Fix ChangeLog
[official-gcc.git] / gcc / fortran / target-memory.c
blobe1f9b7c33a45098d72138a15e4d95590049188eb
1 /* Simulate storage of variables into target memory.
2 Copyright (C) 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Paul Thomas and Brooks Moses
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "flags.h"
25 #include "machmode.h"
26 #include "tree.h"
27 #include "gfortran.h"
28 #include "arith.h"
29 #include "trans.h"
30 #include "trans-const.h"
31 #include "trans-types.h"
32 #include "target-memory.h"
34 /* --------------------------------------------------------------- */
35 /* Calculate the size of an expression. */
37 static size_t
38 size_array (gfc_expr *e)
40 mpz_t array_size;
41 size_t elt_size = gfc_target_expr_size (e->value.constructor->expr);
43 gfc_array_size (e, &array_size);
44 return (size_t)mpz_get_ui (array_size) * elt_size;
47 static size_t
48 size_integer (int kind)
50 return GET_MODE_SIZE (TYPE_MODE (gfc_get_int_type (kind)));;
54 static size_t
55 size_float (int kind)
57 return GET_MODE_SIZE (TYPE_MODE (gfc_get_real_type (kind)));;
61 static size_t
62 size_complex (int kind)
64 return 2 * size_float (kind);
68 static size_t
69 size_logical (int kind)
71 return GET_MODE_SIZE (TYPE_MODE (gfc_get_logical_type (kind)));;
75 static size_t
76 size_character (int length, int kind)
78 int i = gfc_validate_kind (BT_CHARACTER, kind, false);
79 return length * gfc_character_kinds[i].bit_size / 8;
83 size_t
84 gfc_target_expr_size (gfc_expr *e)
86 tree type;
88 gcc_assert (e != NULL);
90 if (e->expr_type == EXPR_ARRAY)
91 return size_array (e);
93 switch (e->ts.type)
95 case BT_INTEGER:
96 return size_integer (e->ts.kind);
97 case BT_REAL:
98 return size_float (e->ts.kind);
99 case BT_COMPLEX:
100 return size_complex (e->ts.kind);
101 case BT_LOGICAL:
102 return size_logical (e->ts.kind);
103 case BT_CHARACTER:
104 if (e->expr_type == EXPR_SUBSTRING && e->ref)
106 int start, end;
108 gfc_extract_int (e->ref->u.ss.start, &start);
109 gfc_extract_int (e->ref->u.ss.end, &end);
110 return size_character (MAX(end - start + 1, 0), e->ts.kind);
112 else
113 return size_character (e->value.character.length, e->ts.kind);
114 case BT_HOLLERITH:
115 return e->representation.length;
116 case BT_DERIVED:
117 type = gfc_typenode_for_spec (&e->ts);
118 return int_size_in_bytes (type);
119 default:
120 gfc_internal_error ("Invalid expression in gfc_target_expr_size.");
121 return 0;
126 /* The encode_* functions export a value into a buffer, and
127 return the number of bytes of the buffer that have been
128 used. */
130 static int
131 encode_array (gfc_expr *expr, unsigned char *buffer, size_t buffer_size)
133 mpz_t array_size;
134 int i;
135 int ptr = 0;
137 gfc_array_size (expr, &array_size);
138 for (i = 0; i < (int)mpz_get_ui (array_size); i++)
140 ptr += gfc_target_encode_expr (gfc_get_array_element (expr, i),
141 &buffer[ptr], buffer_size - ptr);
144 mpz_clear (array_size);
145 return ptr;
149 static int
150 encode_integer (int kind, mpz_t integer, unsigned char *buffer,
151 size_t buffer_size)
153 return native_encode_expr (gfc_conv_mpz_to_tree (integer, kind),
154 buffer, buffer_size);
158 static int
159 encode_float (int kind, mpfr_t real, unsigned char *buffer, size_t buffer_size)
161 return native_encode_expr (gfc_conv_mpfr_to_tree (real, kind), buffer,
162 buffer_size);
166 static int
167 encode_complex (int kind, mpfr_t real, mpfr_t imaginary, unsigned char *buffer,
168 size_t buffer_size)
170 int size;
171 size = encode_float (kind, real, &buffer[0], buffer_size);
172 size += encode_float (kind, imaginary, &buffer[size], buffer_size - size);
173 return size;
177 static int
178 encode_logical (int kind, int logical, unsigned char *buffer, size_t buffer_size)
180 return native_encode_expr (build_int_cst (gfc_get_logical_type (kind),
181 logical),
182 buffer, buffer_size);
187 gfc_encode_character (int kind, int length, const gfc_char_t *string,
188 unsigned char *buffer, size_t buffer_size)
190 size_t elsize = size_character (1, kind);
191 tree type = gfc_get_char_type (kind);
192 int i;
194 gcc_assert (buffer_size >= size_character (length, kind));
196 for (i = 0; i < length; i++)
197 native_encode_expr (build_int_cst (type, string[i]), &buffer[i*elsize],
198 elsize);
200 return length;
204 static int
205 encode_derived (gfc_expr *source, unsigned char *buffer, size_t buffer_size)
207 gfc_constructor *ctr;
208 gfc_component *cmp;
209 int ptr;
210 tree type;
212 type = gfc_typenode_for_spec (&source->ts);
214 ctr = source->value.constructor;
215 cmp = source->ts.derived->components;
216 for (;ctr; ctr = ctr->next, cmp = cmp->next)
218 gcc_assert (cmp);
219 if (!ctr->expr)
220 continue;
221 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl))
222 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8;
223 gfc_target_encode_expr (ctr->expr, &buffer[ptr],
224 buffer_size - ptr);
227 return int_size_in_bytes (type);
231 /* Write a constant expression in binary form to a buffer. */
233 gfc_target_encode_expr (gfc_expr *source, unsigned char *buffer,
234 size_t buffer_size)
236 if (source == NULL)
237 return 0;
239 if (source->expr_type == EXPR_ARRAY)
240 return encode_array (source, buffer, buffer_size);
242 gcc_assert (source->expr_type == EXPR_CONSTANT
243 || source->expr_type == EXPR_STRUCTURE
244 || source->expr_type == EXPR_SUBSTRING);
246 /* If we already have a target-memory representation, we use that rather
247 than recreating one. */
248 if (source->representation.string)
250 memcpy (buffer, source->representation.string,
251 source->representation.length);
252 return source->representation.length;
255 switch (source->ts.type)
257 case BT_INTEGER:
258 return encode_integer (source->ts.kind, source->value.integer, buffer,
259 buffer_size);
260 case BT_REAL:
261 return encode_float (source->ts.kind, source->value.real, buffer,
262 buffer_size);
263 case BT_COMPLEX:
264 return encode_complex (source->ts.kind, source->value.complex.r,
265 source->value.complex.i, buffer, buffer_size);
266 case BT_LOGICAL:
267 return encode_logical (source->ts.kind, source->value.logical, buffer,
268 buffer_size);
269 case BT_CHARACTER:
270 if (source->expr_type == EXPR_CONSTANT || source->ref == NULL)
271 return gfc_encode_character (source->ts.kind,
272 source->value.character.length,
273 source->value.character.string,
274 buffer, buffer_size);
275 else
277 int start, end;
279 gcc_assert (source->expr_type == EXPR_SUBSTRING);
280 gfc_extract_int (source->ref->u.ss.start, &start);
281 gfc_extract_int (source->ref->u.ss.end, &end);
282 return gfc_encode_character (source->ts.kind, MAX(end - start + 1, 0),
283 &source->value.character.string[start-1],
284 buffer, buffer_size);
287 case BT_DERIVED:
288 return encode_derived (source, buffer, buffer_size);
289 default:
290 gfc_internal_error ("Invalid expression in gfc_target_encode_expr.");
291 return 0;
296 static int
297 interpret_array (unsigned char *buffer, size_t buffer_size, gfc_expr *result)
299 int array_size = 1;
300 int i;
301 int ptr = 0;
302 gfc_constructor *head = NULL, *tail = NULL;
304 /* Calculate array size from its shape and rank. */
305 gcc_assert (result->rank > 0 && result->shape);
307 for (i = 0; i < result->rank; i++)
308 array_size *= (int)mpz_get_ui (result->shape[i]);
310 /* Iterate over array elements, producing constructors. */
311 for (i = 0; i < array_size; i++)
313 if (head == NULL)
314 head = tail = gfc_get_constructor ();
315 else
317 tail->next = gfc_get_constructor ();
318 tail = tail->next;
321 tail->where = result->where;
322 tail->expr = gfc_constant_result (result->ts.type,
323 result->ts.kind, &result->where);
324 tail->expr->ts = result->ts;
326 if (tail->expr->ts.type == BT_CHARACTER)
327 tail->expr->value.character.length = result->value.character.length;
329 ptr += gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr,
330 tail->expr);
332 result->value.constructor = head;
334 return ptr;
339 gfc_interpret_integer (int kind, unsigned char *buffer, size_t buffer_size,
340 mpz_t integer)
342 mpz_init (integer);
343 gfc_conv_tree_to_mpz (integer,
344 native_interpret_expr (gfc_get_int_type (kind),
345 buffer, buffer_size));
346 return size_integer (kind);
351 gfc_interpret_float (int kind, unsigned char *buffer, size_t buffer_size,
352 mpfr_t real)
354 mpfr_init (real);
355 gfc_conv_tree_to_mpfr (real,
356 native_interpret_expr (gfc_get_real_type (kind),
357 buffer, buffer_size));
359 return size_float (kind);
364 gfc_interpret_complex (int kind, unsigned char *buffer, size_t buffer_size,
365 mpfr_t real, mpfr_t imaginary)
367 int size;
368 size = gfc_interpret_float (kind, &buffer[0], buffer_size, real);
369 size += gfc_interpret_float (kind, &buffer[size], buffer_size - size,
370 imaginary);
371 return size;
376 gfc_interpret_logical (int kind, unsigned char *buffer, size_t buffer_size,
377 int *logical)
379 tree t = native_interpret_expr (gfc_get_logical_type (kind), buffer,
380 buffer_size);
381 *logical = double_int_zero_p (tree_to_double_int (t))
382 ? 0 : 1;
383 return size_logical (kind);
388 gfc_interpret_character (unsigned char *buffer, size_t buffer_size,
389 gfc_expr *result)
391 int i;
393 if (result->ts.cl && result->ts.cl->length)
394 result->value.character.length =
395 (int) mpz_get_ui (result->ts.cl->length->value.integer);
397 gcc_assert (buffer_size >= size_character (result->value.character.length,
398 result->ts.kind));
399 result->value.character.string =
400 gfc_get_wide_string (result->value.character.length + 1);
402 gcc_assert (result->ts.kind == gfc_default_character_kind);
403 for (i = 0; i < result->value.character.length; i++)
404 result->value.character.string[i] = (gfc_char_t) buffer[i];
405 result->value.character.string[result->value.character.length] = '\0';
407 return result->value.character.length;
412 gfc_interpret_derived (unsigned char *buffer, size_t buffer_size, gfc_expr *result)
414 gfc_component *cmp;
415 gfc_constructor *head = NULL, *tail = NULL;
416 int ptr;
417 tree type;
419 /* The attributes of the derived type need to be bolted to the floor. */
420 result->expr_type = EXPR_STRUCTURE;
422 type = gfc_typenode_for_spec (&result->ts);
423 cmp = result->ts.derived->components;
425 /* Run through the derived type components. */
426 for (;cmp; cmp = cmp->next)
428 if (head == NULL)
429 head = tail = gfc_get_constructor ();
430 else
432 tail->next = gfc_get_constructor ();
433 tail = tail->next;
436 /* The constructor points to the component. */
437 tail->n.component = cmp;
439 tail->expr = gfc_constant_result (cmp->ts.type, cmp->ts.kind,
440 &result->where);
441 tail->expr->ts = cmp->ts;
443 /* Copy shape, if needed. */
444 if (cmp->as && cmp->as->rank)
446 int n;
448 tail->expr->expr_type = EXPR_ARRAY;
449 tail->expr->rank = cmp->as->rank;
451 tail->expr->shape = gfc_get_shape (tail->expr->rank);
452 for (n = 0; n < tail->expr->rank; n++)
454 mpz_init_set_ui (tail->expr->shape[n], 1);
455 mpz_add (tail->expr->shape[n], tail->expr->shape[n],
456 cmp->as->upper[n]->value.integer);
457 mpz_sub (tail->expr->shape[n], tail->expr->shape[n],
458 cmp->as->lower[n]->value.integer);
462 ptr = TREE_INT_CST_LOW (DECL_FIELD_OFFSET (cmp->backend_decl));
463 gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr,
464 tail->expr);
466 result->value.constructor = head;
469 return int_size_in_bytes (type);
473 /* Read a binary buffer to a constant expression. */
475 gfc_target_interpret_expr (unsigned char *buffer, size_t buffer_size,
476 gfc_expr *result)
478 if (result->expr_type == EXPR_ARRAY)
479 return interpret_array (buffer, buffer_size, result);
481 switch (result->ts.type)
483 case BT_INTEGER:
484 result->representation.length =
485 gfc_interpret_integer (result->ts.kind, buffer, buffer_size,
486 result->value.integer);
487 break;
489 case BT_REAL:
490 result->representation.length =
491 gfc_interpret_float (result->ts.kind, buffer, buffer_size,
492 result->value.real);
493 break;
495 case BT_COMPLEX:
496 result->representation.length =
497 gfc_interpret_complex (result->ts.kind, buffer, buffer_size,
498 result->value.complex.r,
499 result->value.complex.i);
500 break;
502 case BT_LOGICAL:
503 result->representation.length =
504 gfc_interpret_logical (result->ts.kind, buffer, buffer_size,
505 &result->value.logical);
506 break;
508 case BT_CHARACTER:
509 result->representation.length =
510 gfc_interpret_character (buffer, buffer_size, result);
511 break;
513 case BT_DERIVED:
514 result->representation.length =
515 gfc_interpret_derived (buffer, buffer_size, result);
516 break;
518 default:
519 gfc_internal_error ("Invalid expression in gfc_target_interpret_expr.");
520 break;
523 if (result->ts.type == BT_CHARACTER)
524 result->representation.string
525 = gfc_widechar_to_char (result->value.character.string,
526 result->value.character.length);
527 else
529 result->representation.string =
530 gfc_getmem (result->representation.length + 1);
531 memcpy (result->representation.string, buffer,
532 result->representation.length);
533 result->representation.string[result->representation.length] = '\0';
536 return result->representation.length;
540 /* --------------------------------------------------------------- */
541 /* Two functions used by trans-common.c to write overlapping
542 equivalence initializers to a buffer. This is added to the union
543 and the original initializers freed. */
546 /* Writes the values of a constant expression to a char buffer. If another
547 unequal initializer has already been written to the buffer, this is an
548 error. */
550 static size_t
551 expr_to_char (gfc_expr *e, unsigned char *data, unsigned char *chk, size_t len)
553 int i;
554 int ptr;
555 gfc_constructor *ctr;
556 gfc_component *cmp;
557 unsigned char *buffer;
559 if (e == NULL)
560 return 0;
562 /* Take a derived type, one component at a time, using the offsets from the backend
563 declaration. */
564 if (e->ts.type == BT_DERIVED)
566 ctr = e->value.constructor;
567 cmp = e->ts.derived->components;
568 for (;ctr; ctr = ctr->next, cmp = cmp->next)
570 gcc_assert (cmp && cmp->backend_decl);
571 if (!ctr->expr)
572 continue;
573 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl))
574 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8;
575 expr_to_char (ctr->expr, &data[ptr], &chk[ptr], len);
577 return len;
580 /* Otherwise, use the target-memory machinery to write a bitwise image, appropriate
581 to the target, in a buffer and check off the initialized part of the buffer. */
582 len = gfc_target_expr_size (e);
583 buffer = (unsigned char*)alloca (len);
584 len = gfc_target_encode_expr (e, buffer, len);
586 for (i = 0; i < (int)len; i++)
588 if (chk[i] && (buffer[i] != data[i]))
590 gfc_error ("Overlapping unequal initializers in EQUIVALENCE "
591 "at %L", &e->where);
592 return 0;
594 chk[i] = 0xFF;
597 memcpy (data, buffer, len);
598 return len;
602 /* Writes the values from the equivalence initializers to a char* array
603 that will be written to the constructor to make the initializer for
604 the union declaration. */
606 size_t
607 gfc_merge_initializers (gfc_typespec ts, gfc_expr *e, unsigned char *data,
608 unsigned char *chk, size_t length)
610 size_t len = 0;
611 gfc_constructor * c;
613 switch (e->expr_type)
615 case EXPR_CONSTANT:
616 case EXPR_STRUCTURE:
617 len = expr_to_char (e, &data[0], &chk[0], length);
619 break;
621 case EXPR_ARRAY:
622 for (c = e->value.constructor; c; c = c->next)
624 size_t elt_size = gfc_target_expr_size (c->expr);
626 if (c->n.offset)
627 len = elt_size * (size_t)mpz_get_si (c->n.offset);
629 len = len + gfc_merge_initializers (ts, c->expr, &data[len],
630 &chk[len], length - len);
632 break;
634 default:
635 return 0;
638 return len;
642 /* Transfer the bitpattern of a (integer) BOZ to real or complex variables.
643 When successful, no BOZ or nothing to do, true is returned. */
645 bool
646 gfc_convert_boz (gfc_expr *expr, gfc_typespec *ts)
648 size_t buffer_size, boz_bit_size, ts_bit_size;
649 int index;
650 unsigned char *buffer;
652 if (!expr->is_boz)
653 return true;
655 gcc_assert (expr->expr_type == EXPR_CONSTANT
656 && expr->ts.type == BT_INTEGER);
658 /* Don't convert BOZ to logical, character, derived etc. */
659 if (ts->type == BT_REAL)
661 buffer_size = size_float (ts->kind);
662 ts_bit_size = buffer_size * 8;
664 else if (ts->type == BT_COMPLEX)
666 buffer_size = size_complex (ts->kind);
667 ts_bit_size = buffer_size * 8 / 2;
669 else
670 return true;
672 /* Convert BOZ to the smallest possible integer kind. */
673 boz_bit_size = mpz_sizeinbase (expr->value.integer, 2);
675 if (boz_bit_size > ts_bit_size)
677 gfc_error_now ("BOZ constant at %L is too large (%ld vs %ld bits)",
678 &expr->where, (long) boz_bit_size, (long) ts_bit_size);
679 return false;
682 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
684 if ((unsigned) gfc_integer_kinds[index].bit_size >= ts_bit_size)
685 break;
688 expr->ts.kind = gfc_integer_kinds[index].kind;
689 buffer_size = MAX (buffer_size, size_integer (expr->ts.kind));
691 buffer = (unsigned char*)alloca (buffer_size);
692 encode_integer (expr->ts.kind, expr->value.integer, buffer, buffer_size);
693 mpz_clear (expr->value.integer);
695 if (ts->type == BT_REAL)
697 mpfr_init (expr->value.real);
698 gfc_interpret_float (ts->kind, buffer, buffer_size, expr->value.real);
700 else
702 mpfr_init (expr->value.complex.r);
703 mpfr_init (expr->value.complex.i);
704 gfc_interpret_complex (ts->kind, buffer, buffer_size,
705 expr->value.complex.r, expr->value.complex.i);
707 expr->is_boz = 0;
708 expr->ts.type = ts->type;
709 expr->ts.kind = ts->kind;
711 return true;