PR c/20740
[official-gcc.git] / gcc / fold-const.c
blob9de988c2300b693696049a642b1b48039a40b121
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant, an overflowable flag and prior
43 overflow indicators. It forces the value to fit the type and sets
44 TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "flags.h"
51 #include "tree.h"
52 #include "real.h"
53 #include "rtl.h"
54 #include "expr.h"
55 #include "tm_p.h"
56 #include "toplev.h"
57 #include "ggc.h"
58 #include "hashtab.h"
59 #include "langhooks.h"
60 #include "md5.h"
62 /* The following constants represent a bit based encoding of GCC's
63 comparison operators. This encoding simplifies transformations
64 on relational comparison operators, such as AND and OR. */
65 enum comparison_code {
66 COMPCODE_FALSE = 0,
67 COMPCODE_LT = 1,
68 COMPCODE_EQ = 2,
69 COMPCODE_LE = 3,
70 COMPCODE_GT = 4,
71 COMPCODE_LTGT = 5,
72 COMPCODE_GE = 6,
73 COMPCODE_ORD = 7,
74 COMPCODE_UNORD = 8,
75 COMPCODE_UNLT = 9,
76 COMPCODE_UNEQ = 10,
77 COMPCODE_UNLE = 11,
78 COMPCODE_UNGT = 12,
79 COMPCODE_NE = 13,
80 COMPCODE_UNGE = 14,
81 COMPCODE_TRUE = 15
84 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
85 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
86 static bool negate_mathfn_p (enum built_in_function);
87 static bool negate_expr_p (tree);
88 static tree negate_expr (tree);
89 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
90 static tree associate_trees (tree, tree, enum tree_code, tree);
91 static tree const_binop (enum tree_code, tree, tree, int);
92 static enum tree_code invert_tree_comparison (enum tree_code, bool);
93 static enum comparison_code comparison_to_compcode (enum tree_code);
94 static enum tree_code compcode_to_comparison (enum comparison_code);
95 static tree combine_comparisons (enum tree_code, enum tree_code,
96 enum tree_code, tree, tree, tree);
97 static int truth_value_p (enum tree_code);
98 static int operand_equal_for_comparison_p (tree, tree, tree);
99 static int twoval_comparison_p (tree, tree *, tree *, int *);
100 static tree eval_subst (tree, tree, tree, tree, tree);
101 static tree pedantic_omit_one_operand (tree, tree, tree);
102 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
103 static tree make_bit_field_ref (tree, tree, int, int, int);
104 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
105 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
106 enum machine_mode *, int *, int *,
107 tree *, tree *);
108 static int all_ones_mask_p (tree, int);
109 static tree sign_bit_p (tree, tree);
110 static int simple_operand_p (tree);
111 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
112 static tree make_range (tree, int *, tree *, tree *);
113 static tree build_range_check (tree, tree, int, tree, tree);
114 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
115 tree);
116 static tree fold_range_test (enum tree_code, tree, tree, tree);
117 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
118 static tree unextend (tree, int, int, tree);
119 static tree fold_truthop (enum tree_code, tree, tree, tree);
120 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
121 static tree extract_muldiv (tree, tree, enum tree_code, tree);
122 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree);
123 static int multiple_of_p (tree, tree, tree);
124 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
125 tree, tree,
126 tree, tree, int);
127 static bool fold_real_zero_addition_p (tree, tree, int);
128 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
129 tree, tree, tree);
130 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
131 static tree fold_div_compare (enum tree_code, tree, tree, tree);
132 static bool reorder_operands_p (tree, tree);
133 static tree fold_negate_const (tree, tree);
134 static tree fold_not_const (tree, tree);
135 static tree fold_relational_const (enum tree_code, tree, tree, tree);
136 static bool tree_expr_nonzero_p (tree);
138 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
139 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
140 and SUM1. Then this yields nonzero if overflow occurred during the
141 addition.
143 Overflow occurs if A and B have the same sign, but A and SUM differ in
144 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
145 sign. */
146 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
148 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
149 We do that by representing the two-word integer in 4 words, with only
150 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
151 number. The value of the word is LOWPART + HIGHPART * BASE. */
153 #define LOWPART(x) \
154 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
155 #define HIGHPART(x) \
156 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
157 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
159 /* Unpack a two-word integer into 4 words.
160 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
161 WORDS points to the array of HOST_WIDE_INTs. */
163 static void
164 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
166 words[0] = LOWPART (low);
167 words[1] = HIGHPART (low);
168 words[2] = LOWPART (hi);
169 words[3] = HIGHPART (hi);
172 /* Pack an array of 4 words into a two-word integer.
173 WORDS points to the array of words.
174 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
176 static void
177 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
178 HOST_WIDE_INT *hi)
180 *low = words[0] + words[1] * BASE;
181 *hi = words[2] + words[3] * BASE;
184 /* T is an INT_CST node. OVERFLOWABLE indicates if we are interested
185 in overflow of the value, when >0 we are only interested in signed
186 overflow, for <0 we are interested in any overflow. OVERFLOWED
187 indicates whether overflow has already occurred. CONST_OVERFLOWED
188 indicates whether constant overflow has already occurred. We force
189 T's value to be within range of T's type (by setting to 0 or 1 all
190 the bits outside the type's range). We set TREE_OVERFLOWED if,
191 OVERFLOWED is nonzero,
192 or OVERFLOWABLE is >0 and signed overflow occurs
193 or OVERFLOWABLE is <0 and any overflow occurs
194 We set TREE_CONSTANT_OVERFLOWED if,
195 CONST_OVERFLOWED is nonzero
196 or we set TREE_OVERFLOWED.
197 We return either the original T, or a copy. */
199 tree
200 force_fit_type (tree t, int overflowable,
201 bool overflowed, bool overflowed_const)
203 unsigned HOST_WIDE_INT low;
204 HOST_WIDE_INT high;
205 unsigned int prec;
206 int sign_extended_type;
208 gcc_assert (TREE_CODE (t) == INTEGER_CST);
210 low = TREE_INT_CST_LOW (t);
211 high = TREE_INT_CST_HIGH (t);
213 if (POINTER_TYPE_P (TREE_TYPE (t))
214 || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
215 prec = POINTER_SIZE;
216 else
217 prec = TYPE_PRECISION (TREE_TYPE (t));
218 /* Size types *are* sign extended. */
219 sign_extended_type = (!TYPE_UNSIGNED (TREE_TYPE (t))
220 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
221 && TYPE_IS_SIZETYPE (TREE_TYPE (t))));
223 /* First clear all bits that are beyond the type's precision. */
225 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
227 else if (prec > HOST_BITS_PER_WIDE_INT)
228 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
229 else
231 high = 0;
232 if (prec < HOST_BITS_PER_WIDE_INT)
233 low &= ~((HOST_WIDE_INT) (-1) << prec);
236 if (!sign_extended_type)
237 /* No sign extension */;
238 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
239 /* Correct width already. */;
240 else if (prec > HOST_BITS_PER_WIDE_INT)
242 /* Sign extend top half? */
243 if (high & ((unsigned HOST_WIDE_INT)1
244 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
245 high |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
247 else if (prec == HOST_BITS_PER_WIDE_INT)
249 if ((HOST_WIDE_INT)low < 0)
250 high = -1;
252 else
254 /* Sign extend bottom half? */
255 if (low & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
257 high = -1;
258 low |= (HOST_WIDE_INT)(-1) << prec;
262 /* If the value changed, return a new node. */
263 if (overflowed || overflowed_const
264 || low != TREE_INT_CST_LOW (t) || high != TREE_INT_CST_HIGH (t))
266 t = build_int_cst_wide (TREE_TYPE (t), low, high);
268 if (overflowed
269 || overflowable < 0
270 || (overflowable > 0 && sign_extended_type))
272 t = copy_node (t);
273 TREE_OVERFLOW (t) = 1;
274 TREE_CONSTANT_OVERFLOW (t) = 1;
276 else if (overflowed_const)
278 t = copy_node (t);
279 TREE_CONSTANT_OVERFLOW (t) = 1;
283 return t;
286 /* Add two doubleword integers with doubleword result.
287 Each argument is given as two `HOST_WIDE_INT' pieces.
288 One argument is L1 and H1; the other, L2 and H2.
289 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
292 add_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
293 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
294 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
296 unsigned HOST_WIDE_INT l;
297 HOST_WIDE_INT h;
299 l = l1 + l2;
300 h = h1 + h2 + (l < l1);
302 *lv = l;
303 *hv = h;
304 return OVERFLOW_SUM_SIGN (h1, h2, h);
307 /* Negate a doubleword integer with doubleword result.
308 Return nonzero if the operation overflows, assuming it's signed.
309 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
310 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
313 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
314 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
316 if (l1 == 0)
318 *lv = 0;
319 *hv = - h1;
320 return (*hv & h1) < 0;
322 else
324 *lv = -l1;
325 *hv = ~h1;
326 return 0;
330 /* Multiply two doubleword integers with doubleword result.
331 Return nonzero if the operation overflows, assuming it's signed.
332 Each argument is given as two `HOST_WIDE_INT' pieces.
333 One argument is L1 and H1; the other, L2 and H2.
334 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
337 mul_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
338 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
339 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
341 HOST_WIDE_INT arg1[4];
342 HOST_WIDE_INT arg2[4];
343 HOST_WIDE_INT prod[4 * 2];
344 unsigned HOST_WIDE_INT carry;
345 int i, j, k;
346 unsigned HOST_WIDE_INT toplow, neglow;
347 HOST_WIDE_INT tophigh, neghigh;
349 encode (arg1, l1, h1);
350 encode (arg2, l2, h2);
352 memset (prod, 0, sizeof prod);
354 for (i = 0; i < 4; i++)
356 carry = 0;
357 for (j = 0; j < 4; j++)
359 k = i + j;
360 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
361 carry += arg1[i] * arg2[j];
362 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
363 carry += prod[k];
364 prod[k] = LOWPART (carry);
365 carry = HIGHPART (carry);
367 prod[i + 4] = carry;
370 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
372 /* Check for overflow by calculating the top half of the answer in full;
373 it should agree with the low half's sign bit. */
374 decode (prod + 4, &toplow, &tophigh);
375 if (h1 < 0)
377 neg_double (l2, h2, &neglow, &neghigh);
378 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
380 if (h2 < 0)
382 neg_double (l1, h1, &neglow, &neghigh);
383 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
385 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
388 /* Shift the doubleword integer in L1, H1 left by COUNT places
389 keeping only PREC bits of result.
390 Shift right if COUNT is negative.
391 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
392 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
394 void
395 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
396 HOST_WIDE_INT count, unsigned int prec,
397 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
399 unsigned HOST_WIDE_INT signmask;
401 if (count < 0)
403 rshift_double (l1, h1, -count, prec, lv, hv, arith);
404 return;
407 if (SHIFT_COUNT_TRUNCATED)
408 count %= prec;
410 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
412 /* Shifting by the host word size is undefined according to the
413 ANSI standard, so we must handle this as a special case. */
414 *hv = 0;
415 *lv = 0;
417 else if (count >= HOST_BITS_PER_WIDE_INT)
419 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
420 *lv = 0;
422 else
424 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
425 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
426 *lv = l1 << count;
429 /* Sign extend all bits that are beyond the precision. */
431 signmask = -((prec > HOST_BITS_PER_WIDE_INT
432 ? ((unsigned HOST_WIDE_INT) *hv
433 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
434 : (*lv >> (prec - 1))) & 1);
436 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
438 else if (prec >= HOST_BITS_PER_WIDE_INT)
440 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
441 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
443 else
445 *hv = signmask;
446 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
447 *lv |= signmask << prec;
451 /* Shift the doubleword integer in L1, H1 right by COUNT places
452 keeping only PREC bits of result. COUNT must be positive.
453 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
454 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
456 void
457 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
458 HOST_WIDE_INT count, unsigned int prec,
459 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
460 int arith)
462 unsigned HOST_WIDE_INT signmask;
464 signmask = (arith
465 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
466 : 0);
468 if (SHIFT_COUNT_TRUNCATED)
469 count %= prec;
471 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
473 /* Shifting by the host word size is undefined according to the
474 ANSI standard, so we must handle this as a special case. */
475 *hv = 0;
476 *lv = 0;
478 else if (count >= HOST_BITS_PER_WIDE_INT)
480 *hv = 0;
481 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
483 else
485 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
486 *lv = ((l1 >> count)
487 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
490 /* Zero / sign extend all bits that are beyond the precision. */
492 if (count >= (HOST_WIDE_INT)prec)
494 *hv = signmask;
495 *lv = signmask;
497 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
499 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
501 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
502 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
504 else
506 *hv = signmask;
507 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
508 *lv |= signmask << (prec - count);
512 /* Rotate the doubleword integer in L1, H1 left by COUNT places
513 keeping only PREC bits of result.
514 Rotate right if COUNT is negative.
515 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
517 void
518 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
519 HOST_WIDE_INT count, unsigned int prec,
520 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
522 unsigned HOST_WIDE_INT s1l, s2l;
523 HOST_WIDE_INT s1h, s2h;
525 count %= prec;
526 if (count < 0)
527 count += prec;
529 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
530 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
531 *lv = s1l | s2l;
532 *hv = s1h | s2h;
535 /* Rotate the doubleword integer in L1, H1 left by COUNT places
536 keeping only PREC bits of result. COUNT must be positive.
537 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
539 void
540 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
541 HOST_WIDE_INT count, unsigned int prec,
542 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
544 unsigned HOST_WIDE_INT s1l, s2l;
545 HOST_WIDE_INT s1h, s2h;
547 count %= prec;
548 if (count < 0)
549 count += prec;
551 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
552 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
553 *lv = s1l | s2l;
554 *hv = s1h | s2h;
557 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
558 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
559 CODE is a tree code for a kind of division, one of
560 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
561 or EXACT_DIV_EXPR
562 It controls how the quotient is rounded to an integer.
563 Return nonzero if the operation overflows.
564 UNS nonzero says do unsigned division. */
567 div_and_round_double (enum tree_code code, int uns,
568 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
569 HOST_WIDE_INT hnum_orig,
570 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
571 HOST_WIDE_INT hden_orig,
572 unsigned HOST_WIDE_INT *lquo,
573 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
574 HOST_WIDE_INT *hrem)
576 int quo_neg = 0;
577 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
578 HOST_WIDE_INT den[4], quo[4];
579 int i, j;
580 unsigned HOST_WIDE_INT work;
581 unsigned HOST_WIDE_INT carry = 0;
582 unsigned HOST_WIDE_INT lnum = lnum_orig;
583 HOST_WIDE_INT hnum = hnum_orig;
584 unsigned HOST_WIDE_INT lden = lden_orig;
585 HOST_WIDE_INT hden = hden_orig;
586 int overflow = 0;
588 if (hden == 0 && lden == 0)
589 overflow = 1, lden = 1;
591 /* Calculate quotient sign and convert operands to unsigned. */
592 if (!uns)
594 if (hnum < 0)
596 quo_neg = ~ quo_neg;
597 /* (minimum integer) / (-1) is the only overflow case. */
598 if (neg_double (lnum, hnum, &lnum, &hnum)
599 && ((HOST_WIDE_INT) lden & hden) == -1)
600 overflow = 1;
602 if (hden < 0)
604 quo_neg = ~ quo_neg;
605 neg_double (lden, hden, &lden, &hden);
609 if (hnum == 0 && hden == 0)
610 { /* single precision */
611 *hquo = *hrem = 0;
612 /* This unsigned division rounds toward zero. */
613 *lquo = lnum / lden;
614 goto finish_up;
617 if (hnum == 0)
618 { /* trivial case: dividend < divisor */
619 /* hden != 0 already checked. */
620 *hquo = *lquo = 0;
621 *hrem = hnum;
622 *lrem = lnum;
623 goto finish_up;
626 memset (quo, 0, sizeof quo);
628 memset (num, 0, sizeof num); /* to zero 9th element */
629 memset (den, 0, sizeof den);
631 encode (num, lnum, hnum);
632 encode (den, lden, hden);
634 /* Special code for when the divisor < BASE. */
635 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
637 /* hnum != 0 already checked. */
638 for (i = 4 - 1; i >= 0; i--)
640 work = num[i] + carry * BASE;
641 quo[i] = work / lden;
642 carry = work % lden;
645 else
647 /* Full double precision division,
648 with thanks to Don Knuth's "Seminumerical Algorithms". */
649 int num_hi_sig, den_hi_sig;
650 unsigned HOST_WIDE_INT quo_est, scale;
652 /* Find the highest nonzero divisor digit. */
653 for (i = 4 - 1;; i--)
654 if (den[i] != 0)
656 den_hi_sig = i;
657 break;
660 /* Insure that the first digit of the divisor is at least BASE/2.
661 This is required by the quotient digit estimation algorithm. */
663 scale = BASE / (den[den_hi_sig] + 1);
664 if (scale > 1)
665 { /* scale divisor and dividend */
666 carry = 0;
667 for (i = 0; i <= 4 - 1; i++)
669 work = (num[i] * scale) + carry;
670 num[i] = LOWPART (work);
671 carry = HIGHPART (work);
674 num[4] = carry;
675 carry = 0;
676 for (i = 0; i <= 4 - 1; i++)
678 work = (den[i] * scale) + carry;
679 den[i] = LOWPART (work);
680 carry = HIGHPART (work);
681 if (den[i] != 0) den_hi_sig = i;
685 num_hi_sig = 4;
687 /* Main loop */
688 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
690 /* Guess the next quotient digit, quo_est, by dividing the first
691 two remaining dividend digits by the high order quotient digit.
692 quo_est is never low and is at most 2 high. */
693 unsigned HOST_WIDE_INT tmp;
695 num_hi_sig = i + den_hi_sig + 1;
696 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
697 if (num[num_hi_sig] != den[den_hi_sig])
698 quo_est = work / den[den_hi_sig];
699 else
700 quo_est = BASE - 1;
702 /* Refine quo_est so it's usually correct, and at most one high. */
703 tmp = work - quo_est * den[den_hi_sig];
704 if (tmp < BASE
705 && (den[den_hi_sig - 1] * quo_est
706 > (tmp * BASE + num[num_hi_sig - 2])))
707 quo_est--;
709 /* Try QUO_EST as the quotient digit, by multiplying the
710 divisor by QUO_EST and subtracting from the remaining dividend.
711 Keep in mind that QUO_EST is the I - 1st digit. */
713 carry = 0;
714 for (j = 0; j <= den_hi_sig; j++)
716 work = quo_est * den[j] + carry;
717 carry = HIGHPART (work);
718 work = num[i + j] - LOWPART (work);
719 num[i + j] = LOWPART (work);
720 carry += HIGHPART (work) != 0;
723 /* If quo_est was high by one, then num[i] went negative and
724 we need to correct things. */
725 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
727 quo_est--;
728 carry = 0; /* add divisor back in */
729 for (j = 0; j <= den_hi_sig; j++)
731 work = num[i + j] + den[j] + carry;
732 carry = HIGHPART (work);
733 num[i + j] = LOWPART (work);
736 num [num_hi_sig] += carry;
739 /* Store the quotient digit. */
740 quo[i] = quo_est;
744 decode (quo, lquo, hquo);
746 finish_up:
747 /* If result is negative, make it so. */
748 if (quo_neg)
749 neg_double (*lquo, *hquo, lquo, hquo);
751 /* Compute trial remainder: rem = num - (quo * den) */
752 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
753 neg_double (*lrem, *hrem, lrem, hrem);
754 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
756 switch (code)
758 case TRUNC_DIV_EXPR:
759 case TRUNC_MOD_EXPR: /* round toward zero */
760 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
761 return overflow;
763 case FLOOR_DIV_EXPR:
764 case FLOOR_MOD_EXPR: /* round toward negative infinity */
765 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
767 /* quo = quo - 1; */
768 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
769 lquo, hquo);
771 else
772 return overflow;
773 break;
775 case CEIL_DIV_EXPR:
776 case CEIL_MOD_EXPR: /* round toward positive infinity */
777 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
779 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
780 lquo, hquo);
782 else
783 return overflow;
784 break;
786 case ROUND_DIV_EXPR:
787 case ROUND_MOD_EXPR: /* round to closest integer */
789 unsigned HOST_WIDE_INT labs_rem = *lrem;
790 HOST_WIDE_INT habs_rem = *hrem;
791 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
792 HOST_WIDE_INT habs_den = hden, htwice;
794 /* Get absolute values. */
795 if (*hrem < 0)
796 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
797 if (hden < 0)
798 neg_double (lden, hden, &labs_den, &habs_den);
800 /* If (2 * abs (lrem) >= abs (lden)) */
801 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
802 labs_rem, habs_rem, &ltwice, &htwice);
804 if (((unsigned HOST_WIDE_INT) habs_den
805 < (unsigned HOST_WIDE_INT) htwice)
806 || (((unsigned HOST_WIDE_INT) habs_den
807 == (unsigned HOST_WIDE_INT) htwice)
808 && (labs_den < ltwice)))
810 if (*hquo < 0)
811 /* quo = quo - 1; */
812 add_double (*lquo, *hquo,
813 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
814 else
815 /* quo = quo + 1; */
816 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
817 lquo, hquo);
819 else
820 return overflow;
822 break;
824 default:
825 gcc_unreachable ();
828 /* Compute true remainder: rem = num - (quo * den) */
829 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
830 neg_double (*lrem, *hrem, lrem, hrem);
831 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
832 return overflow;
835 /* Return true if built-in mathematical function specified by CODE
836 preserves the sign of it argument, i.e. -f(x) == f(-x). */
838 static bool
839 negate_mathfn_p (enum built_in_function code)
841 switch (code)
843 case BUILT_IN_ASIN:
844 case BUILT_IN_ASINF:
845 case BUILT_IN_ASINL:
846 case BUILT_IN_ATAN:
847 case BUILT_IN_ATANF:
848 case BUILT_IN_ATANL:
849 case BUILT_IN_SIN:
850 case BUILT_IN_SINF:
851 case BUILT_IN_SINL:
852 case BUILT_IN_TAN:
853 case BUILT_IN_TANF:
854 case BUILT_IN_TANL:
855 return true;
857 default:
858 break;
860 return false;
863 /* Check whether we may negate an integer constant T without causing
864 overflow. */
866 bool
867 may_negate_without_overflow_p (tree t)
869 unsigned HOST_WIDE_INT val;
870 unsigned int prec;
871 tree type;
873 gcc_assert (TREE_CODE (t) == INTEGER_CST);
875 type = TREE_TYPE (t);
876 if (TYPE_UNSIGNED (type))
877 return false;
879 prec = TYPE_PRECISION (type);
880 if (prec > HOST_BITS_PER_WIDE_INT)
882 if (TREE_INT_CST_LOW (t) != 0)
883 return true;
884 prec -= HOST_BITS_PER_WIDE_INT;
885 val = TREE_INT_CST_HIGH (t);
887 else
888 val = TREE_INT_CST_LOW (t);
889 if (prec < HOST_BITS_PER_WIDE_INT)
890 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
891 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
894 /* Determine whether an expression T can be cheaply negated using
895 the function negate_expr. */
897 static bool
898 negate_expr_p (tree t)
900 tree type;
902 if (t == 0)
903 return false;
905 type = TREE_TYPE (t);
907 STRIP_SIGN_NOPS (t);
908 switch (TREE_CODE (t))
910 case INTEGER_CST:
911 if (TYPE_UNSIGNED (type) || ! flag_trapv)
912 return true;
914 /* Check that -CST will not overflow type. */
915 return may_negate_without_overflow_p (t);
917 case REAL_CST:
918 case NEGATE_EXPR:
919 return true;
921 case COMPLEX_CST:
922 return negate_expr_p (TREE_REALPART (t))
923 && negate_expr_p (TREE_IMAGPART (t));
925 case PLUS_EXPR:
926 if (FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
927 return false;
928 /* -(A + B) -> (-B) - A. */
929 if (negate_expr_p (TREE_OPERAND (t, 1))
930 && reorder_operands_p (TREE_OPERAND (t, 0),
931 TREE_OPERAND (t, 1)))
932 return true;
933 /* -(A + B) -> (-A) - B. */
934 return negate_expr_p (TREE_OPERAND (t, 0));
936 case MINUS_EXPR:
937 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
938 return (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
939 && reorder_operands_p (TREE_OPERAND (t, 0),
940 TREE_OPERAND (t, 1));
942 case MULT_EXPR:
943 if (TYPE_UNSIGNED (TREE_TYPE (t)))
944 break;
946 /* Fall through. */
948 case RDIV_EXPR:
949 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
950 return negate_expr_p (TREE_OPERAND (t, 1))
951 || negate_expr_p (TREE_OPERAND (t, 0));
952 break;
954 case NOP_EXPR:
955 /* Negate -((double)float) as (double)(-float). */
956 if (TREE_CODE (type) == REAL_TYPE)
958 tree tem = strip_float_extensions (t);
959 if (tem != t)
960 return negate_expr_p (tem);
962 break;
964 case CALL_EXPR:
965 /* Negate -f(x) as f(-x). */
966 if (negate_mathfn_p (builtin_mathfn_code (t)))
967 return negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1)));
968 break;
970 case RSHIFT_EXPR:
971 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
972 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
974 tree op1 = TREE_OPERAND (t, 1);
975 if (TREE_INT_CST_HIGH (op1) == 0
976 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
977 == TREE_INT_CST_LOW (op1))
978 return true;
980 break;
982 default:
983 break;
985 return false;
988 /* Given T, an expression, return the negation of T. Allow for T to be
989 null, in which case return null. */
991 static tree
992 negate_expr (tree t)
994 tree type;
995 tree tem;
997 if (t == 0)
998 return 0;
1000 type = TREE_TYPE (t);
1001 STRIP_SIGN_NOPS (t);
1003 switch (TREE_CODE (t))
1005 case INTEGER_CST:
1006 tem = fold_negate_const (t, type);
1007 if (! TREE_OVERFLOW (tem)
1008 || TYPE_UNSIGNED (type)
1009 || ! flag_trapv)
1010 return tem;
1011 break;
1013 case REAL_CST:
1014 tem = fold_negate_const (t, type);
1015 /* Two's complement FP formats, such as c4x, may overflow. */
1016 if (! TREE_OVERFLOW (tem) || ! flag_trapping_math)
1017 return fold_convert (type, tem);
1018 break;
1020 case COMPLEX_CST:
1022 tree rpart = negate_expr (TREE_REALPART (t));
1023 tree ipart = negate_expr (TREE_IMAGPART (t));
1025 if ((TREE_CODE (rpart) == REAL_CST
1026 && TREE_CODE (ipart) == REAL_CST)
1027 || (TREE_CODE (rpart) == INTEGER_CST
1028 && TREE_CODE (ipart) == INTEGER_CST))
1029 return build_complex (type, rpart, ipart);
1031 break;
1033 case NEGATE_EXPR:
1034 return fold_convert (type, TREE_OPERAND (t, 0));
1036 case PLUS_EXPR:
1037 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1039 /* -(A + B) -> (-B) - A. */
1040 if (negate_expr_p (TREE_OPERAND (t, 1))
1041 && reorder_operands_p (TREE_OPERAND (t, 0),
1042 TREE_OPERAND (t, 1)))
1044 tem = negate_expr (TREE_OPERAND (t, 1));
1045 tem = fold_build2 (MINUS_EXPR, TREE_TYPE (t),
1046 tem, TREE_OPERAND (t, 0));
1047 return fold_convert (type, tem);
1050 /* -(A + B) -> (-A) - B. */
1051 if (negate_expr_p (TREE_OPERAND (t, 0)))
1053 tem = negate_expr (TREE_OPERAND (t, 0));
1054 tem = fold_build2 (MINUS_EXPR, TREE_TYPE (t),
1055 tem, TREE_OPERAND (t, 1));
1056 return fold_convert (type, tem);
1059 break;
1061 case MINUS_EXPR:
1062 /* - (A - B) -> B - A */
1063 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1064 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1065 return fold_convert (type,
1066 fold_build2 (MINUS_EXPR, TREE_TYPE (t),
1067 TREE_OPERAND (t, 1),
1068 TREE_OPERAND (t, 0)));
1069 break;
1071 case MULT_EXPR:
1072 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1073 break;
1075 /* Fall through. */
1077 case RDIV_EXPR:
1078 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1080 tem = TREE_OPERAND (t, 1);
1081 if (negate_expr_p (tem))
1082 return fold_convert (type,
1083 fold_build2 (TREE_CODE (t), TREE_TYPE (t),
1084 TREE_OPERAND (t, 0),
1085 negate_expr (tem)));
1086 tem = TREE_OPERAND (t, 0);
1087 if (negate_expr_p (tem))
1088 return fold_convert (type,
1089 fold_build2 (TREE_CODE (t), TREE_TYPE (t),
1090 negate_expr (tem),
1091 TREE_OPERAND (t, 1)));
1093 break;
1095 case NOP_EXPR:
1096 /* Convert -((double)float) into (double)(-float). */
1097 if (TREE_CODE (type) == REAL_TYPE)
1099 tem = strip_float_extensions (t);
1100 if (tem != t && negate_expr_p (tem))
1101 return fold_convert (type, negate_expr (tem));
1103 break;
1105 case CALL_EXPR:
1106 /* Negate -f(x) as f(-x). */
1107 if (negate_mathfn_p (builtin_mathfn_code (t))
1108 && negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1))))
1110 tree fndecl, arg, arglist;
1112 fndecl = get_callee_fndecl (t);
1113 arg = negate_expr (TREE_VALUE (TREE_OPERAND (t, 1)));
1114 arglist = build_tree_list (NULL_TREE, arg);
1115 return build_function_call_expr (fndecl, arglist);
1117 break;
1119 case RSHIFT_EXPR:
1120 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1121 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1123 tree op1 = TREE_OPERAND (t, 1);
1124 if (TREE_INT_CST_HIGH (op1) == 0
1125 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1126 == TREE_INT_CST_LOW (op1))
1128 tree ntype = TYPE_UNSIGNED (type)
1129 ? lang_hooks.types.signed_type (type)
1130 : lang_hooks.types.unsigned_type (type);
1131 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1132 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1133 return fold_convert (type, temp);
1136 break;
1138 default:
1139 break;
1142 tem = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1143 return fold_convert (type, tem);
1146 /* Split a tree IN into a constant, literal and variable parts that could be
1147 combined with CODE to make IN. "constant" means an expression with
1148 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1149 commutative arithmetic operation. Store the constant part into *CONP,
1150 the literal in *LITP and return the variable part. If a part isn't
1151 present, set it to null. If the tree does not decompose in this way,
1152 return the entire tree as the variable part and the other parts as null.
1154 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1155 case, we negate an operand that was subtracted. Except if it is a
1156 literal for which we use *MINUS_LITP instead.
1158 If NEGATE_P is true, we are negating all of IN, again except a literal
1159 for which we use *MINUS_LITP instead.
1161 If IN is itself a literal or constant, return it as appropriate.
1163 Note that we do not guarantee that any of the three values will be the
1164 same type as IN, but they will have the same signedness and mode. */
1166 static tree
1167 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1168 tree *minus_litp, int negate_p)
1170 tree var = 0;
1172 *conp = 0;
1173 *litp = 0;
1174 *minus_litp = 0;
1176 /* Strip any conversions that don't change the machine mode or signedness. */
1177 STRIP_SIGN_NOPS (in);
1179 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
1180 *litp = in;
1181 else if (TREE_CODE (in) == code
1182 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1183 /* We can associate addition and subtraction together (even
1184 though the C standard doesn't say so) for integers because
1185 the value is not affected. For reals, the value might be
1186 affected, so we can't. */
1187 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1188 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1190 tree op0 = TREE_OPERAND (in, 0);
1191 tree op1 = TREE_OPERAND (in, 1);
1192 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1193 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1195 /* First see if either of the operands is a literal, then a constant. */
1196 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
1197 *litp = op0, op0 = 0;
1198 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
1199 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1201 if (op0 != 0 && TREE_CONSTANT (op0))
1202 *conp = op0, op0 = 0;
1203 else if (op1 != 0 && TREE_CONSTANT (op1))
1204 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1206 /* If we haven't dealt with either operand, this is not a case we can
1207 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1208 if (op0 != 0 && op1 != 0)
1209 var = in;
1210 else if (op0 != 0)
1211 var = op0;
1212 else
1213 var = op1, neg_var_p = neg1_p;
1215 /* Now do any needed negations. */
1216 if (neg_litp_p)
1217 *minus_litp = *litp, *litp = 0;
1218 if (neg_conp_p)
1219 *conp = negate_expr (*conp);
1220 if (neg_var_p)
1221 var = negate_expr (var);
1223 else if (TREE_CONSTANT (in))
1224 *conp = in;
1225 else
1226 var = in;
1228 if (negate_p)
1230 if (*litp)
1231 *minus_litp = *litp, *litp = 0;
1232 else if (*minus_litp)
1233 *litp = *minus_litp, *minus_litp = 0;
1234 *conp = negate_expr (*conp);
1235 var = negate_expr (var);
1238 return var;
1241 /* Re-associate trees split by the above function. T1 and T2 are either
1242 expressions to associate or null. Return the new expression, if any. If
1243 we build an operation, do it in TYPE and with CODE. */
1245 static tree
1246 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1248 if (t1 == 0)
1249 return t2;
1250 else if (t2 == 0)
1251 return t1;
1253 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1254 try to fold this since we will have infinite recursion. But do
1255 deal with any NEGATE_EXPRs. */
1256 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1257 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1259 if (code == PLUS_EXPR)
1261 if (TREE_CODE (t1) == NEGATE_EXPR)
1262 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1263 fold_convert (type, TREE_OPERAND (t1, 0)));
1264 else if (TREE_CODE (t2) == NEGATE_EXPR)
1265 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1266 fold_convert (type, TREE_OPERAND (t2, 0)));
1267 else if (integer_zerop (t2))
1268 return fold_convert (type, t1);
1270 else if (code == MINUS_EXPR)
1272 if (integer_zerop (t2))
1273 return fold_convert (type, t1);
1276 return build2 (code, type, fold_convert (type, t1),
1277 fold_convert (type, t2));
1280 return fold_build2 (code, type, fold_convert (type, t1),
1281 fold_convert (type, t2));
1284 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1285 to produce a new constant.
1287 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1289 tree
1290 int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1292 unsigned HOST_WIDE_INT int1l, int2l;
1293 HOST_WIDE_INT int1h, int2h;
1294 unsigned HOST_WIDE_INT low;
1295 HOST_WIDE_INT hi;
1296 unsigned HOST_WIDE_INT garbagel;
1297 HOST_WIDE_INT garbageh;
1298 tree t;
1299 tree type = TREE_TYPE (arg1);
1300 int uns = TYPE_UNSIGNED (type);
1301 int is_sizetype
1302 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1303 int overflow = 0;
1305 int1l = TREE_INT_CST_LOW (arg1);
1306 int1h = TREE_INT_CST_HIGH (arg1);
1307 int2l = TREE_INT_CST_LOW (arg2);
1308 int2h = TREE_INT_CST_HIGH (arg2);
1310 switch (code)
1312 case BIT_IOR_EXPR:
1313 low = int1l | int2l, hi = int1h | int2h;
1314 break;
1316 case BIT_XOR_EXPR:
1317 low = int1l ^ int2l, hi = int1h ^ int2h;
1318 break;
1320 case BIT_AND_EXPR:
1321 low = int1l & int2l, hi = int1h & int2h;
1322 break;
1324 case RSHIFT_EXPR:
1325 int2l = -int2l;
1326 case LSHIFT_EXPR:
1327 /* It's unclear from the C standard whether shifts can overflow.
1328 The following code ignores overflow; perhaps a C standard
1329 interpretation ruling is needed. */
1330 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1331 &low, &hi, !uns);
1332 break;
1334 case RROTATE_EXPR:
1335 int2l = - int2l;
1336 case LROTATE_EXPR:
1337 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1338 &low, &hi);
1339 break;
1341 case PLUS_EXPR:
1342 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1343 break;
1345 case MINUS_EXPR:
1346 neg_double (int2l, int2h, &low, &hi);
1347 add_double (int1l, int1h, low, hi, &low, &hi);
1348 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1349 break;
1351 case MULT_EXPR:
1352 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1353 break;
1355 case TRUNC_DIV_EXPR:
1356 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1357 case EXACT_DIV_EXPR:
1358 /* This is a shortcut for a common special case. */
1359 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1360 && ! TREE_CONSTANT_OVERFLOW (arg1)
1361 && ! TREE_CONSTANT_OVERFLOW (arg2)
1362 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1364 if (code == CEIL_DIV_EXPR)
1365 int1l += int2l - 1;
1367 low = int1l / int2l, hi = 0;
1368 break;
1371 /* ... fall through ... */
1373 case ROUND_DIV_EXPR:
1374 if (int2h == 0 && int2l == 1)
1376 low = int1l, hi = int1h;
1377 break;
1379 if (int1l == int2l && int1h == int2h
1380 && ! (int1l == 0 && int1h == 0))
1382 low = 1, hi = 0;
1383 break;
1385 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1386 &low, &hi, &garbagel, &garbageh);
1387 break;
1389 case TRUNC_MOD_EXPR:
1390 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1391 /* This is a shortcut for a common special case. */
1392 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1393 && ! TREE_CONSTANT_OVERFLOW (arg1)
1394 && ! TREE_CONSTANT_OVERFLOW (arg2)
1395 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1397 if (code == CEIL_MOD_EXPR)
1398 int1l += int2l - 1;
1399 low = int1l % int2l, hi = 0;
1400 break;
1403 /* ... fall through ... */
1405 case ROUND_MOD_EXPR:
1406 overflow = div_and_round_double (code, uns,
1407 int1l, int1h, int2l, int2h,
1408 &garbagel, &garbageh, &low, &hi);
1409 break;
1411 case MIN_EXPR:
1412 case MAX_EXPR:
1413 if (uns)
1414 low = (((unsigned HOST_WIDE_INT) int1h
1415 < (unsigned HOST_WIDE_INT) int2h)
1416 || (((unsigned HOST_WIDE_INT) int1h
1417 == (unsigned HOST_WIDE_INT) int2h)
1418 && int1l < int2l));
1419 else
1420 low = (int1h < int2h
1421 || (int1h == int2h && int1l < int2l));
1423 if (low == (code == MIN_EXPR))
1424 low = int1l, hi = int1h;
1425 else
1426 low = int2l, hi = int2h;
1427 break;
1429 default:
1430 gcc_unreachable ();
1433 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1435 if (notrunc)
1437 /* Propagate overflow flags ourselves. */
1438 if (((!uns || is_sizetype) && overflow)
1439 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1441 t = copy_node (t);
1442 TREE_OVERFLOW (t) = 1;
1443 TREE_CONSTANT_OVERFLOW (t) = 1;
1445 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1447 t = copy_node (t);
1448 TREE_CONSTANT_OVERFLOW (t) = 1;
1451 else
1452 t = force_fit_type (t, 1,
1453 ((!uns || is_sizetype) && overflow)
1454 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2),
1455 TREE_CONSTANT_OVERFLOW (arg1)
1456 | TREE_CONSTANT_OVERFLOW (arg2));
1458 return t;
1461 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1462 constant. We assume ARG1 and ARG2 have the same data type, or at least
1463 are the same kind of constant and the same machine mode.
1465 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1467 static tree
1468 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1470 STRIP_NOPS (arg1);
1471 STRIP_NOPS (arg2);
1473 if (TREE_CODE (arg1) == INTEGER_CST)
1474 return int_const_binop (code, arg1, arg2, notrunc);
1476 if (TREE_CODE (arg1) == REAL_CST)
1478 enum machine_mode mode;
1479 REAL_VALUE_TYPE d1;
1480 REAL_VALUE_TYPE d2;
1481 REAL_VALUE_TYPE value;
1482 REAL_VALUE_TYPE result;
1483 bool inexact;
1484 tree t, type;
1486 d1 = TREE_REAL_CST (arg1);
1487 d2 = TREE_REAL_CST (arg2);
1489 type = TREE_TYPE (arg1);
1490 mode = TYPE_MODE (type);
1492 /* Don't perform operation if we honor signaling NaNs and
1493 either operand is a NaN. */
1494 if (HONOR_SNANS (mode)
1495 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1496 return NULL_TREE;
1498 /* Don't perform operation if it would raise a division
1499 by zero exception. */
1500 if (code == RDIV_EXPR
1501 && REAL_VALUES_EQUAL (d2, dconst0)
1502 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1503 return NULL_TREE;
1505 /* If either operand is a NaN, just return it. Otherwise, set up
1506 for floating-point trap; we return an overflow. */
1507 if (REAL_VALUE_ISNAN (d1))
1508 return arg1;
1509 else if (REAL_VALUE_ISNAN (d2))
1510 return arg2;
1512 inexact = real_arithmetic (&value, code, &d1, &d2);
1513 real_convert (&result, mode, &value);
1515 /* Don't constant fold this floating point operation if the
1516 result may dependent upon the run-time rounding mode and
1517 flag_rounding_math is set, or if GCC's software emulation
1518 is unable to accurately represent the result. */
1520 if ((flag_rounding_math
1521 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
1522 && !flag_unsafe_math_optimizations))
1523 && (inexact || !real_identical (&result, &value)))
1524 return NULL_TREE;
1526 t = build_real (type, result);
1528 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1529 TREE_CONSTANT_OVERFLOW (t)
1530 = TREE_OVERFLOW (t)
1531 | TREE_CONSTANT_OVERFLOW (arg1)
1532 | TREE_CONSTANT_OVERFLOW (arg2);
1533 return t;
1535 if (TREE_CODE (arg1) == COMPLEX_CST)
1537 tree type = TREE_TYPE (arg1);
1538 tree r1 = TREE_REALPART (arg1);
1539 tree i1 = TREE_IMAGPART (arg1);
1540 tree r2 = TREE_REALPART (arg2);
1541 tree i2 = TREE_IMAGPART (arg2);
1542 tree t;
1544 switch (code)
1546 case PLUS_EXPR:
1547 t = build_complex (type,
1548 const_binop (PLUS_EXPR, r1, r2, notrunc),
1549 const_binop (PLUS_EXPR, i1, i2, notrunc));
1550 break;
1552 case MINUS_EXPR:
1553 t = build_complex (type,
1554 const_binop (MINUS_EXPR, r1, r2, notrunc),
1555 const_binop (MINUS_EXPR, i1, i2, notrunc));
1556 break;
1558 case MULT_EXPR:
1559 t = build_complex (type,
1560 const_binop (MINUS_EXPR,
1561 const_binop (MULT_EXPR,
1562 r1, r2, notrunc),
1563 const_binop (MULT_EXPR,
1564 i1, i2, notrunc),
1565 notrunc),
1566 const_binop (PLUS_EXPR,
1567 const_binop (MULT_EXPR,
1568 r1, i2, notrunc),
1569 const_binop (MULT_EXPR,
1570 i1, r2, notrunc),
1571 notrunc));
1572 break;
1574 case RDIV_EXPR:
1576 tree magsquared
1577 = const_binop (PLUS_EXPR,
1578 const_binop (MULT_EXPR, r2, r2, notrunc),
1579 const_binop (MULT_EXPR, i2, i2, notrunc),
1580 notrunc);
1582 t = build_complex (type,
1583 const_binop
1584 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1585 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1586 const_binop (PLUS_EXPR,
1587 const_binop (MULT_EXPR, r1, r2,
1588 notrunc),
1589 const_binop (MULT_EXPR, i1, i2,
1590 notrunc),
1591 notrunc),
1592 magsquared, notrunc),
1593 const_binop
1594 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1595 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1596 const_binop (MINUS_EXPR,
1597 const_binop (MULT_EXPR, i1, r2,
1598 notrunc),
1599 const_binop (MULT_EXPR, r1, i2,
1600 notrunc),
1601 notrunc),
1602 magsquared, notrunc));
1604 break;
1606 default:
1607 gcc_unreachable ();
1609 return t;
1611 return 0;
1614 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1615 indicates which particular sizetype to create. */
1617 tree
1618 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1620 return build_int_cst (sizetype_tab[(int) kind], number);
1623 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1624 is a tree code. The type of the result is taken from the operands.
1625 Both must be the same type integer type and it must be a size type.
1626 If the operands are constant, so is the result. */
1628 tree
1629 size_binop (enum tree_code code, tree arg0, tree arg1)
1631 tree type = TREE_TYPE (arg0);
1633 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1634 && type == TREE_TYPE (arg1));
1636 /* Handle the special case of two integer constants faster. */
1637 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1639 /* And some specific cases even faster than that. */
1640 if (code == PLUS_EXPR && integer_zerop (arg0))
1641 return arg1;
1642 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1643 && integer_zerop (arg1))
1644 return arg0;
1645 else if (code == MULT_EXPR && integer_onep (arg0))
1646 return arg1;
1648 /* Handle general case of two integer constants. */
1649 return int_const_binop (code, arg0, arg1, 0);
1652 if (arg0 == error_mark_node || arg1 == error_mark_node)
1653 return error_mark_node;
1655 return fold_build2 (code, type, arg0, arg1);
1658 /* Given two values, either both of sizetype or both of bitsizetype,
1659 compute the difference between the two values. Return the value
1660 in signed type corresponding to the type of the operands. */
1662 tree
1663 size_diffop (tree arg0, tree arg1)
1665 tree type = TREE_TYPE (arg0);
1666 tree ctype;
1668 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1669 && type == TREE_TYPE (arg1));
1671 /* If the type is already signed, just do the simple thing. */
1672 if (!TYPE_UNSIGNED (type))
1673 return size_binop (MINUS_EXPR, arg0, arg1);
1675 ctype = type == bitsizetype ? sbitsizetype : ssizetype;
1677 /* If either operand is not a constant, do the conversions to the signed
1678 type and subtract. The hardware will do the right thing with any
1679 overflow in the subtraction. */
1680 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1681 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
1682 fold_convert (ctype, arg1));
1684 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1685 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1686 overflow) and negate (which can't either). Special-case a result
1687 of zero while we're here. */
1688 if (tree_int_cst_equal (arg0, arg1))
1689 return fold_convert (ctype, integer_zero_node);
1690 else if (tree_int_cst_lt (arg1, arg0))
1691 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1692 else
1693 return size_binop (MINUS_EXPR, fold_convert (ctype, integer_zero_node),
1694 fold_convert (ctype, size_binop (MINUS_EXPR,
1695 arg1, arg0)));
1698 /* A subroutine of fold_convert_const handling conversions of an
1699 INTEGER_CST to another integer type. */
1701 static tree
1702 fold_convert_const_int_from_int (tree type, tree arg1)
1704 tree t;
1706 /* Given an integer constant, make new constant with new type,
1707 appropriately sign-extended or truncated. */
1708 t = build_int_cst_wide (type, TREE_INT_CST_LOW (arg1),
1709 TREE_INT_CST_HIGH (arg1));
1711 t = force_fit_type (t,
1712 /* Don't set the overflow when
1713 converting a pointer */
1714 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1715 (TREE_INT_CST_HIGH (arg1) < 0
1716 && (TYPE_UNSIGNED (type)
1717 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1718 | TREE_OVERFLOW (arg1),
1719 TREE_CONSTANT_OVERFLOW (arg1));
1721 return t;
1724 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1725 to an integer type. */
1727 static tree
1728 fold_convert_const_int_from_real (enum tree_code code, tree type, tree arg1)
1730 int overflow = 0;
1731 tree t;
1733 /* The following code implements the floating point to integer
1734 conversion rules required by the Java Language Specification,
1735 that IEEE NaNs are mapped to zero and values that overflow
1736 the target precision saturate, i.e. values greater than
1737 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1738 are mapped to INT_MIN. These semantics are allowed by the
1739 C and C++ standards that simply state that the behavior of
1740 FP-to-integer conversion is unspecified upon overflow. */
1742 HOST_WIDE_INT high, low;
1743 REAL_VALUE_TYPE r;
1744 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1746 switch (code)
1748 case FIX_TRUNC_EXPR:
1749 real_trunc (&r, VOIDmode, &x);
1750 break;
1752 case FIX_CEIL_EXPR:
1753 real_ceil (&r, VOIDmode, &x);
1754 break;
1756 case FIX_FLOOR_EXPR:
1757 real_floor (&r, VOIDmode, &x);
1758 break;
1760 case FIX_ROUND_EXPR:
1761 real_round (&r, VOIDmode, &x);
1762 break;
1764 default:
1765 gcc_unreachable ();
1768 /* If R is NaN, return zero and show we have an overflow. */
1769 if (REAL_VALUE_ISNAN (r))
1771 overflow = 1;
1772 high = 0;
1773 low = 0;
1776 /* See if R is less than the lower bound or greater than the
1777 upper bound. */
1779 if (! overflow)
1781 tree lt = TYPE_MIN_VALUE (type);
1782 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1783 if (REAL_VALUES_LESS (r, l))
1785 overflow = 1;
1786 high = TREE_INT_CST_HIGH (lt);
1787 low = TREE_INT_CST_LOW (lt);
1791 if (! overflow)
1793 tree ut = TYPE_MAX_VALUE (type);
1794 if (ut)
1796 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1797 if (REAL_VALUES_LESS (u, r))
1799 overflow = 1;
1800 high = TREE_INT_CST_HIGH (ut);
1801 low = TREE_INT_CST_LOW (ut);
1806 if (! overflow)
1807 REAL_VALUE_TO_INT (&low, &high, r);
1809 t = build_int_cst_wide (type, low, high);
1811 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg1),
1812 TREE_CONSTANT_OVERFLOW (arg1));
1813 return t;
1816 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1817 to another floating point type. */
1819 static tree
1820 fold_convert_const_real_from_real (tree type, tree arg1)
1822 REAL_VALUE_TYPE value;
1823 tree t;
1825 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1826 t = build_real (type, value);
1828 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1829 TREE_CONSTANT_OVERFLOW (t)
1830 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1831 return t;
1834 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1835 type TYPE. If no simplification can be done return NULL_TREE. */
1837 static tree
1838 fold_convert_const (enum tree_code code, tree type, tree arg1)
1840 if (TREE_TYPE (arg1) == type)
1841 return arg1;
1843 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1845 if (TREE_CODE (arg1) == INTEGER_CST)
1846 return fold_convert_const_int_from_int (type, arg1);
1847 else if (TREE_CODE (arg1) == REAL_CST)
1848 return fold_convert_const_int_from_real (code, type, arg1);
1850 else if (TREE_CODE (type) == REAL_TYPE)
1852 if (TREE_CODE (arg1) == INTEGER_CST)
1853 return build_real_from_int_cst (type, arg1);
1854 if (TREE_CODE (arg1) == REAL_CST)
1855 return fold_convert_const_real_from_real (type, arg1);
1857 return NULL_TREE;
1860 /* Construct a vector of zero elements of vector type TYPE. */
1862 static tree
1863 build_zero_vector (tree type)
1865 tree elem, list;
1866 int i, units;
1868 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1869 units = TYPE_VECTOR_SUBPARTS (type);
1871 list = NULL_TREE;
1872 for (i = 0; i < units; i++)
1873 list = tree_cons (NULL_TREE, elem, list);
1874 return build_vector (type, list);
1877 /* Convert expression ARG to type TYPE. Used by the middle-end for
1878 simple conversions in preference to calling the front-end's convert. */
1880 tree
1881 fold_convert (tree type, tree arg)
1883 tree orig = TREE_TYPE (arg);
1884 tree tem;
1886 if (type == orig)
1887 return arg;
1889 if (TREE_CODE (arg) == ERROR_MARK
1890 || TREE_CODE (type) == ERROR_MARK
1891 || TREE_CODE (orig) == ERROR_MARK)
1892 return error_mark_node;
1894 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
1895 || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
1896 TYPE_MAIN_VARIANT (orig)))
1897 return fold_build1 (NOP_EXPR, type, arg);
1899 switch (TREE_CODE (type))
1901 case INTEGER_TYPE: case CHAR_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1902 case POINTER_TYPE: case REFERENCE_TYPE:
1903 case OFFSET_TYPE:
1904 if (TREE_CODE (arg) == INTEGER_CST)
1906 tem = fold_convert_const (NOP_EXPR, type, arg);
1907 if (tem != NULL_TREE)
1908 return tem;
1910 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1911 || TREE_CODE (orig) == OFFSET_TYPE)
1912 return fold_build1 (NOP_EXPR, type, arg);
1913 if (TREE_CODE (orig) == COMPLEX_TYPE)
1915 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
1916 return fold_convert (type, tem);
1918 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
1919 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1920 return fold_build1 (NOP_EXPR, type, arg);
1922 case REAL_TYPE:
1923 if (TREE_CODE (arg) == INTEGER_CST)
1925 tem = fold_convert_const (FLOAT_EXPR, type, arg);
1926 if (tem != NULL_TREE)
1927 return tem;
1929 else if (TREE_CODE (arg) == REAL_CST)
1931 tem = fold_convert_const (NOP_EXPR, type, arg);
1932 if (tem != NULL_TREE)
1933 return tem;
1936 switch (TREE_CODE (orig))
1938 case INTEGER_TYPE: case CHAR_TYPE:
1939 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1940 case POINTER_TYPE: case REFERENCE_TYPE:
1941 return fold_build1 (FLOAT_EXPR, type, arg);
1943 case REAL_TYPE:
1944 return fold_build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
1945 type, arg);
1947 case COMPLEX_TYPE:
1948 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
1949 return fold_convert (type, tem);
1951 default:
1952 gcc_unreachable ();
1955 case COMPLEX_TYPE:
1956 switch (TREE_CODE (orig))
1958 case INTEGER_TYPE: case CHAR_TYPE:
1959 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1960 case POINTER_TYPE: case REFERENCE_TYPE:
1961 case REAL_TYPE:
1962 return build2 (COMPLEX_EXPR, type,
1963 fold_convert (TREE_TYPE (type), arg),
1964 fold_convert (TREE_TYPE (type), integer_zero_node));
1965 case COMPLEX_TYPE:
1967 tree rpart, ipart;
1969 if (TREE_CODE (arg) == COMPLEX_EXPR)
1971 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
1972 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
1973 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
1976 arg = save_expr (arg);
1977 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
1978 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
1979 rpart = fold_convert (TREE_TYPE (type), rpart);
1980 ipart = fold_convert (TREE_TYPE (type), ipart);
1981 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
1984 default:
1985 gcc_unreachable ();
1988 case VECTOR_TYPE:
1989 if (integer_zerop (arg))
1990 return build_zero_vector (type);
1991 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1992 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1993 || TREE_CODE (orig) == VECTOR_TYPE);
1994 return fold_build1 (NOP_EXPR, type, arg);
1996 case VOID_TYPE:
1997 return fold_build1 (CONVERT_EXPR, type, fold_ignored_result (arg));
1999 default:
2000 gcc_unreachable ();
2004 /* Return false if expr can be assumed not to be an value, true
2005 otherwise. */
2007 static bool
2008 maybe_lvalue_p (tree x)
2010 /* We only need to wrap lvalue tree codes. */
2011 switch (TREE_CODE (x))
2013 case VAR_DECL:
2014 case PARM_DECL:
2015 case RESULT_DECL:
2016 case LABEL_DECL:
2017 case FUNCTION_DECL:
2018 case SSA_NAME:
2020 case COMPONENT_REF:
2021 case INDIRECT_REF:
2022 case ALIGN_INDIRECT_REF:
2023 case MISALIGNED_INDIRECT_REF:
2024 case ARRAY_REF:
2025 case ARRAY_RANGE_REF:
2026 case BIT_FIELD_REF:
2027 case OBJ_TYPE_REF:
2029 case REALPART_EXPR:
2030 case IMAGPART_EXPR:
2031 case PREINCREMENT_EXPR:
2032 case PREDECREMENT_EXPR:
2033 case SAVE_EXPR:
2034 case TRY_CATCH_EXPR:
2035 case WITH_CLEANUP_EXPR:
2036 case COMPOUND_EXPR:
2037 case MODIFY_EXPR:
2038 case TARGET_EXPR:
2039 case COND_EXPR:
2040 case BIND_EXPR:
2041 case MIN_EXPR:
2042 case MAX_EXPR:
2043 break;
2045 default:
2046 /* Assume the worst for front-end tree codes. */
2047 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2048 break;
2049 return false;
2052 return true;
2055 /* Return an expr equal to X but certainly not valid as an lvalue. */
2057 tree
2058 non_lvalue (tree x)
2060 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2061 us. */
2062 if (in_gimple_form)
2063 return x;
2065 if (! maybe_lvalue_p (x))
2066 return x;
2067 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2070 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2071 Zero means allow extended lvalues. */
2073 int pedantic_lvalues;
2075 /* When pedantic, return an expr equal to X but certainly not valid as a
2076 pedantic lvalue. Otherwise, return X. */
2078 static tree
2079 pedantic_non_lvalue (tree x)
2081 if (pedantic_lvalues)
2082 return non_lvalue (x);
2083 else
2084 return x;
2087 /* Given a tree comparison code, return the code that is the logical inverse
2088 of the given code. It is not safe to do this for floating-point
2089 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2090 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2092 static enum tree_code
2093 invert_tree_comparison (enum tree_code code, bool honor_nans)
2095 if (honor_nans && flag_trapping_math)
2096 return ERROR_MARK;
2098 switch (code)
2100 case EQ_EXPR:
2101 return NE_EXPR;
2102 case NE_EXPR:
2103 return EQ_EXPR;
2104 case GT_EXPR:
2105 return honor_nans ? UNLE_EXPR : LE_EXPR;
2106 case GE_EXPR:
2107 return honor_nans ? UNLT_EXPR : LT_EXPR;
2108 case LT_EXPR:
2109 return honor_nans ? UNGE_EXPR : GE_EXPR;
2110 case LE_EXPR:
2111 return honor_nans ? UNGT_EXPR : GT_EXPR;
2112 case LTGT_EXPR:
2113 return UNEQ_EXPR;
2114 case UNEQ_EXPR:
2115 return LTGT_EXPR;
2116 case UNGT_EXPR:
2117 return LE_EXPR;
2118 case UNGE_EXPR:
2119 return LT_EXPR;
2120 case UNLT_EXPR:
2121 return GE_EXPR;
2122 case UNLE_EXPR:
2123 return GT_EXPR;
2124 case ORDERED_EXPR:
2125 return UNORDERED_EXPR;
2126 case UNORDERED_EXPR:
2127 return ORDERED_EXPR;
2128 default:
2129 gcc_unreachable ();
2133 /* Similar, but return the comparison that results if the operands are
2134 swapped. This is safe for floating-point. */
2136 enum tree_code
2137 swap_tree_comparison (enum tree_code code)
2139 switch (code)
2141 case EQ_EXPR:
2142 case NE_EXPR:
2143 return code;
2144 case GT_EXPR:
2145 return LT_EXPR;
2146 case GE_EXPR:
2147 return LE_EXPR;
2148 case LT_EXPR:
2149 return GT_EXPR;
2150 case LE_EXPR:
2151 return GE_EXPR;
2152 default:
2153 gcc_unreachable ();
2158 /* Convert a comparison tree code from an enum tree_code representation
2159 into a compcode bit-based encoding. This function is the inverse of
2160 compcode_to_comparison. */
2162 static enum comparison_code
2163 comparison_to_compcode (enum tree_code code)
2165 switch (code)
2167 case LT_EXPR:
2168 return COMPCODE_LT;
2169 case EQ_EXPR:
2170 return COMPCODE_EQ;
2171 case LE_EXPR:
2172 return COMPCODE_LE;
2173 case GT_EXPR:
2174 return COMPCODE_GT;
2175 case NE_EXPR:
2176 return COMPCODE_NE;
2177 case GE_EXPR:
2178 return COMPCODE_GE;
2179 case ORDERED_EXPR:
2180 return COMPCODE_ORD;
2181 case UNORDERED_EXPR:
2182 return COMPCODE_UNORD;
2183 case UNLT_EXPR:
2184 return COMPCODE_UNLT;
2185 case UNEQ_EXPR:
2186 return COMPCODE_UNEQ;
2187 case UNLE_EXPR:
2188 return COMPCODE_UNLE;
2189 case UNGT_EXPR:
2190 return COMPCODE_UNGT;
2191 case LTGT_EXPR:
2192 return COMPCODE_LTGT;
2193 case UNGE_EXPR:
2194 return COMPCODE_UNGE;
2195 default:
2196 gcc_unreachable ();
2200 /* Convert a compcode bit-based encoding of a comparison operator back
2201 to GCC's enum tree_code representation. This function is the
2202 inverse of comparison_to_compcode. */
2204 static enum tree_code
2205 compcode_to_comparison (enum comparison_code code)
2207 switch (code)
2209 case COMPCODE_LT:
2210 return LT_EXPR;
2211 case COMPCODE_EQ:
2212 return EQ_EXPR;
2213 case COMPCODE_LE:
2214 return LE_EXPR;
2215 case COMPCODE_GT:
2216 return GT_EXPR;
2217 case COMPCODE_NE:
2218 return NE_EXPR;
2219 case COMPCODE_GE:
2220 return GE_EXPR;
2221 case COMPCODE_ORD:
2222 return ORDERED_EXPR;
2223 case COMPCODE_UNORD:
2224 return UNORDERED_EXPR;
2225 case COMPCODE_UNLT:
2226 return UNLT_EXPR;
2227 case COMPCODE_UNEQ:
2228 return UNEQ_EXPR;
2229 case COMPCODE_UNLE:
2230 return UNLE_EXPR;
2231 case COMPCODE_UNGT:
2232 return UNGT_EXPR;
2233 case COMPCODE_LTGT:
2234 return LTGT_EXPR;
2235 case COMPCODE_UNGE:
2236 return UNGE_EXPR;
2237 default:
2238 gcc_unreachable ();
2242 /* Return a tree for the comparison which is the combination of
2243 doing the AND or OR (depending on CODE) of the two operations LCODE
2244 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2245 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2246 if this makes the transformation invalid. */
2248 tree
2249 combine_comparisons (enum tree_code code, enum tree_code lcode,
2250 enum tree_code rcode, tree truth_type,
2251 tree ll_arg, tree lr_arg)
2253 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2254 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2255 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2256 enum comparison_code compcode;
2258 switch (code)
2260 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2261 compcode = lcompcode & rcompcode;
2262 break;
2264 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2265 compcode = lcompcode | rcompcode;
2266 break;
2268 default:
2269 return NULL_TREE;
2272 if (!honor_nans)
2274 /* Eliminate unordered comparisons, as well as LTGT and ORD
2275 which are not used unless the mode has NaNs. */
2276 compcode &= ~COMPCODE_UNORD;
2277 if (compcode == COMPCODE_LTGT)
2278 compcode = COMPCODE_NE;
2279 else if (compcode == COMPCODE_ORD)
2280 compcode = COMPCODE_TRUE;
2282 else if (flag_trapping_math)
2284 /* Check that the original operation and the optimized ones will trap
2285 under the same condition. */
2286 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2287 && (lcompcode != COMPCODE_EQ)
2288 && (lcompcode != COMPCODE_ORD);
2289 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2290 && (rcompcode != COMPCODE_EQ)
2291 && (rcompcode != COMPCODE_ORD);
2292 bool trap = (compcode & COMPCODE_UNORD) == 0
2293 && (compcode != COMPCODE_EQ)
2294 && (compcode != COMPCODE_ORD);
2296 /* In a short-circuited boolean expression the LHS might be
2297 such that the RHS, if evaluated, will never trap. For
2298 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2299 if neither x nor y is NaN. (This is a mixed blessing: for
2300 example, the expression above will never trap, hence
2301 optimizing it to x < y would be invalid). */
2302 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2303 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2304 rtrap = false;
2306 /* If the comparison was short-circuited, and only the RHS
2307 trapped, we may now generate a spurious trap. */
2308 if (rtrap && !ltrap
2309 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2310 return NULL_TREE;
2312 /* If we changed the conditions that cause a trap, we lose. */
2313 if ((ltrap || rtrap) != trap)
2314 return NULL_TREE;
2317 if (compcode == COMPCODE_TRUE)
2318 return constant_boolean_node (true, truth_type);
2319 else if (compcode == COMPCODE_FALSE)
2320 return constant_boolean_node (false, truth_type);
2321 else
2322 return fold_build2 (compcode_to_comparison (compcode),
2323 truth_type, ll_arg, lr_arg);
2326 /* Return nonzero if CODE is a tree code that represents a truth value. */
2328 static int
2329 truth_value_p (enum tree_code code)
2331 return (TREE_CODE_CLASS (code) == tcc_comparison
2332 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2333 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2334 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2337 /* Return nonzero if two operands (typically of the same tree node)
2338 are necessarily equal. If either argument has side-effects this
2339 function returns zero. FLAGS modifies behavior as follows:
2341 If OEP_ONLY_CONST is set, only return nonzero for constants.
2342 This function tests whether the operands are indistinguishable;
2343 it does not test whether they are equal using C's == operation.
2344 The distinction is important for IEEE floating point, because
2345 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2346 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2348 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2349 even though it may hold multiple values during a function.
2350 This is because a GCC tree node guarantees that nothing else is
2351 executed between the evaluation of its "operands" (which may often
2352 be evaluated in arbitrary order). Hence if the operands themselves
2353 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2354 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2355 unset means assuming isochronic (or instantaneous) tree equivalence.
2356 Unless comparing arbitrary expression trees, such as from different
2357 statements, this flag can usually be left unset.
2359 If OEP_PURE_SAME is set, then pure functions with identical arguments
2360 are considered the same. It is used when the caller has other ways
2361 to ensure that global memory is unchanged in between. */
2364 operand_equal_p (tree arg0, tree arg1, unsigned int flags)
2366 /* If either is ERROR_MARK, they aren't equal. */
2367 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
2368 return 0;
2370 /* If both types don't have the same signedness, then we can't consider
2371 them equal. We must check this before the STRIP_NOPS calls
2372 because they may change the signedness of the arguments. */
2373 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2374 return 0;
2376 STRIP_NOPS (arg0);
2377 STRIP_NOPS (arg1);
2379 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2380 /* This is needed for conversions and for COMPONENT_REF.
2381 Might as well play it safe and always test this. */
2382 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2383 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2384 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2385 return 0;
2387 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2388 We don't care about side effects in that case because the SAVE_EXPR
2389 takes care of that for us. In all other cases, two expressions are
2390 equal if they have no side effects. If we have two identical
2391 expressions with side effects that should be treated the same due
2392 to the only side effects being identical SAVE_EXPR's, that will
2393 be detected in the recursive calls below. */
2394 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2395 && (TREE_CODE (arg0) == SAVE_EXPR
2396 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2397 return 1;
2399 /* Next handle constant cases, those for which we can return 1 even
2400 if ONLY_CONST is set. */
2401 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2402 switch (TREE_CODE (arg0))
2404 case INTEGER_CST:
2405 return (! TREE_CONSTANT_OVERFLOW (arg0)
2406 && ! TREE_CONSTANT_OVERFLOW (arg1)
2407 && tree_int_cst_equal (arg0, arg1));
2409 case REAL_CST:
2410 return (! TREE_CONSTANT_OVERFLOW (arg0)
2411 && ! TREE_CONSTANT_OVERFLOW (arg1)
2412 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2413 TREE_REAL_CST (arg1)));
2415 case VECTOR_CST:
2417 tree v1, v2;
2419 if (TREE_CONSTANT_OVERFLOW (arg0)
2420 || TREE_CONSTANT_OVERFLOW (arg1))
2421 return 0;
2423 v1 = TREE_VECTOR_CST_ELTS (arg0);
2424 v2 = TREE_VECTOR_CST_ELTS (arg1);
2425 while (v1 && v2)
2427 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2428 flags))
2429 return 0;
2430 v1 = TREE_CHAIN (v1);
2431 v2 = TREE_CHAIN (v2);
2434 return 1;
2437 case COMPLEX_CST:
2438 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2439 flags)
2440 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2441 flags));
2443 case STRING_CST:
2444 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2445 && ! memcmp (TREE_STRING_POINTER (arg0),
2446 TREE_STRING_POINTER (arg1),
2447 TREE_STRING_LENGTH (arg0)));
2449 case ADDR_EXPR:
2450 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2452 default:
2453 break;
2456 if (flags & OEP_ONLY_CONST)
2457 return 0;
2459 /* Define macros to test an operand from arg0 and arg1 for equality and a
2460 variant that allows null and views null as being different from any
2461 non-null value. In the latter case, if either is null, the both
2462 must be; otherwise, do the normal comparison. */
2463 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2464 TREE_OPERAND (arg1, N), flags)
2466 #define OP_SAME_WITH_NULL(N) \
2467 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2468 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2470 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2472 case tcc_unary:
2473 /* Two conversions are equal only if signedness and modes match. */
2474 switch (TREE_CODE (arg0))
2476 case NOP_EXPR:
2477 case CONVERT_EXPR:
2478 case FIX_CEIL_EXPR:
2479 case FIX_TRUNC_EXPR:
2480 case FIX_FLOOR_EXPR:
2481 case FIX_ROUND_EXPR:
2482 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2483 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2484 return 0;
2485 break;
2486 default:
2487 break;
2490 return OP_SAME (0);
2493 case tcc_comparison:
2494 case tcc_binary:
2495 if (OP_SAME (0) && OP_SAME (1))
2496 return 1;
2498 /* For commutative ops, allow the other order. */
2499 return (commutative_tree_code (TREE_CODE (arg0))
2500 && operand_equal_p (TREE_OPERAND (arg0, 0),
2501 TREE_OPERAND (arg1, 1), flags)
2502 && operand_equal_p (TREE_OPERAND (arg0, 1),
2503 TREE_OPERAND (arg1, 0), flags));
2505 case tcc_reference:
2506 /* If either of the pointer (or reference) expressions we are
2507 dereferencing contain a side effect, these cannot be equal. */
2508 if (TREE_SIDE_EFFECTS (arg0)
2509 || TREE_SIDE_EFFECTS (arg1))
2510 return 0;
2512 switch (TREE_CODE (arg0))
2514 case INDIRECT_REF:
2515 case ALIGN_INDIRECT_REF:
2516 case MISALIGNED_INDIRECT_REF:
2517 case REALPART_EXPR:
2518 case IMAGPART_EXPR:
2519 return OP_SAME (0);
2521 case ARRAY_REF:
2522 case ARRAY_RANGE_REF:
2523 /* Operands 2 and 3 may be null. */
2524 return (OP_SAME (0)
2525 && OP_SAME (1)
2526 && OP_SAME_WITH_NULL (2)
2527 && OP_SAME_WITH_NULL (3));
2529 case COMPONENT_REF:
2530 /* Handle operand 2 the same as for ARRAY_REF. */
2531 return OP_SAME (0) && OP_SAME (1) && OP_SAME_WITH_NULL (2);
2533 case BIT_FIELD_REF:
2534 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2536 default:
2537 return 0;
2540 case tcc_expression:
2541 switch (TREE_CODE (arg0))
2543 case ADDR_EXPR:
2544 case TRUTH_NOT_EXPR:
2545 return OP_SAME (0);
2547 case TRUTH_ANDIF_EXPR:
2548 case TRUTH_ORIF_EXPR:
2549 return OP_SAME (0) && OP_SAME (1);
2551 case TRUTH_AND_EXPR:
2552 case TRUTH_OR_EXPR:
2553 case TRUTH_XOR_EXPR:
2554 if (OP_SAME (0) && OP_SAME (1))
2555 return 1;
2557 /* Otherwise take into account this is a commutative operation. */
2558 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2559 TREE_OPERAND (arg1, 1), flags)
2560 && operand_equal_p (TREE_OPERAND (arg0, 1),
2561 TREE_OPERAND (arg1, 0), flags));
2563 case CALL_EXPR:
2564 /* If the CALL_EXPRs call different functions, then they
2565 clearly can not be equal. */
2566 if (!OP_SAME (0))
2567 return 0;
2570 unsigned int cef = call_expr_flags (arg0);
2571 if (flags & OEP_PURE_SAME)
2572 cef &= ECF_CONST | ECF_PURE;
2573 else
2574 cef &= ECF_CONST;
2575 if (!cef)
2576 return 0;
2579 /* Now see if all the arguments are the same. operand_equal_p
2580 does not handle TREE_LIST, so we walk the operands here
2581 feeding them to operand_equal_p. */
2582 arg0 = TREE_OPERAND (arg0, 1);
2583 arg1 = TREE_OPERAND (arg1, 1);
2584 while (arg0 && arg1)
2586 if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1),
2587 flags))
2588 return 0;
2590 arg0 = TREE_CHAIN (arg0);
2591 arg1 = TREE_CHAIN (arg1);
2594 /* If we get here and both argument lists are exhausted
2595 then the CALL_EXPRs are equal. */
2596 return ! (arg0 || arg1);
2598 default:
2599 return 0;
2602 case tcc_declaration:
2603 /* Consider __builtin_sqrt equal to sqrt. */
2604 return (TREE_CODE (arg0) == FUNCTION_DECL
2605 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2606 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2607 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2609 default:
2610 return 0;
2613 #undef OP_SAME
2614 #undef OP_SAME_WITH_NULL
2617 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2618 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2620 When in doubt, return 0. */
2622 static int
2623 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2625 int unsignedp1, unsignedpo;
2626 tree primarg0, primarg1, primother;
2627 unsigned int correct_width;
2629 if (operand_equal_p (arg0, arg1, 0))
2630 return 1;
2632 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2633 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2634 return 0;
2636 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2637 and see if the inner values are the same. This removes any
2638 signedness comparison, which doesn't matter here. */
2639 primarg0 = arg0, primarg1 = arg1;
2640 STRIP_NOPS (primarg0);
2641 STRIP_NOPS (primarg1);
2642 if (operand_equal_p (primarg0, primarg1, 0))
2643 return 1;
2645 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2646 actual comparison operand, ARG0.
2648 First throw away any conversions to wider types
2649 already present in the operands. */
2651 primarg1 = get_narrower (arg1, &unsignedp1);
2652 primother = get_narrower (other, &unsignedpo);
2654 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2655 if (unsignedp1 == unsignedpo
2656 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2657 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2659 tree type = TREE_TYPE (arg0);
2661 /* Make sure shorter operand is extended the right way
2662 to match the longer operand. */
2663 primarg1 = fold_convert (lang_hooks.types.signed_or_unsigned_type
2664 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2666 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2667 return 1;
2670 return 0;
2673 /* See if ARG is an expression that is either a comparison or is performing
2674 arithmetic on comparisons. The comparisons must only be comparing
2675 two different values, which will be stored in *CVAL1 and *CVAL2; if
2676 they are nonzero it means that some operands have already been found.
2677 No variables may be used anywhere else in the expression except in the
2678 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2679 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2681 If this is true, return 1. Otherwise, return zero. */
2683 static int
2684 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2686 enum tree_code code = TREE_CODE (arg);
2687 enum tree_code_class class = TREE_CODE_CLASS (code);
2689 /* We can handle some of the tcc_expression cases here. */
2690 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2691 class = tcc_unary;
2692 else if (class == tcc_expression
2693 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2694 || code == COMPOUND_EXPR))
2695 class = tcc_binary;
2697 else if (class == tcc_expression && code == SAVE_EXPR
2698 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2700 /* If we've already found a CVAL1 or CVAL2, this expression is
2701 two complex to handle. */
2702 if (*cval1 || *cval2)
2703 return 0;
2705 class = tcc_unary;
2706 *save_p = 1;
2709 switch (class)
2711 case tcc_unary:
2712 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2714 case tcc_binary:
2715 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2716 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2717 cval1, cval2, save_p));
2719 case tcc_constant:
2720 return 1;
2722 case tcc_expression:
2723 if (code == COND_EXPR)
2724 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2725 cval1, cval2, save_p)
2726 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2727 cval1, cval2, save_p)
2728 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2729 cval1, cval2, save_p));
2730 return 0;
2732 case tcc_comparison:
2733 /* First see if we can handle the first operand, then the second. For
2734 the second operand, we know *CVAL1 can't be zero. It must be that
2735 one side of the comparison is each of the values; test for the
2736 case where this isn't true by failing if the two operands
2737 are the same. */
2739 if (operand_equal_p (TREE_OPERAND (arg, 0),
2740 TREE_OPERAND (arg, 1), 0))
2741 return 0;
2743 if (*cval1 == 0)
2744 *cval1 = TREE_OPERAND (arg, 0);
2745 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2747 else if (*cval2 == 0)
2748 *cval2 = TREE_OPERAND (arg, 0);
2749 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2751 else
2752 return 0;
2754 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2756 else if (*cval2 == 0)
2757 *cval2 = TREE_OPERAND (arg, 1);
2758 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2760 else
2761 return 0;
2763 return 1;
2765 default:
2766 return 0;
2770 /* ARG is a tree that is known to contain just arithmetic operations and
2771 comparisons. Evaluate the operations in the tree substituting NEW0 for
2772 any occurrence of OLD0 as an operand of a comparison and likewise for
2773 NEW1 and OLD1. */
2775 static tree
2776 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
2778 tree type = TREE_TYPE (arg);
2779 enum tree_code code = TREE_CODE (arg);
2780 enum tree_code_class class = TREE_CODE_CLASS (code);
2782 /* We can handle some of the tcc_expression cases here. */
2783 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2784 class = tcc_unary;
2785 else if (class == tcc_expression
2786 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2787 class = tcc_binary;
2789 switch (class)
2791 case tcc_unary:
2792 return fold_build1 (code, type,
2793 eval_subst (TREE_OPERAND (arg, 0),
2794 old0, new0, old1, new1));
2796 case tcc_binary:
2797 return fold_build2 (code, type,
2798 eval_subst (TREE_OPERAND (arg, 0),
2799 old0, new0, old1, new1),
2800 eval_subst (TREE_OPERAND (arg, 1),
2801 old0, new0, old1, new1));
2803 case tcc_expression:
2804 switch (code)
2806 case SAVE_EXPR:
2807 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2809 case COMPOUND_EXPR:
2810 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2812 case COND_EXPR:
2813 return fold_build3 (code, type,
2814 eval_subst (TREE_OPERAND (arg, 0),
2815 old0, new0, old1, new1),
2816 eval_subst (TREE_OPERAND (arg, 1),
2817 old0, new0, old1, new1),
2818 eval_subst (TREE_OPERAND (arg, 2),
2819 old0, new0, old1, new1));
2820 default:
2821 break;
2823 /* Fall through - ??? */
2825 case tcc_comparison:
2827 tree arg0 = TREE_OPERAND (arg, 0);
2828 tree arg1 = TREE_OPERAND (arg, 1);
2830 /* We need to check both for exact equality and tree equality. The
2831 former will be true if the operand has a side-effect. In that
2832 case, we know the operand occurred exactly once. */
2834 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2835 arg0 = new0;
2836 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2837 arg0 = new1;
2839 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2840 arg1 = new0;
2841 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2842 arg1 = new1;
2844 return fold_build2 (code, type, arg0, arg1);
2847 default:
2848 return arg;
2852 /* Return a tree for the case when the result of an expression is RESULT
2853 converted to TYPE and OMITTED was previously an operand of the expression
2854 but is now not needed (e.g., we folded OMITTED * 0).
2856 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2857 the conversion of RESULT to TYPE. */
2859 tree
2860 omit_one_operand (tree type, tree result, tree omitted)
2862 tree t = fold_convert (type, result);
2864 if (TREE_SIDE_EFFECTS (omitted))
2865 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
2867 return non_lvalue (t);
2870 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2872 static tree
2873 pedantic_omit_one_operand (tree type, tree result, tree omitted)
2875 tree t = fold_convert (type, result);
2877 if (TREE_SIDE_EFFECTS (omitted))
2878 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
2880 return pedantic_non_lvalue (t);
2883 /* Return a tree for the case when the result of an expression is RESULT
2884 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
2885 of the expression but are now not needed.
2887 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
2888 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
2889 evaluated before OMITTED2. Otherwise, if neither has side effects,
2890 just do the conversion of RESULT to TYPE. */
2892 tree
2893 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
2895 tree t = fold_convert (type, result);
2897 if (TREE_SIDE_EFFECTS (omitted2))
2898 t = build2 (COMPOUND_EXPR, type, omitted2, t);
2899 if (TREE_SIDE_EFFECTS (omitted1))
2900 t = build2 (COMPOUND_EXPR, type, omitted1, t);
2902 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
2906 /* Return a simplified tree node for the truth-negation of ARG. This
2907 never alters ARG itself. We assume that ARG is an operation that
2908 returns a truth value (0 or 1).
2910 FIXME: one would think we would fold the result, but it causes
2911 problems with the dominator optimizer. */
2912 tree
2913 invert_truthvalue (tree arg)
2915 tree type = TREE_TYPE (arg);
2916 enum tree_code code = TREE_CODE (arg);
2918 if (code == ERROR_MARK)
2919 return arg;
2921 /* If this is a comparison, we can simply invert it, except for
2922 floating-point non-equality comparisons, in which case we just
2923 enclose a TRUTH_NOT_EXPR around what we have. */
2925 if (TREE_CODE_CLASS (code) == tcc_comparison)
2927 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
2928 if (FLOAT_TYPE_P (op_type)
2929 && flag_trapping_math
2930 && code != ORDERED_EXPR && code != UNORDERED_EXPR
2931 && code != NE_EXPR && code != EQ_EXPR)
2932 return build1 (TRUTH_NOT_EXPR, type, arg);
2933 else
2935 code = invert_tree_comparison (code,
2936 HONOR_NANS (TYPE_MODE (op_type)));
2937 if (code == ERROR_MARK)
2938 return build1 (TRUTH_NOT_EXPR, type, arg);
2939 else
2940 return build2 (code, type,
2941 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2945 switch (code)
2947 case INTEGER_CST:
2948 return constant_boolean_node (integer_zerop (arg), type);
2950 case TRUTH_AND_EXPR:
2951 return build2 (TRUTH_OR_EXPR, type,
2952 invert_truthvalue (TREE_OPERAND (arg, 0)),
2953 invert_truthvalue (TREE_OPERAND (arg, 1)));
2955 case TRUTH_OR_EXPR:
2956 return build2 (TRUTH_AND_EXPR, type,
2957 invert_truthvalue (TREE_OPERAND (arg, 0)),
2958 invert_truthvalue (TREE_OPERAND (arg, 1)));
2960 case TRUTH_XOR_EXPR:
2961 /* Here we can invert either operand. We invert the first operand
2962 unless the second operand is a TRUTH_NOT_EXPR in which case our
2963 result is the XOR of the first operand with the inside of the
2964 negation of the second operand. */
2966 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2967 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2968 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2969 else
2970 return build2 (TRUTH_XOR_EXPR, type,
2971 invert_truthvalue (TREE_OPERAND (arg, 0)),
2972 TREE_OPERAND (arg, 1));
2974 case TRUTH_ANDIF_EXPR:
2975 return build2 (TRUTH_ORIF_EXPR, type,
2976 invert_truthvalue (TREE_OPERAND (arg, 0)),
2977 invert_truthvalue (TREE_OPERAND (arg, 1)));
2979 case TRUTH_ORIF_EXPR:
2980 return build2 (TRUTH_ANDIF_EXPR, type,
2981 invert_truthvalue (TREE_OPERAND (arg, 0)),
2982 invert_truthvalue (TREE_OPERAND (arg, 1)));
2984 case TRUTH_NOT_EXPR:
2985 return TREE_OPERAND (arg, 0);
2987 case COND_EXPR:
2988 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
2989 invert_truthvalue (TREE_OPERAND (arg, 1)),
2990 invert_truthvalue (TREE_OPERAND (arg, 2)));
2992 case COMPOUND_EXPR:
2993 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2994 invert_truthvalue (TREE_OPERAND (arg, 1)));
2996 case NON_LVALUE_EXPR:
2997 return invert_truthvalue (TREE_OPERAND (arg, 0));
2999 case NOP_EXPR:
3000 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3001 break;
3003 case CONVERT_EXPR:
3004 case FLOAT_EXPR:
3005 return build1 (TREE_CODE (arg), type,
3006 invert_truthvalue (TREE_OPERAND (arg, 0)));
3008 case BIT_AND_EXPR:
3009 if (!integer_onep (TREE_OPERAND (arg, 1)))
3010 break;
3011 return build2 (EQ_EXPR, type, arg,
3012 fold_convert (type, integer_zero_node));
3014 case SAVE_EXPR:
3015 return build1 (TRUTH_NOT_EXPR, type, arg);
3017 case CLEANUP_POINT_EXPR:
3018 return build1 (CLEANUP_POINT_EXPR, type,
3019 invert_truthvalue (TREE_OPERAND (arg, 0)));
3021 default:
3022 break;
3024 gcc_assert (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE);
3025 return build1 (TRUTH_NOT_EXPR, type, arg);
3028 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3029 operands are another bit-wise operation with a common input. If so,
3030 distribute the bit operations to save an operation and possibly two if
3031 constants are involved. For example, convert
3032 (A | B) & (A | C) into A | (B & C)
3033 Further simplification will occur if B and C are constants.
3035 If this optimization cannot be done, 0 will be returned. */
3037 static tree
3038 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3040 tree common;
3041 tree left, right;
3043 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3044 || TREE_CODE (arg0) == code
3045 || (TREE_CODE (arg0) != BIT_AND_EXPR
3046 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3047 return 0;
3049 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3051 common = TREE_OPERAND (arg0, 0);
3052 left = TREE_OPERAND (arg0, 1);
3053 right = TREE_OPERAND (arg1, 1);
3055 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3057 common = TREE_OPERAND (arg0, 0);
3058 left = TREE_OPERAND (arg0, 1);
3059 right = TREE_OPERAND (arg1, 0);
3061 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3063 common = TREE_OPERAND (arg0, 1);
3064 left = TREE_OPERAND (arg0, 0);
3065 right = TREE_OPERAND (arg1, 1);
3067 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3069 common = TREE_OPERAND (arg0, 1);
3070 left = TREE_OPERAND (arg0, 0);
3071 right = TREE_OPERAND (arg1, 0);
3073 else
3074 return 0;
3076 return fold_build2 (TREE_CODE (arg0), type, common,
3077 fold_build2 (code, type, left, right));
3080 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3081 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3083 static tree
3084 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3085 int unsignedp)
3087 tree result;
3089 if (bitpos == 0)
3091 tree size = TYPE_SIZE (TREE_TYPE (inner));
3092 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3093 || POINTER_TYPE_P (TREE_TYPE (inner)))
3094 && host_integerp (size, 0)
3095 && tree_low_cst (size, 0) == bitsize)
3096 return fold_convert (type, inner);
3099 result = build3 (BIT_FIELD_REF, type, inner,
3100 size_int (bitsize), bitsize_int (bitpos));
3102 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3104 return result;
3107 /* Optimize a bit-field compare.
3109 There are two cases: First is a compare against a constant and the
3110 second is a comparison of two items where the fields are at the same
3111 bit position relative to the start of a chunk (byte, halfword, word)
3112 large enough to contain it. In these cases we can avoid the shift
3113 implicit in bitfield extractions.
3115 For constants, we emit a compare of the shifted constant with the
3116 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3117 compared. For two fields at the same position, we do the ANDs with the
3118 similar mask and compare the result of the ANDs.
3120 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3121 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3122 are the left and right operands of the comparison, respectively.
3124 If the optimization described above can be done, we return the resulting
3125 tree. Otherwise we return zero. */
3127 static tree
3128 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3129 tree lhs, tree rhs)
3131 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3132 tree type = TREE_TYPE (lhs);
3133 tree signed_type, unsigned_type;
3134 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3135 enum machine_mode lmode, rmode, nmode;
3136 int lunsignedp, runsignedp;
3137 int lvolatilep = 0, rvolatilep = 0;
3138 tree linner, rinner = NULL_TREE;
3139 tree mask;
3140 tree offset;
3142 /* Get all the information about the extractions being done. If the bit size
3143 if the same as the size of the underlying object, we aren't doing an
3144 extraction at all and so can do nothing. We also don't want to
3145 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3146 then will no longer be able to replace it. */
3147 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3148 &lunsignedp, &lvolatilep, false);
3149 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3150 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3151 return 0;
3153 if (!const_p)
3155 /* If this is not a constant, we can only do something if bit positions,
3156 sizes, and signedness are the same. */
3157 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3158 &runsignedp, &rvolatilep, false);
3160 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3161 || lunsignedp != runsignedp || offset != 0
3162 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3163 return 0;
3166 /* See if we can find a mode to refer to this field. We should be able to,
3167 but fail if we can't. */
3168 nmode = get_best_mode (lbitsize, lbitpos,
3169 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3170 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3171 TYPE_ALIGN (TREE_TYPE (rinner))),
3172 word_mode, lvolatilep || rvolatilep);
3173 if (nmode == VOIDmode)
3174 return 0;
3176 /* Set signed and unsigned types of the precision of this mode for the
3177 shifts below. */
3178 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3179 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3181 /* Compute the bit position and size for the new reference and our offset
3182 within it. If the new reference is the same size as the original, we
3183 won't optimize anything, so return zero. */
3184 nbitsize = GET_MODE_BITSIZE (nmode);
3185 nbitpos = lbitpos & ~ (nbitsize - 1);
3186 lbitpos -= nbitpos;
3187 if (nbitsize == lbitsize)
3188 return 0;
3190 if (BYTES_BIG_ENDIAN)
3191 lbitpos = nbitsize - lbitsize - lbitpos;
3193 /* Make the mask to be used against the extracted field. */
3194 mask = build_int_cst (unsigned_type, -1);
3195 mask = force_fit_type (mask, 0, false, false);
3196 mask = fold_convert (unsigned_type, mask);
3197 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3198 mask = const_binop (RSHIFT_EXPR, mask,
3199 size_int (nbitsize - lbitsize - lbitpos), 0);
3201 if (! const_p)
3202 /* If not comparing with constant, just rework the comparison
3203 and return. */
3204 return build2 (code, compare_type,
3205 build2 (BIT_AND_EXPR, unsigned_type,
3206 make_bit_field_ref (linner, unsigned_type,
3207 nbitsize, nbitpos, 1),
3208 mask),
3209 build2 (BIT_AND_EXPR, unsigned_type,
3210 make_bit_field_ref (rinner, unsigned_type,
3211 nbitsize, nbitpos, 1),
3212 mask));
3214 /* Otherwise, we are handling the constant case. See if the constant is too
3215 big for the field. Warn and return a tree of for 0 (false) if so. We do
3216 this not only for its own sake, but to avoid having to test for this
3217 error case below. If we didn't, we might generate wrong code.
3219 For unsigned fields, the constant shifted right by the field length should
3220 be all zero. For signed fields, the high-order bits should agree with
3221 the sign bit. */
3223 if (lunsignedp)
3225 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3226 fold_convert (unsigned_type, rhs),
3227 size_int (lbitsize), 0)))
3229 warning (0, "comparison is always %d due to width of bit-field",
3230 code == NE_EXPR);
3231 return constant_boolean_node (code == NE_EXPR, compare_type);
3234 else
3236 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3237 size_int (lbitsize - 1), 0);
3238 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3240 warning (0, "comparison is always %d due to width of bit-field",
3241 code == NE_EXPR);
3242 return constant_boolean_node (code == NE_EXPR, compare_type);
3246 /* Single-bit compares should always be against zero. */
3247 if (lbitsize == 1 && ! integer_zerop (rhs))
3249 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3250 rhs = fold_convert (type, integer_zero_node);
3253 /* Make a new bitfield reference, shift the constant over the
3254 appropriate number of bits and mask it with the computed mask
3255 (in case this was a signed field). If we changed it, make a new one. */
3256 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
3257 if (lvolatilep)
3259 TREE_SIDE_EFFECTS (lhs) = 1;
3260 TREE_THIS_VOLATILE (lhs) = 1;
3263 rhs = fold (const_binop (BIT_AND_EXPR,
3264 const_binop (LSHIFT_EXPR,
3265 fold_convert (unsigned_type, rhs),
3266 size_int (lbitpos), 0),
3267 mask, 0));
3269 return build2 (code, compare_type,
3270 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
3271 rhs);
3274 /* Subroutine for fold_truthop: decode a field reference.
3276 If EXP is a comparison reference, we return the innermost reference.
3278 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3279 set to the starting bit number.
3281 If the innermost field can be completely contained in a mode-sized
3282 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3284 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3285 otherwise it is not changed.
3287 *PUNSIGNEDP is set to the signedness of the field.
3289 *PMASK is set to the mask used. This is either contained in a
3290 BIT_AND_EXPR or derived from the width of the field.
3292 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3294 Return 0 if this is not a component reference or is one that we can't
3295 do anything with. */
3297 static tree
3298 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
3299 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3300 int *punsignedp, int *pvolatilep,
3301 tree *pmask, tree *pand_mask)
3303 tree outer_type = 0;
3304 tree and_mask = 0;
3305 tree mask, inner, offset;
3306 tree unsigned_type;
3307 unsigned int precision;
3309 /* All the optimizations using this function assume integer fields.
3310 There are problems with FP fields since the type_for_size call
3311 below can fail for, e.g., XFmode. */
3312 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3313 return 0;
3315 /* We are interested in the bare arrangement of bits, so strip everything
3316 that doesn't affect the machine mode. However, record the type of the
3317 outermost expression if it may matter below. */
3318 if (TREE_CODE (exp) == NOP_EXPR
3319 || TREE_CODE (exp) == CONVERT_EXPR
3320 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3321 outer_type = TREE_TYPE (exp);
3322 STRIP_NOPS (exp);
3324 if (TREE_CODE (exp) == BIT_AND_EXPR)
3326 and_mask = TREE_OPERAND (exp, 1);
3327 exp = TREE_OPERAND (exp, 0);
3328 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3329 if (TREE_CODE (and_mask) != INTEGER_CST)
3330 return 0;
3333 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3334 punsignedp, pvolatilep, false);
3335 if ((inner == exp && and_mask == 0)
3336 || *pbitsize < 0 || offset != 0
3337 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3338 return 0;
3340 /* If the number of bits in the reference is the same as the bitsize of
3341 the outer type, then the outer type gives the signedness. Otherwise
3342 (in case of a small bitfield) the signedness is unchanged. */
3343 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3344 *punsignedp = TYPE_UNSIGNED (outer_type);
3346 /* Compute the mask to access the bitfield. */
3347 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3348 precision = TYPE_PRECISION (unsigned_type);
3350 mask = build_int_cst (unsigned_type, -1);
3351 mask = force_fit_type (mask, 0, false, false);
3353 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3354 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3356 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3357 if (and_mask != 0)
3358 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
3359 fold_convert (unsigned_type, and_mask), mask);
3361 *pmask = mask;
3362 *pand_mask = and_mask;
3363 return inner;
3366 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3367 bit positions. */
3369 static int
3370 all_ones_mask_p (tree mask, int size)
3372 tree type = TREE_TYPE (mask);
3373 unsigned int precision = TYPE_PRECISION (type);
3374 tree tmask;
3376 tmask = build_int_cst (lang_hooks.types.signed_type (type), -1);
3377 tmask = force_fit_type (tmask, 0, false, false);
3379 return
3380 tree_int_cst_equal (mask,
3381 const_binop (RSHIFT_EXPR,
3382 const_binop (LSHIFT_EXPR, tmask,
3383 size_int (precision - size),
3385 size_int (precision - size), 0));
3388 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3389 represents the sign bit of EXP's type. If EXP represents a sign
3390 or zero extension, also test VAL against the unextended type.
3391 The return value is the (sub)expression whose sign bit is VAL,
3392 or NULL_TREE otherwise. */
3394 static tree
3395 sign_bit_p (tree exp, tree val)
3397 unsigned HOST_WIDE_INT mask_lo, lo;
3398 HOST_WIDE_INT mask_hi, hi;
3399 int width;
3400 tree t;
3402 /* Tree EXP must have an integral type. */
3403 t = TREE_TYPE (exp);
3404 if (! INTEGRAL_TYPE_P (t))
3405 return NULL_TREE;
3407 /* Tree VAL must be an integer constant. */
3408 if (TREE_CODE (val) != INTEGER_CST
3409 || TREE_CONSTANT_OVERFLOW (val))
3410 return NULL_TREE;
3412 width = TYPE_PRECISION (t);
3413 if (width > HOST_BITS_PER_WIDE_INT)
3415 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3416 lo = 0;
3418 mask_hi = ((unsigned HOST_WIDE_INT) -1
3419 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3420 mask_lo = -1;
3422 else
3424 hi = 0;
3425 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3427 mask_hi = 0;
3428 mask_lo = ((unsigned HOST_WIDE_INT) -1
3429 >> (HOST_BITS_PER_WIDE_INT - width));
3432 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3433 treat VAL as if it were unsigned. */
3434 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3435 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3436 return exp;
3438 /* Handle extension from a narrower type. */
3439 if (TREE_CODE (exp) == NOP_EXPR
3440 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3441 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3443 return NULL_TREE;
3446 /* Subroutine for fold_truthop: determine if an operand is simple enough
3447 to be evaluated unconditionally. */
3449 static int
3450 simple_operand_p (tree exp)
3452 /* Strip any conversions that don't change the machine mode. */
3453 STRIP_NOPS (exp);
3455 return (CONSTANT_CLASS_P (exp)
3456 || TREE_CODE (exp) == SSA_NAME
3457 || (DECL_P (exp)
3458 && ! TREE_ADDRESSABLE (exp)
3459 && ! TREE_THIS_VOLATILE (exp)
3460 && ! DECL_NONLOCAL (exp)
3461 /* Don't regard global variables as simple. They may be
3462 allocated in ways unknown to the compiler (shared memory,
3463 #pragma weak, etc). */
3464 && ! TREE_PUBLIC (exp)
3465 && ! DECL_EXTERNAL (exp)
3466 /* Loading a static variable is unduly expensive, but global
3467 registers aren't expensive. */
3468 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3471 /* The following functions are subroutines to fold_range_test and allow it to
3472 try to change a logical combination of comparisons into a range test.
3474 For example, both
3475 X == 2 || X == 3 || X == 4 || X == 5
3477 X >= 2 && X <= 5
3478 are converted to
3479 (unsigned) (X - 2) <= 3
3481 We describe each set of comparisons as being either inside or outside
3482 a range, using a variable named like IN_P, and then describe the
3483 range with a lower and upper bound. If one of the bounds is omitted,
3484 it represents either the highest or lowest value of the type.
3486 In the comments below, we represent a range by two numbers in brackets
3487 preceded by a "+" to designate being inside that range, or a "-" to
3488 designate being outside that range, so the condition can be inverted by
3489 flipping the prefix. An omitted bound is represented by a "-". For
3490 example, "- [-, 10]" means being outside the range starting at the lowest
3491 possible value and ending at 10, in other words, being greater than 10.
3492 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3493 always false.
3495 We set up things so that the missing bounds are handled in a consistent
3496 manner so neither a missing bound nor "true" and "false" need to be
3497 handled using a special case. */
3499 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3500 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3501 and UPPER1_P are nonzero if the respective argument is an upper bound
3502 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3503 must be specified for a comparison. ARG1 will be converted to ARG0's
3504 type if both are specified. */
3506 static tree
3507 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3508 tree arg1, int upper1_p)
3510 tree tem;
3511 int result;
3512 int sgn0, sgn1;
3514 /* If neither arg represents infinity, do the normal operation.
3515 Else, if not a comparison, return infinity. Else handle the special
3516 comparison rules. Note that most of the cases below won't occur, but
3517 are handled for consistency. */
3519 if (arg0 != 0 && arg1 != 0)
3521 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3522 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3523 STRIP_NOPS (tem);
3524 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3527 if (TREE_CODE_CLASS (code) != tcc_comparison)
3528 return 0;
3530 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3531 for neither. In real maths, we cannot assume open ended ranges are
3532 the same. But, this is computer arithmetic, where numbers are finite.
3533 We can therefore make the transformation of any unbounded range with
3534 the value Z, Z being greater than any representable number. This permits
3535 us to treat unbounded ranges as equal. */
3536 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3537 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3538 switch (code)
3540 case EQ_EXPR:
3541 result = sgn0 == sgn1;
3542 break;
3543 case NE_EXPR:
3544 result = sgn0 != sgn1;
3545 break;
3546 case LT_EXPR:
3547 result = sgn0 < sgn1;
3548 break;
3549 case LE_EXPR:
3550 result = sgn0 <= sgn1;
3551 break;
3552 case GT_EXPR:
3553 result = sgn0 > sgn1;
3554 break;
3555 case GE_EXPR:
3556 result = sgn0 >= sgn1;
3557 break;
3558 default:
3559 gcc_unreachable ();
3562 return constant_boolean_node (result, type);
3565 /* Given EXP, a logical expression, set the range it is testing into
3566 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3567 actually being tested. *PLOW and *PHIGH will be made of the same type
3568 as the returned expression. If EXP is not a comparison, we will most
3569 likely not be returning a useful value and range. */
3571 static tree
3572 make_range (tree exp, int *pin_p, tree *plow, tree *phigh)
3574 enum tree_code code;
3575 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
3576 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
3577 int in_p, n_in_p;
3578 tree low, high, n_low, n_high;
3580 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3581 and see if we can refine the range. Some of the cases below may not
3582 happen, but it doesn't seem worth worrying about this. We "continue"
3583 the outer loop when we've changed something; otherwise we "break"
3584 the switch, which will "break" the while. */
3586 in_p = 0;
3587 low = high = fold_convert (TREE_TYPE (exp), integer_zero_node);
3589 while (1)
3591 code = TREE_CODE (exp);
3592 exp_type = TREE_TYPE (exp);
3594 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3596 if (TREE_CODE_LENGTH (code) > 0)
3597 arg0 = TREE_OPERAND (exp, 0);
3598 if (TREE_CODE_CLASS (code) == tcc_comparison
3599 || TREE_CODE_CLASS (code) == tcc_unary
3600 || TREE_CODE_CLASS (code) == tcc_binary)
3601 arg0_type = TREE_TYPE (arg0);
3602 if (TREE_CODE_CLASS (code) == tcc_binary
3603 || TREE_CODE_CLASS (code) == tcc_comparison
3604 || (TREE_CODE_CLASS (code) == tcc_expression
3605 && TREE_CODE_LENGTH (code) > 1))
3606 arg1 = TREE_OPERAND (exp, 1);
3609 switch (code)
3611 case TRUTH_NOT_EXPR:
3612 in_p = ! in_p, exp = arg0;
3613 continue;
3615 case EQ_EXPR: case NE_EXPR:
3616 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3617 /* We can only do something if the range is testing for zero
3618 and if the second operand is an integer constant. Note that
3619 saying something is "in" the range we make is done by
3620 complementing IN_P since it will set in the initial case of
3621 being not equal to zero; "out" is leaving it alone. */
3622 if (low == 0 || high == 0
3623 || ! integer_zerop (low) || ! integer_zerop (high)
3624 || TREE_CODE (arg1) != INTEGER_CST)
3625 break;
3627 switch (code)
3629 case NE_EXPR: /* - [c, c] */
3630 low = high = arg1;
3631 break;
3632 case EQ_EXPR: /* + [c, c] */
3633 in_p = ! in_p, low = high = arg1;
3634 break;
3635 case GT_EXPR: /* - [-, c] */
3636 low = 0, high = arg1;
3637 break;
3638 case GE_EXPR: /* + [c, -] */
3639 in_p = ! in_p, low = arg1, high = 0;
3640 break;
3641 case LT_EXPR: /* - [c, -] */
3642 low = arg1, high = 0;
3643 break;
3644 case LE_EXPR: /* + [-, c] */
3645 in_p = ! in_p, low = 0, high = arg1;
3646 break;
3647 default:
3648 gcc_unreachable ();
3651 /* If this is an unsigned comparison, we also know that EXP is
3652 greater than or equal to zero. We base the range tests we make
3653 on that fact, so we record it here so we can parse existing
3654 range tests. We test arg0_type since often the return type
3655 of, e.g. EQ_EXPR, is boolean. */
3656 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3658 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3659 in_p, low, high, 1,
3660 fold_convert (arg0_type, integer_zero_node),
3661 NULL_TREE))
3662 break;
3664 in_p = n_in_p, low = n_low, high = n_high;
3666 /* If the high bound is missing, but we have a nonzero low
3667 bound, reverse the range so it goes from zero to the low bound
3668 minus 1. */
3669 if (high == 0 && low && ! integer_zerop (low))
3671 in_p = ! in_p;
3672 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3673 integer_one_node, 0);
3674 low = fold_convert (arg0_type, integer_zero_node);
3678 exp = arg0;
3679 continue;
3681 case NEGATE_EXPR:
3682 /* (-x) IN [a,b] -> x in [-b, -a] */
3683 n_low = range_binop (MINUS_EXPR, exp_type,
3684 fold_convert (exp_type, integer_zero_node),
3685 0, high, 1);
3686 n_high = range_binop (MINUS_EXPR, exp_type,
3687 fold_convert (exp_type, integer_zero_node),
3688 0, low, 0);
3689 low = n_low, high = n_high;
3690 exp = arg0;
3691 continue;
3693 case BIT_NOT_EXPR:
3694 /* ~ X -> -X - 1 */
3695 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
3696 fold_convert (exp_type, integer_one_node));
3697 continue;
3699 case PLUS_EXPR: case MINUS_EXPR:
3700 if (TREE_CODE (arg1) != INTEGER_CST)
3701 break;
3703 /* If EXP is signed, any overflow in the computation is undefined,
3704 so we don't worry about it so long as our computations on
3705 the bounds don't overflow. For unsigned, overflow is defined
3706 and this is exactly the right thing. */
3707 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3708 arg0_type, low, 0, arg1, 0);
3709 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3710 arg0_type, high, 1, arg1, 0);
3711 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3712 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3713 break;
3715 /* Check for an unsigned range which has wrapped around the maximum
3716 value thus making n_high < n_low, and normalize it. */
3717 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3719 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3720 integer_one_node, 0);
3721 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3722 integer_one_node, 0);
3724 /* If the range is of the form +/- [ x+1, x ], we won't
3725 be able to normalize it. But then, it represents the
3726 whole range or the empty set, so make it
3727 +/- [ -, - ]. */
3728 if (tree_int_cst_equal (n_low, low)
3729 && tree_int_cst_equal (n_high, high))
3730 low = high = 0;
3731 else
3732 in_p = ! in_p;
3734 else
3735 low = n_low, high = n_high;
3737 exp = arg0;
3738 continue;
3740 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3741 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3742 break;
3744 if (! INTEGRAL_TYPE_P (arg0_type)
3745 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3746 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3747 break;
3749 n_low = low, n_high = high;
3751 if (n_low != 0)
3752 n_low = fold_convert (arg0_type, n_low);
3754 if (n_high != 0)
3755 n_high = fold_convert (arg0_type, n_high);
3758 /* If we're converting arg0 from an unsigned type, to exp,
3759 a signed type, we will be doing the comparison as unsigned.
3760 The tests above have already verified that LOW and HIGH
3761 are both positive.
3763 So we have to ensure that we will handle large unsigned
3764 values the same way that the current signed bounds treat
3765 negative values. */
3767 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
3769 tree high_positive;
3770 tree equiv_type = lang_hooks.types.type_for_mode
3771 (TYPE_MODE (arg0_type), 1);
3773 /* A range without an upper bound is, naturally, unbounded.
3774 Since convert would have cropped a very large value, use
3775 the max value for the destination type. */
3776 high_positive
3777 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3778 : TYPE_MAX_VALUE (arg0_type);
3780 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
3781 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
3782 fold_convert (arg0_type,
3783 high_positive),
3784 fold_convert (arg0_type,
3785 integer_one_node));
3787 /* If the low bound is specified, "and" the range with the
3788 range for which the original unsigned value will be
3789 positive. */
3790 if (low != 0)
3792 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3793 1, n_low, n_high, 1,
3794 fold_convert (arg0_type,
3795 integer_zero_node),
3796 high_positive))
3797 break;
3799 in_p = (n_in_p == in_p);
3801 else
3803 /* Otherwise, "or" the range with the range of the input
3804 that will be interpreted as negative. */
3805 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3806 0, n_low, n_high, 1,
3807 fold_convert (arg0_type,
3808 integer_zero_node),
3809 high_positive))
3810 break;
3812 in_p = (in_p != n_in_p);
3816 exp = arg0;
3817 low = n_low, high = n_high;
3818 continue;
3820 default:
3821 break;
3824 break;
3827 /* If EXP is a constant, we can evaluate whether this is true or false. */
3828 if (TREE_CODE (exp) == INTEGER_CST)
3830 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3831 exp, 0, low, 0))
3832 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3833 exp, 1, high, 1)));
3834 low = high = 0;
3835 exp = 0;
3838 *pin_p = in_p, *plow = low, *phigh = high;
3839 return exp;
3842 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3843 type, TYPE, return an expression to test if EXP is in (or out of, depending
3844 on IN_P) the range. Return 0 if the test couldn't be created. */
3846 static tree
3847 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
3849 tree etype = TREE_TYPE (exp);
3850 tree value;
3852 if (! in_p)
3854 value = build_range_check (type, exp, 1, low, high);
3855 if (value != 0)
3856 return invert_truthvalue (value);
3858 return 0;
3861 if (low == 0 && high == 0)
3862 return fold_convert (type, integer_one_node);
3864 if (low == 0)
3865 return fold_build2 (LE_EXPR, type, exp, high);
3867 if (high == 0)
3868 return fold_build2 (GE_EXPR, type, exp, low);
3870 if (operand_equal_p (low, high, 0))
3871 return fold_build2 (EQ_EXPR, type, exp, low);
3873 if (integer_zerop (low))
3875 if (! TYPE_UNSIGNED (etype))
3877 etype = lang_hooks.types.unsigned_type (etype);
3878 high = fold_convert (etype, high);
3879 exp = fold_convert (etype, exp);
3881 return build_range_check (type, exp, 1, 0, high);
3884 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3885 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
3887 unsigned HOST_WIDE_INT lo;
3888 HOST_WIDE_INT hi;
3889 int prec;
3891 prec = TYPE_PRECISION (etype);
3892 if (prec <= HOST_BITS_PER_WIDE_INT)
3894 hi = 0;
3895 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
3897 else
3899 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
3900 lo = (unsigned HOST_WIDE_INT) -1;
3903 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
3905 if (TYPE_UNSIGNED (etype))
3907 etype = lang_hooks.types.signed_type (etype);
3908 exp = fold_convert (etype, exp);
3910 return fold_build2 (GT_EXPR, type, exp,
3911 fold_convert (etype, integer_zero_node));
3915 value = const_binop (MINUS_EXPR, high, low, 0);
3916 if (value != 0 && TREE_OVERFLOW (value) && ! TYPE_UNSIGNED (etype))
3918 tree utype, minv, maxv;
3920 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
3921 for the type in question, as we rely on this here. */
3922 switch (TREE_CODE (etype))
3924 case INTEGER_TYPE:
3925 case ENUMERAL_TYPE:
3926 case CHAR_TYPE:
3927 utype = lang_hooks.types.unsigned_type (etype);
3928 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
3929 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
3930 integer_one_node, 1);
3931 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
3932 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
3933 minv, 1, maxv, 1)))
3935 etype = utype;
3936 high = fold_convert (etype, high);
3937 low = fold_convert (etype, low);
3938 exp = fold_convert (etype, exp);
3939 value = const_binop (MINUS_EXPR, high, low, 0);
3941 break;
3942 default:
3943 break;
3947 if (value != 0 && ! TREE_OVERFLOW (value))
3948 return build_range_check (type,
3949 fold_build2 (MINUS_EXPR, etype, exp, low),
3950 1, fold_convert (etype, integer_zero_node),
3951 value);
3953 return 0;
3956 /* Given two ranges, see if we can merge them into one. Return 1 if we
3957 can, 0 if we can't. Set the output range into the specified parameters. */
3959 static int
3960 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
3961 tree high0, int in1_p, tree low1, tree high1)
3963 int no_overlap;
3964 int subset;
3965 int temp;
3966 tree tem;
3967 int in_p;
3968 tree low, high;
3969 int lowequal = ((low0 == 0 && low1 == 0)
3970 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3971 low0, 0, low1, 0)));
3972 int highequal = ((high0 == 0 && high1 == 0)
3973 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3974 high0, 1, high1, 1)));
3976 /* Make range 0 be the range that starts first, or ends last if they
3977 start at the same value. Swap them if it isn't. */
3978 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3979 low0, 0, low1, 0))
3980 || (lowequal
3981 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3982 high1, 1, high0, 1))))
3984 temp = in0_p, in0_p = in1_p, in1_p = temp;
3985 tem = low0, low0 = low1, low1 = tem;
3986 tem = high0, high0 = high1, high1 = tem;
3989 /* Now flag two cases, whether the ranges are disjoint or whether the
3990 second range is totally subsumed in the first. Note that the tests
3991 below are simplified by the ones above. */
3992 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3993 high0, 1, low1, 0));
3994 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3995 high1, 1, high0, 1));
3997 /* We now have four cases, depending on whether we are including or
3998 excluding the two ranges. */
3999 if (in0_p && in1_p)
4001 /* If they don't overlap, the result is false. If the second range
4002 is a subset it is the result. Otherwise, the range is from the start
4003 of the second to the end of the first. */
4004 if (no_overlap)
4005 in_p = 0, low = high = 0;
4006 else if (subset)
4007 in_p = 1, low = low1, high = high1;
4008 else
4009 in_p = 1, low = low1, high = high0;
4012 else if (in0_p && ! in1_p)
4014 /* If they don't overlap, the result is the first range. If they are
4015 equal, the result is false. If the second range is a subset of the
4016 first, and the ranges begin at the same place, we go from just after
4017 the end of the first range to the end of the second. If the second
4018 range is not a subset of the first, or if it is a subset and both
4019 ranges end at the same place, the range starts at the start of the
4020 first range and ends just before the second range.
4021 Otherwise, we can't describe this as a single range. */
4022 if (no_overlap)
4023 in_p = 1, low = low0, high = high0;
4024 else if (lowequal && highequal)
4025 in_p = 0, low = high = 0;
4026 else if (subset && lowequal)
4028 in_p = 1, high = high0;
4029 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
4030 integer_one_node, 0);
4032 else if (! subset || highequal)
4034 in_p = 1, low = low0;
4035 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
4036 integer_one_node, 0);
4038 else
4039 return 0;
4042 else if (! in0_p && in1_p)
4044 /* If they don't overlap, the result is the second range. If the second
4045 is a subset of the first, the result is false. Otherwise,
4046 the range starts just after the first range and ends at the
4047 end of the second. */
4048 if (no_overlap)
4049 in_p = 1, low = low1, high = high1;
4050 else if (subset || highequal)
4051 in_p = 0, low = high = 0;
4052 else
4054 in_p = 1, high = high1;
4055 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
4056 integer_one_node, 0);
4060 else
4062 /* The case where we are excluding both ranges. Here the complex case
4063 is if they don't overlap. In that case, the only time we have a
4064 range is if they are adjacent. If the second is a subset of the
4065 first, the result is the first. Otherwise, the range to exclude
4066 starts at the beginning of the first range and ends at the end of the
4067 second. */
4068 if (no_overlap)
4070 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4071 range_binop (PLUS_EXPR, NULL_TREE,
4072 high0, 1,
4073 integer_one_node, 1),
4074 1, low1, 0)))
4075 in_p = 0, low = low0, high = high1;
4076 else
4078 /* Canonicalize - [min, x] into - [-, x]. */
4079 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4080 switch (TREE_CODE (TREE_TYPE (low0)))
4082 case ENUMERAL_TYPE:
4083 if (TYPE_PRECISION (TREE_TYPE (low0))
4084 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4085 break;
4086 /* FALLTHROUGH */
4087 case INTEGER_TYPE:
4088 case CHAR_TYPE:
4089 if (tree_int_cst_equal (low0,
4090 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4091 low0 = 0;
4092 break;
4093 case POINTER_TYPE:
4094 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4095 && integer_zerop (low0))
4096 low0 = 0;
4097 break;
4098 default:
4099 break;
4102 /* Canonicalize - [x, max] into - [x, -]. */
4103 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4104 switch (TREE_CODE (TREE_TYPE (high1)))
4106 case ENUMERAL_TYPE:
4107 if (TYPE_PRECISION (TREE_TYPE (high1))
4108 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4109 break;
4110 /* FALLTHROUGH */
4111 case INTEGER_TYPE:
4112 case CHAR_TYPE:
4113 if (tree_int_cst_equal (high1,
4114 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4115 high1 = 0;
4116 break;
4117 case POINTER_TYPE:
4118 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4119 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4120 high1, 1,
4121 integer_one_node, 1)))
4122 high1 = 0;
4123 break;
4124 default:
4125 break;
4128 /* The ranges might be also adjacent between the maximum and
4129 minimum values of the given type. For
4130 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4131 return + [x + 1, y - 1]. */
4132 if (low0 == 0 && high1 == 0)
4134 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
4135 integer_one_node, 1);
4136 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
4137 integer_one_node, 0);
4138 if (low == 0 || high == 0)
4139 return 0;
4141 in_p = 1;
4143 else
4144 return 0;
4147 else if (subset)
4148 in_p = 0, low = low0, high = high0;
4149 else
4150 in_p = 0, low = low0, high = high1;
4153 *pin_p = in_p, *plow = low, *phigh = high;
4154 return 1;
4158 /* Subroutine of fold, looking inside expressions of the form
4159 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4160 of the COND_EXPR. This function is being used also to optimize
4161 A op B ? C : A, by reversing the comparison first.
4163 Return a folded expression whose code is not a COND_EXPR
4164 anymore, or NULL_TREE if no folding opportunity is found. */
4166 static tree
4167 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
4169 enum tree_code comp_code = TREE_CODE (arg0);
4170 tree arg00 = TREE_OPERAND (arg0, 0);
4171 tree arg01 = TREE_OPERAND (arg0, 1);
4172 tree arg1_type = TREE_TYPE (arg1);
4173 tree tem;
4175 STRIP_NOPS (arg1);
4176 STRIP_NOPS (arg2);
4178 /* If we have A op 0 ? A : -A, consider applying the following
4179 transformations:
4181 A == 0? A : -A same as -A
4182 A != 0? A : -A same as A
4183 A >= 0? A : -A same as abs (A)
4184 A > 0? A : -A same as abs (A)
4185 A <= 0? A : -A same as -abs (A)
4186 A < 0? A : -A same as -abs (A)
4188 None of these transformations work for modes with signed
4189 zeros. If A is +/-0, the first two transformations will
4190 change the sign of the result (from +0 to -0, or vice
4191 versa). The last four will fix the sign of the result,
4192 even though the original expressions could be positive or
4193 negative, depending on the sign of A.
4195 Note that all these transformations are correct if A is
4196 NaN, since the two alternatives (A and -A) are also NaNs. */
4197 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
4198 ? real_zerop (arg01)
4199 : integer_zerop (arg01))
4200 && ((TREE_CODE (arg2) == NEGATE_EXPR
4201 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4202 /* In the case that A is of the form X-Y, '-A' (arg2) may
4203 have already been folded to Y-X, check for that. */
4204 || (TREE_CODE (arg1) == MINUS_EXPR
4205 && TREE_CODE (arg2) == MINUS_EXPR
4206 && operand_equal_p (TREE_OPERAND (arg1, 0),
4207 TREE_OPERAND (arg2, 1), 0)
4208 && operand_equal_p (TREE_OPERAND (arg1, 1),
4209 TREE_OPERAND (arg2, 0), 0))))
4210 switch (comp_code)
4212 case EQ_EXPR:
4213 case UNEQ_EXPR:
4214 tem = fold_convert (arg1_type, arg1);
4215 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
4216 case NE_EXPR:
4217 case LTGT_EXPR:
4218 return pedantic_non_lvalue (fold_convert (type, arg1));
4219 case UNGE_EXPR:
4220 case UNGT_EXPR:
4221 if (flag_trapping_math)
4222 break;
4223 /* Fall through. */
4224 case GE_EXPR:
4225 case GT_EXPR:
4226 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4227 arg1 = fold_convert (lang_hooks.types.signed_type
4228 (TREE_TYPE (arg1)), arg1);
4229 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4230 return pedantic_non_lvalue (fold_convert (type, tem));
4231 case UNLE_EXPR:
4232 case UNLT_EXPR:
4233 if (flag_trapping_math)
4234 break;
4235 case LE_EXPR:
4236 case LT_EXPR:
4237 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4238 arg1 = fold_convert (lang_hooks.types.signed_type
4239 (TREE_TYPE (arg1)), arg1);
4240 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4241 return negate_expr (fold_convert (type, tem));
4242 default:
4243 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4244 break;
4247 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4248 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4249 both transformations are correct when A is NaN: A != 0
4250 is then true, and A == 0 is false. */
4252 if (integer_zerop (arg01) && integer_zerop (arg2))
4254 if (comp_code == NE_EXPR)
4255 return pedantic_non_lvalue (fold_convert (type, arg1));
4256 else if (comp_code == EQ_EXPR)
4257 return fold_convert (type, integer_zero_node);
4260 /* Try some transformations of A op B ? A : B.
4262 A == B? A : B same as B
4263 A != B? A : B same as A
4264 A >= B? A : B same as max (A, B)
4265 A > B? A : B same as max (B, A)
4266 A <= B? A : B same as min (A, B)
4267 A < B? A : B same as min (B, A)
4269 As above, these transformations don't work in the presence
4270 of signed zeros. For example, if A and B are zeros of
4271 opposite sign, the first two transformations will change
4272 the sign of the result. In the last four, the original
4273 expressions give different results for (A=+0, B=-0) and
4274 (A=-0, B=+0), but the transformed expressions do not.
4276 The first two transformations are correct if either A or B
4277 is a NaN. In the first transformation, the condition will
4278 be false, and B will indeed be chosen. In the case of the
4279 second transformation, the condition A != B will be true,
4280 and A will be chosen.
4282 The conversions to max() and min() are not correct if B is
4283 a number and A is not. The conditions in the original
4284 expressions will be false, so all four give B. The min()
4285 and max() versions would give a NaN instead. */
4286 if (operand_equal_for_comparison_p (arg01, arg2, arg00)
4287 /* Avoid these transformations if the COND_EXPR may be used
4288 as an lvalue in the C++ front-end. PR c++/19199. */
4289 && (in_gimple_form
4290 || strcmp (lang_hooks.name, "GNU C++") != 0
4291 || ! maybe_lvalue_p (arg1)
4292 || ! maybe_lvalue_p (arg2)))
4294 tree comp_op0 = arg00;
4295 tree comp_op1 = arg01;
4296 tree comp_type = TREE_TYPE (comp_op0);
4298 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4299 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4301 comp_type = type;
4302 comp_op0 = arg1;
4303 comp_op1 = arg2;
4306 switch (comp_code)
4308 case EQ_EXPR:
4309 return pedantic_non_lvalue (fold_convert (type, arg2));
4310 case NE_EXPR:
4311 return pedantic_non_lvalue (fold_convert (type, arg1));
4312 case LE_EXPR:
4313 case LT_EXPR:
4314 case UNLE_EXPR:
4315 case UNLT_EXPR:
4316 /* In C++ a ?: expression can be an lvalue, so put the
4317 operand which will be used if they are equal first
4318 so that we can convert this back to the
4319 corresponding COND_EXPR. */
4320 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4322 comp_op0 = fold_convert (comp_type, comp_op0);
4323 comp_op1 = fold_convert (comp_type, comp_op1);
4324 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4325 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
4326 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
4327 return pedantic_non_lvalue (fold_convert (type, tem));
4329 break;
4330 case GE_EXPR:
4331 case GT_EXPR:
4332 case UNGE_EXPR:
4333 case UNGT_EXPR:
4334 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4336 comp_op0 = fold_convert (comp_type, comp_op0);
4337 comp_op1 = fold_convert (comp_type, comp_op1);
4338 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4339 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
4340 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
4341 return pedantic_non_lvalue (fold_convert (type, tem));
4343 break;
4344 case UNEQ_EXPR:
4345 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4346 return pedantic_non_lvalue (fold_convert (type, arg2));
4347 break;
4348 case LTGT_EXPR:
4349 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4350 return pedantic_non_lvalue (fold_convert (type, arg1));
4351 break;
4352 default:
4353 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4354 break;
4358 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4359 we might still be able to simplify this. For example,
4360 if C1 is one less or one more than C2, this might have started
4361 out as a MIN or MAX and been transformed by this function.
4362 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4364 if (INTEGRAL_TYPE_P (type)
4365 && TREE_CODE (arg01) == INTEGER_CST
4366 && TREE_CODE (arg2) == INTEGER_CST)
4367 switch (comp_code)
4369 case EQ_EXPR:
4370 /* We can replace A with C1 in this case. */
4371 arg1 = fold_convert (type, arg01);
4372 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
4374 case LT_EXPR:
4375 /* If C1 is C2 + 1, this is min(A, C2). */
4376 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4377 OEP_ONLY_CONST)
4378 && operand_equal_p (arg01,
4379 const_binop (PLUS_EXPR, arg2,
4380 integer_one_node, 0),
4381 OEP_ONLY_CONST))
4382 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4383 type, arg1, arg2));
4384 break;
4386 case LE_EXPR:
4387 /* If C1 is C2 - 1, this is min(A, C2). */
4388 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4389 OEP_ONLY_CONST)
4390 && operand_equal_p (arg01,
4391 const_binop (MINUS_EXPR, arg2,
4392 integer_one_node, 0),
4393 OEP_ONLY_CONST))
4394 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4395 type, arg1, arg2));
4396 break;
4398 case GT_EXPR:
4399 /* If C1 is C2 - 1, this is max(A, C2). */
4400 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4401 OEP_ONLY_CONST)
4402 && operand_equal_p (arg01,
4403 const_binop (MINUS_EXPR, arg2,
4404 integer_one_node, 0),
4405 OEP_ONLY_CONST))
4406 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4407 type, arg1, arg2));
4408 break;
4410 case GE_EXPR:
4411 /* If C1 is C2 + 1, this is max(A, C2). */
4412 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4413 OEP_ONLY_CONST)
4414 && operand_equal_p (arg01,
4415 const_binop (PLUS_EXPR, arg2,
4416 integer_one_node, 0),
4417 OEP_ONLY_CONST))
4418 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4419 type, arg1, arg2));
4420 break;
4421 case NE_EXPR:
4422 break;
4423 default:
4424 gcc_unreachable ();
4427 return NULL_TREE;
4432 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4433 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
4434 #endif
4436 /* EXP is some logical combination of boolean tests. See if we can
4437 merge it into some range test. Return the new tree if so. */
4439 static tree
4440 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
4442 int or_op = (code == TRUTH_ORIF_EXPR
4443 || code == TRUTH_OR_EXPR);
4444 int in0_p, in1_p, in_p;
4445 tree low0, low1, low, high0, high1, high;
4446 tree lhs = make_range (op0, &in0_p, &low0, &high0);
4447 tree rhs = make_range (op1, &in1_p, &low1, &high1);
4448 tree tem;
4450 /* If this is an OR operation, invert both sides; we will invert
4451 again at the end. */
4452 if (or_op)
4453 in0_p = ! in0_p, in1_p = ! in1_p;
4455 /* If both expressions are the same, if we can merge the ranges, and we
4456 can build the range test, return it or it inverted. If one of the
4457 ranges is always true or always false, consider it to be the same
4458 expression as the other. */
4459 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4460 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4461 in1_p, low1, high1)
4462 && 0 != (tem = (build_range_check (type,
4463 lhs != 0 ? lhs
4464 : rhs != 0 ? rhs : integer_zero_node,
4465 in_p, low, high))))
4466 return or_op ? invert_truthvalue (tem) : tem;
4468 /* On machines where the branch cost is expensive, if this is a
4469 short-circuited branch and the underlying object on both sides
4470 is the same, make a non-short-circuit operation. */
4471 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4472 && lhs != 0 && rhs != 0
4473 && (code == TRUTH_ANDIF_EXPR
4474 || code == TRUTH_ORIF_EXPR)
4475 && operand_equal_p (lhs, rhs, 0))
4477 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4478 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4479 which cases we can't do this. */
4480 if (simple_operand_p (lhs))
4481 return build2 (code == TRUTH_ANDIF_EXPR
4482 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4483 type, op0, op1);
4485 else if (lang_hooks.decls.global_bindings_p () == 0
4486 && ! CONTAINS_PLACEHOLDER_P (lhs))
4488 tree common = save_expr (lhs);
4490 if (0 != (lhs = build_range_check (type, common,
4491 or_op ? ! in0_p : in0_p,
4492 low0, high0))
4493 && (0 != (rhs = build_range_check (type, common,
4494 or_op ? ! in1_p : in1_p,
4495 low1, high1))))
4496 return build2 (code == TRUTH_ANDIF_EXPR
4497 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4498 type, lhs, rhs);
4502 return 0;
4505 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4506 bit value. Arrange things so the extra bits will be set to zero if and
4507 only if C is signed-extended to its full width. If MASK is nonzero,
4508 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4510 static tree
4511 unextend (tree c, int p, int unsignedp, tree mask)
4513 tree type = TREE_TYPE (c);
4514 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4515 tree temp;
4517 if (p == modesize || unsignedp)
4518 return c;
4520 /* We work by getting just the sign bit into the low-order bit, then
4521 into the high-order bit, then sign-extend. We then XOR that value
4522 with C. */
4523 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
4524 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
4526 /* We must use a signed type in order to get an arithmetic right shift.
4527 However, we must also avoid introducing accidental overflows, so that
4528 a subsequent call to integer_zerop will work. Hence we must
4529 do the type conversion here. At this point, the constant is either
4530 zero or one, and the conversion to a signed type can never overflow.
4531 We could get an overflow if this conversion is done anywhere else. */
4532 if (TYPE_UNSIGNED (type))
4533 temp = fold_convert (lang_hooks.types.signed_type (type), temp);
4535 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
4536 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
4537 if (mask != 0)
4538 temp = const_binop (BIT_AND_EXPR, temp,
4539 fold_convert (TREE_TYPE (c), mask), 0);
4540 /* If necessary, convert the type back to match the type of C. */
4541 if (TYPE_UNSIGNED (type))
4542 temp = fold_convert (type, temp);
4544 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
4547 /* Find ways of folding logical expressions of LHS and RHS:
4548 Try to merge two comparisons to the same innermost item.
4549 Look for range tests like "ch >= '0' && ch <= '9'".
4550 Look for combinations of simple terms on machines with expensive branches
4551 and evaluate the RHS unconditionally.
4553 For example, if we have p->a == 2 && p->b == 4 and we can make an
4554 object large enough to span both A and B, we can do this with a comparison
4555 against the object ANDed with the a mask.
4557 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
4558 operations to do this with one comparison.
4560 We check for both normal comparisons and the BIT_AND_EXPRs made this by
4561 function and the one above.
4563 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
4564 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
4566 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
4567 two operands.
4569 We return the simplified tree or 0 if no optimization is possible. */
4571 static tree
4572 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
4574 /* If this is the "or" of two comparisons, we can do something if
4575 the comparisons are NE_EXPR. If this is the "and", we can do something
4576 if the comparisons are EQ_EXPR. I.e.,
4577 (a->b == 2 && a->c == 4) can become (a->new == NEW).
4579 WANTED_CODE is this operation code. For single bit fields, we can
4580 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
4581 comparison for one-bit fields. */
4583 enum tree_code wanted_code;
4584 enum tree_code lcode, rcode;
4585 tree ll_arg, lr_arg, rl_arg, rr_arg;
4586 tree ll_inner, lr_inner, rl_inner, rr_inner;
4587 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
4588 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
4589 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
4590 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
4591 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
4592 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
4593 enum machine_mode lnmode, rnmode;
4594 tree ll_mask, lr_mask, rl_mask, rr_mask;
4595 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
4596 tree l_const, r_const;
4597 tree lntype, rntype, result;
4598 int first_bit, end_bit;
4599 int volatilep;
4601 /* Start by getting the comparison codes. Fail if anything is volatile.
4602 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
4603 it were surrounded with a NE_EXPR. */
4605 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
4606 return 0;
4608 lcode = TREE_CODE (lhs);
4609 rcode = TREE_CODE (rhs);
4611 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
4613 lhs = build2 (NE_EXPR, truth_type, lhs,
4614 fold_convert (TREE_TYPE (lhs), integer_zero_node));
4615 lcode = NE_EXPR;
4618 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
4620 rhs = build2 (NE_EXPR, truth_type, rhs,
4621 fold_convert (TREE_TYPE (rhs), integer_zero_node));
4622 rcode = NE_EXPR;
4625 if (TREE_CODE_CLASS (lcode) != tcc_comparison
4626 || TREE_CODE_CLASS (rcode) != tcc_comparison)
4627 return 0;
4629 ll_arg = TREE_OPERAND (lhs, 0);
4630 lr_arg = TREE_OPERAND (lhs, 1);
4631 rl_arg = TREE_OPERAND (rhs, 0);
4632 rr_arg = TREE_OPERAND (rhs, 1);
4634 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
4635 if (simple_operand_p (ll_arg)
4636 && simple_operand_p (lr_arg))
4638 tree result;
4639 if (operand_equal_p (ll_arg, rl_arg, 0)
4640 && operand_equal_p (lr_arg, rr_arg, 0))
4642 result = combine_comparisons (code, lcode, rcode,
4643 truth_type, ll_arg, lr_arg);
4644 if (result)
4645 return result;
4647 else if (operand_equal_p (ll_arg, rr_arg, 0)
4648 && operand_equal_p (lr_arg, rl_arg, 0))
4650 result = combine_comparisons (code, lcode,
4651 swap_tree_comparison (rcode),
4652 truth_type, ll_arg, lr_arg);
4653 if (result)
4654 return result;
4658 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
4659 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
4661 /* If the RHS can be evaluated unconditionally and its operands are
4662 simple, it wins to evaluate the RHS unconditionally on machines
4663 with expensive branches. In this case, this isn't a comparison
4664 that can be merged. Avoid doing this if the RHS is a floating-point
4665 comparison since those can trap. */
4667 if (BRANCH_COST >= 2
4668 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
4669 && simple_operand_p (rl_arg)
4670 && simple_operand_p (rr_arg))
4672 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
4673 if (code == TRUTH_OR_EXPR
4674 && lcode == NE_EXPR && integer_zerop (lr_arg)
4675 && rcode == NE_EXPR && integer_zerop (rr_arg)
4676 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4677 return build2 (NE_EXPR, truth_type,
4678 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4679 ll_arg, rl_arg),
4680 fold_convert (TREE_TYPE (ll_arg), integer_zero_node));
4682 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
4683 if (code == TRUTH_AND_EXPR
4684 && lcode == EQ_EXPR && integer_zerop (lr_arg)
4685 && rcode == EQ_EXPR && integer_zerop (rr_arg)
4686 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4687 return build2 (EQ_EXPR, truth_type,
4688 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4689 ll_arg, rl_arg),
4690 fold_convert (TREE_TYPE (ll_arg), integer_zero_node));
4692 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
4693 return build2 (code, truth_type, lhs, rhs);
4696 /* See if the comparisons can be merged. Then get all the parameters for
4697 each side. */
4699 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
4700 || (rcode != EQ_EXPR && rcode != NE_EXPR))
4701 return 0;
4703 volatilep = 0;
4704 ll_inner = decode_field_reference (ll_arg,
4705 &ll_bitsize, &ll_bitpos, &ll_mode,
4706 &ll_unsignedp, &volatilep, &ll_mask,
4707 &ll_and_mask);
4708 lr_inner = decode_field_reference (lr_arg,
4709 &lr_bitsize, &lr_bitpos, &lr_mode,
4710 &lr_unsignedp, &volatilep, &lr_mask,
4711 &lr_and_mask);
4712 rl_inner = decode_field_reference (rl_arg,
4713 &rl_bitsize, &rl_bitpos, &rl_mode,
4714 &rl_unsignedp, &volatilep, &rl_mask,
4715 &rl_and_mask);
4716 rr_inner = decode_field_reference (rr_arg,
4717 &rr_bitsize, &rr_bitpos, &rr_mode,
4718 &rr_unsignedp, &volatilep, &rr_mask,
4719 &rr_and_mask);
4721 /* It must be true that the inner operation on the lhs of each
4722 comparison must be the same if we are to be able to do anything.
4723 Then see if we have constants. If not, the same must be true for
4724 the rhs's. */
4725 if (volatilep || ll_inner == 0 || rl_inner == 0
4726 || ! operand_equal_p (ll_inner, rl_inner, 0))
4727 return 0;
4729 if (TREE_CODE (lr_arg) == INTEGER_CST
4730 && TREE_CODE (rr_arg) == INTEGER_CST)
4731 l_const = lr_arg, r_const = rr_arg;
4732 else if (lr_inner == 0 || rr_inner == 0
4733 || ! operand_equal_p (lr_inner, rr_inner, 0))
4734 return 0;
4735 else
4736 l_const = r_const = 0;
4738 /* If either comparison code is not correct for our logical operation,
4739 fail. However, we can convert a one-bit comparison against zero into
4740 the opposite comparison against that bit being set in the field. */
4742 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
4743 if (lcode != wanted_code)
4745 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
4747 /* Make the left operand unsigned, since we are only interested
4748 in the value of one bit. Otherwise we are doing the wrong
4749 thing below. */
4750 ll_unsignedp = 1;
4751 l_const = ll_mask;
4753 else
4754 return 0;
4757 /* This is analogous to the code for l_const above. */
4758 if (rcode != wanted_code)
4760 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
4762 rl_unsignedp = 1;
4763 r_const = rl_mask;
4765 else
4766 return 0;
4769 /* After this point all optimizations will generate bit-field
4770 references, which we might not want. */
4771 if (! lang_hooks.can_use_bit_fields_p ())
4772 return 0;
4774 /* See if we can find a mode that contains both fields being compared on
4775 the left. If we can't, fail. Otherwise, update all constants and masks
4776 to be relative to a field of that size. */
4777 first_bit = MIN (ll_bitpos, rl_bitpos);
4778 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
4779 lnmode = get_best_mode (end_bit - first_bit, first_bit,
4780 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
4781 volatilep);
4782 if (lnmode == VOIDmode)
4783 return 0;
4785 lnbitsize = GET_MODE_BITSIZE (lnmode);
4786 lnbitpos = first_bit & ~ (lnbitsize - 1);
4787 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
4788 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
4790 if (BYTES_BIG_ENDIAN)
4792 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
4793 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
4796 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
4797 size_int (xll_bitpos), 0);
4798 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
4799 size_int (xrl_bitpos), 0);
4801 if (l_const)
4803 l_const = fold_convert (lntype, l_const);
4804 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
4805 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
4806 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
4807 fold_build1 (BIT_NOT_EXPR,
4808 lntype, ll_mask),
4809 0)))
4811 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
4813 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
4816 if (r_const)
4818 r_const = fold_convert (lntype, r_const);
4819 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
4820 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
4821 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
4822 fold_build1 (BIT_NOT_EXPR,
4823 lntype, rl_mask),
4824 0)))
4826 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
4828 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
4832 /* If the right sides are not constant, do the same for it. Also,
4833 disallow this optimization if a size or signedness mismatch occurs
4834 between the left and right sides. */
4835 if (l_const == 0)
4837 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
4838 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
4839 /* Make sure the two fields on the right
4840 correspond to the left without being swapped. */
4841 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
4842 return 0;
4844 first_bit = MIN (lr_bitpos, rr_bitpos);
4845 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
4846 rnmode = get_best_mode (end_bit - first_bit, first_bit,
4847 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
4848 volatilep);
4849 if (rnmode == VOIDmode)
4850 return 0;
4852 rnbitsize = GET_MODE_BITSIZE (rnmode);
4853 rnbitpos = first_bit & ~ (rnbitsize - 1);
4854 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
4855 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
4857 if (BYTES_BIG_ENDIAN)
4859 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
4860 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
4863 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
4864 size_int (xlr_bitpos), 0);
4865 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
4866 size_int (xrr_bitpos), 0);
4868 /* Make a mask that corresponds to both fields being compared.
4869 Do this for both items being compared. If the operands are the
4870 same size and the bits being compared are in the same position
4871 then we can do this by masking both and comparing the masked
4872 results. */
4873 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4874 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
4875 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
4877 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4878 ll_unsignedp || rl_unsignedp);
4879 if (! all_ones_mask_p (ll_mask, lnbitsize))
4880 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
4882 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
4883 lr_unsignedp || rr_unsignedp);
4884 if (! all_ones_mask_p (lr_mask, rnbitsize))
4885 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
4887 return build2 (wanted_code, truth_type, lhs, rhs);
4890 /* There is still another way we can do something: If both pairs of
4891 fields being compared are adjacent, we may be able to make a wider
4892 field containing them both.
4894 Note that we still must mask the lhs/rhs expressions. Furthermore,
4895 the mask must be shifted to account for the shift done by
4896 make_bit_field_ref. */
4897 if ((ll_bitsize + ll_bitpos == rl_bitpos
4898 && lr_bitsize + lr_bitpos == rr_bitpos)
4899 || (ll_bitpos == rl_bitpos + rl_bitsize
4900 && lr_bitpos == rr_bitpos + rr_bitsize))
4902 tree type;
4904 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
4905 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
4906 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
4907 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
4909 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
4910 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
4911 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
4912 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
4914 /* Convert to the smaller type before masking out unwanted bits. */
4915 type = lntype;
4916 if (lntype != rntype)
4918 if (lnbitsize > rnbitsize)
4920 lhs = fold_convert (rntype, lhs);
4921 ll_mask = fold_convert (rntype, ll_mask);
4922 type = rntype;
4924 else if (lnbitsize < rnbitsize)
4926 rhs = fold_convert (lntype, rhs);
4927 lr_mask = fold_convert (lntype, lr_mask);
4928 type = lntype;
4932 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
4933 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
4935 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
4936 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
4938 return build2 (wanted_code, truth_type, lhs, rhs);
4941 return 0;
4944 /* Handle the case of comparisons with constants. If there is something in
4945 common between the masks, those bits of the constants must be the same.
4946 If not, the condition is always false. Test for this to avoid generating
4947 incorrect code below. */
4948 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
4949 if (! integer_zerop (result)
4950 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
4951 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
4953 if (wanted_code == NE_EXPR)
4955 warning (0, "%<or%> of unmatched not-equal tests is always 1");
4956 return constant_boolean_node (true, truth_type);
4958 else
4960 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
4961 return constant_boolean_node (false, truth_type);
4965 /* Construct the expression we will return. First get the component
4966 reference we will make. Unless the mask is all ones the width of
4967 that field, perform the mask operation. Then compare with the
4968 merged constant. */
4969 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4970 ll_unsignedp || rl_unsignedp);
4972 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4973 if (! all_ones_mask_p (ll_mask, lnbitsize))
4974 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
4976 return build2 (wanted_code, truth_type, result,
4977 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
4980 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
4981 constant. */
4983 static tree
4984 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
4986 tree arg0 = op0;
4987 enum tree_code op_code;
4988 tree comp_const = op1;
4989 tree minmax_const;
4990 int consts_equal, consts_lt;
4991 tree inner;
4993 STRIP_SIGN_NOPS (arg0);
4995 op_code = TREE_CODE (arg0);
4996 minmax_const = TREE_OPERAND (arg0, 1);
4997 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
4998 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
4999 inner = TREE_OPERAND (arg0, 0);
5001 /* If something does not permit us to optimize, return the original tree. */
5002 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5003 || TREE_CODE (comp_const) != INTEGER_CST
5004 || TREE_CONSTANT_OVERFLOW (comp_const)
5005 || TREE_CODE (minmax_const) != INTEGER_CST
5006 || TREE_CONSTANT_OVERFLOW (minmax_const))
5007 return NULL_TREE;
5009 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5010 and GT_EXPR, doing the rest with recursive calls using logical
5011 simplifications. */
5012 switch (code)
5014 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5016 /* FIXME: We should be able to invert code without building a
5017 scratch tree node, but doing so would require us to
5018 duplicate a part of invert_truthvalue here. */
5019 tree tem = invert_truthvalue (build2 (code, type, op0, op1));
5020 tem = optimize_minmax_comparison (TREE_CODE (tem),
5021 TREE_TYPE (tem),
5022 TREE_OPERAND (tem, 0),
5023 TREE_OPERAND (tem, 1));
5024 return invert_truthvalue (tem);
5027 case GE_EXPR:
5028 return
5029 fold_build2 (TRUTH_ORIF_EXPR, type,
5030 optimize_minmax_comparison
5031 (EQ_EXPR, type, arg0, comp_const),
5032 optimize_minmax_comparison
5033 (GT_EXPR, type, arg0, comp_const));
5035 case EQ_EXPR:
5036 if (op_code == MAX_EXPR && consts_equal)
5037 /* MAX (X, 0) == 0 -> X <= 0 */
5038 return fold_build2 (LE_EXPR, type, inner, comp_const);
5040 else if (op_code == MAX_EXPR && consts_lt)
5041 /* MAX (X, 0) == 5 -> X == 5 */
5042 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5044 else if (op_code == MAX_EXPR)
5045 /* MAX (X, 0) == -1 -> false */
5046 return omit_one_operand (type, integer_zero_node, inner);
5048 else if (consts_equal)
5049 /* MIN (X, 0) == 0 -> X >= 0 */
5050 return fold_build2 (GE_EXPR, type, inner, comp_const);
5052 else if (consts_lt)
5053 /* MIN (X, 0) == 5 -> false */
5054 return omit_one_operand (type, integer_zero_node, inner);
5056 else
5057 /* MIN (X, 0) == -1 -> X == -1 */
5058 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5060 case GT_EXPR:
5061 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5062 /* MAX (X, 0) > 0 -> X > 0
5063 MAX (X, 0) > 5 -> X > 5 */
5064 return fold_build2 (GT_EXPR, type, inner, comp_const);
5066 else if (op_code == MAX_EXPR)
5067 /* MAX (X, 0) > -1 -> true */
5068 return omit_one_operand (type, integer_one_node, inner);
5070 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5071 /* MIN (X, 0) > 0 -> false
5072 MIN (X, 0) > 5 -> false */
5073 return omit_one_operand (type, integer_zero_node, inner);
5075 else
5076 /* MIN (X, 0) > -1 -> X > -1 */
5077 return fold_build2 (GT_EXPR, type, inner, comp_const);
5079 default:
5080 return NULL_TREE;
5084 /* T is an integer expression that is being multiplied, divided, or taken a
5085 modulus (CODE says which and what kind of divide or modulus) by a
5086 constant C. See if we can eliminate that operation by folding it with
5087 other operations already in T. WIDE_TYPE, if non-null, is a type that
5088 should be used for the computation if wider than our type.
5090 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5091 (X * 2) + (Y * 4). We must, however, be assured that either the original
5092 expression would not overflow or that overflow is undefined for the type
5093 in the language in question.
5095 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5096 the machine has a multiply-accumulate insn or that this is part of an
5097 addressing calculation.
5099 If we return a non-null expression, it is an equivalent form of the
5100 original computation, but need not be in the original type. */
5102 static tree
5103 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type)
5105 /* To avoid exponential search depth, refuse to allow recursion past
5106 three levels. Beyond that (1) it's highly unlikely that we'll find
5107 something interesting and (2) we've probably processed it before
5108 when we built the inner expression. */
5110 static int depth;
5111 tree ret;
5113 if (depth > 3)
5114 return NULL;
5116 depth++;
5117 ret = extract_muldiv_1 (t, c, code, wide_type);
5118 depth--;
5120 return ret;
5123 static tree
5124 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type)
5126 tree type = TREE_TYPE (t);
5127 enum tree_code tcode = TREE_CODE (t);
5128 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5129 > GET_MODE_SIZE (TYPE_MODE (type)))
5130 ? wide_type : type);
5131 tree t1, t2;
5132 int same_p = tcode == code;
5133 tree op0 = NULL_TREE, op1 = NULL_TREE;
5135 /* Don't deal with constants of zero here; they confuse the code below. */
5136 if (integer_zerop (c))
5137 return NULL_TREE;
5139 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5140 op0 = TREE_OPERAND (t, 0);
5142 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5143 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5145 /* Note that we need not handle conditional operations here since fold
5146 already handles those cases. So just do arithmetic here. */
5147 switch (tcode)
5149 case INTEGER_CST:
5150 /* For a constant, we can always simplify if we are a multiply
5151 or (for divide and modulus) if it is a multiple of our constant. */
5152 if (code == MULT_EXPR
5153 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
5154 return const_binop (code, fold_convert (ctype, t),
5155 fold_convert (ctype, c), 0);
5156 break;
5158 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
5159 /* If op0 is an expression ... */
5160 if ((COMPARISON_CLASS_P (op0)
5161 || UNARY_CLASS_P (op0)
5162 || BINARY_CLASS_P (op0)
5163 || EXPRESSION_CLASS_P (op0))
5164 /* ... and is unsigned, and its type is smaller than ctype,
5165 then we cannot pass through as widening. */
5166 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
5167 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5168 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5169 && (GET_MODE_SIZE (TYPE_MODE (ctype))
5170 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
5171 /* ... or this is a truncation (t is narrower than op0),
5172 then we cannot pass through this narrowing. */
5173 || (GET_MODE_SIZE (TYPE_MODE (type))
5174 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
5175 /* ... or signedness changes for division or modulus,
5176 then we cannot pass through this conversion. */
5177 || (code != MULT_EXPR
5178 && (TYPE_UNSIGNED (ctype)
5179 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
5180 break;
5182 /* Pass the constant down and see if we can make a simplification. If
5183 we can, replace this expression with the inner simplification for
5184 possible later conversion to our or some other type. */
5185 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5186 && TREE_CODE (t2) == INTEGER_CST
5187 && ! TREE_CONSTANT_OVERFLOW (t2)
5188 && (0 != (t1 = extract_muldiv (op0, t2, code,
5189 code == MULT_EXPR
5190 ? ctype : NULL_TREE))))
5191 return t1;
5192 break;
5194 case ABS_EXPR:
5195 /* If widening the type changes it from signed to unsigned, then we
5196 must avoid building ABS_EXPR itself as unsigned. */
5197 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5199 tree cstype = (*lang_hooks.types.signed_type) (ctype);
5200 if ((t1 = extract_muldiv (op0, c, code, cstype)) != 0)
5202 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5203 return fold_convert (ctype, t1);
5205 break;
5207 /* FALLTHROUGH */
5208 case NEGATE_EXPR:
5209 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5210 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5211 break;
5213 case MIN_EXPR: case MAX_EXPR:
5214 /* If widening the type changes the signedness, then we can't perform
5215 this optimization as that changes the result. */
5216 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5217 break;
5219 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5220 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
5221 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
5223 if (tree_int_cst_sgn (c) < 0)
5224 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5226 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5227 fold_convert (ctype, t2));
5229 break;
5231 case LSHIFT_EXPR: case RSHIFT_EXPR:
5232 /* If the second operand is constant, this is a multiplication
5233 or floor division, by a power of two, so we can treat it that
5234 way unless the multiplier or divisor overflows. Signed
5235 left-shift overflow is implementation-defined rather than
5236 undefined in C90, so do not convert signed left shift into
5237 multiplication. */
5238 if (TREE_CODE (op1) == INTEGER_CST
5239 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5240 /* const_binop may not detect overflow correctly,
5241 so check for it explicitly here. */
5242 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5243 && TREE_INT_CST_HIGH (op1) == 0
5244 && 0 != (t1 = fold_convert (ctype,
5245 const_binop (LSHIFT_EXPR,
5246 size_one_node,
5247 op1, 0)))
5248 && ! TREE_OVERFLOW (t1))
5249 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5250 ? MULT_EXPR : FLOOR_DIV_EXPR,
5251 ctype, fold_convert (ctype, op0), t1),
5252 c, code, wide_type);
5253 break;
5255 case PLUS_EXPR: case MINUS_EXPR:
5256 /* See if we can eliminate the operation on both sides. If we can, we
5257 can return a new PLUS or MINUS. If we can't, the only remaining
5258 cases where we can do anything are if the second operand is a
5259 constant. */
5260 t1 = extract_muldiv (op0, c, code, wide_type);
5261 t2 = extract_muldiv (op1, c, code, wide_type);
5262 if (t1 != 0 && t2 != 0
5263 && (code == MULT_EXPR
5264 /* If not multiplication, we can only do this if both operands
5265 are divisible by c. */
5266 || (multiple_of_p (ctype, op0, c)
5267 && multiple_of_p (ctype, op1, c))))
5268 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5269 fold_convert (ctype, t2));
5271 /* If this was a subtraction, negate OP1 and set it to be an addition.
5272 This simplifies the logic below. */
5273 if (tcode == MINUS_EXPR)
5274 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5276 if (TREE_CODE (op1) != INTEGER_CST)
5277 break;
5279 /* If either OP1 or C are negative, this optimization is not safe for
5280 some of the division and remainder types while for others we need
5281 to change the code. */
5282 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5284 if (code == CEIL_DIV_EXPR)
5285 code = FLOOR_DIV_EXPR;
5286 else if (code == FLOOR_DIV_EXPR)
5287 code = CEIL_DIV_EXPR;
5288 else if (code != MULT_EXPR
5289 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5290 break;
5293 /* If it's a multiply or a division/modulus operation of a multiple
5294 of our constant, do the operation and verify it doesn't overflow. */
5295 if (code == MULT_EXPR
5296 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5298 op1 = const_binop (code, fold_convert (ctype, op1),
5299 fold_convert (ctype, c), 0);
5300 /* We allow the constant to overflow with wrapping semantics. */
5301 if (op1 == 0
5302 || (TREE_OVERFLOW (op1) && ! flag_wrapv))
5303 break;
5305 else
5306 break;
5308 /* If we have an unsigned type is not a sizetype, we cannot widen
5309 the operation since it will change the result if the original
5310 computation overflowed. */
5311 if (TYPE_UNSIGNED (ctype)
5312 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5313 && ctype != type)
5314 break;
5316 /* If we were able to eliminate our operation from the first side,
5317 apply our operation to the second side and reform the PLUS. */
5318 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5319 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5321 /* The last case is if we are a multiply. In that case, we can
5322 apply the distributive law to commute the multiply and addition
5323 if the multiplication of the constants doesn't overflow. */
5324 if (code == MULT_EXPR)
5325 return fold_build2 (tcode, ctype,
5326 fold_build2 (code, ctype,
5327 fold_convert (ctype, op0),
5328 fold_convert (ctype, c)),
5329 op1);
5331 break;
5333 case MULT_EXPR:
5334 /* We have a special case here if we are doing something like
5335 (C * 8) % 4 since we know that's zero. */
5336 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5337 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5338 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5339 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5340 return omit_one_operand (type, integer_zero_node, op0);
5342 /* ... fall through ... */
5344 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5345 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5346 /* If we can extract our operation from the LHS, do so and return a
5347 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5348 do something only if the second operand is a constant. */
5349 if (same_p
5350 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5351 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5352 fold_convert (ctype, op1));
5353 else if (tcode == MULT_EXPR && code == MULT_EXPR
5354 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
5355 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5356 fold_convert (ctype, t1));
5357 else if (TREE_CODE (op1) != INTEGER_CST)
5358 return 0;
5360 /* If these are the same operation types, we can associate them
5361 assuming no overflow. */
5362 if (tcode == code
5363 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
5364 fold_convert (ctype, c), 0))
5365 && ! TREE_OVERFLOW (t1))
5366 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
5368 /* If these operations "cancel" each other, we have the main
5369 optimizations of this pass, which occur when either constant is a
5370 multiple of the other, in which case we replace this with either an
5371 operation or CODE or TCODE.
5373 If we have an unsigned type that is not a sizetype, we cannot do
5374 this since it will change the result if the original computation
5375 overflowed. */
5376 if ((! TYPE_UNSIGNED (ctype)
5377 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5378 && ! flag_wrapv
5379 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5380 || (tcode == MULT_EXPR
5381 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5382 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
5384 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5385 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5386 fold_convert (ctype,
5387 const_binop (TRUNC_DIV_EXPR,
5388 op1, c, 0)));
5389 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
5390 return fold_build2 (code, ctype, fold_convert (ctype, op0),
5391 fold_convert (ctype,
5392 const_binop (TRUNC_DIV_EXPR,
5393 c, op1, 0)));
5395 break;
5397 default:
5398 break;
5401 return 0;
5404 /* Return a node which has the indicated constant VALUE (either 0 or
5405 1), and is of the indicated TYPE. */
5407 tree
5408 constant_boolean_node (int value, tree type)
5410 if (type == integer_type_node)
5411 return value ? integer_one_node : integer_zero_node;
5412 else if (type == boolean_type_node)
5413 return value ? boolean_true_node : boolean_false_node;
5414 else
5415 return build_int_cst (type, value);
5419 /* Return true if expr looks like an ARRAY_REF and set base and
5420 offset to the appropriate trees. If there is no offset,
5421 offset is set to NULL_TREE. */
5423 static bool
5424 extract_array_ref (tree expr, tree *base, tree *offset)
5426 /* We have to be careful with stripping nops as with the
5427 base type the meaning of the offset can change. */
5428 tree inner_expr = expr;
5429 STRIP_NOPS (inner_expr);
5430 /* One canonical form is a PLUS_EXPR with the first
5431 argument being an ADDR_EXPR with a possible NOP_EXPR
5432 attached. */
5433 if (TREE_CODE (expr) == PLUS_EXPR)
5435 tree op0 = TREE_OPERAND (expr, 0);
5436 STRIP_NOPS (op0);
5437 if (TREE_CODE (op0) == ADDR_EXPR)
5439 *base = TREE_OPERAND (expr, 0);
5440 *offset = TREE_OPERAND (expr, 1);
5441 return true;
5444 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
5445 which we transform into an ADDR_EXPR with appropriate
5446 offset. For other arguments to the ADDR_EXPR we assume
5447 zero offset and as such do not care about the ADDR_EXPR
5448 type and strip possible nops from it. */
5449 else if (TREE_CODE (inner_expr) == ADDR_EXPR)
5451 tree op0 = TREE_OPERAND (inner_expr, 0);
5452 if (TREE_CODE (op0) == ARRAY_REF)
5454 *base = build_fold_addr_expr (TREE_OPERAND (op0, 0));
5455 *offset = TREE_OPERAND (op0, 1);
5457 else
5459 *base = inner_expr;
5460 *offset = NULL_TREE;
5462 return true;
5465 return false;
5469 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5470 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5471 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5472 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5473 COND is the first argument to CODE; otherwise (as in the example
5474 given here), it is the second argument. TYPE is the type of the
5475 original expression. Return NULL_TREE if no simplification is
5476 possible. */
5478 static tree
5479 fold_binary_op_with_conditional_arg (enum tree_code code,
5480 tree type, tree op0, tree op1,
5481 tree cond, tree arg, int cond_first_p)
5483 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
5484 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
5485 tree test, true_value, false_value;
5486 tree lhs = NULL_TREE;
5487 tree rhs = NULL_TREE;
5489 /* This transformation is only worthwhile if we don't have to wrap
5490 arg in a SAVE_EXPR, and the operation can be simplified on at least
5491 one of the branches once its pushed inside the COND_EXPR. */
5492 if (!TREE_CONSTANT (arg))
5493 return NULL_TREE;
5495 if (TREE_CODE (cond) == COND_EXPR)
5497 test = TREE_OPERAND (cond, 0);
5498 true_value = TREE_OPERAND (cond, 1);
5499 false_value = TREE_OPERAND (cond, 2);
5500 /* If this operand throws an expression, then it does not make
5501 sense to try to perform a logical or arithmetic operation
5502 involving it. */
5503 if (VOID_TYPE_P (TREE_TYPE (true_value)))
5504 lhs = true_value;
5505 if (VOID_TYPE_P (TREE_TYPE (false_value)))
5506 rhs = false_value;
5508 else
5510 tree testtype = TREE_TYPE (cond);
5511 test = cond;
5512 true_value = constant_boolean_node (true, testtype);
5513 false_value = constant_boolean_node (false, testtype);
5516 arg = fold_convert (arg_type, arg);
5517 if (lhs == 0)
5519 true_value = fold_convert (cond_type, true_value);
5520 if (cond_first_p)
5521 lhs = fold_build2 (code, type, true_value, arg);
5522 else
5523 lhs = fold_build2 (code, type, arg, true_value);
5525 if (rhs == 0)
5527 false_value = fold_convert (cond_type, false_value);
5528 if (cond_first_p)
5529 rhs = fold_build2 (code, type, false_value, arg);
5530 else
5531 rhs = fold_build2 (code, type, arg, false_value);
5534 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
5535 return fold_convert (type, test);
5539 /* Subroutine of fold() that checks for the addition of +/- 0.0.
5541 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
5542 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
5543 ADDEND is the same as X.
5545 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
5546 and finite. The problematic cases are when X is zero, and its mode
5547 has signed zeros. In the case of rounding towards -infinity,
5548 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
5549 modes, X + 0 is not the same as X because -0 + 0 is 0. */
5551 static bool
5552 fold_real_zero_addition_p (tree type, tree addend, int negate)
5554 if (!real_zerop (addend))
5555 return false;
5557 /* Don't allow the fold with -fsignaling-nans. */
5558 if (HONOR_SNANS (TYPE_MODE (type)))
5559 return false;
5561 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
5562 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
5563 return true;
5565 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
5566 if (TREE_CODE (addend) == REAL_CST
5567 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
5568 negate = !negate;
5570 /* The mode has signed zeros, and we have to honor their sign.
5571 In this situation, there is only one case we can return true for.
5572 X - 0 is the same as X unless rounding towards -infinity is
5573 supported. */
5574 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
5577 /* Subroutine of fold() that checks comparisons of built-in math
5578 functions against real constants.
5580 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
5581 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
5582 is the type of the result and ARG0 and ARG1 are the operands of the
5583 comparison. ARG1 must be a TREE_REAL_CST.
5585 The function returns the constant folded tree if a simplification
5586 can be made, and NULL_TREE otherwise. */
5588 static tree
5589 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
5590 tree type, tree arg0, tree arg1)
5592 REAL_VALUE_TYPE c;
5594 if (BUILTIN_SQRT_P (fcode))
5596 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
5597 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
5599 c = TREE_REAL_CST (arg1);
5600 if (REAL_VALUE_NEGATIVE (c))
5602 /* sqrt(x) < y is always false, if y is negative. */
5603 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
5604 return omit_one_operand (type, integer_zero_node, arg);
5606 /* sqrt(x) > y is always true, if y is negative and we
5607 don't care about NaNs, i.e. negative values of x. */
5608 if (code == NE_EXPR || !HONOR_NANS (mode))
5609 return omit_one_operand (type, integer_one_node, arg);
5611 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5612 return fold_build2 (GE_EXPR, type, arg,
5613 build_real (TREE_TYPE (arg), dconst0));
5615 else if (code == GT_EXPR || code == GE_EXPR)
5617 REAL_VALUE_TYPE c2;
5619 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5620 real_convert (&c2, mode, &c2);
5622 if (REAL_VALUE_ISINF (c2))
5624 /* sqrt(x) > y is x == +Inf, when y is very large. */
5625 if (HONOR_INFINITIES (mode))
5626 return fold_build2 (EQ_EXPR, type, arg,
5627 build_real (TREE_TYPE (arg), c2));
5629 /* sqrt(x) > y is always false, when y is very large
5630 and we don't care about infinities. */
5631 return omit_one_operand (type, integer_zero_node, arg);
5634 /* sqrt(x) > c is the same as x > c*c. */
5635 return fold_build2 (code, type, arg,
5636 build_real (TREE_TYPE (arg), c2));
5638 else if (code == LT_EXPR || code == LE_EXPR)
5640 REAL_VALUE_TYPE c2;
5642 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5643 real_convert (&c2, mode, &c2);
5645 if (REAL_VALUE_ISINF (c2))
5647 /* sqrt(x) < y is always true, when y is a very large
5648 value and we don't care about NaNs or Infinities. */
5649 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
5650 return omit_one_operand (type, integer_one_node, arg);
5652 /* sqrt(x) < y is x != +Inf when y is very large and we
5653 don't care about NaNs. */
5654 if (! HONOR_NANS (mode))
5655 return fold_build2 (NE_EXPR, type, arg,
5656 build_real (TREE_TYPE (arg), c2));
5658 /* sqrt(x) < y is x >= 0 when y is very large and we
5659 don't care about Infinities. */
5660 if (! HONOR_INFINITIES (mode))
5661 return fold_build2 (GE_EXPR, type, arg,
5662 build_real (TREE_TYPE (arg), dconst0));
5664 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5665 if (lang_hooks.decls.global_bindings_p () != 0
5666 || CONTAINS_PLACEHOLDER_P (arg))
5667 return NULL_TREE;
5669 arg = save_expr (arg);
5670 return fold_build2 (TRUTH_ANDIF_EXPR, type,
5671 fold_build2 (GE_EXPR, type, arg,
5672 build_real (TREE_TYPE (arg),
5673 dconst0)),
5674 fold_build2 (NE_EXPR, type, arg,
5675 build_real (TREE_TYPE (arg),
5676 c2)));
5679 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5680 if (! HONOR_NANS (mode))
5681 return fold_build2 (code, type, arg,
5682 build_real (TREE_TYPE (arg), c2));
5684 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5685 if (lang_hooks.decls.global_bindings_p () == 0
5686 && ! CONTAINS_PLACEHOLDER_P (arg))
5688 arg = save_expr (arg);
5689 return fold_build2 (TRUTH_ANDIF_EXPR, type,
5690 fold_build2 (GE_EXPR, type, arg,
5691 build_real (TREE_TYPE (arg),
5692 dconst0)),
5693 fold_build2 (code, type, arg,
5694 build_real (TREE_TYPE (arg),
5695 c2)));
5700 return NULL_TREE;
5703 /* Subroutine of fold() that optimizes comparisons against Infinities,
5704 either +Inf or -Inf.
5706 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5707 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5708 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5710 The function returns the constant folded tree if a simplification
5711 can be made, and NULL_TREE otherwise. */
5713 static tree
5714 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
5716 enum machine_mode mode;
5717 REAL_VALUE_TYPE max;
5718 tree temp;
5719 bool neg;
5721 mode = TYPE_MODE (TREE_TYPE (arg0));
5723 /* For negative infinity swap the sense of the comparison. */
5724 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
5725 if (neg)
5726 code = swap_tree_comparison (code);
5728 switch (code)
5730 case GT_EXPR:
5731 /* x > +Inf is always false, if with ignore sNANs. */
5732 if (HONOR_SNANS (mode))
5733 return NULL_TREE;
5734 return omit_one_operand (type, integer_zero_node, arg0);
5736 case LE_EXPR:
5737 /* x <= +Inf is always true, if we don't case about NaNs. */
5738 if (! HONOR_NANS (mode))
5739 return omit_one_operand (type, integer_one_node, arg0);
5741 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
5742 if (lang_hooks.decls.global_bindings_p () == 0
5743 && ! CONTAINS_PLACEHOLDER_P (arg0))
5745 arg0 = save_expr (arg0);
5746 return fold_build2 (EQ_EXPR, type, arg0, arg0);
5748 break;
5750 case EQ_EXPR:
5751 case GE_EXPR:
5752 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
5753 real_maxval (&max, neg, mode);
5754 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
5755 arg0, build_real (TREE_TYPE (arg0), max));
5757 case LT_EXPR:
5758 /* x < +Inf is always equal to x <= DBL_MAX. */
5759 real_maxval (&max, neg, mode);
5760 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
5761 arg0, build_real (TREE_TYPE (arg0), max));
5763 case NE_EXPR:
5764 /* x != +Inf is always equal to !(x > DBL_MAX). */
5765 real_maxval (&max, neg, mode);
5766 if (! HONOR_NANS (mode))
5767 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
5768 arg0, build_real (TREE_TYPE (arg0), max));
5770 /* The transformation below creates non-gimple code and thus is
5771 not appropriate if we are in gimple form. */
5772 if (in_gimple_form)
5773 return NULL_TREE;
5775 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
5776 arg0, build_real (TREE_TYPE (arg0), max));
5777 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
5779 default:
5780 break;
5783 return NULL_TREE;
5786 /* Subroutine of fold() that optimizes comparisons of a division by
5787 a nonzero integer constant against an integer constant, i.e.
5788 X/C1 op C2.
5790 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5791 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5792 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5794 The function returns the constant folded tree if a simplification
5795 can be made, and NULL_TREE otherwise. */
5797 static tree
5798 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
5800 tree prod, tmp, hi, lo;
5801 tree arg00 = TREE_OPERAND (arg0, 0);
5802 tree arg01 = TREE_OPERAND (arg0, 1);
5803 unsigned HOST_WIDE_INT lpart;
5804 HOST_WIDE_INT hpart;
5805 int overflow;
5807 /* We have to do this the hard way to detect unsigned overflow.
5808 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
5809 overflow = mul_double (TREE_INT_CST_LOW (arg01),
5810 TREE_INT_CST_HIGH (arg01),
5811 TREE_INT_CST_LOW (arg1),
5812 TREE_INT_CST_HIGH (arg1), &lpart, &hpart);
5813 prod = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
5814 prod = force_fit_type (prod, -1, overflow, false);
5816 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
5818 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
5819 lo = prod;
5821 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
5822 overflow = add_double (TREE_INT_CST_LOW (prod),
5823 TREE_INT_CST_HIGH (prod),
5824 TREE_INT_CST_LOW (tmp),
5825 TREE_INT_CST_HIGH (tmp),
5826 &lpart, &hpart);
5827 hi = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
5828 hi = force_fit_type (hi, -1, overflow | TREE_OVERFLOW (prod),
5829 TREE_CONSTANT_OVERFLOW (prod));
5831 else if (tree_int_cst_sgn (arg01) >= 0)
5833 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
5834 switch (tree_int_cst_sgn (arg1))
5836 case -1:
5837 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
5838 hi = prod;
5839 break;
5841 case 0:
5842 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
5843 hi = tmp;
5844 break;
5846 case 1:
5847 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
5848 lo = prod;
5849 break;
5851 default:
5852 gcc_unreachable ();
5855 else
5857 /* A negative divisor reverses the relational operators. */
5858 code = swap_tree_comparison (code);
5860 tmp = int_const_binop (PLUS_EXPR, arg01, integer_one_node, 0);
5861 switch (tree_int_cst_sgn (arg1))
5863 case -1:
5864 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
5865 lo = prod;
5866 break;
5868 case 0:
5869 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
5870 lo = tmp;
5871 break;
5873 case 1:
5874 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
5875 hi = prod;
5876 break;
5878 default:
5879 gcc_unreachable ();
5883 switch (code)
5885 case EQ_EXPR:
5886 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
5887 return omit_one_operand (type, integer_zero_node, arg00);
5888 if (TREE_OVERFLOW (hi))
5889 return fold_build2 (GE_EXPR, type, arg00, lo);
5890 if (TREE_OVERFLOW (lo))
5891 return fold_build2 (LE_EXPR, type, arg00, hi);
5892 return build_range_check (type, arg00, 1, lo, hi);
5894 case NE_EXPR:
5895 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
5896 return omit_one_operand (type, integer_one_node, arg00);
5897 if (TREE_OVERFLOW (hi))
5898 return fold_build2 (LT_EXPR, type, arg00, lo);
5899 if (TREE_OVERFLOW (lo))
5900 return fold_build2 (GT_EXPR, type, arg00, hi);
5901 return build_range_check (type, arg00, 0, lo, hi);
5903 case LT_EXPR:
5904 if (TREE_OVERFLOW (lo))
5905 return omit_one_operand (type, integer_zero_node, arg00);
5906 return fold_build2 (LT_EXPR, type, arg00, lo);
5908 case LE_EXPR:
5909 if (TREE_OVERFLOW (hi))
5910 return omit_one_operand (type, integer_one_node, arg00);
5911 return fold_build2 (LE_EXPR, type, arg00, hi);
5913 case GT_EXPR:
5914 if (TREE_OVERFLOW (hi))
5915 return omit_one_operand (type, integer_zero_node, arg00);
5916 return fold_build2 (GT_EXPR, type, arg00, hi);
5918 case GE_EXPR:
5919 if (TREE_OVERFLOW (lo))
5920 return omit_one_operand (type, integer_one_node, arg00);
5921 return fold_build2 (GE_EXPR, type, arg00, lo);
5923 default:
5924 break;
5927 return NULL_TREE;
5931 /* If CODE with arguments ARG0 and ARG1 represents a single bit
5932 equality/inequality test, then return a simplified form of the test
5933 using a sign testing. Otherwise return NULL. TYPE is the desired
5934 result type. */
5936 static tree
5937 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
5938 tree result_type)
5940 /* If this is testing a single bit, we can optimize the test. */
5941 if ((code == NE_EXPR || code == EQ_EXPR)
5942 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
5943 && integer_pow2p (TREE_OPERAND (arg0, 1)))
5945 /* If we have (A & C) != 0 where C is the sign bit of A, convert
5946 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
5947 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
5949 if (arg00 != NULL_TREE
5950 /* This is only a win if casting to a signed type is cheap,
5951 i.e. when arg00's type is not a partial mode. */
5952 && TYPE_PRECISION (TREE_TYPE (arg00))
5953 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
5955 tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
5956 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
5957 result_type, fold_convert (stype, arg00),
5958 fold_convert (stype, integer_zero_node));
5962 return NULL_TREE;
5965 /* If CODE with arguments ARG0 and ARG1 represents a single bit
5966 equality/inequality test, then return a simplified form of
5967 the test using shifts and logical operations. Otherwise return
5968 NULL. TYPE is the desired result type. */
5970 tree
5971 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
5972 tree result_type)
5974 /* If this is testing a single bit, we can optimize the test. */
5975 if ((code == NE_EXPR || code == EQ_EXPR)
5976 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
5977 && integer_pow2p (TREE_OPERAND (arg0, 1)))
5979 tree inner = TREE_OPERAND (arg0, 0);
5980 tree type = TREE_TYPE (arg0);
5981 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
5982 enum machine_mode operand_mode = TYPE_MODE (type);
5983 int ops_unsigned;
5984 tree signed_type, unsigned_type, intermediate_type;
5985 tree tem;
5987 /* First, see if we can fold the single bit test into a sign-bit
5988 test. */
5989 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
5990 result_type);
5991 if (tem)
5992 return tem;
5994 /* Otherwise we have (A & C) != 0 where C is a single bit,
5995 convert that into ((A >> C2) & 1). Where C2 = log2(C).
5996 Similarly for (A & C) == 0. */
5998 /* If INNER is a right shift of a constant and it plus BITNUM does
5999 not overflow, adjust BITNUM and INNER. */
6000 if (TREE_CODE (inner) == RSHIFT_EXPR
6001 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6002 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6003 && bitnum < TYPE_PRECISION (type)
6004 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6005 bitnum - TYPE_PRECISION (type)))
6007 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6008 inner = TREE_OPERAND (inner, 0);
6011 /* If we are going to be able to omit the AND below, we must do our
6012 operations as unsigned. If we must use the AND, we have a choice.
6013 Normally unsigned is faster, but for some machines signed is. */
6014 #ifdef LOAD_EXTEND_OP
6015 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6016 && !flag_syntax_only) ? 0 : 1;
6017 #else
6018 ops_unsigned = 1;
6019 #endif
6021 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6022 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6023 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6024 inner = fold_convert (intermediate_type, inner);
6026 if (bitnum != 0)
6027 inner = build2 (RSHIFT_EXPR, intermediate_type,
6028 inner, size_int (bitnum));
6030 if (code == EQ_EXPR)
6031 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type,
6032 inner, integer_one_node);
6034 /* Put the AND last so it can combine with more things. */
6035 inner = build2 (BIT_AND_EXPR, intermediate_type,
6036 inner, integer_one_node);
6038 /* Make sure to return the proper type. */
6039 inner = fold_convert (result_type, inner);
6041 return inner;
6043 return NULL_TREE;
6046 /* Check whether we are allowed to reorder operands arg0 and arg1,
6047 such that the evaluation of arg1 occurs before arg0. */
6049 static bool
6050 reorder_operands_p (tree arg0, tree arg1)
6052 if (! flag_evaluation_order)
6053 return true;
6054 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6055 return true;
6056 return ! TREE_SIDE_EFFECTS (arg0)
6057 && ! TREE_SIDE_EFFECTS (arg1);
6060 /* Test whether it is preferable two swap two operands, ARG0 and
6061 ARG1, for example because ARG0 is an integer constant and ARG1
6062 isn't. If REORDER is true, only recommend swapping if we can
6063 evaluate the operands in reverse order. */
6065 bool
6066 tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
6068 STRIP_SIGN_NOPS (arg0);
6069 STRIP_SIGN_NOPS (arg1);
6071 if (TREE_CODE (arg1) == INTEGER_CST)
6072 return 0;
6073 if (TREE_CODE (arg0) == INTEGER_CST)
6074 return 1;
6076 if (TREE_CODE (arg1) == REAL_CST)
6077 return 0;
6078 if (TREE_CODE (arg0) == REAL_CST)
6079 return 1;
6081 if (TREE_CODE (arg1) == COMPLEX_CST)
6082 return 0;
6083 if (TREE_CODE (arg0) == COMPLEX_CST)
6084 return 1;
6086 if (TREE_CONSTANT (arg1))
6087 return 0;
6088 if (TREE_CONSTANT (arg0))
6089 return 1;
6091 if (optimize_size)
6092 return 0;
6094 if (reorder && flag_evaluation_order
6095 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6096 return 0;
6098 if (DECL_P (arg1))
6099 return 0;
6100 if (DECL_P (arg0))
6101 return 1;
6103 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6104 for commutative and comparison operators. Ensuring a canonical
6105 form allows the optimizers to find additional redundancies without
6106 having to explicitly check for both orderings. */
6107 if (TREE_CODE (arg0) == SSA_NAME
6108 && TREE_CODE (arg1) == SSA_NAME
6109 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6110 return 1;
6112 return 0;
6115 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6116 ARG0 is extended to a wider type. */
6118 static tree
6119 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
6121 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6122 tree arg1_unw;
6123 tree shorter_type, outer_type;
6124 tree min, max;
6125 bool above, below;
6127 if (arg0_unw == arg0)
6128 return NULL_TREE;
6129 shorter_type = TREE_TYPE (arg0_unw);
6131 #ifdef HAVE_canonicalize_funcptr_for_compare
6132 /* Disable this optimization if we're casting a function pointer
6133 type on targets that require function pointer canonicalization. */
6134 if (HAVE_canonicalize_funcptr_for_compare
6135 && TREE_CODE (shorter_type) == POINTER_TYPE
6136 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6137 return NULL_TREE;
6138 #endif
6140 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6141 return NULL_TREE;
6143 arg1_unw = get_unwidened (arg1, shorter_type);
6144 if (!arg1_unw)
6145 return NULL_TREE;
6147 /* If possible, express the comparison in the shorter mode. */
6148 if ((code == EQ_EXPR || code == NE_EXPR
6149 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6150 && (TREE_TYPE (arg1_unw) == shorter_type
6151 || (TREE_CODE (arg1_unw) == INTEGER_CST
6152 && TREE_CODE (shorter_type) == INTEGER_TYPE
6153 && int_fits_type_p (arg1_unw, shorter_type))))
6154 return fold_build2 (code, type, arg0_unw,
6155 fold_convert (shorter_type, arg1_unw));
6157 if (TREE_CODE (arg1_unw) != INTEGER_CST)
6158 return NULL_TREE;
6160 /* If we are comparing with the integer that does not fit into the range
6161 of the shorter type, the result is known. */
6162 outer_type = TREE_TYPE (arg1_unw);
6163 min = lower_bound_in_type (outer_type, shorter_type);
6164 max = upper_bound_in_type (outer_type, shorter_type);
6166 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6167 max, arg1_unw));
6168 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6169 arg1_unw, min));
6171 switch (code)
6173 case EQ_EXPR:
6174 if (above || below)
6175 return omit_one_operand (type, integer_zero_node, arg0);
6176 break;
6178 case NE_EXPR:
6179 if (above || below)
6180 return omit_one_operand (type, integer_one_node, arg0);
6181 break;
6183 case LT_EXPR:
6184 case LE_EXPR:
6185 if (above)
6186 return omit_one_operand (type, integer_one_node, arg0);
6187 else if (below)
6188 return omit_one_operand (type, integer_zero_node, arg0);
6190 case GT_EXPR:
6191 case GE_EXPR:
6192 if (above)
6193 return omit_one_operand (type, integer_zero_node, arg0);
6194 else if (below)
6195 return omit_one_operand (type, integer_one_node, arg0);
6197 default:
6198 break;
6201 return NULL_TREE;
6204 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6205 ARG0 just the signedness is changed. */
6207 static tree
6208 fold_sign_changed_comparison (enum tree_code code, tree type,
6209 tree arg0, tree arg1)
6211 tree arg0_inner, tmp;
6212 tree inner_type, outer_type;
6214 if (TREE_CODE (arg0) != NOP_EXPR
6215 && TREE_CODE (arg0) != CONVERT_EXPR)
6216 return NULL_TREE;
6218 outer_type = TREE_TYPE (arg0);
6219 arg0_inner = TREE_OPERAND (arg0, 0);
6220 inner_type = TREE_TYPE (arg0_inner);
6222 #ifdef HAVE_canonicalize_funcptr_for_compare
6223 /* Disable this optimization if we're casting a function pointer
6224 type on targets that require function pointer canonicalization. */
6225 if (HAVE_canonicalize_funcptr_for_compare
6226 && TREE_CODE (inner_type) == POINTER_TYPE
6227 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6228 return NULL_TREE;
6229 #endif
6231 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6232 return NULL_TREE;
6234 if (TREE_CODE (arg1) != INTEGER_CST
6235 && !((TREE_CODE (arg1) == NOP_EXPR
6236 || TREE_CODE (arg1) == CONVERT_EXPR)
6237 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6238 return NULL_TREE;
6240 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6241 && code != NE_EXPR
6242 && code != EQ_EXPR)
6243 return NULL_TREE;
6245 if (TREE_CODE (arg1) == INTEGER_CST)
6247 tmp = build_int_cst_wide (inner_type,
6248 TREE_INT_CST_LOW (arg1),
6249 TREE_INT_CST_HIGH (arg1));
6250 arg1 = force_fit_type (tmp, 0,
6251 TREE_OVERFLOW (arg1),
6252 TREE_CONSTANT_OVERFLOW (arg1));
6254 else
6255 arg1 = fold_convert (inner_type, arg1);
6257 return fold_build2 (code, type, arg0_inner, arg1);
6260 /* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
6261 step of the array. ADDR is the address. MULT is the multiplicative expression.
6262 If the function succeeds, the new address expression is returned. Otherwise
6263 NULL_TREE is returned. */
6265 static tree
6266 try_move_mult_to_index (enum tree_code code, tree addr, tree mult)
6268 tree s, delta, step;
6269 tree arg0 = TREE_OPERAND (mult, 0), arg1 = TREE_OPERAND (mult, 1);
6270 tree ref = TREE_OPERAND (addr, 0), pref;
6271 tree ret, pos;
6272 tree itype;
6274 STRIP_NOPS (arg0);
6275 STRIP_NOPS (arg1);
6277 if (TREE_CODE (arg0) == INTEGER_CST)
6279 s = arg0;
6280 delta = arg1;
6282 else if (TREE_CODE (arg1) == INTEGER_CST)
6284 s = arg1;
6285 delta = arg0;
6287 else
6288 return NULL_TREE;
6290 for (;; ref = TREE_OPERAND (ref, 0))
6292 if (TREE_CODE (ref) == ARRAY_REF)
6294 step = array_ref_element_size (ref);
6296 if (TREE_CODE (step) != INTEGER_CST)
6297 continue;
6299 itype = TREE_TYPE (step);
6301 /* If the type sizes do not match, we might run into problems
6302 when one of them would overflow. */
6303 if (TYPE_PRECISION (itype) != TYPE_PRECISION (TREE_TYPE (s)))
6304 continue;
6306 if (!operand_equal_p (step, fold_convert (itype, s), 0))
6307 continue;
6309 delta = fold_convert (itype, delta);
6310 break;
6313 if (!handled_component_p (ref))
6314 return NULL_TREE;
6317 /* We found the suitable array reference. So copy everything up to it,
6318 and replace the index. */
6320 pref = TREE_OPERAND (addr, 0);
6321 ret = copy_node (pref);
6322 pos = ret;
6324 while (pref != ref)
6326 pref = TREE_OPERAND (pref, 0);
6327 TREE_OPERAND (pos, 0) = copy_node (pref);
6328 pos = TREE_OPERAND (pos, 0);
6331 TREE_OPERAND (pos, 1) = fold_build2 (code, itype,
6332 TREE_OPERAND (pos, 1),
6333 delta);
6335 return build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
6339 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6340 means A >= Y && A != MAX, but in this case we know that
6341 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6343 static tree
6344 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
6346 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6348 if (TREE_CODE (bound) == LT_EXPR)
6349 a = TREE_OPERAND (bound, 0);
6350 else if (TREE_CODE (bound) == GT_EXPR)
6351 a = TREE_OPERAND (bound, 1);
6352 else
6353 return NULL_TREE;
6355 typea = TREE_TYPE (a);
6356 if (!INTEGRAL_TYPE_P (typea)
6357 && !POINTER_TYPE_P (typea))
6358 return NULL_TREE;
6360 if (TREE_CODE (ineq) == LT_EXPR)
6362 a1 = TREE_OPERAND (ineq, 1);
6363 y = TREE_OPERAND (ineq, 0);
6365 else if (TREE_CODE (ineq) == GT_EXPR)
6367 a1 = TREE_OPERAND (ineq, 0);
6368 y = TREE_OPERAND (ineq, 1);
6370 else
6371 return NULL_TREE;
6373 if (TREE_TYPE (a1) != typea)
6374 return NULL_TREE;
6376 diff = fold_build2 (MINUS_EXPR, typea, a1, a);
6377 if (!integer_onep (diff))
6378 return NULL_TREE;
6380 return fold_build2 (GE_EXPR, type, a, y);
6383 /* Fold complex addition when both components are accessible by parts.
6384 Return non-null if successful. CODE should be PLUS_EXPR for addition,
6385 or MINUS_EXPR for subtraction. */
6387 static tree
6388 fold_complex_add (tree type, tree ac, tree bc, enum tree_code code)
6390 tree ar, ai, br, bi, rr, ri, inner_type;
6392 if (TREE_CODE (ac) == COMPLEX_EXPR)
6393 ar = TREE_OPERAND (ac, 0), ai = TREE_OPERAND (ac, 1);
6394 else if (TREE_CODE (ac) == COMPLEX_CST)
6395 ar = TREE_REALPART (ac), ai = TREE_IMAGPART (ac);
6396 else
6397 return NULL;
6399 if (TREE_CODE (bc) == COMPLEX_EXPR)
6400 br = TREE_OPERAND (bc, 0), bi = TREE_OPERAND (bc, 1);
6401 else if (TREE_CODE (bc) == COMPLEX_CST)
6402 br = TREE_REALPART (bc), bi = TREE_IMAGPART (bc);
6403 else
6404 return NULL;
6406 inner_type = TREE_TYPE (type);
6408 rr = fold_build2 (code, inner_type, ar, br);
6409 ri = fold_build2 (code, inner_type, ai, bi);
6411 return fold_build2 (COMPLEX_EXPR, type, rr, ri);
6414 /* Perform some simplifications of complex multiplication when one or more
6415 of the components are constants or zeros. Return non-null if successful. */
6417 tree
6418 fold_complex_mult_parts (tree type, tree ar, tree ai, tree br, tree bi)
6420 tree rr, ri, inner_type, zero;
6421 bool ar0, ai0, br0, bi0, bi1;
6423 inner_type = TREE_TYPE (type);
6424 zero = NULL;
6426 if (SCALAR_FLOAT_TYPE_P (inner_type))
6428 ar0 = ai0 = br0 = bi0 = bi1 = false;
6430 /* We're only interested in +0.0 here, thus we don't use real_zerop. */
6432 if (TREE_CODE (ar) == REAL_CST
6433 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ar), dconst0))
6434 ar0 = true, zero = ar;
6436 if (TREE_CODE (ai) == REAL_CST
6437 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst0))
6438 ai0 = true, zero = ai;
6440 if (TREE_CODE (br) == REAL_CST
6441 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (br), dconst0))
6442 br0 = true, zero = br;
6444 if (TREE_CODE (bi) == REAL_CST)
6446 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (bi), dconst0))
6447 bi0 = true, zero = bi;
6448 else if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (bi), dconst1))
6449 bi1 = true;
6452 else
6454 ar0 = integer_zerop (ar);
6455 if (ar0)
6456 zero = ar;
6457 ai0 = integer_zerop (ai);
6458 if (ai0)
6459 zero = ai;
6460 br0 = integer_zerop (br);
6461 if (br0)
6462 zero = br;
6463 bi0 = integer_zerop (bi);
6464 if (bi0)
6466 zero = bi;
6467 bi1 = false;
6469 else
6470 bi1 = integer_onep (bi);
6473 /* We won't optimize anything below unless something is zero. */
6474 if (zero == NULL)
6475 return NULL;
6477 if (ai0 && br0 && bi1)
6479 rr = zero;
6480 ri = ar;
6482 else if (ai0 && bi0)
6484 rr = fold_build2 (MULT_EXPR, inner_type, ar, br);
6485 ri = zero;
6487 else if (ai0 && br0)
6489 rr = zero;
6490 ri = fold_build2 (MULT_EXPR, inner_type, ar, bi);
6492 else if (ar0 && bi0)
6494 rr = zero;
6495 ri = fold_build2 (MULT_EXPR, inner_type, ai, br);
6497 else if (ar0 && br0)
6499 rr = fold_build2 (MULT_EXPR, inner_type, ai, bi);
6500 rr = fold_build1 (NEGATE_EXPR, inner_type, rr);
6501 ri = zero;
6503 else if (bi0)
6505 rr = fold_build2 (MULT_EXPR, inner_type, ar, br);
6506 ri = fold_build2 (MULT_EXPR, inner_type, ai, br);
6508 else if (ai0)
6510 rr = fold_build2 (MULT_EXPR, inner_type, ar, br);
6511 ri = fold_build2 (MULT_EXPR, inner_type, ar, bi);
6513 else if (br0)
6515 rr = fold_build2 (MULT_EXPR, inner_type, ai, bi);
6516 rr = fold_build1 (NEGATE_EXPR, inner_type, rr);
6517 ri = fold_build2 (MULT_EXPR, inner_type, ar, bi);
6519 else if (ar0)
6521 rr = fold_build2 (MULT_EXPR, inner_type, ai, bi);
6522 rr = fold_build1 (NEGATE_EXPR, inner_type, rr);
6523 ri = fold_build2 (MULT_EXPR, inner_type, ai, br);
6525 else
6526 return NULL;
6528 return fold_build2 (COMPLEX_EXPR, type, rr, ri);
6531 static tree
6532 fold_complex_mult (tree type, tree ac, tree bc)
6534 tree ar, ai, br, bi;
6536 if (TREE_CODE (ac) == COMPLEX_EXPR)
6537 ar = TREE_OPERAND (ac, 0), ai = TREE_OPERAND (ac, 1);
6538 else if (TREE_CODE (ac) == COMPLEX_CST)
6539 ar = TREE_REALPART (ac), ai = TREE_IMAGPART (ac);
6540 else
6541 return NULL;
6543 if (TREE_CODE (bc) == COMPLEX_EXPR)
6544 br = TREE_OPERAND (bc, 0), bi = TREE_OPERAND (bc, 1);
6545 else if (TREE_CODE (bc) == COMPLEX_CST)
6546 br = TREE_REALPART (bc), bi = TREE_IMAGPART (bc);
6547 else
6548 return NULL;
6550 return fold_complex_mult_parts (type, ar, ai, br, bi);
6553 /* Perform some simplifications of complex division when one or more of
6554 the components are constants or zeros. Return non-null if successful. */
6556 tree
6557 fold_complex_div_parts (tree type, tree ar, tree ai, tree br, tree bi,
6558 enum tree_code code)
6560 tree rr, ri, inner_type, zero;
6561 bool ar0, ai0, br0, bi0, bi1;
6563 inner_type = TREE_TYPE (type);
6564 zero = NULL;
6566 if (SCALAR_FLOAT_TYPE_P (inner_type))
6568 ar0 = ai0 = br0 = bi0 = bi1 = false;
6570 /* We're only interested in +0.0 here, thus we don't use real_zerop. */
6572 if (TREE_CODE (ar) == REAL_CST
6573 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ar), dconst0))
6574 ar0 = true, zero = ar;
6576 if (TREE_CODE (ai) == REAL_CST
6577 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst0))
6578 ai0 = true, zero = ai;
6580 if (TREE_CODE (br) == REAL_CST
6581 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (br), dconst0))
6582 br0 = true, zero = br;
6584 if (TREE_CODE (bi) == REAL_CST)
6586 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (bi), dconst0))
6587 bi0 = true, zero = bi;
6588 else if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (bi), dconst1))
6589 bi1 = true;
6592 else
6594 ar0 = integer_zerop (ar);
6595 if (ar0)
6596 zero = ar;
6597 ai0 = integer_zerop (ai);
6598 if (ai0)
6599 zero = ai;
6600 br0 = integer_zerop (br);
6601 if (br0)
6602 zero = br;
6603 bi0 = integer_zerop (bi);
6604 if (bi0)
6606 zero = bi;
6607 bi1 = false;
6609 else
6610 bi1 = integer_onep (bi);
6613 /* We won't optimize anything below unless something is zero. */
6614 if (zero == NULL)
6615 return NULL;
6617 if (ai0 && bi0)
6619 rr = fold_build2 (code, inner_type, ar, br);
6620 ri = zero;
6622 else if (ai0 && br0)
6624 rr = zero;
6625 ri = fold_build2 (code, inner_type, ar, bi);
6626 ri = fold_build1 (NEGATE_EXPR, inner_type, ri);
6628 else if (ar0 && bi0)
6630 rr = zero;
6631 ri = fold_build2 (code, inner_type, ai, br);
6633 else if (ar0 && br0)
6635 rr = fold_build2 (code, inner_type, ai, bi);
6636 ri = zero;
6638 else if (bi0)
6640 rr = fold_build2 (code, inner_type, ar, br);
6641 ri = fold_build2 (code, inner_type, ai, br);
6643 else if (br0)
6645 rr = fold_build2 (code, inner_type, ai, bi);
6646 ri = fold_build2 (code, inner_type, ar, bi);
6647 ri = fold_build1 (NEGATE_EXPR, inner_type, ri);
6649 else
6650 return NULL;
6652 return fold_build2 (COMPLEX_EXPR, type, rr, ri);
6655 static tree
6656 fold_complex_div (tree type, tree ac, tree bc, enum tree_code code)
6658 tree ar, ai, br, bi;
6660 if (TREE_CODE (ac) == COMPLEX_EXPR)
6661 ar = TREE_OPERAND (ac, 0), ai = TREE_OPERAND (ac, 1);
6662 else if (TREE_CODE (ac) == COMPLEX_CST)
6663 ar = TREE_REALPART (ac), ai = TREE_IMAGPART (ac);
6664 else
6665 return NULL;
6667 if (TREE_CODE (bc) == COMPLEX_EXPR)
6668 br = TREE_OPERAND (bc, 0), bi = TREE_OPERAND (bc, 1);
6669 else if (TREE_CODE (bc) == COMPLEX_CST)
6670 br = TREE_REALPART (bc), bi = TREE_IMAGPART (bc);
6671 else
6672 return NULL;
6674 return fold_complex_div_parts (type, ar, ai, br, bi, code);
6677 /* Fold a unary expression of code CODE and type TYPE with operand
6678 OP0. Return the folded expression if folding is successful.
6679 Otherwise, return NULL_TREE. */
6681 tree
6682 fold_unary (enum tree_code code, tree type, tree op0)
6684 tree tem;
6685 tree arg0;
6686 enum tree_code_class kind = TREE_CODE_CLASS (code);
6688 gcc_assert (IS_EXPR_CODE_CLASS (kind)
6689 && TREE_CODE_LENGTH (code) == 1);
6691 arg0 = op0;
6692 if (arg0)
6694 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
6696 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
6697 STRIP_SIGN_NOPS (arg0);
6699 else
6701 /* Strip any conversions that don't change the mode. This
6702 is safe for every expression, except for a comparison
6703 expression because its signedness is derived from its
6704 operands.
6706 Note that this is done as an internal manipulation within
6707 the constant folder, in order to find the simplest
6708 representation of the arguments so that their form can be
6709 studied. In any cases, the appropriate type conversions
6710 should be put back in the tree that will get out of the
6711 constant folder. */
6712 STRIP_NOPS (arg0);
6716 if (TREE_CODE_CLASS (code) == tcc_unary)
6718 if (TREE_CODE (arg0) == COMPOUND_EXPR)
6719 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
6720 fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
6721 else if (TREE_CODE (arg0) == COND_EXPR)
6723 tree arg01 = TREE_OPERAND (arg0, 1);
6724 tree arg02 = TREE_OPERAND (arg0, 2);
6725 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
6726 arg01 = fold_build1 (code, type, arg01);
6727 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
6728 arg02 = fold_build1 (code, type, arg02);
6729 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
6730 arg01, arg02);
6732 /* If this was a conversion, and all we did was to move into
6733 inside the COND_EXPR, bring it back out. But leave it if
6734 it is a conversion from integer to integer and the
6735 result precision is no wider than a word since such a
6736 conversion is cheap and may be optimized away by combine,
6737 while it couldn't if it were outside the COND_EXPR. Then return
6738 so we don't get into an infinite recursion loop taking the
6739 conversion out and then back in. */
6741 if ((code == NOP_EXPR || code == CONVERT_EXPR
6742 || code == NON_LVALUE_EXPR)
6743 && TREE_CODE (tem) == COND_EXPR
6744 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
6745 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
6746 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
6747 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
6748 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
6749 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
6750 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
6751 && (INTEGRAL_TYPE_P
6752 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
6753 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
6754 || flag_syntax_only))
6755 tem = build1 (code, type,
6756 build3 (COND_EXPR,
6757 TREE_TYPE (TREE_OPERAND
6758 (TREE_OPERAND (tem, 1), 0)),
6759 TREE_OPERAND (tem, 0),
6760 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
6761 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
6762 return tem;
6764 else if (COMPARISON_CLASS_P (arg0))
6766 if (TREE_CODE (type) == BOOLEAN_TYPE)
6768 arg0 = copy_node (arg0);
6769 TREE_TYPE (arg0) = type;
6770 return arg0;
6772 else if (TREE_CODE (type) != INTEGER_TYPE)
6773 return fold_build3 (COND_EXPR, type, arg0,
6774 fold_build1 (code, type,
6775 integer_one_node),
6776 fold_build1 (code, type,
6777 integer_zero_node));
6781 switch (code)
6783 case NOP_EXPR:
6784 case FLOAT_EXPR:
6785 case CONVERT_EXPR:
6786 case FIX_TRUNC_EXPR:
6787 case FIX_CEIL_EXPR:
6788 case FIX_FLOOR_EXPR:
6789 case FIX_ROUND_EXPR:
6790 if (TREE_TYPE (op0) == type)
6791 return op0;
6793 /* Handle cases of two conversions in a row. */
6794 if (TREE_CODE (op0) == NOP_EXPR
6795 || TREE_CODE (op0) == CONVERT_EXPR)
6797 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
6798 tree inter_type = TREE_TYPE (op0);
6799 int inside_int = INTEGRAL_TYPE_P (inside_type);
6800 int inside_ptr = POINTER_TYPE_P (inside_type);
6801 int inside_float = FLOAT_TYPE_P (inside_type);
6802 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
6803 unsigned int inside_prec = TYPE_PRECISION (inside_type);
6804 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
6805 int inter_int = INTEGRAL_TYPE_P (inter_type);
6806 int inter_ptr = POINTER_TYPE_P (inter_type);
6807 int inter_float = FLOAT_TYPE_P (inter_type);
6808 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
6809 unsigned int inter_prec = TYPE_PRECISION (inter_type);
6810 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
6811 int final_int = INTEGRAL_TYPE_P (type);
6812 int final_ptr = POINTER_TYPE_P (type);
6813 int final_float = FLOAT_TYPE_P (type);
6814 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
6815 unsigned int final_prec = TYPE_PRECISION (type);
6816 int final_unsignedp = TYPE_UNSIGNED (type);
6818 /* In addition to the cases of two conversions in a row
6819 handled below, if we are converting something to its own
6820 type via an object of identical or wider precision, neither
6821 conversion is needed. */
6822 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
6823 && ((inter_int && final_int) || (inter_float && final_float))
6824 && inter_prec >= final_prec)
6825 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
6827 /* Likewise, if the intermediate and final types are either both
6828 float or both integer, we don't need the middle conversion if
6829 it is wider than the final type and doesn't change the signedness
6830 (for integers). Avoid this if the final type is a pointer
6831 since then we sometimes need the inner conversion. Likewise if
6832 the outer has a precision not equal to the size of its mode. */
6833 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
6834 || (inter_float && inside_float)
6835 || (inter_vec && inside_vec))
6836 && inter_prec >= inside_prec
6837 && (inter_float || inter_vec
6838 || inter_unsignedp == inside_unsignedp)
6839 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
6840 && TYPE_MODE (type) == TYPE_MODE (inter_type))
6841 && ! final_ptr
6842 && (! final_vec || inter_prec == inside_prec))
6843 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
6845 /* If we have a sign-extension of a zero-extended value, we can
6846 replace that by a single zero-extension. */
6847 if (inside_int && inter_int && final_int
6848 && inside_prec < inter_prec && inter_prec < final_prec
6849 && inside_unsignedp && !inter_unsignedp)
6850 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
6852 /* Two conversions in a row are not needed unless:
6853 - some conversion is floating-point (overstrict for now), or
6854 - some conversion is a vector (overstrict for now), or
6855 - the intermediate type is narrower than both initial and
6856 final, or
6857 - the intermediate type and innermost type differ in signedness,
6858 and the outermost type is wider than the intermediate, or
6859 - the initial type is a pointer type and the precisions of the
6860 intermediate and final types differ, or
6861 - the final type is a pointer type and the precisions of the
6862 initial and intermediate types differ. */
6863 if (! inside_float && ! inter_float && ! final_float
6864 && ! inside_vec && ! inter_vec && ! final_vec
6865 && (inter_prec > inside_prec || inter_prec > final_prec)
6866 && ! (inside_int && inter_int
6867 && inter_unsignedp != inside_unsignedp
6868 && inter_prec < final_prec)
6869 && ((inter_unsignedp && inter_prec > inside_prec)
6870 == (final_unsignedp && final_prec > inter_prec))
6871 && ! (inside_ptr && inter_prec != final_prec)
6872 && ! (final_ptr && inside_prec != inter_prec)
6873 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
6874 && TYPE_MODE (type) == TYPE_MODE (inter_type))
6875 && ! final_ptr)
6876 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
6879 if (TREE_CODE (op0) == MODIFY_EXPR
6880 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
6881 /* Detect assigning a bitfield. */
6882 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
6883 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
6885 /* Don't leave an assignment inside a conversion
6886 unless assigning a bitfield. */
6887 tem = fold_build1 (code, type, TREE_OPERAND (op0, 1));
6888 /* First do the assignment, then return converted constant. */
6889 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
6890 TREE_NO_WARNING (tem) = 1;
6891 TREE_USED (tem) = 1;
6892 return tem;
6895 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
6896 constants (if x has signed type, the sign bit cannot be set
6897 in c). This folds extension into the BIT_AND_EXPR. */
6898 if (INTEGRAL_TYPE_P (type)
6899 && TREE_CODE (type) != BOOLEAN_TYPE
6900 && TREE_CODE (op0) == BIT_AND_EXPR
6901 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
6903 tree and = op0;
6904 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
6905 int change = 0;
6907 if (TYPE_UNSIGNED (TREE_TYPE (and))
6908 || (TYPE_PRECISION (type)
6909 <= TYPE_PRECISION (TREE_TYPE (and))))
6910 change = 1;
6911 else if (TYPE_PRECISION (TREE_TYPE (and1))
6912 <= HOST_BITS_PER_WIDE_INT
6913 && host_integerp (and1, 1))
6915 unsigned HOST_WIDE_INT cst;
6917 cst = tree_low_cst (and1, 1);
6918 cst &= (HOST_WIDE_INT) -1
6919 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
6920 change = (cst == 0);
6921 #ifdef LOAD_EXTEND_OP
6922 if (change
6923 && !flag_syntax_only
6924 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
6925 == ZERO_EXTEND))
6927 tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
6928 and0 = fold_convert (uns, and0);
6929 and1 = fold_convert (uns, and1);
6931 #endif
6933 if (change)
6935 tem = build_int_cst_wide (type, TREE_INT_CST_LOW (and1),
6936 TREE_INT_CST_HIGH (and1));
6937 tem = force_fit_type (tem, 0, TREE_OVERFLOW (and1),
6938 TREE_CONSTANT_OVERFLOW (and1));
6939 return fold_build2 (BIT_AND_EXPR, type,
6940 fold_convert (type, and0), tem);
6944 /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
6945 T2 being pointers to types of the same size. */
6946 if (POINTER_TYPE_P (type)
6947 && BINARY_CLASS_P (arg0)
6948 && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
6949 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
6951 tree arg00 = TREE_OPERAND (arg0, 0);
6952 tree t0 = type;
6953 tree t1 = TREE_TYPE (arg00);
6954 tree tt0 = TREE_TYPE (t0);
6955 tree tt1 = TREE_TYPE (t1);
6956 tree s0 = TYPE_SIZE (tt0);
6957 tree s1 = TYPE_SIZE (tt1);
6959 if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
6960 return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
6961 TREE_OPERAND (arg0, 1));
6964 tem = fold_convert_const (code, type, arg0);
6965 return tem ? tem : NULL_TREE;
6967 case VIEW_CONVERT_EXPR:
6968 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
6969 return build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
6970 return NULL_TREE;
6972 case NEGATE_EXPR:
6973 if (negate_expr_p (arg0))
6974 return fold_convert (type, negate_expr (arg0));
6975 /* Convert - (~A) to A + 1. */
6976 if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == BIT_NOT_EXPR)
6977 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (arg0, 0),
6978 build_int_cst (type, 1));
6979 return NULL_TREE;
6981 case ABS_EXPR:
6982 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
6983 return fold_abs_const (arg0, type);
6984 else if (TREE_CODE (arg0) == NEGATE_EXPR)
6985 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
6986 /* Convert fabs((double)float) into (double)fabsf(float). */
6987 else if (TREE_CODE (arg0) == NOP_EXPR
6988 && TREE_CODE (type) == REAL_TYPE)
6990 tree targ0 = strip_float_extensions (arg0);
6991 if (targ0 != arg0)
6992 return fold_convert (type, fold_build1 (ABS_EXPR,
6993 TREE_TYPE (targ0),
6994 targ0));
6996 else if (tree_expr_nonnegative_p (arg0))
6997 return arg0;
6999 /* Strip sign ops from argument. */
7000 if (TREE_CODE (type) == REAL_TYPE)
7002 tem = fold_strip_sign_ops (arg0);
7003 if (tem)
7004 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
7006 return NULL_TREE;
7008 case CONJ_EXPR:
7009 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7010 return fold_convert (type, arg0);
7011 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7012 return build2 (COMPLEX_EXPR, type,
7013 TREE_OPERAND (arg0, 0),
7014 negate_expr (TREE_OPERAND (arg0, 1)));
7015 else if (TREE_CODE (arg0) == COMPLEX_CST)
7016 return build_complex (type, TREE_REALPART (arg0),
7017 negate_expr (TREE_IMAGPART (arg0)));
7018 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7019 return fold_build2 (TREE_CODE (arg0), type,
7020 fold_build1 (CONJ_EXPR, type,
7021 TREE_OPERAND (arg0, 0)),
7022 fold_build1 (CONJ_EXPR, type,
7023 TREE_OPERAND (arg0, 1)));
7024 else if (TREE_CODE (arg0) == CONJ_EXPR)
7025 return TREE_OPERAND (arg0, 0);
7026 return NULL_TREE;
7028 case BIT_NOT_EXPR:
7029 if (TREE_CODE (arg0) == INTEGER_CST)
7030 return fold_not_const (arg0, type);
7031 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
7032 return TREE_OPERAND (arg0, 0);
7033 /* Convert ~ (-A) to A - 1. */
7034 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
7035 return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
7036 build_int_cst (type, 1));
7037 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
7038 else if (INTEGRAL_TYPE_P (type)
7039 && ((TREE_CODE (arg0) == MINUS_EXPR
7040 && integer_onep (TREE_OPERAND (arg0, 1)))
7041 || (TREE_CODE (arg0) == PLUS_EXPR
7042 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
7043 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
7044 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7045 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7046 && (tem = fold_unary (BIT_NOT_EXPR, type,
7047 fold_convert (type,
7048 TREE_OPERAND (arg0, 0)))))
7049 return fold_build2 (BIT_XOR_EXPR, type, tem,
7050 fold_convert (type, TREE_OPERAND (arg0, 1)));
7051 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7052 && (tem = fold_unary (BIT_NOT_EXPR, type,
7053 fold_convert (type,
7054 TREE_OPERAND (arg0, 1)))))
7055 return fold_build2 (BIT_XOR_EXPR, type,
7056 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
7058 return NULL_TREE;
7060 case TRUTH_NOT_EXPR:
7061 /* The argument to invert_truthvalue must have Boolean type. */
7062 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
7063 arg0 = fold_convert (boolean_type_node, arg0);
7065 /* Note that the operand of this must be an int
7066 and its values must be 0 or 1.
7067 ("true" is a fixed value perhaps depending on the language,
7068 but we don't handle values other than 1 correctly yet.) */
7069 tem = invert_truthvalue (arg0);
7070 /* Avoid infinite recursion. */
7071 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
7072 return NULL_TREE;
7073 return fold_convert (type, tem);
7075 case REALPART_EXPR:
7076 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7077 return NULL_TREE;
7078 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7079 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7080 TREE_OPERAND (arg0, 1));
7081 else if (TREE_CODE (arg0) == COMPLEX_CST)
7082 return TREE_REALPART (arg0);
7083 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7084 return fold_build2 (TREE_CODE (arg0), type,
7085 fold_build1 (REALPART_EXPR, type,
7086 TREE_OPERAND (arg0, 0)),
7087 fold_build1 (REALPART_EXPR, type,
7088 TREE_OPERAND (arg0, 1)));
7089 return NULL_TREE;
7091 case IMAGPART_EXPR:
7092 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7093 return fold_convert (type, integer_zero_node);
7094 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7095 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7096 TREE_OPERAND (arg0, 0));
7097 else if (TREE_CODE (arg0) == COMPLEX_CST)
7098 return TREE_IMAGPART (arg0);
7099 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7100 return fold_build2 (TREE_CODE (arg0), type,
7101 fold_build1 (IMAGPART_EXPR, type,
7102 TREE_OPERAND (arg0, 0)),
7103 fold_build1 (IMAGPART_EXPR, type,
7104 TREE_OPERAND (arg0, 1)));
7105 return NULL_TREE;
7107 default:
7108 return NULL_TREE;
7109 } /* switch (code) */
7112 /* Fold a binary expression of code CODE and type TYPE with operands
7113 OP0 and OP1. Return the folded expression if folding is
7114 successful. Otherwise, return NULL_TREE. */
7116 tree
7117 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
7119 tree t1 = NULL_TREE;
7120 tree tem;
7121 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
7122 enum tree_code_class kind = TREE_CODE_CLASS (code);
7124 /* WINS will be nonzero when the switch is done
7125 if all operands are constant. */
7126 int wins = 1;
7128 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7129 && TREE_CODE_LENGTH (code) == 2);
7131 arg0 = op0;
7132 arg1 = op1;
7134 if (arg0)
7136 tree subop;
7138 /* Strip any conversions that don't change the mode. This is
7139 safe for every expression, except for a comparison expression
7140 because its signedness is derived from its operands. So, in
7141 the latter case, only strip conversions that don't change the
7142 signedness.
7144 Note that this is done as an internal manipulation within the
7145 constant folder, in order to find the simplest representation
7146 of the arguments so that their form can be studied. In any
7147 cases, the appropriate type conversions should be put back in
7148 the tree that will get out of the constant folder. */
7149 if (kind == tcc_comparison)
7150 STRIP_SIGN_NOPS (arg0);
7151 else
7152 STRIP_NOPS (arg0);
7154 if (TREE_CODE (arg0) == COMPLEX_CST)
7155 subop = TREE_REALPART (arg0);
7156 else
7157 subop = arg0;
7159 if (TREE_CODE (subop) != INTEGER_CST
7160 && TREE_CODE (subop) != REAL_CST)
7161 /* Note that TREE_CONSTANT isn't enough:
7162 static var addresses are constant but we can't
7163 do arithmetic on them. */
7164 wins = 0;
7167 if (arg1)
7169 tree subop;
7171 /* Strip any conversions that don't change the mode. This is
7172 safe for every expression, except for a comparison expression
7173 because its signedness is derived from its operands. So, in
7174 the latter case, only strip conversions that don't change the
7175 signedness.
7177 Note that this is done as an internal manipulation within the
7178 constant folder, in order to find the simplest representation
7179 of the arguments so that their form can be studied. In any
7180 cases, the appropriate type conversions should be put back in
7181 the tree that will get out of the constant folder. */
7182 if (kind == tcc_comparison)
7183 STRIP_SIGN_NOPS (arg1);
7184 else
7185 STRIP_NOPS (arg1);
7187 if (TREE_CODE (arg1) == COMPLEX_CST)
7188 subop = TREE_REALPART (arg1);
7189 else
7190 subop = arg1;
7192 if (TREE_CODE (subop) != INTEGER_CST
7193 && TREE_CODE (subop) != REAL_CST)
7194 /* Note that TREE_CONSTANT isn't enough:
7195 static var addresses are constant but we can't
7196 do arithmetic on them. */
7197 wins = 0;
7200 /* If this is a commutative operation, and ARG0 is a constant, move it
7201 to ARG1 to reduce the number of tests below. */
7202 if (commutative_tree_code (code)
7203 && tree_swap_operands_p (arg0, arg1, true))
7204 return fold_build2 (code, type, op1, op0);
7206 /* Now WINS is set as described above,
7207 ARG0 is the first operand of EXPR,
7208 and ARG1 is the second operand (if it has more than one operand).
7210 First check for cases where an arithmetic operation is applied to a
7211 compound, conditional, or comparison operation. Push the arithmetic
7212 operation inside the compound or conditional to see if any folding
7213 can then be done. Convert comparison to conditional for this purpose.
7214 The also optimizes non-constant cases that used to be done in
7215 expand_expr.
7217 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
7218 one of the operands is a comparison and the other is a comparison, a
7219 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
7220 code below would make the expression more complex. Change it to a
7221 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
7222 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
7224 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
7225 || code == EQ_EXPR || code == NE_EXPR)
7226 && ((truth_value_p (TREE_CODE (arg0))
7227 && (truth_value_p (TREE_CODE (arg1))
7228 || (TREE_CODE (arg1) == BIT_AND_EXPR
7229 && integer_onep (TREE_OPERAND (arg1, 1)))))
7230 || (truth_value_p (TREE_CODE (arg1))
7231 && (truth_value_p (TREE_CODE (arg0))
7232 || (TREE_CODE (arg0) == BIT_AND_EXPR
7233 && integer_onep (TREE_OPERAND (arg0, 1)))))))
7235 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
7236 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
7237 : TRUTH_XOR_EXPR,
7238 boolean_type_node,
7239 fold_convert (boolean_type_node, arg0),
7240 fold_convert (boolean_type_node, arg1));
7242 if (code == EQ_EXPR)
7243 tem = invert_truthvalue (tem);
7245 return fold_convert (type, tem);
7248 if (TREE_CODE_CLASS (code) == tcc_comparison
7249 && TREE_CODE (arg0) == COMPOUND_EXPR)
7250 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7251 fold_build2 (code, type, TREE_OPERAND (arg0, 1), arg1));
7252 else if (TREE_CODE_CLASS (code) == tcc_comparison
7253 && TREE_CODE (arg1) == COMPOUND_EXPR)
7254 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
7255 fold_build2 (code, type, arg0, TREE_OPERAND (arg1, 1)));
7256 else if (TREE_CODE_CLASS (code) == tcc_binary
7257 || TREE_CODE_CLASS (code) == tcc_comparison)
7259 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7260 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7261 fold_build2 (code, type, TREE_OPERAND (arg0, 1),
7262 arg1));
7263 if (TREE_CODE (arg1) == COMPOUND_EXPR
7264 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
7265 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
7266 fold_build2 (code, type,
7267 arg0, TREE_OPERAND (arg1, 1)));
7269 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
7271 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
7272 arg0, arg1,
7273 /*cond_first_p=*/1);
7274 if (tem != NULL_TREE)
7275 return tem;
7278 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
7280 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
7281 arg1, arg0,
7282 /*cond_first_p=*/0);
7283 if (tem != NULL_TREE)
7284 return tem;
7288 switch (code)
7290 case PLUS_EXPR:
7291 /* A + (-B) -> A - B */
7292 if (TREE_CODE (arg1) == NEGATE_EXPR)
7293 return fold_build2 (MINUS_EXPR, type,
7294 fold_convert (type, arg0),
7295 fold_convert (type, TREE_OPERAND (arg1, 0)));
7296 /* (-A) + B -> B - A */
7297 if (TREE_CODE (arg0) == NEGATE_EXPR
7298 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
7299 return fold_build2 (MINUS_EXPR, type,
7300 fold_convert (type, arg1),
7301 fold_convert (type, TREE_OPERAND (arg0, 0)));
7302 /* Convert ~A + 1 to -A. */
7303 if (INTEGRAL_TYPE_P (type)
7304 && TREE_CODE (arg0) == BIT_NOT_EXPR
7305 && integer_onep (arg1))
7306 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
7308 if (TREE_CODE (type) == COMPLEX_TYPE)
7310 tem = fold_complex_add (type, arg0, arg1, PLUS_EXPR);
7311 if (tem)
7312 return tem;
7315 if (! FLOAT_TYPE_P (type))
7317 if (integer_zerop (arg1))
7318 return non_lvalue (fold_convert (type, arg0));
7320 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
7321 with a constant, and the two constants have no bits in common,
7322 we should treat this as a BIT_IOR_EXPR since this may produce more
7323 simplifications. */
7324 if (TREE_CODE (arg0) == BIT_AND_EXPR
7325 && TREE_CODE (arg1) == BIT_AND_EXPR
7326 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7327 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
7328 && integer_zerop (const_binop (BIT_AND_EXPR,
7329 TREE_OPERAND (arg0, 1),
7330 TREE_OPERAND (arg1, 1), 0)))
7332 code = BIT_IOR_EXPR;
7333 goto bit_ior;
7336 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
7337 (plus (plus (mult) (mult)) (foo)) so that we can
7338 take advantage of the factoring cases below. */
7339 if (((TREE_CODE (arg0) == PLUS_EXPR
7340 || TREE_CODE (arg0) == MINUS_EXPR)
7341 && TREE_CODE (arg1) == MULT_EXPR)
7342 || ((TREE_CODE (arg1) == PLUS_EXPR
7343 || TREE_CODE (arg1) == MINUS_EXPR)
7344 && TREE_CODE (arg0) == MULT_EXPR))
7346 tree parg0, parg1, parg, marg;
7347 enum tree_code pcode;
7349 if (TREE_CODE (arg1) == MULT_EXPR)
7350 parg = arg0, marg = arg1;
7351 else
7352 parg = arg1, marg = arg0;
7353 pcode = TREE_CODE (parg);
7354 parg0 = TREE_OPERAND (parg, 0);
7355 parg1 = TREE_OPERAND (parg, 1);
7356 STRIP_NOPS (parg0);
7357 STRIP_NOPS (parg1);
7359 if (TREE_CODE (parg0) == MULT_EXPR
7360 && TREE_CODE (parg1) != MULT_EXPR)
7361 return fold_build2 (pcode, type,
7362 fold_build2 (PLUS_EXPR, type,
7363 fold_convert (type, parg0),
7364 fold_convert (type, marg)),
7365 fold_convert (type, parg1));
7366 if (TREE_CODE (parg0) != MULT_EXPR
7367 && TREE_CODE (parg1) == MULT_EXPR)
7368 return fold_build2 (PLUS_EXPR, type,
7369 fold_convert (type, parg0),
7370 fold_build2 (pcode, type,
7371 fold_convert (type, marg),
7372 fold_convert (type,
7373 parg1)));
7376 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
7378 tree arg00, arg01, arg10, arg11;
7379 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7381 /* (A * C) + (B * C) -> (A+B) * C.
7382 We are most concerned about the case where C is a constant,
7383 but other combinations show up during loop reduction. Since
7384 it is not difficult, try all four possibilities. */
7386 arg00 = TREE_OPERAND (arg0, 0);
7387 arg01 = TREE_OPERAND (arg0, 1);
7388 arg10 = TREE_OPERAND (arg1, 0);
7389 arg11 = TREE_OPERAND (arg1, 1);
7390 same = NULL_TREE;
7392 if (operand_equal_p (arg01, arg11, 0))
7393 same = arg01, alt0 = arg00, alt1 = arg10;
7394 else if (operand_equal_p (arg00, arg10, 0))
7395 same = arg00, alt0 = arg01, alt1 = arg11;
7396 else if (operand_equal_p (arg00, arg11, 0))
7397 same = arg00, alt0 = arg01, alt1 = arg10;
7398 else if (operand_equal_p (arg01, arg10, 0))
7399 same = arg01, alt0 = arg00, alt1 = arg11;
7401 /* No identical multiplicands; see if we can find a common
7402 power-of-two factor in non-power-of-two multiplies. This
7403 can help in multi-dimensional array access. */
7404 else if (TREE_CODE (arg01) == INTEGER_CST
7405 && TREE_CODE (arg11) == INTEGER_CST
7406 && TREE_INT_CST_HIGH (arg01) == 0
7407 && TREE_INT_CST_HIGH (arg11) == 0)
7409 HOST_WIDE_INT int01, int11, tmp;
7410 int01 = TREE_INT_CST_LOW (arg01);
7411 int11 = TREE_INT_CST_LOW (arg11);
7413 /* Move min of absolute values to int11. */
7414 if ((int01 >= 0 ? int01 : -int01)
7415 < (int11 >= 0 ? int11 : -int11))
7417 tmp = int01, int01 = int11, int11 = tmp;
7418 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7419 alt0 = arg01, arg01 = arg11, arg11 = alt0;
7422 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
7424 alt0 = fold_build2 (MULT_EXPR, type, arg00,
7425 build_int_cst (NULL_TREE,
7426 int01 / int11));
7427 alt1 = arg10;
7428 same = arg11;
7432 if (same)
7433 return fold_build2 (MULT_EXPR, type,
7434 fold_build2 (PLUS_EXPR, type,
7435 fold_convert (type, alt0),
7436 fold_convert (type, alt1)),
7437 fold_convert (type, same));
7440 /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
7441 of the array. Loop optimizer sometimes produce this type of
7442 expressions. */
7443 if (TREE_CODE (arg0) == ADDR_EXPR
7444 && TREE_CODE (arg1) == MULT_EXPR)
7446 tem = try_move_mult_to_index (PLUS_EXPR, arg0, arg1);
7447 if (tem)
7448 return fold_convert (type, fold (tem));
7450 else if (TREE_CODE (arg1) == ADDR_EXPR
7451 && TREE_CODE (arg0) == MULT_EXPR)
7453 tem = try_move_mult_to_index (PLUS_EXPR, arg1, arg0);
7454 if (tem)
7455 return fold_convert (type, fold (tem));
7458 else
7460 /* See if ARG1 is zero and X + ARG1 reduces to X. */
7461 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
7462 return non_lvalue (fold_convert (type, arg0));
7464 /* Likewise if the operands are reversed. */
7465 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
7466 return non_lvalue (fold_convert (type, arg1));
7468 /* Convert X + -C into X - C. */
7469 if (TREE_CODE (arg1) == REAL_CST
7470 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
7472 tem = fold_negate_const (arg1, type);
7473 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
7474 return fold_build2 (MINUS_EXPR, type,
7475 fold_convert (type, arg0),
7476 fold_convert (type, tem));
7479 /* Convert x+x into x*2.0. */
7480 if (operand_equal_p (arg0, arg1, 0)
7481 && SCALAR_FLOAT_TYPE_P (type))
7482 return fold_build2 (MULT_EXPR, type, arg0,
7483 build_real (type, dconst2));
7485 /* Convert x*c+x into x*(c+1). */
7486 if (flag_unsafe_math_optimizations
7487 && TREE_CODE (arg0) == MULT_EXPR
7488 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
7489 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
7490 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7492 REAL_VALUE_TYPE c;
7494 c = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
7495 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
7496 return fold_build2 (MULT_EXPR, type, arg1,
7497 build_real (type, c));
7500 /* Convert x+x*c into x*(c+1). */
7501 if (flag_unsafe_math_optimizations
7502 && TREE_CODE (arg1) == MULT_EXPR
7503 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
7504 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
7505 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
7507 REAL_VALUE_TYPE c;
7509 c = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
7510 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
7511 return fold_build2 (MULT_EXPR, type, arg0,
7512 build_real (type, c));
7515 /* Convert x*c1+x*c2 into x*(c1+c2). */
7516 if (flag_unsafe_math_optimizations
7517 && TREE_CODE (arg0) == MULT_EXPR
7518 && TREE_CODE (arg1) == MULT_EXPR
7519 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
7520 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
7521 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
7522 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
7523 && operand_equal_p (TREE_OPERAND (arg0, 0),
7524 TREE_OPERAND (arg1, 0), 0))
7526 REAL_VALUE_TYPE c1, c2;
7528 c1 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
7529 c2 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
7530 real_arithmetic (&c1, PLUS_EXPR, &c1, &c2);
7531 return fold_build2 (MULT_EXPR, type,
7532 TREE_OPERAND (arg0, 0),
7533 build_real (type, c1));
7535 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
7536 if (flag_unsafe_math_optimizations
7537 && TREE_CODE (arg1) == PLUS_EXPR
7538 && TREE_CODE (arg0) != MULT_EXPR)
7540 tree tree10 = TREE_OPERAND (arg1, 0);
7541 tree tree11 = TREE_OPERAND (arg1, 1);
7542 if (TREE_CODE (tree11) == MULT_EXPR
7543 && TREE_CODE (tree10) == MULT_EXPR)
7545 tree tree0;
7546 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
7547 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
7550 /* Convert (b*c + d*e) + a into b*c + (d*e +a). */
7551 if (flag_unsafe_math_optimizations
7552 && TREE_CODE (arg0) == PLUS_EXPR
7553 && TREE_CODE (arg1) != MULT_EXPR)
7555 tree tree00 = TREE_OPERAND (arg0, 0);
7556 tree tree01 = TREE_OPERAND (arg0, 1);
7557 if (TREE_CODE (tree01) == MULT_EXPR
7558 && TREE_CODE (tree00) == MULT_EXPR)
7560 tree tree0;
7561 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
7562 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
7567 bit_rotate:
7568 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
7569 is a rotate of A by C1 bits. */
7570 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
7571 is a rotate of A by B bits. */
7573 enum tree_code code0, code1;
7574 code0 = TREE_CODE (arg0);
7575 code1 = TREE_CODE (arg1);
7576 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
7577 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
7578 && operand_equal_p (TREE_OPERAND (arg0, 0),
7579 TREE_OPERAND (arg1, 0), 0)
7580 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7582 tree tree01, tree11;
7583 enum tree_code code01, code11;
7585 tree01 = TREE_OPERAND (arg0, 1);
7586 tree11 = TREE_OPERAND (arg1, 1);
7587 STRIP_NOPS (tree01);
7588 STRIP_NOPS (tree11);
7589 code01 = TREE_CODE (tree01);
7590 code11 = TREE_CODE (tree11);
7591 if (code01 == INTEGER_CST
7592 && code11 == INTEGER_CST
7593 && TREE_INT_CST_HIGH (tree01) == 0
7594 && TREE_INT_CST_HIGH (tree11) == 0
7595 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
7596 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
7597 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
7598 code0 == LSHIFT_EXPR ? tree01 : tree11);
7599 else if (code11 == MINUS_EXPR)
7601 tree tree110, tree111;
7602 tree110 = TREE_OPERAND (tree11, 0);
7603 tree111 = TREE_OPERAND (tree11, 1);
7604 STRIP_NOPS (tree110);
7605 STRIP_NOPS (tree111);
7606 if (TREE_CODE (tree110) == INTEGER_CST
7607 && 0 == compare_tree_int (tree110,
7608 TYPE_PRECISION
7609 (TREE_TYPE (TREE_OPERAND
7610 (arg0, 0))))
7611 && operand_equal_p (tree01, tree111, 0))
7612 return build2 ((code0 == LSHIFT_EXPR
7613 ? LROTATE_EXPR
7614 : RROTATE_EXPR),
7615 type, TREE_OPERAND (arg0, 0), tree01);
7617 else if (code01 == MINUS_EXPR)
7619 tree tree010, tree011;
7620 tree010 = TREE_OPERAND (tree01, 0);
7621 tree011 = TREE_OPERAND (tree01, 1);
7622 STRIP_NOPS (tree010);
7623 STRIP_NOPS (tree011);
7624 if (TREE_CODE (tree010) == INTEGER_CST
7625 && 0 == compare_tree_int (tree010,
7626 TYPE_PRECISION
7627 (TREE_TYPE (TREE_OPERAND
7628 (arg0, 0))))
7629 && operand_equal_p (tree11, tree011, 0))
7630 return build2 ((code0 != LSHIFT_EXPR
7631 ? LROTATE_EXPR
7632 : RROTATE_EXPR),
7633 type, TREE_OPERAND (arg0, 0), tree11);
7638 associate:
7639 /* In most languages, can't associate operations on floats through
7640 parentheses. Rather than remember where the parentheses were, we
7641 don't associate floats at all, unless the user has specified
7642 -funsafe-math-optimizations. */
7644 if (! wins
7645 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
7647 tree var0, con0, lit0, minus_lit0;
7648 tree var1, con1, lit1, minus_lit1;
7650 /* Split both trees into variables, constants, and literals. Then
7651 associate each group together, the constants with literals,
7652 then the result with variables. This increases the chances of
7653 literals being recombined later and of generating relocatable
7654 expressions for the sum of a constant and literal. */
7655 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
7656 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
7657 code == MINUS_EXPR);
7659 /* Only do something if we found more than two objects. Otherwise,
7660 nothing has changed and we risk infinite recursion. */
7661 if (2 < ((var0 != 0) + (var1 != 0)
7662 + (con0 != 0) + (con1 != 0)
7663 + (lit0 != 0) + (lit1 != 0)
7664 + (minus_lit0 != 0) + (minus_lit1 != 0)))
7666 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
7667 if (code == MINUS_EXPR)
7668 code = PLUS_EXPR;
7670 var0 = associate_trees (var0, var1, code, type);
7671 con0 = associate_trees (con0, con1, code, type);
7672 lit0 = associate_trees (lit0, lit1, code, type);
7673 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
7675 /* Preserve the MINUS_EXPR if the negative part of the literal is
7676 greater than the positive part. Otherwise, the multiplicative
7677 folding code (i.e extract_muldiv) may be fooled in case
7678 unsigned constants are subtracted, like in the following
7679 example: ((X*2 + 4) - 8U)/2. */
7680 if (minus_lit0 && lit0)
7682 if (TREE_CODE (lit0) == INTEGER_CST
7683 && TREE_CODE (minus_lit0) == INTEGER_CST
7684 && tree_int_cst_lt (lit0, minus_lit0))
7686 minus_lit0 = associate_trees (minus_lit0, lit0,
7687 MINUS_EXPR, type);
7688 lit0 = 0;
7690 else
7692 lit0 = associate_trees (lit0, minus_lit0,
7693 MINUS_EXPR, type);
7694 minus_lit0 = 0;
7697 if (minus_lit0)
7699 if (con0 == 0)
7700 return fold_convert (type,
7701 associate_trees (var0, minus_lit0,
7702 MINUS_EXPR, type));
7703 else
7705 con0 = associate_trees (con0, minus_lit0,
7706 MINUS_EXPR, type);
7707 return fold_convert (type,
7708 associate_trees (var0, con0,
7709 PLUS_EXPR, type));
7713 con0 = associate_trees (con0, lit0, code, type);
7714 return fold_convert (type, associate_trees (var0, con0,
7715 code, type));
7719 binary:
7720 if (wins)
7721 t1 = const_binop (code, arg0, arg1, 0);
7722 if (t1 != NULL_TREE)
7724 /* The return value should always have
7725 the same type as the original expression. */
7726 if (TREE_TYPE (t1) != type)
7727 t1 = fold_convert (type, t1);
7729 return t1;
7731 return NULL_TREE;
7733 case MINUS_EXPR:
7734 /* A - (-B) -> A + B */
7735 if (TREE_CODE (arg1) == NEGATE_EXPR)
7736 return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
7737 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
7738 if (TREE_CODE (arg0) == NEGATE_EXPR
7739 && (FLOAT_TYPE_P (type)
7740 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
7741 && negate_expr_p (arg1)
7742 && reorder_operands_p (arg0, arg1))
7743 return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
7744 TREE_OPERAND (arg0, 0));
7745 /* Convert -A - 1 to ~A. */
7746 if (INTEGRAL_TYPE_P (type)
7747 && TREE_CODE (arg0) == NEGATE_EXPR
7748 && integer_onep (arg1))
7749 return fold_build1 (BIT_NOT_EXPR, type, TREE_OPERAND (arg0, 0));
7751 /* Convert -1 - A to ~A. */
7752 if (INTEGRAL_TYPE_P (type)
7753 && integer_all_onesp (arg0))
7754 return fold_build1 (BIT_NOT_EXPR, type, arg1);
7756 if (TREE_CODE (type) == COMPLEX_TYPE)
7758 tem = fold_complex_add (type, arg0, arg1, MINUS_EXPR);
7759 if (tem)
7760 return tem;
7763 if (! FLOAT_TYPE_P (type))
7765 if (! wins && integer_zerop (arg0))
7766 return negate_expr (fold_convert (type, arg1));
7767 if (integer_zerop (arg1))
7768 return non_lvalue (fold_convert (type, arg0));
7770 /* Fold A - (A & B) into ~B & A. */
7771 if (!TREE_SIDE_EFFECTS (arg0)
7772 && TREE_CODE (arg1) == BIT_AND_EXPR)
7774 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
7775 return fold_build2 (BIT_AND_EXPR, type,
7776 fold_build1 (BIT_NOT_EXPR, type,
7777 TREE_OPERAND (arg1, 0)),
7778 arg0);
7779 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7780 return fold_build2 (BIT_AND_EXPR, type,
7781 fold_build1 (BIT_NOT_EXPR, type,
7782 TREE_OPERAND (arg1, 1)),
7783 arg0);
7786 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
7787 any power of 2 minus 1. */
7788 if (TREE_CODE (arg0) == BIT_AND_EXPR
7789 && TREE_CODE (arg1) == BIT_AND_EXPR
7790 && operand_equal_p (TREE_OPERAND (arg0, 0),
7791 TREE_OPERAND (arg1, 0), 0))
7793 tree mask0 = TREE_OPERAND (arg0, 1);
7794 tree mask1 = TREE_OPERAND (arg1, 1);
7795 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
7797 if (operand_equal_p (tem, mask1, 0))
7799 tem = fold_build2 (BIT_XOR_EXPR, type,
7800 TREE_OPERAND (arg0, 0), mask1);
7801 return fold_build2 (MINUS_EXPR, type, tem, mask1);
7806 /* See if ARG1 is zero and X - ARG1 reduces to X. */
7807 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
7808 return non_lvalue (fold_convert (type, arg0));
7810 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
7811 ARG0 is zero and X + ARG0 reduces to X, since that would mean
7812 (-ARG1 + ARG0) reduces to -ARG1. */
7813 else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
7814 return negate_expr (fold_convert (type, arg1));
7816 /* Fold &x - &x. This can happen from &x.foo - &x.
7817 This is unsafe for certain floats even in non-IEEE formats.
7818 In IEEE, it is unsafe because it does wrong for NaNs.
7819 Also note that operand_equal_p is always false if an operand
7820 is volatile. */
7822 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
7823 && operand_equal_p (arg0, arg1, 0))
7824 return fold_convert (type, integer_zero_node);
7826 /* A - B -> A + (-B) if B is easily negatable. */
7827 if (!wins && negate_expr_p (arg1)
7828 && ((FLOAT_TYPE_P (type)
7829 /* Avoid this transformation if B is a positive REAL_CST. */
7830 && (TREE_CODE (arg1) != REAL_CST
7831 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
7832 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv)))
7833 return fold_build2 (PLUS_EXPR, type, arg0, negate_expr (arg1));
7835 /* Try folding difference of addresses. */
7837 HOST_WIDE_INT diff;
7839 if ((TREE_CODE (arg0) == ADDR_EXPR
7840 || TREE_CODE (arg1) == ADDR_EXPR)
7841 && ptr_difference_const (arg0, arg1, &diff))
7842 return build_int_cst_type (type, diff);
7845 /* Fold &a[i] - &a[j] to i-j. */
7846 if (TREE_CODE (arg0) == ADDR_EXPR
7847 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
7848 && TREE_CODE (arg1) == ADDR_EXPR
7849 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
7851 tree aref0 = TREE_OPERAND (arg0, 0);
7852 tree aref1 = TREE_OPERAND (arg1, 0);
7853 if (operand_equal_p (TREE_OPERAND (aref0, 0),
7854 TREE_OPERAND (aref1, 0), 0))
7856 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
7857 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
7858 tree esz = array_ref_element_size (aref0);
7859 tree diff = build2 (MINUS_EXPR, type, op0, op1);
7860 return fold_build2 (MULT_EXPR, type, diff,
7861 fold_convert (type, esz));
7866 /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
7867 of the array. Loop optimizer sometimes produce this type of
7868 expressions. */
7869 if (TREE_CODE (arg0) == ADDR_EXPR
7870 && TREE_CODE (arg1) == MULT_EXPR)
7872 tem = try_move_mult_to_index (MINUS_EXPR, arg0, arg1);
7873 if (tem)
7874 return fold_convert (type, fold (tem));
7877 if (TREE_CODE (arg0) == MULT_EXPR
7878 && TREE_CODE (arg1) == MULT_EXPR
7879 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
7881 /* (A * C) - (B * C) -> (A-B) * C. */
7882 if (operand_equal_p (TREE_OPERAND (arg0, 1),
7883 TREE_OPERAND (arg1, 1), 0))
7884 return fold_build2 (MULT_EXPR, type,
7885 fold_build2 (MINUS_EXPR, type,
7886 TREE_OPERAND (arg0, 0),
7887 TREE_OPERAND (arg1, 0)),
7888 TREE_OPERAND (arg0, 1));
7889 /* (A * C1) - (A * C2) -> A * (C1-C2). */
7890 if (operand_equal_p (TREE_OPERAND (arg0, 0),
7891 TREE_OPERAND (arg1, 0), 0))
7892 return fold_build2 (MULT_EXPR, type,
7893 TREE_OPERAND (arg0, 0),
7894 fold_build2 (MINUS_EXPR, type,
7895 TREE_OPERAND (arg0, 1),
7896 TREE_OPERAND (arg1, 1)));
7899 goto associate;
7901 case MULT_EXPR:
7902 /* (-A) * (-B) -> A * B */
7903 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
7904 return fold_build2 (MULT_EXPR, type,
7905 TREE_OPERAND (arg0, 0),
7906 negate_expr (arg1));
7907 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
7908 return fold_build2 (MULT_EXPR, type,
7909 negate_expr (arg0),
7910 TREE_OPERAND (arg1, 0));
7912 if (TREE_CODE (type) == COMPLEX_TYPE)
7914 tem = fold_complex_mult (type, arg0, arg1);
7915 if (tem)
7916 return tem;
7919 if (! FLOAT_TYPE_P (type))
7921 if (integer_zerop (arg1))
7922 return omit_one_operand (type, arg1, arg0);
7923 if (integer_onep (arg1))
7924 return non_lvalue (fold_convert (type, arg0));
7925 /* Transform x * -1 into -x. */
7926 if (integer_all_onesp (arg1))
7927 return fold_convert (type, negate_expr (arg0));
7929 /* (a * (1 << b)) is (a << b) */
7930 if (TREE_CODE (arg1) == LSHIFT_EXPR
7931 && integer_onep (TREE_OPERAND (arg1, 0)))
7932 return fold_build2 (LSHIFT_EXPR, type, arg0,
7933 TREE_OPERAND (arg1, 1));
7934 if (TREE_CODE (arg0) == LSHIFT_EXPR
7935 && integer_onep (TREE_OPERAND (arg0, 0)))
7936 return fold_build2 (LSHIFT_EXPR, type, arg1,
7937 TREE_OPERAND (arg0, 1));
7939 if (TREE_CODE (arg1) == INTEGER_CST
7940 && 0 != (tem = extract_muldiv (op0,
7941 fold_convert (type, arg1),
7942 code, NULL_TREE)))
7943 return fold_convert (type, tem);
7946 else
7948 /* Maybe fold x * 0 to 0. The expressions aren't the same
7949 when x is NaN, since x * 0 is also NaN. Nor are they the
7950 same in modes with signed zeros, since multiplying a
7951 negative value by 0 gives -0, not +0. */
7952 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
7953 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
7954 && real_zerop (arg1))
7955 return omit_one_operand (type, arg1, arg0);
7956 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
7957 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7958 && real_onep (arg1))
7959 return non_lvalue (fold_convert (type, arg0));
7961 /* Transform x * -1.0 into -x. */
7962 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7963 && real_minus_onep (arg1))
7964 return fold_convert (type, negate_expr (arg0));
7966 /* Convert (C1/X)*C2 into (C1*C2)/X. */
7967 if (flag_unsafe_math_optimizations
7968 && TREE_CODE (arg0) == RDIV_EXPR
7969 && TREE_CODE (arg1) == REAL_CST
7970 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
7972 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
7973 arg1, 0);
7974 if (tem)
7975 return fold_build2 (RDIV_EXPR, type, tem,
7976 TREE_OPERAND (arg0, 1));
7979 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
7980 if (operand_equal_p (arg0, arg1, 0))
7982 tree tem = fold_strip_sign_ops (arg0);
7983 if (tem != NULL_TREE)
7985 tem = fold_convert (type, tem);
7986 return fold_build2 (MULT_EXPR, type, tem, tem);
7990 if (flag_unsafe_math_optimizations)
7992 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
7993 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
7995 /* Optimizations of root(...)*root(...). */
7996 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
7998 tree rootfn, arg, arglist;
7999 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
8000 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
8002 /* Optimize sqrt(x)*sqrt(x) as x. */
8003 if (BUILTIN_SQRT_P (fcode0)
8004 && operand_equal_p (arg00, arg10, 0)
8005 && ! HONOR_SNANS (TYPE_MODE (type)))
8006 return arg00;
8008 /* Optimize root(x)*root(y) as root(x*y). */
8009 rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
8010 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
8011 arglist = build_tree_list (NULL_TREE, arg);
8012 return build_function_call_expr (rootfn, arglist);
8015 /* Optimize expN(x)*expN(y) as expN(x+y). */
8016 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
8018 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
8019 tree arg = fold_build2 (PLUS_EXPR, type,
8020 TREE_VALUE (TREE_OPERAND (arg0, 1)),
8021 TREE_VALUE (TREE_OPERAND (arg1, 1)));
8022 tree arglist = build_tree_list (NULL_TREE, arg);
8023 return build_function_call_expr (expfn, arglist);
8026 /* Optimizations of pow(...)*pow(...). */
8027 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
8028 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
8029 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
8031 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
8032 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
8033 1)));
8034 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
8035 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
8036 1)));
8038 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
8039 if (operand_equal_p (arg01, arg11, 0))
8041 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
8042 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
8043 tree arglist = tree_cons (NULL_TREE, arg,
8044 build_tree_list (NULL_TREE,
8045 arg01));
8046 return build_function_call_expr (powfn, arglist);
8049 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
8050 if (operand_equal_p (arg00, arg10, 0))
8052 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
8053 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
8054 tree arglist = tree_cons (NULL_TREE, arg00,
8055 build_tree_list (NULL_TREE,
8056 arg));
8057 return build_function_call_expr (powfn, arglist);
8061 /* Optimize tan(x)*cos(x) as sin(x). */
8062 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
8063 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
8064 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
8065 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
8066 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
8067 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
8068 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
8069 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
8071 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
8073 if (sinfn != NULL_TREE)
8074 return build_function_call_expr (sinfn,
8075 TREE_OPERAND (arg0, 1));
8078 /* Optimize x*pow(x,c) as pow(x,c+1). */
8079 if (fcode1 == BUILT_IN_POW
8080 || fcode1 == BUILT_IN_POWF
8081 || fcode1 == BUILT_IN_POWL)
8083 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
8084 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
8085 1)));
8086 if (TREE_CODE (arg11) == REAL_CST
8087 && ! TREE_CONSTANT_OVERFLOW (arg11)
8088 && operand_equal_p (arg0, arg10, 0))
8090 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
8091 REAL_VALUE_TYPE c;
8092 tree arg, arglist;
8094 c = TREE_REAL_CST (arg11);
8095 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
8096 arg = build_real (type, c);
8097 arglist = build_tree_list (NULL_TREE, arg);
8098 arglist = tree_cons (NULL_TREE, arg0, arglist);
8099 return build_function_call_expr (powfn, arglist);
8103 /* Optimize pow(x,c)*x as pow(x,c+1). */
8104 if (fcode0 == BUILT_IN_POW
8105 || fcode0 == BUILT_IN_POWF
8106 || fcode0 == BUILT_IN_POWL)
8108 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
8109 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
8110 1)));
8111 if (TREE_CODE (arg01) == REAL_CST
8112 && ! TREE_CONSTANT_OVERFLOW (arg01)
8113 && operand_equal_p (arg1, arg00, 0))
8115 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
8116 REAL_VALUE_TYPE c;
8117 tree arg, arglist;
8119 c = TREE_REAL_CST (arg01);
8120 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
8121 arg = build_real (type, c);
8122 arglist = build_tree_list (NULL_TREE, arg);
8123 arglist = tree_cons (NULL_TREE, arg1, arglist);
8124 return build_function_call_expr (powfn, arglist);
8128 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
8129 if (! optimize_size
8130 && operand_equal_p (arg0, arg1, 0))
8132 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
8134 if (powfn)
8136 tree arg = build_real (type, dconst2);
8137 tree arglist = build_tree_list (NULL_TREE, arg);
8138 arglist = tree_cons (NULL_TREE, arg0, arglist);
8139 return build_function_call_expr (powfn, arglist);
8144 goto associate;
8146 case BIT_IOR_EXPR:
8147 bit_ior:
8148 if (integer_all_onesp (arg1))
8149 return omit_one_operand (type, arg1, arg0);
8150 if (integer_zerop (arg1))
8151 return non_lvalue (fold_convert (type, arg0));
8152 if (operand_equal_p (arg0, arg1, 0))
8153 return non_lvalue (fold_convert (type, arg0));
8155 /* ~X | X is -1. */
8156 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8157 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8159 t1 = build_int_cst (type, -1);
8160 t1 = force_fit_type (t1, 0, false, false);
8161 return omit_one_operand (type, t1, arg1);
8164 /* X | ~X is -1. */
8165 if (TREE_CODE (arg1) == BIT_NOT_EXPR
8166 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8168 t1 = build_int_cst (type, -1);
8169 t1 = force_fit_type (t1, 0, false, false);
8170 return omit_one_operand (type, t1, arg0);
8173 t1 = distribute_bit_expr (code, type, arg0, arg1);
8174 if (t1 != NULL_TREE)
8175 return t1;
8177 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
8179 This results in more efficient code for machines without a NAND
8180 instruction. Combine will canonicalize to the first form
8181 which will allow use of NAND instructions provided by the
8182 backend if they exist. */
8183 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8184 && TREE_CODE (arg1) == BIT_NOT_EXPR)
8186 return fold_build1 (BIT_NOT_EXPR, type,
8187 build2 (BIT_AND_EXPR, type,
8188 TREE_OPERAND (arg0, 0),
8189 TREE_OPERAND (arg1, 0)));
8192 /* See if this can be simplified into a rotate first. If that
8193 is unsuccessful continue in the association code. */
8194 goto bit_rotate;
8196 case BIT_XOR_EXPR:
8197 if (integer_zerop (arg1))
8198 return non_lvalue (fold_convert (type, arg0));
8199 if (integer_all_onesp (arg1))
8200 return fold_build1 (BIT_NOT_EXPR, type, arg0);
8201 if (operand_equal_p (arg0, arg1, 0))
8202 return omit_one_operand (type, integer_zero_node, arg0);
8204 /* ~X ^ X is -1. */
8205 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8206 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8208 t1 = build_int_cst (type, -1);
8209 t1 = force_fit_type (t1, 0, false, false);
8210 return omit_one_operand (type, t1, arg1);
8213 /* X ^ ~X is -1. */
8214 if (TREE_CODE (arg1) == BIT_NOT_EXPR
8215 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8217 t1 = build_int_cst (type, -1);
8218 t1 = force_fit_type (t1, 0, false, false);
8219 return omit_one_operand (type, t1, arg0);
8222 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
8223 with a constant, and the two constants have no bits in common,
8224 we should treat this as a BIT_IOR_EXPR since this may produce more
8225 simplifications. */
8226 if (TREE_CODE (arg0) == BIT_AND_EXPR
8227 && TREE_CODE (arg1) == BIT_AND_EXPR
8228 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8229 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8230 && integer_zerop (const_binop (BIT_AND_EXPR,
8231 TREE_OPERAND (arg0, 1),
8232 TREE_OPERAND (arg1, 1), 0)))
8234 code = BIT_IOR_EXPR;
8235 goto bit_ior;
8238 /* Convert ~X ^ ~Y to X ^ Y. */
8239 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8240 && TREE_CODE (arg1) == BIT_NOT_EXPR)
8241 return fold_build2 (code, type,
8242 fold_convert (type, TREE_OPERAND (arg0, 0)),
8243 fold_convert (type, TREE_OPERAND (arg1, 0)));
8245 /* See if this can be simplified into a rotate first. If that
8246 is unsuccessful continue in the association code. */
8247 goto bit_rotate;
8249 case BIT_AND_EXPR:
8250 if (integer_all_onesp (arg1))
8251 return non_lvalue (fold_convert (type, arg0));
8252 if (integer_zerop (arg1))
8253 return omit_one_operand (type, arg1, arg0);
8254 if (operand_equal_p (arg0, arg1, 0))
8255 return non_lvalue (fold_convert (type, arg0));
8257 /* ~X & X is always zero. */
8258 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8259 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8260 return omit_one_operand (type, integer_zero_node, arg1);
8262 /* X & ~X is always zero. */
8263 if (TREE_CODE (arg1) == BIT_NOT_EXPR
8264 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8265 return omit_one_operand (type, integer_zero_node, arg0);
8267 t1 = distribute_bit_expr (code, type, arg0, arg1);
8268 if (t1 != NULL_TREE)
8269 return t1;
8270 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
8271 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
8272 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
8274 unsigned int prec
8275 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
8277 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
8278 && (~TREE_INT_CST_LOW (arg1)
8279 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
8280 return fold_convert (type, TREE_OPERAND (arg0, 0));
8283 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
8285 This results in more efficient code for machines without a NOR
8286 instruction. Combine will canonicalize to the first form
8287 which will allow use of NOR instructions provided by the
8288 backend if they exist. */
8289 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8290 && TREE_CODE (arg1) == BIT_NOT_EXPR)
8292 return fold_build1 (BIT_NOT_EXPR, type,
8293 build2 (BIT_IOR_EXPR, type,
8294 TREE_OPERAND (arg0, 0),
8295 TREE_OPERAND (arg1, 0)));
8298 goto associate;
8300 case RDIV_EXPR:
8301 /* Don't touch a floating-point divide by zero unless the mode
8302 of the constant can represent infinity. */
8303 if (TREE_CODE (arg1) == REAL_CST
8304 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
8305 && real_zerop (arg1))
8306 return NULL_TREE;
8308 /* (-A) / (-B) -> A / B */
8309 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
8310 return fold_build2 (RDIV_EXPR, type,
8311 TREE_OPERAND (arg0, 0),
8312 negate_expr (arg1));
8313 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
8314 return fold_build2 (RDIV_EXPR, type,
8315 negate_expr (arg0),
8316 TREE_OPERAND (arg1, 0));
8318 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
8319 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
8320 && real_onep (arg1))
8321 return non_lvalue (fold_convert (type, arg0));
8323 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
8324 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
8325 && real_minus_onep (arg1))
8326 return non_lvalue (fold_convert (type, negate_expr (arg0)));
8328 /* If ARG1 is a constant, we can convert this to a multiply by the
8329 reciprocal. This does not have the same rounding properties,
8330 so only do this if -funsafe-math-optimizations. We can actually
8331 always safely do it if ARG1 is a power of two, but it's hard to
8332 tell if it is or not in a portable manner. */
8333 if (TREE_CODE (arg1) == REAL_CST)
8335 if (flag_unsafe_math_optimizations
8336 && 0 != (tem = const_binop (code, build_real (type, dconst1),
8337 arg1, 0)))
8338 return fold_build2 (MULT_EXPR, type, arg0, tem);
8339 /* Find the reciprocal if optimizing and the result is exact. */
8340 if (optimize)
8342 REAL_VALUE_TYPE r;
8343 r = TREE_REAL_CST (arg1);
8344 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
8346 tem = build_real (type, r);
8347 return fold_build2 (MULT_EXPR, type, arg0, tem);
8351 /* Convert A/B/C to A/(B*C). */
8352 if (flag_unsafe_math_optimizations
8353 && TREE_CODE (arg0) == RDIV_EXPR)
8354 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
8355 fold_build2 (MULT_EXPR, type,
8356 TREE_OPERAND (arg0, 1), arg1));
8358 /* Convert A/(B/C) to (A/B)*C. */
8359 if (flag_unsafe_math_optimizations
8360 && TREE_CODE (arg1) == RDIV_EXPR)
8361 return fold_build2 (MULT_EXPR, type,
8362 fold_build2 (RDIV_EXPR, type, arg0,
8363 TREE_OPERAND (arg1, 0)),
8364 TREE_OPERAND (arg1, 1));
8366 /* Convert C1/(X*C2) into (C1/C2)/X. */
8367 if (flag_unsafe_math_optimizations
8368 && TREE_CODE (arg1) == MULT_EXPR
8369 && TREE_CODE (arg0) == REAL_CST
8370 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
8372 tree tem = const_binop (RDIV_EXPR, arg0,
8373 TREE_OPERAND (arg1, 1), 0);
8374 if (tem)
8375 return fold_build2 (RDIV_EXPR, type, tem,
8376 TREE_OPERAND (arg1, 0));
8379 if (TREE_CODE (type) == COMPLEX_TYPE)
8381 tem = fold_complex_div (type, arg0, arg1, code);
8382 if (tem)
8383 return tem;
8386 if (flag_unsafe_math_optimizations)
8388 enum built_in_function fcode = builtin_mathfn_code (arg1);
8389 /* Optimize x/expN(y) into x*expN(-y). */
8390 if (BUILTIN_EXPONENT_P (fcode))
8392 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
8393 tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
8394 tree arglist = build_tree_list (NULL_TREE,
8395 fold_convert (type, arg));
8396 arg1 = build_function_call_expr (expfn, arglist);
8397 return fold_build2 (MULT_EXPR, type, arg0, arg1);
8400 /* Optimize x/pow(y,z) into x*pow(y,-z). */
8401 if (fcode == BUILT_IN_POW
8402 || fcode == BUILT_IN_POWF
8403 || fcode == BUILT_IN_POWL)
8405 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
8406 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
8407 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
8408 tree neg11 = fold_convert (type, negate_expr (arg11));
8409 tree arglist = tree_cons(NULL_TREE, arg10,
8410 build_tree_list (NULL_TREE, neg11));
8411 arg1 = build_function_call_expr (powfn, arglist);
8412 return fold_build2 (MULT_EXPR, type, arg0, arg1);
8416 if (flag_unsafe_math_optimizations)
8418 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
8419 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
8421 /* Optimize sin(x)/cos(x) as tan(x). */
8422 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
8423 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
8424 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
8425 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
8426 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
8428 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
8430 if (tanfn != NULL_TREE)
8431 return build_function_call_expr (tanfn,
8432 TREE_OPERAND (arg0, 1));
8435 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
8436 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
8437 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
8438 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
8439 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
8440 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
8442 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
8444 if (tanfn != NULL_TREE)
8446 tree tmp = TREE_OPERAND (arg0, 1);
8447 tmp = build_function_call_expr (tanfn, tmp);
8448 return fold_build2 (RDIV_EXPR, type,
8449 build_real (type, dconst1), tmp);
8453 /* Optimize pow(x,c)/x as pow(x,c-1). */
8454 if (fcode0 == BUILT_IN_POW
8455 || fcode0 == BUILT_IN_POWF
8456 || fcode0 == BUILT_IN_POWL)
8458 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
8459 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
8460 if (TREE_CODE (arg01) == REAL_CST
8461 && ! TREE_CONSTANT_OVERFLOW (arg01)
8462 && operand_equal_p (arg1, arg00, 0))
8464 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
8465 REAL_VALUE_TYPE c;
8466 tree arg, arglist;
8468 c = TREE_REAL_CST (arg01);
8469 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
8470 arg = build_real (type, c);
8471 arglist = build_tree_list (NULL_TREE, arg);
8472 arglist = tree_cons (NULL_TREE, arg1, arglist);
8473 return build_function_call_expr (powfn, arglist);
8477 goto binary;
8479 case TRUNC_DIV_EXPR:
8480 case ROUND_DIV_EXPR:
8481 case FLOOR_DIV_EXPR:
8482 case CEIL_DIV_EXPR:
8483 case EXACT_DIV_EXPR:
8484 if (integer_onep (arg1))
8485 return non_lvalue (fold_convert (type, arg0));
8486 if (integer_zerop (arg1))
8487 return NULL_TREE;
8488 /* X / -1 is -X. */
8489 if (!TYPE_UNSIGNED (type)
8490 && TREE_CODE (arg1) == INTEGER_CST
8491 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
8492 && TREE_INT_CST_HIGH (arg1) == -1)
8493 return fold_convert (type, negate_expr (arg0));
8495 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
8496 operation, EXACT_DIV_EXPR.
8498 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
8499 At one time others generated faster code, it's not clear if they do
8500 after the last round to changes to the DIV code in expmed.c. */
8501 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
8502 && multiple_of_p (type, arg0, arg1))
8503 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
8505 if (TREE_CODE (arg1) == INTEGER_CST
8506 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE)))
8507 return fold_convert (type, tem);
8509 if (TREE_CODE (type) == COMPLEX_TYPE)
8511 tem = fold_complex_div (type, arg0, arg1, code);
8512 if (tem)
8513 return tem;
8515 goto binary;
8517 case CEIL_MOD_EXPR:
8518 case FLOOR_MOD_EXPR:
8519 case ROUND_MOD_EXPR:
8520 case TRUNC_MOD_EXPR:
8521 /* X % 1 is always zero, but be sure to preserve any side
8522 effects in X. */
8523 if (integer_onep (arg1))
8524 return omit_one_operand (type, integer_zero_node, arg0);
8526 /* X % 0, return X % 0 unchanged so that we can get the
8527 proper warnings and errors. */
8528 if (integer_zerop (arg1))
8529 return NULL_TREE;
8531 /* 0 % X is always zero, but be sure to preserve any side
8532 effects in X. Place this after checking for X == 0. */
8533 if (integer_zerop (arg0))
8534 return omit_one_operand (type, integer_zero_node, arg1);
8536 /* X % -1 is zero. */
8537 if (!TYPE_UNSIGNED (type)
8538 && TREE_CODE (arg1) == INTEGER_CST
8539 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
8540 && TREE_INT_CST_HIGH (arg1) == -1)
8541 return omit_one_operand (type, integer_zero_node, arg0);
8543 /* Optimize unsigned TRUNC_MOD_EXPR by a power of two into a
8544 BIT_AND_EXPR, i.e. "X % C" into "X & C2". */
8545 if (code == TRUNC_MOD_EXPR
8546 && TYPE_UNSIGNED (type)
8547 && integer_pow2p (arg1))
8549 unsigned HOST_WIDE_INT high, low;
8550 tree mask;
8551 int l;
8553 l = tree_log2 (arg1);
8554 if (l >= HOST_BITS_PER_WIDE_INT)
8556 high = ((unsigned HOST_WIDE_INT) 1
8557 << (l - HOST_BITS_PER_WIDE_INT)) - 1;
8558 low = -1;
8560 else
8562 high = 0;
8563 low = ((unsigned HOST_WIDE_INT) 1 << l) - 1;
8566 mask = build_int_cst_wide (type, low, high);
8567 return fold_build2 (BIT_AND_EXPR, type,
8568 fold_convert (type, arg0), mask);
8571 /* X % -C is the same as X % C. */
8572 if (code == TRUNC_MOD_EXPR
8573 && !TYPE_UNSIGNED (type)
8574 && TREE_CODE (arg1) == INTEGER_CST
8575 && !TREE_CONSTANT_OVERFLOW (arg1)
8576 && TREE_INT_CST_HIGH (arg1) < 0
8577 && !flag_trapv
8578 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
8579 && !sign_bit_p (arg1, arg1))
8580 return fold_build2 (code, type, fold_convert (type, arg0),
8581 fold_convert (type, negate_expr (arg1)));
8583 /* X % -Y is the same as X % Y. */
8584 if (code == TRUNC_MOD_EXPR
8585 && !TYPE_UNSIGNED (type)
8586 && TREE_CODE (arg1) == NEGATE_EXPR
8587 && !flag_trapv)
8588 return fold_build2 (code, type, fold_convert (type, arg0),
8589 fold_convert (type, TREE_OPERAND (arg1, 0)));
8591 if (TREE_CODE (arg1) == INTEGER_CST
8592 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE)))
8593 return fold_convert (type, tem);
8595 goto binary;
8597 case LROTATE_EXPR:
8598 case RROTATE_EXPR:
8599 if (integer_all_onesp (arg0))
8600 return omit_one_operand (type, arg0, arg1);
8601 goto shift;
8603 case RSHIFT_EXPR:
8604 /* Optimize -1 >> x for arithmetic right shifts. */
8605 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
8606 return omit_one_operand (type, arg0, arg1);
8607 /* ... fall through ... */
8609 case LSHIFT_EXPR:
8610 shift:
8611 if (integer_zerop (arg1))
8612 return non_lvalue (fold_convert (type, arg0));
8613 if (integer_zerop (arg0))
8614 return omit_one_operand (type, arg0, arg1);
8616 /* Since negative shift count is not well-defined,
8617 don't try to compute it in the compiler. */
8618 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
8619 return NULL_TREE;
8620 /* Rewrite an LROTATE_EXPR by a constant into an
8621 RROTATE_EXPR by a new constant. */
8622 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
8624 tree tem = build_int_cst (NULL_TREE,
8625 GET_MODE_BITSIZE (TYPE_MODE (type)));
8626 tem = fold_convert (TREE_TYPE (arg1), tem);
8627 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
8628 return fold_build2 (RROTATE_EXPR, type, arg0, tem);
8631 /* If we have a rotate of a bit operation with the rotate count and
8632 the second operand of the bit operation both constant,
8633 permute the two operations. */
8634 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
8635 && (TREE_CODE (arg0) == BIT_AND_EXPR
8636 || TREE_CODE (arg0) == BIT_IOR_EXPR
8637 || TREE_CODE (arg0) == BIT_XOR_EXPR)
8638 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8639 return fold_build2 (TREE_CODE (arg0), type,
8640 fold_build2 (code, type,
8641 TREE_OPERAND (arg0, 0), arg1),
8642 fold_build2 (code, type,
8643 TREE_OPERAND (arg0, 1), arg1));
8645 /* Two consecutive rotates adding up to the width of the mode can
8646 be ignored. */
8647 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
8648 && TREE_CODE (arg0) == RROTATE_EXPR
8649 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8650 && TREE_INT_CST_HIGH (arg1) == 0
8651 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
8652 && ((TREE_INT_CST_LOW (arg1)
8653 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
8654 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
8655 return TREE_OPERAND (arg0, 0);
8657 goto binary;
8659 case MIN_EXPR:
8660 if (operand_equal_p (arg0, arg1, 0))
8661 return omit_one_operand (type, arg0, arg1);
8662 if (INTEGRAL_TYPE_P (type)
8663 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
8664 return omit_one_operand (type, arg1, arg0);
8665 goto associate;
8667 case MAX_EXPR:
8668 if (operand_equal_p (arg0, arg1, 0))
8669 return omit_one_operand (type, arg0, arg1);
8670 if (INTEGRAL_TYPE_P (type)
8671 && TYPE_MAX_VALUE (type)
8672 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
8673 return omit_one_operand (type, arg1, arg0);
8674 goto associate;
8676 case TRUTH_ANDIF_EXPR:
8677 /* Note that the operands of this must be ints
8678 and their values must be 0 or 1.
8679 ("true" is a fixed value perhaps depending on the language.) */
8680 /* If first arg is constant zero, return it. */
8681 if (integer_zerop (arg0))
8682 return fold_convert (type, arg0);
8683 case TRUTH_AND_EXPR:
8684 /* If either arg is constant true, drop it. */
8685 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8686 return non_lvalue (fold_convert (type, arg1));
8687 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
8688 /* Preserve sequence points. */
8689 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
8690 return non_lvalue (fold_convert (type, arg0));
8691 /* If second arg is constant zero, result is zero, but first arg
8692 must be evaluated. */
8693 if (integer_zerop (arg1))
8694 return omit_one_operand (type, arg1, arg0);
8695 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
8696 case will be handled here. */
8697 if (integer_zerop (arg0))
8698 return omit_one_operand (type, arg0, arg1);
8700 /* !X && X is always false. */
8701 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8702 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8703 return omit_one_operand (type, integer_zero_node, arg1);
8704 /* X && !X is always false. */
8705 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8706 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8707 return omit_one_operand (type, integer_zero_node, arg0);
8709 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
8710 means A >= Y && A != MAX, but in this case we know that
8711 A < X <= MAX. */
8713 if (!TREE_SIDE_EFFECTS (arg0)
8714 && !TREE_SIDE_EFFECTS (arg1))
8716 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
8717 if (tem)
8718 return fold_build2 (code, type, tem, arg1);
8720 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
8721 if (tem)
8722 return fold_build2 (code, type, arg0, tem);
8725 truth_andor:
8726 /* We only do these simplifications if we are optimizing. */
8727 if (!optimize)
8728 return NULL_TREE;
8730 /* Check for things like (A || B) && (A || C). We can convert this
8731 to A || (B && C). Note that either operator can be any of the four
8732 truth and/or operations and the transformation will still be
8733 valid. Also note that we only care about order for the
8734 ANDIF and ORIF operators. If B contains side effects, this
8735 might change the truth-value of A. */
8736 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8737 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8738 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8739 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8740 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8741 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8743 tree a00 = TREE_OPERAND (arg0, 0);
8744 tree a01 = TREE_OPERAND (arg0, 1);
8745 tree a10 = TREE_OPERAND (arg1, 0);
8746 tree a11 = TREE_OPERAND (arg1, 1);
8747 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8748 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8749 && (code == TRUTH_AND_EXPR
8750 || code == TRUTH_OR_EXPR));
8752 if (operand_equal_p (a00, a10, 0))
8753 return fold_build2 (TREE_CODE (arg0), type, a00,
8754 fold_build2 (code, type, a01, a11));
8755 else if (commutative && operand_equal_p (a00, a11, 0))
8756 return fold_build2 (TREE_CODE (arg0), type, a00,
8757 fold_build2 (code, type, a01, a10));
8758 else if (commutative && operand_equal_p (a01, a10, 0))
8759 return fold_build2 (TREE_CODE (arg0), type, a01,
8760 fold_build2 (code, type, a00, a11));
8762 /* This case if tricky because we must either have commutative
8763 operators or else A10 must not have side-effects. */
8765 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8766 && operand_equal_p (a01, a11, 0))
8767 return fold_build2 (TREE_CODE (arg0), type,
8768 fold_build2 (code, type, a00, a10),
8769 a01);
8772 /* See if we can build a range comparison. */
8773 if (0 != (tem = fold_range_test (code, type, op0, op1)))
8774 return tem;
8776 /* Check for the possibility of merging component references. If our
8777 lhs is another similar operation, try to merge its rhs with our
8778 rhs. Then try to merge our lhs and rhs. */
8779 if (TREE_CODE (arg0) == code
8780 && 0 != (tem = fold_truthop (code, type,
8781 TREE_OPERAND (arg0, 1), arg1)))
8782 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
8784 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
8785 return tem;
8787 return NULL_TREE;
8789 case TRUTH_ORIF_EXPR:
8790 /* Note that the operands of this must be ints
8791 and their values must be 0 or true.
8792 ("true" is a fixed value perhaps depending on the language.) */
8793 /* If first arg is constant true, return it. */
8794 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8795 return fold_convert (type, arg0);
8796 case TRUTH_OR_EXPR:
8797 /* If either arg is constant zero, drop it. */
8798 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
8799 return non_lvalue (fold_convert (type, arg1));
8800 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
8801 /* Preserve sequence points. */
8802 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
8803 return non_lvalue (fold_convert (type, arg0));
8804 /* If second arg is constant true, result is true, but we must
8805 evaluate first arg. */
8806 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
8807 return omit_one_operand (type, arg1, arg0);
8808 /* Likewise for first arg, but note this only occurs here for
8809 TRUTH_OR_EXPR. */
8810 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
8811 return omit_one_operand (type, arg0, arg1);
8813 /* !X || X is always true. */
8814 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8815 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8816 return omit_one_operand (type, integer_one_node, arg1);
8817 /* X || !X is always true. */
8818 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8819 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8820 return omit_one_operand (type, integer_one_node, arg0);
8822 goto truth_andor;
8824 case TRUTH_XOR_EXPR:
8825 /* If the second arg is constant zero, drop it. */
8826 if (integer_zerop (arg1))
8827 return non_lvalue (fold_convert (type, arg0));
8828 /* If the second arg is constant true, this is a logical inversion. */
8829 if (integer_onep (arg1))
8831 /* Only call invert_truthvalue if operand is a truth value. */
8832 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8833 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
8834 else
8835 tem = invert_truthvalue (arg0);
8836 return non_lvalue (fold_convert (type, tem));
8838 /* Identical arguments cancel to zero. */
8839 if (operand_equal_p (arg0, arg1, 0))
8840 return omit_one_operand (type, integer_zero_node, arg0);
8842 /* !X ^ X is always true. */
8843 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
8844 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
8845 return omit_one_operand (type, integer_one_node, arg1);
8847 /* X ^ !X is always true. */
8848 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
8849 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8850 return omit_one_operand (type, integer_one_node, arg0);
8852 return NULL_TREE;
8854 case EQ_EXPR:
8855 case NE_EXPR:
8856 case LT_EXPR:
8857 case GT_EXPR:
8858 case LE_EXPR:
8859 case GE_EXPR:
8860 /* If one arg is a real or integer constant, put it last. */
8861 if (tree_swap_operands_p (arg0, arg1, true))
8862 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
8864 /* If this is an equality comparison of the address of a non-weak
8865 object against zero, then we know the result. */
8866 if ((code == EQ_EXPR || code == NE_EXPR)
8867 && TREE_CODE (arg0) == ADDR_EXPR
8868 && DECL_P (TREE_OPERAND (arg0, 0))
8869 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
8870 && integer_zerop (arg1))
8871 return constant_boolean_node (code != EQ_EXPR, type);
8873 /* If this is an equality comparison of the address of two non-weak,
8874 unaliased symbols neither of which are extern (since we do not
8875 have access to attributes for externs), then we know the result. */
8876 if ((code == EQ_EXPR || code == NE_EXPR)
8877 && TREE_CODE (arg0) == ADDR_EXPR
8878 && DECL_P (TREE_OPERAND (arg0, 0))
8879 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
8880 && ! lookup_attribute ("alias",
8881 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
8882 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
8883 && TREE_CODE (arg1) == ADDR_EXPR
8884 && DECL_P (TREE_OPERAND (arg1, 0))
8885 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
8886 && ! lookup_attribute ("alias",
8887 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
8888 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
8889 return constant_boolean_node (operand_equal_p (arg0, arg1, 0)
8890 ? code == EQ_EXPR : code != EQ_EXPR,
8891 type);
8893 /* If this is a comparison of two exprs that look like an
8894 ARRAY_REF of the same object, then we can fold this to a
8895 comparison of the two offsets. */
8896 if (TREE_CODE_CLASS (code) == tcc_comparison)
8898 tree base0, offset0, base1, offset1;
8900 if (extract_array_ref (arg0, &base0, &offset0)
8901 && extract_array_ref (arg1, &base1, &offset1)
8902 && operand_equal_p (base0, base1, 0))
8904 if (offset0 == NULL_TREE
8905 && offset1 == NULL_TREE)
8907 offset0 = integer_zero_node;
8908 offset1 = integer_zero_node;
8910 else if (offset0 == NULL_TREE)
8911 offset0 = build_int_cst (TREE_TYPE (offset1), 0);
8912 else if (offset1 == NULL_TREE)
8913 offset1 = build_int_cst (TREE_TYPE (offset0), 0);
8915 if (TREE_TYPE (offset0) == TREE_TYPE (offset1))
8916 return fold_build2 (code, type, offset0, offset1);
8920 /* Transform comparisons of the form X +- C CMP X. */
8921 if ((code != EQ_EXPR && code != NE_EXPR)
8922 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8923 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
8924 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
8925 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
8926 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8927 && !TYPE_UNSIGNED (TREE_TYPE (arg1))
8928 && !(flag_wrapv || flag_trapv))))
8930 tree arg01 = TREE_OPERAND (arg0, 1);
8931 enum tree_code code0 = TREE_CODE (arg0);
8932 int is_positive;
8934 if (TREE_CODE (arg01) == REAL_CST)
8935 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
8936 else
8937 is_positive = tree_int_cst_sgn (arg01);
8939 /* (X - c) > X becomes false. */
8940 if (code == GT_EXPR
8941 && ((code0 == MINUS_EXPR && is_positive >= 0)
8942 || (code0 == PLUS_EXPR && is_positive <= 0)))
8943 return constant_boolean_node (0, type);
8945 /* Likewise (X + c) < X becomes false. */
8946 if (code == LT_EXPR
8947 && ((code0 == PLUS_EXPR && is_positive >= 0)
8948 || (code0 == MINUS_EXPR && is_positive <= 0)))
8949 return constant_boolean_node (0, type);
8951 /* Convert (X - c) <= X to true. */
8952 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
8953 && code == LE_EXPR
8954 && ((code0 == MINUS_EXPR && is_positive >= 0)
8955 || (code0 == PLUS_EXPR && is_positive <= 0)))
8956 return constant_boolean_node (1, type);
8958 /* Convert (X + c) >= X to true. */
8959 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
8960 && code == GE_EXPR
8961 && ((code0 == PLUS_EXPR && is_positive >= 0)
8962 || (code0 == MINUS_EXPR && is_positive <= 0)))
8963 return constant_boolean_node (1, type);
8965 if (TREE_CODE (arg01) == INTEGER_CST)
8967 /* Convert X + c > X and X - c < X to true for integers. */
8968 if (code == GT_EXPR
8969 && ((code0 == PLUS_EXPR && is_positive > 0)
8970 || (code0 == MINUS_EXPR && is_positive < 0)))
8971 return constant_boolean_node (1, type);
8973 if (code == LT_EXPR
8974 && ((code0 == MINUS_EXPR && is_positive > 0)
8975 || (code0 == PLUS_EXPR && is_positive < 0)))
8976 return constant_boolean_node (1, type);
8978 /* Convert X + c <= X and X - c >= X to false for integers. */
8979 if (code == LE_EXPR
8980 && ((code0 == PLUS_EXPR && is_positive > 0)
8981 || (code0 == MINUS_EXPR && is_positive < 0)))
8982 return constant_boolean_node (0, type);
8984 if (code == GE_EXPR
8985 && ((code0 == MINUS_EXPR && is_positive > 0)
8986 || (code0 == PLUS_EXPR && is_positive < 0)))
8987 return constant_boolean_node (0, type);
8991 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
8993 tree targ0 = strip_float_extensions (arg0);
8994 tree targ1 = strip_float_extensions (arg1);
8995 tree newtype = TREE_TYPE (targ0);
8997 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
8998 newtype = TREE_TYPE (targ1);
9000 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9001 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9002 return fold_build2 (code, type, fold_convert (newtype, targ0),
9003 fold_convert (newtype, targ1));
9005 /* (-a) CMP (-b) -> b CMP a */
9006 if (TREE_CODE (arg0) == NEGATE_EXPR
9007 && TREE_CODE (arg1) == NEGATE_EXPR)
9008 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
9009 TREE_OPERAND (arg0, 0));
9011 if (TREE_CODE (arg1) == REAL_CST)
9013 REAL_VALUE_TYPE cst;
9014 cst = TREE_REAL_CST (arg1);
9016 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9017 if (TREE_CODE (arg0) == NEGATE_EXPR)
9018 return
9019 fold_build2 (swap_tree_comparison (code), type,
9020 TREE_OPERAND (arg0, 0),
9021 build_real (TREE_TYPE (arg1),
9022 REAL_VALUE_NEGATE (cst)));
9024 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9025 /* a CMP (-0) -> a CMP 0 */
9026 if (REAL_VALUE_MINUS_ZERO (cst))
9027 return fold_build2 (code, type, arg0,
9028 build_real (TREE_TYPE (arg1), dconst0));
9030 /* x != NaN is always true, other ops are always false. */
9031 if (REAL_VALUE_ISNAN (cst)
9032 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
9034 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9035 return omit_one_operand (type, tem, arg0);
9038 /* Fold comparisons against infinity. */
9039 if (REAL_VALUE_ISINF (cst))
9041 tem = fold_inf_compare (code, type, arg0, arg1);
9042 if (tem != NULL_TREE)
9043 return tem;
9047 /* If this is a comparison of a real constant with a PLUS_EXPR
9048 or a MINUS_EXPR of a real constant, we can convert it into a
9049 comparison with a revised real constant as long as no overflow
9050 occurs when unsafe_math_optimizations are enabled. */
9051 if (flag_unsafe_math_optimizations
9052 && TREE_CODE (arg1) == REAL_CST
9053 && (TREE_CODE (arg0) == PLUS_EXPR
9054 || TREE_CODE (arg0) == MINUS_EXPR)
9055 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9056 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9057 ? MINUS_EXPR : PLUS_EXPR,
9058 arg1, TREE_OPERAND (arg0, 1), 0))
9059 && ! TREE_CONSTANT_OVERFLOW (tem))
9060 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9062 /* Likewise, we can simplify a comparison of a real constant with
9063 a MINUS_EXPR whose first operand is also a real constant, i.e.
9064 (c1 - x) < c2 becomes x > c1-c2. */
9065 if (flag_unsafe_math_optimizations
9066 && TREE_CODE (arg1) == REAL_CST
9067 && TREE_CODE (arg0) == MINUS_EXPR
9068 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9069 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9070 arg1, 0))
9071 && ! TREE_CONSTANT_OVERFLOW (tem))
9072 return fold_build2 (swap_tree_comparison (code), type,
9073 TREE_OPERAND (arg0, 1), tem);
9075 /* Fold comparisons against built-in math functions. */
9076 if (TREE_CODE (arg1) == REAL_CST
9077 && flag_unsafe_math_optimizations
9078 && ! flag_errno_math)
9080 enum built_in_function fcode = builtin_mathfn_code (arg0);
9082 if (fcode != END_BUILTINS)
9084 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
9085 if (tem != NULL_TREE)
9086 return tem;
9091 /* Convert foo++ == CONST into ++foo == CONST + INCR. */
9092 if (TREE_CONSTANT (arg1)
9093 && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
9094 || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
9095 /* This optimization is invalid for ordered comparisons
9096 if CONST+INCR overflows or if foo+incr might overflow.
9097 This optimization is invalid for floating point due to rounding.
9098 For pointer types we assume overflow doesn't happen. */
9099 && (POINTER_TYPE_P (TREE_TYPE (arg0))
9100 || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9101 && (code == EQ_EXPR || code == NE_EXPR))))
9103 tree varop, newconst;
9105 if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
9107 newconst = fold_build2 (PLUS_EXPR, TREE_TYPE (arg0),
9108 arg1, TREE_OPERAND (arg0, 1));
9109 varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
9110 TREE_OPERAND (arg0, 0),
9111 TREE_OPERAND (arg0, 1));
9113 else
9115 newconst = fold_build2 (MINUS_EXPR, TREE_TYPE (arg0),
9116 arg1, TREE_OPERAND (arg0, 1));
9117 varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
9118 TREE_OPERAND (arg0, 0),
9119 TREE_OPERAND (arg0, 1));
9123 /* If VAROP is a reference to a bitfield, we must mask
9124 the constant by the width of the field. */
9125 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
9126 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
9127 && host_integerp (DECL_SIZE (TREE_OPERAND
9128 (TREE_OPERAND (varop, 0), 1)), 1))
9130 tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
9131 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
9132 tree folded_compare, shift;
9134 /* First check whether the comparison would come out
9135 always the same. If we don't do that we would
9136 change the meaning with the masking. */
9137 folded_compare = fold_build2 (code, type,
9138 TREE_OPERAND (varop, 0), arg1);
9139 if (integer_zerop (folded_compare)
9140 || integer_onep (folded_compare))
9141 return omit_one_operand (type, folded_compare, varop);
9143 shift = build_int_cst (NULL_TREE,
9144 TYPE_PRECISION (TREE_TYPE (varop)) - size);
9145 shift = fold_convert (TREE_TYPE (varop), shift);
9146 newconst = fold_build2 (LSHIFT_EXPR, TREE_TYPE (varop),
9147 newconst, shift);
9148 newconst = fold_build2 (RSHIFT_EXPR, TREE_TYPE (varop),
9149 newconst, shift);
9152 return fold_build2 (code, type, varop, newconst);
9155 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
9156 This transformation affects the cases which are handled in later
9157 optimizations involving comparisons with non-negative constants. */
9158 if (TREE_CODE (arg1) == INTEGER_CST
9159 && TREE_CODE (arg0) != INTEGER_CST
9160 && tree_int_cst_sgn (arg1) > 0)
9162 switch (code)
9164 case GE_EXPR:
9165 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
9166 return fold_build2 (GT_EXPR, type, arg0, arg1);
9168 case LT_EXPR:
9169 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
9170 return fold_build2 (LE_EXPR, type, arg0, arg1);
9172 default:
9173 break;
9177 /* Comparisons with the highest or lowest possible integer of
9178 the specified size will have known values. */
9180 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
9182 if (TREE_CODE (arg1) == INTEGER_CST
9183 && ! TREE_CONSTANT_OVERFLOW (arg1)
9184 && width <= 2 * HOST_BITS_PER_WIDE_INT
9185 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9186 || POINTER_TYPE_P (TREE_TYPE (arg1))))
9188 HOST_WIDE_INT signed_max_hi;
9189 unsigned HOST_WIDE_INT signed_max_lo;
9190 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
9192 if (width <= HOST_BITS_PER_WIDE_INT)
9194 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
9195 - 1;
9196 signed_max_hi = 0;
9197 max_hi = 0;
9199 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
9201 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
9202 min_lo = 0;
9203 min_hi = 0;
9205 else
9207 max_lo = signed_max_lo;
9208 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
9209 min_hi = -1;
9212 else
9214 width -= HOST_BITS_PER_WIDE_INT;
9215 signed_max_lo = -1;
9216 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
9217 - 1;
9218 max_lo = -1;
9219 min_lo = 0;
9221 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
9223 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
9224 min_hi = 0;
9226 else
9228 max_hi = signed_max_hi;
9229 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
9233 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
9234 && TREE_INT_CST_LOW (arg1) == max_lo)
9235 switch (code)
9237 case GT_EXPR:
9238 return omit_one_operand (type, integer_zero_node, arg0);
9240 case GE_EXPR:
9241 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9243 case LE_EXPR:
9244 return omit_one_operand (type, integer_one_node, arg0);
9246 case LT_EXPR:
9247 return fold_build2 (NE_EXPR, type, arg0, arg1);
9249 /* The GE_EXPR and LT_EXPR cases above are not normally
9250 reached because of previous transformations. */
9252 default:
9253 break;
9255 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
9256 == max_hi
9257 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
9258 switch (code)
9260 case GT_EXPR:
9261 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
9262 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9263 case LE_EXPR:
9264 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
9265 return fold_build2 (NE_EXPR, type, arg0, arg1);
9266 default:
9267 break;
9269 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
9270 == min_hi
9271 && TREE_INT_CST_LOW (arg1) == min_lo)
9272 switch (code)
9274 case LT_EXPR:
9275 return omit_one_operand (type, integer_zero_node, arg0);
9277 case LE_EXPR:
9278 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9280 case GE_EXPR:
9281 return omit_one_operand (type, integer_one_node, arg0);
9283 case GT_EXPR:
9284 return fold_build2 (NE_EXPR, type, arg0, arg1);
9286 default:
9287 break;
9289 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
9290 == min_hi
9291 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
9292 switch (code)
9294 case GE_EXPR:
9295 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
9296 return fold_build2 (NE_EXPR, type, arg0, arg1);
9297 case LT_EXPR:
9298 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
9299 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9300 default:
9301 break;
9304 else if (!in_gimple_form
9305 && TREE_INT_CST_HIGH (arg1) == signed_max_hi
9306 && TREE_INT_CST_LOW (arg1) == signed_max_lo
9307 && TYPE_UNSIGNED (TREE_TYPE (arg1))
9308 /* signed_type does not work on pointer types. */
9309 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
9311 /* The following case also applies to X < signed_max+1
9312 and X >= signed_max+1 because previous transformations. */
9313 if (code == LE_EXPR || code == GT_EXPR)
9315 tree st0, st1;
9316 st0 = lang_hooks.types.signed_type (TREE_TYPE (arg0));
9317 st1 = lang_hooks.types.signed_type (TREE_TYPE (arg1));
9318 return fold
9319 (build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
9320 type, fold_convert (st0, arg0),
9321 fold_convert (st1, integer_zero_node)));
9327 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
9328 a MINUS_EXPR of a constant, we can convert it into a comparison with
9329 a revised constant as long as no overflow occurs. */
9330 if ((code == EQ_EXPR || code == NE_EXPR)
9331 && TREE_CODE (arg1) == INTEGER_CST
9332 && (TREE_CODE (arg0) == PLUS_EXPR
9333 || TREE_CODE (arg0) == MINUS_EXPR)
9334 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9335 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9336 ? MINUS_EXPR : PLUS_EXPR,
9337 arg1, TREE_OPERAND (arg0, 1), 0))
9338 && ! TREE_CONSTANT_OVERFLOW (tem))
9339 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9341 /* Similarly for a NEGATE_EXPR. */
9342 else if ((code == EQ_EXPR || code == NE_EXPR)
9343 && TREE_CODE (arg0) == NEGATE_EXPR
9344 && TREE_CODE (arg1) == INTEGER_CST
9345 && 0 != (tem = negate_expr (arg1))
9346 && TREE_CODE (tem) == INTEGER_CST
9347 && ! TREE_CONSTANT_OVERFLOW (tem))
9348 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9350 /* If we have X - Y == 0, we can convert that to X == Y and similarly
9351 for !=. Don't do this for ordered comparisons due to overflow. */
9352 else if ((code == NE_EXPR || code == EQ_EXPR)
9353 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
9354 return fold_build2 (code, type,
9355 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
9357 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9358 && (TREE_CODE (arg0) == NOP_EXPR
9359 || TREE_CODE (arg0) == CONVERT_EXPR))
9361 /* If we are widening one operand of an integer comparison,
9362 see if the other operand is similarly being widened. Perhaps we
9363 can do the comparison in the narrower type. */
9364 tem = fold_widened_comparison (code, type, arg0, arg1);
9365 if (tem)
9366 return tem;
9368 /* Or if we are changing signedness. */
9369 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
9370 if (tem)
9371 return tem;
9374 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9375 constant, we can simplify it. */
9376 else if (TREE_CODE (arg1) == INTEGER_CST
9377 && (TREE_CODE (arg0) == MIN_EXPR
9378 || TREE_CODE (arg0) == MAX_EXPR)
9379 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9381 tem = optimize_minmax_comparison (code, type, op0, op1);
9382 if (tem)
9383 return tem;
9385 return NULL_TREE;
9388 /* If we are comparing an ABS_EXPR with a constant, we can
9389 convert all the cases into explicit comparisons, but they may
9390 well not be faster than doing the ABS and one comparison.
9391 But ABS (X) <= C is a range comparison, which becomes a subtraction
9392 and a comparison, and is probably faster. */
9393 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
9394 && TREE_CODE (arg0) == ABS_EXPR
9395 && ! TREE_SIDE_EFFECTS (arg0)
9396 && (0 != (tem = negate_expr (arg1)))
9397 && TREE_CODE (tem) == INTEGER_CST
9398 && ! TREE_CONSTANT_OVERFLOW (tem))
9399 return fold_build2 (TRUTH_ANDIF_EXPR, type,
9400 build2 (GE_EXPR, type,
9401 TREE_OPERAND (arg0, 0), tem),
9402 build2 (LE_EXPR, type,
9403 TREE_OPERAND (arg0, 0), arg1));
9405 /* Convert ABS_EXPR<x> >= 0 to true. */
9406 else if (code == GE_EXPR
9407 && tree_expr_nonnegative_p (arg0)
9408 && (integer_zerop (arg1)
9409 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
9410 && real_zerop (arg1))))
9411 return omit_one_operand (type, integer_one_node, arg0);
9413 /* Convert ABS_EXPR<x> < 0 to false. */
9414 else if (code == LT_EXPR
9415 && tree_expr_nonnegative_p (arg0)
9416 && (integer_zerop (arg1) || real_zerop (arg1)))
9417 return omit_one_operand (type, integer_zero_node, arg0);
9419 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
9420 else if ((code == EQ_EXPR || code == NE_EXPR)
9421 && TREE_CODE (arg0) == ABS_EXPR
9422 && (integer_zerop (arg1) || real_zerop (arg1)))
9423 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
9425 /* If this is an EQ or NE comparison with zero and ARG0 is
9426 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
9427 two operations, but the latter can be done in one less insn
9428 on machines that have only two-operand insns or on which a
9429 constant cannot be the first operand. */
9430 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
9431 && TREE_CODE (arg0) == BIT_AND_EXPR)
9433 tree arg00 = TREE_OPERAND (arg0, 0);
9434 tree arg01 = TREE_OPERAND (arg0, 1);
9435 if (TREE_CODE (arg00) == LSHIFT_EXPR
9436 && integer_onep (TREE_OPERAND (arg00, 0)))
9437 return
9438 fold_build2 (code, type,
9439 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
9440 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
9441 arg01, TREE_OPERAND (arg00, 1)),
9442 fold_convert (TREE_TYPE (arg0),
9443 integer_one_node)),
9444 arg1);
9445 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
9446 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
9447 return
9448 fold_build2 (code, type,
9449 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
9450 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
9451 arg00, TREE_OPERAND (arg01, 1)),
9452 fold_convert (TREE_TYPE (arg0),
9453 integer_one_node)),
9454 arg1);
9457 /* If this is an NE or EQ comparison of zero against the result of a
9458 signed MOD operation whose second operand is a power of 2, make
9459 the MOD operation unsigned since it is simpler and equivalent. */
9460 if ((code == NE_EXPR || code == EQ_EXPR)
9461 && integer_zerop (arg1)
9462 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
9463 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
9464 || TREE_CODE (arg0) == CEIL_MOD_EXPR
9465 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
9466 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
9467 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9469 tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
9470 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
9471 fold_convert (newtype,
9472 TREE_OPERAND (arg0, 0)),
9473 fold_convert (newtype,
9474 TREE_OPERAND (arg0, 1)));
9476 return fold_build2 (code, type, newmod,
9477 fold_convert (newtype, arg1));
9480 /* If this is an NE comparison of zero with an AND of one, remove the
9481 comparison since the AND will give the correct value. */
9482 if (code == NE_EXPR && integer_zerop (arg1)
9483 && TREE_CODE (arg0) == BIT_AND_EXPR
9484 && integer_onep (TREE_OPERAND (arg0, 1)))
9485 return fold_convert (type, arg0);
9487 /* If we have (A & C) == C where C is a power of 2, convert this into
9488 (A & C) != 0. Similarly for NE_EXPR. */
9489 if ((code == EQ_EXPR || code == NE_EXPR)
9490 && TREE_CODE (arg0) == BIT_AND_EXPR
9491 && integer_pow2p (TREE_OPERAND (arg0, 1))
9492 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9493 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
9494 arg0, fold_convert (TREE_TYPE (arg0),
9495 integer_zero_node));
9497 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
9498 bit, then fold the expression into A < 0 or A >= 0. */
9499 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
9500 if (tem)
9501 return tem;
9503 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
9504 Similarly for NE_EXPR. */
9505 if ((code == EQ_EXPR || code == NE_EXPR)
9506 && TREE_CODE (arg0) == BIT_AND_EXPR
9507 && TREE_CODE (arg1) == INTEGER_CST
9508 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9510 tree notc = fold_build1 (BIT_NOT_EXPR,
9511 TREE_TYPE (TREE_OPERAND (arg0, 1)),
9512 TREE_OPERAND (arg0, 1));
9513 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
9514 arg1, notc);
9515 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
9516 if (integer_nonzerop (dandnotc))
9517 return omit_one_operand (type, rslt, arg0);
9520 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
9521 Similarly for NE_EXPR. */
9522 if ((code == EQ_EXPR || code == NE_EXPR)
9523 && TREE_CODE (arg0) == BIT_IOR_EXPR
9524 && TREE_CODE (arg1) == INTEGER_CST
9525 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9527 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
9528 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
9529 TREE_OPERAND (arg0, 1), notd);
9530 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
9531 if (integer_nonzerop (candnotd))
9532 return omit_one_operand (type, rslt, arg0);
9535 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
9536 and similarly for >= into !=. */
9537 if ((code == LT_EXPR || code == GE_EXPR)
9538 && TYPE_UNSIGNED (TREE_TYPE (arg0))
9539 && TREE_CODE (arg1) == LSHIFT_EXPR
9540 && integer_onep (TREE_OPERAND (arg1, 0)))
9541 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
9542 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
9543 TREE_OPERAND (arg1, 1)),
9544 fold_convert (TREE_TYPE (arg0), integer_zero_node));
9546 else if ((code == LT_EXPR || code == GE_EXPR)
9547 && TYPE_UNSIGNED (TREE_TYPE (arg0))
9548 && (TREE_CODE (arg1) == NOP_EXPR
9549 || TREE_CODE (arg1) == CONVERT_EXPR)
9550 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
9551 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
9552 return
9553 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
9554 fold_convert (TREE_TYPE (arg0),
9555 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
9556 TREE_OPERAND (TREE_OPERAND (arg1, 0),
9557 1))),
9558 fold_convert (TREE_TYPE (arg0), integer_zero_node));
9560 /* Simplify comparison of something with itself. (For IEEE
9561 floating-point, we can only do some of these simplifications.) */
9562 if (operand_equal_p (arg0, arg1, 0))
9564 switch (code)
9566 case EQ_EXPR:
9567 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9568 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9569 return constant_boolean_node (1, type);
9570 break;
9572 case GE_EXPR:
9573 case LE_EXPR:
9574 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9575 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9576 return constant_boolean_node (1, type);
9577 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9579 case NE_EXPR:
9580 /* For NE, we can only do this simplification if integer
9581 or we don't honor IEEE floating point NaNs. */
9582 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9583 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9584 break;
9585 /* ... fall through ... */
9586 case GT_EXPR:
9587 case LT_EXPR:
9588 return constant_boolean_node (0, type);
9589 default:
9590 gcc_unreachable ();
9594 /* If we are comparing an expression that just has comparisons
9595 of two integer values, arithmetic expressions of those comparisons,
9596 and constants, we can simplify it. There are only three cases
9597 to check: the two values can either be equal, the first can be
9598 greater, or the second can be greater. Fold the expression for
9599 those three values. Since each value must be 0 or 1, we have
9600 eight possibilities, each of which corresponds to the constant 0
9601 or 1 or one of the six possible comparisons.
9603 This handles common cases like (a > b) == 0 but also handles
9604 expressions like ((x > y) - (y > x)) > 0, which supposedly
9605 occur in macroized code. */
9607 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9609 tree cval1 = 0, cval2 = 0;
9610 int save_p = 0;
9612 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9613 /* Don't handle degenerate cases here; they should already
9614 have been handled anyway. */
9615 && cval1 != 0 && cval2 != 0
9616 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9617 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9618 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9619 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9620 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9621 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9622 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9624 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9625 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9627 /* We can't just pass T to eval_subst in case cval1 or cval2
9628 was the same as ARG1. */
9630 tree high_result
9631 = fold_build2 (code, type,
9632 eval_subst (arg0, cval1, maxval,
9633 cval2, minval),
9634 arg1);
9635 tree equal_result
9636 = fold_build2 (code, type,
9637 eval_subst (arg0, cval1, maxval,
9638 cval2, maxval),
9639 arg1);
9640 tree low_result
9641 = fold_build2 (code, type,
9642 eval_subst (arg0, cval1, minval,
9643 cval2, maxval),
9644 arg1);
9646 /* All three of these results should be 0 or 1. Confirm they
9647 are. Then use those values to select the proper code
9648 to use. */
9650 if ((integer_zerop (high_result)
9651 || integer_onep (high_result))
9652 && (integer_zerop (equal_result)
9653 || integer_onep (equal_result))
9654 && (integer_zerop (low_result)
9655 || integer_onep (low_result)))
9657 /* Make a 3-bit mask with the high-order bit being the
9658 value for `>', the next for '=', and the low for '<'. */
9659 switch ((integer_onep (high_result) * 4)
9660 + (integer_onep (equal_result) * 2)
9661 + integer_onep (low_result))
9663 case 0:
9664 /* Always false. */
9665 return omit_one_operand (type, integer_zero_node, arg0);
9666 case 1:
9667 code = LT_EXPR;
9668 break;
9669 case 2:
9670 code = EQ_EXPR;
9671 break;
9672 case 3:
9673 code = LE_EXPR;
9674 break;
9675 case 4:
9676 code = GT_EXPR;
9677 break;
9678 case 5:
9679 code = NE_EXPR;
9680 break;
9681 case 6:
9682 code = GE_EXPR;
9683 break;
9684 case 7:
9685 /* Always true. */
9686 return omit_one_operand (type, integer_one_node, arg0);
9689 if (save_p)
9690 return save_expr (build2 (code, type, cval1, cval2));
9691 else
9692 return fold_build2 (code, type, cval1, cval2);
9697 /* If this is a comparison of a field, we may be able to simplify it. */
9698 if (((TREE_CODE (arg0) == COMPONENT_REF
9699 && lang_hooks.can_use_bit_fields_p ())
9700 || TREE_CODE (arg0) == BIT_FIELD_REF)
9701 && (code == EQ_EXPR || code == NE_EXPR)
9702 /* Handle the constant case even without -O
9703 to make sure the warnings are given. */
9704 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
9706 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
9707 if (t1)
9708 return t1;
9711 /* Fold a comparison of the address of COMPONENT_REFs with the same
9712 type and component to a comparison of the address of the base
9713 object. In short, &x->a OP &y->a to x OP y and
9714 &x->a OP &y.a to x OP &y */
9715 if (TREE_CODE (arg0) == ADDR_EXPR
9716 && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
9717 && TREE_CODE (arg1) == ADDR_EXPR
9718 && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
9720 tree cref0 = TREE_OPERAND (arg0, 0);
9721 tree cref1 = TREE_OPERAND (arg1, 0);
9722 if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
9724 tree op0 = TREE_OPERAND (cref0, 0);
9725 tree op1 = TREE_OPERAND (cref1, 0);
9726 if (TREE_CODE (op0) == INDIRECT_REF)
9727 op0 = TREE_OPERAND (op0, 0);
9728 else
9730 tree ptype = build_pointer_type (TREE_TYPE (op0));
9731 op0 = build1 (ADDR_EXPR, ptype, op0);
9733 if (TREE_CODE (op1) == INDIRECT_REF)
9734 op1 = TREE_OPERAND (op1, 0);
9735 else
9737 tree ptype = build_pointer_type (TREE_TYPE (op1));
9738 op1 = build1 (ADDR_EXPR, ptype, op1);
9740 return fold_build2 (code, type, op0, op1);
9744 /* If this is a comparison of complex values and either or both sides
9745 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
9746 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
9747 This may prevent needless evaluations. */
9748 if ((code == EQ_EXPR || code == NE_EXPR)
9749 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
9750 && (TREE_CODE (arg0) == COMPLEX_EXPR
9751 || TREE_CODE (arg1) == COMPLEX_EXPR
9752 || TREE_CODE (arg0) == COMPLEX_CST
9753 || TREE_CODE (arg1) == COMPLEX_CST))
9755 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
9756 tree real0, imag0, real1, imag1;
9758 arg0 = save_expr (arg0);
9759 arg1 = save_expr (arg1);
9760 real0 = fold_build1 (REALPART_EXPR, subtype, arg0);
9761 imag0 = fold_build1 (IMAGPART_EXPR, subtype, arg0);
9762 real1 = fold_build1 (REALPART_EXPR, subtype, arg1);
9763 imag1 = fold_build1 (IMAGPART_EXPR, subtype, arg1);
9765 return fold_build2 ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
9766 : TRUTH_ORIF_EXPR),
9767 type,
9768 fold_build2 (code, type, real0, real1),
9769 fold_build2 (code, type, imag0, imag1));
9772 /* Optimize comparisons of strlen vs zero to a compare of the
9773 first character of the string vs zero. To wit,
9774 strlen(ptr) == 0 => *ptr == 0
9775 strlen(ptr) != 0 => *ptr != 0
9776 Other cases should reduce to one of these two (or a constant)
9777 due to the return value of strlen being unsigned. */
9778 if ((code == EQ_EXPR || code == NE_EXPR)
9779 && integer_zerop (arg1)
9780 && TREE_CODE (arg0) == CALL_EXPR)
9782 tree fndecl = get_callee_fndecl (arg0);
9783 tree arglist;
9785 if (fndecl
9786 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
9787 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
9788 && (arglist = TREE_OPERAND (arg0, 1))
9789 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
9790 && ! TREE_CHAIN (arglist))
9791 return fold_build2 (code, type,
9792 build1 (INDIRECT_REF, char_type_node,
9793 TREE_VALUE (arglist)),
9794 fold_convert (char_type_node,
9795 integer_zero_node));
9798 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9799 into a single range test. */
9800 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9801 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9802 && TREE_CODE (arg1) == INTEGER_CST
9803 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9804 && !integer_zerop (TREE_OPERAND (arg0, 1))
9805 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9806 && !TREE_OVERFLOW (arg1))
9808 t1 = fold_div_compare (code, type, arg0, arg1);
9809 if (t1 != NULL_TREE)
9810 return t1;
9813 if ((code == EQ_EXPR || code == NE_EXPR)
9814 && !TREE_SIDE_EFFECTS (arg0)
9815 && integer_zerop (arg1)
9816 && tree_expr_nonzero_p (arg0))
9817 return constant_boolean_node (code==NE_EXPR, type);
9819 t1 = fold_relational_const (code, type, arg0, arg1);
9820 return t1 == NULL_TREE ? NULL_TREE : t1;
9822 case UNORDERED_EXPR:
9823 case ORDERED_EXPR:
9824 case UNLT_EXPR:
9825 case UNLE_EXPR:
9826 case UNGT_EXPR:
9827 case UNGE_EXPR:
9828 case UNEQ_EXPR:
9829 case LTGT_EXPR:
9830 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9832 t1 = fold_relational_const (code, type, arg0, arg1);
9833 if (t1 != NULL_TREE)
9834 return t1;
9837 /* If the first operand is NaN, the result is constant. */
9838 if (TREE_CODE (arg0) == REAL_CST
9839 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
9840 && (code != LTGT_EXPR || ! flag_trapping_math))
9842 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
9843 ? integer_zero_node
9844 : integer_one_node;
9845 return omit_one_operand (type, t1, arg1);
9848 /* If the second operand is NaN, the result is constant. */
9849 if (TREE_CODE (arg1) == REAL_CST
9850 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
9851 && (code != LTGT_EXPR || ! flag_trapping_math))
9853 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
9854 ? integer_zero_node
9855 : integer_one_node;
9856 return omit_one_operand (type, t1, arg0);
9859 /* Simplify unordered comparison of something with itself. */
9860 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
9861 && operand_equal_p (arg0, arg1, 0))
9862 return constant_boolean_node (1, type);
9864 if (code == LTGT_EXPR
9865 && !flag_trapping_math
9866 && operand_equal_p (arg0, arg1, 0))
9867 return constant_boolean_node (0, type);
9869 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9871 tree targ0 = strip_float_extensions (arg0);
9872 tree targ1 = strip_float_extensions (arg1);
9873 tree newtype = TREE_TYPE (targ0);
9875 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9876 newtype = TREE_TYPE (targ1);
9878 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9879 return fold_build2 (code, type, fold_convert (newtype, targ0),
9880 fold_convert (newtype, targ1));
9883 return NULL_TREE;
9885 case COMPOUND_EXPR:
9886 /* When pedantic, a compound expression can be neither an lvalue
9887 nor an integer constant expression. */
9888 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
9889 return NULL_TREE;
9890 /* Don't let (0, 0) be null pointer constant. */
9891 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
9892 : fold_convert (type, arg1);
9893 return pedantic_non_lvalue (tem);
9895 case COMPLEX_EXPR:
9896 if (wins)
9897 return build_complex (type, arg0, arg1);
9898 return NULL_TREE;
9900 case ASSERT_EXPR:
9901 /* An ASSERT_EXPR should never be passed to fold_binary. */
9902 gcc_unreachable ();
9904 default:
9905 return NULL_TREE;
9906 } /* switch (code) */
9909 /* Fold a ternary expression of code CODE and type TYPE with operands
9910 OP0, OP1, and OP2. Return the folded expression if folding is
9911 successful. Otherwise, return NULL_TREE. */
9913 tree
9914 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
9916 tree tem;
9917 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
9918 enum tree_code_class kind = TREE_CODE_CLASS (code);
9920 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9921 && TREE_CODE_LENGTH (code) == 3);
9923 /* Strip any conversions that don't change the mode. This is safe
9924 for every expression, except for a comparison expression because
9925 its signedness is derived from its operands. So, in the latter
9926 case, only strip conversions that don't change the signedness.
9928 Note that this is done as an internal manipulation within the
9929 constant folder, in order to find the simplest representation of
9930 the arguments so that their form can be studied. In any cases,
9931 the appropriate type conversions should be put back in the tree
9932 that will get out of the constant folder. */
9933 if (op0)
9935 arg0 = op0;
9936 STRIP_NOPS (arg0);
9939 if (op1)
9941 arg1 = op1;
9942 STRIP_NOPS (arg1);
9945 switch (code)
9947 case COMPONENT_REF:
9948 if (TREE_CODE (arg0) == CONSTRUCTOR
9949 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
9951 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
9952 if (m)
9953 return TREE_VALUE (m);
9955 return NULL_TREE;
9957 case COND_EXPR:
9958 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
9959 so all simple results must be passed through pedantic_non_lvalue. */
9960 if (TREE_CODE (arg0) == INTEGER_CST)
9962 tem = integer_zerop (arg0) ? op2 : op1;
9963 /* Only optimize constant conditions when the selected branch
9964 has the same type as the COND_EXPR. This avoids optimizing
9965 away "c ? x : throw", where the throw has a void type. */
9966 if (! VOID_TYPE_P (TREE_TYPE (tem))
9967 || VOID_TYPE_P (type))
9968 return pedantic_non_lvalue (tem);
9969 return NULL_TREE;
9971 if (operand_equal_p (arg1, op2, 0))
9972 return pedantic_omit_one_operand (type, arg1, arg0);
9974 /* If we have A op B ? A : C, we may be able to convert this to a
9975 simpler expression, depending on the operation and the values
9976 of B and C. Signed zeros prevent all of these transformations,
9977 for reasons given above each one.
9979 Also try swapping the arguments and inverting the conditional. */
9980 if (COMPARISON_CLASS_P (arg0)
9981 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
9982 arg1, TREE_OPERAND (arg0, 1))
9983 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
9985 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
9986 if (tem)
9987 return tem;
9990 if (COMPARISON_CLASS_P (arg0)
9991 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
9992 op2,
9993 TREE_OPERAND (arg0, 1))
9994 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
9996 tem = invert_truthvalue (arg0);
9997 if (COMPARISON_CLASS_P (tem))
9999 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
10000 if (tem)
10001 return tem;
10005 /* If the second operand is simpler than the third, swap them
10006 since that produces better jump optimization results. */
10007 if (tree_swap_operands_p (op1, op2, false))
10009 /* See if this can be inverted. If it can't, possibly because
10010 it was a floating-point inequality comparison, don't do
10011 anything. */
10012 tem = invert_truthvalue (arg0);
10014 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
10015 return fold_build3 (code, type, tem, op2, op1);
10018 /* Convert A ? 1 : 0 to simply A. */
10019 if (integer_onep (op1)
10020 && integer_zerop (op2)
10021 /* If we try to convert OP0 to our type, the
10022 call to fold will try to move the conversion inside
10023 a COND, which will recurse. In that case, the COND_EXPR
10024 is probably the best choice, so leave it alone. */
10025 && type == TREE_TYPE (arg0))
10026 return pedantic_non_lvalue (arg0);
10028 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
10029 over COND_EXPR in cases such as floating point comparisons. */
10030 if (integer_zerop (op1)
10031 && integer_onep (op2)
10032 && truth_value_p (TREE_CODE (arg0)))
10033 return pedantic_non_lvalue (fold_convert (type,
10034 invert_truthvalue (arg0)));
10036 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
10037 if (TREE_CODE (arg0) == LT_EXPR
10038 && integer_zerop (TREE_OPERAND (arg0, 1))
10039 && integer_zerop (op2)
10040 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
10041 return fold_convert (type, fold_build2 (BIT_AND_EXPR,
10042 TREE_TYPE (tem), tem, arg1));
10044 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
10045 already handled above. */
10046 if (TREE_CODE (arg0) == BIT_AND_EXPR
10047 && integer_onep (TREE_OPERAND (arg0, 1))
10048 && integer_zerop (op2)
10049 && integer_pow2p (arg1))
10051 tree tem = TREE_OPERAND (arg0, 0);
10052 STRIP_NOPS (tem);
10053 if (TREE_CODE (tem) == RSHIFT_EXPR
10054 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
10055 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
10056 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
10057 return fold_build2 (BIT_AND_EXPR, type,
10058 TREE_OPERAND (tem, 0), arg1);
10061 /* A & N ? N : 0 is simply A & N if N is a power of two. This
10062 is probably obsolete because the first operand should be a
10063 truth value (that's why we have the two cases above), but let's
10064 leave it in until we can confirm this for all front-ends. */
10065 if (integer_zerop (op2)
10066 && TREE_CODE (arg0) == NE_EXPR
10067 && integer_zerop (TREE_OPERAND (arg0, 1))
10068 && integer_pow2p (arg1)
10069 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10070 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10071 arg1, OEP_ONLY_CONST))
10072 return pedantic_non_lvalue (fold_convert (type,
10073 TREE_OPERAND (arg0, 0)));
10075 /* Convert A ? B : 0 into A && B if A and B are truth values. */
10076 if (integer_zerop (op2)
10077 && truth_value_p (TREE_CODE (arg0))
10078 && truth_value_p (TREE_CODE (arg1)))
10079 return fold_build2 (TRUTH_ANDIF_EXPR, type, arg0, arg1);
10081 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
10082 if (integer_onep (op2)
10083 && truth_value_p (TREE_CODE (arg0))
10084 && truth_value_p (TREE_CODE (arg1)))
10086 /* Only perform transformation if ARG0 is easily inverted. */
10087 tem = invert_truthvalue (arg0);
10088 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
10089 return fold_build2 (TRUTH_ORIF_EXPR, type, tem, arg1);
10092 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
10093 if (integer_zerop (arg1)
10094 && truth_value_p (TREE_CODE (arg0))
10095 && truth_value_p (TREE_CODE (op2)))
10097 /* Only perform transformation if ARG0 is easily inverted. */
10098 tem = invert_truthvalue (arg0);
10099 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
10100 return fold_build2 (TRUTH_ANDIF_EXPR, type, tem, op2);
10103 /* Convert A ? 1 : B into A || B if A and B are truth values. */
10104 if (integer_onep (arg1)
10105 && truth_value_p (TREE_CODE (arg0))
10106 && truth_value_p (TREE_CODE (op2)))
10107 return fold_build2 (TRUTH_ORIF_EXPR, type, arg0, op2);
10109 return NULL_TREE;
10111 case CALL_EXPR:
10112 /* Check for a built-in function. */
10113 if (TREE_CODE (op0) == ADDR_EXPR
10114 && TREE_CODE (TREE_OPERAND (op0, 0)) == FUNCTION_DECL
10115 && DECL_BUILT_IN (TREE_OPERAND (op0, 0)))
10117 tree fndecl = TREE_OPERAND (op0, 0);
10118 tree arglist = op1;
10119 tree tmp = fold_builtin (fndecl, arglist, false);
10120 if (tmp)
10121 return tmp;
10123 return NULL_TREE;
10125 default:
10126 return NULL_TREE;
10127 } /* switch (code) */
10130 /* Perform constant folding and related simplification of EXPR.
10131 The related simplifications include x*1 => x, x*0 => 0, etc.,
10132 and application of the associative law.
10133 NOP_EXPR conversions may be removed freely (as long as we
10134 are careful not to change the type of the overall expression).
10135 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
10136 but we can constant-fold them if they have constant operands. */
10138 #ifdef ENABLE_FOLD_CHECKING
10139 # define fold(x) fold_1 (x)
10140 static tree fold_1 (tree);
10141 static
10142 #endif
10143 tree
10144 fold (tree expr)
10146 const tree t = expr;
10147 enum tree_code code = TREE_CODE (t);
10148 enum tree_code_class kind = TREE_CODE_CLASS (code);
10149 tree tem;
10151 /* Return right away if a constant. */
10152 if (kind == tcc_constant)
10153 return t;
10155 if (IS_EXPR_CODE_CLASS (kind))
10157 tree type = TREE_TYPE (t);
10158 tree op0, op1, op2;
10160 switch (TREE_CODE_LENGTH (code))
10162 case 1:
10163 op0 = TREE_OPERAND (t, 0);
10164 tem = fold_unary (code, type, op0);
10165 return tem ? tem : expr;
10166 case 2:
10167 op0 = TREE_OPERAND (t, 0);
10168 op1 = TREE_OPERAND (t, 1);
10169 tem = fold_binary (code, type, op0, op1);
10170 return tem ? tem : expr;
10171 case 3:
10172 op0 = TREE_OPERAND (t, 0);
10173 op1 = TREE_OPERAND (t, 1);
10174 op2 = TREE_OPERAND (t, 2);
10175 tem = fold_ternary (code, type, op0, op1, op2);
10176 return tem ? tem : expr;
10177 default:
10178 break;
10182 switch (code)
10184 case CONST_DECL:
10185 return fold (DECL_INITIAL (t));
10187 default:
10188 return t;
10189 } /* switch (code) */
10192 #ifdef ENABLE_FOLD_CHECKING
10193 #undef fold
10195 static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
10196 static void fold_check_failed (tree, tree);
10197 void print_fold_checksum (tree);
10199 /* When --enable-checking=fold, compute a digest of expr before
10200 and after actual fold call to see if fold did not accidentally
10201 change original expr. */
10203 tree
10204 fold (tree expr)
10206 tree ret;
10207 struct md5_ctx ctx;
10208 unsigned char checksum_before[16], checksum_after[16];
10209 htab_t ht;
10211 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
10212 md5_init_ctx (&ctx);
10213 fold_checksum_tree (expr, &ctx, ht);
10214 md5_finish_ctx (&ctx, checksum_before);
10215 htab_empty (ht);
10217 ret = fold_1 (expr);
10219 md5_init_ctx (&ctx);
10220 fold_checksum_tree (expr, &ctx, ht);
10221 md5_finish_ctx (&ctx, checksum_after);
10222 htab_delete (ht);
10224 if (memcmp (checksum_before, checksum_after, 16))
10225 fold_check_failed (expr, ret);
10227 return ret;
10230 void
10231 print_fold_checksum (tree expr)
10233 struct md5_ctx ctx;
10234 unsigned char checksum[16], cnt;
10235 htab_t ht;
10237 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
10238 md5_init_ctx (&ctx);
10239 fold_checksum_tree (expr, &ctx, ht);
10240 md5_finish_ctx (&ctx, checksum);
10241 htab_delete (ht);
10242 for (cnt = 0; cnt < 16; ++cnt)
10243 fprintf (stderr, "%02x", checksum[cnt]);
10244 putc ('\n', stderr);
10247 static void
10248 fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
10250 internal_error ("fold check: original tree changed by fold");
10253 static void
10254 fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
10256 void **slot;
10257 enum tree_code code;
10258 char buf[sizeof (struct tree_decl)];
10259 int i, len;
10261 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
10262 <= sizeof (struct tree_decl))
10263 && sizeof (struct tree_type) <= sizeof (struct tree_decl));
10264 if (expr == NULL)
10265 return;
10266 slot = htab_find_slot (ht, expr, INSERT);
10267 if (*slot != NULL)
10268 return;
10269 *slot = expr;
10270 code = TREE_CODE (expr);
10271 if (TREE_CODE_CLASS (code) == tcc_declaration
10272 && DECL_ASSEMBLER_NAME_SET_P (expr))
10274 /* Allow DECL_ASSEMBLER_NAME to be modified. */
10275 memcpy (buf, expr, tree_size (expr));
10276 expr = (tree) buf;
10277 SET_DECL_ASSEMBLER_NAME (expr, NULL);
10279 else if (TREE_CODE_CLASS (code) == tcc_type
10280 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
10281 || TYPE_CACHED_VALUES_P (expr)))
10283 /* Allow these fields to be modified. */
10284 memcpy (buf, expr, tree_size (expr));
10285 expr = (tree) buf;
10286 TYPE_POINTER_TO (expr) = NULL;
10287 TYPE_REFERENCE_TO (expr) = NULL;
10288 if (TYPE_CACHED_VALUES_P (expr))
10290 TYPE_CACHED_VALUES_P (expr) = 0;
10291 TYPE_CACHED_VALUES (expr) = NULL;
10294 md5_process_bytes (expr, tree_size (expr), ctx);
10295 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
10296 if (TREE_CODE_CLASS (code) != tcc_type
10297 && TREE_CODE_CLASS (code) != tcc_declaration)
10298 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
10299 switch (TREE_CODE_CLASS (code))
10301 case tcc_constant:
10302 switch (code)
10304 case STRING_CST:
10305 md5_process_bytes (TREE_STRING_POINTER (expr),
10306 TREE_STRING_LENGTH (expr), ctx);
10307 break;
10308 case COMPLEX_CST:
10309 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
10310 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
10311 break;
10312 case VECTOR_CST:
10313 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
10314 break;
10315 default:
10316 break;
10318 break;
10319 case tcc_exceptional:
10320 switch (code)
10322 case TREE_LIST:
10323 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
10324 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
10325 break;
10326 case TREE_VEC:
10327 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
10328 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
10329 break;
10330 default:
10331 break;
10333 break;
10334 case tcc_expression:
10335 case tcc_reference:
10336 case tcc_comparison:
10337 case tcc_unary:
10338 case tcc_binary:
10339 case tcc_statement:
10340 len = TREE_CODE_LENGTH (code);
10341 for (i = 0; i < len; ++i)
10342 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
10343 break;
10344 case tcc_declaration:
10345 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
10346 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
10347 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
10348 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
10349 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
10350 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
10351 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
10352 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
10353 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
10354 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
10355 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
10356 break;
10357 case tcc_type:
10358 if (TREE_CODE (expr) == ENUMERAL_TYPE)
10359 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
10360 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
10361 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
10362 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
10363 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
10364 if (INTEGRAL_TYPE_P (expr)
10365 || SCALAR_FLOAT_TYPE_P (expr))
10367 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
10368 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
10370 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
10371 if (TREE_CODE (expr) == RECORD_TYPE
10372 || TREE_CODE (expr) == UNION_TYPE
10373 || TREE_CODE (expr) == QUAL_UNION_TYPE)
10374 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
10375 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
10376 break;
10377 default:
10378 break;
10382 #endif
10384 /* Fold a unary tree expression with code CODE of type TYPE with an
10385 operand OP0. Return a folded expression if successful. Otherwise,
10386 return a tree expression with code CODE of type TYPE with an
10387 operand OP0. */
10389 tree
10390 fold_build1 (enum tree_code code, tree type, tree op0)
10392 tree tem = fold_unary (code, type, op0);
10393 if (tem)
10394 return tem;
10396 return build1 (code, type, op0);
10399 /* Fold a binary tree expression with code CODE of type TYPE with
10400 operands OP0 and OP1. Return a folded expression if successful.
10401 Otherwise, return a tree expression with code CODE of type TYPE
10402 with operands OP0 and OP1. */
10404 tree
10405 fold_build2 (enum tree_code code, tree type, tree op0, tree op1)
10407 tree tem = fold_binary (code, type, op0, op1);
10408 if (tem)
10409 return tem;
10411 return build2 (code, type, op0, op1);
10414 /* Fold a ternary tree expression with code CODE of type TYPE with
10415 operands OP0, OP1, and OP2. Return a folded expression if
10416 successful. Otherwise, return a tree expression with code CODE of
10417 type TYPE with operands OP0, OP1, and OP2. */
10419 tree
10420 fold_build3 (enum tree_code code, tree type, tree op0, tree op1, tree op2)
10422 tree tem = fold_ternary (code, type, op0, op1, op2);
10423 if (tem)
10424 return tem;
10426 return build3 (code, type, op0, op1, op2);
10429 /* Perform constant folding and related simplification of initializer
10430 expression EXPR. This behaves identically to "fold" but ignores
10431 potential run-time traps and exceptions that fold must preserve. */
10433 tree
10434 fold_initializer (tree expr)
10436 int saved_signaling_nans = flag_signaling_nans;
10437 int saved_trapping_math = flag_trapping_math;
10438 int saved_rounding_math = flag_rounding_math;
10439 int saved_trapv = flag_trapv;
10440 tree result;
10442 flag_signaling_nans = 0;
10443 flag_trapping_math = 0;
10444 flag_rounding_math = 0;
10445 flag_trapv = 0;
10447 result = fold (expr);
10449 flag_signaling_nans = saved_signaling_nans;
10450 flag_trapping_math = saved_trapping_math;
10451 flag_rounding_math = saved_rounding_math;
10452 flag_trapv = saved_trapv;
10454 return result;
10457 /* Determine if first argument is a multiple of second argument. Return 0 if
10458 it is not, or we cannot easily determined it to be.
10460 An example of the sort of thing we care about (at this point; this routine
10461 could surely be made more general, and expanded to do what the *_DIV_EXPR's
10462 fold cases do now) is discovering that
10464 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
10466 is a multiple of
10468 SAVE_EXPR (J * 8)
10470 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
10472 This code also handles discovering that
10474 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
10476 is a multiple of 8 so we don't have to worry about dealing with a
10477 possible remainder.
10479 Note that we *look* inside a SAVE_EXPR only to determine how it was
10480 calculated; it is not safe for fold to do much of anything else with the
10481 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
10482 at run time. For example, the latter example above *cannot* be implemented
10483 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
10484 evaluation time of the original SAVE_EXPR is not necessarily the same at
10485 the time the new expression is evaluated. The only optimization of this
10486 sort that would be valid is changing
10488 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
10490 divided by 8 to
10492 SAVE_EXPR (I) * SAVE_EXPR (J)
10494 (where the same SAVE_EXPR (J) is used in the original and the
10495 transformed version). */
10497 static int
10498 multiple_of_p (tree type, tree top, tree bottom)
10500 if (operand_equal_p (top, bottom, 0))
10501 return 1;
10503 if (TREE_CODE (type) != INTEGER_TYPE)
10504 return 0;
10506 switch (TREE_CODE (top))
10508 case BIT_AND_EXPR:
10509 /* Bitwise and provides a power of two multiple. If the mask is
10510 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
10511 if (!integer_pow2p (bottom))
10512 return 0;
10513 /* FALLTHRU */
10515 case MULT_EXPR:
10516 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
10517 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
10519 case PLUS_EXPR:
10520 case MINUS_EXPR:
10521 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
10522 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
10524 case LSHIFT_EXPR:
10525 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
10527 tree op1, t1;
10529 op1 = TREE_OPERAND (top, 1);
10530 /* const_binop may not detect overflow correctly,
10531 so check for it explicitly here. */
10532 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
10533 > TREE_INT_CST_LOW (op1)
10534 && TREE_INT_CST_HIGH (op1) == 0
10535 && 0 != (t1 = fold_convert (type,
10536 const_binop (LSHIFT_EXPR,
10537 size_one_node,
10538 op1, 0)))
10539 && ! TREE_OVERFLOW (t1))
10540 return multiple_of_p (type, t1, bottom);
10542 return 0;
10544 case NOP_EXPR:
10545 /* Can't handle conversions from non-integral or wider integral type. */
10546 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
10547 || (TYPE_PRECISION (type)
10548 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
10549 return 0;
10551 /* .. fall through ... */
10553 case SAVE_EXPR:
10554 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
10556 case INTEGER_CST:
10557 if (TREE_CODE (bottom) != INTEGER_CST
10558 || (TYPE_UNSIGNED (type)
10559 && (tree_int_cst_sgn (top) < 0
10560 || tree_int_cst_sgn (bottom) < 0)))
10561 return 0;
10562 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
10563 top, bottom, 0));
10565 default:
10566 return 0;
10570 /* Return true if `t' is known to be non-negative. */
10573 tree_expr_nonnegative_p (tree t)
10575 switch (TREE_CODE (t))
10577 case ABS_EXPR:
10578 return 1;
10580 case INTEGER_CST:
10581 return tree_int_cst_sgn (t) >= 0;
10583 case REAL_CST:
10584 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
10586 case PLUS_EXPR:
10587 if (FLOAT_TYPE_P (TREE_TYPE (t)))
10588 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10589 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10591 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
10592 both unsigned and at least 2 bits shorter than the result. */
10593 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
10594 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
10595 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
10597 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
10598 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
10599 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
10600 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
10602 unsigned int prec = MAX (TYPE_PRECISION (inner1),
10603 TYPE_PRECISION (inner2)) + 1;
10604 return prec < TYPE_PRECISION (TREE_TYPE (t));
10607 break;
10609 case MULT_EXPR:
10610 if (FLOAT_TYPE_P (TREE_TYPE (t)))
10612 /* x * x for floating point x is always non-negative. */
10613 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
10614 return 1;
10615 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10616 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10619 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
10620 both unsigned and their total bits is shorter than the result. */
10621 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
10622 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
10623 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
10625 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
10626 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
10627 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
10628 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
10629 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
10630 < TYPE_PRECISION (TREE_TYPE (t));
10632 return 0;
10634 case TRUNC_DIV_EXPR:
10635 case CEIL_DIV_EXPR:
10636 case FLOOR_DIV_EXPR:
10637 case ROUND_DIV_EXPR:
10638 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10639 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10641 case TRUNC_MOD_EXPR:
10642 case CEIL_MOD_EXPR:
10643 case FLOOR_MOD_EXPR:
10644 case ROUND_MOD_EXPR:
10645 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
10647 case RDIV_EXPR:
10648 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10649 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10651 case BIT_AND_EXPR:
10652 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
10653 || tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
10654 case BIT_IOR_EXPR:
10655 case BIT_XOR_EXPR:
10656 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10657 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10659 case NOP_EXPR:
10661 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
10662 tree outer_type = TREE_TYPE (t);
10664 if (TREE_CODE (outer_type) == REAL_TYPE)
10666 if (TREE_CODE (inner_type) == REAL_TYPE)
10667 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
10668 if (TREE_CODE (inner_type) == INTEGER_TYPE)
10670 if (TYPE_UNSIGNED (inner_type))
10671 return 1;
10672 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
10675 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
10677 if (TREE_CODE (inner_type) == REAL_TYPE)
10678 return tree_expr_nonnegative_p (TREE_OPERAND (t,0));
10679 if (TREE_CODE (inner_type) == INTEGER_TYPE)
10680 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
10681 && TYPE_UNSIGNED (inner_type);
10684 break;
10686 case COND_EXPR:
10687 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
10688 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
10689 case COMPOUND_EXPR:
10690 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10691 case MIN_EXPR:
10692 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10693 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10694 case MAX_EXPR:
10695 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10696 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10697 case MODIFY_EXPR:
10698 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10699 case BIND_EXPR:
10700 return tree_expr_nonnegative_p (expr_last (TREE_OPERAND (t, 1)));
10701 case SAVE_EXPR:
10702 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
10703 case NON_LVALUE_EXPR:
10704 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
10705 case FLOAT_EXPR:
10706 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
10708 case TARGET_EXPR:
10710 tree temp = TARGET_EXPR_SLOT (t);
10711 t = TARGET_EXPR_INITIAL (t);
10713 /* If the initializer is non-void, then it's a normal expression
10714 that will be assigned to the slot. */
10715 if (!VOID_TYPE_P (t))
10716 return tree_expr_nonnegative_p (t);
10718 /* Otherwise, the initializer sets the slot in some way. One common
10719 way is an assignment statement at the end of the initializer. */
10720 while (1)
10722 if (TREE_CODE (t) == BIND_EXPR)
10723 t = expr_last (BIND_EXPR_BODY (t));
10724 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
10725 || TREE_CODE (t) == TRY_CATCH_EXPR)
10726 t = expr_last (TREE_OPERAND (t, 0));
10727 else if (TREE_CODE (t) == STATEMENT_LIST)
10728 t = expr_last (t);
10729 else
10730 break;
10732 if (TREE_CODE (t) == MODIFY_EXPR
10733 && TREE_OPERAND (t, 0) == temp)
10734 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
10736 return 0;
10739 case CALL_EXPR:
10741 tree fndecl = get_callee_fndecl (t);
10742 tree arglist = TREE_OPERAND (t, 1);
10743 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
10744 switch (DECL_FUNCTION_CODE (fndecl))
10746 #define CASE_BUILTIN_F(BUILT_IN_FN) \
10747 case BUILT_IN_FN: case BUILT_IN_FN##F: case BUILT_IN_FN##L:
10748 #define CASE_BUILTIN_I(BUILT_IN_FN) \
10749 case BUILT_IN_FN: case BUILT_IN_FN##L: case BUILT_IN_FN##LL:
10751 CASE_BUILTIN_F (BUILT_IN_ACOS)
10752 CASE_BUILTIN_F (BUILT_IN_ACOSH)
10753 CASE_BUILTIN_F (BUILT_IN_CABS)
10754 CASE_BUILTIN_F (BUILT_IN_COSH)
10755 CASE_BUILTIN_F (BUILT_IN_ERFC)
10756 CASE_BUILTIN_F (BUILT_IN_EXP)
10757 CASE_BUILTIN_F (BUILT_IN_EXP10)
10758 CASE_BUILTIN_F (BUILT_IN_EXP2)
10759 CASE_BUILTIN_F (BUILT_IN_FABS)
10760 CASE_BUILTIN_F (BUILT_IN_FDIM)
10761 CASE_BUILTIN_F (BUILT_IN_FREXP)
10762 CASE_BUILTIN_F (BUILT_IN_HYPOT)
10763 CASE_BUILTIN_F (BUILT_IN_POW10)
10764 CASE_BUILTIN_I (BUILT_IN_FFS)
10765 CASE_BUILTIN_I (BUILT_IN_PARITY)
10766 CASE_BUILTIN_I (BUILT_IN_POPCOUNT)
10767 /* Always true. */
10768 return 1;
10770 CASE_BUILTIN_F (BUILT_IN_SQRT)
10771 /* sqrt(-0.0) is -0.0. */
10772 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
10773 return 1;
10774 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
10776 CASE_BUILTIN_F (BUILT_IN_ASINH)
10777 CASE_BUILTIN_F (BUILT_IN_ATAN)
10778 CASE_BUILTIN_F (BUILT_IN_ATANH)
10779 CASE_BUILTIN_F (BUILT_IN_CBRT)
10780 CASE_BUILTIN_F (BUILT_IN_CEIL)
10781 CASE_BUILTIN_F (BUILT_IN_ERF)
10782 CASE_BUILTIN_F (BUILT_IN_EXPM1)
10783 CASE_BUILTIN_F (BUILT_IN_FLOOR)
10784 CASE_BUILTIN_F (BUILT_IN_FMOD)
10785 CASE_BUILTIN_F (BUILT_IN_LCEIL)
10786 CASE_BUILTIN_F (BUILT_IN_LDEXP)
10787 CASE_BUILTIN_F (BUILT_IN_LFLOOR)
10788 CASE_BUILTIN_F (BUILT_IN_LLCEIL)
10789 CASE_BUILTIN_F (BUILT_IN_LLFLOOR)
10790 CASE_BUILTIN_F (BUILT_IN_LLRINT)
10791 CASE_BUILTIN_F (BUILT_IN_LLROUND)
10792 CASE_BUILTIN_F (BUILT_IN_LRINT)
10793 CASE_BUILTIN_F (BUILT_IN_LROUND)
10794 CASE_BUILTIN_F (BUILT_IN_MODF)
10795 CASE_BUILTIN_F (BUILT_IN_NEARBYINT)
10796 CASE_BUILTIN_F (BUILT_IN_POW)
10797 CASE_BUILTIN_F (BUILT_IN_RINT)
10798 CASE_BUILTIN_F (BUILT_IN_ROUND)
10799 CASE_BUILTIN_F (BUILT_IN_SIGNBIT)
10800 CASE_BUILTIN_F (BUILT_IN_SINH)
10801 CASE_BUILTIN_F (BUILT_IN_TANH)
10802 CASE_BUILTIN_F (BUILT_IN_TRUNC)
10803 /* True if the 1st argument is nonnegative. */
10804 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
10806 CASE_BUILTIN_F (BUILT_IN_FMAX)
10807 /* True if the 1st OR 2nd arguments are nonnegative. */
10808 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
10809 || tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
10811 CASE_BUILTIN_F (BUILT_IN_FMIN)
10812 /* True if the 1st AND 2nd arguments are nonnegative. */
10813 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
10814 && tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
10816 CASE_BUILTIN_F (BUILT_IN_COPYSIGN)
10817 /* True if the 2nd argument is nonnegative. */
10818 return tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
10820 default:
10821 break;
10822 #undef CASE_BUILTIN_F
10823 #undef CASE_BUILTIN_I
10827 /* ... fall through ... */
10829 default:
10830 if (truth_value_p (TREE_CODE (t)))
10831 /* Truth values evaluate to 0 or 1, which is nonnegative. */
10832 return 1;
10835 /* We don't know sign of `t', so be conservative and return false. */
10836 return 0;
10839 /* Return true when T is an address and is known to be nonzero.
10840 For floating point we further ensure that T is not denormal.
10841 Similar logic is present in nonzero_address in rtlanal.h. */
10843 static bool
10844 tree_expr_nonzero_p (tree t)
10846 tree type = TREE_TYPE (t);
10848 /* Doing something useful for floating point would need more work. */
10849 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
10850 return false;
10852 switch (TREE_CODE (t))
10854 case ABS_EXPR:
10855 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
10856 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
10858 case INTEGER_CST:
10859 /* We used to test for !integer_zerop here. This does not work correctly
10860 if TREE_CONSTANT_OVERFLOW (t). */
10861 return (TREE_INT_CST_LOW (t) != 0
10862 || TREE_INT_CST_HIGH (t) != 0);
10864 case PLUS_EXPR:
10865 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
10867 /* With the presence of negative values it is hard
10868 to say something. */
10869 if (!tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
10870 || !tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
10871 return false;
10872 /* One of operands must be positive and the other non-negative. */
10873 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
10874 || tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
10876 break;
10878 case MULT_EXPR:
10879 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
10881 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
10882 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
10884 break;
10886 case NOP_EXPR:
10888 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
10889 tree outer_type = TREE_TYPE (t);
10891 return (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (outer_type)
10892 && tree_expr_nonzero_p (TREE_OPERAND (t, 0)));
10894 break;
10896 case ADDR_EXPR:
10898 tree base = get_base_address (TREE_OPERAND (t, 0));
10900 if (!base)
10901 return false;
10903 /* Weak declarations may link to NULL. */
10904 if (DECL_P (base))
10905 return !DECL_WEAK (base);
10907 /* Constants are never weak. */
10908 if (CONSTANT_CLASS_P (base))
10909 return true;
10911 return false;
10914 case COND_EXPR:
10915 return (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
10916 && tree_expr_nonzero_p (TREE_OPERAND (t, 2)));
10918 case MIN_EXPR:
10919 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
10920 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
10922 case MAX_EXPR:
10923 if (tree_expr_nonzero_p (TREE_OPERAND (t, 0)))
10925 /* When both operands are nonzero, then MAX must be too. */
10926 if (tree_expr_nonzero_p (TREE_OPERAND (t, 1)))
10927 return true;
10929 /* MAX where operand 0 is positive is positive. */
10930 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
10932 /* MAX where operand 1 is positive is positive. */
10933 else if (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
10934 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
10935 return true;
10936 break;
10938 case COMPOUND_EXPR:
10939 case MODIFY_EXPR:
10940 case BIND_EXPR:
10941 return tree_expr_nonzero_p (TREE_OPERAND (t, 1));
10943 case SAVE_EXPR:
10944 case NON_LVALUE_EXPR:
10945 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
10947 case BIT_IOR_EXPR:
10948 return tree_expr_nonzero_p (TREE_OPERAND (t, 1))
10949 || tree_expr_nonzero_p (TREE_OPERAND (t, 0));
10951 default:
10952 break;
10954 return false;
10957 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
10958 attempt to fold the expression to a constant without modifying TYPE,
10959 OP0 or OP1.
10961 If the expression could be simplified to a constant, then return
10962 the constant. If the expression would not be simplified to a
10963 constant, then return NULL_TREE. */
10965 tree
10966 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
10968 tree tem = fold_binary (code, type, op0, op1);
10969 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
10972 /* Given the components of a unary expression CODE, TYPE and OP0,
10973 attempt to fold the expression to a constant without modifying
10974 TYPE or OP0.
10976 If the expression could be simplified to a constant, then return
10977 the constant. If the expression would not be simplified to a
10978 constant, then return NULL_TREE. */
10980 tree
10981 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
10983 tree tem = fold_unary (code, type, op0);
10984 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
10987 /* If EXP represents referencing an element in a constant string
10988 (either via pointer arithmetic or array indexing), return the
10989 tree representing the value accessed, otherwise return NULL. */
10991 tree
10992 fold_read_from_constant_string (tree exp)
10994 if (TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == ARRAY_REF)
10996 tree exp1 = TREE_OPERAND (exp, 0);
10997 tree index;
10998 tree string;
11000 if (TREE_CODE (exp) == INDIRECT_REF)
11001 string = string_constant (exp1, &index);
11002 else
11004 tree low_bound = array_ref_low_bound (exp);
11005 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
11007 /* Optimize the special-case of a zero lower bound.
11009 We convert the low_bound to sizetype to avoid some problems
11010 with constant folding. (E.g. suppose the lower bound is 1,
11011 and its mode is QI. Without the conversion,l (ARRAY
11012 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
11013 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
11014 if (! integer_zerop (low_bound))
11015 index = size_diffop (index, fold_convert (sizetype, low_bound));
11017 string = exp1;
11020 if (string
11021 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (string))
11022 && TREE_CODE (string) == STRING_CST
11023 && TREE_CODE (index) == INTEGER_CST
11024 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
11025 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
11026 == MODE_INT)
11027 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
11028 return fold_convert (TREE_TYPE (exp),
11029 build_int_cst (NULL_TREE,
11030 (TREE_STRING_POINTER (string)
11031 [TREE_INT_CST_LOW (index)])));
11033 return NULL;
11036 /* Return the tree for neg (ARG0) when ARG0 is known to be either
11037 an integer constant or real constant.
11039 TYPE is the type of the result. */
11041 static tree
11042 fold_negate_const (tree arg0, tree type)
11044 tree t = NULL_TREE;
11046 switch (TREE_CODE (arg0))
11048 case INTEGER_CST:
11050 unsigned HOST_WIDE_INT low;
11051 HOST_WIDE_INT high;
11052 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
11053 TREE_INT_CST_HIGH (arg0),
11054 &low, &high);
11055 t = build_int_cst_wide (type, low, high);
11056 t = force_fit_type (t, 1,
11057 (overflow | TREE_OVERFLOW (arg0))
11058 && !TYPE_UNSIGNED (type),
11059 TREE_CONSTANT_OVERFLOW (arg0));
11060 break;
11063 case REAL_CST:
11064 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
11065 break;
11067 default:
11068 gcc_unreachable ();
11071 return t;
11074 /* Return the tree for abs (ARG0) when ARG0 is known to be either
11075 an integer constant or real constant.
11077 TYPE is the type of the result. */
11079 tree
11080 fold_abs_const (tree arg0, tree type)
11082 tree t = NULL_TREE;
11084 switch (TREE_CODE (arg0))
11086 case INTEGER_CST:
11087 /* If the value is unsigned, then the absolute value is
11088 the same as the ordinary value. */
11089 if (TYPE_UNSIGNED (type))
11090 t = arg0;
11091 /* Similarly, if the value is non-negative. */
11092 else if (INT_CST_LT (integer_minus_one_node, arg0))
11093 t = arg0;
11094 /* If the value is negative, then the absolute value is
11095 its negation. */
11096 else
11098 unsigned HOST_WIDE_INT low;
11099 HOST_WIDE_INT high;
11100 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
11101 TREE_INT_CST_HIGH (arg0),
11102 &low, &high);
11103 t = build_int_cst_wide (type, low, high);
11104 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg0),
11105 TREE_CONSTANT_OVERFLOW (arg0));
11107 break;
11109 case REAL_CST:
11110 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
11111 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
11112 else
11113 t = arg0;
11114 break;
11116 default:
11117 gcc_unreachable ();
11120 return t;
11123 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
11124 constant. TYPE is the type of the result. */
11126 static tree
11127 fold_not_const (tree arg0, tree type)
11129 tree t = NULL_TREE;
11131 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
11133 t = build_int_cst_wide (type,
11134 ~ TREE_INT_CST_LOW (arg0),
11135 ~ TREE_INT_CST_HIGH (arg0));
11136 t = force_fit_type (t, 0, TREE_OVERFLOW (arg0),
11137 TREE_CONSTANT_OVERFLOW (arg0));
11139 return t;
11142 /* Given CODE, a relational operator, the target type, TYPE and two
11143 constant operands OP0 and OP1, return the result of the
11144 relational operation. If the result is not a compile time
11145 constant, then return NULL_TREE. */
11147 static tree
11148 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
11150 int result, invert;
11152 /* From here on, the only cases we handle are when the result is
11153 known to be a constant. */
11155 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
11157 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
11158 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
11160 /* Handle the cases where either operand is a NaN. */
11161 if (real_isnan (c0) || real_isnan (c1))
11163 switch (code)
11165 case EQ_EXPR:
11166 case ORDERED_EXPR:
11167 result = 0;
11168 break;
11170 case NE_EXPR:
11171 case UNORDERED_EXPR:
11172 case UNLT_EXPR:
11173 case UNLE_EXPR:
11174 case UNGT_EXPR:
11175 case UNGE_EXPR:
11176 case UNEQ_EXPR:
11177 result = 1;
11178 break;
11180 case LT_EXPR:
11181 case LE_EXPR:
11182 case GT_EXPR:
11183 case GE_EXPR:
11184 case LTGT_EXPR:
11185 if (flag_trapping_math)
11186 return NULL_TREE;
11187 result = 0;
11188 break;
11190 default:
11191 gcc_unreachable ();
11194 return constant_boolean_node (result, type);
11197 return constant_boolean_node (real_compare (code, c0, c1), type);
11200 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
11202 To compute GT, swap the arguments and do LT.
11203 To compute GE, do LT and invert the result.
11204 To compute LE, swap the arguments, do LT and invert the result.
11205 To compute NE, do EQ and invert the result.
11207 Therefore, the code below must handle only EQ and LT. */
11209 if (code == LE_EXPR || code == GT_EXPR)
11211 tree tem = op0;
11212 op0 = op1;
11213 op1 = tem;
11214 code = swap_tree_comparison (code);
11217 /* Note that it is safe to invert for real values here because we
11218 have already handled the one case that it matters. */
11220 invert = 0;
11221 if (code == NE_EXPR || code == GE_EXPR)
11223 invert = 1;
11224 code = invert_tree_comparison (code, false);
11227 /* Compute a result for LT or EQ if args permit;
11228 Otherwise return T. */
11229 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
11231 if (code == EQ_EXPR)
11232 result = tree_int_cst_equal (op0, op1);
11233 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
11234 result = INT_CST_LT_UNSIGNED (op0, op1);
11235 else
11236 result = INT_CST_LT (op0, op1);
11238 else
11239 return NULL_TREE;
11241 if (invert)
11242 result ^= 1;
11243 return constant_boolean_node (result, type);
11246 /* Build an expression for the a clean point containing EXPR with type TYPE.
11247 Don't build a cleanup point expression for EXPR which don't have side
11248 effects. */
11250 tree
11251 fold_build_cleanup_point_expr (tree type, tree expr)
11253 /* If the expression does not have side effects then we don't have to wrap
11254 it with a cleanup point expression. */
11255 if (!TREE_SIDE_EFFECTS (expr))
11256 return expr;
11258 /* If the expression is a return, check to see if the expression inside the
11259 return has no side effects or the right hand side of the modify expression
11260 inside the return. If either don't have side effects set we don't need to
11261 wrap the expression in a cleanup point expression. Note we don't check the
11262 left hand side of the modify because it should always be a return decl. */
11263 if (TREE_CODE (expr) == RETURN_EXPR)
11265 tree op = TREE_OPERAND (expr, 0);
11266 if (!op || !TREE_SIDE_EFFECTS (op))
11267 return expr;
11268 op = TREE_OPERAND (op, 1);
11269 if (!TREE_SIDE_EFFECTS (op))
11270 return expr;
11273 return build1 (CLEANUP_POINT_EXPR, type, expr);
11276 /* Build an expression for the address of T. Folds away INDIRECT_REF to
11277 avoid confusing the gimplify process. */
11279 tree
11280 build_fold_addr_expr_with_type (tree t, tree ptrtype)
11282 /* The size of the object is not relevant when talking about its address. */
11283 if (TREE_CODE (t) == WITH_SIZE_EXPR)
11284 t = TREE_OPERAND (t, 0);
11286 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
11287 if (TREE_CODE (t) == INDIRECT_REF
11288 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
11290 t = TREE_OPERAND (t, 0);
11291 if (TREE_TYPE (t) != ptrtype)
11292 t = build1 (NOP_EXPR, ptrtype, t);
11294 else
11296 tree base = t;
11298 while (handled_component_p (base))
11299 base = TREE_OPERAND (base, 0);
11300 if (DECL_P (base))
11301 TREE_ADDRESSABLE (base) = 1;
11303 t = build1 (ADDR_EXPR, ptrtype, t);
11306 return t;
11309 tree
11310 build_fold_addr_expr (tree t)
11312 return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
11315 /* Given a pointer value T, return a simplified version of an indirection
11316 through T, or NULL_TREE if no simplification is possible. */
11318 static tree
11319 fold_indirect_ref_1 (tree t)
11321 tree type = TREE_TYPE (TREE_TYPE (t));
11322 tree sub = t;
11323 tree subtype;
11325 STRIP_NOPS (sub);
11326 subtype = TREE_TYPE (sub);
11327 if (!POINTER_TYPE_P (subtype))
11328 return NULL_TREE;
11330 if (TREE_CODE (sub) == ADDR_EXPR)
11332 tree op = TREE_OPERAND (sub, 0);
11333 tree optype = TREE_TYPE (op);
11334 /* *&p => p */
11335 if (lang_hooks.types_compatible_p (type, optype))
11336 return op;
11337 /* *(foo *)&fooarray => fooarray[0] */
11338 else if (TREE_CODE (optype) == ARRAY_TYPE
11339 && lang_hooks.types_compatible_p (type, TREE_TYPE (optype)))
11341 tree type_domain = TYPE_DOMAIN (optype);
11342 tree min_val = size_zero_node;
11343 if (type_domain && TYPE_MIN_VALUE (type_domain))
11344 min_val = TYPE_MIN_VALUE (type_domain);
11345 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
11349 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
11350 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
11351 && lang_hooks.types_compatible_p (type, TREE_TYPE (TREE_TYPE (subtype))))
11353 tree type_domain;
11354 tree min_val = size_zero_node;
11355 sub = build_fold_indirect_ref (sub);
11356 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
11357 if (type_domain && TYPE_MIN_VALUE (type_domain))
11358 min_val = TYPE_MIN_VALUE (type_domain);
11359 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
11362 return NULL_TREE;
11365 /* Builds an expression for an indirection through T, simplifying some
11366 cases. */
11368 tree
11369 build_fold_indirect_ref (tree t)
11371 tree sub = fold_indirect_ref_1 (t);
11373 if (sub)
11374 return sub;
11375 else
11376 return build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (t)), t);
11379 /* Given an INDIRECT_REF T, return either T or a simplified version. */
11381 tree
11382 fold_indirect_ref (tree t)
11384 tree sub = fold_indirect_ref_1 (TREE_OPERAND (t, 0));
11386 if (sub)
11387 return sub;
11388 else
11389 return t;
11392 /* Strip non-trapping, non-side-effecting tree nodes from an expression
11393 whose result is ignored. The type of the returned tree need not be
11394 the same as the original expression. */
11396 tree
11397 fold_ignored_result (tree t)
11399 if (!TREE_SIDE_EFFECTS (t))
11400 return integer_zero_node;
11402 for (;;)
11403 switch (TREE_CODE_CLASS (TREE_CODE (t)))
11405 case tcc_unary:
11406 t = TREE_OPERAND (t, 0);
11407 break;
11409 case tcc_binary:
11410 case tcc_comparison:
11411 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
11412 t = TREE_OPERAND (t, 0);
11413 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
11414 t = TREE_OPERAND (t, 1);
11415 else
11416 return t;
11417 break;
11419 case tcc_expression:
11420 switch (TREE_CODE (t))
11422 case COMPOUND_EXPR:
11423 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
11424 return t;
11425 t = TREE_OPERAND (t, 0);
11426 break;
11428 case COND_EXPR:
11429 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
11430 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
11431 return t;
11432 t = TREE_OPERAND (t, 0);
11433 break;
11435 default:
11436 return t;
11438 break;
11440 default:
11441 return t;
11445 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
11446 This can only be applied to objects of a sizetype. */
11448 tree
11449 round_up (tree value, int divisor)
11451 tree div = NULL_TREE;
11453 gcc_assert (divisor > 0);
11454 if (divisor == 1)
11455 return value;
11457 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
11458 have to do anything. Only do this when we are not given a const,
11459 because in that case, this check is more expensive than just
11460 doing it. */
11461 if (TREE_CODE (value) != INTEGER_CST)
11463 div = build_int_cst (TREE_TYPE (value), divisor);
11465 if (multiple_of_p (TREE_TYPE (value), value, div))
11466 return value;
11469 /* If divisor is a power of two, simplify this to bit manipulation. */
11470 if (divisor == (divisor & -divisor))
11472 tree t;
11474 t = build_int_cst (TREE_TYPE (value), divisor - 1);
11475 value = size_binop (PLUS_EXPR, value, t);
11476 t = build_int_cst (TREE_TYPE (value), -divisor);
11477 value = size_binop (BIT_AND_EXPR, value, t);
11479 else
11481 if (!div)
11482 div = build_int_cst (TREE_TYPE (value), divisor);
11483 value = size_binop (CEIL_DIV_EXPR, value, div);
11484 value = size_binop (MULT_EXPR, value, div);
11487 return value;
11490 /* Likewise, but round down. */
11492 tree
11493 round_down (tree value, int divisor)
11495 tree div = NULL_TREE;
11497 gcc_assert (divisor > 0);
11498 if (divisor == 1)
11499 return value;
11501 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
11502 have to do anything. Only do this when we are not given a const,
11503 because in that case, this check is more expensive than just
11504 doing it. */
11505 if (TREE_CODE (value) != INTEGER_CST)
11507 div = build_int_cst (TREE_TYPE (value), divisor);
11509 if (multiple_of_p (TREE_TYPE (value), value, div))
11510 return value;
11513 /* If divisor is a power of two, simplify this to bit manipulation. */
11514 if (divisor == (divisor & -divisor))
11516 tree t;
11518 t = build_int_cst (TREE_TYPE (value), -divisor);
11519 value = size_binop (BIT_AND_EXPR, value, t);
11521 else
11523 if (!div)
11524 div = build_int_cst (TREE_TYPE (value), divisor);
11525 value = size_binop (FLOOR_DIV_EXPR, value, div);
11526 value = size_binop (MULT_EXPR, value, div);
11529 return value;
11532 /* Returns the pointer to the base of the object addressed by EXP and
11533 extracts the information about the offset of the access, storing it
11534 to PBITPOS and POFFSET. */
11536 static tree
11537 split_address_to_core_and_offset (tree exp,
11538 HOST_WIDE_INT *pbitpos, tree *poffset)
11540 tree core;
11541 enum machine_mode mode;
11542 int unsignedp, volatilep;
11543 HOST_WIDE_INT bitsize;
11545 if (TREE_CODE (exp) == ADDR_EXPR)
11547 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
11548 poffset, &mode, &unsignedp, &volatilep,
11549 false);
11551 if (TREE_CODE (core) == INDIRECT_REF)
11552 core = TREE_OPERAND (core, 0);
11554 else
11556 core = exp;
11557 *pbitpos = 0;
11558 *poffset = NULL_TREE;
11561 return core;
11564 /* Returns true if addresses of E1 and E2 differ by a constant, false
11565 otherwise. If they do, E1 - E2 is stored in *DIFF. */
11567 bool
11568 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
11570 tree core1, core2;
11571 HOST_WIDE_INT bitpos1, bitpos2;
11572 tree toffset1, toffset2, tdiff, type;
11574 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
11575 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
11577 if (bitpos1 % BITS_PER_UNIT != 0
11578 || bitpos2 % BITS_PER_UNIT != 0
11579 || !operand_equal_p (core1, core2, 0))
11580 return false;
11582 if (toffset1 && toffset2)
11584 type = TREE_TYPE (toffset1);
11585 if (type != TREE_TYPE (toffset2))
11586 toffset2 = fold_convert (type, toffset2);
11588 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
11589 if (!host_integerp (tdiff, 0))
11590 return false;
11592 *diff = tree_low_cst (tdiff, 0);
11594 else if (toffset1 || toffset2)
11596 /* If only one of the offsets is non-constant, the difference cannot
11597 be a constant. */
11598 return false;
11600 else
11601 *diff = 0;
11603 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
11604 return true;
11607 /* Simplify the floating point expression EXP when the sign of the
11608 result is not significant. Return NULL_TREE if no simplification
11609 is possible. */
11611 tree
11612 fold_strip_sign_ops (tree exp)
11614 tree arg0, arg1;
11616 switch (TREE_CODE (exp))
11618 case ABS_EXPR:
11619 case NEGATE_EXPR:
11620 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
11621 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
11623 case MULT_EXPR:
11624 case RDIV_EXPR:
11625 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
11626 return NULL_TREE;
11627 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
11628 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
11629 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
11630 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
11631 arg0 ? arg0 : TREE_OPERAND (exp, 0),
11632 arg1 ? arg1 : TREE_OPERAND (exp, 1));
11633 break;
11635 default:
11636 break;
11638 return NULL_TREE;