
626 propagated from fallthrough edge if it is available;
627 2) deps context and cycle is propagated from more probable edge;
628 3) all other fields are set to corresponding constant values.
630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632 and AFTER_STALL_P are the corresponding fields of the second fence. */
634 merge_fences (fence_t f
, insn_t insn
,
635 state_t state
, deps_t dc
, void *tc
,
636 rtx_insn
*last_scheduled_insn
,
637 vec
<rtx_insn
*, va_gc
> *executing_insns
,
638 int *ready_ticks
, int ready_ticks_size
,
639 rtx sched_next
, int cycle
, int issue_more
, bool after_stall_p
)
641 insn_t last_scheduled_insn_old
= FENCE_LAST_SCHEDULED_INSN (f
);
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f
))
644 && !sched_next
&& !FENCE_SCHED_NEXT (f
));
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn
== NULL
649 || last_scheduled_insn_old
== NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn
== last_scheduled_insn_old
)
656 state_reset (FENCE_STATE (f
));
659 reset_deps_context (FENCE_DC (f
));
660 delete_deps_context (dc
);
662 reset_target_context (FENCE_TC (f
), true);
663 delete_target_context (tc
);
665 if (cycle
> FENCE_CYCLE (f
))
666 FENCE_CYCLE (f
) = cycle
;
668 FENCE_LAST_SCHEDULED_INSN (f
) = NULL
;
669 FENCE_ISSUE_MORE (f
) = issue_rate
;
670 vec_free (executing_insns
);
672 if (FENCE_EXECUTING_INSNS (f
))
673 FENCE_EXECUTING_INSNS (f
)->block_remove (0,
674 FENCE_EXECUTING_INSNS (f
)->length ());
675 if (FENCE_READY_TICKS (f
))
676 memset (FENCE_READY_TICKS (f
), 0, FENCE_READY_TICKS_SIZE (f
));
680 edge edge_old
= NULL
, edge_new
= NULL
;
685 /* Find fallthrough edge. */
686 gcc_assert (BLOCK_FOR_INSN (insn
)->prev_bb
);
687 candidate
= find_fallthru_edge_from (BLOCK_FOR_INSN (insn
)->prev_bb
);
690 || (candidate
->src
!= BLOCK_FOR_INSN (last_scheduled_insn
)
691 && candidate
->src
!= BLOCK_FOR_INSN (last_scheduled_insn_old
)))
693 /* No fallthrough edge leading to basic block of INSN. */
694 state_reset (FENCE_STATE (f
));
697 reset_target_context (FENCE_TC (f
), true);
698 delete_target_context (tc
);
700 FENCE_LAST_SCHEDULED_INSN (f
) = NULL
;
701 FENCE_ISSUE_MORE (f
) = issue_rate
;
704 if (candidate
->src
== BLOCK_FOR_INSN (last_scheduled_insn
))
706 state_free (FENCE_STATE (f
));
707 FENCE_STATE (f
) = state
;
709 delete_target_context (FENCE_TC (f
));
712 FENCE_LAST_SCHEDULED_INSN (f
) = last_scheduled_insn
;
713 FENCE_ISSUE_MORE (f
) = issue_more
;
717 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
719 delete_target_context (tc
);
721 gcc_assert (BLOCK_FOR_INSN (insn
)->prev_bb
722 != BLOCK_FOR_INSN (last_scheduled_insn
));
725 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
726 FOR_EACH_SUCC_1 (succ
, si
, last_scheduled_insn_old
,
727 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
731 /* No same successor allowed from several edges. */
732 gcc_assert (!edge_old
);
736 /* Find edge of second predecessor (last_scheduled_insn->insn). */
737 FOR_EACH_SUCC_1 (succ
, si
, last_scheduled_insn
,
738 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
742 /* No same successor allowed from several edges. */
743 gcc_assert (!edge_new
);
748 /* Check if we can choose most probable predecessor. */
749 if (edge_old
== NULL
|| edge_new
== NULL
)
751 reset_deps_context (FENCE_DC (f
));
752 delete_deps_context (dc
);
753 vec_free (executing_insns
);
756 FENCE_CYCLE (f
) = MAX (FENCE_CYCLE (f
), cycle
);
757 if (FENCE_EXECUTING_INSNS (f
))
758 FENCE_EXECUTING_INSNS (f
)->block_remove (0,
759 FENCE_EXECUTING_INSNS (f
)->length ());
760 if (FENCE_READY_TICKS (f
))
761 memset (FENCE_READY_TICKS (f
), 0, FENCE_READY_TICKS_SIZE (f
));
764 if (edge_new
->probability
> edge_old
->probability
)
766 delete_deps_context (FENCE_DC (f
));
768 vec_free (FENCE_EXECUTING_INSNS (f
));
769 FENCE_EXECUTING_INSNS (f
) = executing_insns
;
770 free (FENCE_READY_TICKS (f
));
771 FENCE_READY_TICKS (f
) = ready_ticks
;
772 FENCE_READY_TICKS_SIZE (f
) = ready_ticks_size
;
773 FENCE_CYCLE (f
) = cycle
;
777 /* Leave DC and CYCLE untouched. */
778 delete_deps_context (dc
);
779 vec_free (executing_insns
);
784 /* Fill remaining invariant fields. */
786 FENCE_AFTER_STALL_P (f
) = 1;
788 FENCE_ISSUED_INSNS (f
) = 0;
789 FENCE_STARTS_CYCLE_P (f
) = 1;
790 FENCE_SCHED_NEXT (f
) = NULL
;
793 /* Add a new fence to NEW_FENCES list, initializing it from all
796 add_to_fences (flist_tail_t new_fences
, insn_t insn
,
797 state_t state
, deps_t dc
, void *tc
,
798 rtx_insn
*last_scheduled_insn
,
799 vec
<rtx_insn
*, va_gc
> *executing_insns
, int *ready_ticks
,
800 int ready_ticks_size
, rtx_insn
*sched_next
, int cycle
,
801 int cycle_issued_insns
, int issue_rate
,
802 bool starts_cycle_p
, bool after_stall_p
)
804 fence_t f
= flist_lookup (FLIST_TAIL_HEAD (new_fences
), insn
);
808 flist_add (FLIST_TAIL_TAILP (new_fences
), insn
, state
, dc
, tc
,
809 last_scheduled_insn
, executing_insns
, ready_ticks
,
810 ready_ticks_size
, sched_next
, cycle
, cycle_issued_insns
,
811 issue_rate
, starts_cycle_p
, after_stall_p
);
813 FLIST_TAIL_TAILP (new_fences
)
814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences
));
818 merge_fences (f
, insn
, state
, dc
, tc
, last_scheduled_insn
,
819 executing_insns
, ready_ticks
, ready_ticks_size
,
820 sched_next
, cycle
, issue_rate
, after_stall_p
);
824 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
826 move_fence_to_fences (flist_t old_fences
, flist_tail_t new_fences
)
829 flist_t
*tailp
= FLIST_TAIL_TAILP (new_fences
);
831 old
= FLIST_FENCE (old_fences
);
832 f
= flist_lookup (FLIST_TAIL_HEAD (new_fences
),
833 FENCE_INSN (FLIST_FENCE (old_fences
)));
836 merge_fences (f
, old
->insn
, old
->state
, old
->dc
, old
->tc
,
837 old
->last_scheduled_insn
, old
->executing_insns
,
838 old
->ready_ticks
, old
->ready_ticks_size
,
839 old
->sched_next
, old
->cycle
, old
->issue_more
,
845 FLIST_TAIL_TAILP (new_fences
) = &FLIST_NEXT (*tailp
);
846 *FLIST_FENCE (*tailp
) = *old
;
847 init_fence_for_scheduling (FLIST_FENCE (*tailp
));
849 FENCE_INSN (old
) = NULL
;
852 /* Add a new fence to NEW_FENCES list and initialize most of its data
855 add_clean_fence_to_fences (flist_tail_t new_fences
, insn_t succ
, fence_t fence
)
857 int ready_ticks_size
= get_max_uid () + 1;
859 add_to_fences (new_fences
,
860 succ
, state_create (), create_deps_context (),
861 create_target_context (true),
863 XCNEWVEC (int, ready_ticks_size
), ready_ticks_size
,
864 NULL
, FENCE_CYCLE (fence
) + 1,
865 0, issue_rate
, 1, FENCE_AFTER_STALL_P (fence
));
868 /* Add a new fence to NEW_FENCES list and initialize all of its data
869 from FENCE and SUCC. */
871 add_dirty_fence_to_fences (flist_tail_t new_fences
, insn_t succ
, fence_t fence
)
873 int * new_ready_ticks
874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence
));
876 memcpy (new_ready_ticks
, FENCE_READY_TICKS (fence
),
877 FENCE_READY_TICKS_SIZE (fence
) * sizeof (int));
878 add_to_fences (new_fences
,
879 succ
, state_create_copy (FENCE_STATE (fence
)),
880 create_copy_of_deps_context (FENCE_DC (fence
)),
881 create_copy_of_target_context (FENCE_TC (fence
)),
882 FENCE_LAST_SCHEDULED_INSN (fence
),
883 vec_safe_copy (FENCE_EXECUTING_INSNS (fence
)),
885 FENCE_READY_TICKS_SIZE (fence
),
886 FENCE_SCHED_NEXT (fence
),
888 FENCE_ISSUED_INSNS (fence
),
889 FENCE_ISSUE_MORE (fence
),
890 FENCE_STARTS_CYCLE_P (fence
),
891 FENCE_AFTER_STALL_P (fence
));
895 /* Functions to work with regset and nop pools. */
897 /* Returns the new regset from pool. It might have some of the bits set
898 from the previous usage. */
900 get_regset_from_pool (void)
904 if (regset_pool
.n
!= 0)
905 rs
= regset_pool
.v
[--regset_pool
.n
];
907 /* We need to create the regset. */
909 rs
= ALLOC_REG_SET (®_obstack
);
911 if (regset_pool
.nn
== regset_pool
.ss
)
912 regset_pool
.vv
= XRESIZEVEC (regset
, regset_pool
.vv
,
913 (regset_pool
.ss
= 2 * regset_pool
.ss
+ 1));
914 regset_pool
.vv
[regset_pool
.nn
++] = rs
;
922 /* Same as above, but returns the empty regset. */
924 get_clear_regset_from_pool (void)
926 regset rs
= get_regset_from_pool ();
932 /* Return regset RS to the pool for future use. */
934 return_regset_to_pool (regset rs
)
939 if (regset_pool
.n
== regset_pool
.s
)
940 regset_pool
.v
= XRESIZEVEC (regset
, regset_pool
.v
,
941 (regset_pool
.s
= 2 * regset_pool
.s
+ 1));
942 regset_pool
.v
[regset_pool
.n
++] = rs
;
945 /* This is used as a qsort callback for sorting regset pool stacks.
946 X and XX are addresses of two regsets. They are never equal. */
948 cmp_v_in_regset_pool (const void *x
, const void *xx
)
950 uintptr_t r1
= (uintptr_t) *((const regset
*) x
);
951 uintptr_t r2
= (uintptr_t) *((const regset
*) xx
);
959 /* Free the regset pool possibly checking for memory leaks. */
961 free_regset_pool (void)
965 regset
*v
= regset_pool
.v
;
967 int n
= regset_pool
.n
;
969 regset
*vv
= regset_pool
.vv
;
971 int nn
= regset_pool
.nn
;
975 gcc_assert (n
<= nn
);
977 /* Sort both vectors so it will be possible to compare them. */
978 qsort (v
, n
, sizeof (*v
), cmp_v_in_regset_pool
);
979 qsort (vv
, nn
, sizeof (*vv
), cmp_v_in_regset_pool
);
986 /* VV[II] was lost. */
992 gcc_assert (diff
== regset_pool
.diff
);
995 /* If not true - we have a memory leak. */
996 gcc_assert (regset_pool
.diff
== 0);
998 while (regset_pool
.n
)
1001 FREE_REG_SET (regset_pool
.v
[regset_pool
.n
]);
1004 free (regset_pool
.v
);
1005 regset_pool
.v
= NULL
;
1008 free (regset_pool
.vv
);
1009 regset_pool
.vv
= NULL
;
1013 regset_pool
.diff
= 0;
1017 /* Functions to work with nop pools. NOP insns are used as temporary
1018 placeholders of the insns being scheduled to allow correct update of
1019 the data sets. When update is finished, NOPs are deleted. */
1021 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1022 nops sel-sched generates. */
1023 static vinsn_t nop_vinsn
= NULL
;
1025 /* Emit a nop before INSN, taking it from pool. */
1027 get_nop_from_pool (insn_t insn
)
1031 bool old_p
= nop_pool
.n
!= 0;
1035 nop_pat
= nop_pool
.v
[--nop_pool
.n
];
1037 nop_pat
= nop_pattern
;
1039 nop
= emit_insn_before (nop_pat
, insn
);
1042 flags
= INSN_INIT_TODO_SSID
;
1044 flags
= INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SSID
;
1046 set_insn_init (INSN_EXPR (insn
), nop_vinsn
, INSN_SEQNO (insn
));
1047 sel_init_new_insn (nop
, flags
);
1052 /* Remove NOP from the instruction stream and return it to the pool. */
1054 return_nop_to_pool (insn_t nop
, bool full_tidying
)
1056 gcc_assert (INSN_IN_STREAM_P (nop
));
1057 sel_remove_insn (nop
, false, full_tidying
);
1059 /* We'll recycle this nop. */
1060 nop
->set_undeleted ();
1062 if (nop_pool
.n
== nop_pool
.s
)
1063 nop_pool
.v
= XRESIZEVEC (rtx_insn
*, nop_pool
.v
,
1064 (nop_pool
.s
= 2 * nop_pool
.s
+ 1));
1065 nop_pool
.v
[nop_pool
.n
++] = nop
;
1068 /* Free the nop pool. */
1070 free_nop_pool (void)
1079 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1080 The callback is given two rtxes XX and YY and writes the new rtxes
1081 to NX and NY in case some needs to be skipped. */
1083 skip_unspecs_callback (const_rtx
*xx
, const_rtx
*yy
, rtx
*nx
, rtx
* ny
)
1088 if (GET_CODE (x
) == UNSPEC
1089 && (targetm
.sched
.skip_rtx_p
== NULL
1090 || targetm
.sched
.skip_rtx_p (x
)))
1092 *nx
= XVECEXP (x
, 0, 0);
1093 *ny
= CONST_CAST_RTX (y
);
1097 if (GET_CODE (y
) == UNSPEC
1098 && (targetm
.sched
.skip_rtx_p
== NULL
1099 || targetm
.sched
.skip_rtx_p (y
)))
1101 *nx
= CONST_CAST_RTX (x
);
1102 *ny
= XVECEXP (y
, 0, 0);
1109 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1110 to support ia64 speculation. When changes are needed, new rtx X and new mode
1111 NMODE are written, and the callback returns true. */
1113 hash_with_unspec_callback (const_rtx x
, machine_mode mode ATTRIBUTE_UNUSED
,
1114 rtx
*nx
, machine_mode
* nmode
)
1116 if (GET_CODE (x
) == UNSPEC
1117 && targetm
.sched
.skip_rtx_p
1118 && targetm
.sched
.skip_rtx_p (x
))
1120 *nx
= XVECEXP (x
, 0 ,0);
1128 /* Returns LHS and RHS are ok to be scheduled separately. */
1130 lhs_and_rhs_separable_p (rtx lhs
, rtx rhs
)
1132 if (lhs
== NULL
|| rhs
== NULL
)
1135 /* Do not schedule constants as rhs: no point to use reg, if const
1136 can be used. Moreover, scheduling const as rhs may lead to mode
1137 mismatch cause consts don't have modes but they could be merged
1138 from branches where the same const used in different modes. */
1139 if (CONSTANT_P (rhs
))
1142 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1143 if (COMPARISON_P (rhs
))
1146 /* Do not allow single REG to be an rhs. */
1150 /* See comment at find_used_regs_1 (*1) for explanation of this
1152 /* FIXME: remove this later. */
1156 /* This will filter all tricky things like ZERO_EXTRACT etc.
1157 For now we don't handle it. */
1158 if (!REG_P (lhs
) && !MEM_P (lhs
))
1164 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1165 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1166 used e.g. for insns from recovery blocks. */
1168 vinsn_init (vinsn_t vi
, insn_t insn
, bool force_unique_p
)
1170 hash_rtx_callback_function hrcf
;
1173 VINSN_INSN_RTX (vi
) = insn
;
1174 VINSN_COUNT (vi
) = 0;
1177 if (INSN_NOP_P (insn
))
1180 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn
)) != NULL
)
1181 init_id_from_df (VINSN_ID (vi
), insn
, force_unique_p
);
1183 deps_init_id (VINSN_ID (vi
), insn
, force_unique_p
);
1185 /* Hash vinsn depending on whether it is separable or not. */
1186 hrcf
= targetm
.sched
.skip_rtx_p
? hash_with_unspec_callback
: NULL
;
1187 if (VINSN_SEPARABLE_P (vi
))
1189 rtx rhs
= VINSN_RHS (vi
);
1191 VINSN_HASH (vi
) = hash_rtx_cb (rhs
, GET_MODE (rhs
),
1192 NULL
, NULL
, false, hrcf
);
1193 VINSN_HASH_RTX (vi
) = hash_rtx_cb (VINSN_PATTERN (vi
),
1194 VOIDmode
, NULL
, NULL
,
1199 VINSN_HASH (vi
) = hash_rtx_cb (VINSN_PATTERN (vi
), VOIDmode
,
1200 NULL
, NULL
, false, hrcf
);
1201 VINSN_HASH_RTX (vi
) = VINSN_HASH (vi
);
1204 insn_class
= haifa_classify_insn (insn
);
1206 && (!targetm
.sched
.get_insn_spec_ds
1207 || ((targetm
.sched
.get_insn_spec_ds (insn
) & BEGIN_CONTROL
)
1209 VINSN_MAY_TRAP_P (vi
) = true;
1211 VINSN_MAY_TRAP_P (vi
) = false;
1214 /* Indicate that VI has become the part of an rtx object. */
1216 vinsn_attach (vinsn_t vi
)
1218 /* Assert that VI is not pending for deletion. */
1219 gcc_assert (VINSN_INSN_RTX (vi
));
1224 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1227 vinsn_create (insn_t insn
, bool force_unique_p
)
1229 vinsn_t vi
= XCNEW (struct vinsn_def
);
1231 vinsn_init (vi
, insn
, force_unique_p
);
1235 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1238 vinsn_copy (vinsn_t vi
, bool reattach_p
)
1241 bool unique
= VINSN_UNIQUE_P (vi
);
1244 copy
= create_copy_of_insn_rtx (VINSN_INSN_RTX (vi
));
1245 new_vi
= create_vinsn_from_insn_rtx (copy
, unique
);
1249 vinsn_attach (new_vi
);
1255 /* Delete the VI vinsn and free its data. */
1257 vinsn_delete (vinsn_t vi
)
1259 gcc_assert (VINSN_COUNT (vi
) == 0);
1261 if (!INSN_NOP_P (VINSN_INSN_RTX (vi
)))
1263 return_regset_to_pool (VINSN_REG_SETS (vi
));
1264 return_regset_to_pool (VINSN_REG_USES (vi
));
1265 return_regset_to_pool (VINSN_REG_CLOBBERS (vi
));
1271 /* Indicate that VI is no longer a part of some rtx object.
1272 Remove VI if it is no longer needed. */
1274 vinsn_detach (vinsn_t vi
)
1276 gcc_assert (VINSN_COUNT (vi
) > 0);
1278 if (--VINSN_COUNT (vi
) == 0)
1282 /* Returns TRUE if VI is a branch. */
1284 vinsn_cond_branch_p (vinsn_t vi
)
1288 if (!VINSN_UNIQUE_P (vi
))
1291 insn
= VINSN_INSN_RTX (vi
);
1292 if (BB_END (BLOCK_FOR_INSN (insn
)) != insn
)
1295 return control_flow_insn_p (insn
);
1298 /* Return latency of INSN. */
1300 sel_insn_rtx_cost (rtx_insn
*insn
)
1304 /* A USE insn, or something else we don't need to
1305 understand. We can't pass these directly to
1306 result_ready_cost or insn_default_latency because it will
1307 trigger a fatal error for unrecognizable insns. */
1308 if (recog_memoized (insn
) < 0)
1312 cost
= insn_default_latency (insn
);
1321 /* Return the cost of the VI.
1322 !!! FIXME: Unify with haifa-sched.c: insn_sched_cost (). */
1324 sel_vinsn_cost (vinsn_t vi
)
1326 int cost
= vi
->cost
;
1330 cost
= sel_insn_rtx_cost (VINSN_INSN_RTX (vi
));
1338 /* Functions for insn emitting. */
1340 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1343 sel_gen_insn_from_rtx_after (rtx pattern
, expr_t expr
, int seqno
, insn_t after
)
1347 gcc_assert (EXPR_TARGET_AVAILABLE (expr
) == true);
1349 new_insn
= emit_insn_after (pattern
, after
);
1350 set_insn_init (expr
, NULL
, seqno
);
1351 sel_init_new_insn (new_insn
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SSID
);
1356 /* Force newly generated vinsns to be unique. */
1357 static bool init_insn_force_unique_p
= false;
1359 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1360 initialize its data from EXPR and SEQNO. */
1362 sel_gen_recovery_insn_from_rtx_after (rtx pattern
, expr_t expr
, int seqno
,
1367 gcc_assert (!init_insn_force_unique_p
);
1369 init_insn_force_unique_p
= true;
1370 insn
= sel_gen_insn_from_rtx_after (pattern
, expr
, seqno
, after
);
1371 CANT_MOVE (insn
) = 1;
1372 init_insn_force_unique_p
= false;
1377 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1378 take it as a new vinsn instead of EXPR's vinsn.
1379 We simplify insns later, after scheduling region in
1380 simplify_changed_insns. */
1382 sel_gen_insn_from_expr_after (expr_t expr
, vinsn_t vinsn
, int seqno
,
1389 emit_expr
= set_insn_init (expr
, vinsn
? vinsn
: EXPR_VINSN (expr
),
1391 insn
= EXPR_INSN_RTX (emit_expr
);
1393 /* The insn may come from the transformation cache, which may hold already
1394 deleted insns, so mark it as not deleted. */
1395 insn
->set_undeleted ();
1397 add_insn_after (insn
, after
, BLOCK_FOR_INSN (insn
));
1399 flags
= INSN_INIT_TODO_SSID
;
1400 if (INSN_LUID (insn
) == 0)
1401 flags
|= INSN_INIT_TODO_LUID
;
1402 sel_init_new_insn (insn
, flags
);
1407 /* Move insn from EXPR after AFTER. */
1409 sel_move_insn (expr_t expr
, int seqno
, insn_t after
)
1411 insn_t insn
= EXPR_INSN_RTX (expr
);
1412 basic_block bb
= BLOCK_FOR_INSN (after
);
1413 insn_t next
= NEXT_INSN (after
);
1415 /* Assert that in move_op we disconnected this insn properly. */
1416 gcc_assert (EXPR_VINSN (INSN_EXPR (insn
)) != NULL
);
1417 SET_PREV_INSN (insn
) = after
;
1418 SET_NEXT_INSN (insn
) = next
;
1420 SET_NEXT_INSN (after
) = insn
;
1421 SET_PREV_INSN (next
) = insn
;
1423 /* Update links from insn to bb and vice versa. */
1424 df_insn_change_bb (insn
, bb
);
1425 if (BB_END (bb
) == after
)
1428 prepare_insn_expr (insn
, seqno
);
1433 /* Functions to work with right-hand sides. */
1435 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1436 VECT and return true when found. Use NEW_VINSN for comparison only when
1437 COMPARE_VINSNS is true. Write to INDP the index on which
1438 the search has stopped, such that inserting the new element at INDP will
1439 retain VECT's sort order. */
1441 find_in_history_vect_1 (vec
<expr_history_def
> vect
,
1442 unsigned uid
, vinsn_t new_vinsn
,
1443 bool compare_vinsns
, int *indp
)
1445 expr_history_def
*arr
;
1446 int i
, j
, len
= vect
.length ();
1454 arr
= vect
.address ();
1459 unsigned auid
= arr
[i
].uid
;
1460 vinsn_t avinsn
= arr
[i
].new_expr_vinsn
;
1463 /* When undoing transformation on a bookkeeping copy, the new vinsn
1464 may not be exactly equal to the one that is saved in the vector.
1465 This is because the insn whose copy we're checking was possibly
1466 substituted itself. */
1467 && (! compare_vinsns
1468 || vinsn_equal_p (avinsn
, new_vinsn
)))
1473 else if (auid
> uid
)
1482 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1483 the position found or -1, if no such value is in vector.
1484 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1486 find_in_history_vect (vec
<expr_history_def
> vect
, rtx insn
,
1487 vinsn_t new_vinsn
, bool originators_p
)
1491 if (find_in_history_vect_1 (vect
, INSN_UID (insn
), new_vinsn
,
1495 if (INSN_ORIGINATORS (insn
) && originators_p
)
1500 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn
), 0, uid
, bi
)
1501 if (find_in_history_vect_1 (vect
, uid
, new_vinsn
, false, &ind
))
1508 /* Insert new element in a sorted history vector pointed to by PVECT,
1509 if it is not there already. The element is searched using
1510 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1511 the history of a transformation. */
1513 insert_in_history_vect (vec
<expr_history_def
> *pvect
,
1514 unsigned uid
, enum local_trans_type type
,
1515 vinsn_t old_expr_vinsn
, vinsn_t new_expr_vinsn
,
1518 vec
<expr_history_def
> vect
= *pvect
;
1519 expr_history_def temp
;
1523 res
= find_in_history_vect_1 (vect
, uid
, new_expr_vinsn
, true, &ind
);
1527 expr_history_def
*phist
= &vect
[ind
];
1529 /* It is possible that speculation types of expressions that were
1530 propagated through different paths will be different here. In this
1531 case, merge the status to get the correct check later. */
1532 if (phist
->spec_ds
!= spec_ds
)
1533 phist
->spec_ds
= ds_max_merge (phist
->spec_ds
, spec_ds
);
1538 temp
.old_expr_vinsn
= old_expr_vinsn
;
1539 temp
.new_expr_vinsn
= new_expr_vinsn
;
1540 temp
.spec_ds
= spec_ds
;
1543 vinsn_attach (old_expr_vinsn
);
1544 vinsn_attach (new_expr_vinsn
);
1545 vect
.safe_insert (ind
, temp
);
1549 /* Free history vector PVECT. */
1551 free_history_vect (vec
<expr_history_def
> &pvect
)
1554 expr_history_def
*phist
;
1556 if (! pvect
.exists ())
1559 for (i
= 0; pvect
.iterate (i
, &phist
); i
++)
1561 vinsn_detach (phist
->old_expr_vinsn
);
1562 vinsn_detach (phist
->new_expr_vinsn
);
1568 /* Merge vector FROM to PVECT. */
1570 merge_history_vect (vec
<expr_history_def
> *pvect
,
1571 vec
<expr_history_def
> from
)
1573 expr_history_def
*phist
;
1576 /* We keep this vector sorted. */
1577 for (i
= 0; from
.iterate (i
, &phist
); i
++)
1578 insert_in_history_vect (pvect
, phist
->uid
, phist
->type
,
1579 phist
->old_expr_vinsn
, phist
->new_expr_vinsn
,
1583 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1585 vinsn_equal_p (vinsn_t x
, vinsn_t y
)
1587 rtx_equal_p_callback_function repcf
;
1592 if (VINSN_TYPE (x
) != VINSN_TYPE (y
))
1595 if (VINSN_HASH (x
) != VINSN_HASH (y
))
1598 repcf
= targetm
.sched
.skip_rtx_p
? skip_unspecs_callback
: NULL
;
1599 if (VINSN_SEPARABLE_P (x
))
1601 /* Compare RHSes of VINSNs. */
1602 gcc_assert (VINSN_RHS (x
));
1603 gcc_assert (VINSN_RHS (y
));
1605 return rtx_equal_p_cb (VINSN_RHS (x
), VINSN_RHS (y
), repcf
);
1608 return rtx_equal_p_cb (VINSN_PATTERN (x
), VINSN_PATTERN (y
), repcf
);
1612 /* Functions for working with expressions. */
1614 /* Initialize EXPR. */
1616 init_expr (expr_t expr
, vinsn_t vi
, int spec
, int use
, int priority
,
1617 int sched_times
, int orig_bb_index
, ds_t spec_done_ds
,
1618 ds_t spec_to_check_ds
, int orig_sched_cycle
,
1619 vec
<expr_history_def
> history
,
1620 signed char target_available
,
1621 bool was_substituted
, bool was_renamed
, bool needs_spec_check_p
,
1626 EXPR_VINSN (expr
) = vi
;
1627 EXPR_SPEC (expr
) = spec
;
1628 EXPR_USEFULNESS (expr
) = use
;
1629 EXPR_PRIORITY (expr
) = priority
;
1630 EXPR_PRIORITY_ADJ (expr
) = 0;
1631 EXPR_SCHED_TIMES (expr
) = sched_times
;
1632 EXPR_ORIG_BB_INDEX (expr
) = orig_bb_index
;
1633 EXPR_ORIG_SCHED_CYCLE (expr
) = orig_sched_cycle
;
1634 EXPR_SPEC_DONE_DS (expr
) = spec_done_ds
;
1635 EXPR_SPEC_TO_CHECK_DS (expr
) = spec_to_check_ds
;
1637 if (history
.exists ())
1638 EXPR_HISTORY_OF_CHANGES (expr
) = history
;
1640 EXPR_HISTORY_OF_CHANGES (expr
).create (0);
1642 EXPR_TARGET_AVAILABLE (expr
) = target_available
;
1643 EXPR_WAS_SUBSTITUTED (expr
) = was_substituted
;
1644 EXPR_WAS_RENAMED (expr
) = was_renamed
;
1645 EXPR_NEEDS_SPEC_CHECK_P (expr
) = needs_spec_check_p
;
1646 EXPR_CANT_MOVE (expr
) = cant_move
;
1649 /* Make a copy of the expr FROM into the expr TO. */
1651 copy_expr (expr_t to
, expr_t from
)
1653 vec
<expr_history_def
> temp
= vNULL
;
1655 if (EXPR_HISTORY_OF_CHANGES (from
).exists ())
1658 expr_history_def
*phist
;
1660 temp
= EXPR_HISTORY_OF_CHANGES (from
).copy ();
1662 temp
.iterate (i
, &phist
);
1665 vinsn_attach (phist
->old_expr_vinsn
);
1666 vinsn_attach (phist
->new_expr_vinsn
);
1670 init_expr (to
, EXPR_VINSN (from
), EXPR_SPEC (from
),
1671 EXPR_USEFULNESS (from
), EXPR_PRIORITY (from
),
1672 EXPR_SCHED_TIMES (from
), EXPR_ORIG_BB_INDEX (from
),
1673 EXPR_SPEC_DONE_DS (from
), EXPR_SPEC_TO_CHECK_DS (from
),
1674 EXPR_ORIG_SCHED_CYCLE (from
), temp
,
1675 EXPR_TARGET_AVAILABLE (from
), EXPR_WAS_SUBSTITUTED (from
),
1676 EXPR_WAS_RENAMED (from
), EXPR_NEEDS_SPEC_CHECK_P (from
),
1677 EXPR_CANT_MOVE (from
));
1680 /* Same, but the final expr will not ever be in av sets, so don't copy
1681 "uninteresting" data such as bitmap cache. */
1683 copy_expr_onside (expr_t to
, expr_t from
)
1685 init_expr (to
, EXPR_VINSN (from
), EXPR_SPEC (from
), EXPR_USEFULNESS (from
),
1686 EXPR_PRIORITY (from
), EXPR_SCHED_TIMES (from
), 0,
1687 EXPR_SPEC_DONE_DS (from
), EXPR_SPEC_TO_CHECK_DS (from
), 0,
1689 EXPR_TARGET_AVAILABLE (from
), EXPR_WAS_SUBSTITUTED (from
),
1690 EXPR_WAS_RENAMED (from
), EXPR_NEEDS_SPEC_CHECK_P (from
),
1691 EXPR_CANT_MOVE (from
));
1694 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1695 initializing new insns. */
1697 prepare_insn_expr (insn_t insn
, int seqno
)
1699 expr_t expr
= INSN_EXPR (insn
);
1702 INSN_SEQNO (insn
) = seqno
;
1703 EXPR_ORIG_BB_INDEX (expr
) = BLOCK_NUM (insn
);
1704 EXPR_SPEC (expr
) = 0;
1705 EXPR_ORIG_SCHED_CYCLE (expr
) = 0;
1706 EXPR_WAS_SUBSTITUTED (expr
) = 0;
1707 EXPR_WAS_RENAMED (expr
) = 0;
1708 EXPR_TARGET_AVAILABLE (expr
) = 1;
1709 INSN_LIVE_VALID_P (insn
) = false;
1711 /* ??? If this expression is speculative, make its dependence
1712 as weak as possible. We can filter this expression later
1713 in process_spec_exprs, because we do not distinguish
1714 between the status we got during compute_av_set and the
1715 existing status. To be fixed. */
1716 ds
= EXPR_SPEC_DONE_DS (expr
);
1718 EXPR_SPEC_DONE_DS (expr
) = ds_get_max_dep_weak (ds
);
1720 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr
));
1723 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1724 is non-null when expressions are merged from different successors at
1727 update_target_availability (expr_t to
, expr_t from
, insn_t split_point
)
1729 if (EXPR_TARGET_AVAILABLE (to
) < 0
1730 || EXPR_TARGET_AVAILABLE (from
) < 0)
1731 EXPR_TARGET_AVAILABLE (to
) = -1;
1734 /* We try to detect the case when one of the expressions
1735 can only be reached through another one. In this case,
1736 we can do better. */
1737 if (split_point
== NULL
)
1741 toind
= EXPR_ORIG_BB_INDEX (to
);
1742 fromind
= EXPR_ORIG_BB_INDEX (from
);
1744 if (toind
&& toind
== fromind
)
1745 /* Do nothing -- everything is done in
1746 merge_with_other_exprs. */
1749 EXPR_TARGET_AVAILABLE (to
) = -1;
1751 else if (EXPR_TARGET_AVAILABLE (from
) == 0
1753 && REG_P (EXPR_LHS (from
))
1754 && REGNO (EXPR_LHS (to
)) != REGNO (EXPR_LHS (from
)))
1755 EXPR_TARGET_AVAILABLE (to
) = -1;
1757 EXPR_TARGET_AVAILABLE (to
) &= EXPR_TARGET_AVAILABLE (from
);
1761 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1762 is non-null when expressions are merged from different successors at
1765 update_speculative_bits (expr_t to
, expr_t from
, insn_t split_point
)
1767 ds_t old_to_ds
, old_from_ds
;
1769 old_to_ds
= EXPR_SPEC_DONE_DS (to
);
1770 old_from_ds
= EXPR_SPEC_DONE_DS (from
);
1772 EXPR_SPEC_DONE_DS (to
) = ds_max_merge (old_to_ds
, old_from_ds
);
1773 EXPR_SPEC_TO_CHECK_DS (to
) |= EXPR_SPEC_TO_CHECK_DS (from
);
1774 EXPR_NEEDS_SPEC_CHECK_P (to
) |= EXPR_NEEDS_SPEC_CHECK_P (from
);
1776 /* When merging e.g. control & data speculative exprs, or a control
1777 speculative with a control&data speculative one, we really have
1778 to change vinsn too. Also, when speculative status is changed,
1779 we also need to record this as a transformation in expr's history. */
1780 if ((old_to_ds
& SPECULATIVE
) || (old_from_ds
& SPECULATIVE
))
1782 old_to_ds
= ds_get_speculation_types (old_to_ds
);
1783 old_from_ds
= ds_get_speculation_types (old_from_ds
);
1785 if (old_to_ds
!= old_from_ds
)
1789 /* When both expressions are speculative, we need to change
1791 if ((old_to_ds
& SPECULATIVE
) && (old_from_ds
& SPECULATIVE
))
1795 res
= speculate_expr (to
, EXPR_SPEC_DONE_DS (to
));
1796 gcc_assert (res
>= 0);
1799 if (split_point
!= NULL
)
1801 /* Record the change with proper status. */
1802 record_ds
= EXPR_SPEC_DONE_DS (to
) & SPECULATIVE
;
1803 record_ds
&= ~(old_to_ds
& SPECULATIVE
);
1804 record_ds
&= ~(old_from_ds
& SPECULATIVE
);
1806 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to
),
1807 INSN_UID (split_point
), TRANS_SPECULATION
,
1808 EXPR_VINSN (from
), EXPR_VINSN (to
),
1816 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1817 this is done along different paths. */
1819 merge_expr_data (expr_t to
, expr_t from
, insn_t split_point
)
1821 /* Choose the maximum of the specs of merged exprs. This is required
1822 for correctness of bookkeeping. */
1823 if (EXPR_SPEC (to
) < EXPR_SPEC (from
))
1824 EXPR_SPEC (to
) = EXPR_SPEC (from
);
1827 EXPR_USEFULNESS (to
) += EXPR_USEFULNESS (from
);
1829 EXPR_USEFULNESS (to
) = MAX (EXPR_USEFULNESS (to
),
1830 EXPR_USEFULNESS (from
));
1832 if (EXPR_PRIORITY (to
) < EXPR_PRIORITY (from
))
1833 EXPR_PRIORITY (to
) = EXPR_PRIORITY (from
);
1835 /* We merge sched-times half-way to the larger value to avoid the endless
1836 pipelining of unneeded insns. The average seems to be good compromise
1837 between pipelining opportunities and avoiding extra work. */
1838 if (EXPR_SCHED_TIMES (to
) != EXPR_SCHED_TIMES (from
))
1839 EXPR_SCHED_TIMES (to
) = ((EXPR_SCHED_TIMES (from
) + EXPR_SCHED_TIMES (to
)
1842 if (EXPR_ORIG_BB_INDEX (to
) != EXPR_ORIG_BB_INDEX (from
))
1843 EXPR_ORIG_BB_INDEX (to
) = 0;
1845 EXPR_ORIG_SCHED_CYCLE (to
) = MIN (EXPR_ORIG_SCHED_CYCLE (to
),
1846 EXPR_ORIG_SCHED_CYCLE (from
));
1848 EXPR_WAS_SUBSTITUTED (to
) |= EXPR_WAS_SUBSTITUTED (from
);
1849 EXPR_WAS_RENAMED (to
) |= EXPR_WAS_RENAMED (from
);
1850 EXPR_CANT_MOVE (to
) |= EXPR_CANT_MOVE (from
);
1852 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to
),
1853 EXPR_HISTORY_OF_CHANGES (from
));
1854 update_target_availability (to
, from
, split_point
);
1855 update_speculative_bits (to
, from
, split_point
);
1858 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1859 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1860 are merged from different successors at a split point. */
1862 merge_expr (expr_t to
, expr_t from
, insn_t split_point
)
1864 vinsn_t to_vi
= EXPR_VINSN (to
);
1865 vinsn_t from_vi
= EXPR_VINSN (from
);
1867 gcc_assert (vinsn_equal_p (to_vi
, from_vi
));
1869 /* Make sure that speculative pattern is propagated into exprs that
1870 have non-speculative one. This will provide us with consistent
1871 speculative bits and speculative patterns inside expr. */
1872 if (EXPR_SPEC_DONE_DS (to
) == 0
1873 && (EXPR_SPEC_DONE_DS (from
) != 0
1874 /* Do likewise for volatile insns, so that we always retain
1875 the may_trap_p bit on the resulting expression. However,
1876 avoid propagating the trapping bit into the instructions
1877 already speculated. This would result in replacing the
1878 speculative pattern with the non-speculative one and breaking
1879 the speculation support. */
1880 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to
))
1881 && VINSN_MAY_TRAP_P (EXPR_VINSN (from
)))))
1882 change_vinsn_in_expr (to
, EXPR_VINSN (from
));
1884 merge_expr_data (to
, from
, split_point
);
1885 gcc_assert (EXPR_USEFULNESS (to
) <= REG_BR_PROB_BASE
);
1888 /* Clear the information of this EXPR. */
1890 clear_expr (expr_t expr
)
1893 vinsn_detach (EXPR_VINSN (expr
));
1894 EXPR_VINSN (expr
) = NULL
;
1896 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr
));
1899 /* For a given LV_SET, mark EXPR having unavailable target register. */
1901 set_unavailable_target_for_expr (expr_t expr
, regset lv_set
)
1903 if (EXPR_SEPARABLE_P (expr
))
1905 if (REG_P (EXPR_LHS (expr
))
1906 && register_unavailable_p (lv_set
, EXPR_LHS (expr
)))
1908 /* If it's an insn like r1 = use (r1, ...), and it exists in
1909 different forms in each of the av_sets being merged, we can't say
1910 whether original destination register is available or not.
1911 However, this still works if destination register is not used
1912 in the original expression: if the branch at which LV_SET we're
1913 looking here is not actually 'other branch' in sense that same
1914 expression is available through it (but it can't be determined
1915 at computation stage because of transformations on one of the
1916 branches), it still won't affect the availability.
1917 Liveness of a register somewhere on a code motion path means
1918 it's either read somewhere on a codemotion path, live on
1919 'other' branch, live at the point immediately following
1920 the original operation, or is read by the original operation.
1921 The latter case is filtered out in the condition below.
1922 It still doesn't cover the case when register is defined and used
1923 somewhere within the code motion path, and in this case we could
1924 miss a unifying code motion along both branches using a renamed
1925 register, but it won't affect a code correctness since upon
1926 an actual code motion a bookkeeping code would be generated. */
1927 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr
)),
1929 EXPR_TARGET_AVAILABLE (expr
) = -1;
1931 EXPR_TARGET_AVAILABLE (expr
) = false;
1937 reg_set_iterator rsi
;
1939 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr
)),
1941 if (bitmap_bit_p (lv_set
, regno
))
1943 EXPR_TARGET_AVAILABLE (expr
) = false;
1947 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr
)),
1949 if (bitmap_bit_p (lv_set
, regno
))
1951 EXPR_TARGET_AVAILABLE (expr
) = false;
1957 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1958 or dependence status have changed, 2 when also the target register
1959 became unavailable, 0 if nothing had to be changed. */
1961 speculate_expr (expr_t expr
, ds_t ds
)
1964 rtx_insn
*orig_insn_rtx
;
1966 ds_t target_ds
, current_ds
;
1968 /* Obtain the status we need to put on EXPR. */
1969 target_ds
= (ds
& SPECULATIVE
);
1970 current_ds
= EXPR_SPEC_DONE_DS (expr
);
1971 ds
= ds_full_merge (current_ds
, target_ds
, NULL_RTX
, NULL_RTX
);
1973 orig_insn_rtx
= EXPR_INSN_RTX (expr
);
1975 res
= sched_speculate_insn (orig_insn_rtx
, ds
, &spec_pat
);
1980 EXPR_SPEC_DONE_DS (expr
) = ds
;
1981 return current_ds
!= ds
? 1 : 0;
1985 rtx_insn
*spec_insn_rtx
=
1986 create_insn_rtx_from_pattern (spec_pat
, NULL_RTX
);
1987 vinsn_t spec_vinsn
= create_vinsn_from_insn_rtx (spec_insn_rtx
, false);
1989 change_vinsn_in_expr (expr
, spec_vinsn
);
1990 EXPR_SPEC_DONE_DS (expr
) = ds
;
1991 EXPR_NEEDS_SPEC_CHECK_P (expr
) = true;
1993 /* Do not allow clobbering the address register of speculative
1995 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr
)),
1996 expr_dest_reg (expr
)))
1998 EXPR_TARGET_AVAILABLE (expr
) = false;
2014 /* Return a destination register, if any, of EXPR. */
2016 expr_dest_reg (expr_t expr
)
2018 rtx dest
= VINSN_LHS (EXPR_VINSN (expr
));
2020 if (dest
!= NULL_RTX
&& REG_P (dest
))
2026 /* Returns the REGNO of the R's destination. */
2028 expr_dest_regno (expr_t expr
)
2030 rtx dest
= expr_dest_reg (expr
);
2032 gcc_assert (dest
!= NULL_RTX
);
2033 return REGNO (dest
);
2036 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2037 AV_SET having unavailable target register. */
2039 mark_unavailable_targets (av_set_t join_set
, av_set_t av_set
, regset lv_set
)
2042 av_set_iterator avi
;
2044 FOR_EACH_EXPR (expr
, avi
, join_set
)
2045 if (av_set_lookup (av_set
, EXPR_VINSN (expr
)) == NULL
)
2046 set_unavailable_target_for_expr (expr
, lv_set
);
2050 /* Returns true if REG (at least partially) is present in REGS. */
2052 register_unavailable_p (regset regs
, rtx reg
)
2054 unsigned regno
, end_regno
;
2056 regno
= REGNO (reg
);
2057 if (bitmap_bit_p (regs
, regno
))
2060 end_regno
= END_REGNO (reg
);
2062 while (++regno
< end_regno
)
2063 if (bitmap_bit_p (regs
, regno
))
2069 /* Av set functions. */
2071 /* Add a new element to av set SETP.
2072 Return the element added. */
2074 av_set_add_element (av_set_t
*setp
)
2076 /* Insert at the beginning of the list. */
2081 /* Add EXPR to SETP. */
2083 av_set_add (av_set_t
*setp
, expr_t expr
)
2087 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr
)));
2088 elem
= av_set_add_element (setp
);
2089 copy_expr (_AV_SET_EXPR (elem
), expr
);
2092 /* Same, but do not copy EXPR. */
2094 av_set_add_nocopy (av_set_t
*setp
, expr_t expr
)
2098 elem
= av_set_add_element (setp
);
2099 *_AV_SET_EXPR (elem
) = *expr
;
2102 /* Remove expr pointed to by IP from the av_set. */
2104 av_set_iter_remove (av_set_iterator
*ip
)
2106 clear_expr (_AV_SET_EXPR (*ip
->lp
));
2107 _list_iter_remove (ip
);
2110 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111 sense of vinsn_equal_p function. Return NULL if no such expr is
2112 in SET was found. */
2114 av_set_lookup (av_set_t set
, vinsn_t sought_vinsn
)
2119 FOR_EACH_EXPR (expr
, i
, set
)
2120 if (vinsn_equal_p (EXPR_VINSN (expr
), sought_vinsn
))
2125 /* Same, but also remove the EXPR found. */
2127 av_set_lookup_and_remove (av_set_t
*setp
, vinsn_t sought_vinsn
)
2132 FOR_EACH_EXPR_1 (expr
, i
, setp
)
2133 if (vinsn_equal_p (EXPR_VINSN (expr
), sought_vinsn
))
2135 _list_iter_remove_nofree (&i
);
2141 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2142 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143 Returns NULL if no such expr is in SET was found. */
2145 av_set_lookup_other_equiv_expr (av_set_t set
, expr_t expr
)
2150 FOR_EACH_EXPR (cur_expr
, i
, set
)
2152 if (cur_expr
== expr
)
2154 if (vinsn_equal_p (EXPR_VINSN (cur_expr
), EXPR_VINSN (expr
)))
2161 /* If other expression is already in AVP, remove one of them. */
2163 merge_with_other_exprs (av_set_t
*avp
, av_set_iterator
*ip
, expr_t expr
)
2167 expr2
= av_set_lookup_other_equiv_expr (*avp
, expr
);
2170 /* Reset target availability on merge, since taking it only from one
2171 of the exprs would be controversial for different code. */
2172 EXPR_TARGET_AVAILABLE (expr2
) = -1;
2173 EXPR_USEFULNESS (expr2
) = 0;
2175 merge_expr (expr2
, expr
, NULL
);
2177 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2178 EXPR_USEFULNESS (expr2
) = REG_BR_PROB_BASE
;
2180 av_set_iter_remove (ip
);
2187 /* Return true if there is an expr that correlates to VI in SET. */
2189 av_set_is_in_p (av_set_t set
, vinsn_t vi
)
2191 return av_set_lookup (set
, vi
) != NULL
;
2194 /* Return a copy of SET. */
2196 av_set_copy (av_set_t set
)
2200 av_set_t res
= NULL
;
2202 FOR_EACH_EXPR (expr
, i
, set
)
2203 av_set_add (&res
, expr
);
2208 /* Join two av sets that do not have common elements by attaching second set
2209 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210 _AV_SET_NEXT of first set's last element). */
2212 join_distinct_sets (av_set_t
*to_tailp
, av_set_t
*fromp
)
2214 gcc_assert (*to_tailp
== NULL
);
2219 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2220 pointed to by FROMP afterwards. */
2222 av_set_union_and_clear (av_set_t
*top
, av_set_t
*fromp
, insn_t insn
)
2227 /* Delete from TOP all exprs, that present in FROMP. */
2228 FOR_EACH_EXPR_1 (expr1
, i
, top
)
2230 expr_t expr2
= av_set_lookup (*fromp
, EXPR_VINSN (expr1
));
2234 merge_expr (expr2
, expr1
, insn
);
2235 av_set_iter_remove (&i
);
2239 join_distinct_sets (i
.lp
, fromp
);
2242 /* Same as above, but also update availability of target register in
2243 TOP judging by TO_LV_SET and FROM_LV_SET. */
2245 av_set_union_and_live (av_set_t
*top
, av_set_t
*fromp
, regset to_lv_set
,
2246 regset from_lv_set
, insn_t insn
)
2250 av_set_t
*to_tailp
, in_both_set
= NULL
;
2252 /* Delete from TOP all expres, that present in FROMP. */
2253 FOR_EACH_EXPR_1 (expr1
, i
, top
)
2255 expr_t expr2
= av_set_lookup_and_remove (fromp
, EXPR_VINSN (expr1
));
2259 /* It may be that the expressions have different destination
2260 registers, in which case we need to check liveness here. */
2261 if (EXPR_SEPARABLE_P (expr1
))
2263 int regno1
= (REG_P (EXPR_LHS (expr1
))
2264 ? (int) expr_dest_regno (expr1
) : -1);
2265 int regno2
= (REG_P (EXPR_LHS (expr2
))
2266 ? (int) expr_dest_regno (expr2
) : -1);
2268 /* ??? We don't have a way to check restrictions for
2269 *other* register on the current path, we did it only
2270 for the current target register. Give up. */
2271 if (regno1
!= regno2
)
2272 EXPR_TARGET_AVAILABLE (expr2
) = -1;
2274 else if (EXPR_INSN_RTX (expr1
) != EXPR_INSN_RTX (expr2
))
2275 EXPR_TARGET_AVAILABLE (expr2
) = -1;
2277 merge_expr (expr2
, expr1
, insn
);
2278 av_set_add_nocopy (&in_both_set
, expr2
);
2279 av_set_iter_remove (&i
);
2282 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2284 set_unavailable_target_for_expr (expr1
, from_lv_set
);
2288 /* These expressions are not present in TOP. Check liveness
2289 restrictions on TO_LV_SET. */
2290 FOR_EACH_EXPR (expr1
, i
, *fromp
)
2291 set_unavailable_target_for_expr (expr1
, to_lv_set
);
2293 join_distinct_sets (i
.lp
, &in_both_set
);
2294 join_distinct_sets (to_tailp
, fromp
);
2297 /* Clear av_set pointed to by SETP. */
2299 av_set_clear (av_set_t
*setp
)
2304 FOR_EACH_EXPR_1 (expr
, i
, setp
)
2305 av_set_iter_remove (&i
);
2307 gcc_assert (*setp
== NULL
);
2310 /* Leave only one non-speculative element in the SETP. */
2312 av_set_leave_one_nonspec (av_set_t
*setp
)
2316 bool has_one_nonspec
= false;
2318 /* Keep all speculative exprs, and leave one non-speculative
2320 FOR_EACH_EXPR_1 (expr
, i
, setp
)
2322 if (!EXPR_SPEC_DONE_DS (expr
))
2324 if (has_one_nonspec
)
2325 av_set_iter_remove (&i
);
2327 has_one_nonspec
= true;
2332 /* Return the N'th element of the SET. */
2334 av_set_element (av_set_t set
, int n
)
2339 FOR_EACH_EXPR (expr
, i
, set
)
2347 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2349 av_set_substract_cond_branches (av_set_t
*avp
)
2354 FOR_EACH_EXPR_1 (expr
, i
, avp
)
2355 if (vinsn_cond_branch_p (EXPR_VINSN (expr
)))
2356 av_set_iter_remove (&i
);
2359 /* Multiplies usefulness attribute of each member of av-set *AVP by
2360 value PROB / ALL_PROB. */
2362 av_set_split_usefulness (av_set_t av
, int prob
, int all_prob
)
2367 FOR_EACH_EXPR (expr
, i
, av
)
2368 EXPR_USEFULNESS (expr
) = (all_prob
2369 ? (EXPR_USEFULNESS (expr
) * prob
) / all_prob
2373 /* Leave in AVP only those expressions, which are present in AV,
2374 and return it, merging history expressions. */
2376 av_set_code_motion_filter (av_set_t
*avp
, av_set_t av
)
2381 FOR_EACH_EXPR_1 (expr
, i
, avp
)
2382 if ((expr2
= av_set_lookup (av
, EXPR_VINSN (expr
))) == NULL
)
2383 av_set_iter_remove (&i
);
2385 /* When updating av sets in bookkeeping blocks, we can add more insns
2386 there which will be transformed but the upper av sets will not
2387 reflect those transformations. We then fail to undo those
2388 when searching for such insns. So merge the history saved
2389 in the av set of the block we are processing. */
2390 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr
),
2391 EXPR_HISTORY_OF_CHANGES (expr2
));
2396 /* Dependence hooks to initialize insn data. */
2398 /* This is used in hooks callable from dependence analysis when initializing
2399 instruction's data. */
2402 /* Where the dependence was found (lhs/rhs). */
2405 /* The actual data object to initialize. */
2408 /* True when the insn should not be made clonable. */
2409 bool force_unique_p
;
2411 /* True when insn should be treated as of type USE, i.e. never renamed. */
2413 } deps_init_id_data
;
2416 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2419 setup_id_for_insn (idata_t id
, insn_t insn
, bool force_unique_p
)
2423 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424 That clonable insns which can be separated into lhs and rhs have type SET.
2425 Other clonable insns have type USE. */
2426 type
= GET_CODE (insn
);
2428 /* Only regular insns could be cloned. */
2429 if (type
== INSN
&& !force_unique_p
)
2431 else if (type
== JUMP_INSN
&& simplejump_p (insn
))
2433 else if (type
== DEBUG_INSN
)
2434 type
= !force_unique_p
? USE
: INSN
;
2436 IDATA_TYPE (id
) = type
;
2437 IDATA_REG_SETS (id
) = get_clear_regset_from_pool ();
2438 IDATA_REG_USES (id
) = get_clear_regset_from_pool ();
2439 IDATA_REG_CLOBBERS (id
) = get_clear_regset_from_pool ();
2442 /* Start initializing insn data. */
2444 deps_init_id_start_insn (insn_t insn
)
2446 gcc_assert (deps_init_id_data
.where
== DEPS_IN_NOWHERE
);
2448 setup_id_for_insn (deps_init_id_data
.id
, insn
,
2449 deps_init_id_data
.force_unique_p
);
2450 deps_init_id_data
.where
= DEPS_IN_INSN
;
2453 /* Start initializing lhs data. */
2455 deps_init_id_start_lhs (rtx lhs
)
2457 gcc_assert (deps_init_id_data
.where
== DEPS_IN_INSN
);
2458 gcc_assert (IDATA_LHS (deps_init_id_data
.id
) == NULL
);
2460 if (IDATA_TYPE (deps_init_id_data
.id
) == SET
)
2462 IDATA_LHS (deps_init_id_data
.id
) = lhs
;
2463 deps_init_id_data
.where
= DEPS_IN_LHS
;
2467 /* Finish initializing lhs data. */
2469 deps_init_id_finish_lhs (void)
2471 deps_init_id_data
.where
= DEPS_IN_INSN
;
2474 /* Note a set of REGNO. */
2476 deps_init_id_note_reg_set (int regno
)
2478 haifa_note_reg_set (regno
);
2480 if (deps_init_id_data
.where
== DEPS_IN_RHS
)
2481 deps_init_id_data
.force_use_p
= true;
2483 if (IDATA_TYPE (deps_init_id_data
.id
) != PC
)
2484 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data
.id
), regno
);
2487 /* Make instructions that set stack registers to be ineligible for
2488 renaming to avoid issues with find_used_regs. */
2489 if (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
))
2490 deps_init_id_data
.force_use_p
= true;
2494 /* Note a clobber of REGNO. */
2496 deps_init_id_note_reg_clobber (int regno
)
2498 haifa_note_reg_clobber (regno
);
2500 if (deps_init_id_data
.where
== DEPS_IN_RHS
)
2501 deps_init_id_data
.force_use_p
= true;
2503 if (IDATA_TYPE (deps_init_id_data
.id
) != PC
)
2504 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data
.id
), regno
);
2507 /* Note a use of REGNO. */
2509 deps_init_id_note_reg_use (int regno
)
2511 haifa_note_reg_use (regno
);
2513 if (IDATA_TYPE (deps_init_id_data
.id
) != PC
)
2514 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data
.id
), regno
);
2517 /* Start initializing rhs data. */
2519 deps_init_id_start_rhs (rtx rhs
)
2521 gcc_assert (deps_init_id_data
.where
== DEPS_IN_INSN
);
2523 /* And there was no sel_deps_reset_to_insn (). */
2524 if (IDATA_LHS (deps_init_id_data
.id
) != NULL
)
2526 IDATA_RHS (deps_init_id_data
.id
) = rhs
;
2527 deps_init_id_data
.where
= DEPS_IN_RHS
;
2531 /* Finish initializing rhs data. */
2533 deps_init_id_finish_rhs (void)
2535 gcc_assert (deps_init_id_data
.where
== DEPS_IN_RHS
2536 || deps_init_id_data
.where
== DEPS_IN_INSN
);
2537 deps_init_id_data
.where
= DEPS_IN_INSN
;
2540 /* Finish initializing insn data. */
2542 deps_init_id_finish_insn (void)
2544 gcc_assert (deps_init_id_data
.where
== DEPS_IN_INSN
);
2546 if (IDATA_TYPE (deps_init_id_data
.id
) == SET
)
2548 rtx lhs
= IDATA_LHS (deps_init_id_data
.id
);
2549 rtx rhs
= IDATA_RHS (deps_init_id_data
.id
);
2551 if (lhs
== NULL
|| rhs
== NULL
|| !lhs_and_rhs_separable_p (lhs
, rhs
)
2552 || deps_init_id_data
.force_use_p
)
2554 /* This should be a USE, as we don't want to schedule its RHS
2555 separately. However, we still want to have them recorded
2556 for the purposes of substitution. That's why we don't
2557 simply call downgrade_to_use () here. */
2558 gcc_assert (IDATA_TYPE (deps_init_id_data
.id
) == SET
);
2559 gcc_assert (!lhs
== !rhs
);
2561 IDATA_TYPE (deps_init_id_data
.id
) = USE
;
2565 deps_init_id_data
.where
= DEPS_IN_NOWHERE
;
2568 /* This is dependence info used for initializing insn's data. */
2569 static struct sched_deps_info_def deps_init_id_sched_deps_info
;
2571 /* This initializes most of the static part of the above structure. */
2572 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info
=
2576 deps_init_id_start_insn
,
2577 deps_init_id_finish_insn
,
2578 deps_init_id_start_lhs
,
2579 deps_init_id_finish_lhs
,
2580 deps_init_id_start_rhs
,
2581 deps_init_id_finish_rhs
,
2582 deps_init_id_note_reg_set
,
2583 deps_init_id_note_reg_clobber
,
2584 deps_init_id_note_reg_use
,
2585 NULL
, /* note_mem_dep */
2586 NULL
, /* note_dep */
2589 0, /* use_deps_list */
2590 0 /* generate_spec_deps */
2593 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2594 we don't actually need information about lhs and rhs. */
2596 setup_id_lhs_rhs (idata_t id
, insn_t insn
, bool force_unique_p
)
2598 rtx pat
= PATTERN (insn
);
2600 if (NONJUMP_INSN_P (insn
)
2601 && GET_CODE (pat
) == SET
2604 IDATA_RHS (id
) = SET_SRC (pat
);
2605 IDATA_LHS (id
) = SET_DEST (pat
);
2608 IDATA_LHS (id
) = IDATA_RHS (id
) = NULL
;
2611 /* Possibly downgrade INSN to USE. */
2613 maybe_downgrade_id_to_use (idata_t id
, insn_t insn
)
2615 bool must_be_use
= false;
2617 rtx lhs
= IDATA_LHS (id
);
2618 rtx rhs
= IDATA_RHS (id
);
2620 /* We downgrade only SETs. */
2621 if (IDATA_TYPE (id
) != SET
)
2624 if (!lhs
|| !lhs_and_rhs_separable_p (lhs
, rhs
))
2626 IDATA_TYPE (id
) = USE
;
2630 FOR_EACH_INSN_DEF (def
, insn
)
2632 if (DF_REF_INSN (def
)
2633 && DF_REF_FLAGS_IS_SET (def
, DF_REF_PRE_POST_MODIFY
)
2634 && loc_mentioned_in_p (DF_REF_LOC (def
), IDATA_RHS (id
)))
2641 /* Make instructions that set stack registers to be ineligible for
2642 renaming to avoid issues with find_used_regs. */
2643 if (IN_RANGE (DF_REF_REGNO (def
), FIRST_STACK_REG
, LAST_STACK_REG
))
2652 IDATA_TYPE (id
) = USE
;
2655 /* Setup implicit register clobbers calculated by sched-deps for INSN
2656 before reload and save them in ID. */
2658 setup_id_implicit_regs (idata_t id
, insn_t insn
)
2660 if (reload_completed
)
2665 get_implicit_reg_pending_clobbers (&temp
, insn
);
2666 IOR_REG_SET_HRS (IDATA_REG_SETS (id
), temp
);
2669 /* Setup register sets describing INSN in ID. */
2671 setup_id_reg_sets (idata_t id
, insn_t insn
)
2673 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
2675 regset tmp
= get_clear_regset_from_pool ();
2677 FOR_EACH_INSN_INFO_DEF (def
, insn_info
)
2679 unsigned int regno
= DF_REF_REGNO (def
);
2681 /* Post modifies are treated like clobbers by sched-deps.c. */
2682 if (DF_REF_FLAGS_IS_SET (def
, (DF_REF_MUST_CLOBBER
2683 | DF_REF_PRE_POST_MODIFY
)))
2684 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id
), regno
);
2685 else if (! DF_REF_FLAGS_IS_SET (def
, DF_REF_MAY_CLOBBER
))
2687 SET_REGNO_REG_SET (IDATA_REG_SETS (id
), regno
);
2690 /* For stack registers, treat writes to them as writes
2691 to the first one to be consistent with sched-deps.c. */
2692 if (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
))
2693 SET_REGNO_REG_SET (IDATA_REG_SETS (id
), FIRST_STACK_REG
);
2696 /* Mark special refs that generate read/write def pair. */
2697 if (DF_REF_FLAGS_IS_SET (def
, DF_REF_CONDITIONAL
)
2698 || regno
== STACK_POINTER_REGNUM
)
2699 bitmap_set_bit (tmp
, regno
);
2702 FOR_EACH_INSN_INFO_USE (use
, insn_info
)
2704 unsigned int regno
= DF_REF_REGNO (use
);
2706 /* When these refs are met for the first time, skip them, as
2707 these uses are just counterparts of some defs. */
2708 if (bitmap_bit_p (tmp
, regno
))
2709 bitmap_clear_bit (tmp
, regno
);
2710 else if (! DF_REF_FLAGS_IS_SET (use
, DF_REF_CALL_STACK_USAGE
))
2712 SET_REGNO_REG_SET (IDATA_REG_USES (id
), regno
);
2715 /* For stack registers, treat reads from them as reads from
2716 the first one to be consistent with sched-deps.c. */
2717 if (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
))
2718 SET_REGNO_REG_SET (IDATA_REG_USES (id
), FIRST_STACK_REG
);
2723 /* Also get implicit reg clobbers from sched-deps. */
2724 setup_id_implicit_regs (id
, insn
);
2726 return_regset_to_pool (tmp
);
2729 /* Initialize instruction data for INSN in ID using DF's data. */
2731 init_id_from_df (idata_t id
, insn_t insn
, bool force_unique_p
)
2733 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn
)) != NULL
);
2735 setup_id_for_insn (id
, insn
, force_unique_p
);
2736 setup_id_lhs_rhs (id
, insn
, force_unique_p
);
2738 if (INSN_NOP_P (insn
))
2741 maybe_downgrade_id_to_use (id
, insn
);
2742 setup_id_reg_sets (id
, insn
);
2745 /* Initialize instruction data for INSN in ID. */
2747 deps_init_id (idata_t id
, insn_t insn
, bool force_unique_p
)
2749 class deps_desc _dc
, *dc
= &_dc
;
2751 deps_init_id_data
.where
= DEPS_IN_NOWHERE
;
2752 deps_init_id_data
.id
= id
;
2753 deps_init_id_data
.force_unique_p
= force_unique_p
;
2754 deps_init_id_data
.force_use_p
= false;
2756 init_deps (dc
, false);
2757 memcpy (&deps_init_id_sched_deps_info
,
2758 &const_deps_init_id_sched_deps_info
,
2759 sizeof (deps_init_id_sched_deps_info
));
2760 if (spec_info
!= NULL
)
2761 deps_init_id_sched_deps_info
.generate_spec_deps
= 1;
2762 sched_deps_info
= &deps_init_id_sched_deps_info
;
2764 deps_analyze_insn (dc
, insn
);
2765 /* Implicit reg clobbers received from sched-deps separately. */
2766 setup_id_implicit_regs (id
, insn
);
2769 deps_init_id_data
.id
= NULL
;
2773 struct sched_scan_info_def
2775 /* This hook notifies scheduler frontend to extend its internal per basic
2776 block data structures. This hook should be called once before a series of
2777 calls to bb_init (). */
2778 void (*extend_bb
) (void);
2780 /* This hook makes scheduler frontend to initialize its internal data
2781 structures for the passed basic block. */
2782 void (*init_bb
) (basic_block
);
2784 /* This hook notifies scheduler frontend to extend its internal per insn data
2785 structures. This hook should be called once before a series of calls to
2787 void (*extend_insn
) (void);
2789 /* This hook makes scheduler frontend to initialize its internal data
2790 structures for the passed insn. */
2791 void (*init_insn
) (insn_t
);
2794 /* A driver function to add a set of basic blocks (BBS) to the
2795 scheduling region. */
2797 sched_scan (const struct sched_scan_info_def
*ssi
, bb_vec_t bbs
)
2806 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
2809 if (ssi
->extend_insn
)
2810 ssi
->extend_insn ();
2813 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
2817 FOR_BB_INSNS (bb
, insn
)
2818 ssi
->init_insn (insn
);
2822 /* Implement hooks for collecting fundamental insn properties like if insn is
2823 an ASM or is within a SCHED_GROUP. */
2825 /* True when a "one-time init" data for INSN was already inited. */
2827 first_time_insn_init (insn_t insn
)
2829 return INSN_LIVE (insn
) == NULL
;
2832 /* Hash an entry in a transformed_insns hashtable. */
2834 hash_transformed_insns (const void *p
)
2836 return VINSN_HASH_RTX (((const struct transformed_insns
*) p
)->vinsn_old
);
2839 /* Compare the entries in a transformed_insns hashtable. */
2841 eq_transformed_insns (const void *p
, const void *q
)
2844 VINSN_INSN_RTX (((const struct transformed_insns
*) p
)->vinsn_old
);
2846 VINSN_INSN_RTX (((const struct transformed_insns
*) q
)->vinsn_old
);
2848 if (INSN_UID (i1
) == INSN_UID (i2
))
2850 return rtx_equal_p (PATTERN (i1
), PATTERN (i2
));
2853 /* Free an entry in a transformed_insns hashtable. */
2855 free_transformed_insns (void *p
)
2857 struct transformed_insns
*pti
= (struct transformed_insns
*) p
;
2859 vinsn_detach (pti
->vinsn_old
);
2860 vinsn_detach (pti
->vinsn_new
);
2864 /* Init the s_i_d data for INSN which should be inited just once, when
2865 we first see the insn. */
2867 init_first_time_insn_data (insn_t insn
)
2869 /* This should not be set if this is the first time we init data for
2871 gcc_assert (first_time_insn_init (insn
));
2873 /* These are needed for nops too. */
2874 INSN_LIVE (insn
) = get_regset_from_pool ();
2875 INSN_LIVE_VALID_P (insn
) = false;
2877 if (!INSN_NOP_P (insn
))
2879 INSN_ANALYZED_DEPS (insn
) = BITMAP_ALLOC (NULL
);
2880 INSN_FOUND_DEPS (insn
) = BITMAP_ALLOC (NULL
);
2881 INSN_TRANSFORMED_INSNS (insn
)
2882 = htab_create (16, hash_transformed_insns
,
2883 eq_transformed_insns
, free_transformed_insns
);
2884 init_deps (&INSN_DEPS_CONTEXT (insn
), true);
2888 /* Free almost all above data for INSN that is scheduled already.
2889 Used for extra-large basic blocks. */
2891 free_data_for_scheduled_insn (insn_t insn
)
2893 gcc_assert (! first_time_insn_init (insn
));
2895 if (! INSN_ANALYZED_DEPS (insn
))
2898 BITMAP_FREE (INSN_ANALYZED_DEPS (insn
));
2899 BITMAP_FREE (INSN_FOUND_DEPS (insn
));
2900 htab_delete (INSN_TRANSFORMED_INSNS (insn
));
2902 /* This is allocated only for bookkeeping insns. */
2903 if (INSN_ORIGINATORS (insn
))
2904 BITMAP_FREE (INSN_ORIGINATORS (insn
));
2905 free_deps (&INSN_DEPS_CONTEXT (insn
));
2907 INSN_ANALYZED_DEPS (insn
) = NULL
;
2909 /* Clear the readonly flag so we would ICE when trying to recalculate
2910 the deps context (as we believe that it should not happen). */
2911 (&INSN_DEPS_CONTEXT (insn
))->readonly
= 0;
2914 /* Free the same data as above for INSN. */
2916 free_first_time_insn_data (insn_t insn
)
2918 gcc_assert (! first_time_insn_init (insn
));
2920 free_data_for_scheduled_insn (insn
);
2921 return_regset_to_pool (INSN_LIVE (insn
));
2922 INSN_LIVE (insn
) = NULL
;
2923 INSN_LIVE_VALID_P (insn
) = false;
2926 /* Initialize region-scope data structures for basic blocks. */
2928 init_global_and_expr_for_bb (basic_block bb
)
2930 if (sel_bb_empty_p (bb
))
2933 invalidate_av_set (bb
);
2936 /* Data for global dependency analysis (to initialize CANT_MOVE and
2940 /* Previous insn. */
2944 /* Determine if INSN is in the sched_group, is an asm or should not be
2945 cloned. After that initialize its expr. */
2947 init_global_and_expr_for_insn (insn_t insn
)
2952 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
2954 init_global_data
.prev_insn
= NULL
;
2958 gcc_assert (INSN_P (insn
));
2960 if (SCHED_GROUP_P (insn
))
2961 /* Setup a sched_group. */
2963 insn_t prev_insn
= init_global_data
.prev_insn
;
2966 INSN_SCHED_NEXT (prev_insn
) = insn
;
2968 init_global_data
.prev_insn
= insn
;
2971 init_global_data
.prev_insn
= NULL
;
2973 if (GET_CODE (PATTERN (insn
)) == ASM_INPUT
2974 || asm_noperands (PATTERN (insn
)) >= 0)
2975 /* Mark INSN as an asm. */
2976 INSN_ASM_P (insn
) = true;
2979 bool force_unique_p
;
2982 /* Certain instructions cannot be cloned, and frame related insns and
2983 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2985 if (prologue_epilogue_contains (insn
))
2987 if (RTX_FRAME_RELATED_P (insn
))
2988 CANT_MOVE (insn
) = 1;
2992 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2993 if (REG_NOTE_KIND (note
) == REG_SAVE_NOTE
2994 && ((enum insn_note
) INTVAL (XEXP (note
, 0))
2995 == NOTE_INSN_EPILOGUE_BEG
))
2997 CANT_MOVE (insn
) = 1;
3001 force_unique_p
= true;
3004 if (CANT_MOVE (insn
)
3005 || INSN_ASM_P (insn
)
3006 || SCHED_GROUP_P (insn
)
3008 /* Exception handling insns are always unique. */
3009 || (cfun
->can_throw_non_call_exceptions
&& can_throw_internal (insn
))
3010 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3011 || control_flow_insn_p (insn
)
3012 || volatile_insn_p (PATTERN (insn
))
3013 || (targetm
.cannot_copy_insn_p
3014 && targetm
.cannot_copy_insn_p (insn
)))
3015 force_unique_p
= true;
3017 force_unique_p
= false;
3019 if (targetm
.sched
.get_insn_spec_ds
)
3021 spec_done_ds
= targetm
.sched
.get_insn_spec_ds (insn
);
3022 spec_done_ds
= ds_get_max_dep_weak (spec_done_ds
);
3027 /* Initialize INSN's expr. */
3028 init_expr (INSN_EXPR (insn
), vinsn_create (insn
, force_unique_p
), 0,
3029 REG_BR_PROB_BASE
, INSN_PRIORITY (insn
), 0, BLOCK_NUM (insn
),
3030 spec_done_ds
, 0, 0, vNULL
, true,
3031 false, false, false, CANT_MOVE (insn
));
3034 init_first_time_insn_data (insn
);
3037 /* Scan the region and initialize instruction data for basic blocks BBS. */
3039 sel_init_global_and_expr (bb_vec_t bbs
)
3041 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3042 const struct sched_scan_info_def ssi
=
3044 NULL
, /* extend_bb */
3045 init_global_and_expr_for_bb
, /* init_bb */
3046 extend_insn_data
, /* extend_insn */
3047 init_global_and_expr_for_insn
/* init_insn */
3050 sched_scan (&ssi
, bbs
);
3053 /* Finalize region-scope data structures for basic blocks. */
3055 finish_global_and_expr_for_bb (basic_block bb
)
3057 av_set_clear (&BB_AV_SET (bb
));
3058 BB_AV_LEVEL (bb
) = 0;
3061 /* Finalize INSN's data. */
3063 finish_global_and_expr_insn (insn_t insn
)
3065 if (LABEL_P (insn
) || NOTE_INSN_BASIC_BLOCK_P (insn
))
3068 gcc_assert (INSN_P (insn
));
3070 if (INSN_LUID (insn
) > 0)
3072 free_first_time_insn_data (insn
);
3073 INSN_WS_LEVEL (insn
) = 0;
3074 CANT_MOVE (insn
) = 0;
3076 /* We can no longer assert this, as vinsns of this insn could be
3077 easily live in other insn's caches. This should be changed to
3078 a counter-like approach among all vinsns. */
3079 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn
)) == 1);
3080 clear_expr (INSN_EXPR (insn
));
3084 /* Finalize per instruction data for the whole region. */
3086 sel_finish_global_and_expr (void)
3092 bbs
.create (current_nr_blocks
);
3094 for (i
= 0; i
< current_nr_blocks
; i
++)
3095 bbs
.quick_push (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
)));
3097 /* Clear AV_SETs and INSN_EXPRs. */
3099 const struct sched_scan_info_def ssi
=
3101 NULL
, /* extend_bb */
3102 finish_global_and_expr_for_bb
, /* init_bb */
3103 NULL
, /* extend_insn */
3104 finish_global_and_expr_insn
/* init_insn */
3107 sched_scan (&ssi
, bbs
);
3117 /* In the below hooks, we merely calculate whether or not a dependence
3118 exists, and in what part of insn. However, we will need more data
3119 when we'll start caching dependence requests. */
3121 /* Container to hold information for dependency analysis. */
3126 /* A variable to track which part of rtx we are scanning in
3127 sched-deps.c: sched_analyze_insn (). */
3130 /* Current producer. */
3133 /* Current consumer. */
3136 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3137 X is from { INSN, LHS, RHS }. */
3138 ds_t has_dep_p
[DEPS_IN_NOWHERE
];
3139 } has_dependence_data
;
3141 /* Start analyzing dependencies of INSN. */
3143 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED
)
3145 gcc_assert (has_dependence_data
.where
== DEPS_IN_NOWHERE
);
3147 has_dependence_data
.where
= DEPS_IN_INSN
;
3150 /* Finish analyzing dependencies of an insn. */
3152 has_dependence_finish_insn (void)
3154 gcc_assert (has_dependence_data
.where
== DEPS_IN_INSN
);
3156 has_dependence_data
.where
= DEPS_IN_NOWHERE
;
3159 /* Start analyzing dependencies of LHS. */
3161 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED
)
3163 gcc_assert (has_dependence_data
.where
== DEPS_IN_INSN
);
3165 if (VINSN_LHS (has_dependence_data
.con
) != NULL
)
3166 has_dependence_data
.where
= DEPS_IN_LHS
;
3169 /* Finish analyzing dependencies of an lhs. */
3171 has_dependence_finish_lhs (void)
3173 has_dependence_data
.where
= DEPS_IN_INSN
;
3176 /* Start analyzing dependencies of RHS. */
3178 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED
)
3180 gcc_assert (has_dependence_data
.where
== DEPS_IN_INSN
);
3182 if (VINSN_RHS (has_dependence_data
.con
) != NULL
)
3183 has_dependence_data
.where
= DEPS_IN_RHS
;
3186 /* Start analyzing dependencies of an rhs. */
3188 has_dependence_finish_rhs (void)
3190 gcc_assert (has_dependence_data
.where
== DEPS_IN_RHS
3191 || has_dependence_data
.where
== DEPS_IN_INSN
);
3193 has_dependence_data
.where
= DEPS_IN_INSN
;
3196 /* Note a set of REGNO. */
3198 has_dependence_note_reg_set (int regno
)
3200 struct deps_reg
*reg_last
= &has_dependence_data
.dc
->reg_last
[regno
];
3202 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3204 (has_dependence_data
.con
)))
3206 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3208 if (reg_last
->sets
!= NULL
3209 || reg_last
->clobbers
!= NULL
)
3210 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_OUTPUT
;
3212 if (reg_last
->uses
|| reg_last
->implicit_sets
)
3213 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_ANTI
;
3217 /* Note a clobber of REGNO. */
3219 has_dependence_note_reg_clobber (int regno
)
3221 struct deps_reg
*reg_last
= &has_dependence_data
.dc
->reg_last
[regno
];
3223 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3225 (has_dependence_data
.con
)))
3227 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3230 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_OUTPUT
;
3232 if (reg_last
->uses
|| reg_last
->implicit_sets
)
3233 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_ANTI
;
3237 /* Note a use of REGNO. */
3239 has_dependence_note_reg_use (int regno
)
3241 struct deps_reg
*reg_last
= &has_dependence_data
.dc
->reg_last
[regno
];
3243 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3245 (has_dependence_data
.con
)))
3247 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3250 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_TRUE
;
3252 if (reg_last
->clobbers
|| reg_last
->implicit_sets
)
3253 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_ANTI
;
3255 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3256 is actually a check insn. We need to do this for any register
3257 read-read dependency with the check unless we track properly
3258 all registers written by BE_IN_SPEC-speculated insns, as
3259 we don't have explicit dependence lists. See PR 53975. */
3262 ds_t pro_spec_checked_ds
;
3264 pro_spec_checked_ds
= INSN_SPEC_CHECKED_DS (has_dependence_data
.pro
);
3265 pro_spec_checked_ds
= ds_get_max_dep_weak (pro_spec_checked_ds
);
3267 if (pro_spec_checked_ds
!= 0)
3268 *dsp
= ds_full_merge (*dsp
, pro_spec_checked_ds
,
3269 NULL_RTX
, NULL_RTX
);
3274 /* Note a memory dependence. */
3276 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED
,
3277 rtx pending_mem ATTRIBUTE_UNUSED
,
3278 insn_t pending_insn ATTRIBUTE_UNUSED
,
3279 ds_t ds ATTRIBUTE_UNUSED
)
3281 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3282 VINSN_INSN_RTX (has_dependence_data
.con
)))
3284 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3286 *dsp
= ds_full_merge (ds
, *dsp
, pending_mem
, mem
);
3290 /* Note a dependence. */
3292 has_dependence_note_dep (insn_t pro
, ds_t ds ATTRIBUTE_UNUSED
)
3294 insn_t real_pro
= has_dependence_data
.pro
;
3295 insn_t real_con
= VINSN_INSN_RTX (has_dependence_data
.con
);
3297 /* We do not allow for debug insns to move through others unless they
3298 are at the start of bb. This movement may create bookkeeping copies
3299 that later would not be able to move up, violating the invariant
3300 that a bookkeeping copy should be movable as the original insn.
3301 Detect that here and allow that movement if we allowed it before
3302 in the first place. */
3303 if (DEBUG_INSN_P (real_con
) && !DEBUG_INSN_P (real_pro
)
3304 && INSN_UID (NEXT_INSN (pro
)) == INSN_UID (real_con
))
3307 if (!sched_insns_conditions_mutex_p (real_pro
, real_con
))
3309 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3311 *dsp
= ds_full_merge (ds
, *dsp
, NULL_RTX
, NULL_RTX
);
3315 /* Mark the insn as having a hard dependence that prevents speculation. */
3317 sel_mark_hard_insn (rtx insn
)
3321 /* Only work when we're in has_dependence_p mode.
3322 ??? This is a hack, this should actually be a hook. */
3323 if (!has_dependence_data
.dc
|| !has_dependence_data
.pro
)
3326 gcc_assert (insn
== VINSN_INSN_RTX (has_dependence_data
.con
));
3327 gcc_assert (has_dependence_data
.where
== DEPS_IN_INSN
);
3329 for (i
= 0; i
< DEPS_IN_NOWHERE
; i
++)
3330 has_dependence_data
.has_dep_p
[i
] &= ~SPECULATIVE
;
3333 /* This structure holds the hooks for the dependency analysis used when
3334 actually processing dependencies in the scheduler. */
3335 static struct sched_deps_info_def has_dependence_sched_deps_info
;
3337 /* This initializes most of the fields of the above structure. */
3338 static const struct sched_deps_info_def const_has_dependence_sched_deps_info
=
3342 has_dependence_start_insn
,
3343 has_dependence_finish_insn
,
3344 has_dependence_start_lhs
,
3345 has_dependence_finish_lhs
,
3346 has_dependence_start_rhs
,
3347 has_dependence_finish_rhs
,
3348 has_dependence_note_reg_set
,
3349 has_dependence_note_reg_clobber
,
3350 has_dependence_note_reg_use
,
3351 has_dependence_note_mem_dep
,
3352 has_dependence_note_dep
,
3355 0, /* use_deps_list */
3356 0 /* generate_spec_deps */
3359 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3361 setup_has_dependence_sched_deps_info (void)
3363 memcpy (&has_dependence_sched_deps_info
,
3364 &const_has_dependence_sched_deps_info
,
3365 sizeof (has_dependence_sched_deps_info
));
3367 if (spec_info
!= NULL
)
3368 has_dependence_sched_deps_info
.generate_spec_deps
= 1;
3370 sched_deps_info
= &has_dependence_sched_deps_info
;
3373 /* Remove all dependences found and recorded in has_dependence_data array. */
3375 sel_clear_has_dependence (void)
3379 for (i
= 0; i
< DEPS_IN_NOWHERE
; i
++)
3380 has_dependence_data
.has_dep_p
[i
] = 0;
3383 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3384 to the dependence information array in HAS_DEP_PP. */
3386 has_dependence_p (expr_t expr
, insn_t pred
, ds_t
**has_dep_pp
)
3390 class deps_desc
*dc
;
3392 if (INSN_SIMPLEJUMP_P (pred
))
3393 /* Unconditional jump is just a transfer of control flow.
3397 dc
= &INSN_DEPS_CONTEXT (pred
);
3399 /* We init this field lazily. */
3400 if (dc
->reg_last
== NULL
)
3401 init_deps_reg_last (dc
);
3405 has_dependence_data
.pro
= NULL
;
3406 /* Initialize empty dep context with information about PRED. */
3407 advance_deps_context (dc
, pred
);
3411 has_dependence_data
.where
= DEPS_IN_NOWHERE
;
3412 has_dependence_data
.pro
= pred
;
3413 has_dependence_data
.con
= EXPR_VINSN (expr
);
3414 has_dependence_data
.dc
= dc
;
3416 sel_clear_has_dependence ();
3418 /* Now catch all dependencies that would be generated between PRED and
3420 setup_has_dependence_sched_deps_info ();
3421 deps_analyze_insn (dc
, EXPR_INSN_RTX (expr
));
3422 has_dependence_data
.dc
= NULL
;
3424 /* When a barrier was found, set DEPS_IN_INSN bits. */
3425 if (dc
->last_reg_pending_barrier
== TRUE_BARRIER
)
3426 has_dependence_data
.has_dep_p
[DEPS_IN_INSN
] = DEP_TRUE
;
3427 else if (dc
->last_reg_pending_barrier
== MOVE_BARRIER
)
3428 has_dependence_data
.has_dep_p
[DEPS_IN_INSN
] = DEP_ANTI
;
3430 /* Do not allow stores to memory to move through checks. Currently
3431 we don't move this to sched-deps.c as the check doesn't have
3432 obvious places to which this dependence can be attached.
3433 FIMXE: this should go to a hook. */
3435 && MEM_P (EXPR_LHS (expr
))
3436 && sel_insn_is_speculation_check (pred
))
3437 has_dependence_data
.has_dep_p
[DEPS_IN_INSN
] = DEP_ANTI
;
3439 *has_dep_pp
= has_dependence_data
.has_dep_p
;
3441 for (i
= 0; i
< DEPS_IN_NOWHERE
; i
++)
3442 ds
= ds_full_merge (ds
, has_dependence_data
.has_dep_p
[i
],
3443 NULL_RTX
, NULL_RTX
);
3449 /* Dependence hooks implementation that checks dependence latency constraints
3450 on the insns being scheduled. The entry point for these routines is
3451 tick_check_p predicate. */
3455 /* An expr we are currently checking. */
3458 /* A minimal cycle for its scheduling. */
3461 /* Whether we have seen a true dependence while checking. */
3462 bool seen_true_dep_p
;
3465 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3466 on PRO with status DS and weight DW. */
3468 tick_check_dep_with_dw (insn_t pro_insn
, ds_t ds
, dw_t dw
)
3470 expr_t con_expr
= tick_check_data
.expr
;
3471 insn_t con_insn
= EXPR_INSN_RTX (con_expr
);
3473 if (con_insn
!= pro_insn
)
3478 if (/* PROducer was removed from above due to pipelining. */
3479 !INSN_IN_STREAM_P (pro_insn
)
3480 /* Or PROducer was originally on the next iteration regarding the
3482 || (INSN_SCHED_TIMES (pro_insn
)
3483 - EXPR_SCHED_TIMES (con_expr
)) > 1)
3484 /* Don't count this dependence. */
3488 if (dt
== REG_DEP_TRUE
)
3489 tick_check_data
.seen_true_dep_p
= true;
3491 gcc_assert (INSN_SCHED_CYCLE (pro_insn
) > 0);
3494 dep_def _dep
, *dep
= &_dep
;
3496 init_dep (dep
, pro_insn
, con_insn
, dt
);
3498 tick
= INSN_SCHED_CYCLE (pro_insn
) + dep_cost_1 (dep
, dw
);
3501 /* When there are several kinds of dependencies between pro and con,
3502 only REG_DEP_TRUE should be taken into account. */
3503 if (tick
> tick_check_data
.cycle
3504 && (dt
== REG_DEP_TRUE
|| !tick_check_data
.seen_true_dep_p
))
3505 tick_check_data
.cycle
= tick
;
3509 /* An implementation of note_dep hook. */
3511 tick_check_note_dep (insn_t pro
, ds_t ds
)
3513 tick_check_dep_with_dw (pro
, ds
, 0);
3516 /* An implementation of note_mem_dep hook. */
3518 tick_check_note_mem_dep (rtx mem1
, rtx mem2
, insn_t pro
, ds_t ds
)
3522 dw
= (ds_to_dt (ds
) == REG_DEP_TRUE
3523 ? estimate_dep_weak (mem1
, mem2
)
3526 tick_check_dep_with_dw (pro
, ds
, dw
);
3529 /* This structure contains hooks for dependence analysis used when determining
3530 whether an insn is ready for scheduling. */
3531 static struct sched_deps_info_def tick_check_sched_deps_info
=
3542 haifa_note_reg_clobber
,
3544 tick_check_note_mem_dep
,
3545 tick_check_note_dep
,
3550 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3551 scheduled. Return 0 if all data from producers in DC is ready. */
3553 tick_check_p (expr_t expr
, deps_t dc
, fence_t fence
)
3556 /* Initialize variables. */
3557 tick_check_data
.expr
= expr
;
3558 tick_check_data
.cycle
= 0;
3559 tick_check_data
.seen_true_dep_p
= false;
3560 sched_deps_info
= &tick_check_sched_deps_info
;
3562 gcc_assert (!dc
->readonly
);
3564 deps_analyze_insn (dc
, EXPR_INSN_RTX (expr
));
3567 cycles_left
= tick_check_data
.cycle
- FENCE_CYCLE (fence
);
3569 return cycles_left
>= 0 ? cycles_left
: 0;
3573 /* Functions to work with insns. */
3575 /* Returns true if LHS of INSN is the same as DEST of an insn
3578 lhs_of_insn_equals_to_dest_p (insn_t insn
, rtx dest
)
3580 rtx lhs
= INSN_LHS (insn
);
3582 if (lhs
== NULL
|| dest
== NULL
)
3585 return rtx_equal_p (lhs
, dest
);
3588 /* Return s_i_d entry of INSN. Callable from debugger. */
3590 insn_sid (insn_t insn
)
3595 /* True when INSN is a speculative check. We can tell this by looking
3596 at the data structures of the selective scheduler, not by examining
3599 sel_insn_is_speculation_check (rtx insn
)
3601 return s_i_d
.exists () && !! INSN_SPEC_CHECKED_DS (insn
);
3604 /* Extracts machine mode MODE and destination location DST_LOC
3607 get_dest_and_mode (rtx insn
, rtx
*dst_loc
, machine_mode
*mode
)
3609 rtx pat
= PATTERN (insn
);
3611 gcc_assert (dst_loc
);
3612 gcc_assert (GET_CODE (pat
) == SET
);
3614 *dst_loc
= SET_DEST (pat
);
3616 gcc_assert (*dst_loc
);
3617 gcc_assert (MEM_P (*dst_loc
) || REG_P (*dst_loc
));
3620 *mode
= GET_MODE (*dst_loc
);
3623 /* Returns true when moving through JUMP will result in bookkeeping
3626 bookkeeping_can_be_created_if_moved_through_p (insn_t jump
)
3631 FOR_EACH_SUCC (succ
, si
, jump
)
3632 if (sel_num_cfg_preds_gt_1 (succ
))
3638 /* Return 'true' if INSN is the only one in its basic block. */
3640 insn_is_the_only_one_in_bb_p (insn_t insn
)
3642 return sel_bb_head_p (insn
) && sel_bb_end_p (insn
);
3645 /* Check that the region we're scheduling still has at most one
3648 verify_backedges (void)
3656 for (i
= 0; i
< current_nr_blocks
; i
++)
3657 FOR_EACH_EDGE (e
, ei
, BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
))->succs
)
3658 if (in_current_region_p (e
->dest
)
3659 && BLOCK_TO_BB (e
->dest
->index
) < i
)
3662 gcc_assert (n
<= 1);
3667 /* Functions to work with control flow. */
3669 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3670 are sorted in topological order (it might have been invalidated by
3671 redirecting an edge). */
3673 sel_recompute_toporder (void)
3676 int *postorder
, n_blocks
;
3678 postorder
= XALLOCAVEC (int, n_basic_blocks_for_fn (cfun
));
3679 n_blocks
= post_order_compute (postorder
, false, false);
3681 rgn
= CONTAINING_RGN (BB_TO_BLOCK (0));
3682 for (n
= 0, i
= n_blocks
- 1; i
>= 0; i
--)
3683 if (CONTAINING_RGN (postorder
[i
]) == rgn
)
3685 BLOCK_TO_BB (postorder
[i
]) = n
;
3686 BB_TO_BLOCK (n
) = postorder
[i
];
3690 /* Assert that we updated info for all blocks. We may miss some blocks if
3691 this function is called when redirecting an edge made a block
3692 unreachable, but that block is not deleted yet. */
3693 gcc_assert (n
== RGN_NR_BLOCKS (rgn
));
3696 /* Tidy the possibly empty block BB. */
3698 maybe_tidy_empty_bb (basic_block bb
)
3700 basic_block succ_bb
, pred_bb
, note_bb
;
3701 vec
<basic_block
> dom_bbs
;
3706 /* Keep empty bb only if this block immediately precedes EXIT and
3707 has incoming non-fallthrough edge, or it has no predecessors or
3708 successors. Otherwise remove it. */
3709 if (!sel_bb_empty_p (bb
)
3710 || (single_succ_p (bb
)
3711 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
3712 && (!single_pred_p (bb
)
3713 || !(single_pred_edge (bb
)->flags
& EDGE_FALLTHRU
)))
3714 || EDGE_COUNT (bb
->preds
) == 0
3715 || EDGE_COUNT (bb
->succs
) == 0)
3718 /* Do not attempt to redirect complex edges. */
3719 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3720 if (e
->flags
& EDGE_COMPLEX
)
3722 else if (e
->flags
& EDGE_FALLTHRU
)
3725 /* If prev bb ends with asm goto, see if any of the
3726 ASM_OPERANDS_LABELs don't point to the fallthru
3727 label. Do not attempt to redirect it in that case. */
3728 if (JUMP_P (BB_END (e
->src
))
3729 && (note
= extract_asm_operands (PATTERN (BB_END (e
->src
)))))
3731 int i
, n
= ASM_OPERANDS_LABEL_LENGTH (note
);
3733 for (i
= 0; i
< n
; ++i
)
3734 if (XEXP (ASM_OPERANDS_LABEL (note
, i
), 0) == BB_HEAD (bb
))
3739 free_data_sets (bb
);
3741 /* Do not delete BB if it has more than one successor.
3742 That can occur when we moving a jump. */
3743 if (!single_succ_p (bb
))
3745 gcc_assert (can_merge_blocks_p (bb
->prev_bb
, bb
));
3746 sel_merge_blocks (bb
->prev_bb
, bb
);
3750 succ_bb
= single_succ (bb
);
3755 /* Save a pred/succ from the current region to attach the notes to. */
3757 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3758 if (in_current_region_p (e
->src
))
3763 if (note_bb
== NULL
)
3766 /* Redirect all non-fallthru edges to the next bb. */
3771 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3775 if (!(e
->flags
& EDGE_FALLTHRU
))
3777 /* We cannot invalidate computed topological order by moving
3778 the edge destination block (E->SUCC) along a fallthru edge.
3780 We will update dominators here only when we'll get
3781 an unreachable block when redirecting, otherwise
3782 sel_redirect_edge_and_branch will take care of it. */
3784 && single_pred_p (e
->dest
))
3785 dom_bbs
.safe_push (e
->dest
);
3786 sel_redirect_edge_and_branch (e
, succ_bb
);
3790 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3791 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3792 still have to adjust it. */
3793 else if (single_succ_p (pred_bb
) && any_condjump_p (BB_END (pred_bb
)))
3795 /* If possible, try to remove the unneeded conditional jump. */
3796 if (onlyjump_p (BB_END (pred_bb
))
3797 && INSN_SCHED_TIMES (BB_END (pred_bb
)) == 0
3798 && !IN_CURRENT_FENCE_P (BB_END (pred_bb
)))
3800 if (!sel_remove_insn (BB_END (pred_bb
), false, false))
3801 tidy_fallthru_edge (e
);
3804 sel_redirect_edge_and_branch (e
, succ_bb
);
3811 if (can_merge_blocks_p (bb
->prev_bb
, bb
))
3812 sel_merge_blocks (bb
->prev_bb
, bb
);
3815 /* This is a block without fallthru predecessor. Just delete it. */
3816 gcc_assert (note_bb
);
3817 move_bb_info (note_bb
, bb
);
3818 remove_empty_bb (bb
, true);
3821 if (!dom_bbs
.is_empty ())
3823 dom_bbs
.safe_push (succ_bb
);
3824 iterate_fix_dominators (CDI_DOMINATORS
, dom_bbs
, false);
3831 /* Tidy the control flow after we have removed original insn from
3832 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3833 is true, also try to optimize control flow on non-empty blocks. */
3835 tidy_control_flow (basic_block xbb
, bool full_tidying
)
3837 bool changed
= true;
3840 /* First check whether XBB is empty. */
3841 changed
= maybe_tidy_empty_bb (xbb
);
3842 if (changed
|| !full_tidying
)
3845 /* Check if there is a unnecessary jump after insn left. */
3846 if (bb_has_removable_jump_to_p (xbb
, xbb
->next_bb
)
3847 && INSN_SCHED_TIMES (BB_END (xbb
)) == 0
3848 && !IN_CURRENT_FENCE_P (BB_END (xbb
)))
3850 /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3851 before we fix up the fallthru edge. Correct that ordering by
3852 explicitly doing the latter before the former. */
3853 clear_expr (INSN_EXPR (BB_END (xbb
)));
3854 tidy_fallthru_edge (EDGE_SUCC (xbb
, 0));
3855 if (tidy_control_flow (xbb
, false))
3859 first
= sel_bb_head (xbb
);
3860 last
= sel_bb_end (xbb
);
3861 if (MAY_HAVE_DEBUG_INSNS
)
3863 if (first
!= last
&& DEBUG_INSN_P (first
))
3865 first
= NEXT_INSN (first
);
3866 while (first
!= last
&& (DEBUG_INSN_P (first
) || NOTE_P (first
)));
3868 if (first
!= last
&& DEBUG_INSN_P (last
))
3870 last
= PREV_INSN (last
);
3871 while (first
!= last
&& (DEBUG_INSN_P (last
) || NOTE_P (last
)));
3873 /* Check if there is an unnecessary jump in previous basic block leading
3874 to next basic block left after removing INSN from stream.
3875 If it is so, remove that jump and redirect edge to current
3876 basic block (where there was INSN before deletion). This way
3877 when NOP will be deleted several instructions later with its
3878 basic block we will not get a jump to next instruction, which
3881 && !sel_bb_empty_p (xbb
)
3882 && INSN_NOP_P (last
)
3883 /* Flow goes fallthru from current block to the next. */
3884 && EDGE_COUNT (xbb
->succs
) == 1
3885 && (EDGE_SUCC (xbb
, 0)->flags
& EDGE_FALLTHRU
)
3886 /* When successor is an EXIT block, it may not be the next block. */
3887 && single_succ (xbb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
3888 /* And unconditional jump in previous basic block leads to
3889 next basic block of XBB and this jump can be safely removed. */
3890 && in_current_region_p (xbb
->prev_bb
)
3891 && bb_has_removable_jump_to_p (xbb
->prev_bb
, xbb
->next_bb
)
3892 && INSN_SCHED_TIMES (BB_END (xbb
->prev_bb
)) == 0
3893 /* Also this jump is not at the scheduling boundary. */
3894 && !IN_CURRENT_FENCE_P (BB_END (xbb
->prev_bb
)))
3896 bool recompute_toporder_p
;
3897 /* Clear data structures of jump - jump itself will be removed
3898 by sel_redirect_edge_and_branch. */
3899 clear_expr (INSN_EXPR (BB_END (xbb
->prev_bb
)));
3900 recompute_toporder_p
3901 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb
->prev_bb
, 0), xbb
);
3903 gcc_assert (EDGE_SUCC (xbb
->prev_bb
, 0)->flags
& EDGE_FALLTHRU
);
3905 /* We could have skipped some debug insns which did not get removed with the block,
3906 and the seqnos could become incorrect. Fix them up here. */
3907 if (MAY_HAVE_DEBUG_INSNS
&& (sel_bb_head (xbb
) != first
|| sel_bb_end (xbb
) != last
))
3909 if (!sel_bb_empty_p (xbb
->prev_bb
))
3911 int prev_seqno
= INSN_SEQNO (sel_bb_end (xbb
->prev_bb
));
3912 if (prev_seqno
> INSN_SEQNO (sel_bb_head (xbb
)))
3913 for (insn_t insn
= sel_bb_head (xbb
); insn
!= first
; insn
= NEXT_INSN (insn
))
3914 INSN_SEQNO (insn
) = prev_seqno
+ 1;
3918 /* It can turn out that after removing unused jump, basic block
3919 that contained that jump, becomes empty too. In such case
3921 if (sel_bb_empty_p (xbb
->prev_bb
))
3922 changed
= maybe_tidy_empty_bb (xbb
->prev_bb
);
3923 if (recompute_toporder_p
)
3924 sel_recompute_toporder ();
3927 /* TODO: use separate flag for CFG checking. */
3930 verify_backedges ();
3931 verify_dominators (CDI_DOMINATORS
);
3937 /* Purge meaningless empty blocks in the middle of a region. */
3939 purge_empty_blocks (void)
3943 /* Do not attempt to delete the first basic block in the region. */
3944 for (i
= 1; i
< current_nr_blocks
; )
3946 basic_block b
= BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
));
3948 if (maybe_tidy_empty_bb (b
))
3955 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3956 do not delete insn's data, because it will be later re-emitted.
3957 Return true if we have removed some blocks afterwards. */
3959 sel_remove_insn (insn_t insn
, bool only_disconnect
, bool full_tidying
)
3961 basic_block bb
= BLOCK_FOR_INSN (insn
);
3963 gcc_assert (INSN_IN_STREAM_P (insn
));
3965 if (DEBUG_INSN_P (insn
) && BB_AV_SET_VALID_P (bb
))
3970 /* When we remove a debug insn that is head of a BB, it remains
3971 in the AV_SET of the block, but it shouldn't. */
3972 FOR_EACH_EXPR_1 (expr
, i
, &BB_AV_SET (bb
))
3973 if (EXPR_INSN_RTX (expr
) == insn
)
3975 av_set_iter_remove (&i
);
3980 if (only_disconnect
)
3985 clear_expr (INSN_EXPR (insn
));
3988 /* It is necessary to NULL these fields in case we are going to re-insert
3989 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3990 case, but also for NOPs that we will return to the nop pool. */
3991 SET_PREV_INSN (insn
) = NULL_RTX
;
3992 SET_NEXT_INSN (insn
) = NULL_RTX
;
3993 set_block_for_insn (insn
, NULL
);
3995 return tidy_control_flow (bb
, full_tidying
);
3998 /* Estimate number of the insns in BB. */
4000 sel_estimate_number_of_insns (basic_block bb
)
4003 insn_t insn
= NEXT_INSN (BB_HEAD (bb
)), next_tail
= NEXT_INSN (BB_END (bb
));
4005 for (; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
4006 if (NONDEBUG_INSN_P (insn
))
4012 /* We don't need separate luids for notes or labels. */
4014 sel_luid_for_non_insn (rtx x
)
4016 gcc_assert (NOTE_P (x
) || LABEL_P (x
));
4021 /* Find the proper seqno for inserting at INSN by successors.
4022 Return -1 if no successors with positive seqno exist. */
4024 get_seqno_by_succs (rtx_insn
*insn
)
4026 basic_block bb
= BLOCK_FOR_INSN (insn
);
4027 rtx_insn
*tmp
= insn
, *end
= BB_END (bb
);
4034 tmp
= NEXT_INSN (tmp
);
4036 return INSN_SEQNO (tmp
);
4041 FOR_EACH_SUCC_1 (succ
, si
, end
, SUCCS_NORMAL
)
4042 if (INSN_SEQNO (succ
) > 0)
4043 seqno
= MIN (seqno
, INSN_SEQNO (succ
));
4045 if (seqno
== INT_MAX
)
4051 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4052 seqno in corner cases. */
4054 get_seqno_for_a_jump (insn_t insn
, int old_seqno
)
4058 gcc_assert (INSN_SIMPLEJUMP_P (insn
));
4060 if (!sel_bb_head_p (insn
))
4061 seqno
= INSN_SEQNO (PREV_INSN (insn
));
4064 basic_block bb
= BLOCK_FOR_INSN (insn
);
4066 if (single_pred_p (bb
)
4067 && !in_current_region_p (single_pred (bb
)))
4069 /* We can have preds outside a region when splitting edges
4070 for pipelining of an outer loop. Use succ instead.
4071 There should be only one of them. */
4076 gcc_assert (flag_sel_sched_pipelining_outer_loops
4077 && current_loop_nest
);
4078 FOR_EACH_SUCC_1 (succ
, si
, insn
,
4079 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
4085 gcc_assert (succ
!= NULL
);
4086 seqno
= INSN_SEQNO (succ
);
4093 cfg_preds (BLOCK_FOR_INSN (insn
), &preds
, &n
);
4096 /* For one predecessor, use simple method. */
4098 seqno
= INSN_SEQNO (preds
[0]);
4100 seqno
= get_seqno_by_preds (insn
);
4106 /* We were unable to find a good seqno among preds. */
4108 seqno
= get_seqno_by_succs (insn
);
4112 /* The only case where this could be here legally is that the only
4113 unscheduled insn was a conditional jump that got removed and turned
4114 into this unconditional one. Initialize from the old seqno
4115 of that jump passed down to here. */
4119 gcc_assert (seqno
>= 0);
4123 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4124 with positive seqno exist. */
4126 get_seqno_by_preds (rtx_insn
*insn
)
4128 basic_block bb
= BLOCK_FOR_INSN (insn
);
4129 rtx_insn
*tmp
= insn
, *head
= BB_HEAD (bb
);
4133 /* Loop backwards from INSN to HEAD including both. */
4137 return INSN_SEQNO (tmp
);
4140 tmp
= PREV_INSN (tmp
);
4143 cfg_preds (bb
, &preds
, &n
);
4144 for (i
= 0, seqno
= -1; i
< n
; i
++)
4145 seqno
= MAX (seqno
, INSN_SEQNO (preds
[i
]));
4152 /* Extend pass-scope data structures for basic blocks. */
4154 sel_extend_global_bb_info (void)
4156 sel_global_bb_info
.safe_grow_cleared (last_basic_block_for_fn (cfun
), true);
4159 /* Extend region-scope data structures for basic blocks. */
4161 extend_region_bb_info (void)
4163 sel_region_bb_info
.safe_grow_cleared (last_basic_block_for_fn (cfun
), true);
4166 /* Extend all data structures to fit for all basic blocks. */
4168 extend_bb_info (void)
4170 sel_extend_global_bb_info ();
4171 extend_region_bb_info ();
4174 /* Finalize pass-scope data structures for basic blocks. */
4176 sel_finish_global_bb_info (void)
4178 sel_global_bb_info
.release ();
4181 /* Finalize region-scope data structures for basic blocks. */
4183 finish_region_bb_info (void)
4185 sel_region_bb_info
.release ();
4189 /* Data for each insn in current region. */
4190 vec
<sel_insn_data_def
> s_i_d
;
4192 /* Extend data structures for insns from current region. */
4194 extend_insn_data (void)
4198 sched_extend_target ();
4199 sched_deps_init (false);
4201 /* Extend data structures for insns from current region. */
4202 reserve
= (sched_max_luid
+ 1 - s_i_d
.length ());
4203 if (reserve
> 0 && ! s_i_d
.space (reserve
))
4207 if (sched_max_luid
/ 2 > 1024)
4208 size
= sched_max_luid
+ 1024;
4210 size
= 3 * sched_max_luid
/ 2;
4213 s_i_d
.safe_grow_cleared (size
, true);
4217 /* Finalize data structures for insns from current region. */
4223 /* Clear here all dependence contexts that may have left from insns that were
4224 removed during the scheduling. */
4225 for (i
= 0; i
< s_i_d
.length (); i
++)
4227 sel_insn_data_def
*sid_entry
= &s_i_d
[i
];
4229 if (sid_entry
->live
)
4230 return_regset_to_pool (sid_entry
->live
);
4231 if (sid_entry
->analyzed_deps
)
4233 BITMAP_FREE (sid_entry
->analyzed_deps
);
4234 BITMAP_FREE (sid_entry
->found_deps
);
4235 htab_delete (sid_entry
->transformed_insns
);
4236 free_deps (&sid_entry
->deps_context
);
4238 if (EXPR_VINSN (&sid_entry
->expr
))
4240 clear_expr (&sid_entry
->expr
);
4242 /* Also, clear CANT_MOVE bit here, because we really don't want it
4243 to be passed to the next region. */
4244 CANT_MOVE_BY_LUID (i
) = 0;
4251 /* A proxy to pass initialization data to init_insn (). */
4252 static sel_insn_data_def _insn_init_ssid
;
4253 static sel_insn_data_t insn_init_ssid
= &_insn_init_ssid
;
4255 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4256 static bool insn_init_create_new_vinsn_p
;
4258 /* Set all necessary data for initialization of the new insn[s]. */
4260 set_insn_init (expr_t expr
, vinsn_t vi
, int seqno
)
4262 expr_t x
= &insn_init_ssid
->expr
;
4264 copy_expr_onside (x
, expr
);
4267 insn_init_create_new_vinsn_p
= false;
4268 change_vinsn_in_expr (x
, vi
);
4271 insn_init_create_new_vinsn_p
= true;
4273 insn_init_ssid
->seqno
= seqno
;
4277 /* Init data for INSN. */
4279 init_insn_data (insn_t insn
)
4282 sel_insn_data_t ssid
= insn_init_ssid
;
4284 /* The fields mentioned below are special and hence are not being
4285 propagated to the new insns. */
4286 gcc_assert (!ssid
->asm_p
&& ssid
->sched_next
== NULL
4287 && !ssid
->after_stall_p
&& ssid
->sched_cycle
== 0);
4288 gcc_assert (INSN_P (insn
) && INSN_LUID (insn
) > 0);
4290 expr
= INSN_EXPR (insn
);
4291 copy_expr (expr
, &ssid
->expr
);
4292 prepare_insn_expr (insn
, ssid
->seqno
);
4294 if (insn_init_create_new_vinsn_p
)
4295 change_vinsn_in_expr (expr
, vinsn_create (insn
, init_insn_force_unique_p
));
4297 if (first_time_insn_init (insn
))
4298 init_first_time_insn_data (insn
);
4301 /* This is used to initialize spurious jumps generated by
4302 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4303 in corner cases within get_seqno_for_a_jump. */
4305 init_simplejump_data (insn_t insn
, int old_seqno
)
4307 init_expr (INSN_EXPR (insn
), vinsn_create (insn
, false), 0,
4308 REG_BR_PROB_BASE
, 0, 0, 0, 0, 0, 0,
4309 vNULL
, true, false, false,
4311 INSN_SEQNO (insn
) = get_seqno_for_a_jump (insn
, old_seqno
);
4312 init_first_time_insn_data (insn
);
4315 /* Perform deferred initialization of insns. This is used to process
4316 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4317 for initializing simplejumps in init_simplejump_data. */
4319 sel_init_new_insn (insn_t insn
, int flags
, int old_seqno
)
4321 /* We create data structures for bb when the first insn is emitted in it. */
4323 && INSN_IN_STREAM_P (insn
)
4324 && insn_is_the_only_one_in_bb_p (insn
))
4327 create_initial_data_sets (BLOCK_FOR_INSN (insn
));
4330 if (flags
& INSN_INIT_TODO_LUID
)
4332 sched_extend_luids ();
4333 sched_init_insn_luid (insn
);
4336 if (flags
& INSN_INIT_TODO_SSID
)
4338 extend_insn_data ();
4339 init_insn_data (insn
);
4340 clear_expr (&insn_init_ssid
->expr
);
4343 if (flags
& INSN_INIT_TODO_SIMPLEJUMP
)
4345 extend_insn_data ();
4346 init_simplejump_data (insn
, old_seqno
);
4349 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn
))
4350 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4354 /* Functions to init/finish work with lv sets. */
4356 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4358 init_lv_set (basic_block bb
)
4360 gcc_assert (!BB_LV_SET_VALID_P (bb
));
4362 BB_LV_SET (bb
) = get_regset_from_pool ();
4363 COPY_REG_SET (BB_LV_SET (bb
), DF_LR_IN (bb
));
4364 BB_LV_SET_VALID_P (bb
) = true;
4367 /* Copy liveness information to BB from FROM_BB. */
4369 copy_lv_set_from (basic_block bb
, basic_block from_bb
)
4371 gcc_assert (!BB_LV_SET_VALID_P (bb
));
4373 COPY_REG_SET (BB_LV_SET (bb
), BB_LV_SET (from_bb
));
4374 BB_LV_SET_VALID_P (bb
) = true;
4377 /* Initialize lv set of all bb headers. */
4383 /* Initialize of LV sets. */
4384 FOR_EACH_BB_FN (bb
, cfun
)
4387 /* Don't forget EXIT_BLOCK. */
4388 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun
));
4391 /* Release lv set of HEAD. */
4393 free_lv_set (basic_block bb
)
4395 gcc_assert (BB_LV_SET (bb
) != NULL
);
4397 return_regset_to_pool (BB_LV_SET (bb
));
4398 BB_LV_SET (bb
) = NULL
;
4399 BB_LV_SET_VALID_P (bb
) = false;
4402 /* Finalize lv sets of all bb headers. */
4408 /* Don't forget EXIT_BLOCK. */
4409 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun
));
4412 FOR_EACH_BB_FN (bb
, cfun
)
4417 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4418 compute_av() processes BB. This function is called when creating new basic
4419 blocks, as well as for blocks (either new or existing) where new jumps are
4420 created when the control flow is being updated. */
4422 invalidate_av_set (basic_block bb
)
4424 BB_AV_LEVEL (bb
) = -1;
4427 /* Create initial data sets for BB (they will be invalid). */
4429 create_initial_data_sets (basic_block bb
)
4432 BB_LV_SET_VALID_P (bb
) = false;
4434 BB_LV_SET (bb
) = get_regset_from_pool ();
4435 invalidate_av_set (bb
);
4438 /* Free av set of BB. */
4440 free_av_set (basic_block bb
)
4442 av_set_clear (&BB_AV_SET (bb
));
4443 BB_AV_LEVEL (bb
) = 0;
4446 /* Free data sets of BB. */
4448 free_data_sets (basic_block bb
)
4454 /* Exchange data sets of TO and FROM. */
4456 exchange_data_sets (basic_block to
, basic_block from
)
4458 /* Exchange lv sets of TO and FROM. */
4459 std::swap (BB_LV_SET (from
), BB_LV_SET (to
));
4460 std::swap (BB_LV_SET_VALID_P (from
), BB_LV_SET_VALID_P (to
));
4462 /* Exchange av sets of TO and FROM. */
4463 std::swap (BB_AV_SET (from
), BB_AV_SET (to
));
4464 std::swap (BB_AV_LEVEL (from
), BB_AV_LEVEL (to
));
4467 /* Copy data sets of FROM to TO. */
4469 copy_data_sets (basic_block to
, basic_block from
)
4471 gcc_assert (!BB_LV_SET_VALID_P (to
) && !BB_AV_SET_VALID_P (to
));
4472 gcc_assert (BB_AV_SET (to
) == NULL
);
4474 BB_AV_LEVEL (to
) = BB_AV_LEVEL (from
);
4475 BB_LV_SET_VALID_P (to
) = BB_LV_SET_VALID_P (from
);
4477 if (BB_AV_SET_VALID_P (from
))
4479 BB_AV_SET (to
) = av_set_copy (BB_AV_SET (from
));
4481 if (BB_LV_SET_VALID_P (from
))
4483 gcc_assert (BB_LV_SET (to
) != NULL
);
4484 COPY_REG_SET (BB_LV_SET (to
), BB_LV_SET (from
));
4488 /* Return an av set for INSN, if any. */
4490 get_av_set (insn_t insn
)
4494 gcc_assert (AV_SET_VALID_P (insn
));
4496 if (sel_bb_head_p (insn
))
4497 av_set
= BB_AV_SET (BLOCK_FOR_INSN (insn
));
4504 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4506 get_av_level (insn_t insn
)
4510 gcc_assert (INSN_P (insn
));
4512 if (sel_bb_head_p (insn
))
4513 av_level
= BB_AV_LEVEL (BLOCK_FOR_INSN (insn
));
4515 av_level
= INSN_WS_LEVEL (insn
);
4522 /* Variables to work with control-flow graph. */
4524 /* The basic block that already has been processed by the sched_data_update (),
4525 but hasn't been in sel_add_bb () yet. */
4526 static vec
<basic_block
> last_added_blocks
;
4528 /* A pool for allocating successor infos. */
4531 /* A stack for saving succs_info structures. */
4532 struct succs_info
*stack
;
4537 /* Top of the stack. */
4540 /* Maximal value of the top. */
4544 /* Functions to work with control-flow graph. */
4546 /* Return basic block note of BB. */
4548 sel_bb_head (basic_block bb
)
4552 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4554 gcc_assert (exit_insn
!= NULL_RTX
);
4559 rtx_note
*note
= bb_note (bb
);
4560 head
= next_nonnote_insn (note
);
4562 if (head
&& (BARRIER_P (head
) || BLOCK_FOR_INSN (head
) != bb
))
4569 /* Return true if INSN is a basic block header. */
4571 sel_bb_head_p (insn_t insn
)
4573 return sel_bb_head (BLOCK_FOR_INSN (insn
)) == insn
;
4576 /* Return last insn of BB. */
4578 sel_bb_end (basic_block bb
)
4580 if (sel_bb_empty_p (bb
))
4583 gcc_assert (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
));
4588 /* Return true if INSN is the last insn in its basic block. */
4590 sel_bb_end_p (insn_t insn
)
4592 return insn
== sel_bb_end (BLOCK_FOR_INSN (insn
));
4595 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4597 sel_bb_empty_p (basic_block bb
)
4599 return sel_bb_head (bb
) == NULL
;
4602 /* True when BB belongs to the current scheduling region. */
4604 in_current_region_p (basic_block bb
)
4606 if (bb
->index
< NUM_FIXED_BLOCKS
)
4609 return CONTAINING_RGN (bb
->index
) == CONTAINING_RGN (BB_TO_BLOCK (0));
4612 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4614 fallthru_bb_of_jump (const rtx_insn
*jump
)
4619 if (!any_condjump_p (jump
))
4622 /* A basic block that ends with a conditional jump may still have one successor
4623 (and be followed by a barrier), we are not interested. */
4624 if (single_succ_p (BLOCK_FOR_INSN (jump
)))
4627 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump
))->dest
;
4630 /* Remove all notes from BB. */
4632 init_bb (basic_block bb
)
4634 remove_notes (bb_note (bb
), BB_END (bb
));
4635 BB_NOTE_LIST (bb
) = note_list
;
4639 sel_init_bbs (bb_vec_t bbs
)
4641 const struct sched_scan_info_def ssi
=
4643 extend_bb_info
, /* extend_bb */
4644 init_bb
, /* init_bb */
4645 NULL
, /* extend_insn */
4646 NULL
/* init_insn */
4649 sched_scan (&ssi
, bbs
);
4652 /* Restore notes for the whole region. */
4654 sel_restore_notes (void)
4659 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
4661 basic_block first
, last
;
4663 first
= EBB_FIRST_BB (bb
);
4664 last
= EBB_LAST_BB (bb
)->next_bb
;
4668 note_list
= BB_NOTE_LIST (first
);
4669 restore_other_notes (NULL
, first
);
4670 BB_NOTE_LIST (first
) = NULL
;
4672 FOR_BB_INSNS (first
, insn
)
4673 if (NONDEBUG_INSN_P (insn
))
4674 reemit_notes (insn
);
4676 first
= first
->next_bb
;
4678 while (first
!= last
);
4682 /* Free per-bb data structures. */
4684 sel_finish_bbs (void)
4686 sel_restore_notes ();
4688 /* Remove current loop preheader from this loop. */
4689 if (current_loop_nest
)
4690 sel_remove_loop_preheader ();
4692 finish_region_bb_info ();
4695 /* Return true if INSN has a single successor of type FLAGS. */
4697 sel_insn_has_single_succ_p (insn_t insn
, int flags
)
4701 bool first_p
= true;
4703 FOR_EACH_SUCC_1 (succ
, si
, insn
, flags
)
4714 /* Allocate successor's info. */
4715 static struct succs_info
*
4716 alloc_succs_info (void)
4718 if (succs_info_pool
.top
== succs_info_pool
.max_top
)
4722 if (++succs_info_pool
.max_top
>= succs_info_pool
.size
)
4725 i
= ++succs_info_pool
.top
;
4726 succs_info_pool
.stack
[i
].succs_ok
.create (10);
4727 succs_info_pool
.stack
[i
].succs_other
.create (10);
4728 succs_info_pool
.stack
[i
].probs_ok
.create (10);
4731 succs_info_pool
.top
++;
4733 return &succs_info_pool
.stack
[succs_info_pool
.top
];
4736 /* Free successor's info. */
4738 free_succs_info (struct succs_info
* sinfo
)
4740 gcc_assert (succs_info_pool
.top
>= 0
4741 && &succs_info_pool
.stack
[succs_info_pool
.top
] == sinfo
);
4742 succs_info_pool
.top
--;
4744 /* Clear stale info. */
4745 sinfo
->succs_ok
.block_remove (0, sinfo
->succs_ok
.length ());
4746 sinfo
->succs_other
.block_remove (0, sinfo
->succs_other
.length ());
4747 sinfo
->probs_ok
.block_remove (0, sinfo
->probs_ok
.length ());
4748 sinfo
->all_prob
= 0;
4749 sinfo
->succs_ok_n
= 0;
4750 sinfo
->all_succs_n
= 0;
4753 /* Compute successor info for INSN. FLAGS are the flags passed
4754 to the FOR_EACH_SUCC_1 iterator. */
4756 compute_succs_info (insn_t insn
, short flags
)
4760 struct succs_info
*sinfo
= alloc_succs_info ();
4762 /* Traverse *all* successors and decide what to do with each. */
4763 FOR_EACH_SUCC_1 (succ
, si
, insn
, SUCCS_ALL
)
4765 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4766 perform code motion through inner loops. */
4767 short current_flags
= si
.current_flags
& ~SUCCS_SKIP_TO_LOOP_EXITS
;
4769 if (current_flags
& flags
)
4771 sinfo
->succs_ok
.safe_push (succ
);
4772 sinfo
->probs_ok
.safe_push (
4773 /* FIXME: Improve calculation when skipping
4774 inner loop to exits. */
4776 ? (si
.e1
->probability
.initialized_p ()
4777 ? si
.e1
->probability
.to_reg_br_prob_base ()
4779 : REG_BR_PROB_BASE
);
4780 sinfo
->succs_ok_n
++;
4783 sinfo
->succs_other
.safe_push (succ
);
4785 /* Compute all_prob. */
4787 sinfo
->all_prob
= REG_BR_PROB_BASE
;
4788 else if (si
.e1
->probability
.initialized_p ())
4789 sinfo
->all_prob
+= si
.e1
->probability
.to_reg_br_prob_base ();
4791 sinfo
->all_succs_n
++;
4797 /* Return the predecessors of BB in PREDS and their number in N.
4798 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4800 cfg_preds_1 (basic_block bb
, insn_t
**preds
, int *n
, int *size
)
4805 gcc_assert (BLOCK_TO_BB (bb
->index
) != 0);
4807 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4809 basic_block pred_bb
= e
->src
;
4810 insn_t bb_end
= BB_END (pred_bb
);
4812 if (!in_current_region_p (pred_bb
))
4814 gcc_assert (flag_sel_sched_pipelining_outer_loops
4815 && current_loop_nest
);
4819 if (sel_bb_empty_p (pred_bb
))
4820 cfg_preds_1 (pred_bb
, preds
, n
, size
);
4824 *preds
= XRESIZEVEC (insn_t
, *preds
,
4825 (*size
= 2 * *size
+ 1));
4826 (*preds
)[(*n
)++] = bb_end
;
4831 || (flag_sel_sched_pipelining_outer_loops
4832 && current_loop_nest
));
4835 /* Find all predecessors of BB and record them in PREDS and their number
4836 in N. Empty blocks are skipped, and only normal (forward in-region)
4837 edges are processed. */
4839 cfg_preds (basic_block bb
, insn_t
**preds
, int *n
)
4845 cfg_preds_1 (bb
, preds
, n
, &size
);
4848 /* Returns true if we are moving INSN through join point. */
4850 sel_num_cfg_preds_gt_1 (insn_t insn
)
4854 if (!sel_bb_head_p (insn
) || INSN_BB (insn
) == 0)
4857 bb
= BLOCK_FOR_INSN (insn
);
4861 if (EDGE_COUNT (bb
->preds
) > 1)
4864 gcc_assert (EDGE_PRED (bb
, 0)->dest
== bb
);
4865 bb
= EDGE_PRED (bb
, 0)->src
;
4867 if (!sel_bb_empty_p (bb
))
4874 /* Returns true when BB should be the end of an ebb. Adapted from the
4875 code in sched-ebb.c. */
4877 bb_ends_ebb_p (basic_block bb
)
4879 basic_block next_bb
= bb_next_bb (bb
);
4882 if (next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4883 || bitmap_bit_p (forced_ebb_heads
, next_bb
->index
)
4884 || (LABEL_P (BB_HEAD (next_bb
))
4885 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4886 Work around that. */
4887 && !single_pred_p (next_bb
)))
4890 if (!in_current_region_p (next_bb
))
4893 e
= find_fallthru_edge (bb
->succs
);
4896 gcc_assert (e
->dest
== next_bb
);
4904 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4905 successor of INSN. */
4907 in_same_ebb_p (insn_t insn
, insn_t succ
)
4909 basic_block ptr
= BLOCK_FOR_INSN (insn
);
4913 if (ptr
== BLOCK_FOR_INSN (succ
))
4916 if (bb_ends_ebb_p (ptr
))
4919 ptr
= bb_next_bb (ptr
);
4926 /* Recomputes the reverse topological order for the function and
4927 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4928 modified appropriately. */
4930 recompute_rev_top_order (void)
4935 if (!rev_top_order_index
4936 || rev_top_order_index_len
< last_basic_block_for_fn (cfun
))
4938 rev_top_order_index_len
= last_basic_block_for_fn (cfun
);
4939 rev_top_order_index
= XRESIZEVEC (int, rev_top_order_index
,
4940 rev_top_order_index_len
);
4943 postorder
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
4945 n_blocks
= post_order_compute (postorder
, true, false);
4946 gcc_assert (n_basic_blocks_for_fn (cfun
) == n_blocks
);
4948 /* Build reverse function: for each basic block with BB->INDEX == K
4949 rev_top_order_index[K] is it's reverse topological sort number. */
4950 for (i
= 0; i
< n_blocks
; i
++)
4952 gcc_assert (postorder
[i
] < rev_top_order_index_len
);
4953 rev_top_order_index
[postorder
[i
]] = i
;
4959 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4961 clear_outdated_rtx_info (basic_block bb
)
4965 FOR_BB_INSNS (bb
, insn
)
4968 SCHED_GROUP_P (insn
) = 0;
4969 INSN_AFTER_STALL_P (insn
) = 0;
4970 INSN_SCHED_TIMES (insn
) = 0;
4971 EXPR_PRIORITY_ADJ (INSN_EXPR (insn
)) = 0;
4973 /* We cannot use the changed caches, as previously we could ignore
4974 the LHS dependence due to enabled renaming and transform
4975 the expression, and currently we'll be unable to do this. */
4976 htab_empty (INSN_TRANSFORMED_INSNS (insn
));
4980 /* Add BB_NOTE to the pool of available basic block notes. */
4982 return_bb_to_pool (basic_block bb
)
4984 rtx_note
*note
= bb_note (bb
);
4986 gcc_assert (NOTE_BASIC_BLOCK (note
) == bb
4987 && bb
->aux
== NULL
);
4989 /* It turns out that current cfg infrastructure does not support
4990 reuse of basic blocks. Don't bother for now. */
4991 /*bb_note_pool.safe_push (note);*/
4994 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4996 get_bb_note_from_pool (void)
4998 if (bb_note_pool
.is_empty ())
5002 rtx_note
*note
= bb_note_pool
.pop ();
5004 SET_PREV_INSN (note
) = NULL_RTX
;
5005 SET_NEXT_INSN (note
) = NULL_RTX
;
5011 /* Free bb_note_pool. */
5013 free_bb_note_pool (void)
5015 bb_note_pool
.release ();
5018 /* Setup scheduler pool and successor structure. */
5020 alloc_sched_pools (void)
5024 succs_size
= MAX_WS
+ 1;
5025 succs_info_pool
.stack
= XCNEWVEC (struct succs_info
, succs_size
);
5026 succs_info_pool
.size
= succs_size
;
5027 succs_info_pool
.top
= -1;
5028 succs_info_pool
.max_top
= -1;
5031 /* Free the pools. */
5033 free_sched_pools (void)
5037 sched_lists_pool
.release ();
5038 gcc_assert (succs_info_pool
.top
== -1);
5039 for (i
= 0; i
<= succs_info_pool
.max_top
; i
++)
5041 succs_info_pool
.stack
[i
].succs_ok
.release ();
5042 succs_info_pool
.stack
[i
].succs_other
.release ();
5043 succs_info_pool
.stack
[i
].probs_ok
.release ();
5045 free (succs_info_pool
.stack
);
5049 /* Returns a position in RGN where BB can be inserted retaining
5050 topological order. */
5052 find_place_to_insert_bb (basic_block bb
, int rgn
)
5054 bool has_preds_outside_rgn
= false;
5058 /* Find whether we have preds outside the region. */
5059 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5060 if (!in_current_region_p (e
->src
))
5062 has_preds_outside_rgn
= true;
5066 /* Recompute the top order -- needed when we have > 1 pred
5067 and in case we don't have preds outside. */
5068 if (flag_sel_sched_pipelining_outer_loops
5069 && (has_preds_outside_rgn
|| EDGE_COUNT (bb
->preds
) > 1))
5071 int i
, bbi
= bb
->index
, cur_bbi
;
5073 recompute_rev_top_order ();
5074 for (i
= RGN_NR_BLOCKS (rgn
) - 1; i
>= 0; i
--)
5076 cur_bbi
= BB_TO_BLOCK (i
);
5077 if (rev_top_order_index
[bbi
]
5078 < rev_top_order_index
[cur_bbi
])
5082 /* We skipped the right block, so we increase i. We accommodate
5083 it for increasing by step later, so we decrease i. */
5086 else if (has_preds_outside_rgn
)
5088 /* This is the case when we generate an extra empty block
5089 to serve as region head during pipelining. */
5090 e
= EDGE_SUCC (bb
, 0);
5091 gcc_assert (EDGE_COUNT (bb
->succs
) == 1
5092 && in_current_region_p (EDGE_SUCC (bb
, 0)->dest
)
5093 && (BLOCK_TO_BB (e
->dest
->index
) == 0));
5097 /* We don't have preds outside the region. We should have
5098 the only pred, because the multiple preds case comes from
5099 the pipelining of outer loops, and that is handled above.
5100 Just take the bbi of this single pred. */
5101 if (EDGE_COUNT (bb
->succs
) > 0)
5105 gcc_assert (EDGE_COUNT (bb
->preds
) == 1);
5107 pred_bbi
= EDGE_PRED (bb
, 0)->src
->index
;
5108 return BLOCK_TO_BB (pred_bbi
);
5111 /* BB has no successors. It is safe to put it in the end. */
5112 return current_nr_blocks
- 1;
5115 /* Deletes an empty basic block freeing its data. */
5117 delete_and_free_basic_block (basic_block bb
)
5119 gcc_assert (sel_bb_empty_p (bb
));
5124 bitmap_clear_bit (blocks_to_reschedule
, bb
->index
);
5126 /* Can't assert av_set properties because we use sel_aremove_bb
5127 when removing loop preheader from the region. At the point of
5128 removing the preheader we already have deallocated sel_region_bb_info. */
5129 gcc_assert (BB_LV_SET (bb
) == NULL
5130 && !BB_LV_SET_VALID_P (bb
)
5131 && BB_AV_LEVEL (bb
) == 0
5132 && BB_AV_SET (bb
) == NULL
);
5134 delete_basic_block (bb
);
5137 /* Add BB to the current region and update the region data. */
5139 add_block_to_current_region (basic_block bb
)
5141 int i
, pos
, bbi
= -2, rgn
;
5143 rgn
= CONTAINING_RGN (BB_TO_BLOCK (0));
5144 bbi
= find_place_to_insert_bb (bb
, rgn
);
5146 pos
= RGN_BLOCKS (rgn
) + bbi
;
5148 gcc_assert (RGN_HAS_REAL_EBB (rgn
) == 0
5149 && ebb_head
[bbi
] == pos
);
5151 /* Make a place for the new block. */
5154 for (i
= RGN_BLOCKS (rgn
+ 1) - 1; i
>= pos
; i
--)
5155 BLOCK_TO_BB (rgn_bb_table
[i
])++;
5157 memmove (rgn_bb_table
+ pos
+ 1,
5159 (RGN_BLOCKS (nr_regions
) - pos
) * sizeof (*rgn_bb_table
));
5161 /* Initialize data for BB. */
5162 rgn_bb_table
[pos
] = bb
->index
;
5163 BLOCK_TO_BB (bb
->index
) = bbi
;
5164 CONTAINING_RGN (bb
->index
) = rgn
;
5166 RGN_NR_BLOCKS (rgn
)++;
5168 for (i
= rgn
+ 1; i
<= nr_regions
; i
++)
5172 /* Remove BB from the current region and update the region data. */
5174 remove_bb_from_region (basic_block bb
)
5176 int i
, pos
, bbi
= -2, rgn
;
5178 rgn
= CONTAINING_RGN (BB_TO_BLOCK (0));
5179 bbi
= BLOCK_TO_BB (bb
->index
);
5180 pos
= RGN_BLOCKS (rgn
) + bbi
;
5182 gcc_assert (RGN_HAS_REAL_EBB (rgn
) == 0
5183 && ebb_head
[bbi
] == pos
);
5185 for (i
= RGN_BLOCKS (rgn
+ 1) - 1; i
>= pos
; i
--)
5186 BLOCK_TO_BB (rgn_bb_table
[i
])--;
5188 memmove (rgn_bb_table
+ pos
,
5189 rgn_bb_table
+ pos
+ 1,
5190 (RGN_BLOCKS (nr_regions
) - pos
) * sizeof (*rgn_bb_table
));
5192 RGN_NR_BLOCKS (rgn
)--;
5193 for (i
= rgn
+ 1; i
<= nr_regions
; i
++)
5197 /* Add BB to the current region and update all data. If BB is NULL, add all
5198 blocks from last_added_blocks vector. */
5200 sel_add_bb (basic_block bb
)
5202 /* Extend luids so that new notes will receive zero luids. */
5203 sched_extend_luids ();
5205 sel_init_bbs (last_added_blocks
);
5207 /* When bb is passed explicitly, the vector should contain
5208 the only element that equals to bb; otherwise, the vector
5209 should not be NULL. */
5210 gcc_assert (last_added_blocks
.exists ());
5214 gcc_assert (last_added_blocks
.length () == 1
5215 && last_added_blocks
[0] == bb
);
5216 add_block_to_current_region (bb
);
5218 /* We associate creating/deleting data sets with the first insn
5219 appearing / disappearing in the bb. */
5220 if (!sel_bb_empty_p (bb
) && BB_LV_SET (bb
) == NULL
)
5221 create_initial_data_sets (bb
);
5223 last_added_blocks
.release ();
5226 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5229 basic_block temp_bb
= NULL
;
5232 last_added_blocks
.iterate (i
, &bb
); i
++)
5234 add_block_to_current_region (bb
);
5238 /* We need to fetch at least one bb so we know the region
5240 gcc_assert (temp_bb
!= NULL
);
5243 last_added_blocks
.release ();
5246 rgn_setup_region (CONTAINING_RGN (bb
->index
));
5249 /* Remove BB from the current region and update all data.
5250 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5252 sel_remove_bb (basic_block bb
, bool remove_from_cfg_p
)
5254 unsigned idx
= bb
->index
;
5256 gcc_assert (bb
!= NULL
&& BB_NOTE_LIST (bb
) == NULL_RTX
);
5258 remove_bb_from_region (bb
);
5259 return_bb_to_pool (bb
);
5260 bitmap_clear_bit (blocks_to_reschedule
, idx
);
5262 if (remove_from_cfg_p
)
5264 basic_block succ
= single_succ (bb
);
5265 delete_and_free_basic_block (bb
);
5266 set_immediate_dominator (CDI_DOMINATORS
, succ
,
5267 recompute_dominator (CDI_DOMINATORS
, succ
));
5270 rgn_setup_region (CONTAINING_RGN (idx
));
5273 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5275 move_bb_info (basic_block merge_bb
, basic_block empty_bb
)
5277 if (in_current_region_p (merge_bb
))
5278 concat_note_lists (BB_NOTE_LIST (empty_bb
),
5279 &BB_NOTE_LIST (merge_bb
));
5280 BB_NOTE_LIST (empty_bb
) = NULL
;
5284 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5285 region, but keep it in CFG. */
5287 remove_empty_bb (basic_block empty_bb
, bool remove_from_cfg_p
)
5289 /* The block should contain just a note or a label.
5290 We try to check whether it is unused below. */
5291 gcc_assert (BB_HEAD (empty_bb
) == BB_END (empty_bb
)
5292 || LABEL_P (BB_HEAD (empty_bb
)));
5294 /* If basic block has predecessors or successors, redirect them. */
5295 if (remove_from_cfg_p
5296 && (EDGE_COUNT (empty_bb
->preds
) > 0
5297 || EDGE_COUNT (empty_bb
->succs
) > 0))
5302 /* We need to init PRED and SUCC before redirecting edges. */
5303 if (EDGE_COUNT (empty_bb
->preds
) > 0)
5307 gcc_assert (EDGE_COUNT (empty_bb
->preds
) == 1);
5309 e
= EDGE_PRED (empty_bb
, 0);
5310 gcc_assert (e
->src
== empty_bb
->prev_bb
5311 && (e
->flags
& EDGE_FALLTHRU
));
5313 pred
= empty_bb
->prev_bb
;
5318 if (EDGE_COUNT (empty_bb
->succs
) > 0)
5320 /* We do not check fallthruness here as above, because
5321 after removing a jump the edge may actually be not fallthru. */
5322 gcc_assert (EDGE_COUNT (empty_bb
->succs
) == 1);
5323 succ
= EDGE_SUCC (empty_bb
, 0)->dest
;
5328 if (EDGE_COUNT (empty_bb
->preds
) > 0 && succ
!= NULL
)
5330 edge e
= EDGE_PRED (empty_bb
, 0);
5332 if (e
->flags
& EDGE_FALLTHRU
)
5333 redirect_edge_succ_nodup (e
, succ
);
5335 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb
, 0), succ
);
5338 if (EDGE_COUNT (empty_bb
->succs
) > 0 && pred
!= NULL
)
5340 edge e
= EDGE_SUCC (empty_bb
, 0);
5342 if (find_edge (pred
, e
->dest
) == NULL
)
5343 redirect_edge_pred (e
, pred
);
5347 /* Finish removing. */
5348 sel_remove_bb (empty_bb
, remove_from_cfg_p
);
5351 /* An implementation of create_basic_block hook, which additionally updates
5352 per-bb data structures. */
5354 sel_create_basic_block (void *headp
, void *endp
, basic_block after
)
5357 rtx_note
*new_bb_note
;
5359 gcc_assert (flag_sel_sched_pipelining_outer_loops
5360 || !last_added_blocks
.exists ());
5362 new_bb_note
= get_bb_note_from_pool ();
5364 if (new_bb_note
== NULL_RTX
)
5365 new_bb
= orig_cfg_hooks
.create_basic_block (headp
, endp
, after
);
5368 new_bb
= create_basic_block_structure ((rtx_insn
*) headp
,
5370 new_bb_note
, after
);
5374 last_added_blocks
.safe_push (new_bb
);
5379 /* Implement sched_init_only_bb (). */
5381 sel_init_only_bb (basic_block bb
, basic_block after
)
5383 gcc_assert (after
== NULL
);
5386 rgn_make_new_region_out_of_new_block (bb
);
5389 /* Update the latch when we've splitted or merged it from FROM block to TO.
5390 This should be checked for all outer loops, too. */
5392 change_loops_latches (basic_block from
, basic_block to
)
5394 gcc_assert (from
!= to
);
5396 if (current_loop_nest
)
5400 for (loop
= current_loop_nest
; loop
; loop
= loop_outer (loop
))
5401 if (considered_for_pipelining_p (loop
) && loop
->latch
== from
)
5403 gcc_assert (loop
== current_loop_nest
);
5405 gcc_assert (loop_latch_edge (loop
));
5410 /* Splits BB on two basic blocks, adding it to the region and extending
5411 per-bb data structures. Returns the newly created bb. */
5413 sel_split_block (basic_block bb
, rtx after
)
5418 new_bb
= sched_split_block_1 (bb
, after
);
5419 sel_add_bb (new_bb
);
5421 /* This should be called after sel_add_bb, because this uses
5422 CONTAINING_RGN for the new block, which is not yet initialized.
5423 FIXME: this function may be a no-op now. */
5424 change_loops_latches (bb
, new_bb
);
5426 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5427 FOR_BB_INSNS (new_bb
, insn
)
5429 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn
)) = new_bb
->index
;
5431 if (sel_bb_empty_p (bb
))
5433 gcc_assert (!sel_bb_empty_p (new_bb
));
5435 /* NEW_BB has data sets that need to be updated and BB holds
5436 data sets that should be removed. Exchange these data sets
5437 so that we won't lose BB's valid data sets. */
5438 exchange_data_sets (new_bb
, bb
);
5439 free_data_sets (bb
);
5442 if (!sel_bb_empty_p (new_bb
)
5443 && bitmap_bit_p (blocks_to_reschedule
, bb
->index
))
5444 bitmap_set_bit (blocks_to_reschedule
, new_bb
->index
);
5449 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5450 Otherwise returns NULL. */
5452 check_for_new_jump (basic_block bb
, int prev_max_uid
)
5456 end
= sel_bb_end (bb
);
5457 if (end
&& INSN_UID (end
) >= prev_max_uid
)
5462 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5463 New means having UID at least equal to PREV_MAX_UID. */
5465 find_new_jump (basic_block from
, basic_block jump_bb
, int prev_max_uid
)
5469 /* Return immediately if no new insns were emitted. */
5470 if (get_max_uid () == prev_max_uid
)
5473 /* Now check both blocks for new jumps. It will ever be only one. */
5474 if ((jump
= check_for_new_jump (from
, prev_max_uid
)))
5478 && (jump
= check_for_new_jump (jump_bb
, prev_max_uid
)))
5483 /* Splits E and adds the newly created basic block to the current region.
5484 Returns this basic block. */
5486 sel_split_edge (edge e
)
5488 basic_block new_bb
, src
, other_bb
= NULL
;
5493 prev_max_uid
= get_max_uid ();
5494 new_bb
= split_edge (e
);
5496 if (flag_sel_sched_pipelining_outer_loops
5497 && current_loop_nest
)
5502 /* Some of the basic blocks might not have been added to the loop.
5503 Add them here, until this is fixed in force_fallthru. */
5505 last_added_blocks
.iterate (i
, &bb
); i
++)
5506 if (!bb
->loop_father
)
5508 add_bb_to_loop (bb
, e
->dest
->loop_father
);
5510 gcc_assert (!other_bb
&& (new_bb
->index
!= bb
->index
));
5515 /* Add all last_added_blocks to the region. */
5518 jump
= find_new_jump (src
, new_bb
, prev_max_uid
);
5520 sel_init_new_insn (jump
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SIMPLEJUMP
);
5522 /* Put the correct lv set on this block. */
5523 if (other_bb
&& !sel_bb_empty_p (other_bb
))
5524 compute_live (sel_bb_head (other_bb
));
5529 /* Implement sched_create_empty_bb (). */
5531 sel_create_empty_bb (basic_block after
)
5535 new_bb
= sched_create_empty_bb_1 (after
);
5537 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5539 gcc_assert (last_added_blocks
.length () == 1
5540 && last_added_blocks
[0] == new_bb
);
5542 last_added_blocks
.release ();
5546 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5547 will be splitted to insert a check. */
5549 sel_create_recovery_block (insn_t orig_insn
)
5551 basic_block first_bb
, second_bb
, recovery_block
;
5552 basic_block before_recovery
= NULL
;
5555 first_bb
= BLOCK_FOR_INSN (orig_insn
);
5556 if (sel_bb_end_p (orig_insn
))
5558 /* Avoid introducing an empty block while splitting. */
5559 gcc_assert (single_succ_p (first_bb
));
5560 second_bb
= single_succ (first_bb
);
5563 second_bb
= sched_split_block (first_bb
, orig_insn
);
5565 recovery_block
= sched_create_recovery_block (&before_recovery
);
5566 if (before_recovery
)
5567 copy_lv_set_from (before_recovery
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
5569 gcc_assert (sel_bb_empty_p (recovery_block
));
5570 sched_create_recovery_edges (first_bb
, recovery_block
, second_bb
);
5571 if (current_loops
!= NULL
)
5572 add_bb_to_loop (recovery_block
, first_bb
->loop_father
);
5574 sel_add_bb (recovery_block
);
5576 jump
= BB_END (recovery_block
);
5577 gcc_assert (sel_bb_head (recovery_block
) == jump
);
5578 sel_init_new_insn (jump
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SIMPLEJUMP
);
5580 return recovery_block
;
5583 /* Merge basic block B into basic block A. */
5585 sel_merge_blocks (basic_block a
, basic_block b
)
5587 gcc_assert (sel_bb_empty_p (b
)
5588 && EDGE_COUNT (b
->preds
) == 1
5589 && EDGE_PRED (b
, 0)->src
== b
->prev_bb
);
5591 move_bb_info (b
->prev_bb
, b
);
5592 remove_empty_bb (b
, false);
5593 merge_blocks (a
, b
);
5594 change_loops_latches (b
, a
);
5597 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5598 data structures for possibly created bb and insns. */
5600 sel_redirect_edge_and_branch_force (edge e
, basic_block to
)
5602 basic_block jump_bb
, src
, orig_dest
= e
->dest
;
5607 /* This function is now used only for bookkeeping code creation, where
5608 we'll never get the single pred of orig_dest block and thus will not
5609 hit unreachable blocks when updating dominator info. */
5610 gcc_assert (!sel_bb_empty_p (e
->src
)
5611 && !single_pred_p (orig_dest
));
5613 prev_max_uid
= get_max_uid ();
5614 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5615 when the conditional jump being redirected may become unconditional. */
5616 if (any_condjump_p (BB_END (src
))
5617 && INSN_SEQNO (BB_END (src
)) >= 0)
5618 old_seqno
= INSN_SEQNO (BB_END (src
));
5620 jump_bb
= redirect_edge_and_branch_force (e
, to
);
5621 if (jump_bb
!= NULL
)
5622 sel_add_bb (jump_bb
);
5624 /* This function could not be used to spoil the loop structure by now,
5625 thus we don't care to update anything. But check it to be sure. */
5626 if (current_loop_nest
5628 gcc_assert (loop_latch_edge (current_loop_nest
));
5630 jump
= find_new_jump (src
, jump_bb
, prev_max_uid
);
5632 sel_init_new_insn (jump
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SIMPLEJUMP
,
5634 set_immediate_dominator (CDI_DOMINATORS
, to
,
5635 recompute_dominator (CDI_DOMINATORS
, to
));
5636 set_immediate_dominator (CDI_DOMINATORS
, orig_dest
,
5637 recompute_dominator (CDI_DOMINATORS
, orig_dest
));
5638 if (jump
&& sel_bb_head_p (jump
))
5639 compute_live (jump
);
5642 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5643 redirected edge are in reverse topological order. */
5645 sel_redirect_edge_and_branch (edge e
, basic_block to
)
5648 basic_block src
, orig_dest
= e
->dest
;
5652 bool recompute_toporder_p
= false;
5653 bool maybe_unreachable
= single_pred_p (orig_dest
);
5656 latch_edge_p
= (pipelining_p
5657 && current_loop_nest
5658 && e
== loop_latch_edge (current_loop_nest
));
5661 prev_max_uid
= get_max_uid ();
5663 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5664 when the conditional jump being redirected may become unconditional. */
5665 if (any_condjump_p (BB_END (src
))
5666 && INSN_SEQNO (BB_END (src
)) >= 0)
5667 old_seqno
= INSN_SEQNO (BB_END (src
));
5669 redirected
= redirect_edge_and_branch (e
, to
);
5671 gcc_assert (redirected
&& !last_added_blocks
.exists ());
5673 /* When we've redirected a latch edge, update the header. */
5676 current_loop_nest
->header
= to
;
5677 gcc_assert (loop_latch_edge (current_loop_nest
));
5680 /* In rare situations, the topological relation between the blocks connected
5681 by the redirected edge can change (see PR42245 for an example). Update
5682 block_to_bb/bb_to_block. */
5683 if (CONTAINING_RGN (e
->src
->index
) == CONTAINING_RGN (to
->index
)
5684 && BLOCK_TO_BB (e
->src
->index
) > BLOCK_TO_BB (to
->index
))
5685 recompute_toporder_p
= true;
5687 jump
= find_new_jump (src
, NULL
, prev_max_uid
);
5689 sel_init_new_insn (jump
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SIMPLEJUMP
, old_seqno
);
5691 /* Only update dominator info when we don't have unreachable blocks.
5692 Otherwise we'll update in maybe_tidy_empty_bb. */
5693 if (!maybe_unreachable
)
5695 set_immediate_dominator (CDI_DOMINATORS
, to
,
5696 recompute_dominator (CDI_DOMINATORS
, to
));
5697 set_immediate_dominator (CDI_DOMINATORS
, orig_dest
,
5698 recompute_dominator (CDI_DOMINATORS
, orig_dest
));
5700 if (jump
&& sel_bb_head_p (jump
))
5701 compute_live (jump
);
5702 return recompute_toporder_p
;
5705 /* This variable holds the cfg hooks used by the selective scheduler. */
5706 static struct cfg_hooks sel_cfg_hooks
;
5708 /* Register sel-sched cfg hooks. */
5710 sel_register_cfg_hooks (void)
5712 sched_split_block
= sel_split_block
;
5714 orig_cfg_hooks
= get_cfg_hooks ();
5715 sel_cfg_hooks
= orig_cfg_hooks
;
5717 sel_cfg_hooks
.create_basic_block
= sel_create_basic_block
;
5719 set_cfg_hooks (sel_cfg_hooks
);
5721 sched_init_only_bb
= sel_init_only_bb
;
5722 sched_split_block
= sel_split_block
;
5723 sched_create_empty_bb
= sel_create_empty_bb
;
5726 /* Unregister sel-sched cfg hooks. */
5728 sel_unregister_cfg_hooks (void)
5730 sched_create_empty_bb
= NULL
;
5731 sched_split_block
= NULL
;
5732 sched_init_only_bb
= NULL
;
5734 set_cfg_hooks (orig_cfg_hooks
);
5738 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5739 LABEL is where this jump should be directed. */
5741 create_insn_rtx_from_pattern (rtx pattern
, rtx label
)
5745 gcc_assert (!INSN_P (pattern
));
5749 if (label
== NULL_RTX
)
5750 insn_rtx
= emit_insn (pattern
);
5751 else if (DEBUG_INSN_P (label
))
5752 insn_rtx
= emit_debug_insn (pattern
);
5755 insn_rtx
= emit_jump_insn (pattern
);
5756 JUMP_LABEL (insn_rtx
) = label
;
5757 ++LABEL_NUSES (label
);
5762 sched_extend_luids ();
5763 sched_extend_target ();
5764 sched_deps_init (false);
5766 /* Initialize INSN_CODE now. */
5767 recog_memoized (insn_rtx
);
5771 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5772 must not be clonable. */
5774 create_vinsn_from_insn_rtx (rtx_insn
*insn_rtx
, bool force_unique_p
)
5776 gcc_assert (INSN_P (insn_rtx
) && !INSN_IN_STREAM_P (insn_rtx
));
5778 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5779 return vinsn_create (insn_rtx
, force_unique_p
);
5782 /* Create a copy of INSN_RTX. */
5784 create_copy_of_insn_rtx (rtx insn_rtx
)
5789 if (DEBUG_INSN_P (insn_rtx
))
5790 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx
)),
5793 gcc_assert (NONJUMP_INSN_P (insn_rtx
));
5795 res
= create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx
)),
5798 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5799 rtx
*ptail
= ®_NOTES (res
);
5800 while (*ptail
!= NULL_RTX
)
5801 ptail
= &XEXP (*ptail
, 1);
5803 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5804 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5805 there too, but are supposed to be sticky, so we copy them. */
5806 for (link
= REG_NOTES (insn_rtx
); link
; link
= XEXP (link
, 1))
5807 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
5808 && REG_NOTE_KIND (link
) != REG_EQUAL
5809 && REG_NOTE_KIND (link
) != REG_EQUIV
)
5811 *ptail
= duplicate_reg_note (link
);
5812 ptail
= &XEXP (*ptail
, 1);
5818 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5820 change_vinsn_in_expr (expr_t expr
, vinsn_t new_vinsn
)
5822 vinsn_detach (EXPR_VINSN (expr
));
5824 EXPR_VINSN (expr
) = new_vinsn
;
5825 vinsn_attach (new_vinsn
);
5828 /* Helpers for global init. */
5829 /* This structure is used to be able to call existing bundling mechanism
5830 and calculate insn priorities. */
5831 static struct haifa_sched_info sched_sel_haifa_sched_info
=
5833 NULL
, /* init_ready_list */
5834 NULL
, /* can_schedule_ready_p */
5835 NULL
, /* schedule_more_p */
5836 NULL
, /* new_ready */
5837 NULL
, /* rgn_rank */
5838 sel_print_insn
, /* rgn_print_insn */
5839 contributes_to_priority
,
5840 NULL
, /* insn_finishes_block_p */
5846 NULL
, /* add_remove_insn */
5847 NULL
, /* begin_schedule_ready */
5848 NULL
, /* begin_move_insn */
5849 NULL
, /* advance_target_bb */
5857 /* Setup special insns used in the scheduler. */
5859 setup_nop_and_exit_insns (void)
5861 gcc_assert (nop_pattern
== NULL_RTX
5862 && exit_insn
== NULL_RTX
);
5864 nop_pattern
= constm1_rtx
;
5867 emit_insn (nop_pattern
);
5868 exit_insn
= get_insns ();
5870 set_block_for_insn (exit_insn
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
5873 /* Free special insns used in the scheduler. */
5875 free_nop_and_exit_insns (void)
5878 nop_pattern
= NULL_RTX
;
5881 /* Setup a special vinsn used in new insns initialization. */
5883 setup_nop_vinsn (void)
5885 nop_vinsn
= vinsn_create (exit_insn
, false);
5886 vinsn_attach (nop_vinsn
);
5889 /* Free a special vinsn used in new insns initialization. */
5891 free_nop_vinsn (void)
5893 gcc_assert (VINSN_COUNT (nop_vinsn
) == 1);
5894 vinsn_detach (nop_vinsn
);
5898 /* Call a set_sched_flags hook. */
5900 sel_set_sched_flags (void)
5902 /* ??? This means that set_sched_flags were called, and we decided to
5903 support speculation. However, set_sched_flags also modifies flags
5904 on current_sched_info, doing this only at global init. And we
5905 sometimes change c_s_i later. So put the correct flags again. */
5906 if (spec_info
&& targetm
.sched
.set_sched_flags
)
5907 targetm
.sched
.set_sched_flags (spec_info
);
5910 /* Setup pointers to global sched info structures. */
5912 sel_setup_sched_infos (void)
5914 rgn_setup_common_sched_info ();
5916 memcpy (&sel_common_sched_info
, common_sched_info
,
5917 sizeof (sel_common_sched_info
));
5919 sel_common_sched_info
.fix_recovery_cfg
= NULL
;
5920 sel_common_sched_info
.add_block
= NULL
;
5921 sel_common_sched_info
.estimate_number_of_insns
5922 = sel_estimate_number_of_insns
;
5923 sel_common_sched_info
.luid_for_non_insn
= sel_luid_for_non_insn
;
5924 sel_common_sched_info
.sched_pass_id
= SCHED_SEL_PASS
;
5926 common_sched_info
= &sel_common_sched_info
;
5928 current_sched_info
= &sched_sel_haifa_sched_info
;
5929 current_sched_info
->sched_max_insns_priority
=
5930 get_rgn_sched_max_insns_priority ();
5932 sel_set_sched_flags ();
5936 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5937 *BB_ORD_INDEX after that is increased. */
5939 sel_add_block_to_region (basic_block bb
, int *bb_ord_index
, int rgn
)
5941 RGN_NR_BLOCKS (rgn
) += 1;
5942 RGN_DONT_CALC_DEPS (rgn
) = 0;
5943 RGN_HAS_REAL_EBB (rgn
) = 0;
5944 CONTAINING_RGN (bb
->index
) = rgn
;
5945 BLOCK_TO_BB (bb
->index
) = *bb_ord_index
;
5946 rgn_bb_table
[RGN_BLOCKS (rgn
) + *bb_ord_index
] = bb
->index
;
5949 /* FIXME: it is true only when not scheduling ebbs. */
5950 RGN_BLOCKS (rgn
+ 1) = RGN_BLOCKS (rgn
) + RGN_NR_BLOCKS (rgn
);
5953 /* Functions to support pipelining of outer loops. */
5955 /* Creates a new empty region and returns it's number. */
5957 sel_create_new_region (void)
5959 int new_rgn_number
= nr_regions
;
5961 RGN_NR_BLOCKS (new_rgn_number
) = 0;
5963 /* FIXME: This will work only when EBBs are not created. */
5964 if (new_rgn_number
!= 0)
5965 RGN_BLOCKS (new_rgn_number
) = RGN_BLOCKS (new_rgn_number
- 1) +
5966 RGN_NR_BLOCKS (new_rgn_number
- 1);
5968 RGN_BLOCKS (new_rgn_number
) = 0;
5970 /* Set the blocks of the next region so the other functions may
5971 calculate the number of blocks in the region. */
5972 RGN_BLOCKS (new_rgn_number
+ 1) = RGN_BLOCKS (new_rgn_number
) +
5973 RGN_NR_BLOCKS (new_rgn_number
);
5977 return new_rgn_number
;
5980 /* If X has a smaller topological sort number than Y, returns -1;
5981 if greater, returns 1. */
5983 bb_top_order_comparator (const void *x
, const void *y
)
5985 basic_block bb1
= *(const basic_block
*) x
;
5986 basic_block bb2
= *(const basic_block
*) y
;
5988 gcc_assert (bb1
== bb2
5989 || rev_top_order_index
[bb1
->index
]
5990 != rev_top_order_index
[bb2
->index
]);
5992 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5993 bbs with greater number should go earlier. */
5994 if (rev_top_order_index
[bb1
->index
] > rev_top_order_index
[bb2
->index
])
6000 /* Create a region for LOOP and return its number. If we don't want
6001 to pipeline LOOP, return -1. */
6003 make_region_from_loop (class loop
*loop
)
6006 int new_rgn_number
= -1;
6009 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6010 int bb_ord_index
= 0;
6011 basic_block
*loop_blocks
;
6012 basic_block preheader_block
;
6015 > (unsigned) param_max_pipeline_region_blocks
)
6018 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6019 for (inner
= loop
->inner
; inner
; inner
= inner
->inner
)
6020 if (flow_bb_inside_loop_p (inner
, loop
->latch
))
6023 loop
->ninsns
= num_loop_insns (loop
);
6024 if ((int) loop
->ninsns
> param_max_pipeline_region_insns
)
6027 loop_blocks
= get_loop_body_in_custom_order (loop
, bb_top_order_comparator
);
6029 for (i
= 0; i
< loop
->num_nodes
; i
++)
6030 if (loop_blocks
[i
]->flags
& BB_IRREDUCIBLE_LOOP
)
6036 preheader_block
= loop_preheader_edge (loop
)->src
;
6037 gcc_assert (preheader_block
);
6038 gcc_assert (loop_blocks
[0] == loop
->header
);
6040 new_rgn_number
= sel_create_new_region ();
6042 sel_add_block_to_region (preheader_block
, &bb_ord_index
, new_rgn_number
);
6043 bitmap_set_bit (bbs_in_loop_rgns
, preheader_block
->index
);
6045 for (i
= 0; i
< loop
->num_nodes
; i
++)
6047 /* Add only those blocks that haven't been scheduled in the inner loop.
6048 The exception is the basic blocks with bookkeeping code - they should
6049 be added to the region (and they actually don't belong to the loop
6050 body, but to the region containing that loop body). */
6052 gcc_assert (new_rgn_number
>= 0);
6054 if (! bitmap_bit_p (bbs_in_loop_rgns
, loop_blocks
[i
]->index
))
6056 sel_add_block_to_region (loop_blocks
[i
], &bb_ord_index
,
6058 bitmap_set_bit (bbs_in_loop_rgns
, loop_blocks
[i
]->index
);
6063 MARK_LOOP_FOR_PIPELINING (loop
);
6065 return new_rgn_number
;
6068 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6070 make_region_from_loop_preheader (vec
<basic_block
> *&loop_blocks
)
6073 int new_rgn_number
= -1;
6076 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6077 int bb_ord_index
= 0;
6079 new_rgn_number
= sel_create_new_region ();
6081 FOR_EACH_VEC_ELT (*loop_blocks
, i
, bb
)
6083 gcc_assert (new_rgn_number
>= 0);
6085 sel_add_block_to_region (bb
, &bb_ord_index
, new_rgn_number
);
6088 vec_free (loop_blocks
);
6092 /* Create region(s) from loop nest LOOP, such that inner loops will be
6093 pipelined before outer loops. Returns true when a region for LOOP
6096 make_regions_from_loop_nest (class loop
*loop
)
6098 class loop
*cur_loop
;
6101 /* Traverse all inner nodes of the loop. */
6102 for (cur_loop
= loop
->inner
; cur_loop
; cur_loop
= cur_loop
->next
)
6103 if (! bitmap_bit_p (bbs_in_loop_rgns
, cur_loop
->header
->index
))
6106 /* At this moment all regular inner loops should have been pipelined.
6107 Try to create a region from this loop. */
6108 rgn_number
= make_region_from_loop (loop
);
6113 loop_nests
.safe_push (loop
);
6117 /* Initalize data structures needed. */
6119 sel_init_pipelining (void)
6121 /* Collect loop information to be used in outer loops pipelining. */
6122 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6123 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6124 | LOOPS_HAVE_RECORDED_EXITS
6125 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS
);
6126 current_loop_nest
= NULL
;
6128 bbs_in_loop_rgns
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6129 bitmap_clear (bbs_in_loop_rgns
);
6131 recompute_rev_top_order ();
6134 /* Returns a class loop for region RGN. */
6136 get_loop_nest_for_rgn (unsigned int rgn
)
6138 /* Regions created with extend_rgns don't have corresponding loop nests,
6139 because they don't represent loops. */
6140 if (rgn
< loop_nests
.length ())
6141 return loop_nests
[rgn
];
6146 /* True when LOOP was included into pipelining regions. */
6148 considered_for_pipelining_p (class loop
*loop
)
6150 if (loop_depth (loop
) == 0)
6153 /* Now, the loop could be too large or irreducible. Check whether its
6154 region is in LOOP_NESTS.
6155 We determine the region number of LOOP as the region number of its
6156 latch. We can't use header here, because this header could be
6157 just removed preheader and it will give us the wrong region number.
6158 Latch can't be used because it could be in the inner loop too. */
6159 if (LOOP_MARKED_FOR_PIPELINING_P (loop
))
6161 int rgn
= CONTAINING_RGN (loop
->latch
->index
);
6163 gcc_assert ((unsigned) rgn
< loop_nests
.length ());
6170 /* Makes regions from the rest of the blocks, after loops are chosen
6173 make_regions_from_the_rest (void)
6184 /* Index in rgn_bb_table where to start allocating new regions. */
6185 cur_rgn_blocks
= nr_regions
? RGN_BLOCKS (nr_regions
) : 0;
6187 /* Make regions from all the rest basic blocks - those that don't belong to
6188 any loop or belong to irreducible loops. Prepare the data structures
6191 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6192 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6194 loop_hdr
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6195 degree
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
6198 /* For each basic block that belongs to some loop assign the number
6199 of innermost loop it belongs to. */
6200 for (i
= 0; i
< last_basic_block_for_fn (cfun
); i
++)
6203 FOR_EACH_BB_FN (bb
, cfun
)
6205 if (bb
->loop_father
&& bb
->loop_father
->num
!= 0
6206 && !(bb
->flags
& BB_IRREDUCIBLE_LOOP
))
6207 loop_hdr
[bb
->index
] = bb
->loop_father
->num
;
6210 /* For each basic block degree is calculated as the number of incoming
6211 edges, that are going out of bbs that are not yet scheduled.
6212 The basic blocks that are scheduled have degree value of zero. */
6213 FOR_EACH_BB_FN (bb
, cfun
)
6215 degree
[bb
->index
] = 0;
6217 if (!bitmap_bit_p (bbs_in_loop_rgns
, bb
->index
))
6219 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6220 if (!bitmap_bit_p (bbs_in_loop_rgns
, e
->src
->index
))
6221 degree
[bb
->index
]++;
6224 degree
[bb
->index
] = -1;
6227 extend_rgns (degree
, &cur_rgn_blocks
, bbs_in_loop_rgns
, loop_hdr
);
6229 /* Any block that did not end up in a region is placed into a region
6231 FOR_EACH_BB_FN (bb
, cfun
)
6232 if (degree
[bb
->index
] >= 0)
6234 rgn_bb_table
[cur_rgn_blocks
] = bb
->index
;
6235 RGN_NR_BLOCKS (nr_regions
) = 1;
6236 RGN_BLOCKS (nr_regions
) = cur_rgn_blocks
++;
6237 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
6238 RGN_HAS_REAL_EBB (nr_regions
) = 0;
6239 CONTAINING_RGN (bb
->index
) = nr_regions
++;
6240 BLOCK_TO_BB (bb
->index
) = 0;
6247 /* Free data structures used in pipelining of loops. */
6248 void sel_finish_pipelining (void)
6252 /* Release aux fields so we don't free them later by mistake. */
6253 FOR_EACH_LOOP (loop
, 0)
6256 loop_optimizer_finalize ();
6258 loop_nests
.release ();
6260 free (rev_top_order_index
);
6261 rev_top_order_index
= NULL
;
6264 /* This function replaces the find_rgns when
6265 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6267 sel_find_rgns (void)
6269 sel_init_pipelining ();
6276 FOR_EACH_LOOP (loop
, (flag_sel_sched_pipelining_outer_loops
6278 : LI_ONLY_INNERMOST
))
6279 make_regions_from_loop_nest (loop
);
6282 /* Make regions from all the rest basic blocks and schedule them.
6283 These blocks include blocks that don't belong to any loop or belong
6284 to irreducible loops. */
6285 make_regions_from_the_rest ();
6287 /* We don't need bbs_in_loop_rgns anymore. */
6288 sbitmap_free (bbs_in_loop_rgns
);
6289 bbs_in_loop_rgns
= NULL
;
6292 /* Add the preheader blocks from previous loop to current region taking
6293 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6294 This function is only used with -fsel-sched-pipelining-outer-loops. */
6296 sel_add_loop_preheaders (bb_vec_t
*bbs
)
6300 vec
<basic_block
> *preheader_blocks
6301 = LOOP_PREHEADER_BLOCKS (current_loop_nest
);
6303 if (!preheader_blocks
)
6306 for (i
= 0; preheader_blocks
->iterate (i
, &bb
); i
++)
6308 bbs
->safe_push (bb
);
6309 last_added_blocks
.safe_push (bb
);
6313 vec_free (preheader_blocks
);
6316 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6317 Please note that the function should also work when pipelining_p is
6318 false, because it is used when deciding whether we should or should
6319 not reschedule pipelined code. */
6321 sel_is_loop_preheader_p (basic_block bb
)
6323 if (current_loop_nest
)
6327 if (preheader_removed
)
6330 /* Preheader is the first block in the region. */
6331 if (BLOCK_TO_BB (bb
->index
) == 0)
6334 /* We used to find a preheader with the topological information.
6335 Check that the above code is equivalent to what we did before. */
6337 if (in_current_region_p (current_loop_nest
->header
))
6338 gcc_assert (!(BLOCK_TO_BB (bb
->index
)
6339 < BLOCK_TO_BB (current_loop_nest
->header
->index
)));
6341 /* Support the situation when the latch block of outer loop
6342 could be from here. */
6343 for (outer
= loop_outer (current_loop_nest
);
6345 outer
= loop_outer (outer
))
6346 if (considered_for_pipelining_p (outer
) && outer
->latch
== bb
)
6353 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6354 can be removed, making the corresponding edge fallthrough (assuming that
6355 all basic blocks between JUMP_BB and DEST_BB are empty). */
6357 bb_has_removable_jump_to_p (basic_block jump_bb
, basic_block dest_bb
)
6359 if (!onlyjump_p (BB_END (jump_bb
))
6360 || tablejump_p (BB_END (jump_bb
), NULL
, NULL
))
6363 /* Several outgoing edges, abnormal edge or destination of jump is
6365 if (EDGE_COUNT (jump_bb
->succs
) != 1
6366 || EDGE_SUCC (jump_bb
, 0)->flags
& (EDGE_ABNORMAL
| EDGE_CROSSING
)
6367 || EDGE_SUCC (jump_bb
, 0)->dest
!= dest_bb
)
6370 /* If not anything of the upper. */
6374 /* Removes the loop preheader from the current region and saves it in
6375 PREHEADER_BLOCKS of the father loop, so they will be added later to
6376 region that represents an outer loop. */
6378 sel_remove_loop_preheader (void)
6381 int cur_rgn
= CONTAINING_RGN (BB_TO_BLOCK (0));
6383 bool all_empty_p
= true;
6384 vec
<basic_block
> *preheader_blocks
6385 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest
));
6387 vec_check_alloc (preheader_blocks
, 0);
6389 gcc_assert (current_loop_nest
);
6390 old_len
= preheader_blocks
->length ();
6392 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6393 for (i
= 0; i
< RGN_NR_BLOCKS (cur_rgn
); i
++)
6395 bb
= BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
));
6397 /* If the basic block belongs to region, but doesn't belong to
6398 corresponding loop, then it should be a preheader. */
6399 if (sel_is_loop_preheader_p (bb
))
6401 preheader_blocks
->safe_push (bb
);
6402 if (BB_END (bb
) != bb_note (bb
))
6403 all_empty_p
= false;
6407 /* Remove these blocks only after iterating over the whole region. */
6408 for (i
= preheader_blocks
->length () - 1; i
>= old_len
; i
--)
6410 bb
= (*preheader_blocks
)[i
];
6411 sel_remove_bb (bb
, false);
6414 if (!considered_for_pipelining_p (loop_outer (current_loop_nest
)))
6417 /* Immediately create new region from preheader. */
6418 make_region_from_loop_preheader (preheader_blocks
);
6421 /* If all preheader blocks are empty - dont create new empty region.
6422 Instead, remove them completely. */
6423 FOR_EACH_VEC_ELT (*preheader_blocks
, i
, bb
)
6427 basic_block prev_bb
= bb
->prev_bb
, next_bb
= bb
->next_bb
;
6429 /* Redirect all incoming edges to next basic block. */
6430 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
6432 if (! (e
->flags
& EDGE_FALLTHRU
))
6433 redirect_edge_and_branch (e
, bb
->next_bb
);
6435 redirect_edge_succ (e
, bb
->next_bb
);
6437 gcc_assert (BB_NOTE_LIST (bb
) == NULL
);
6438 delete_and_free_basic_block (bb
);
6440 /* Check if after deleting preheader there is a nonconditional
6441 jump in PREV_BB that leads to the next basic block NEXT_BB.
6442 If it is so - delete this jump and clear data sets of its
6443 basic block if it becomes empty. */
6444 if (next_bb
->prev_bb
== prev_bb
6445 && prev_bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
6446 && bb_has_removable_jump_to_p (prev_bb
, next_bb
))
6448 redirect_edge_and_branch (EDGE_SUCC (prev_bb
, 0), next_bb
);
6449 if (BB_END (prev_bb
) == bb_note (prev_bb
))
6450 free_data_sets (prev_bb
);
6453 set_immediate_dominator (CDI_DOMINATORS
, next_bb
,
6454 recompute_dominator (CDI_DOMINATORS
,
6458 vec_free (preheader_blocks
);
6461 /* Store preheader within the father's loop structure. */
6462 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest
),