2015-01-06 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob9adcb8208ac3b3894ad083d74be3d62c8a184232
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
417 -- The last two arguments are used to create its external name if needed.
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
559 -- N is the original derived type declaration
561 -- Is_Tagged is set if we are dealing with tagged types
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
573 -- which gets treated as
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
581 -- (Old_Component => New_Component),
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
593 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
594 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
595 -- Determine whether subprogram Subp is a procedure subject to pragma
596 -- Extensions_Visible with value False and has at least one controlling
597 -- parameter of mode OUT.
599 function Is_Valid_Constraint_Kind
600 (T_Kind : Type_Kind;
601 Constraint_Kind : Node_Kind) return Boolean;
602 -- Returns True if it is legal to apply the given kind of constraint to the
603 -- given kind of type (index constraint to an array type, for example).
605 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
606 -- Create new modular type. Verify that modulus is in bounds
608 procedure New_Concatenation_Op (Typ : Entity_Id);
609 -- Create an abbreviated declaration for an operator in order to
610 -- materialize concatenation on array types.
612 procedure Ordinary_Fixed_Point_Type_Declaration
613 (T : Entity_Id;
614 Def : Node_Id);
615 -- Create a new ordinary fixed point type, and apply the constraint to
616 -- obtain subtype of it.
618 procedure Prepare_Private_Subtype_Completion
619 (Id : Entity_Id;
620 Related_Nod : Node_Id);
621 -- Id is a subtype of some private type. Creates the full declaration
622 -- associated with Id whenever possible, i.e. when the full declaration
623 -- of the base type is already known. Records each subtype into
624 -- Private_Dependents of the base type.
626 procedure Process_Incomplete_Dependents
627 (N : Node_Id;
628 Full_T : Entity_Id;
629 Inc_T : Entity_Id);
630 -- Process all entities that depend on an incomplete type. There include
631 -- subtypes, subprogram types that mention the incomplete type in their
632 -- profiles, and subprogram with access parameters that designate the
633 -- incomplete type.
635 -- Inc_T is the defining identifier of an incomplete type declaration, its
636 -- Ekind is E_Incomplete_Type.
638 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
640 -- Full_T is N's defining identifier.
642 -- Subtypes of incomplete types with discriminants are completed when the
643 -- parent type is. This is simpler than private subtypes, because they can
644 -- only appear in the same scope, and there is no need to exchange views.
645 -- Similarly, access_to_subprogram types may have a parameter or a return
646 -- type that is an incomplete type, and that must be replaced with the
647 -- full type.
649 -- If the full type is tagged, subprogram with access parameters that
650 -- designated the incomplete may be primitive operations of the full type,
651 -- and have to be processed accordingly.
653 procedure Process_Real_Range_Specification (Def : Node_Id);
654 -- Given the type definition for a real type, this procedure processes and
655 -- checks the real range specification of this type definition if one is
656 -- present. If errors are found, error messages are posted, and the
657 -- Real_Range_Specification of Def is reset to Empty.
659 procedure Propagate_Default_Init_Cond_Attributes
660 (From_Typ : Entity_Id;
661 To_Typ : Entity_Id;
662 Parent_To_Derivation : Boolean := False;
663 Private_To_Full_View : Boolean := False);
664 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
665 -- all attributes related to pragma Default_Initial_Condition from From_Typ
666 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
667 -- the creation of a derived type. Flag Private_To_Full_View should be set
668 -- when processing both views of a private type.
670 procedure Record_Type_Declaration
671 (T : Entity_Id;
672 N : Node_Id;
673 Prev : Entity_Id);
674 -- Process a record type declaration (for both untagged and tagged
675 -- records). Parameters T and N are exactly like in procedure
676 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
677 -- for this routine. If this is the completion of an incomplete type
678 -- declaration, Prev is the entity of the incomplete declaration, used for
679 -- cross-referencing. Otherwise Prev = T.
681 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
682 -- This routine is used to process the actual record type definition (both
683 -- for untagged and tagged records). Def is a record type definition node.
684 -- This procedure analyzes the components in this record type definition.
685 -- Prev_T is the entity for the enclosing record type. It is provided so
686 -- that its Has_Task flag can be set if any of the component have Has_Task
687 -- set. If the declaration is the completion of an incomplete type
688 -- declaration, Prev_T is the original incomplete type, whose full view is
689 -- the record type.
691 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
692 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
693 -- build a copy of the declaration tree of the parent, and we create
694 -- independently the list of components for the derived type. Semantic
695 -- information uses the component entities, but record representation
696 -- clauses are validated on the declaration tree. This procedure replaces
697 -- discriminants and components in the declaration with those that have
698 -- been created by Inherit_Components.
700 procedure Set_Fixed_Range
701 (E : Entity_Id;
702 Loc : Source_Ptr;
703 Lo : Ureal;
704 Hi : Ureal);
705 -- Build a range node with the given bounds and set it as the Scalar_Range
706 -- of the given fixed-point type entity. Loc is the source location used
707 -- for the constructed range. See body for further details.
709 procedure Set_Scalar_Range_For_Subtype
710 (Def_Id : Entity_Id;
711 R : Node_Id;
712 Subt : Entity_Id);
713 -- This routine is used to set the scalar range field for a subtype given
714 -- Def_Id, the entity for the subtype, and R, the range expression for the
715 -- scalar range. Subt provides the parent subtype to be used to analyze,
716 -- resolve, and check the given range.
718 procedure Set_Default_SSO (T : Entity_Id);
719 -- T is the entity for an array or record being declared. This procedure
720 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
721 -- to the setting of Opt.Default_SSO.
723 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
724 -- Create a new signed integer entity, and apply the constraint to obtain
725 -- the required first named subtype of this type.
727 procedure Set_Stored_Constraint_From_Discriminant_Constraint
728 (E : Entity_Id);
729 -- E is some record type. This routine computes E's Stored_Constraint
730 -- from its Discriminant_Constraint.
732 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
733 -- Check that an entity in a list of progenitors is an interface,
734 -- emit error otherwise.
736 -----------------------
737 -- Access_Definition --
738 -----------------------
740 function Access_Definition
741 (Related_Nod : Node_Id;
742 N : Node_Id) return Entity_Id
744 Anon_Type : Entity_Id;
745 Anon_Scope : Entity_Id;
746 Desig_Type : Entity_Id;
747 Enclosing_Prot_Type : Entity_Id := Empty;
749 begin
750 Check_SPARK_05_Restriction ("access type is not allowed", N);
752 if Is_Entry (Current_Scope)
753 and then Is_Task_Type (Etype (Scope (Current_Scope)))
754 then
755 Error_Msg_N ("task entries cannot have access parameters", N);
756 return Empty;
757 end if;
759 -- Ada 2005: For an object declaration the corresponding anonymous
760 -- type is declared in the current scope.
762 -- If the access definition is the return type of another access to
763 -- function, scope is the current one, because it is the one of the
764 -- current type declaration, except for the pathological case below.
766 if Nkind_In (Related_Nod, N_Object_Declaration,
767 N_Access_Function_Definition)
768 then
769 Anon_Scope := Current_Scope;
771 -- A pathological case: function returning access functions that
772 -- return access functions, etc. Each anonymous access type created
773 -- is in the enclosing scope of the outermost function.
775 declare
776 Par : Node_Id;
778 begin
779 Par := Related_Nod;
780 while Nkind_In (Par, N_Access_Function_Definition,
781 N_Access_Definition)
782 loop
783 Par := Parent (Par);
784 end loop;
786 if Nkind (Par) = N_Function_Specification then
787 Anon_Scope := Scope (Defining_Entity (Par));
788 end if;
789 end;
791 -- For the anonymous function result case, retrieve the scope of the
792 -- function specification's associated entity rather than using the
793 -- current scope. The current scope will be the function itself if the
794 -- formal part is currently being analyzed, but will be the parent scope
795 -- in the case of a parameterless function, and we always want to use
796 -- the function's parent scope. Finally, if the function is a child
797 -- unit, we must traverse the tree to retrieve the proper entity.
799 elsif Nkind (Related_Nod) = N_Function_Specification
800 and then Nkind (Parent (N)) /= N_Parameter_Specification
801 then
802 -- If the current scope is a protected type, the anonymous access
803 -- is associated with one of the protected operations, and must
804 -- be available in the scope that encloses the protected declaration.
805 -- Otherwise the type is in the scope enclosing the subprogram.
807 -- If the function has formals, The return type of a subprogram
808 -- declaration is analyzed in the scope of the subprogram (see
809 -- Process_Formals) and thus the protected type, if present, is
810 -- the scope of the current function scope.
812 if Ekind (Current_Scope) = E_Protected_Type then
813 Enclosing_Prot_Type := Current_Scope;
815 elsif Ekind (Current_Scope) = E_Function
816 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
817 then
818 Enclosing_Prot_Type := Scope (Current_Scope);
819 end if;
821 if Present (Enclosing_Prot_Type) then
822 Anon_Scope := Scope (Enclosing_Prot_Type);
824 else
825 Anon_Scope := Scope (Defining_Entity (Related_Nod));
826 end if;
828 -- For an access type definition, if the current scope is a child
829 -- unit it is the scope of the type.
831 elsif Is_Compilation_Unit (Current_Scope) then
832 Anon_Scope := Current_Scope;
834 -- For access formals, access components, and access discriminants, the
835 -- scope is that of the enclosing declaration,
837 else
838 Anon_Scope := Scope (Current_Scope);
839 end if;
841 Anon_Type :=
842 Create_Itype
843 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
845 if All_Present (N)
846 and then Ada_Version >= Ada_2005
847 then
848 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
849 end if;
851 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
852 -- the corresponding semantic routine
854 if Present (Access_To_Subprogram_Definition (N)) then
856 -- Compiler runtime units are compiled in Ada 2005 mode when building
857 -- the runtime library but must also be compilable in Ada 95 mode
858 -- (when bootstrapping the compiler).
860 Check_Compiler_Unit ("anonymous access to subprogram", N);
862 Access_Subprogram_Declaration
863 (T_Name => Anon_Type,
864 T_Def => Access_To_Subprogram_Definition (N));
866 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
867 Set_Ekind
868 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
869 else
870 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
871 end if;
873 Set_Can_Use_Internal_Rep
874 (Anon_Type, not Always_Compatible_Rep_On_Target);
876 -- If the anonymous access is associated with a protected operation,
877 -- create a reference to it after the enclosing protected definition
878 -- because the itype will be used in the subsequent bodies.
880 if Ekind (Current_Scope) = E_Protected_Type then
881 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
882 end if;
884 return Anon_Type;
885 end if;
887 Find_Type (Subtype_Mark (N));
888 Desig_Type := Entity (Subtype_Mark (N));
890 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
891 Set_Etype (Anon_Type, Anon_Type);
893 -- Make sure the anonymous access type has size and alignment fields
894 -- set, as required by gigi. This is necessary in the case of the
895 -- Task_Body_Procedure.
897 if not Has_Private_Component (Desig_Type) then
898 Layout_Type (Anon_Type);
899 end if;
901 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
902 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
903 -- the null value is allowed. In Ada 95 the null value is never allowed.
905 if Ada_Version >= Ada_2005 then
906 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
907 else
908 Set_Can_Never_Be_Null (Anon_Type, True);
909 end if;
911 -- The anonymous access type is as public as the discriminated type or
912 -- subprogram that defines it. It is imported (for back-end purposes)
913 -- if the designated type is.
915 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
917 -- Ada 2005 (AI-231): Propagate the access-constant attribute
919 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
921 -- The context is either a subprogram declaration, object declaration,
922 -- or an access discriminant, in a private or a full type declaration.
923 -- In the case of a subprogram, if the designated type is incomplete,
924 -- the operation will be a primitive operation of the full type, to be
925 -- updated subsequently. If the type is imported through a limited_with
926 -- clause, the subprogram is not a primitive operation of the type
927 -- (which is declared elsewhere in some other scope).
929 if Ekind (Desig_Type) = E_Incomplete_Type
930 and then not From_Limited_With (Desig_Type)
931 and then Is_Overloadable (Current_Scope)
932 then
933 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
934 Set_Has_Delayed_Freeze (Current_Scope);
935 end if;
937 -- Ada 2005: If the designated type is an interface that may contain
938 -- tasks, create a Master entity for the declaration. This must be done
939 -- before expansion of the full declaration, because the declaration may
940 -- include an expression that is an allocator, whose expansion needs the
941 -- proper Master for the created tasks.
943 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
944 then
945 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
946 then
947 Build_Class_Wide_Master (Anon_Type);
949 -- Similarly, if the type is an anonymous access that designates
950 -- tasks, create a master entity for it in the current context.
952 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
953 then
954 Build_Master_Entity (Defining_Identifier (Related_Nod));
955 Build_Master_Renaming (Anon_Type);
956 end if;
957 end if;
959 -- For a private component of a protected type, it is imperative that
960 -- the back-end elaborate the type immediately after the protected
961 -- declaration, because this type will be used in the declarations
962 -- created for the component within each protected body, so we must
963 -- create an itype reference for it now.
965 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
966 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
968 -- Similarly, if the access definition is the return result of a
969 -- function, create an itype reference for it because it will be used
970 -- within the function body. For a regular function that is not a
971 -- compilation unit, insert reference after the declaration. For a
972 -- protected operation, insert it after the enclosing protected type
973 -- declaration. In either case, do not create a reference for a type
974 -- obtained through a limited_with clause, because this would introduce
975 -- semantic dependencies.
977 -- Similarly, do not create a reference if the designated type is a
978 -- generic formal, because no use of it will reach the backend.
980 elsif Nkind (Related_Nod) = N_Function_Specification
981 and then not From_Limited_With (Desig_Type)
982 and then not Is_Generic_Type (Desig_Type)
983 then
984 if Present (Enclosing_Prot_Type) then
985 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
987 elsif Is_List_Member (Parent (Related_Nod))
988 and then Nkind (Parent (N)) /= N_Parameter_Specification
989 then
990 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
991 end if;
993 -- Finally, create an itype reference for an object declaration of an
994 -- anonymous access type. This is strictly necessary only for deferred
995 -- constants, but in any case will avoid out-of-scope problems in the
996 -- back-end.
998 elsif Nkind (Related_Nod) = N_Object_Declaration then
999 Build_Itype_Reference (Anon_Type, Related_Nod);
1000 end if;
1002 return Anon_Type;
1003 end Access_Definition;
1005 -----------------------------------
1006 -- Access_Subprogram_Declaration --
1007 -----------------------------------
1009 procedure Access_Subprogram_Declaration
1010 (T_Name : Entity_Id;
1011 T_Def : Node_Id)
1013 procedure Check_For_Premature_Usage (Def : Node_Id);
1014 -- Check that type T_Name is not used, directly or recursively, as a
1015 -- parameter or a return type in Def. Def is either a subtype, an
1016 -- access_definition, or an access_to_subprogram_definition.
1018 -------------------------------
1019 -- Check_For_Premature_Usage --
1020 -------------------------------
1022 procedure Check_For_Premature_Usage (Def : Node_Id) is
1023 Param : Node_Id;
1025 begin
1026 -- Check for a subtype mark
1028 if Nkind (Def) in N_Has_Etype then
1029 if Etype (Def) = T_Name then
1030 Error_Msg_N
1031 ("type& cannot be used before end of its declaration", Def);
1032 end if;
1034 -- If this is not a subtype, then this is an access_definition
1036 elsif Nkind (Def) = N_Access_Definition then
1037 if Present (Access_To_Subprogram_Definition (Def)) then
1038 Check_For_Premature_Usage
1039 (Access_To_Subprogram_Definition (Def));
1040 else
1041 Check_For_Premature_Usage (Subtype_Mark (Def));
1042 end if;
1044 -- The only cases left are N_Access_Function_Definition and
1045 -- N_Access_Procedure_Definition.
1047 else
1048 if Present (Parameter_Specifications (Def)) then
1049 Param := First (Parameter_Specifications (Def));
1050 while Present (Param) loop
1051 Check_For_Premature_Usage (Parameter_Type (Param));
1052 Param := Next (Param);
1053 end loop;
1054 end if;
1056 if Nkind (Def) = N_Access_Function_Definition then
1057 Check_For_Premature_Usage (Result_Definition (Def));
1058 end if;
1059 end if;
1060 end Check_For_Premature_Usage;
1062 -- Local variables
1064 Formals : constant List_Id := Parameter_Specifications (T_Def);
1065 Formal : Entity_Id;
1066 D_Ityp : Node_Id;
1067 Desig_Type : constant Entity_Id :=
1068 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1070 -- Start of processing for Access_Subprogram_Declaration
1072 begin
1073 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1075 -- Associate the Itype node with the inner full-type declaration or
1076 -- subprogram spec or entry body. This is required to handle nested
1077 -- anonymous declarations. For example:
1079 -- procedure P
1080 -- (X : access procedure
1081 -- (Y : access procedure
1082 -- (Z : access T)))
1084 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1085 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1086 N_Private_Type_Declaration,
1087 N_Private_Extension_Declaration,
1088 N_Procedure_Specification,
1089 N_Function_Specification,
1090 N_Entry_Body)
1092 or else
1093 Nkind_In (D_Ityp, N_Object_Declaration,
1094 N_Object_Renaming_Declaration,
1095 N_Formal_Object_Declaration,
1096 N_Formal_Type_Declaration,
1097 N_Task_Type_Declaration,
1098 N_Protected_Type_Declaration))
1099 loop
1100 D_Ityp := Parent (D_Ityp);
1101 pragma Assert (D_Ityp /= Empty);
1102 end loop;
1104 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1106 if Nkind_In (D_Ityp, N_Procedure_Specification,
1107 N_Function_Specification)
1108 then
1109 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1111 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1112 N_Object_Declaration,
1113 N_Object_Renaming_Declaration,
1114 N_Formal_Type_Declaration)
1115 then
1116 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1117 end if;
1119 if Nkind (T_Def) = N_Access_Function_Definition then
1120 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1121 declare
1122 Acc : constant Node_Id := Result_Definition (T_Def);
1124 begin
1125 if Present (Access_To_Subprogram_Definition (Acc))
1126 and then
1127 Protected_Present (Access_To_Subprogram_Definition (Acc))
1128 then
1129 Set_Etype
1130 (Desig_Type,
1131 Replace_Anonymous_Access_To_Protected_Subprogram
1132 (T_Def));
1134 else
1135 Set_Etype
1136 (Desig_Type,
1137 Access_Definition (T_Def, Result_Definition (T_Def)));
1138 end if;
1139 end;
1141 else
1142 Analyze (Result_Definition (T_Def));
1144 declare
1145 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1147 begin
1148 -- If a null exclusion is imposed on the result type, then
1149 -- create a null-excluding itype (an access subtype) and use
1150 -- it as the function's Etype.
1152 if Is_Access_Type (Typ)
1153 and then Null_Exclusion_In_Return_Present (T_Def)
1154 then
1155 Set_Etype (Desig_Type,
1156 Create_Null_Excluding_Itype
1157 (T => Typ,
1158 Related_Nod => T_Def,
1159 Scope_Id => Current_Scope));
1161 else
1162 if From_Limited_With (Typ) then
1164 -- AI05-151: Incomplete types are allowed in all basic
1165 -- declarations, including access to subprograms.
1167 if Ada_Version >= Ada_2012 then
1168 null;
1170 else
1171 Error_Msg_NE
1172 ("illegal use of incomplete type&",
1173 Result_Definition (T_Def), Typ);
1174 end if;
1176 elsif Ekind (Current_Scope) = E_Package
1177 and then In_Private_Part (Current_Scope)
1178 then
1179 if Ekind (Typ) = E_Incomplete_Type then
1180 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1182 elsif Is_Class_Wide_Type (Typ)
1183 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1184 then
1185 Append_Elmt
1186 (Desig_Type, Private_Dependents (Etype (Typ)));
1187 end if;
1188 end if;
1190 Set_Etype (Desig_Type, Typ);
1191 end if;
1192 end;
1193 end if;
1195 if not (Is_Type (Etype (Desig_Type))) then
1196 Error_Msg_N
1197 ("expect type in function specification",
1198 Result_Definition (T_Def));
1199 end if;
1201 else
1202 Set_Etype (Desig_Type, Standard_Void_Type);
1203 end if;
1205 if Present (Formals) then
1206 Push_Scope (Desig_Type);
1208 -- Some special tests here. These special tests can be removed
1209 -- if and when Itypes always have proper parent pointers to their
1210 -- declarations???
1212 -- Special test 1) Link defining_identifier of formals. Required by
1213 -- First_Formal to provide its functionality.
1215 declare
1216 F : Node_Id;
1218 begin
1219 F := First (Formals);
1221 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1222 -- when it is part of an unconstrained type and subtype expansion
1223 -- is disabled. To avoid back-end problems with shared profiles,
1224 -- use previous subprogram type as the designated type, and then
1225 -- remove scope added above.
1227 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1228 then
1229 Set_Etype (T_Name, T_Name);
1230 Init_Size_Align (T_Name);
1231 Set_Directly_Designated_Type (T_Name,
1232 Scope (Defining_Identifier (F)));
1233 End_Scope;
1234 return;
1235 end if;
1237 while Present (F) loop
1238 if No (Parent (Defining_Identifier (F))) then
1239 Set_Parent (Defining_Identifier (F), F);
1240 end if;
1242 Next (F);
1243 end loop;
1244 end;
1246 Process_Formals (Formals, Parent (T_Def));
1248 -- Special test 2) End_Scope requires that the parent pointer be set
1249 -- to something reasonable, but Itypes don't have parent pointers. So
1250 -- we set it and then unset it ???
1252 Set_Parent (Desig_Type, T_Name);
1253 End_Scope;
1254 Set_Parent (Desig_Type, Empty);
1255 end if;
1257 -- Check for premature usage of the type being defined
1259 Check_For_Premature_Usage (T_Def);
1261 -- The return type and/or any parameter type may be incomplete. Mark the
1262 -- subprogram_type as depending on the incomplete type, so that it can
1263 -- be updated when the full type declaration is seen. This only applies
1264 -- to incomplete types declared in some enclosing scope, not to limited
1265 -- views from other packages.
1267 -- Prior to Ada 2012, access to functions can only have in_parameters.
1269 if Present (Formals) then
1270 Formal := First_Formal (Desig_Type);
1271 while Present (Formal) loop
1272 if Ekind (Formal) /= E_In_Parameter
1273 and then Nkind (T_Def) = N_Access_Function_Definition
1274 and then Ada_Version < Ada_2012
1275 then
1276 Error_Msg_N ("functions can only have IN parameters", Formal);
1277 end if;
1279 if Ekind (Etype (Formal)) = E_Incomplete_Type
1280 and then In_Open_Scopes (Scope (Etype (Formal)))
1281 then
1282 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1283 Set_Has_Delayed_Freeze (Desig_Type);
1284 end if;
1286 Next_Formal (Formal);
1287 end loop;
1288 end if;
1290 -- Check whether an indirect call without actuals may be possible. This
1291 -- is used when resolving calls whose result is then indexed.
1293 May_Need_Actuals (Desig_Type);
1295 -- If the return type is incomplete, this is legal as long as the type
1296 -- is declared in the current scope and will be completed in it (rather
1297 -- than being part of limited view).
1299 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1300 and then not Has_Delayed_Freeze (Desig_Type)
1301 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1302 then
1303 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1304 Set_Has_Delayed_Freeze (Desig_Type);
1305 end if;
1307 Check_Delayed_Subprogram (Desig_Type);
1309 if Protected_Present (T_Def) then
1310 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1311 Set_Convention (Desig_Type, Convention_Protected);
1312 else
1313 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1314 end if;
1316 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1318 Set_Etype (T_Name, T_Name);
1319 Init_Size_Align (T_Name);
1320 Set_Directly_Designated_Type (T_Name, Desig_Type);
1322 Generate_Reference_To_Formals (T_Name);
1324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1326 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1328 Check_Restriction (No_Access_Subprograms, T_Def);
1329 end Access_Subprogram_Declaration;
1331 ----------------------------
1332 -- Access_Type_Declaration --
1333 ----------------------------
1335 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1336 P : constant Node_Id := Parent (Def);
1337 S : constant Node_Id := Subtype_Indication (Def);
1339 Full_Desig : Entity_Id;
1341 begin
1342 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1344 -- Check for permissible use of incomplete type
1346 if Nkind (S) /= N_Subtype_Indication then
1347 Analyze (S);
1349 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1350 Set_Directly_Designated_Type (T, Entity (S));
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1409 Full_Desig := Designated_Type (T);
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own classwide type", S);
1423 -- Clean up indication of tagged status to prevent cascaded errors
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1428 Set_Etype (T, T);
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1442 Set_Has_Task (T, False);
1443 Set_Has_Controlled_Component (T, False);
1444 Set_Has_Protected (T, False);
1446 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1447 -- problems where an incomplete view of this entity has been previously
1448 -- established by a limited with and an overlaid version of this field
1449 -- (Stored_Constraint) was initialized for the incomplete view.
1451 -- This reset is performed in most cases except where the access type
1452 -- has been created for the purposes of allocating or deallocating a
1453 -- build-in-place object. Such access types have explicitly set pools
1454 -- and finalization masters.
1456 if No (Associated_Storage_Pool (T)) then
1457 Set_Finalization_Master (T, Empty);
1458 end if;
1460 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1461 -- attributes
1463 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1464 Set_Is_Access_Constant (T, Constant_Present (Def));
1465 end Access_Type_Declaration;
1467 ----------------------------------
1468 -- Add_Interface_Tag_Components --
1469 ----------------------------------
1471 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1472 Loc : constant Source_Ptr := Sloc (N);
1473 L : List_Id;
1474 Last_Tag : Node_Id;
1476 procedure Add_Tag (Iface : Entity_Id);
1477 -- Add tag for one of the progenitor interfaces
1479 -------------
1480 -- Add_Tag --
1481 -------------
1483 procedure Add_Tag (Iface : Entity_Id) is
1484 Decl : Node_Id;
1485 Def : Node_Id;
1486 Tag : Entity_Id;
1487 Offset : Entity_Id;
1489 begin
1490 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1492 -- This is a reasonable place to propagate predicates
1494 if Has_Predicates (Iface) then
1495 Set_Has_Predicates (Typ);
1496 end if;
1498 Def :=
1499 Make_Component_Definition (Loc,
1500 Aliased_Present => True,
1501 Subtype_Indication =>
1502 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1504 Tag := Make_Temporary (Loc, 'V');
1506 Decl :=
1507 Make_Component_Declaration (Loc,
1508 Defining_Identifier => Tag,
1509 Component_Definition => Def);
1511 Analyze_Component_Declaration (Decl);
1513 Set_Analyzed (Decl);
1514 Set_Ekind (Tag, E_Component);
1515 Set_Is_Tag (Tag);
1516 Set_Is_Aliased (Tag);
1517 Set_Related_Type (Tag, Iface);
1518 Init_Component_Location (Tag);
1520 pragma Assert (Is_Frozen (Iface));
1522 Set_DT_Entry_Count (Tag,
1523 DT_Entry_Count (First_Entity (Iface)));
1525 if No (Last_Tag) then
1526 Prepend (Decl, L);
1527 else
1528 Insert_After (Last_Tag, Decl);
1529 end if;
1531 Last_Tag := Decl;
1533 -- If the ancestor has discriminants we need to give special support
1534 -- to store the offset_to_top value of the secondary dispatch tables.
1535 -- For this purpose we add a supplementary component just after the
1536 -- field that contains the tag associated with each secondary DT.
1538 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1539 Def :=
1540 Make_Component_Definition (Loc,
1541 Subtype_Indication =>
1542 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1544 Offset := Make_Temporary (Loc, 'V');
1546 Decl :=
1547 Make_Component_Declaration (Loc,
1548 Defining_Identifier => Offset,
1549 Component_Definition => Def);
1551 Analyze_Component_Declaration (Decl);
1553 Set_Analyzed (Decl);
1554 Set_Ekind (Offset, E_Component);
1555 Set_Is_Aliased (Offset);
1556 Set_Related_Type (Offset, Iface);
1557 Init_Component_Location (Offset);
1558 Insert_After (Last_Tag, Decl);
1559 Last_Tag := Decl;
1560 end if;
1561 end Add_Tag;
1563 -- Local variables
1565 Elmt : Elmt_Id;
1566 Ext : Node_Id;
1567 Comp : Node_Id;
1569 -- Start of processing for Add_Interface_Tag_Components
1571 begin
1572 if not RTE_Available (RE_Interface_Tag) then
1573 Error_Msg
1574 ("(Ada 2005) interface types not supported by this run-time!",
1575 Sloc (N));
1576 return;
1577 end if;
1579 if Ekind (Typ) /= E_Record_Type
1580 or else (Is_Concurrent_Record_Type (Typ)
1581 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1582 or else (not Is_Concurrent_Record_Type (Typ)
1583 and then No (Interfaces (Typ))
1584 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1585 then
1586 return;
1587 end if;
1589 -- Find the current last tag
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 Ext := Record_Extension_Part (Type_Definition (N));
1593 else
1594 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1595 Ext := Type_Definition (N);
1596 end if;
1598 Last_Tag := Empty;
1600 if not (Present (Component_List (Ext))) then
1601 Set_Null_Present (Ext, False);
1602 L := New_List;
1603 Set_Component_List (Ext,
1604 Make_Component_List (Loc,
1605 Component_Items => L,
1606 Null_Present => False));
1607 else
1608 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1609 L := Component_Items
1610 (Component_List
1611 (Record_Extension_Part
1612 (Type_Definition (N))));
1613 else
1614 L := Component_Items
1615 (Component_List
1616 (Type_Definition (N)));
1617 end if;
1619 -- Find the last tag component
1621 Comp := First (L);
1622 while Present (Comp) loop
1623 if Nkind (Comp) = N_Component_Declaration
1624 and then Is_Tag (Defining_Identifier (Comp))
1625 then
1626 Last_Tag := Comp;
1627 end if;
1629 Next (Comp);
1630 end loop;
1631 end if;
1633 -- At this point L references the list of components and Last_Tag
1634 -- references the current last tag (if any). Now we add the tag
1635 -- corresponding with all the interfaces that are not implemented
1636 -- by the parent.
1638 if Present (Interfaces (Typ)) then
1639 Elmt := First_Elmt (Interfaces (Typ));
1640 while Present (Elmt) loop
1641 Add_Tag (Node (Elmt));
1642 Next_Elmt (Elmt);
1643 end loop;
1644 end if;
1645 end Add_Interface_Tag_Components;
1647 -------------------------------------
1648 -- Add_Internal_Interface_Entities --
1649 -------------------------------------
1651 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1652 Elmt : Elmt_Id;
1653 Iface : Entity_Id;
1654 Iface_Elmt : Elmt_Id;
1655 Iface_Prim : Entity_Id;
1656 Ifaces_List : Elist_Id;
1657 New_Subp : Entity_Id := Empty;
1658 Prim : Entity_Id;
1659 Restore_Scope : Boolean := False;
1661 begin
1662 pragma Assert (Ada_Version >= Ada_2005
1663 and then Is_Record_Type (Tagged_Type)
1664 and then Is_Tagged_Type (Tagged_Type)
1665 and then Has_Interfaces (Tagged_Type)
1666 and then not Is_Interface (Tagged_Type));
1668 -- Ensure that the internal entities are added to the scope of the type
1670 if Scope (Tagged_Type) /= Current_Scope then
1671 Push_Scope (Scope (Tagged_Type));
1672 Restore_Scope := True;
1673 end if;
1675 Collect_Interfaces (Tagged_Type, Ifaces_List);
1677 Iface_Elmt := First_Elmt (Ifaces_List);
1678 while Present (Iface_Elmt) loop
1679 Iface := Node (Iface_Elmt);
1681 -- Originally we excluded here from this processing interfaces that
1682 -- are parents of Tagged_Type because their primitives are located
1683 -- in the primary dispatch table (and hence no auxiliary internal
1684 -- entities are required to handle secondary dispatch tables in such
1685 -- case). However, these auxiliary entities are also required to
1686 -- handle derivations of interfaces in formals of generics (see
1687 -- Derive_Subprograms).
1689 Elmt := First_Elmt (Primitive_Operations (Iface));
1690 while Present (Elmt) loop
1691 Iface_Prim := Node (Elmt);
1693 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1694 Prim :=
1695 Find_Primitive_Covering_Interface
1696 (Tagged_Type => Tagged_Type,
1697 Iface_Prim => Iface_Prim);
1699 if No (Prim) and then Serious_Errors_Detected > 0 then
1700 goto Continue;
1701 end if;
1703 pragma Assert (Present (Prim));
1705 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1706 -- differs from the name of the interface primitive then it is
1707 -- a private primitive inherited from a parent type. In such
1708 -- case, given that Tagged_Type covers the interface, the
1709 -- inherited private primitive becomes visible. For such
1710 -- purpose we add a new entity that renames the inherited
1711 -- private primitive.
1713 if Chars (Prim) /= Chars (Iface_Prim) then
1714 pragma Assert (Has_Suffix (Prim, 'P'));
1715 Derive_Subprogram
1716 (New_Subp => New_Subp,
1717 Parent_Subp => Iface_Prim,
1718 Derived_Type => Tagged_Type,
1719 Parent_Type => Iface);
1720 Set_Alias (New_Subp, Prim);
1721 Set_Is_Abstract_Subprogram
1722 (New_Subp, Is_Abstract_Subprogram (Prim));
1723 end if;
1725 Derive_Subprogram
1726 (New_Subp => New_Subp,
1727 Parent_Subp => Iface_Prim,
1728 Derived_Type => Tagged_Type,
1729 Parent_Type => Iface);
1731 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1732 -- associated with interface types. These entities are
1733 -- only registered in the list of primitives of its
1734 -- corresponding tagged type because they are only used
1735 -- to fill the contents of the secondary dispatch tables.
1736 -- Therefore they are removed from the homonym chains.
1738 Set_Is_Hidden (New_Subp);
1739 Set_Is_Internal (New_Subp);
1740 Set_Alias (New_Subp, Prim);
1741 Set_Is_Abstract_Subprogram
1742 (New_Subp, Is_Abstract_Subprogram (Prim));
1743 Set_Interface_Alias (New_Subp, Iface_Prim);
1745 -- If the returned type is an interface then propagate it to
1746 -- the returned type. Needed by the thunk to generate the code
1747 -- which displaces "this" to reference the corresponding
1748 -- secondary dispatch table in the returned object.
1750 if Is_Interface (Etype (Iface_Prim)) then
1751 Set_Etype (New_Subp, Etype (Iface_Prim));
1752 end if;
1754 -- Internal entities associated with interface types are
1755 -- only registered in the list of primitives of the tagged
1756 -- type. They are only used to fill the contents of the
1757 -- secondary dispatch tables. Therefore they are not needed
1758 -- in the homonym chains.
1760 Remove_Homonym (New_Subp);
1762 -- Hidden entities associated with interfaces must have set
1763 -- the Has_Delay_Freeze attribute to ensure that, in case of
1764 -- locally defined tagged types (or compiling with static
1765 -- dispatch tables generation disabled) the corresponding
1766 -- entry of the secondary dispatch table is filled when
1767 -- such an entity is frozen.
1769 Set_Has_Delayed_Freeze (New_Subp);
1770 end if;
1772 <<Continue>>
1773 Next_Elmt (Elmt);
1774 end loop;
1776 Next_Elmt (Iface_Elmt);
1777 end loop;
1779 if Restore_Scope then
1780 Pop_Scope;
1781 end if;
1782 end Add_Internal_Interface_Entities;
1784 -----------------------------------
1785 -- Analyze_Component_Declaration --
1786 -----------------------------------
1788 procedure Analyze_Component_Declaration (N : Node_Id) is
1789 Id : constant Entity_Id := Defining_Identifier (N);
1790 E : constant Node_Id := Expression (N);
1791 Typ : constant Node_Id :=
1792 Subtype_Indication (Component_Definition (N));
1793 T : Entity_Id;
1794 P : Entity_Id;
1796 function Contains_POC (Constr : Node_Id) return Boolean;
1797 -- Determines whether a constraint uses the discriminant of a record
1798 -- type thus becoming a per-object constraint (POC).
1800 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1801 -- Typ is the type of the current component, check whether this type is
1802 -- a limited type. Used to validate declaration against that of
1803 -- enclosing record.
1805 ------------------
1806 -- Contains_POC --
1807 ------------------
1809 function Contains_POC (Constr : Node_Id) return Boolean is
1810 begin
1811 -- Prevent cascaded errors
1813 if Error_Posted (Constr) then
1814 return False;
1815 end if;
1817 case Nkind (Constr) is
1818 when N_Attribute_Reference =>
1819 return Attribute_Name (Constr) = Name_Access
1820 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1822 when N_Discriminant_Association =>
1823 return Denotes_Discriminant (Expression (Constr));
1825 when N_Identifier =>
1826 return Denotes_Discriminant (Constr);
1828 when N_Index_Or_Discriminant_Constraint =>
1829 declare
1830 IDC : Node_Id;
1832 begin
1833 IDC := First (Constraints (Constr));
1834 while Present (IDC) loop
1836 -- One per-object constraint is sufficient
1838 if Contains_POC (IDC) then
1839 return True;
1840 end if;
1842 Next (IDC);
1843 end loop;
1845 return False;
1846 end;
1848 when N_Range =>
1849 return Denotes_Discriminant (Low_Bound (Constr))
1850 or else
1851 Denotes_Discriminant (High_Bound (Constr));
1853 when N_Range_Constraint =>
1854 return Denotes_Discriminant (Range_Expression (Constr));
1856 when others =>
1857 return False;
1859 end case;
1860 end Contains_POC;
1862 ----------------------
1863 -- Is_Known_Limited --
1864 ----------------------
1866 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1867 P : constant Entity_Id := Etype (Typ);
1868 R : constant Entity_Id := Root_Type (Typ);
1870 begin
1871 if Is_Limited_Record (Typ) then
1872 return True;
1874 -- If the root type is limited (and not a limited interface)
1875 -- so is the current type
1877 elsif Is_Limited_Record (R)
1878 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1879 then
1880 return True;
1882 -- Else the type may have a limited interface progenitor, but a
1883 -- limited record parent.
1885 elsif R /= P and then Is_Limited_Record (P) then
1886 return True;
1888 else
1889 return False;
1890 end if;
1891 end Is_Known_Limited;
1893 -- Start of processing for Analyze_Component_Declaration
1895 begin
1896 Generate_Definition (Id);
1897 Enter_Name (Id);
1899 if Present (Typ) then
1900 T := Find_Type_Of_Object
1901 (Subtype_Indication (Component_Definition (N)), N);
1903 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1904 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1905 end if;
1907 -- Ada 2005 (AI-230): Access Definition case
1909 else
1910 pragma Assert (Present
1911 (Access_Definition (Component_Definition (N))));
1913 T := Access_Definition
1914 (Related_Nod => N,
1915 N => Access_Definition (Component_Definition (N)));
1916 Set_Is_Local_Anonymous_Access (T);
1918 -- Ada 2005 (AI-254)
1920 if Present (Access_To_Subprogram_Definition
1921 (Access_Definition (Component_Definition (N))))
1922 and then Protected_Present (Access_To_Subprogram_Definition
1923 (Access_Definition
1924 (Component_Definition (N))))
1925 then
1926 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1927 end if;
1928 end if;
1930 -- If the subtype is a constrained subtype of the enclosing record,
1931 -- (which must have a partial view) the back-end does not properly
1932 -- handle the recursion. Rewrite the component declaration with an
1933 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1934 -- the tree directly because side effects have already been removed from
1935 -- discriminant constraints.
1937 if Ekind (T) = E_Access_Subtype
1938 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1939 and then Comes_From_Source (T)
1940 and then Nkind (Parent (T)) = N_Subtype_Declaration
1941 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1942 then
1943 Rewrite
1944 (Subtype_Indication (Component_Definition (N)),
1945 New_Copy_Tree (Subtype_Indication (Parent (T))));
1946 T := Find_Type_Of_Object
1947 (Subtype_Indication (Component_Definition (N)), N);
1948 end if;
1950 -- If the component declaration includes a default expression, then we
1951 -- check that the component is not of a limited type (RM 3.7(5)),
1952 -- and do the special preanalysis of the expression (see section on
1953 -- "Handling of Default and Per-Object Expressions" in the spec of
1954 -- package Sem).
1956 if Present (E) then
1957 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1958 Preanalyze_Default_Expression (E, T);
1959 Check_Initialization (T, E);
1961 if Ada_Version >= Ada_2005
1962 and then Ekind (T) = E_Anonymous_Access_Type
1963 and then Etype (E) /= Any_Type
1964 then
1965 -- Check RM 3.9.2(9): "if the expected type for an expression is
1966 -- an anonymous access-to-specific tagged type, then the object
1967 -- designated by the expression shall not be dynamically tagged
1968 -- unless it is a controlling operand in a call on a dispatching
1969 -- operation"
1971 if Is_Tagged_Type (Directly_Designated_Type (T))
1972 and then
1973 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1974 and then
1975 Ekind (Directly_Designated_Type (Etype (E))) =
1976 E_Class_Wide_Type
1977 then
1978 Error_Msg_N
1979 ("access to specific tagged type required (RM 3.9.2(9))", E);
1980 end if;
1982 -- (Ada 2005: AI-230): Accessibility check for anonymous
1983 -- components
1985 if Type_Access_Level (Etype (E)) >
1986 Deepest_Type_Access_Level (T)
1987 then
1988 Error_Msg_N
1989 ("expression has deeper access level than component " &
1990 "(RM 3.10.2 (12.2))", E);
1991 end if;
1993 -- The initialization expression is a reference to an access
1994 -- discriminant. The type of the discriminant is always deeper
1995 -- than any access type.
1997 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1998 and then Is_Entity_Name (E)
1999 and then Ekind (Entity (E)) = E_In_Parameter
2000 and then Present (Discriminal_Link (Entity (E)))
2001 then
2002 Error_Msg_N
2003 ("discriminant has deeper accessibility level than target",
2005 end if;
2006 end if;
2007 end if;
2009 -- The parent type may be a private view with unknown discriminants,
2010 -- and thus unconstrained. Regular components must be constrained.
2012 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2013 if Is_Class_Wide_Type (T) then
2014 Error_Msg_N
2015 ("class-wide subtype with unknown discriminants" &
2016 " in component declaration",
2017 Subtype_Indication (Component_Definition (N)));
2018 else
2019 Error_Msg_N
2020 ("unconstrained subtype in component declaration",
2021 Subtype_Indication (Component_Definition (N)));
2022 end if;
2024 -- Components cannot be abstract, except for the special case of
2025 -- the _Parent field (case of extending an abstract tagged type)
2027 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2028 Error_Msg_N ("type of a component cannot be abstract", N);
2029 end if;
2031 Set_Etype (Id, T);
2032 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2034 -- The component declaration may have a per-object constraint, set
2035 -- the appropriate flag in the defining identifier of the subtype.
2037 if Present (Subtype_Indication (Component_Definition (N))) then
2038 declare
2039 Sindic : constant Node_Id :=
2040 Subtype_Indication (Component_Definition (N));
2041 begin
2042 if Nkind (Sindic) = N_Subtype_Indication
2043 and then Present (Constraint (Sindic))
2044 and then Contains_POC (Constraint (Sindic))
2045 then
2046 Set_Has_Per_Object_Constraint (Id);
2047 end if;
2048 end;
2049 end if;
2051 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2052 -- out some static checks.
2054 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2055 Null_Exclusion_Static_Checks (N);
2056 end if;
2058 -- If this component is private (or depends on a private type), flag the
2059 -- record type to indicate that some operations are not available.
2061 P := Private_Component (T);
2063 if Present (P) then
2065 -- Check for circular definitions
2067 if P = Any_Type then
2068 Set_Etype (Id, Any_Type);
2070 -- There is a gap in the visibility of operations only if the
2071 -- component type is not defined in the scope of the record type.
2073 elsif Scope (P) = Scope (Current_Scope) then
2074 null;
2076 elsif Is_Limited_Type (P) then
2077 Set_Is_Limited_Composite (Current_Scope);
2079 else
2080 Set_Is_Private_Composite (Current_Scope);
2081 end if;
2082 end if;
2084 if P /= Any_Type
2085 and then Is_Limited_Type (T)
2086 and then Chars (Id) /= Name_uParent
2087 and then Is_Tagged_Type (Current_Scope)
2088 then
2089 if Is_Derived_Type (Current_Scope)
2090 and then not Is_Known_Limited (Current_Scope)
2091 then
2092 Error_Msg_N
2093 ("extension of nonlimited type cannot have limited components",
2096 if Is_Interface (Root_Type (Current_Scope)) then
2097 Error_Msg_N
2098 ("\limitedness is not inherited from limited interface", N);
2099 Error_Msg_N ("\add LIMITED to type indication", N);
2100 end if;
2102 Explain_Limited_Type (T, N);
2103 Set_Etype (Id, Any_Type);
2104 Set_Is_Limited_Composite (Current_Scope, False);
2106 elsif not Is_Derived_Type (Current_Scope)
2107 and then not Is_Limited_Record (Current_Scope)
2108 and then not Is_Concurrent_Type (Current_Scope)
2109 then
2110 Error_Msg_N
2111 ("nonlimited tagged type cannot have limited components", N);
2112 Explain_Limited_Type (T, N);
2113 Set_Etype (Id, Any_Type);
2114 Set_Is_Limited_Composite (Current_Scope, False);
2115 end if;
2116 end if;
2118 Set_Original_Record_Component (Id, Id);
2120 if Has_Aspects (N) then
2121 Analyze_Aspect_Specifications (N, Id);
2122 end if;
2124 Analyze_Dimension (N);
2125 end Analyze_Component_Declaration;
2127 --------------------------
2128 -- Analyze_Declarations --
2129 --------------------------
2131 procedure Analyze_Declarations (L : List_Id) is
2132 Decl : Node_Id;
2134 procedure Adjust_Decl;
2135 -- Adjust Decl not to include implicit label declarations, since these
2136 -- have strange Sloc values that result in elaboration check problems.
2137 -- (They have the sloc of the label as found in the source, and that
2138 -- is ahead of the current declarative part).
2140 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2141 -- Determine whether Body_Decl denotes the body of a late controlled
2142 -- primitive (either Initialize, Adjust or Finalize). If this is the
2143 -- case, add a proper spec if the body lacks one. The spec is inserted
2144 -- before Body_Decl and immedately analyzed.
2146 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2147 -- Spec_Id is the entity of a package that may define abstract states.
2148 -- If the states have visible refinement, remove the visibility of each
2149 -- constituent at the end of the package body declarations.
2151 -----------------
2152 -- Adjust_Decl --
2153 -----------------
2155 procedure Adjust_Decl is
2156 begin
2157 while Present (Prev (Decl))
2158 and then Nkind (Decl) = N_Implicit_Label_Declaration
2159 loop
2160 Prev (Decl);
2161 end loop;
2162 end Adjust_Decl;
2164 --------------------------------------
2165 -- Handle_Late_Controlled_Primitive --
2166 --------------------------------------
2168 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2169 Body_Spec : constant Node_Id := Specification (Body_Decl);
2170 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2171 Loc : constant Source_Ptr := Sloc (Body_Id);
2172 Params : constant List_Id :=
2173 Parameter_Specifications (Body_Spec);
2174 Spec : Node_Id;
2175 Spec_Id : Entity_Id;
2176 Typ : Node_Id;
2178 begin
2179 -- Consider only procedure bodies whose name matches one of the three
2180 -- controlled primitives.
2182 if Nkind (Body_Spec) /= N_Procedure_Specification
2183 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2184 Name_Finalize,
2185 Name_Initialize)
2186 then
2187 return;
2189 -- A controlled primitive must have exactly one formal which is not
2190 -- an anonymous access type.
2192 elsif List_Length (Params) /= 1 then
2193 return;
2194 end if;
2196 Typ := Parameter_Type (First (Params));
2198 if Nkind (Typ) = N_Access_Definition then
2199 return;
2200 end if;
2202 Find_Type (Typ);
2204 -- The type of the formal must be derived from [Limited_]Controlled
2206 if not Is_Controlled (Entity (Typ)) then
2207 return;
2208 end if;
2210 -- Check whether a specification exists for this body. We do not
2211 -- analyze the spec of the body in full, because it will be analyzed
2212 -- again when the body is properly analyzed, and we cannot create
2213 -- duplicate entries in the formals chain. We look for an explicit
2214 -- specification because the body may be an overriding operation and
2215 -- an inherited spec may be present.
2217 Spec_Id := Current_Entity (Body_Id);
2219 while Present (Spec_Id) loop
2220 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2221 and then Scope (Spec_Id) = Current_Scope
2222 and then Present (First_Formal (Spec_Id))
2223 and then No (Next_Formal (First_Formal (Spec_Id)))
2224 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2225 and then Comes_From_Source (Spec_Id)
2226 then
2227 return;
2228 end if;
2230 Spec_Id := Homonym (Spec_Id);
2231 end loop;
2233 -- At this point the body is known to be a late controlled primitive.
2234 -- Generate a matching spec and insert it before the body. Note the
2235 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2236 -- tree in this case.
2238 Spec := Copy_Separate_Tree (Body_Spec);
2240 -- Ensure that the subprogram declaration does not inherit the null
2241 -- indicator from the body as we now have a proper spec/body pair.
2243 Set_Null_Present (Spec, False);
2245 Insert_Before_And_Analyze (Body_Decl,
2246 Make_Subprogram_Declaration (Loc, Specification => Spec));
2247 end Handle_Late_Controlled_Primitive;
2249 --------------------------------
2250 -- Remove_Visible_Refinements --
2251 --------------------------------
2253 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2254 State_Elmt : Elmt_Id;
2255 begin
2256 if Present (Abstract_States (Spec_Id)) then
2257 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2258 while Present (State_Elmt) loop
2259 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2260 Next_Elmt (State_Elmt);
2261 end loop;
2262 end if;
2263 end Remove_Visible_Refinements;
2265 -- Local variables
2267 Context : Node_Id;
2268 Freeze_From : Entity_Id := Empty;
2269 Next_Decl : Node_Id;
2270 Spec_Id : Entity_Id;
2272 Body_Seen : Boolean := False;
2273 -- Flag set when the first body [stub] is encountered
2275 In_Package_Body : Boolean := False;
2276 -- Flag set when the current declaration list belongs to a package body
2278 -- Start of processing for Analyze_Declarations
2280 begin
2281 if Restriction_Check_Required (SPARK_05) then
2282 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2283 end if;
2285 Decl := First (L);
2286 while Present (Decl) loop
2288 -- Package spec cannot contain a package declaration in SPARK
2290 if Nkind (Decl) = N_Package_Declaration
2291 and then Nkind (Parent (L)) = N_Package_Specification
2292 then
2293 Check_SPARK_05_Restriction
2294 ("package specification cannot contain a package declaration",
2295 Decl);
2296 end if;
2298 -- Complete analysis of declaration
2300 Analyze (Decl);
2301 Next_Decl := Next (Decl);
2303 if No (Freeze_From) then
2304 Freeze_From := First_Entity (Current_Scope);
2305 end if;
2307 -- At the end of a declarative part, freeze remaining entities
2308 -- declared in it. The end of the visible declarations of package
2309 -- specification is not the end of a declarative part if private
2310 -- declarations are present. The end of a package declaration is a
2311 -- freezing point only if it a library package. A task definition or
2312 -- protected type definition is not a freeze point either. Finally,
2313 -- we do not freeze entities in generic scopes, because there is no
2314 -- code generated for them and freeze nodes will be generated for
2315 -- the instance.
2317 -- The end of a package instantiation is not a freeze point, but
2318 -- for now we make it one, because the generic body is inserted
2319 -- (currently) immediately after. Generic instantiations will not
2320 -- be a freeze point once delayed freezing of bodies is implemented.
2321 -- (This is needed in any case for early instantiations ???).
2323 if No (Next_Decl) then
2324 if Nkind_In (Parent (L), N_Component_List,
2325 N_Task_Definition,
2326 N_Protected_Definition)
2327 then
2328 null;
2330 elsif Nkind (Parent (L)) /= N_Package_Specification then
2331 if Nkind (Parent (L)) = N_Package_Body then
2332 Freeze_From := First_Entity (Current_Scope);
2333 end if;
2335 -- There may have been several freezing points previously,
2336 -- for example object declarations or subprogram bodies, but
2337 -- at the end of a declarative part we check freezing from
2338 -- the beginning, even though entities may already be frozen,
2339 -- in order to perform visibility checks on delayed aspects.
2341 Adjust_Decl;
2342 Freeze_All (First_Entity (Current_Scope), Decl);
2343 Freeze_From := Last_Entity (Current_Scope);
2345 elsif Scope (Current_Scope) /= Standard_Standard
2346 and then not Is_Child_Unit (Current_Scope)
2347 and then No (Generic_Parent (Parent (L)))
2348 then
2349 null;
2351 elsif L /= Visible_Declarations (Parent (L))
2352 or else No (Private_Declarations (Parent (L)))
2353 or else Is_Empty_List (Private_Declarations (Parent (L)))
2354 then
2355 Adjust_Decl;
2356 Freeze_All (First_Entity (Current_Scope), Decl);
2357 Freeze_From := Last_Entity (Current_Scope);
2358 end if;
2360 -- If next node is a body then freeze all types before the body.
2361 -- An exception occurs for some expander-generated bodies. If these
2362 -- are generated at places where in general language rules would not
2363 -- allow a freeze point, then we assume that the expander has
2364 -- explicitly checked that all required types are properly frozen,
2365 -- and we do not cause general freezing here. This special circuit
2366 -- is used when the encountered body is marked as having already
2367 -- been analyzed.
2369 -- In all other cases (bodies that come from source, and expander
2370 -- generated bodies that have not been analyzed yet), freeze all
2371 -- types now. Note that in the latter case, the expander must take
2372 -- care to attach the bodies at a proper place in the tree so as to
2373 -- not cause unwanted freezing at that point.
2375 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2377 -- When a controlled type is frozen, the expander generates stream
2378 -- and controlled type support routines. If the freeze is caused
2379 -- by the stand alone body of Initialize, Adjust and Finalize, the
2380 -- expander will end up using the wrong version of these routines
2381 -- as the body has not been processed yet. To remedy this, detect
2382 -- a late controlled primitive and create a proper spec for it.
2383 -- This ensures that the primitive will override its inherited
2384 -- counterpart before the freeze takes place.
2386 -- If the declaration we just processed is a body, do not attempt
2387 -- to examine Next_Decl as the late primitive idiom can only apply
2388 -- to the first encountered body.
2390 -- The spec of the late primitive is not generated in ASIS mode to
2391 -- ensure a consistent list of primitives that indicates the true
2392 -- semantic structure of the program (which is not relevant when
2393 -- generating executable code.
2395 -- ??? a cleaner approach may be possible and/or this solution
2396 -- could be extended to general-purpose late primitives, TBD.
2398 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2399 then
2400 Body_Seen := True;
2402 if Nkind (Next_Decl) = N_Subprogram_Body then
2403 Handle_Late_Controlled_Primitive (Next_Decl);
2404 end if;
2405 end if;
2407 Adjust_Decl;
2408 Freeze_All (Freeze_From, Decl);
2409 Freeze_From := Last_Entity (Current_Scope);
2410 end if;
2412 Decl := Next_Decl;
2413 end loop;
2415 -- Analyze the contracts of packages and their bodies
2417 if Present (L) then
2418 Context := Parent (L);
2420 if Nkind (Context) = N_Package_Specification then
2422 -- When a package has private declarations, its contract must be
2423 -- analyzed at the end of the said declarations. This way both the
2424 -- analysis and freeze actions are properly synchronized in case
2425 -- of private type use within the contract.
2427 if L = Private_Declarations (Context) then
2428 Analyze_Package_Contract (Defining_Entity (Context));
2430 -- Build the bodies of the default initial condition procedures
2431 -- for all types subject to pragma Default_Initial_Condition.
2432 -- From a purely Ada stand point, this is a freezing activity,
2433 -- however freezing is not available under GNATprove_Mode. To
2434 -- accomodate both scenarios, the bodies are build at the end
2435 -- of private declaration analysis.
2437 Build_Default_Init_Cond_Procedure_Bodies (L);
2439 -- Otherwise the contract is analyzed at the end of the visible
2440 -- declarations.
2442 elsif L = Visible_Declarations (Context)
2443 and then No (Private_Declarations (Context))
2444 then
2445 Analyze_Package_Contract (Defining_Entity (Context));
2446 end if;
2448 elsif Nkind (Context) = N_Package_Body then
2449 In_Package_Body := True;
2450 Spec_Id := Corresponding_Spec (Context);
2452 Analyze_Package_Body_Contract (Defining_Entity (Context));
2453 end if;
2454 end if;
2456 -- Analyze the contracts of subprogram declarations, subprogram bodies
2457 -- and variables now due to the delayed visibility requirements of their
2458 -- aspects.
2460 Decl := First (L);
2461 while Present (Decl) loop
2462 if Nkind (Decl) = N_Object_Declaration then
2463 Analyze_Object_Contract (Defining_Entity (Decl));
2465 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2466 N_Subprogram_Declaration)
2467 then
2468 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2470 elsif Nkind (Decl) = N_Subprogram_Body then
2471 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2473 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2474 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2475 end if;
2477 Next (Decl);
2478 end loop;
2480 -- State refinements are visible upto the end the of the package body
2481 -- declarations. Hide the refinements from visibility to restore the
2482 -- original state conditions.
2484 if In_Package_Body then
2485 Remove_Visible_Refinements (Spec_Id);
2486 end if;
2487 end Analyze_Declarations;
2489 -----------------------------------
2490 -- Analyze_Full_Type_Declaration --
2491 -----------------------------------
2493 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2494 Def : constant Node_Id := Type_Definition (N);
2495 Def_Id : constant Entity_Id := Defining_Identifier (N);
2496 T : Entity_Id;
2497 Prev : Entity_Id;
2499 Is_Remote : constant Boolean :=
2500 (Is_Remote_Types (Current_Scope)
2501 or else Is_Remote_Call_Interface (Current_Scope))
2502 and then not (In_Private_Part (Current_Scope)
2503 or else In_Package_Body (Current_Scope));
2505 procedure Check_Ops_From_Incomplete_Type;
2506 -- If there is a tagged incomplete partial view of the type, traverse
2507 -- the primitives of the incomplete view and change the type of any
2508 -- controlling formals and result to indicate the full view. The
2509 -- primitives will be added to the full type's primitive operations
2510 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2511 -- is called from Process_Incomplete_Dependents).
2513 ------------------------------------
2514 -- Check_Ops_From_Incomplete_Type --
2515 ------------------------------------
2517 procedure Check_Ops_From_Incomplete_Type is
2518 Elmt : Elmt_Id;
2519 Formal : Entity_Id;
2520 Op : Entity_Id;
2522 begin
2523 if Prev /= T
2524 and then Ekind (Prev) = E_Incomplete_Type
2525 and then Is_Tagged_Type (Prev)
2526 and then Is_Tagged_Type (T)
2527 then
2528 Elmt := First_Elmt (Primitive_Operations (Prev));
2529 while Present (Elmt) loop
2530 Op := Node (Elmt);
2532 Formal := First_Formal (Op);
2533 while Present (Formal) loop
2534 if Etype (Formal) = Prev then
2535 Set_Etype (Formal, T);
2536 end if;
2538 Next_Formal (Formal);
2539 end loop;
2541 if Etype (Op) = Prev then
2542 Set_Etype (Op, T);
2543 end if;
2545 Next_Elmt (Elmt);
2546 end loop;
2547 end if;
2548 end Check_Ops_From_Incomplete_Type;
2550 -- Start of processing for Analyze_Full_Type_Declaration
2552 begin
2553 Prev := Find_Type_Name (N);
2555 -- The full view, if present, now points to the current type
2556 -- If there is an incomplete partial view, set a link to it, to
2557 -- simplify the retrieval of primitive operations of the type.
2559 -- Ada 2005 (AI-50217): If the type was previously decorated when
2560 -- imported through a LIMITED WITH clause, it appears as incomplete
2561 -- but has no full view.
2563 if Ekind (Prev) = E_Incomplete_Type
2564 and then Present (Full_View (Prev))
2565 then
2566 T := Full_View (Prev);
2567 Set_Incomplete_View (N, Parent (Prev));
2568 else
2569 T := Prev;
2570 end if;
2572 Set_Is_Pure (T, Is_Pure (Current_Scope));
2574 -- We set the flag Is_First_Subtype here. It is needed to set the
2575 -- corresponding flag for the Implicit class-wide-type created
2576 -- during tagged types processing.
2578 Set_Is_First_Subtype (T, True);
2580 -- Only composite types other than array types are allowed to have
2581 -- discriminants.
2583 case Nkind (Def) is
2585 -- For derived types, the rule will be checked once we've figured
2586 -- out the parent type.
2588 when N_Derived_Type_Definition =>
2589 null;
2591 -- For record types, discriminants are allowed, unless we are in
2592 -- SPARK.
2594 when N_Record_Definition =>
2595 if Present (Discriminant_Specifications (N)) then
2596 Check_SPARK_05_Restriction
2597 ("discriminant type is not allowed",
2598 Defining_Identifier
2599 (First (Discriminant_Specifications (N))));
2600 end if;
2602 when others =>
2603 if Present (Discriminant_Specifications (N)) then
2604 Error_Msg_N
2605 ("elementary or array type cannot have discriminants",
2606 Defining_Identifier
2607 (First (Discriminant_Specifications (N))));
2608 end if;
2609 end case;
2611 -- Elaborate the type definition according to kind, and generate
2612 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2613 -- already done (this happens during the reanalysis that follows a call
2614 -- to the high level optimizer).
2616 if not Analyzed (T) then
2617 Set_Analyzed (T);
2619 case Nkind (Def) is
2620 when N_Access_To_Subprogram_Definition =>
2621 Access_Subprogram_Declaration (T, Def);
2623 -- If this is a remote access to subprogram, we must create the
2624 -- equivalent fat pointer type, and related subprograms.
2626 if Is_Remote then
2627 Process_Remote_AST_Declaration (N);
2628 end if;
2630 -- Validate categorization rule against access type declaration
2631 -- usually a violation in Pure unit, Shared_Passive unit.
2633 Validate_Access_Type_Declaration (T, N);
2635 when N_Access_To_Object_Definition =>
2636 Access_Type_Declaration (T, Def);
2638 -- Validate categorization rule against access type declaration
2639 -- usually a violation in Pure unit, Shared_Passive unit.
2641 Validate_Access_Type_Declaration (T, N);
2643 -- If we are in a Remote_Call_Interface package and define a
2644 -- RACW, then calling stubs and specific stream attributes
2645 -- must be added.
2647 if Is_Remote
2648 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2649 then
2650 Add_RACW_Features (Def_Id);
2651 end if;
2653 -- Set no strict aliasing flag if config pragma seen
2655 if Opt.No_Strict_Aliasing then
2656 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2657 end if;
2659 when N_Array_Type_Definition =>
2660 Array_Type_Declaration (T, Def);
2662 when N_Derived_Type_Definition =>
2663 Derived_Type_Declaration (T, N, T /= Def_Id);
2665 when N_Enumeration_Type_Definition =>
2666 Enumeration_Type_Declaration (T, Def);
2668 when N_Floating_Point_Definition =>
2669 Floating_Point_Type_Declaration (T, Def);
2671 when N_Decimal_Fixed_Point_Definition =>
2672 Decimal_Fixed_Point_Type_Declaration (T, Def);
2674 when N_Ordinary_Fixed_Point_Definition =>
2675 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2677 when N_Signed_Integer_Type_Definition =>
2678 Signed_Integer_Type_Declaration (T, Def);
2680 when N_Modular_Type_Definition =>
2681 Modular_Type_Declaration (T, Def);
2683 when N_Record_Definition =>
2684 Record_Type_Declaration (T, N, Prev);
2686 -- If declaration has a parse error, nothing to elaborate.
2688 when N_Error =>
2689 null;
2691 when others =>
2692 raise Program_Error;
2694 end case;
2695 end if;
2697 if Etype (T) = Any_Type then
2698 return;
2699 end if;
2701 -- Controlled type is not allowed in SPARK
2703 if Is_Visibly_Controlled (T) then
2704 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2705 end if;
2707 -- A type declared within a Ghost scope is automatically Ghost
2708 -- (SPARK RM 6.9(2)).
2710 if Comes_From_Source (T) and then Within_Ghost_Scope then
2711 Set_Is_Ghost_Entity (T);
2712 end if;
2714 -- Some common processing for all types
2716 Set_Depends_On_Private (T, Has_Private_Component (T));
2717 Check_Ops_From_Incomplete_Type;
2719 -- Both the declared entity, and its anonymous base type if one was
2720 -- created, need freeze nodes allocated.
2722 declare
2723 B : constant Entity_Id := Base_Type (T);
2725 begin
2726 -- In the case where the base type differs from the first subtype, we
2727 -- pre-allocate a freeze node, and set the proper link to the first
2728 -- subtype. Freeze_Entity will use this preallocated freeze node when
2729 -- it freezes the entity.
2731 -- This does not apply if the base type is a generic type, whose
2732 -- declaration is independent of the current derived definition.
2734 if B /= T and then not Is_Generic_Type (B) then
2735 Ensure_Freeze_Node (B);
2736 Set_First_Subtype_Link (Freeze_Node (B), T);
2737 end if;
2739 -- A type that is imported through a limited_with clause cannot
2740 -- generate any code, and thus need not be frozen. However, an access
2741 -- type with an imported designated type needs a finalization list,
2742 -- which may be referenced in some other package that has non-limited
2743 -- visibility on the designated type. Thus we must create the
2744 -- finalization list at the point the access type is frozen, to
2745 -- prevent unsatisfied references at link time.
2747 if not From_Limited_With (T) or else Is_Access_Type (T) then
2748 Set_Has_Delayed_Freeze (T);
2749 end if;
2750 end;
2752 -- Case where T is the full declaration of some private type which has
2753 -- been swapped in Defining_Identifier (N).
2755 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2756 Process_Full_View (N, T, Def_Id);
2758 -- Record the reference. The form of this is a little strange, since
2759 -- the full declaration has been swapped in. So the first parameter
2760 -- here represents the entity to which a reference is made which is
2761 -- the "real" entity, i.e. the one swapped in, and the second
2762 -- parameter provides the reference location.
2764 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2765 -- since we don't want a complaint about the full type being an
2766 -- unwanted reference to the private type
2768 declare
2769 B : constant Boolean := Has_Pragma_Unreferenced (T);
2770 begin
2771 Set_Has_Pragma_Unreferenced (T, False);
2772 Generate_Reference (T, T, 'c');
2773 Set_Has_Pragma_Unreferenced (T, B);
2774 end;
2776 Set_Completion_Referenced (Def_Id);
2778 -- For completion of incomplete type, process incomplete dependents
2779 -- and always mark the full type as referenced (it is the incomplete
2780 -- type that we get for any real reference).
2782 elsif Ekind (Prev) = E_Incomplete_Type then
2783 Process_Incomplete_Dependents (N, T, Prev);
2784 Generate_Reference (Prev, Def_Id, 'c');
2785 Set_Completion_Referenced (Def_Id);
2787 -- If not private type or incomplete type completion, this is a real
2788 -- definition of a new entity, so record it.
2790 else
2791 Generate_Definition (Def_Id);
2792 end if;
2794 if Chars (Scope (Def_Id)) = Name_System
2795 and then Chars (Def_Id) = Name_Address
2796 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2797 then
2798 Set_Is_Descendent_Of_Address (Def_Id);
2799 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2800 Set_Is_Descendent_Of_Address (Prev);
2801 end if;
2803 Set_Optimize_Alignment_Flags (Def_Id);
2804 Check_Eliminated (Def_Id);
2806 -- If the declaration is a completion and aspects are present, apply
2807 -- them to the entity for the type which is currently the partial
2808 -- view, but which is the one that will be frozen.
2810 if Has_Aspects (N) then
2812 -- In most cases the partial view is a private type, and both views
2813 -- appear in different declarative parts. In the unusual case where
2814 -- the partial view is incomplete, perform the analysis on the
2815 -- full view, to prevent freezing anomalies with the corresponding
2816 -- class-wide type, which otherwise might be frozen before the
2817 -- dispatch table is built.
2819 if Prev /= Def_Id
2820 and then Ekind (Prev) /= E_Incomplete_Type
2821 then
2822 Analyze_Aspect_Specifications (N, Prev);
2824 -- Normal case
2826 else
2827 Analyze_Aspect_Specifications (N, Def_Id);
2828 end if;
2829 end if;
2830 end Analyze_Full_Type_Declaration;
2832 ----------------------------------
2833 -- Analyze_Incomplete_Type_Decl --
2834 ----------------------------------
2836 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2837 F : constant Boolean := Is_Pure (Current_Scope);
2838 T : Entity_Id;
2840 begin
2841 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2843 Generate_Definition (Defining_Identifier (N));
2845 -- Process an incomplete declaration. The identifier must not have been
2846 -- declared already in the scope. However, an incomplete declaration may
2847 -- appear in the private part of a package, for a private type that has
2848 -- already been declared.
2850 -- In this case, the discriminants (if any) must match
2852 T := Find_Type_Name (N);
2854 Set_Ekind (T, E_Incomplete_Type);
2855 Init_Size_Align (T);
2856 Set_Is_First_Subtype (T, True);
2857 Set_Etype (T, T);
2859 -- An incomplete type declared within a Ghost scope is automatically
2860 -- Ghost (SPARK RM 6.9(2)).
2862 if Within_Ghost_Scope then
2863 Set_Is_Ghost_Entity (T);
2864 end if;
2866 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2867 -- incomplete types.
2869 if Tagged_Present (N) then
2870 Set_Is_Tagged_Type (T, True);
2871 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2872 Make_Class_Wide_Type (T);
2873 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2874 end if;
2876 Push_Scope (T);
2878 Set_Stored_Constraint (T, No_Elist);
2880 if Present (Discriminant_Specifications (N)) then
2881 Process_Discriminants (N);
2882 end if;
2884 End_Scope;
2886 -- If the type has discriminants, non-trivial subtypes may be
2887 -- declared before the full view of the type. The full views of those
2888 -- subtypes will be built after the full view of the type.
2890 Set_Private_Dependents (T, New_Elmt_List);
2891 Set_Is_Pure (T, F);
2892 end Analyze_Incomplete_Type_Decl;
2894 -----------------------------------
2895 -- Analyze_Interface_Declaration --
2896 -----------------------------------
2898 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2899 CW : constant Entity_Id := Class_Wide_Type (T);
2901 begin
2902 Set_Is_Tagged_Type (T);
2903 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2905 Set_Is_Limited_Record (T, Limited_Present (Def)
2906 or else Task_Present (Def)
2907 or else Protected_Present (Def)
2908 or else Synchronized_Present (Def));
2910 -- Type is abstract if full declaration carries keyword, or if previous
2911 -- partial view did.
2913 Set_Is_Abstract_Type (T);
2914 Set_Is_Interface (T);
2916 -- Type is a limited interface if it includes the keyword limited, task,
2917 -- protected, or synchronized.
2919 Set_Is_Limited_Interface
2920 (T, Limited_Present (Def)
2921 or else Protected_Present (Def)
2922 or else Synchronized_Present (Def)
2923 or else Task_Present (Def));
2925 Set_Interfaces (T, New_Elmt_List);
2926 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2928 -- Complete the decoration of the class-wide entity if it was already
2929 -- built (i.e. during the creation of the limited view)
2931 if Present (CW) then
2932 Set_Is_Interface (CW);
2933 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2934 end if;
2936 -- Check runtime support for synchronized interfaces
2938 if VM_Target = No_VM
2939 and then (Is_Task_Interface (T)
2940 or else Is_Protected_Interface (T)
2941 or else Is_Synchronized_Interface (T))
2942 and then not RTE_Available (RE_Select_Specific_Data)
2943 then
2944 Error_Msg_CRT ("synchronized interfaces", T);
2945 end if;
2946 end Analyze_Interface_Declaration;
2948 -----------------------------
2949 -- Analyze_Itype_Reference --
2950 -----------------------------
2952 -- Nothing to do. This node is placed in the tree only for the benefit of
2953 -- back end processing, and has no effect on the semantic processing.
2955 procedure Analyze_Itype_Reference (N : Node_Id) is
2956 begin
2957 pragma Assert (Is_Itype (Itype (N)));
2958 null;
2959 end Analyze_Itype_Reference;
2961 --------------------------------
2962 -- Analyze_Number_Declaration --
2963 --------------------------------
2965 procedure Analyze_Number_Declaration (N : Node_Id) is
2966 Id : constant Entity_Id := Defining_Identifier (N);
2967 E : constant Node_Id := Expression (N);
2968 T : Entity_Id;
2969 Index : Interp_Index;
2970 It : Interp;
2972 begin
2973 Generate_Definition (Id);
2974 Enter_Name (Id);
2976 -- A number declared within a Ghost scope is automatically Ghost
2977 -- (SPARK RM 6.9(2)).
2979 if Within_Ghost_Scope then
2980 Set_Is_Ghost_Entity (Id);
2981 end if;
2983 -- This is an optimization of a common case of an integer literal
2985 if Nkind (E) = N_Integer_Literal then
2986 Set_Is_Static_Expression (E, True);
2987 Set_Etype (E, Universal_Integer);
2989 Set_Etype (Id, Universal_Integer);
2990 Set_Ekind (Id, E_Named_Integer);
2991 Set_Is_Frozen (Id, True);
2992 return;
2993 end if;
2995 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2997 -- Process expression, replacing error by integer zero, to avoid
2998 -- cascaded errors or aborts further along in the processing
3000 -- Replace Error by integer zero, which seems least likely to cause
3001 -- cascaded errors.
3003 if E = Error then
3004 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3005 Set_Error_Posted (E);
3006 end if;
3008 Analyze (E);
3010 -- Verify that the expression is static and numeric. If
3011 -- the expression is overloaded, we apply the preference
3012 -- rule that favors root numeric types.
3014 if not Is_Overloaded (E) then
3015 T := Etype (E);
3016 if Has_Dynamic_Predicate_Aspect (T) then
3017 Error_Msg_N
3018 ("subtype has dynamic predicate, "
3019 & "not allowed in number declaration", N);
3020 end if;
3022 else
3023 T := Any_Type;
3025 Get_First_Interp (E, Index, It);
3026 while Present (It.Typ) loop
3027 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3028 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3029 then
3030 if T = Any_Type then
3031 T := It.Typ;
3033 elsif It.Typ = Universal_Real
3034 or else
3035 It.Typ = Universal_Integer
3036 then
3037 -- Choose universal interpretation over any other
3039 T := It.Typ;
3040 exit;
3041 end if;
3042 end if;
3044 Get_Next_Interp (Index, It);
3045 end loop;
3046 end if;
3048 if Is_Integer_Type (T) then
3049 Resolve (E, T);
3050 Set_Etype (Id, Universal_Integer);
3051 Set_Ekind (Id, E_Named_Integer);
3053 elsif Is_Real_Type (T) then
3055 -- Because the real value is converted to universal_real, this is a
3056 -- legal context for a universal fixed expression.
3058 if T = Universal_Fixed then
3059 declare
3060 Loc : constant Source_Ptr := Sloc (N);
3061 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3062 Subtype_Mark =>
3063 New_Occurrence_Of (Universal_Real, Loc),
3064 Expression => Relocate_Node (E));
3066 begin
3067 Rewrite (E, Conv);
3068 Analyze (E);
3069 end;
3071 elsif T = Any_Fixed then
3072 Error_Msg_N ("illegal context for mixed mode operation", E);
3074 -- Expression is of the form : universal_fixed * integer. Try to
3075 -- resolve as universal_real.
3077 T := Universal_Real;
3078 Set_Etype (E, T);
3079 end if;
3081 Resolve (E, T);
3082 Set_Etype (Id, Universal_Real);
3083 Set_Ekind (Id, E_Named_Real);
3085 else
3086 Wrong_Type (E, Any_Numeric);
3087 Resolve (E, T);
3089 Set_Etype (Id, T);
3090 Set_Ekind (Id, E_Constant);
3091 Set_Never_Set_In_Source (Id, True);
3092 Set_Is_True_Constant (Id, True);
3093 return;
3094 end if;
3096 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3097 Set_Etype (E, Etype (Id));
3098 end if;
3100 if not Is_OK_Static_Expression (E) then
3101 Flag_Non_Static_Expr
3102 ("non-static expression used in number declaration!", E);
3103 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3104 Set_Etype (E, Any_Type);
3105 end if;
3106 end Analyze_Number_Declaration;
3108 -----------------------------
3109 -- Analyze_Object_Contract --
3110 -----------------------------
3112 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3113 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3114 AR_Val : Boolean := False;
3115 AW_Val : Boolean := False;
3116 ER_Val : Boolean := False;
3117 EW_Val : Boolean := False;
3118 Prag : Node_Id;
3119 Seen : Boolean := False;
3121 begin
3122 -- The loop parameter in an element iterator over a formal container
3123 -- is declared with an object declaration but no contracts apply.
3125 if Ekind (Obj_Id) = E_Loop_Parameter then
3126 return;
3127 end if;
3129 if Ekind (Obj_Id) = E_Constant then
3131 -- A constant cannot be effectively volatile. This check is only
3132 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3133 -- rule. Do not flag internally-generated constants that map generic
3134 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3136 if SPARK_Mode = On
3137 and then Is_Effectively_Volatile (Obj_Id)
3138 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3139 then
3140 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3141 end if;
3143 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3145 -- The following checks are only relevant when SPARK_Mode is on as
3146 -- they are not standard Ada legality rules. Internally generated
3147 -- temporaries are ignored.
3149 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3150 if Is_Effectively_Volatile (Obj_Id) then
3152 -- The declaration of an effectively volatile object must
3153 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3155 if not Is_Library_Level_Entity (Obj_Id) then
3156 Error_Msg_N
3157 ("volatile variable & must be declared at library level",
3158 Obj_Id);
3160 -- An object of a discriminated type cannot be effectively
3161 -- volatile (SPARK RM C.6(4)).
3163 elsif Has_Discriminants (Obj_Typ) then
3164 Error_Msg_N
3165 ("discriminated object & cannot be volatile", Obj_Id);
3167 -- An object of a tagged type cannot be effectively volatile
3168 -- (SPARK RM C.6(5)).
3170 elsif Is_Tagged_Type (Obj_Typ) then
3171 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3172 end if;
3174 -- The object is not effectively volatile
3176 else
3177 -- A non-effectively volatile object cannot have effectively
3178 -- volatile components (SPARK RM 7.1.3(7)).
3180 if not Is_Effectively_Volatile (Obj_Id)
3181 and then Has_Volatile_Component (Obj_Typ)
3182 then
3183 Error_Msg_N
3184 ("non-volatile object & cannot have volatile components",
3185 Obj_Id);
3186 end if;
3187 end if;
3188 end if;
3190 if Is_Ghost_Entity (Obj_Id) then
3192 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3194 if Is_Effectively_Volatile (Obj_Id) then
3195 Error_Msg_N ("ghost variable & cannot be volatile", Obj_Id);
3197 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3199 elsif Is_Imported (Obj_Id) then
3200 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3202 elsif Is_Exported (Obj_Id) then
3203 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3204 end if;
3205 end if;
3207 -- Analyze all external properties
3209 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3211 if Present (Prag) then
3212 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3213 Seen := True;
3214 end if;
3216 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3218 if Present (Prag) then
3219 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3220 Seen := True;
3221 end if;
3223 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3225 if Present (Prag) then
3226 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3227 Seen := True;
3228 end if;
3230 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3232 if Present (Prag) then
3233 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3234 Seen := True;
3235 end if;
3237 -- Verify the mutual interaction of the various external properties
3239 if Seen then
3240 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3241 end if;
3243 -- Check whether the lack of indicator Part_Of agrees with the
3244 -- placement of the variable with respect to the state space.
3246 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3248 if No (Prag) then
3249 Check_Missing_Part_Of (Obj_Id);
3250 end if;
3251 end if;
3253 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3255 if Is_Ghost_Entity (Obj_Id) then
3256 if Is_Exported (Obj_Id) then
3257 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3259 elsif Is_Imported (Obj_Id) then
3260 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3261 end if;
3262 end if;
3263 end Analyze_Object_Contract;
3265 --------------------------------
3266 -- Analyze_Object_Declaration --
3267 --------------------------------
3269 procedure Analyze_Object_Declaration (N : Node_Id) is
3270 Loc : constant Source_Ptr := Sloc (N);
3271 Id : constant Entity_Id := Defining_Identifier (N);
3272 T : Entity_Id;
3273 Act_T : Entity_Id;
3275 E : Node_Id := Expression (N);
3276 -- E is set to Expression (N) throughout this routine. When
3277 -- Expression (N) is modified, E is changed accordingly.
3279 Prev_Entity : Entity_Id := Empty;
3281 function Count_Tasks (T : Entity_Id) return Uint;
3282 -- This function is called when a non-generic library level object of a
3283 -- task type is declared. Its function is to count the static number of
3284 -- tasks declared within the type (it is only called if Has_Tasks is set
3285 -- for T). As a side effect, if an array of tasks with non-static bounds
3286 -- or a variant record type is encountered, Check_Restrictions is called
3287 -- indicating the count is unknown.
3289 -----------------
3290 -- Count_Tasks --
3291 -----------------
3293 function Count_Tasks (T : Entity_Id) return Uint is
3294 C : Entity_Id;
3295 X : Node_Id;
3296 V : Uint;
3298 begin
3299 if Is_Task_Type (T) then
3300 return Uint_1;
3302 elsif Is_Record_Type (T) then
3303 if Has_Discriminants (T) then
3304 Check_Restriction (Max_Tasks, N);
3305 return Uint_0;
3307 else
3308 V := Uint_0;
3309 C := First_Component (T);
3310 while Present (C) loop
3311 V := V + Count_Tasks (Etype (C));
3312 Next_Component (C);
3313 end loop;
3315 return V;
3316 end if;
3318 elsif Is_Array_Type (T) then
3319 X := First_Index (T);
3320 V := Count_Tasks (Component_Type (T));
3321 while Present (X) loop
3322 C := Etype (X);
3324 if not Is_OK_Static_Subtype (C) then
3325 Check_Restriction (Max_Tasks, N);
3326 return Uint_0;
3327 else
3328 V := V * (UI_Max (Uint_0,
3329 Expr_Value (Type_High_Bound (C)) -
3330 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3331 end if;
3333 Next_Index (X);
3334 end loop;
3336 return V;
3338 else
3339 return Uint_0;
3340 end if;
3341 end Count_Tasks;
3343 -- Start of processing for Analyze_Object_Declaration
3345 begin
3346 -- There are three kinds of implicit types generated by an
3347 -- object declaration:
3349 -- 1. Those generated by the original Object Definition
3351 -- 2. Those generated by the Expression
3353 -- 3. Those used to constrain the Object Definition with the
3354 -- expression constraints when the definition is unconstrained.
3356 -- They must be generated in this order to avoid order of elaboration
3357 -- issues. Thus the first step (after entering the name) is to analyze
3358 -- the object definition.
3360 if Constant_Present (N) then
3361 Prev_Entity := Current_Entity_In_Scope (Id);
3363 if Present (Prev_Entity)
3364 and then
3365 -- If the homograph is an implicit subprogram, it is overridden
3366 -- by the current declaration.
3368 ((Is_Overloadable (Prev_Entity)
3369 and then Is_Inherited_Operation (Prev_Entity))
3371 -- The current object is a discriminal generated for an entry
3372 -- family index. Even though the index is a constant, in this
3373 -- particular context there is no true constant redeclaration.
3374 -- Enter_Name will handle the visibility.
3376 or else
3377 (Is_Discriminal (Id)
3378 and then Ekind (Discriminal_Link (Id)) =
3379 E_Entry_Index_Parameter)
3381 -- The current object is the renaming for a generic declared
3382 -- within the instance.
3384 or else
3385 (Ekind (Prev_Entity) = E_Package
3386 and then Nkind (Parent (Prev_Entity)) =
3387 N_Package_Renaming_Declaration
3388 and then not Comes_From_Source (Prev_Entity)
3389 and then
3390 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3391 then
3392 Prev_Entity := Empty;
3393 end if;
3394 end if;
3396 if Present (Prev_Entity) then
3397 Constant_Redeclaration (Id, N, T);
3399 Generate_Reference (Prev_Entity, Id, 'c');
3400 Set_Completion_Referenced (Id);
3402 if Error_Posted (N) then
3404 -- Type mismatch or illegal redeclaration, Do not analyze
3405 -- expression to avoid cascaded errors.
3407 T := Find_Type_Of_Object (Object_Definition (N), N);
3408 Set_Etype (Id, T);
3409 Set_Ekind (Id, E_Variable);
3410 goto Leave;
3411 end if;
3413 -- In the normal case, enter identifier at the start to catch premature
3414 -- usage in the initialization expression.
3416 else
3417 Generate_Definition (Id);
3418 Enter_Name (Id);
3420 Mark_Coextensions (N, Object_Definition (N));
3422 T := Find_Type_Of_Object (Object_Definition (N), N);
3424 if Nkind (Object_Definition (N)) = N_Access_Definition
3425 and then Present
3426 (Access_To_Subprogram_Definition (Object_Definition (N)))
3427 and then Protected_Present
3428 (Access_To_Subprogram_Definition (Object_Definition (N)))
3429 then
3430 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3431 end if;
3433 if Error_Posted (Id) then
3434 Set_Etype (Id, T);
3435 Set_Ekind (Id, E_Variable);
3436 goto Leave;
3437 end if;
3438 end if;
3440 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3441 -- out some static checks
3443 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3445 -- In case of aggregates we must also take care of the correct
3446 -- initialization of nested aggregates bug this is done at the
3447 -- point of the analysis of the aggregate (see sem_aggr.adb).
3449 if Present (Expression (N))
3450 and then Nkind (Expression (N)) = N_Aggregate
3451 then
3452 null;
3454 else
3455 declare
3456 Save_Typ : constant Entity_Id := Etype (Id);
3457 begin
3458 Set_Etype (Id, T); -- Temp. decoration for static checks
3459 Null_Exclusion_Static_Checks (N);
3460 Set_Etype (Id, Save_Typ);
3461 end;
3462 end if;
3463 end if;
3465 -- Object is marked pure if it is in a pure scope
3467 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3469 -- If deferred constant, make sure context is appropriate. We detect
3470 -- a deferred constant as a constant declaration with no expression.
3471 -- A deferred constant can appear in a package body if its completion
3472 -- is by means of an interface pragma.
3474 if Constant_Present (N) and then No (E) then
3476 -- A deferred constant may appear in the declarative part of the
3477 -- following constructs:
3479 -- blocks
3480 -- entry bodies
3481 -- extended return statements
3482 -- package specs
3483 -- package bodies
3484 -- subprogram bodies
3485 -- task bodies
3487 -- When declared inside a package spec, a deferred constant must be
3488 -- completed by a full constant declaration or pragma Import. In all
3489 -- other cases, the only proper completion is pragma Import. Extended
3490 -- return statements are flagged as invalid contexts because they do
3491 -- not have a declarative part and so cannot accommodate the pragma.
3493 if Ekind (Current_Scope) = E_Return_Statement then
3494 Error_Msg_N
3495 ("invalid context for deferred constant declaration (RM 7.4)",
3497 Error_Msg_N
3498 ("\declaration requires an initialization expression",
3500 Set_Constant_Present (N, False);
3502 -- In Ada 83, deferred constant must be of private type
3504 elsif not Is_Private_Type (T) then
3505 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3506 Error_Msg_N
3507 ("(Ada 83) deferred constant must be private type", N);
3508 end if;
3509 end if;
3511 -- If not a deferred constant, then the object declaration freezes
3512 -- its type, unless the object is of an anonymous type and has delayed
3513 -- aspects. In that case the type is frozen when the object itself is.
3515 else
3516 Check_Fully_Declared (T, N);
3518 if Has_Delayed_Aspects (Id)
3519 and then Is_Array_Type (T)
3520 and then Is_Itype (T)
3521 then
3522 Set_Has_Delayed_Freeze (T);
3523 else
3524 Freeze_Before (N, T);
3525 end if;
3526 end if;
3528 -- If the object was created by a constrained array definition, then
3529 -- set the link in both the anonymous base type and anonymous subtype
3530 -- that are built to represent the array type to point to the object.
3532 if Nkind (Object_Definition (Declaration_Node (Id))) =
3533 N_Constrained_Array_Definition
3534 then
3535 Set_Related_Array_Object (T, Id);
3536 Set_Related_Array_Object (Base_Type (T), Id);
3537 end if;
3539 -- Special checks for protected objects not at library level
3541 if Is_Protected_Type (T)
3542 and then not Is_Library_Level_Entity (Id)
3543 then
3544 Check_Restriction (No_Local_Protected_Objects, Id);
3546 -- Protected objects with interrupt handlers must be at library level
3548 -- Ada 2005: This test is not needed (and the corresponding clause
3549 -- in the RM is removed) because accessibility checks are sufficient
3550 -- to make handlers not at the library level illegal.
3552 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3553 -- applies to the '95 version of the language as well.
3555 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3556 Error_Msg_N
3557 ("interrupt object can only be declared at library level", Id);
3558 end if;
3559 end if;
3561 -- The actual subtype of the object is the nominal subtype, unless
3562 -- the nominal one is unconstrained and obtained from the expression.
3564 Act_T := T;
3566 -- These checks should be performed before the initialization expression
3567 -- is considered, so that the Object_Definition node is still the same
3568 -- as in source code.
3570 -- In SPARK, the nominal subtype is always given by a subtype mark
3571 -- and must not be unconstrained. (The only exception to this is the
3572 -- acceptance of declarations of constants of type String.)
3574 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3575 then
3576 Check_SPARK_05_Restriction
3577 ("subtype mark required", Object_Definition (N));
3579 elsif Is_Array_Type (T)
3580 and then not Is_Constrained (T)
3581 and then T /= Standard_String
3582 then
3583 Check_SPARK_05_Restriction
3584 ("subtype mark of constrained type expected",
3585 Object_Definition (N));
3586 end if;
3588 -- There are no aliased objects in SPARK
3590 if Aliased_Present (N) then
3591 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3592 end if;
3594 -- Process initialization expression if present and not in error
3596 if Present (E) and then E /= Error then
3598 -- Generate an error in case of CPP class-wide object initialization.
3599 -- Required because otherwise the expansion of the class-wide
3600 -- assignment would try to use 'size to initialize the object
3601 -- (primitive that is not available in CPP tagged types).
3603 if Is_Class_Wide_Type (Act_T)
3604 and then
3605 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3606 or else
3607 (Present (Full_View (Root_Type (Etype (Act_T))))
3608 and then
3609 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3610 then
3611 Error_Msg_N
3612 ("predefined assignment not available for 'C'P'P tagged types",
3614 end if;
3616 Mark_Coextensions (N, E);
3617 Analyze (E);
3619 -- In case of errors detected in the analysis of the expression,
3620 -- decorate it with the expected type to avoid cascaded errors
3622 if No (Etype (E)) then
3623 Set_Etype (E, T);
3624 end if;
3626 -- If an initialization expression is present, then we set the
3627 -- Is_True_Constant flag. It will be reset if this is a variable
3628 -- and it is indeed modified.
3630 Set_Is_True_Constant (Id, True);
3632 -- If we are analyzing a constant declaration, set its completion
3633 -- flag after analyzing and resolving the expression.
3635 if Constant_Present (N) then
3636 Set_Has_Completion (Id);
3637 end if;
3639 -- Set type and resolve (type may be overridden later on). Note:
3640 -- Ekind (Id) must still be E_Void at this point so that incorrect
3641 -- early usage within E is properly diagnosed.
3643 Set_Etype (Id, T);
3645 -- If the expression is an aggregate we must look ahead to detect
3646 -- the possible presence of an address clause, and defer resolution
3647 -- and expansion of the aggregate to the freeze point of the entity.
3649 if Comes_From_Source (N)
3650 and then Expander_Active
3651 and then Nkind (E) = N_Aggregate
3652 and then Present (Following_Address_Clause (N))
3653 then
3654 Set_Etype (E, T);
3656 else
3657 Resolve (E, T);
3658 end if;
3660 -- No further action needed if E is a call to an inlined function
3661 -- which returns an unconstrained type and it has been expanded into
3662 -- a procedure call. In that case N has been replaced by an object
3663 -- declaration without initializing expression and it has been
3664 -- analyzed (see Expand_Inlined_Call).
3666 if Back_End_Inlining
3667 and then Expander_Active
3668 and then Nkind (E) = N_Function_Call
3669 and then Nkind (Name (E)) in N_Has_Entity
3670 and then Is_Inlined (Entity (Name (E)))
3671 and then not Is_Constrained (Etype (E))
3672 and then Analyzed (N)
3673 and then No (Expression (N))
3674 then
3675 return;
3676 end if;
3678 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3679 -- node (which was marked already-analyzed), we need to set the type
3680 -- to something other than Any_Access in order to keep gigi happy.
3682 if Etype (E) = Any_Access then
3683 Set_Etype (E, T);
3684 end if;
3686 -- If the object is an access to variable, the initialization
3687 -- expression cannot be an access to constant.
3689 if Is_Access_Type (T)
3690 and then not Is_Access_Constant (T)
3691 and then Is_Access_Type (Etype (E))
3692 and then Is_Access_Constant (Etype (E))
3693 then
3694 Error_Msg_N
3695 ("access to variable cannot be initialized with an "
3696 & "access-to-constant expression", E);
3697 end if;
3699 if not Assignment_OK (N) then
3700 Check_Initialization (T, E);
3701 end if;
3703 Check_Unset_Reference (E);
3705 -- If this is a variable, then set current value. If this is a
3706 -- declared constant of a scalar type with a static expression,
3707 -- indicate that it is always valid.
3709 if not Constant_Present (N) then
3710 if Compile_Time_Known_Value (E) then
3711 Set_Current_Value (Id, E);
3712 end if;
3714 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3715 Set_Is_Known_Valid (Id);
3716 end if;
3718 -- Deal with setting of null flags
3720 if Is_Access_Type (T) then
3721 if Known_Non_Null (E) then
3722 Set_Is_Known_Non_Null (Id, True);
3723 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3724 Set_Is_Known_Null (Id, True);
3725 end if;
3726 end if;
3728 -- Check incorrect use of dynamically tagged expressions
3730 if Is_Tagged_Type (T) then
3731 Check_Dynamically_Tagged_Expression
3732 (Expr => E,
3733 Typ => T,
3734 Related_Nod => N);
3735 end if;
3737 Apply_Scalar_Range_Check (E, T);
3738 Apply_Static_Length_Check (E, T);
3740 if Nkind (Original_Node (N)) = N_Object_Declaration
3741 and then Comes_From_Source (Original_Node (N))
3743 -- Only call test if needed
3745 and then Restriction_Check_Required (SPARK_05)
3746 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3747 then
3748 Check_SPARK_05_Restriction
3749 ("initialization expression is not appropriate", E);
3750 end if;
3752 -- A formal parameter of a specific tagged type whose related
3753 -- subprogram is subject to pragma Extensions_Visible with value
3754 -- "False" cannot be implicitly converted to a class-wide type by
3755 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3757 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3758 Error_Msg_N
3759 ("formal parameter with Extensions_Visible False cannot be "
3760 & "implicitly converted to class-wide type", E);
3761 end if;
3762 end if;
3764 -- If the No_Streams restriction is set, check that the type of the
3765 -- object is not, and does not contain, any subtype derived from
3766 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3767 -- Has_Stream just for efficiency reasons. There is no point in
3768 -- spending time on a Has_Stream check if the restriction is not set.
3770 if Restriction_Check_Required (No_Streams) then
3771 if Has_Stream (T) then
3772 Check_Restriction (No_Streams, N);
3773 end if;
3774 end if;
3776 -- Deal with predicate check before we start to do major rewriting. It
3777 -- is OK to initialize and then check the initialized value, since the
3778 -- object goes out of scope if we get a predicate failure. Note that we
3779 -- do this in the analyzer and not the expander because the analyzer
3780 -- does some substantial rewriting in some cases.
3782 -- We need a predicate check if the type has predicates, and if either
3783 -- there is an initializing expression, or for default initialization
3784 -- when we have at least one case of an explicit default initial value
3785 -- and then this is not an internal declaration whose initialization
3786 -- comes later (as for an aggregate expansion).
3788 if not Suppress_Assignment_Checks (N)
3789 and then Present (Predicate_Function (T))
3790 and then not No_Initialization (N)
3791 and then
3792 (Present (E)
3793 or else
3794 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3795 then
3796 -- If the type has a static predicate and the expression is known at
3797 -- compile time, see if the expression satisfies the predicate.
3799 if Present (E) then
3800 Check_Expression_Against_Static_Predicate (E, T);
3801 end if;
3803 Insert_After (N,
3804 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3805 end if;
3807 -- Case of unconstrained type
3809 if Is_Indefinite_Subtype (T) then
3811 -- In SPARK, a declaration of unconstrained type is allowed
3812 -- only for constants of type string.
3814 if Is_String_Type (T) and then not Constant_Present (N) then
3815 Check_SPARK_05_Restriction
3816 ("declaration of object of unconstrained type not allowed", N);
3817 end if;
3819 -- Nothing to do in deferred constant case
3821 if Constant_Present (N) and then No (E) then
3822 null;
3824 -- Case of no initialization present
3826 elsif No (E) then
3827 if No_Initialization (N) then
3828 null;
3830 elsif Is_Class_Wide_Type (T) then
3831 Error_Msg_N
3832 ("initialization required in class-wide declaration ", N);
3834 else
3835 Error_Msg_N
3836 ("unconstrained subtype not allowed (need initialization)",
3837 Object_Definition (N));
3839 if Is_Record_Type (T) and then Has_Discriminants (T) then
3840 Error_Msg_N
3841 ("\provide initial value or explicit discriminant values",
3842 Object_Definition (N));
3844 Error_Msg_NE
3845 ("\or give default discriminant values for type&",
3846 Object_Definition (N), T);
3848 elsif Is_Array_Type (T) then
3849 Error_Msg_N
3850 ("\provide initial value or explicit array bounds",
3851 Object_Definition (N));
3852 end if;
3853 end if;
3855 -- Case of initialization present but in error. Set initial
3856 -- expression as absent (but do not make above complaints)
3858 elsif E = Error then
3859 Set_Expression (N, Empty);
3860 E := Empty;
3862 -- Case of initialization present
3864 else
3865 -- Check restrictions in Ada 83
3867 if not Constant_Present (N) then
3869 -- Unconstrained variables not allowed in Ada 83 mode
3871 if Ada_Version = Ada_83
3872 and then Comes_From_Source (Object_Definition (N))
3873 then
3874 Error_Msg_N
3875 ("(Ada 83) unconstrained variable not allowed",
3876 Object_Definition (N));
3877 end if;
3878 end if;
3880 -- Now we constrain the variable from the initializing expression
3882 -- If the expression is an aggregate, it has been expanded into
3883 -- individual assignments. Retrieve the actual type from the
3884 -- expanded construct.
3886 if Is_Array_Type (T)
3887 and then No_Initialization (N)
3888 and then Nkind (Original_Node (E)) = N_Aggregate
3889 then
3890 Act_T := Etype (E);
3892 -- In case of class-wide interface object declarations we delay
3893 -- the generation of the equivalent record type declarations until
3894 -- its expansion because there are cases in they are not required.
3896 elsif Is_Interface (T) then
3897 null;
3899 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3900 -- we should prevent the generation of another Itype with the
3901 -- same name as the one already generated, or we end up with
3902 -- two identical types in GNATprove.
3904 elsif GNATprove_Mode then
3905 null;
3907 -- If the type is an unchecked union, no subtype can be built from
3908 -- the expression. Rewrite declaration as a renaming, which the
3909 -- back-end can handle properly. This is a rather unusual case,
3910 -- because most unchecked_union declarations have default values
3911 -- for discriminants and are thus not indefinite.
3913 elsif Is_Unchecked_Union (T) then
3914 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3915 Set_Ekind (Id, E_Constant);
3916 else
3917 Set_Ekind (Id, E_Variable);
3918 end if;
3920 -- An object declared within a Ghost scope is automatically
3921 -- Ghost (SPARK RM 6.9(2)).
3923 if Comes_From_Source (Id) and then Within_Ghost_Scope then
3924 Set_Is_Ghost_Entity (Id);
3926 -- The Ghost policy in effect at the point of declaration
3927 -- and at the point of completion must match
3928 -- (SPARK RM 6.9(15)).
3930 if Present (Prev_Entity)
3931 and then Is_Ghost_Entity (Prev_Entity)
3932 then
3933 Check_Ghost_Completion (Prev_Entity, Id);
3934 end if;
3935 end if;
3937 Rewrite (N,
3938 Make_Object_Renaming_Declaration (Loc,
3939 Defining_Identifier => Id,
3940 Subtype_Mark => New_Occurrence_Of (T, Loc),
3941 Name => E));
3943 Set_Renamed_Object (Id, E);
3944 Freeze_Before (N, T);
3945 Set_Is_Frozen (Id);
3946 return;
3948 else
3949 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3950 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3951 end if;
3953 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3955 if Aliased_Present (N) then
3956 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3957 end if;
3959 Freeze_Before (N, Act_T);
3960 Freeze_Before (N, T);
3961 end if;
3963 elsif Is_Array_Type (T)
3964 and then No_Initialization (N)
3965 and then Nkind (Original_Node (E)) = N_Aggregate
3966 then
3967 if not Is_Entity_Name (Object_Definition (N)) then
3968 Act_T := Etype (E);
3969 Check_Compile_Time_Size (Act_T);
3971 if Aliased_Present (N) then
3972 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3973 end if;
3974 end if;
3976 -- When the given object definition and the aggregate are specified
3977 -- independently, and their lengths might differ do a length check.
3978 -- This cannot happen if the aggregate is of the form (others =>...)
3980 if not Is_Constrained (T) then
3981 null;
3983 elsif Nkind (E) = N_Raise_Constraint_Error then
3985 -- Aggregate is statically illegal. Place back in declaration
3987 Set_Expression (N, E);
3988 Set_No_Initialization (N, False);
3990 elsif T = Etype (E) then
3991 null;
3993 elsif Nkind (E) = N_Aggregate
3994 and then Present (Component_Associations (E))
3995 and then Present (Choices (First (Component_Associations (E))))
3996 and then Nkind (First
3997 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3998 then
3999 null;
4001 else
4002 Apply_Length_Check (E, T);
4003 end if;
4005 -- If the type is limited unconstrained with defaulted discriminants and
4006 -- there is no expression, then the object is constrained by the
4007 -- defaults, so it is worthwhile building the corresponding subtype.
4009 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4010 and then not Is_Constrained (T)
4011 and then Has_Discriminants (T)
4012 then
4013 if No (E) then
4014 Act_T := Build_Default_Subtype (T, N);
4015 else
4016 -- Ada 2005: A limited object may be initialized by means of an
4017 -- aggregate. If the type has default discriminants it has an
4018 -- unconstrained nominal type, Its actual subtype will be obtained
4019 -- from the aggregate, and not from the default discriminants.
4021 Act_T := Etype (E);
4022 end if;
4024 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4026 elsif Nkind (E) = N_Function_Call
4027 and then Constant_Present (N)
4028 and then Has_Unconstrained_Elements (Etype (E))
4029 then
4030 -- The back-end has problems with constants of a discriminated type
4031 -- with defaults, if the initial value is a function call. We
4032 -- generate an intermediate temporary that will receive a reference
4033 -- to the result of the call. The initialization expression then
4034 -- becomes a dereference of that temporary.
4036 Remove_Side_Effects (E);
4038 -- If this is a constant declaration of an unconstrained type and
4039 -- the initialization is an aggregate, we can use the subtype of the
4040 -- aggregate for the declared entity because it is immutable.
4042 elsif not Is_Constrained (T)
4043 and then Has_Discriminants (T)
4044 and then Constant_Present (N)
4045 and then not Has_Unchecked_Union (T)
4046 and then Nkind (E) = N_Aggregate
4047 then
4048 Act_T := Etype (E);
4049 end if;
4051 -- Check No_Wide_Characters restriction
4053 Check_Wide_Character_Restriction (T, Object_Definition (N));
4055 -- Indicate this is not set in source. Certainly true for constants, and
4056 -- true for variables so far (will be reset for a variable if and when
4057 -- we encounter a modification in the source).
4059 Set_Never_Set_In_Source (Id);
4061 -- Now establish the proper kind and type of the object
4063 if Constant_Present (N) then
4064 Set_Ekind (Id, E_Constant);
4065 Set_Is_True_Constant (Id);
4067 else
4068 Set_Ekind (Id, E_Variable);
4070 -- A variable is set as shared passive if it appears in a shared
4071 -- passive package, and is at the outer level. This is not done for
4072 -- entities generated during expansion, because those are always
4073 -- manipulated locally.
4075 if Is_Shared_Passive (Current_Scope)
4076 and then Is_Library_Level_Entity (Id)
4077 and then Comes_From_Source (Id)
4078 then
4079 Set_Is_Shared_Passive (Id);
4080 Check_Shared_Var (Id, T, N);
4081 end if;
4083 -- Set Has_Initial_Value if initializing expression present. Note
4084 -- that if there is no initializing expression, we leave the state
4085 -- of this flag unchanged (usually it will be False, but notably in
4086 -- the case of exception choice variables, it will already be true).
4088 if Present (E) then
4089 Set_Has_Initial_Value (Id);
4090 end if;
4092 Set_Contract (Id, Make_Contract (Sloc (Id)));
4093 end if;
4095 -- Initialize alignment and size and capture alignment setting
4097 Init_Alignment (Id);
4098 Init_Esize (Id);
4099 Set_Optimize_Alignment_Flags (Id);
4101 -- An object declared within a Ghost scope is automatically Ghost
4102 -- (SPARK RM 6.9(2)). This property is also inherited when its type
4103 -- is Ghost or the previous declaration of the deferred constant is
4104 -- Ghost.
4106 if Comes_From_Source (Id)
4107 and then (Is_Ghost_Entity (T)
4108 or else (Present (Prev_Entity)
4109 and then Is_Ghost_Entity (Prev_Entity))
4110 or else Within_Ghost_Scope)
4111 then
4112 Set_Is_Ghost_Entity (Id);
4114 -- The Ghost policy in effect at the point of declaration and at the
4115 -- point of completion must match (SPARK RM 6.9(16)).
4117 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4118 Check_Ghost_Completion (Prev_Entity, Id);
4119 end if;
4120 end if;
4122 -- Deal with aliased case
4124 if Aliased_Present (N) then
4125 Set_Is_Aliased (Id);
4127 -- If the object is aliased and the type is unconstrained with
4128 -- defaulted discriminants and there is no expression, then the
4129 -- object is constrained by the defaults, so it is worthwhile
4130 -- building the corresponding subtype.
4132 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4133 -- unconstrained, then only establish an actual subtype if the
4134 -- nominal subtype is indefinite. In definite cases the object is
4135 -- unconstrained in Ada 2005.
4137 if No (E)
4138 and then Is_Record_Type (T)
4139 and then not Is_Constrained (T)
4140 and then Has_Discriminants (T)
4141 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4142 then
4143 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4144 end if;
4145 end if;
4147 -- Now we can set the type of the object
4149 Set_Etype (Id, Act_T);
4151 -- Non-constant object is marked to be treated as volatile if type is
4152 -- volatile and we clear the Current_Value setting that may have been
4153 -- set above. Doing so for constants isn't required and might interfere
4154 -- with possible uses of the object as a static expression in contexts
4155 -- incompatible with volatility (e.g. as a case-statement alternative).
4157 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4158 Set_Treat_As_Volatile (Id);
4159 Set_Current_Value (Id, Empty);
4160 end if;
4162 -- Deal with controlled types
4164 if Has_Controlled_Component (Etype (Id))
4165 or else Is_Controlled (Etype (Id))
4166 then
4167 if not Is_Library_Level_Entity (Id) then
4168 Check_Restriction (No_Nested_Finalization, N);
4169 else
4170 Validate_Controlled_Object (Id);
4171 end if;
4172 end if;
4174 if Has_Task (Etype (Id)) then
4175 Check_Restriction (No_Tasking, N);
4177 -- Deal with counting max tasks
4179 -- Nothing to do if inside a generic
4181 if Inside_A_Generic then
4182 null;
4184 -- If library level entity, then count tasks
4186 elsif Is_Library_Level_Entity (Id) then
4187 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4189 -- If not library level entity, then indicate we don't know max
4190 -- tasks and also check task hierarchy restriction and blocking
4191 -- operation (since starting a task is definitely blocking).
4193 else
4194 Check_Restriction (Max_Tasks, N);
4195 Check_Restriction (No_Task_Hierarchy, N);
4196 Check_Potentially_Blocking_Operation (N);
4197 end if;
4199 -- A rather specialized test. If we see two tasks being declared
4200 -- of the same type in the same object declaration, and the task
4201 -- has an entry with an address clause, we know that program error
4202 -- will be raised at run time since we can't have two tasks with
4203 -- entries at the same address.
4205 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4206 declare
4207 E : Entity_Id;
4209 begin
4210 E := First_Entity (Etype (Id));
4211 while Present (E) loop
4212 if Ekind (E) = E_Entry
4213 and then Present (Get_Attribute_Definition_Clause
4214 (E, Attribute_Address))
4215 then
4216 Error_Msg_Warn := SPARK_Mode /= On;
4217 Error_Msg_N
4218 ("more than one task with same entry address<<", N);
4219 Error_Msg_N ("\Program_Error [<<", N);
4220 Insert_Action (N,
4221 Make_Raise_Program_Error (Loc,
4222 Reason => PE_Duplicated_Entry_Address));
4223 exit;
4224 end if;
4226 Next_Entity (E);
4227 end loop;
4228 end;
4229 end if;
4230 end if;
4232 -- Some simple constant-propagation: if the expression is a constant
4233 -- string initialized with a literal, share the literal. This avoids
4234 -- a run-time copy.
4236 if Present (E)
4237 and then Is_Entity_Name (E)
4238 and then Ekind (Entity (E)) = E_Constant
4239 and then Base_Type (Etype (E)) = Standard_String
4240 then
4241 declare
4242 Val : constant Node_Id := Constant_Value (Entity (E));
4243 begin
4244 if Present (Val) and then Nkind (Val) = N_String_Literal then
4245 Rewrite (E, New_Copy (Val));
4246 end if;
4247 end;
4248 end if;
4250 -- Another optimization: if the nominal subtype is unconstrained and
4251 -- the expression is a function call that returns an unconstrained
4252 -- type, rewrite the declaration as a renaming of the result of the
4253 -- call. The exceptions below are cases where the copy is expected,
4254 -- either by the back end (Aliased case) or by the semantics, as for
4255 -- initializing controlled types or copying tags for classwide types.
4257 if Present (E)
4258 and then Nkind (E) = N_Explicit_Dereference
4259 and then Nkind (Original_Node (E)) = N_Function_Call
4260 and then not Is_Library_Level_Entity (Id)
4261 and then not Is_Constrained (Underlying_Type (T))
4262 and then not Is_Aliased (Id)
4263 and then not Is_Class_Wide_Type (T)
4264 and then not Is_Controlled (T)
4265 and then not Has_Controlled_Component (Base_Type (T))
4266 and then Expander_Active
4267 then
4268 Rewrite (N,
4269 Make_Object_Renaming_Declaration (Loc,
4270 Defining_Identifier => Id,
4271 Access_Definition => Empty,
4272 Subtype_Mark => New_Occurrence_Of
4273 (Base_Type (Etype (Id)), Loc),
4274 Name => E));
4276 Set_Renamed_Object (Id, E);
4278 -- Force generation of debugging information for the constant and for
4279 -- the renamed function call.
4281 Set_Debug_Info_Needed (Id);
4282 Set_Debug_Info_Needed (Entity (Prefix (E)));
4283 end if;
4285 if Present (Prev_Entity)
4286 and then Is_Frozen (Prev_Entity)
4287 and then not Error_Posted (Id)
4288 then
4289 Error_Msg_N ("full constant declaration appears too late", N);
4290 end if;
4292 Check_Eliminated (Id);
4294 -- Deal with setting In_Private_Part flag if in private part
4296 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4297 then
4298 Set_In_Private_Part (Id);
4299 end if;
4301 -- Check for violation of No_Local_Timing_Events
4303 if Restriction_Check_Required (No_Local_Timing_Events)
4304 and then not Is_Library_Level_Entity (Id)
4305 and then Is_RTE (Etype (Id), RE_Timing_Event)
4306 then
4307 Check_Restriction (No_Local_Timing_Events, N);
4308 end if;
4310 <<Leave>>
4311 -- Initialize the refined state of a variable here because this is a
4312 -- common destination for legal and illegal object declarations.
4314 if Ekind (Id) = E_Variable then
4315 Set_Encapsulating_State (Id, Empty);
4316 end if;
4318 if Has_Aspects (N) then
4319 Analyze_Aspect_Specifications (N, Id);
4320 end if;
4322 Analyze_Dimension (N);
4324 -- Verify whether the object declaration introduces an illegal hidden
4325 -- state within a package subject to a null abstract state.
4327 if Ekind (Id) = E_Variable then
4328 Check_No_Hidden_State (Id);
4329 end if;
4330 end Analyze_Object_Declaration;
4332 ---------------------------
4333 -- Analyze_Others_Choice --
4334 ---------------------------
4336 -- Nothing to do for the others choice node itself, the semantic analysis
4337 -- of the others choice will occur as part of the processing of the parent
4339 procedure Analyze_Others_Choice (N : Node_Id) is
4340 pragma Warnings (Off, N);
4341 begin
4342 null;
4343 end Analyze_Others_Choice;
4345 -------------------------------------------
4346 -- Analyze_Private_Extension_Declaration --
4347 -------------------------------------------
4349 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4350 T : constant Entity_Id := Defining_Identifier (N);
4351 Indic : constant Node_Id := Subtype_Indication (N);
4352 Parent_Type : Entity_Id;
4353 Parent_Base : Entity_Id;
4355 begin
4356 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4358 if Is_Non_Empty_List (Interface_List (N)) then
4359 declare
4360 Intf : Node_Id;
4361 T : Entity_Id;
4363 begin
4364 Intf := First (Interface_List (N));
4365 while Present (Intf) loop
4366 T := Find_Type_Of_Subtype_Indic (Intf);
4368 Diagnose_Interface (Intf, T);
4369 Next (Intf);
4370 end loop;
4371 end;
4372 end if;
4374 Generate_Definition (T);
4376 -- For other than Ada 2012, just enter the name in the current scope
4378 if Ada_Version < Ada_2012 then
4379 Enter_Name (T);
4381 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4382 -- case of private type that completes an incomplete type.
4384 else
4385 declare
4386 Prev : Entity_Id;
4388 begin
4389 Prev := Find_Type_Name (N);
4391 pragma Assert (Prev = T
4392 or else (Ekind (Prev) = E_Incomplete_Type
4393 and then Present (Full_View (Prev))
4394 and then Full_View (Prev) = T));
4395 end;
4396 end if;
4398 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4399 Parent_Base := Base_Type (Parent_Type);
4401 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4402 Set_Ekind (T, Ekind (Parent_Type));
4403 Set_Etype (T, Any_Type);
4404 goto Leave;
4406 elsif not Is_Tagged_Type (Parent_Type) then
4407 Error_Msg_N
4408 ("parent of type extension must be a tagged type ", Indic);
4409 goto Leave;
4411 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4412 Error_Msg_N ("premature derivation of incomplete type", Indic);
4413 goto Leave;
4415 elsif Is_Concurrent_Type (Parent_Type) then
4416 Error_Msg_N
4417 ("parent type of a private extension cannot be "
4418 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4420 Set_Etype (T, Any_Type);
4421 Set_Ekind (T, E_Limited_Private_Type);
4422 Set_Private_Dependents (T, New_Elmt_List);
4423 Set_Error_Posted (T);
4424 goto Leave;
4425 end if;
4427 -- Perhaps the parent type should be changed to the class-wide type's
4428 -- specific type in this case to prevent cascading errors ???
4430 if Is_Class_Wide_Type (Parent_Type) then
4431 Error_Msg_N
4432 ("parent of type extension must not be a class-wide type", Indic);
4433 goto Leave;
4434 end if;
4436 if (not Is_Package_Or_Generic_Package (Current_Scope)
4437 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4438 or else In_Private_Part (Current_Scope)
4440 then
4441 Error_Msg_N ("invalid context for private extension", N);
4442 end if;
4444 -- Set common attributes
4446 Set_Is_Pure (T, Is_Pure (Current_Scope));
4447 Set_Scope (T, Current_Scope);
4448 Set_Ekind (T, E_Record_Type_With_Private);
4449 Init_Size_Align (T);
4450 Set_Default_SSO (T);
4452 Set_Etype (T, Parent_Base);
4453 Set_Has_Task (T, Has_Task (Parent_Base));
4454 Set_Has_Protected (T, Has_Task (Parent_Base));
4456 Set_Convention (T, Convention (Parent_Type));
4457 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4458 Set_Is_First_Subtype (T);
4459 Make_Class_Wide_Type (T);
4461 if Unknown_Discriminants_Present (N) then
4462 Set_Discriminant_Constraint (T, No_Elist);
4463 end if;
4465 Build_Derived_Record_Type (N, Parent_Type, T);
4467 -- Propagate inherited invariant information. The new type has
4468 -- invariants, if the parent type has inheritable invariants,
4469 -- and these invariants can in turn be inherited.
4471 if Has_Inheritable_Invariants (Parent_Type) then
4472 Set_Has_Inheritable_Invariants (T);
4473 Set_Has_Invariants (T);
4474 end if;
4476 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4477 -- synchronized formal derived type.
4479 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4480 Set_Is_Limited_Record (T);
4482 -- Formal derived type case
4484 if Is_Generic_Type (T) then
4486 -- The parent must be a tagged limited type or a synchronized
4487 -- interface.
4489 if (not Is_Tagged_Type (Parent_Type)
4490 or else not Is_Limited_Type (Parent_Type))
4491 and then
4492 (not Is_Interface (Parent_Type)
4493 or else not Is_Synchronized_Interface (Parent_Type))
4494 then
4495 Error_Msg_NE ("parent type of & must be tagged limited " &
4496 "or synchronized", N, T);
4497 end if;
4499 -- The progenitors (if any) must be limited or synchronized
4500 -- interfaces.
4502 if Present (Interfaces (T)) then
4503 declare
4504 Iface : Entity_Id;
4505 Iface_Elmt : Elmt_Id;
4507 begin
4508 Iface_Elmt := First_Elmt (Interfaces (T));
4509 while Present (Iface_Elmt) loop
4510 Iface := Node (Iface_Elmt);
4512 if not Is_Limited_Interface (Iface)
4513 and then not Is_Synchronized_Interface (Iface)
4514 then
4515 Error_Msg_NE ("progenitor & must be limited " &
4516 "or synchronized", N, Iface);
4517 end if;
4519 Next_Elmt (Iface_Elmt);
4520 end loop;
4521 end;
4522 end if;
4524 -- Regular derived extension, the parent must be a limited or
4525 -- synchronized interface.
4527 else
4528 if not Is_Interface (Parent_Type)
4529 or else (not Is_Limited_Interface (Parent_Type)
4530 and then not Is_Synchronized_Interface (Parent_Type))
4531 then
4532 Error_Msg_NE
4533 ("parent type of & must be limited interface", N, T);
4534 end if;
4535 end if;
4537 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4538 -- extension with a synchronized parent must be explicitly declared
4539 -- synchronized, because the full view will be a synchronized type.
4540 -- This must be checked before the check for limited types below,
4541 -- to ensure that types declared limited are not allowed to extend
4542 -- synchronized interfaces.
4544 elsif Is_Interface (Parent_Type)
4545 and then Is_Synchronized_Interface (Parent_Type)
4546 and then not Synchronized_Present (N)
4547 then
4548 Error_Msg_NE
4549 ("private extension of& must be explicitly synchronized",
4550 N, Parent_Type);
4552 elsif Limited_Present (N) then
4553 Set_Is_Limited_Record (T);
4555 if not Is_Limited_Type (Parent_Type)
4556 and then
4557 (not Is_Interface (Parent_Type)
4558 or else not Is_Limited_Interface (Parent_Type))
4559 then
4560 Error_Msg_NE ("parent type& of limited extension must be limited",
4561 N, Parent_Type);
4562 end if;
4563 end if;
4565 <<Leave>>
4566 if Has_Aspects (N) then
4567 Analyze_Aspect_Specifications (N, T);
4568 end if;
4569 end Analyze_Private_Extension_Declaration;
4571 ---------------------------------
4572 -- Analyze_Subtype_Declaration --
4573 ---------------------------------
4575 procedure Analyze_Subtype_Declaration
4576 (N : Node_Id;
4577 Skip : Boolean := False)
4579 Id : constant Entity_Id := Defining_Identifier (N);
4580 T : Entity_Id;
4581 R_Checks : Check_Result;
4583 begin
4584 Generate_Definition (Id);
4585 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4586 Init_Size_Align (Id);
4588 -- The following guard condition on Enter_Name is to handle cases where
4589 -- the defining identifier has already been entered into the scope but
4590 -- the declaration as a whole needs to be analyzed.
4592 -- This case in particular happens for derived enumeration types. The
4593 -- derived enumeration type is processed as an inserted enumeration type
4594 -- declaration followed by a rewritten subtype declaration. The defining
4595 -- identifier, however, is entered into the name scope very early in the
4596 -- processing of the original type declaration and therefore needs to be
4597 -- avoided here, when the created subtype declaration is analyzed. (See
4598 -- Build_Derived_Types)
4600 -- This also happens when the full view of a private type is derived
4601 -- type with constraints. In this case the entity has been introduced
4602 -- in the private declaration.
4604 -- Finally this happens in some complex cases when validity checks are
4605 -- enabled, where the same subtype declaration may be analyzed twice.
4606 -- This can happen if the subtype is created by the pre-analysis of
4607 -- an attribute tht gives the range of a loop statement, and the loop
4608 -- itself appears within an if_statement that will be rewritten during
4609 -- expansion.
4611 if Skip
4612 or else (Present (Etype (Id))
4613 and then (Is_Private_Type (Etype (Id))
4614 or else Is_Task_Type (Etype (Id))
4615 or else Is_Rewrite_Substitution (N)))
4616 then
4617 null;
4619 elsif Current_Entity (Id) = Id then
4620 null;
4622 else
4623 Enter_Name (Id);
4624 end if;
4626 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4628 -- Class-wide equivalent types of records with unknown discriminants
4629 -- involve the generation of an itype which serves as the private view
4630 -- of a constrained record subtype. In such cases the base type of the
4631 -- current subtype we are processing is the private itype. Use the full
4632 -- of the private itype when decorating various attributes.
4634 if Is_Itype (T)
4635 and then Is_Private_Type (T)
4636 and then Present (Full_View (T))
4637 then
4638 T := Full_View (T);
4639 end if;
4641 -- Inherit common attributes
4643 Set_Is_Volatile (Id, Is_Volatile (T));
4644 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4645 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4646 Set_Convention (Id, Convention (T));
4648 -- If ancestor has predicates then so does the subtype, and in addition
4649 -- we must delay the freeze to properly arrange predicate inheritance.
4651 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4652 -- in which T = ID, so the above tests and assignments do nothing???
4654 if Has_Predicates (T)
4655 or else (Present (Ancestor_Subtype (T))
4656 and then Has_Predicates (Ancestor_Subtype (T)))
4657 then
4658 Set_Has_Predicates (Id);
4659 Set_Has_Delayed_Freeze (Id);
4660 end if;
4662 -- Subtype of Boolean cannot have a constraint in SPARK
4664 if Is_Boolean_Type (T)
4665 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4666 then
4667 Check_SPARK_05_Restriction
4668 ("subtype of Boolean cannot have constraint", N);
4669 end if;
4671 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4672 declare
4673 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4674 One_Cstr : Node_Id;
4675 Low : Node_Id;
4676 High : Node_Id;
4678 begin
4679 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4680 One_Cstr := First (Constraints (Cstr));
4681 while Present (One_Cstr) loop
4683 -- Index or discriminant constraint in SPARK must be a
4684 -- subtype mark.
4686 if not
4687 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4688 then
4689 Check_SPARK_05_Restriction
4690 ("subtype mark required", One_Cstr);
4692 -- String subtype must have a lower bound of 1 in SPARK.
4693 -- Note that we do not need to test for the non-static case
4694 -- here, since that was already taken care of in
4695 -- Process_Range_Expr_In_Decl.
4697 elsif Base_Type (T) = Standard_String then
4698 Get_Index_Bounds (One_Cstr, Low, High);
4700 if Is_OK_Static_Expression (Low)
4701 and then Expr_Value (Low) /= 1
4702 then
4703 Check_SPARK_05_Restriction
4704 ("String subtype must have lower bound of 1", N);
4705 end if;
4706 end if;
4708 Next (One_Cstr);
4709 end loop;
4710 end if;
4711 end;
4712 end if;
4714 -- In the case where there is no constraint given in the subtype
4715 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4716 -- semantic attributes must be established here.
4718 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4719 Set_Etype (Id, Base_Type (T));
4721 -- Subtype of unconstrained array without constraint is not allowed
4722 -- in SPARK.
4724 if Is_Array_Type (T) and then not Is_Constrained (T) then
4725 Check_SPARK_05_Restriction
4726 ("subtype of unconstrained array must have constraint", N);
4727 end if;
4729 case Ekind (T) is
4730 when Array_Kind =>
4731 Set_Ekind (Id, E_Array_Subtype);
4732 Copy_Array_Subtype_Attributes (Id, T);
4734 when Decimal_Fixed_Point_Kind =>
4735 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4736 Set_Digits_Value (Id, Digits_Value (T));
4737 Set_Delta_Value (Id, Delta_Value (T));
4738 Set_Scale_Value (Id, Scale_Value (T));
4739 Set_Small_Value (Id, Small_Value (T));
4740 Set_Scalar_Range (Id, Scalar_Range (T));
4741 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4742 Set_Is_Constrained (Id, Is_Constrained (T));
4743 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4744 Set_RM_Size (Id, RM_Size (T));
4746 when Enumeration_Kind =>
4747 Set_Ekind (Id, E_Enumeration_Subtype);
4748 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4749 Set_Scalar_Range (Id, Scalar_Range (T));
4750 Set_Is_Character_Type (Id, Is_Character_Type (T));
4751 Set_Is_Constrained (Id, Is_Constrained (T));
4752 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4753 Set_RM_Size (Id, RM_Size (T));
4754 Inherit_Predicate_Flags (Id, T);
4756 when Ordinary_Fixed_Point_Kind =>
4757 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4758 Set_Scalar_Range (Id, Scalar_Range (T));
4759 Set_Small_Value (Id, Small_Value (T));
4760 Set_Delta_Value (Id, Delta_Value (T));
4761 Set_Is_Constrained (Id, Is_Constrained (T));
4762 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4763 Set_RM_Size (Id, RM_Size (T));
4765 when Float_Kind =>
4766 Set_Ekind (Id, E_Floating_Point_Subtype);
4767 Set_Scalar_Range (Id, Scalar_Range (T));
4768 Set_Digits_Value (Id, Digits_Value (T));
4769 Set_Is_Constrained (Id, Is_Constrained (T));
4771 when Signed_Integer_Kind =>
4772 Set_Ekind (Id, E_Signed_Integer_Subtype);
4773 Set_Scalar_Range (Id, Scalar_Range (T));
4774 Set_Is_Constrained (Id, Is_Constrained (T));
4775 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4776 Set_RM_Size (Id, RM_Size (T));
4777 Inherit_Predicate_Flags (Id, T);
4779 when Modular_Integer_Kind =>
4780 Set_Ekind (Id, E_Modular_Integer_Subtype);
4781 Set_Scalar_Range (Id, Scalar_Range (T));
4782 Set_Is_Constrained (Id, Is_Constrained (T));
4783 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4784 Set_RM_Size (Id, RM_Size (T));
4785 Inherit_Predicate_Flags (Id, T);
4787 when Class_Wide_Kind =>
4788 Set_Ekind (Id, E_Class_Wide_Subtype);
4789 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4790 Set_Cloned_Subtype (Id, T);
4791 Set_Is_Tagged_Type (Id, True);
4792 Set_Has_Unknown_Discriminants
4793 (Id, True);
4794 Set_No_Tagged_Streams_Pragma
4795 (Id, No_Tagged_Streams_Pragma (T));
4797 if Ekind (T) = E_Class_Wide_Subtype then
4798 Set_Equivalent_Type (Id, Equivalent_Type (T));
4799 end if;
4801 when E_Record_Type | E_Record_Subtype =>
4802 Set_Ekind (Id, E_Record_Subtype);
4804 if Ekind (T) = E_Record_Subtype
4805 and then Present (Cloned_Subtype (T))
4806 then
4807 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4808 else
4809 Set_Cloned_Subtype (Id, T);
4810 end if;
4812 Set_First_Entity (Id, First_Entity (T));
4813 Set_Last_Entity (Id, Last_Entity (T));
4814 Set_Has_Discriminants (Id, Has_Discriminants (T));
4815 Set_Is_Constrained (Id, Is_Constrained (T));
4816 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4817 Set_Has_Implicit_Dereference
4818 (Id, Has_Implicit_Dereference (T));
4819 Set_Has_Unknown_Discriminants
4820 (Id, Has_Unknown_Discriminants (T));
4822 if Has_Discriminants (T) then
4823 Set_Discriminant_Constraint
4824 (Id, Discriminant_Constraint (T));
4825 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4827 elsif Has_Unknown_Discriminants (Id) then
4828 Set_Discriminant_Constraint (Id, No_Elist);
4829 end if;
4831 if Is_Tagged_Type (T) then
4832 Set_Is_Tagged_Type (Id, True);
4833 Set_No_Tagged_Streams_Pragma
4834 (Id, No_Tagged_Streams_Pragma (T));
4835 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4836 Set_Direct_Primitive_Operations
4837 (Id, Direct_Primitive_Operations (T));
4838 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4840 if Is_Interface (T) then
4841 Set_Is_Interface (Id);
4842 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4843 end if;
4844 end if;
4846 when Private_Kind =>
4847 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4848 Set_Has_Discriminants (Id, Has_Discriminants (T));
4849 Set_Is_Constrained (Id, Is_Constrained (T));
4850 Set_First_Entity (Id, First_Entity (T));
4851 Set_Last_Entity (Id, Last_Entity (T));
4852 Set_Private_Dependents (Id, New_Elmt_List);
4853 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4854 Set_Has_Implicit_Dereference
4855 (Id, Has_Implicit_Dereference (T));
4856 Set_Has_Unknown_Discriminants
4857 (Id, Has_Unknown_Discriminants (T));
4858 Set_Known_To_Have_Preelab_Init
4859 (Id, Known_To_Have_Preelab_Init (T));
4861 if Is_Tagged_Type (T) then
4862 Set_Is_Tagged_Type (Id);
4863 Set_No_Tagged_Streams_Pragma (Id,
4864 No_Tagged_Streams_Pragma (T));
4865 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4866 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4867 Set_Direct_Primitive_Operations (Id,
4868 Direct_Primitive_Operations (T));
4869 end if;
4871 -- In general the attributes of the subtype of a private type
4872 -- are the attributes of the partial view of parent. However,
4873 -- the full view may be a discriminated type, and the subtype
4874 -- must share the discriminant constraint to generate correct
4875 -- calls to initialization procedures.
4877 if Has_Discriminants (T) then
4878 Set_Discriminant_Constraint
4879 (Id, Discriminant_Constraint (T));
4880 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4882 elsif Present (Full_View (T))
4883 and then Has_Discriminants (Full_View (T))
4884 then
4885 Set_Discriminant_Constraint
4886 (Id, Discriminant_Constraint (Full_View (T)));
4887 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4889 -- This would seem semantically correct, but apparently
4890 -- generates spurious errors about missing components ???
4892 -- Set_Has_Discriminants (Id);
4893 end if;
4895 Prepare_Private_Subtype_Completion (Id, N);
4897 -- If this is the subtype of a constrained private type with
4898 -- discriminants that has got a full view and we also have
4899 -- built a completion just above, show that the completion
4900 -- is a clone of the full view to the back-end.
4902 if Has_Discriminants (T)
4903 and then not Has_Unknown_Discriminants (T)
4904 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4905 and then Present (Full_View (T))
4906 and then Present (Full_View (Id))
4907 then
4908 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4909 end if;
4911 when Access_Kind =>
4912 Set_Ekind (Id, E_Access_Subtype);
4913 Set_Is_Constrained (Id, Is_Constrained (T));
4914 Set_Is_Access_Constant
4915 (Id, Is_Access_Constant (T));
4916 Set_Directly_Designated_Type
4917 (Id, Designated_Type (T));
4918 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4920 -- A Pure library_item must not contain the declaration of a
4921 -- named access type, except within a subprogram, generic
4922 -- subprogram, task unit, or protected unit, or if it has
4923 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4925 if Comes_From_Source (Id)
4926 and then In_Pure_Unit
4927 and then not In_Subprogram_Task_Protected_Unit
4928 and then not No_Pool_Assigned (Id)
4929 then
4930 Error_Msg_N
4931 ("named access types not allowed in pure unit", N);
4932 end if;
4934 when Concurrent_Kind =>
4935 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4936 Set_Corresponding_Record_Type (Id,
4937 Corresponding_Record_Type (T));
4938 Set_First_Entity (Id, First_Entity (T));
4939 Set_First_Private_Entity (Id, First_Private_Entity (T));
4940 Set_Has_Discriminants (Id, Has_Discriminants (T));
4941 Set_Is_Constrained (Id, Is_Constrained (T));
4942 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4943 Set_Last_Entity (Id, Last_Entity (T));
4945 if Is_Tagged_Type (T) then
4946 Set_No_Tagged_Streams_Pragma
4947 (Id, No_Tagged_Streams_Pragma (T));
4948 end if;
4950 if Has_Discriminants (T) then
4951 Set_Discriminant_Constraint (Id,
4952 Discriminant_Constraint (T));
4953 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4954 end if;
4956 when E_Incomplete_Type =>
4957 if Ada_Version >= Ada_2005 then
4959 -- In Ada 2005 an incomplete type can be explicitly tagged:
4960 -- propagate indication.
4962 Set_Ekind (Id, E_Incomplete_Subtype);
4963 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4964 Set_Private_Dependents (Id, New_Elmt_List);
4966 if Is_Tagged_Type (Id) then
4967 Set_No_Tagged_Streams_Pragma
4968 (Id, No_Tagged_Streams_Pragma (T));
4969 end if;
4971 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4972 -- incomplete type visible through a limited with clause.
4974 if From_Limited_With (T)
4975 and then Present (Non_Limited_View (T))
4976 then
4977 Set_From_Limited_With (Id);
4978 Set_Non_Limited_View (Id, Non_Limited_View (T));
4980 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4981 -- to the private dependents of the original incomplete
4982 -- type for future transformation.
4984 else
4985 Append_Elmt (Id, Private_Dependents (T));
4986 end if;
4988 -- If the subtype name denotes an incomplete type an error
4989 -- was already reported by Process_Subtype.
4991 else
4992 Set_Etype (Id, Any_Type);
4993 end if;
4995 when others =>
4996 raise Program_Error;
4997 end case;
4998 end if;
5000 if Etype (Id) = Any_Type then
5001 goto Leave;
5002 end if;
5004 -- Some common processing on all types
5006 Set_Size_Info (Id, T);
5007 Set_First_Rep_Item (Id, First_Rep_Item (T));
5009 -- If the parent type is a generic actual, so is the subtype. This may
5010 -- happen in a nested instance. Why Comes_From_Source test???
5012 if not Comes_From_Source (N) then
5013 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5014 end if;
5016 T := Etype (Id);
5018 Set_Is_Immediately_Visible (Id, True);
5019 Set_Depends_On_Private (Id, Has_Private_Component (T));
5020 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5022 if Is_Interface (T) then
5023 Set_Is_Interface (Id);
5024 end if;
5026 if Present (Generic_Parent_Type (N))
5027 and then
5028 (Nkind (Parent (Generic_Parent_Type (N))) /=
5029 N_Formal_Type_Declaration
5030 or else Nkind (Formal_Type_Definition
5031 (Parent (Generic_Parent_Type (N)))) /=
5032 N_Formal_Private_Type_Definition)
5033 then
5034 if Is_Tagged_Type (Id) then
5036 -- If this is a generic actual subtype for a synchronized type,
5037 -- the primitive operations are those of the corresponding record
5038 -- for which there is a separate subtype declaration.
5040 if Is_Concurrent_Type (Id) then
5041 null;
5042 elsif Is_Class_Wide_Type (Id) then
5043 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5044 else
5045 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5046 end if;
5048 elsif Scope (Etype (Id)) /= Standard_Standard then
5049 Derive_Subprograms (Generic_Parent_Type (N), Id);
5050 end if;
5051 end if;
5053 if Is_Private_Type (T) and then Present (Full_View (T)) then
5054 Conditional_Delay (Id, Full_View (T));
5056 -- The subtypes of components or subcomponents of protected types
5057 -- do not need freeze nodes, which would otherwise appear in the
5058 -- wrong scope (before the freeze node for the protected type). The
5059 -- proper subtypes are those of the subcomponents of the corresponding
5060 -- record.
5062 elsif Ekind (Scope (Id)) /= E_Protected_Type
5063 and then Present (Scope (Scope (Id))) -- error defense
5064 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5065 then
5066 Conditional_Delay (Id, T);
5067 end if;
5069 -- Check that Constraint_Error is raised for a scalar subtype indication
5070 -- when the lower or upper bound of a non-null range lies outside the
5071 -- range of the type mark.
5073 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5074 if Is_Scalar_Type (Etype (Id))
5075 and then Scalar_Range (Id) /=
5076 Scalar_Range (Etype (Subtype_Mark
5077 (Subtype_Indication (N))))
5078 then
5079 Apply_Range_Check
5080 (Scalar_Range (Id),
5081 Etype (Subtype_Mark (Subtype_Indication (N))));
5083 -- In the array case, check compatibility for each index
5085 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5086 then
5087 -- This really should be a subprogram that finds the indications
5088 -- to check???
5090 declare
5091 Subt_Index : Node_Id := First_Index (Id);
5092 Target_Index : Node_Id :=
5093 First_Index (Etype
5094 (Subtype_Mark (Subtype_Indication (N))));
5095 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5097 begin
5098 while Present (Subt_Index) loop
5099 if ((Nkind (Subt_Index) = N_Identifier
5100 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5101 or else Nkind (Subt_Index) = N_Subtype_Indication)
5102 and then
5103 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5104 then
5105 declare
5106 Target_Typ : constant Entity_Id :=
5107 Etype (Target_Index);
5108 begin
5109 R_Checks :=
5110 Get_Range_Checks
5111 (Scalar_Range (Etype (Subt_Index)),
5112 Target_Typ,
5113 Etype (Subt_Index),
5114 Defining_Identifier (N));
5116 -- Reset Has_Dynamic_Range_Check on the subtype to
5117 -- prevent elision of the index check due to a dynamic
5118 -- check generated for a preceding index (needed since
5119 -- Insert_Range_Checks tries to avoid generating
5120 -- redundant checks on a given declaration).
5122 Set_Has_Dynamic_Range_Check (N, False);
5124 Insert_Range_Checks
5125 (R_Checks,
5127 Target_Typ,
5128 Sloc (Defining_Identifier (N)));
5130 -- Record whether this index involved a dynamic check
5132 Has_Dyn_Chk :=
5133 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5134 end;
5135 end if;
5137 Next_Index (Subt_Index);
5138 Next_Index (Target_Index);
5139 end loop;
5141 -- Finally, mark whether the subtype involves dynamic checks
5143 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5144 end;
5145 end if;
5146 end if;
5148 -- A type invariant applies to any subtype in its scope, in particular
5149 -- to a generic actual.
5151 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5152 Set_Has_Invariants (Id);
5153 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5154 end if;
5156 -- Make sure that generic actual types are properly frozen. The subtype
5157 -- is marked as a generic actual type when the enclosing instance is
5158 -- analyzed, so here we identify the subtype from the tree structure.
5160 if Expander_Active
5161 and then Is_Generic_Actual_Type (Id)
5162 and then In_Instance
5163 and then not Comes_From_Source (N)
5164 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5165 and then Is_Frozen (T)
5166 then
5167 Freeze_Before (N, Id);
5168 end if;
5170 Set_Optimize_Alignment_Flags (Id);
5171 Check_Eliminated (Id);
5173 <<Leave>>
5174 if Has_Aspects (N) then
5175 Analyze_Aspect_Specifications (N, Id);
5176 end if;
5178 Analyze_Dimension (N);
5179 end Analyze_Subtype_Declaration;
5181 --------------------------------
5182 -- Analyze_Subtype_Indication --
5183 --------------------------------
5185 procedure Analyze_Subtype_Indication (N : Node_Id) is
5186 T : constant Entity_Id := Subtype_Mark (N);
5187 R : constant Node_Id := Range_Expression (Constraint (N));
5189 begin
5190 Analyze (T);
5192 if R /= Error then
5193 Analyze (R);
5194 Set_Etype (N, Etype (R));
5195 Resolve (R, Entity (T));
5196 else
5197 Set_Error_Posted (R);
5198 Set_Error_Posted (T);
5199 end if;
5200 end Analyze_Subtype_Indication;
5202 --------------------------
5203 -- Analyze_Variant_Part --
5204 --------------------------
5206 procedure Analyze_Variant_Part (N : Node_Id) is
5207 Discr_Name : Node_Id;
5208 Discr_Type : Entity_Id;
5210 procedure Process_Variant (A : Node_Id);
5211 -- Analyze declarations for a single variant
5213 package Analyze_Variant_Choices is
5214 new Generic_Analyze_Choices (Process_Variant);
5215 use Analyze_Variant_Choices;
5217 ---------------------
5218 -- Process_Variant --
5219 ---------------------
5221 procedure Process_Variant (A : Node_Id) is
5222 CL : constant Node_Id := Component_List (A);
5223 begin
5224 if not Null_Present (CL) then
5225 Analyze_Declarations (Component_Items (CL));
5227 if Present (Variant_Part (CL)) then
5228 Analyze (Variant_Part (CL));
5229 end if;
5230 end if;
5231 end Process_Variant;
5233 -- Start of processing for Analyze_Variant_Part
5235 begin
5236 Discr_Name := Name (N);
5237 Analyze (Discr_Name);
5239 -- If Discr_Name bad, get out (prevent cascaded errors)
5241 if Etype (Discr_Name) = Any_Type then
5242 return;
5243 end if;
5245 -- Check invalid discriminant in variant part
5247 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5248 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5249 end if;
5251 Discr_Type := Etype (Entity (Discr_Name));
5253 if not Is_Discrete_Type (Discr_Type) then
5254 Error_Msg_N
5255 ("discriminant in a variant part must be of a discrete type",
5256 Name (N));
5257 return;
5258 end if;
5260 -- Now analyze the choices, which also analyzes the declarations that
5261 -- are associated with each choice.
5263 Analyze_Choices (Variants (N), Discr_Type);
5265 -- Note: we used to instantiate and call Check_Choices here to check
5266 -- that the choices covered the discriminant, but it's too early to do
5267 -- that because of statically predicated subtypes, whose analysis may
5268 -- be deferred to their freeze point which may be as late as the freeze
5269 -- point of the containing record. So this call is now to be found in
5270 -- Freeze_Record_Declaration.
5272 end Analyze_Variant_Part;
5274 ----------------------------
5275 -- Array_Type_Declaration --
5276 ----------------------------
5278 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5279 Component_Def : constant Node_Id := Component_Definition (Def);
5280 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5281 Element_Type : Entity_Id;
5282 Implicit_Base : Entity_Id;
5283 Index : Node_Id;
5284 Related_Id : Entity_Id := Empty;
5285 Nb_Index : Nat;
5286 P : constant Node_Id := Parent (Def);
5287 Priv : Entity_Id;
5289 begin
5290 if Nkind (Def) = N_Constrained_Array_Definition then
5291 Index := First (Discrete_Subtype_Definitions (Def));
5292 else
5293 Index := First (Subtype_Marks (Def));
5294 end if;
5296 -- Find proper names for the implicit types which may be public. In case
5297 -- of anonymous arrays we use the name of the first object of that type
5298 -- as prefix.
5300 if No (T) then
5301 Related_Id := Defining_Identifier (P);
5302 else
5303 Related_Id := T;
5304 end if;
5306 Nb_Index := 1;
5307 while Present (Index) loop
5308 Analyze (Index);
5310 -- Test for odd case of trying to index a type by the type itself
5312 if Is_Entity_Name (Index) and then Entity (Index) = T then
5313 Error_Msg_N ("type& cannot be indexed by itself", Index);
5314 Set_Entity (Index, Standard_Boolean);
5315 Set_Etype (Index, Standard_Boolean);
5316 end if;
5318 -- Check SPARK restriction requiring a subtype mark
5320 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5321 Check_SPARK_05_Restriction ("subtype mark required", Index);
5322 end if;
5324 -- Add a subtype declaration for each index of private array type
5325 -- declaration whose etype is also private. For example:
5327 -- package Pkg is
5328 -- type Index is private;
5329 -- private
5330 -- type Table is array (Index) of ...
5331 -- end;
5333 -- This is currently required by the expander for the internally
5334 -- generated equality subprogram of records with variant parts in
5335 -- which the etype of some component is such private type.
5337 if Ekind (Current_Scope) = E_Package
5338 and then In_Private_Part (Current_Scope)
5339 and then Has_Private_Declaration (Etype (Index))
5340 then
5341 declare
5342 Loc : constant Source_Ptr := Sloc (Def);
5343 New_E : Entity_Id;
5344 Decl : Entity_Id;
5346 begin
5347 New_E := Make_Temporary (Loc, 'T');
5348 Set_Is_Internal (New_E);
5350 Decl :=
5351 Make_Subtype_Declaration (Loc,
5352 Defining_Identifier => New_E,
5353 Subtype_Indication =>
5354 New_Occurrence_Of (Etype (Index), Loc));
5356 Insert_Before (Parent (Def), Decl);
5357 Analyze (Decl);
5358 Set_Etype (Index, New_E);
5360 -- If the index is a range the Entity attribute is not
5361 -- available. Example:
5363 -- package Pkg is
5364 -- type T is private;
5365 -- private
5366 -- type T is new Natural;
5367 -- Table : array (T(1) .. T(10)) of Boolean;
5368 -- end Pkg;
5370 if Nkind (Index) /= N_Range then
5371 Set_Entity (Index, New_E);
5372 end if;
5373 end;
5374 end if;
5376 Make_Index (Index, P, Related_Id, Nb_Index);
5378 -- Check error of subtype with predicate for index type
5380 Bad_Predicated_Subtype_Use
5381 ("subtype& has predicate, not allowed as index subtype",
5382 Index, Etype (Index));
5384 -- Move to next index
5386 Next_Index (Index);
5387 Nb_Index := Nb_Index + 1;
5388 end loop;
5390 -- Process subtype indication if one is present
5392 if Present (Component_Typ) then
5393 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5395 Set_Etype (Component_Typ, Element_Type);
5397 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5398 Check_SPARK_05_Restriction
5399 ("subtype mark required", Component_Typ);
5400 end if;
5402 -- Ada 2005 (AI-230): Access Definition case
5404 else pragma Assert (Present (Access_Definition (Component_Def)));
5406 -- Indicate that the anonymous access type is created by the
5407 -- array type declaration.
5409 Element_Type := Access_Definition
5410 (Related_Nod => P,
5411 N => Access_Definition (Component_Def));
5412 Set_Is_Local_Anonymous_Access (Element_Type);
5414 -- Propagate the parent. This field is needed if we have to generate
5415 -- the master_id associated with an anonymous access to task type
5416 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5418 Set_Parent (Element_Type, Parent (T));
5420 -- Ada 2005 (AI-230): In case of components that are anonymous access
5421 -- types the level of accessibility depends on the enclosing type
5422 -- declaration
5424 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5426 -- Ada 2005 (AI-254)
5428 declare
5429 CD : constant Node_Id :=
5430 Access_To_Subprogram_Definition
5431 (Access_Definition (Component_Def));
5432 begin
5433 if Present (CD) and then Protected_Present (CD) then
5434 Element_Type :=
5435 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5436 end if;
5437 end;
5438 end if;
5440 -- Constrained array case
5442 if No (T) then
5443 T := Create_Itype (E_Void, P, Related_Id, 'T');
5444 end if;
5446 if Nkind (Def) = N_Constrained_Array_Definition then
5448 -- Establish Implicit_Base as unconstrained base type
5450 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5452 Set_Etype (Implicit_Base, Implicit_Base);
5453 Set_Scope (Implicit_Base, Current_Scope);
5454 Set_Has_Delayed_Freeze (Implicit_Base);
5455 Set_Default_SSO (Implicit_Base);
5457 -- The constrained array type is a subtype of the unconstrained one
5459 Set_Ekind (T, E_Array_Subtype);
5460 Init_Size_Align (T);
5461 Set_Etype (T, Implicit_Base);
5462 Set_Scope (T, Current_Scope);
5463 Set_Is_Constrained (T, True);
5464 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5465 Set_Has_Delayed_Freeze (T);
5467 -- Complete setup of implicit base type
5469 Set_First_Index (Implicit_Base, First_Index (T));
5470 Set_Component_Type (Implicit_Base, Element_Type);
5471 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5472 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5473 Set_Component_Size (Implicit_Base, Uint_0);
5474 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5475 Set_Has_Controlled_Component
5476 (Implicit_Base,
5477 Has_Controlled_Component (Element_Type)
5478 or else Is_Controlled (Element_Type));
5479 Set_Finalize_Storage_Only
5480 (Implicit_Base, Finalize_Storage_Only
5481 (Element_Type));
5483 -- Unconstrained array case
5485 else
5486 Set_Ekind (T, E_Array_Type);
5487 Init_Size_Align (T);
5488 Set_Etype (T, T);
5489 Set_Scope (T, Current_Scope);
5490 Set_Component_Size (T, Uint_0);
5491 Set_Is_Constrained (T, False);
5492 Set_First_Index (T, First (Subtype_Marks (Def)));
5493 Set_Has_Delayed_Freeze (T, True);
5494 Set_Has_Task (T, Has_Task (Element_Type));
5495 Set_Has_Protected (T, Has_Protected (Element_Type));
5496 Set_Has_Controlled_Component (T, Has_Controlled_Component
5497 (Element_Type)
5498 or else
5499 Is_Controlled (Element_Type));
5500 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5501 (Element_Type));
5502 Set_Default_SSO (T);
5503 end if;
5505 -- Common attributes for both cases
5507 Set_Component_Type (Base_Type (T), Element_Type);
5508 Set_Packed_Array_Impl_Type (T, Empty);
5510 if Aliased_Present (Component_Definition (Def)) then
5511 Check_SPARK_05_Restriction
5512 ("aliased is not allowed", Component_Definition (Def));
5513 Set_Has_Aliased_Components (Etype (T));
5514 end if;
5516 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5517 -- array type to ensure that objects of this type are initialized.
5519 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5520 Set_Can_Never_Be_Null (T);
5522 if Null_Exclusion_Present (Component_Definition (Def))
5524 -- No need to check itypes because in their case this check was
5525 -- done at their point of creation
5527 and then not Is_Itype (Element_Type)
5528 then
5529 Error_Msg_N
5530 ("`NOT NULL` not allowed (null already excluded)",
5531 Subtype_Indication (Component_Definition (Def)));
5532 end if;
5533 end if;
5535 Priv := Private_Component (Element_Type);
5537 if Present (Priv) then
5539 -- Check for circular definitions
5541 if Priv = Any_Type then
5542 Set_Component_Type (Etype (T), Any_Type);
5544 -- There is a gap in the visibility of operations on the composite
5545 -- type only if the component type is defined in a different scope.
5547 elsif Scope (Priv) = Current_Scope then
5548 null;
5550 elsif Is_Limited_Type (Priv) then
5551 Set_Is_Limited_Composite (Etype (T));
5552 Set_Is_Limited_Composite (T);
5553 else
5554 Set_Is_Private_Composite (Etype (T));
5555 Set_Is_Private_Composite (T);
5556 end if;
5557 end if;
5559 -- A syntax error in the declaration itself may lead to an empty index
5560 -- list, in which case do a minimal patch.
5562 if No (First_Index (T)) then
5563 Error_Msg_N ("missing index definition in array type declaration", T);
5565 declare
5566 Indexes : constant List_Id :=
5567 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5568 begin
5569 Set_Discrete_Subtype_Definitions (Def, Indexes);
5570 Set_First_Index (T, First (Indexes));
5571 return;
5572 end;
5573 end if;
5575 -- Create a concatenation operator for the new type. Internal array
5576 -- types created for packed entities do not need such, they are
5577 -- compatible with the user-defined type.
5579 if Number_Dimensions (T) = 1
5580 and then not Is_Packed_Array_Impl_Type (T)
5581 then
5582 New_Concatenation_Op (T);
5583 end if;
5585 -- In the case of an unconstrained array the parser has already verified
5586 -- that all the indexes are unconstrained but we still need to make sure
5587 -- that the element type is constrained.
5589 if Is_Indefinite_Subtype (Element_Type) then
5590 Error_Msg_N
5591 ("unconstrained element type in array declaration",
5592 Subtype_Indication (Component_Def));
5594 elsif Is_Abstract_Type (Element_Type) then
5595 Error_Msg_N
5596 ("the type of a component cannot be abstract",
5597 Subtype_Indication (Component_Def));
5598 end if;
5600 -- There may be an invariant declared for the component type, but
5601 -- the construction of the component invariant checking procedure
5602 -- takes place during expansion.
5603 end Array_Type_Declaration;
5605 ------------------------------------------------------
5606 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5607 ------------------------------------------------------
5609 function Replace_Anonymous_Access_To_Protected_Subprogram
5610 (N : Node_Id) return Entity_Id
5612 Loc : constant Source_Ptr := Sloc (N);
5614 Curr_Scope : constant Scope_Stack_Entry :=
5615 Scope_Stack.Table (Scope_Stack.Last);
5617 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5619 Acc : Node_Id;
5620 -- Access definition in declaration
5622 Comp : Node_Id;
5623 -- Object definition or formal definition with an access definition
5625 Decl : Node_Id;
5626 -- Declaration of anonymous access to subprogram type
5628 Spec : Node_Id;
5629 -- Original specification in access to subprogram
5631 P : Node_Id;
5633 begin
5634 Set_Is_Internal (Anon);
5636 case Nkind (N) is
5637 when N_Component_Declaration |
5638 N_Unconstrained_Array_Definition |
5639 N_Constrained_Array_Definition =>
5640 Comp := Component_Definition (N);
5641 Acc := Access_Definition (Comp);
5643 when N_Discriminant_Specification =>
5644 Comp := Discriminant_Type (N);
5645 Acc := Comp;
5647 when N_Parameter_Specification =>
5648 Comp := Parameter_Type (N);
5649 Acc := Comp;
5651 when N_Access_Function_Definition =>
5652 Comp := Result_Definition (N);
5653 Acc := Comp;
5655 when N_Object_Declaration =>
5656 Comp := Object_Definition (N);
5657 Acc := Comp;
5659 when N_Function_Specification =>
5660 Comp := Result_Definition (N);
5661 Acc := Comp;
5663 when others =>
5664 raise Program_Error;
5665 end case;
5667 Spec := Access_To_Subprogram_Definition (Acc);
5669 Decl :=
5670 Make_Full_Type_Declaration (Loc,
5671 Defining_Identifier => Anon,
5672 Type_Definition => Copy_Separate_Tree (Spec));
5674 Mark_Rewrite_Insertion (Decl);
5676 -- In ASIS mode, analyze the profile on the original node, because
5677 -- the separate copy does not provide enough links to recover the
5678 -- original tree. Analysis is limited to type annotations, within
5679 -- a temporary scope that serves as an anonymous subprogram to collect
5680 -- otherwise useless temporaries and itypes.
5682 if ASIS_Mode then
5683 declare
5684 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5686 begin
5687 if Nkind (Spec) = N_Access_Function_Definition then
5688 Set_Ekind (Typ, E_Function);
5689 else
5690 Set_Ekind (Typ, E_Procedure);
5691 end if;
5693 Set_Parent (Typ, N);
5694 Set_Scope (Typ, Current_Scope);
5695 Push_Scope (Typ);
5697 Process_Formals (Parameter_Specifications (Spec), Spec);
5699 if Nkind (Spec) = N_Access_Function_Definition then
5700 declare
5701 Def : constant Node_Id := Result_Definition (Spec);
5703 begin
5704 -- The result might itself be an anonymous access type, so
5705 -- have to recurse.
5707 if Nkind (Def) = N_Access_Definition then
5708 if Present (Access_To_Subprogram_Definition (Def)) then
5709 Set_Etype
5710 (Def,
5711 Replace_Anonymous_Access_To_Protected_Subprogram
5712 (Spec));
5713 else
5714 Find_Type (Subtype_Mark (Def));
5715 end if;
5717 else
5718 Find_Type (Def);
5719 end if;
5720 end;
5721 end if;
5723 End_Scope;
5724 end;
5725 end if;
5727 -- Insert the new declaration in the nearest enclosing scope. If the
5728 -- node is a body and N is its return type, the declaration belongs in
5729 -- the enclosing scope.
5731 P := Parent (N);
5733 if Nkind (P) = N_Subprogram_Body
5734 and then Nkind (N) = N_Function_Specification
5735 then
5736 P := Parent (P);
5737 end if;
5739 while Present (P) and then not Has_Declarations (P) loop
5740 P := Parent (P);
5741 end loop;
5743 pragma Assert (Present (P));
5745 if Nkind (P) = N_Package_Specification then
5746 Prepend (Decl, Visible_Declarations (P));
5747 else
5748 Prepend (Decl, Declarations (P));
5749 end if;
5751 -- Replace the anonymous type with an occurrence of the new declaration.
5752 -- In all cases the rewritten node does not have the null-exclusion
5753 -- attribute because (if present) it was already inherited by the
5754 -- anonymous entity (Anon). Thus, in case of components we do not
5755 -- inherit this attribute.
5757 if Nkind (N) = N_Parameter_Specification then
5758 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5759 Set_Etype (Defining_Identifier (N), Anon);
5760 Set_Null_Exclusion_Present (N, False);
5762 elsif Nkind (N) = N_Object_Declaration then
5763 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5764 Set_Etype (Defining_Identifier (N), Anon);
5766 elsif Nkind (N) = N_Access_Function_Definition then
5767 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5769 elsif Nkind (N) = N_Function_Specification then
5770 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5771 Set_Etype (Defining_Unit_Name (N), Anon);
5773 else
5774 Rewrite (Comp,
5775 Make_Component_Definition (Loc,
5776 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5777 end if;
5779 Mark_Rewrite_Insertion (Comp);
5781 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5782 Analyze (Decl);
5784 else
5785 -- Temporarily remove the current scope (record or subprogram) from
5786 -- the stack to add the new declarations to the enclosing scope.
5788 Scope_Stack.Decrement_Last;
5789 Analyze (Decl);
5790 Set_Is_Itype (Anon);
5791 Scope_Stack.Append (Curr_Scope);
5792 end if;
5794 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5795 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5796 return Anon;
5797 end Replace_Anonymous_Access_To_Protected_Subprogram;
5799 -------------------------------
5800 -- Build_Derived_Access_Type --
5801 -------------------------------
5803 procedure Build_Derived_Access_Type
5804 (N : Node_Id;
5805 Parent_Type : Entity_Id;
5806 Derived_Type : Entity_Id)
5808 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5810 Desig_Type : Entity_Id;
5811 Discr : Entity_Id;
5812 Discr_Con_Elist : Elist_Id;
5813 Discr_Con_El : Elmt_Id;
5814 Subt : Entity_Id;
5816 begin
5817 -- Set the designated type so it is available in case this is an access
5818 -- to a self-referential type, e.g. a standard list type with a next
5819 -- pointer. Will be reset after subtype is built.
5821 Set_Directly_Designated_Type
5822 (Derived_Type, Designated_Type (Parent_Type));
5824 Subt := Process_Subtype (S, N);
5826 if Nkind (S) /= N_Subtype_Indication
5827 and then Subt /= Base_Type (Subt)
5828 then
5829 Set_Ekind (Derived_Type, E_Access_Subtype);
5830 end if;
5832 if Ekind (Derived_Type) = E_Access_Subtype then
5833 declare
5834 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5835 Ibase : constant Entity_Id :=
5836 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5837 Svg_Chars : constant Name_Id := Chars (Ibase);
5838 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5840 begin
5841 Copy_Node (Pbase, Ibase);
5843 Set_Chars (Ibase, Svg_Chars);
5844 Set_Next_Entity (Ibase, Svg_Next_E);
5845 Set_Sloc (Ibase, Sloc (Derived_Type));
5846 Set_Scope (Ibase, Scope (Derived_Type));
5847 Set_Freeze_Node (Ibase, Empty);
5848 Set_Is_Frozen (Ibase, False);
5849 Set_Comes_From_Source (Ibase, False);
5850 Set_Is_First_Subtype (Ibase, False);
5852 Set_Etype (Ibase, Pbase);
5853 Set_Etype (Derived_Type, Ibase);
5854 end;
5855 end if;
5857 Set_Directly_Designated_Type
5858 (Derived_Type, Designated_Type (Subt));
5860 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5861 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5862 Set_Size_Info (Derived_Type, Parent_Type);
5863 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5864 Set_Depends_On_Private (Derived_Type,
5865 Has_Private_Component (Derived_Type));
5866 Conditional_Delay (Derived_Type, Subt);
5868 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5869 -- that it is not redundant.
5871 if Null_Exclusion_Present (Type_Definition (N)) then
5872 Set_Can_Never_Be_Null (Derived_Type);
5874 -- What is with the "AND THEN FALSE" here ???
5876 if Can_Never_Be_Null (Parent_Type)
5877 and then False
5878 then
5879 Error_Msg_NE
5880 ("`NOT NULL` not allowed (& already excludes null)",
5881 N, Parent_Type);
5882 end if;
5884 elsif Can_Never_Be_Null (Parent_Type) then
5885 Set_Can_Never_Be_Null (Derived_Type);
5886 end if;
5888 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5889 -- the root type for this information.
5891 -- Apply range checks to discriminants for derived record case
5892 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5894 Desig_Type := Designated_Type (Derived_Type);
5895 if Is_Composite_Type (Desig_Type)
5896 and then (not Is_Array_Type (Desig_Type))
5897 and then Has_Discriminants (Desig_Type)
5898 and then Base_Type (Desig_Type) /= Desig_Type
5899 then
5900 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5901 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5903 Discr := First_Discriminant (Base_Type (Desig_Type));
5904 while Present (Discr_Con_El) loop
5905 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5906 Next_Elmt (Discr_Con_El);
5907 Next_Discriminant (Discr);
5908 end loop;
5909 end if;
5910 end Build_Derived_Access_Type;
5912 ------------------------------
5913 -- Build_Derived_Array_Type --
5914 ------------------------------
5916 procedure Build_Derived_Array_Type
5917 (N : Node_Id;
5918 Parent_Type : Entity_Id;
5919 Derived_Type : Entity_Id)
5921 Loc : constant Source_Ptr := Sloc (N);
5922 Tdef : constant Node_Id := Type_Definition (N);
5923 Indic : constant Node_Id := Subtype_Indication (Tdef);
5924 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5925 Implicit_Base : Entity_Id;
5926 New_Indic : Node_Id;
5928 procedure Make_Implicit_Base;
5929 -- If the parent subtype is constrained, the derived type is a subtype
5930 -- of an implicit base type derived from the parent base.
5932 ------------------------
5933 -- Make_Implicit_Base --
5934 ------------------------
5936 procedure Make_Implicit_Base is
5937 begin
5938 Implicit_Base :=
5939 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5941 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5942 Set_Etype (Implicit_Base, Parent_Base);
5944 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5945 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5947 Set_Has_Delayed_Freeze (Implicit_Base, True);
5948 end Make_Implicit_Base;
5950 -- Start of processing for Build_Derived_Array_Type
5952 begin
5953 if not Is_Constrained (Parent_Type) then
5954 if Nkind (Indic) /= N_Subtype_Indication then
5955 Set_Ekind (Derived_Type, E_Array_Type);
5957 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5958 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5960 Set_Has_Delayed_Freeze (Derived_Type, True);
5962 else
5963 Make_Implicit_Base;
5964 Set_Etype (Derived_Type, Implicit_Base);
5966 New_Indic :=
5967 Make_Subtype_Declaration (Loc,
5968 Defining_Identifier => Derived_Type,
5969 Subtype_Indication =>
5970 Make_Subtype_Indication (Loc,
5971 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5972 Constraint => Constraint (Indic)));
5974 Rewrite (N, New_Indic);
5975 Analyze (N);
5976 end if;
5978 else
5979 if Nkind (Indic) /= N_Subtype_Indication then
5980 Make_Implicit_Base;
5982 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5983 Set_Etype (Derived_Type, Implicit_Base);
5984 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5986 else
5987 Error_Msg_N ("illegal constraint on constrained type", Indic);
5988 end if;
5989 end if;
5991 -- If parent type is not a derived type itself, and is declared in
5992 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5993 -- the new type's concatenation operator since Derive_Subprograms
5994 -- will not inherit the parent's operator. If the parent type is
5995 -- unconstrained, the operator is of the unconstrained base type.
5997 if Number_Dimensions (Parent_Type) = 1
5998 and then not Is_Limited_Type (Parent_Type)
5999 and then not Is_Derived_Type (Parent_Type)
6000 and then not Is_Package_Or_Generic_Package
6001 (Scope (Base_Type (Parent_Type)))
6002 then
6003 if not Is_Constrained (Parent_Type)
6004 and then Is_Constrained (Derived_Type)
6005 then
6006 New_Concatenation_Op (Implicit_Base);
6007 else
6008 New_Concatenation_Op (Derived_Type);
6009 end if;
6010 end if;
6011 end Build_Derived_Array_Type;
6013 -----------------------------------
6014 -- Build_Derived_Concurrent_Type --
6015 -----------------------------------
6017 procedure Build_Derived_Concurrent_Type
6018 (N : Node_Id;
6019 Parent_Type : Entity_Id;
6020 Derived_Type : Entity_Id)
6022 Loc : constant Source_Ptr := Sloc (N);
6024 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6025 Corr_Decl : Node_Id;
6026 Corr_Decl_Needed : Boolean;
6027 -- If the derived type has fewer discriminants than its parent, the
6028 -- corresponding record is also a derived type, in order to account for
6029 -- the bound discriminants. We create a full type declaration for it in
6030 -- this case.
6032 Constraint_Present : constant Boolean :=
6033 Nkind (Subtype_Indication (Type_Definition (N))) =
6034 N_Subtype_Indication;
6036 D_Constraint : Node_Id;
6037 New_Constraint : Elist_Id;
6038 Old_Disc : Entity_Id;
6039 New_Disc : Entity_Id;
6040 New_N : Node_Id;
6042 begin
6043 Set_Stored_Constraint (Derived_Type, No_Elist);
6044 Corr_Decl_Needed := False;
6045 Old_Disc := Empty;
6047 if Present (Discriminant_Specifications (N))
6048 and then Constraint_Present
6049 then
6050 Old_Disc := First_Discriminant (Parent_Type);
6051 New_Disc := First (Discriminant_Specifications (N));
6052 while Present (New_Disc) and then Present (Old_Disc) loop
6053 Next_Discriminant (Old_Disc);
6054 Next (New_Disc);
6055 end loop;
6056 end if;
6058 if Present (Old_Disc) and then Expander_Active then
6060 -- The new type has fewer discriminants, so we need to create a new
6061 -- corresponding record, which is derived from the corresponding
6062 -- record of the parent, and has a stored constraint that captures
6063 -- the values of the discriminant constraints. The corresponding
6064 -- record is needed only if expander is active and code generation is
6065 -- enabled.
6067 -- The type declaration for the derived corresponding record has the
6068 -- same discriminant part and constraints as the current declaration.
6069 -- Copy the unanalyzed tree to build declaration.
6071 Corr_Decl_Needed := True;
6072 New_N := Copy_Separate_Tree (N);
6074 Corr_Decl :=
6075 Make_Full_Type_Declaration (Loc,
6076 Defining_Identifier => Corr_Record,
6077 Discriminant_Specifications =>
6078 Discriminant_Specifications (New_N),
6079 Type_Definition =>
6080 Make_Derived_Type_Definition (Loc,
6081 Subtype_Indication =>
6082 Make_Subtype_Indication (Loc,
6083 Subtype_Mark =>
6084 New_Occurrence_Of
6085 (Corresponding_Record_Type (Parent_Type), Loc),
6086 Constraint =>
6087 Constraint
6088 (Subtype_Indication (Type_Definition (New_N))))));
6089 end if;
6091 -- Copy Storage_Size and Relative_Deadline variables if task case
6093 if Is_Task_Type (Parent_Type) then
6094 Set_Storage_Size_Variable (Derived_Type,
6095 Storage_Size_Variable (Parent_Type));
6096 Set_Relative_Deadline_Variable (Derived_Type,
6097 Relative_Deadline_Variable (Parent_Type));
6098 end if;
6100 if Present (Discriminant_Specifications (N)) then
6101 Push_Scope (Derived_Type);
6102 Check_Or_Process_Discriminants (N, Derived_Type);
6104 if Constraint_Present then
6105 New_Constraint :=
6106 Expand_To_Stored_Constraint
6107 (Parent_Type,
6108 Build_Discriminant_Constraints
6109 (Parent_Type,
6110 Subtype_Indication (Type_Definition (N)), True));
6111 end if;
6113 End_Scope;
6115 elsif Constraint_Present then
6117 -- Build constrained subtype, copying the constraint, and derive
6118 -- from it to create a derived constrained type.
6120 declare
6121 Loc : constant Source_Ptr := Sloc (N);
6122 Anon : constant Entity_Id :=
6123 Make_Defining_Identifier (Loc,
6124 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6125 Decl : Node_Id;
6127 begin
6128 Decl :=
6129 Make_Subtype_Declaration (Loc,
6130 Defining_Identifier => Anon,
6131 Subtype_Indication =>
6132 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6133 Insert_Before (N, Decl);
6134 Analyze (Decl);
6136 Rewrite (Subtype_Indication (Type_Definition (N)),
6137 New_Occurrence_Of (Anon, Loc));
6138 Set_Analyzed (Derived_Type, False);
6139 Analyze (N);
6140 return;
6141 end;
6142 end if;
6144 -- By default, operations and private data are inherited from parent.
6145 -- However, in the presence of bound discriminants, a new corresponding
6146 -- record will be created, see below.
6148 Set_Has_Discriminants
6149 (Derived_Type, Has_Discriminants (Parent_Type));
6150 Set_Corresponding_Record_Type
6151 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6153 -- Is_Constrained is set according the parent subtype, but is set to
6154 -- False if the derived type is declared with new discriminants.
6156 Set_Is_Constrained
6157 (Derived_Type,
6158 (Is_Constrained (Parent_Type) or else Constraint_Present)
6159 and then not Present (Discriminant_Specifications (N)));
6161 if Constraint_Present then
6162 if not Has_Discriminants (Parent_Type) then
6163 Error_Msg_N ("untagged parent must have discriminants", N);
6165 elsif Present (Discriminant_Specifications (N)) then
6167 -- Verify that new discriminants are used to constrain old ones
6169 D_Constraint :=
6170 First
6171 (Constraints
6172 (Constraint (Subtype_Indication (Type_Definition (N)))));
6174 Old_Disc := First_Discriminant (Parent_Type);
6176 while Present (D_Constraint) loop
6177 if Nkind (D_Constraint) /= N_Discriminant_Association then
6179 -- Positional constraint. If it is a reference to a new
6180 -- discriminant, it constrains the corresponding old one.
6182 if Nkind (D_Constraint) = N_Identifier then
6183 New_Disc := First_Discriminant (Derived_Type);
6184 while Present (New_Disc) loop
6185 exit when Chars (New_Disc) = Chars (D_Constraint);
6186 Next_Discriminant (New_Disc);
6187 end loop;
6189 if Present (New_Disc) then
6190 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6191 end if;
6192 end if;
6194 Next_Discriminant (Old_Disc);
6196 -- if this is a named constraint, search by name for the old
6197 -- discriminants constrained by the new one.
6199 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6201 -- Find new discriminant with that name
6203 New_Disc := First_Discriminant (Derived_Type);
6204 while Present (New_Disc) loop
6205 exit when
6206 Chars (New_Disc) = Chars (Expression (D_Constraint));
6207 Next_Discriminant (New_Disc);
6208 end loop;
6210 if Present (New_Disc) then
6212 -- Verify that new discriminant renames some discriminant
6213 -- of the parent type, and associate the new discriminant
6214 -- with one or more old ones that it renames.
6216 declare
6217 Selector : Node_Id;
6219 begin
6220 Selector := First (Selector_Names (D_Constraint));
6221 while Present (Selector) loop
6222 Old_Disc := First_Discriminant (Parent_Type);
6223 while Present (Old_Disc) loop
6224 exit when Chars (Old_Disc) = Chars (Selector);
6225 Next_Discriminant (Old_Disc);
6226 end loop;
6228 if Present (Old_Disc) then
6229 Set_Corresponding_Discriminant
6230 (New_Disc, Old_Disc);
6231 end if;
6233 Next (Selector);
6234 end loop;
6235 end;
6236 end if;
6237 end if;
6239 Next (D_Constraint);
6240 end loop;
6242 New_Disc := First_Discriminant (Derived_Type);
6243 while Present (New_Disc) loop
6244 if No (Corresponding_Discriminant (New_Disc)) then
6245 Error_Msg_NE
6246 ("new discriminant& must constrain old one", N, New_Disc);
6248 elsif not
6249 Subtypes_Statically_Compatible
6250 (Etype (New_Disc),
6251 Etype (Corresponding_Discriminant (New_Disc)))
6252 then
6253 Error_Msg_NE
6254 ("& not statically compatible with parent discriminant",
6255 N, New_Disc);
6256 end if;
6258 Next_Discriminant (New_Disc);
6259 end loop;
6260 end if;
6262 elsif Present (Discriminant_Specifications (N)) then
6263 Error_Msg_N
6264 ("missing discriminant constraint in untagged derivation", N);
6265 end if;
6267 -- The entity chain of the derived type includes the new discriminants
6268 -- but shares operations with the parent.
6270 if Present (Discriminant_Specifications (N)) then
6271 Old_Disc := First_Discriminant (Parent_Type);
6272 while Present (Old_Disc) loop
6273 if No (Next_Entity (Old_Disc))
6274 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6275 then
6276 Set_Next_Entity
6277 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6278 exit;
6279 end if;
6281 Next_Discriminant (Old_Disc);
6282 end loop;
6284 else
6285 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6286 if Has_Discriminants (Parent_Type) then
6287 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6288 Set_Discriminant_Constraint (
6289 Derived_Type, Discriminant_Constraint (Parent_Type));
6290 end if;
6291 end if;
6293 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6295 Set_Has_Completion (Derived_Type);
6297 if Corr_Decl_Needed then
6298 Set_Stored_Constraint (Derived_Type, New_Constraint);
6299 Insert_After (N, Corr_Decl);
6300 Analyze (Corr_Decl);
6301 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6302 end if;
6303 end Build_Derived_Concurrent_Type;
6305 ------------------------------------
6306 -- Build_Derived_Enumeration_Type --
6307 ------------------------------------
6309 procedure Build_Derived_Enumeration_Type
6310 (N : Node_Id;
6311 Parent_Type : Entity_Id;
6312 Derived_Type : Entity_Id)
6314 Loc : constant Source_Ptr := Sloc (N);
6315 Def : constant Node_Id := Type_Definition (N);
6316 Indic : constant Node_Id := Subtype_Indication (Def);
6317 Implicit_Base : Entity_Id;
6318 Literal : Entity_Id;
6319 New_Lit : Entity_Id;
6320 Literals_List : List_Id;
6321 Type_Decl : Node_Id;
6322 Hi, Lo : Node_Id;
6323 Rang_Expr : Node_Id;
6325 begin
6326 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6327 -- not have explicit literals lists we need to process types derived
6328 -- from them specially. This is handled by Derived_Standard_Character.
6329 -- If the parent type is a generic type, there are no literals either,
6330 -- and we construct the same skeletal representation as for the generic
6331 -- parent type.
6333 if Is_Standard_Character_Type (Parent_Type) then
6334 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6336 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6337 declare
6338 Lo : Node_Id;
6339 Hi : Node_Id;
6341 begin
6342 if Nkind (Indic) /= N_Subtype_Indication then
6343 Lo :=
6344 Make_Attribute_Reference (Loc,
6345 Attribute_Name => Name_First,
6346 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6347 Set_Etype (Lo, Derived_Type);
6349 Hi :=
6350 Make_Attribute_Reference (Loc,
6351 Attribute_Name => Name_Last,
6352 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6353 Set_Etype (Hi, Derived_Type);
6355 Set_Scalar_Range (Derived_Type,
6356 Make_Range (Loc,
6357 Low_Bound => Lo,
6358 High_Bound => Hi));
6359 else
6361 -- Analyze subtype indication and verify compatibility
6362 -- with parent type.
6364 if Base_Type (Process_Subtype (Indic, N)) /=
6365 Base_Type (Parent_Type)
6366 then
6367 Error_Msg_N
6368 ("illegal constraint for formal discrete type", N);
6369 end if;
6370 end if;
6371 end;
6373 else
6374 -- If a constraint is present, analyze the bounds to catch
6375 -- premature usage of the derived literals.
6377 if Nkind (Indic) = N_Subtype_Indication
6378 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6379 then
6380 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6381 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6382 end if;
6384 -- Introduce an implicit base type for the derived type even if there
6385 -- is no constraint attached to it, since this seems closer to the
6386 -- Ada semantics. Build a full type declaration tree for the derived
6387 -- type using the implicit base type as the defining identifier. The
6388 -- build a subtype declaration tree which applies the constraint (if
6389 -- any) have it replace the derived type declaration.
6391 Literal := First_Literal (Parent_Type);
6392 Literals_List := New_List;
6393 while Present (Literal)
6394 and then Ekind (Literal) = E_Enumeration_Literal
6395 loop
6396 -- Literals of the derived type have the same representation as
6397 -- those of the parent type, but this representation can be
6398 -- overridden by an explicit representation clause. Indicate
6399 -- that there is no explicit representation given yet. These
6400 -- derived literals are implicit operations of the new type,
6401 -- and can be overridden by explicit ones.
6403 if Nkind (Literal) = N_Defining_Character_Literal then
6404 New_Lit :=
6405 Make_Defining_Character_Literal (Loc, Chars (Literal));
6406 else
6407 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6408 end if;
6410 Set_Ekind (New_Lit, E_Enumeration_Literal);
6411 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6412 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6413 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6414 Set_Alias (New_Lit, Literal);
6415 Set_Is_Known_Valid (New_Lit, True);
6417 Append (New_Lit, Literals_List);
6418 Next_Literal (Literal);
6419 end loop;
6421 Implicit_Base :=
6422 Make_Defining_Identifier (Sloc (Derived_Type),
6423 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6425 -- Indicate the proper nature of the derived type. This must be done
6426 -- before analysis of the literals, to recognize cases when a literal
6427 -- may be hidden by a previous explicit function definition (cf.
6428 -- c83031a).
6430 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6431 Set_Etype (Derived_Type, Implicit_Base);
6433 Type_Decl :=
6434 Make_Full_Type_Declaration (Loc,
6435 Defining_Identifier => Implicit_Base,
6436 Discriminant_Specifications => No_List,
6437 Type_Definition =>
6438 Make_Enumeration_Type_Definition (Loc, Literals_List));
6440 Mark_Rewrite_Insertion (Type_Decl);
6441 Insert_Before (N, Type_Decl);
6442 Analyze (Type_Decl);
6444 -- After the implicit base is analyzed its Etype needs to be changed
6445 -- to reflect the fact that it is derived from the parent type which
6446 -- was ignored during analysis. We also set the size at this point.
6448 Set_Etype (Implicit_Base, Parent_Type);
6450 Set_Size_Info (Implicit_Base, Parent_Type);
6451 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6452 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6454 -- Copy other flags from parent type
6456 Set_Has_Non_Standard_Rep
6457 (Implicit_Base, Has_Non_Standard_Rep
6458 (Parent_Type));
6459 Set_Has_Pragma_Ordered
6460 (Implicit_Base, Has_Pragma_Ordered
6461 (Parent_Type));
6462 Set_Has_Delayed_Freeze (Implicit_Base);
6464 -- Process the subtype indication including a validation check on the
6465 -- constraint, if any. If a constraint is given, its bounds must be
6466 -- implicitly converted to the new type.
6468 if Nkind (Indic) = N_Subtype_Indication then
6469 declare
6470 R : constant Node_Id :=
6471 Range_Expression (Constraint (Indic));
6473 begin
6474 if Nkind (R) = N_Range then
6475 Hi := Build_Scalar_Bound
6476 (High_Bound (R), Parent_Type, Implicit_Base);
6477 Lo := Build_Scalar_Bound
6478 (Low_Bound (R), Parent_Type, Implicit_Base);
6480 else
6481 -- Constraint is a Range attribute. Replace with explicit
6482 -- mention of the bounds of the prefix, which must be a
6483 -- subtype.
6485 Analyze (Prefix (R));
6486 Hi :=
6487 Convert_To (Implicit_Base,
6488 Make_Attribute_Reference (Loc,
6489 Attribute_Name => Name_Last,
6490 Prefix =>
6491 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6493 Lo :=
6494 Convert_To (Implicit_Base,
6495 Make_Attribute_Reference (Loc,
6496 Attribute_Name => Name_First,
6497 Prefix =>
6498 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6499 end if;
6500 end;
6502 else
6503 Hi :=
6504 Build_Scalar_Bound
6505 (Type_High_Bound (Parent_Type),
6506 Parent_Type, Implicit_Base);
6507 Lo :=
6508 Build_Scalar_Bound
6509 (Type_Low_Bound (Parent_Type),
6510 Parent_Type, Implicit_Base);
6511 end if;
6513 Rang_Expr :=
6514 Make_Range (Loc,
6515 Low_Bound => Lo,
6516 High_Bound => Hi);
6518 -- If we constructed a default range for the case where no range
6519 -- was given, then the expressions in the range must not freeze
6520 -- since they do not correspond to expressions in the source.
6522 if Nkind (Indic) /= N_Subtype_Indication then
6523 Set_Must_Not_Freeze (Lo);
6524 Set_Must_Not_Freeze (Hi);
6525 Set_Must_Not_Freeze (Rang_Expr);
6526 end if;
6528 Rewrite (N,
6529 Make_Subtype_Declaration (Loc,
6530 Defining_Identifier => Derived_Type,
6531 Subtype_Indication =>
6532 Make_Subtype_Indication (Loc,
6533 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6534 Constraint =>
6535 Make_Range_Constraint (Loc,
6536 Range_Expression => Rang_Expr))));
6538 Analyze (N);
6540 -- Propagate the aspects from the original type declaration to the
6541 -- declaration of the implicit base.
6543 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6545 -- Apply a range check. Since this range expression doesn't have an
6546 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6547 -- this right???
6549 if Nkind (Indic) = N_Subtype_Indication then
6550 Apply_Range_Check
6551 (Range_Expression (Constraint (Indic)), Parent_Type,
6552 Source_Typ => Entity (Subtype_Mark (Indic)));
6553 end if;
6554 end if;
6555 end Build_Derived_Enumeration_Type;
6557 --------------------------------
6558 -- Build_Derived_Numeric_Type --
6559 --------------------------------
6561 procedure Build_Derived_Numeric_Type
6562 (N : Node_Id;
6563 Parent_Type : Entity_Id;
6564 Derived_Type : Entity_Id)
6566 Loc : constant Source_Ptr := Sloc (N);
6567 Tdef : constant Node_Id := Type_Definition (N);
6568 Indic : constant Node_Id := Subtype_Indication (Tdef);
6569 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6570 No_Constraint : constant Boolean := Nkind (Indic) /=
6571 N_Subtype_Indication;
6572 Implicit_Base : Entity_Id;
6574 Lo : Node_Id;
6575 Hi : Node_Id;
6577 begin
6578 -- Process the subtype indication including a validation check on
6579 -- the constraint if any.
6581 Discard_Node (Process_Subtype (Indic, N));
6583 -- Introduce an implicit base type for the derived type even if there
6584 -- is no constraint attached to it, since this seems closer to the Ada
6585 -- semantics.
6587 Implicit_Base :=
6588 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6590 Set_Etype (Implicit_Base, Parent_Base);
6591 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6592 Set_Size_Info (Implicit_Base, Parent_Base);
6593 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6594 Set_Parent (Implicit_Base, Parent (Derived_Type));
6595 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6597 -- Set RM Size for discrete type or decimal fixed-point type
6598 -- Ordinary fixed-point is excluded, why???
6600 if Is_Discrete_Type (Parent_Base)
6601 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6602 then
6603 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6604 end if;
6606 Set_Has_Delayed_Freeze (Implicit_Base);
6608 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6609 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6611 Set_Scalar_Range (Implicit_Base,
6612 Make_Range (Loc,
6613 Low_Bound => Lo,
6614 High_Bound => Hi));
6616 if Has_Infinities (Parent_Base) then
6617 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6618 end if;
6620 -- The Derived_Type, which is the entity of the declaration, is a
6621 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6622 -- absence of an explicit constraint.
6624 Set_Etype (Derived_Type, Implicit_Base);
6626 -- If we did not have a constraint, then the Ekind is set from the
6627 -- parent type (otherwise Process_Subtype has set the bounds)
6629 if No_Constraint then
6630 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6631 end if;
6633 -- If we did not have a range constraint, then set the range from the
6634 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6636 if No_Constraint or else not Has_Range_Constraint (Indic) then
6637 Set_Scalar_Range (Derived_Type,
6638 Make_Range (Loc,
6639 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6640 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6641 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6643 if Has_Infinities (Parent_Type) then
6644 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6645 end if;
6647 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6648 end if;
6650 Set_Is_Descendent_Of_Address (Derived_Type,
6651 Is_Descendent_Of_Address (Parent_Type));
6652 Set_Is_Descendent_Of_Address (Implicit_Base,
6653 Is_Descendent_Of_Address (Parent_Type));
6655 -- Set remaining type-specific fields, depending on numeric type
6657 if Is_Modular_Integer_Type (Parent_Type) then
6658 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6660 Set_Non_Binary_Modulus
6661 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6663 Set_Is_Known_Valid
6664 (Implicit_Base, Is_Known_Valid (Parent_Base));
6666 elsif Is_Floating_Point_Type (Parent_Type) then
6668 -- Digits of base type is always copied from the digits value of
6669 -- the parent base type, but the digits of the derived type will
6670 -- already have been set if there was a constraint present.
6672 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6673 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6675 if No_Constraint then
6676 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6677 end if;
6679 elsif Is_Fixed_Point_Type (Parent_Type) then
6681 -- Small of base type and derived type are always copied from the
6682 -- parent base type, since smalls never change. The delta of the
6683 -- base type is also copied from the parent base type. However the
6684 -- delta of the derived type will have been set already if a
6685 -- constraint was present.
6687 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6688 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6689 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6691 if No_Constraint then
6692 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6693 end if;
6695 -- The scale and machine radix in the decimal case are always
6696 -- copied from the parent base type.
6698 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6699 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6700 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6702 Set_Machine_Radix_10
6703 (Derived_Type, Machine_Radix_10 (Parent_Base));
6704 Set_Machine_Radix_10
6705 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6707 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6709 if No_Constraint then
6710 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6712 else
6713 -- the analysis of the subtype_indication sets the
6714 -- digits value of the derived type.
6716 null;
6717 end if;
6718 end if;
6719 end if;
6721 if Is_Integer_Type (Parent_Type) then
6722 Set_Has_Shift_Operator
6723 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6724 end if;
6726 -- The type of the bounds is that of the parent type, and they
6727 -- must be converted to the derived type.
6729 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6731 -- The implicit_base should be frozen when the derived type is frozen,
6732 -- but note that it is used in the conversions of the bounds. For fixed
6733 -- types we delay the determination of the bounds until the proper
6734 -- freezing point. For other numeric types this is rejected by GCC, for
6735 -- reasons that are currently unclear (???), so we choose to freeze the
6736 -- implicit base now. In the case of integers and floating point types
6737 -- this is harmless because subsequent representation clauses cannot
6738 -- affect anything, but it is still baffling that we cannot use the
6739 -- same mechanism for all derived numeric types.
6741 -- There is a further complication: actually some representation
6742 -- clauses can affect the implicit base type. For example, attribute
6743 -- definition clauses for stream-oriented attributes need to set the
6744 -- corresponding TSS entries on the base type, and this normally
6745 -- cannot be done after the base type is frozen, so the circuitry in
6746 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6747 -- and not use Set_TSS in this case.
6749 -- There are also consequences for the case of delayed representation
6750 -- aspects for some cases. For example, a Size aspect is delayed and
6751 -- should not be evaluated to the freeze point. This early freezing
6752 -- means that the size attribute evaluation happens too early???
6754 if Is_Fixed_Point_Type (Parent_Type) then
6755 Conditional_Delay (Implicit_Base, Parent_Type);
6756 else
6757 Freeze_Before (N, Implicit_Base);
6758 end if;
6759 end Build_Derived_Numeric_Type;
6761 --------------------------------
6762 -- Build_Derived_Private_Type --
6763 --------------------------------
6765 procedure Build_Derived_Private_Type
6766 (N : Node_Id;
6767 Parent_Type : Entity_Id;
6768 Derived_Type : Entity_Id;
6769 Is_Completion : Boolean;
6770 Derive_Subps : Boolean := True)
6772 Loc : constant Source_Ptr := Sloc (N);
6773 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6774 Par_Scope : constant Entity_Id := Scope (Par_Base);
6775 Full_N : constant Node_Id := New_Copy_Tree (N);
6776 Full_Der : Entity_Id := New_Copy (Derived_Type);
6777 Full_P : Entity_Id;
6779 procedure Build_Full_Derivation;
6780 -- Build full derivation, i.e. derive from the full view
6782 procedure Copy_And_Build;
6783 -- Copy derived type declaration, replace parent with its full view,
6784 -- and build derivation
6786 ---------------------------
6787 -- Build_Full_Derivation --
6788 ---------------------------
6790 procedure Build_Full_Derivation is
6791 begin
6792 -- If parent scope is not open, install the declarations
6794 if not In_Open_Scopes (Par_Scope) then
6795 Install_Private_Declarations (Par_Scope);
6796 Install_Visible_Declarations (Par_Scope);
6797 Copy_And_Build;
6798 Uninstall_Declarations (Par_Scope);
6800 -- If parent scope is open and in another unit, and parent has a
6801 -- completion, then the derivation is taking place in the visible
6802 -- part of a child unit. In that case retrieve the full view of
6803 -- the parent momentarily.
6805 elsif not In_Same_Source_Unit (N, Parent_Type) then
6806 Full_P := Full_View (Parent_Type);
6807 Exchange_Declarations (Parent_Type);
6808 Copy_And_Build;
6809 Exchange_Declarations (Full_P);
6811 -- Otherwise it is a local derivation
6813 else
6814 Copy_And_Build;
6815 end if;
6816 end Build_Full_Derivation;
6818 --------------------
6819 -- Copy_And_Build --
6820 --------------------
6822 procedure Copy_And_Build is
6823 Full_Parent : Entity_Id := Parent_Type;
6825 begin
6826 -- If the parent is itself derived from another private type,
6827 -- installing the private declarations has not affected its
6828 -- privacy status, so use its own full view explicitly.
6830 if Is_Private_Type (Full_Parent)
6831 and then Present (Full_View (Full_Parent))
6832 then
6833 Full_Parent := Full_View (Full_Parent);
6834 end if;
6836 -- And its underlying full view if necessary
6838 if Is_Private_Type (Full_Parent)
6839 and then Present (Underlying_Full_View (Full_Parent))
6840 then
6841 Full_Parent := Underlying_Full_View (Full_Parent);
6842 end if;
6844 -- For record, access and most enumeration types, derivation from
6845 -- the full view requires a fully-fledged declaration. In the other
6846 -- cases, just use an itype.
6848 if Ekind (Full_Parent) in Record_Kind
6849 or else Ekind (Full_Parent) in Access_Kind
6850 or else
6851 (Ekind (Full_Parent) in Enumeration_Kind
6852 and then not Is_Standard_Character_Type (Full_Parent)
6853 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6854 then
6855 -- Copy and adjust declaration to provide a completion for what
6856 -- is originally a private declaration. Indicate that full view
6857 -- is internally generated.
6859 Set_Comes_From_Source (Full_N, False);
6860 Set_Comes_From_Source (Full_Der, False);
6861 Set_Parent (Full_Der, Full_N);
6862 Set_Defining_Identifier (Full_N, Full_Der);
6864 -- If there are no constraints, adjust the subtype mark
6866 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6867 N_Subtype_Indication
6868 then
6869 Set_Subtype_Indication
6870 (Type_Definition (Full_N),
6871 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6872 end if;
6874 Insert_After (N, Full_N);
6876 -- Build full view of derived type from full view of parent which
6877 -- is now installed. Subprograms have been derived on the partial
6878 -- view, the completion does not derive them anew.
6880 if Ekind (Full_Parent) in Record_Kind then
6882 -- If parent type is tagged, the completion inherits the proper
6883 -- primitive operations.
6885 if Is_Tagged_Type (Parent_Type) then
6886 Build_Derived_Record_Type
6887 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6888 else
6889 Build_Derived_Record_Type
6890 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6891 end if;
6893 else
6894 Build_Derived_Type
6895 (Full_N, Full_Parent, Full_Der,
6896 Is_Completion => False, Derive_Subps => False);
6897 end if;
6899 -- The full declaration has been introduced into the tree and
6900 -- processed in the step above. It should not be analyzed again
6901 -- (when encountered later in the current list of declarations)
6902 -- to prevent spurious name conflicts. The full entity remains
6903 -- invisible.
6905 Set_Analyzed (Full_N);
6907 else
6908 Full_Der :=
6909 Make_Defining_Identifier (Sloc (Derived_Type),
6910 Chars => Chars (Derived_Type));
6911 Set_Is_Itype (Full_Der);
6912 Set_Associated_Node_For_Itype (Full_Der, N);
6913 Set_Parent (Full_Der, N);
6914 Build_Derived_Type
6915 (N, Full_Parent, Full_Der,
6916 Is_Completion => False, Derive_Subps => False);
6917 end if;
6919 Set_Has_Private_Declaration (Full_Der);
6920 Set_Has_Private_Declaration (Derived_Type);
6922 Set_Scope (Full_Der, Scope (Derived_Type));
6923 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6924 Set_Has_Size_Clause (Full_Der, False);
6925 Set_Has_Alignment_Clause (Full_Der, False);
6926 Set_Has_Delayed_Freeze (Full_Der);
6927 Set_Is_Frozen (Full_Der, False);
6928 Set_Freeze_Node (Full_Der, Empty);
6929 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6930 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6932 -- The convention on the base type may be set in the private part
6933 -- and not propagated to the subtype until later, so we obtain the
6934 -- convention from the base type of the parent.
6936 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6937 end Copy_And_Build;
6939 -- Start of processing for Build_Derived_Private_Type
6941 begin
6942 if Is_Tagged_Type (Parent_Type) then
6943 Full_P := Full_View (Parent_Type);
6945 -- A type extension of a type with unknown discriminants is an
6946 -- indefinite type that the back-end cannot handle directly.
6947 -- We treat it as a private type, and build a completion that is
6948 -- derived from the full view of the parent, and hopefully has
6949 -- known discriminants.
6951 -- If the full view of the parent type has an underlying record view,
6952 -- use it to generate the underlying record view of this derived type
6953 -- (required for chains of derivations with unknown discriminants).
6955 -- Minor optimization: we avoid the generation of useless underlying
6956 -- record view entities if the private type declaration has unknown
6957 -- discriminants but its corresponding full view has no
6958 -- discriminants.
6960 if Has_Unknown_Discriminants (Parent_Type)
6961 and then Present (Full_P)
6962 and then (Has_Discriminants (Full_P)
6963 or else Present (Underlying_Record_View (Full_P)))
6964 and then not In_Open_Scopes (Par_Scope)
6965 and then Expander_Active
6966 then
6967 declare
6968 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6969 New_Ext : constant Node_Id :=
6970 Copy_Separate_Tree
6971 (Record_Extension_Part (Type_Definition (N)));
6972 Decl : Node_Id;
6974 begin
6975 Build_Derived_Record_Type
6976 (N, Parent_Type, Derived_Type, Derive_Subps);
6978 -- Build anonymous completion, as a derivation from the full
6979 -- view of the parent. This is not a completion in the usual
6980 -- sense, because the current type is not private.
6982 Decl :=
6983 Make_Full_Type_Declaration (Loc,
6984 Defining_Identifier => Full_Der,
6985 Type_Definition =>
6986 Make_Derived_Type_Definition (Loc,
6987 Subtype_Indication =>
6988 New_Copy_Tree
6989 (Subtype_Indication (Type_Definition (N))),
6990 Record_Extension_Part => New_Ext));
6992 -- If the parent type has an underlying record view, use it
6993 -- here to build the new underlying record view.
6995 if Present (Underlying_Record_View (Full_P)) then
6996 pragma Assert
6997 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6998 = N_Identifier);
6999 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7000 Underlying_Record_View (Full_P));
7001 end if;
7003 Install_Private_Declarations (Par_Scope);
7004 Install_Visible_Declarations (Par_Scope);
7005 Insert_Before (N, Decl);
7007 -- Mark entity as an underlying record view before analysis,
7008 -- to avoid generating the list of its primitive operations
7009 -- (which is not really required for this entity) and thus
7010 -- prevent spurious errors associated with missing overriding
7011 -- of abstract primitives (overridden only for Derived_Type).
7013 Set_Ekind (Full_Der, E_Record_Type);
7014 Set_Is_Underlying_Record_View (Full_Der);
7015 Set_Default_SSO (Full_Der);
7017 Analyze (Decl);
7019 pragma Assert (Has_Discriminants (Full_Der)
7020 and then not Has_Unknown_Discriminants (Full_Der));
7022 Uninstall_Declarations (Par_Scope);
7024 -- Freeze the underlying record view, to prevent generation of
7025 -- useless dispatching information, which is simply shared with
7026 -- the real derived type.
7028 Set_Is_Frozen (Full_Der);
7030 -- If the derived type has access discriminants, create
7031 -- references to their anonymous types now, to prevent
7032 -- back-end problems when their first use is in generated
7033 -- bodies of primitives.
7035 declare
7036 E : Entity_Id;
7038 begin
7039 E := First_Entity (Full_Der);
7041 while Present (E) loop
7042 if Ekind (E) = E_Discriminant
7043 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7044 then
7045 Build_Itype_Reference (Etype (E), Decl);
7046 end if;
7048 Next_Entity (E);
7049 end loop;
7050 end;
7052 -- Set up links between real entity and underlying record view
7054 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7055 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7056 end;
7058 -- If discriminants are known, build derived record
7060 else
7061 Build_Derived_Record_Type
7062 (N, Parent_Type, Derived_Type, Derive_Subps);
7063 end if;
7065 return;
7067 elsif Has_Discriminants (Parent_Type) then
7069 -- Build partial view of derived type from partial view of parent.
7070 -- This must be done before building the full derivation because the
7071 -- second derivation will modify the discriminants of the first and
7072 -- the discriminants are chained with the rest of the components in
7073 -- the full derivation.
7075 Build_Derived_Record_Type
7076 (N, Parent_Type, Derived_Type, Derive_Subps);
7078 -- Build the full derivation if this is not the anonymous derived
7079 -- base type created by Build_Derived_Record_Type in the constrained
7080 -- case (see point 5. of its head comment) since we build it for the
7081 -- derived subtype. And skip it for protected types altogether, as
7082 -- gigi does not use these types directly.
7084 if Present (Full_View (Parent_Type))
7085 and then not Is_Itype (Derived_Type)
7086 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7087 then
7088 declare
7089 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7090 Discr : Entity_Id;
7091 Last_Discr : Entity_Id;
7093 begin
7094 -- If this is not a completion, construct the implicit full
7095 -- view by deriving from the full view of the parent type.
7096 -- But if this is a completion, the derived private type
7097 -- being built is a full view and the full derivation can
7098 -- only be its underlying full view.
7100 Build_Full_Derivation;
7102 if not Is_Completion then
7103 Set_Full_View (Derived_Type, Full_Der);
7104 else
7105 Set_Underlying_Full_View (Derived_Type, Full_Der);
7106 end if;
7108 if not Is_Base_Type (Derived_Type) then
7109 Set_Full_View (Der_Base, Base_Type (Full_Der));
7110 end if;
7112 -- Copy the discriminant list from full view to the partial
7113 -- view (base type and its subtype). Gigi requires that the
7114 -- partial and full views have the same discriminants.
7116 -- Note that since the partial view points to discriminants
7117 -- in the full view, their scope will be that of the full
7118 -- view. This might cause some front end problems and need
7119 -- adjustment???
7121 Discr := First_Discriminant (Base_Type (Full_Der));
7122 Set_First_Entity (Der_Base, Discr);
7124 loop
7125 Last_Discr := Discr;
7126 Next_Discriminant (Discr);
7127 exit when No (Discr);
7128 end loop;
7130 Set_Last_Entity (Der_Base, Last_Discr);
7131 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7132 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7134 Set_Stored_Constraint
7135 (Full_Der, Stored_Constraint (Derived_Type));
7136 end;
7137 end if;
7139 elsif Present (Full_View (Parent_Type))
7140 and then Has_Discriminants (Full_View (Parent_Type))
7141 then
7142 if Has_Unknown_Discriminants (Parent_Type)
7143 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7144 N_Subtype_Indication
7145 then
7146 Error_Msg_N
7147 ("cannot constrain type with unknown discriminants",
7148 Subtype_Indication (Type_Definition (N)));
7149 return;
7150 end if;
7152 -- If this is not a completion, construct the implicit full view by
7153 -- deriving from the full view of the parent type. But if this is a
7154 -- completion, the derived private type being built is a full view
7155 -- and the full derivation can only be its underlying full view.
7157 Build_Full_Derivation;
7159 if not Is_Completion then
7160 Set_Full_View (Derived_Type, Full_Der);
7161 else
7162 Set_Underlying_Full_View (Derived_Type, Full_Der);
7163 end if;
7165 -- In any case, the primitive operations are inherited from the
7166 -- parent type, not from the internal full view.
7168 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7170 if Derive_Subps then
7171 Derive_Subprograms (Parent_Type, Derived_Type);
7172 end if;
7174 Set_Stored_Constraint (Derived_Type, No_Elist);
7175 Set_Is_Constrained
7176 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7178 else
7179 -- Untagged type, No discriminants on either view
7181 if Nkind (Subtype_Indication (Type_Definition (N))) =
7182 N_Subtype_Indication
7183 then
7184 Error_Msg_N
7185 ("illegal constraint on type without discriminants", N);
7186 end if;
7188 if Present (Discriminant_Specifications (N))
7189 and then Present (Full_View (Parent_Type))
7190 and then not Is_Tagged_Type (Full_View (Parent_Type))
7191 then
7192 Error_Msg_N ("cannot add discriminants to untagged type", N);
7193 end if;
7195 Set_Stored_Constraint (Derived_Type, No_Elist);
7196 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7197 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7198 Set_Has_Controlled_Component
7199 (Derived_Type, Has_Controlled_Component
7200 (Parent_Type));
7202 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7204 if not Is_Controlled (Parent_Type) then
7205 Set_Finalize_Storage_Only
7206 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7207 end if;
7209 -- If this is not a completion, construct the implicit full view by
7210 -- deriving from the full view of the parent type.
7212 -- ??? If the parent is untagged private and its completion is
7213 -- tagged, this mechanism will not work because we cannot derive from
7214 -- the tagged full view unless we have an extension.
7216 if Present (Full_View (Parent_Type))
7217 and then not Is_Tagged_Type (Full_View (Parent_Type))
7218 and then not Is_Completion
7219 then
7220 Build_Full_Derivation;
7221 Set_Full_View (Derived_Type, Full_Der);
7222 end if;
7223 end if;
7225 Set_Has_Unknown_Discriminants (Derived_Type,
7226 Has_Unknown_Discriminants (Parent_Type));
7228 if Is_Private_Type (Derived_Type) then
7229 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7230 end if;
7232 -- If the parent base type is in scope, add the derived type to its
7233 -- list of private dependents, because its full view may become
7234 -- visible subsequently (in a nested private part, a body, or in a
7235 -- further child unit).
7237 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7238 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7240 -- Check for unusual case where a type completed by a private
7241 -- derivation occurs within a package nested in a child unit, and
7242 -- the parent is declared in an ancestor.
7244 if Is_Child_Unit (Scope (Current_Scope))
7245 and then Is_Completion
7246 and then In_Private_Part (Current_Scope)
7247 and then Scope (Parent_Type) /= Current_Scope
7249 -- Note that if the parent has a completion in the private part,
7250 -- (which is itself a derivation from some other private type)
7251 -- it is that completion that is visible, there is no full view
7252 -- available, and no special processing is needed.
7254 and then Present (Full_View (Parent_Type))
7255 then
7256 -- In this case, the full view of the parent type will become
7257 -- visible in the body of the enclosing child, and only then will
7258 -- the current type be possibly non-private. Build an underlying
7259 -- full view that will be installed when the enclosing child body
7260 -- is compiled.
7262 if Present (Underlying_Full_View (Derived_Type)) then
7263 Full_Der := Underlying_Full_View (Derived_Type);
7264 else
7265 Build_Full_Derivation;
7266 Set_Underlying_Full_View (Derived_Type, Full_Der);
7267 end if;
7269 -- The full view will be used to swap entities on entry/exit to
7270 -- the body, and must appear in the entity list for the package.
7272 Append_Entity (Full_Der, Scope (Derived_Type));
7273 end if;
7274 end if;
7275 end Build_Derived_Private_Type;
7277 -------------------------------
7278 -- Build_Derived_Record_Type --
7279 -------------------------------
7281 -- 1. INTRODUCTION
7283 -- Ideally we would like to use the same model of type derivation for
7284 -- tagged and untagged record types. Unfortunately this is not quite
7285 -- possible because the semantics of representation clauses is different
7286 -- for tagged and untagged records under inheritance. Consider the
7287 -- following:
7289 -- type R (...) is [tagged] record ... end record;
7290 -- type T (...) is new R (...) [with ...];
7292 -- The representation clauses for T can specify a completely different
7293 -- record layout from R's. Hence the same component can be placed in two
7294 -- very different positions in objects of type T and R. If R and T are
7295 -- tagged types, representation clauses for T can only specify the layout
7296 -- of non inherited components, thus components that are common in R and T
7297 -- have the same position in objects of type R and T.
7299 -- This has two implications. The first is that the entire tree for R's
7300 -- declaration needs to be copied for T in the untagged case, so that T
7301 -- can be viewed as a record type of its own with its own representation
7302 -- clauses. The second implication is the way we handle discriminants.
7303 -- Specifically, in the untagged case we need a way to communicate to Gigi
7304 -- what are the real discriminants in the record, while for the semantics
7305 -- we need to consider those introduced by the user to rename the
7306 -- discriminants in the parent type. This is handled by introducing the
7307 -- notion of stored discriminants. See below for more.
7309 -- Fortunately the way regular components are inherited can be handled in
7310 -- the same way in tagged and untagged types.
7312 -- To complicate things a bit more the private view of a private extension
7313 -- cannot be handled in the same way as the full view (for one thing the
7314 -- semantic rules are somewhat different). We will explain what differs
7315 -- below.
7317 -- 2. DISCRIMINANTS UNDER INHERITANCE
7319 -- The semantic rules governing the discriminants of derived types are
7320 -- quite subtle.
7322 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7323 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7325 -- If parent type has discriminants, then the discriminants that are
7326 -- declared in the derived type are [3.4 (11)]:
7328 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7329 -- there is one;
7331 -- o Otherwise, each discriminant of the parent type (implicitly declared
7332 -- in the same order with the same specifications). In this case, the
7333 -- discriminants are said to be "inherited", or if unknown in the parent
7334 -- are also unknown in the derived type.
7336 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7338 -- o The parent subtype must be constrained;
7340 -- o If the parent type is not a tagged type, then each discriminant of
7341 -- the derived type must be used in the constraint defining a parent
7342 -- subtype. [Implementation note: This ensures that the new discriminant
7343 -- can share storage with an existing discriminant.]
7345 -- For the derived type each discriminant of the parent type is either
7346 -- inherited, constrained to equal some new discriminant of the derived
7347 -- type, or constrained to the value of an expression.
7349 -- When inherited or constrained to equal some new discriminant, the
7350 -- parent discriminant and the discriminant of the derived type are said
7351 -- to "correspond".
7353 -- If a discriminant of the parent type is constrained to a specific value
7354 -- in the derived type definition, then the discriminant is said to be
7355 -- "specified" by that derived type definition.
7357 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7359 -- We have spoken about stored discriminants in point 1 (introduction)
7360 -- above. There are two sort of stored discriminants: implicit and
7361 -- explicit. As long as the derived type inherits the same discriminants as
7362 -- the root record type, stored discriminants are the same as regular
7363 -- discriminants, and are said to be implicit. However, if any discriminant
7364 -- in the root type was renamed in the derived type, then the derived
7365 -- type will contain explicit stored discriminants. Explicit stored
7366 -- discriminants are discriminants in addition to the semantically visible
7367 -- discriminants defined for the derived type. Stored discriminants are
7368 -- used by Gigi to figure out what are the physical discriminants in
7369 -- objects of the derived type (see precise definition in einfo.ads).
7370 -- As an example, consider the following:
7372 -- type R (D1, D2, D3 : Int) is record ... end record;
7373 -- type T1 is new R;
7374 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7375 -- type T3 is new T2;
7376 -- type T4 (Y : Int) is new T3 (Y, 99);
7378 -- The following table summarizes the discriminants and stored
7379 -- discriminants in R and T1 through T4.
7381 -- Type Discrim Stored Discrim Comment
7382 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7383 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7384 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7385 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7386 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7388 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7389 -- find the corresponding discriminant in the parent type, while
7390 -- Original_Record_Component (abbreviated ORC below), the actual physical
7391 -- component that is renamed. Finally the field Is_Completely_Hidden
7392 -- (abbreviated ICH below) is set for all explicit stored discriminants
7393 -- (see einfo.ads for more info). For the above example this gives:
7395 -- Discrim CD ORC ICH
7396 -- ^^^^^^^ ^^ ^^^ ^^^
7397 -- D1 in R empty itself no
7398 -- D2 in R empty itself no
7399 -- D3 in R empty itself no
7401 -- D1 in T1 D1 in R itself no
7402 -- D2 in T1 D2 in R itself no
7403 -- D3 in T1 D3 in R itself no
7405 -- X1 in T2 D3 in T1 D3 in T2 no
7406 -- X2 in T2 D1 in T1 D1 in T2 no
7407 -- D1 in T2 empty itself yes
7408 -- D2 in T2 empty itself yes
7409 -- D3 in T2 empty itself yes
7411 -- X1 in T3 X1 in T2 D3 in T3 no
7412 -- X2 in T3 X2 in T2 D1 in T3 no
7413 -- D1 in T3 empty itself yes
7414 -- D2 in T3 empty itself yes
7415 -- D3 in T3 empty itself yes
7417 -- Y in T4 X1 in T3 D3 in T3 no
7418 -- D1 in T3 empty itself yes
7419 -- D2 in T3 empty itself yes
7420 -- D3 in T3 empty itself yes
7422 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7424 -- Type derivation for tagged types is fairly straightforward. If no
7425 -- discriminants are specified by the derived type, these are inherited
7426 -- from the parent. No explicit stored discriminants are ever necessary.
7427 -- The only manipulation that is done to the tree is that of adding a
7428 -- _parent field with parent type and constrained to the same constraint
7429 -- specified for the parent in the derived type definition. For instance:
7431 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7432 -- type T1 is new R with null record;
7433 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7435 -- are changed into:
7437 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7438 -- _parent : R (D1, D2, D3);
7439 -- end record;
7441 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7442 -- _parent : T1 (X2, 88, X1);
7443 -- end record;
7445 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7446 -- ORC and ICH fields are:
7448 -- Discrim CD ORC ICH
7449 -- ^^^^^^^ ^^ ^^^ ^^^
7450 -- D1 in R empty itself no
7451 -- D2 in R empty itself no
7452 -- D3 in R empty itself no
7454 -- D1 in T1 D1 in R D1 in R no
7455 -- D2 in T1 D2 in R D2 in R no
7456 -- D3 in T1 D3 in R D3 in R no
7458 -- X1 in T2 D3 in T1 D3 in R no
7459 -- X2 in T2 D1 in T1 D1 in R no
7461 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7463 -- Regardless of whether we dealing with a tagged or untagged type
7464 -- we will transform all derived type declarations of the form
7466 -- type T is new R (...) [with ...];
7467 -- or
7468 -- subtype S is R (...);
7469 -- type T is new S [with ...];
7470 -- into
7471 -- type BT is new R [with ...];
7472 -- subtype T is BT (...);
7474 -- That is, the base derived type is constrained only if it has no
7475 -- discriminants. The reason for doing this is that GNAT's semantic model
7476 -- assumes that a base type with discriminants is unconstrained.
7478 -- Note that, strictly speaking, the above transformation is not always
7479 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7481 -- procedure B34011A is
7482 -- type REC (D : integer := 0) is record
7483 -- I : Integer;
7484 -- end record;
7486 -- package P is
7487 -- type T6 is new Rec;
7488 -- function F return T6;
7489 -- end P;
7491 -- use P;
7492 -- package Q6 is
7493 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7494 -- end Q6;
7496 -- The definition of Q6.U is illegal. However transforming Q6.U into
7498 -- type BaseU is new T6;
7499 -- subtype U is BaseU (Q6.F.I)
7501 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7502 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7503 -- the transformation described above.
7505 -- There is another instance where the above transformation is incorrect.
7506 -- Consider:
7508 -- package Pack is
7509 -- type Base (D : Integer) is tagged null record;
7510 -- procedure P (X : Base);
7512 -- type Der is new Base (2) with null record;
7513 -- procedure P (X : Der);
7514 -- end Pack;
7516 -- Then the above transformation turns this into
7518 -- type Der_Base is new Base with null record;
7519 -- -- procedure P (X : Base) is implicitly inherited here
7520 -- -- as procedure P (X : Der_Base).
7522 -- subtype Der is Der_Base (2);
7523 -- procedure P (X : Der);
7524 -- -- The overriding of P (X : Der_Base) is illegal since we
7525 -- -- have a parameter conformance problem.
7527 -- To get around this problem, after having semantically processed Der_Base
7528 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7529 -- Discriminant_Constraint from Der so that when parameter conformance is
7530 -- checked when P is overridden, no semantic errors are flagged.
7532 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7534 -- Regardless of whether we are dealing with a tagged or untagged type
7535 -- we will transform all derived type declarations of the form
7537 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7538 -- type T is new R [with ...];
7539 -- into
7540 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7542 -- The reason for such transformation is that it allows us to implement a
7543 -- very clean form of component inheritance as explained below.
7545 -- Note that this transformation is not achieved by direct tree rewriting
7546 -- and manipulation, but rather by redoing the semantic actions that the
7547 -- above transformation will entail. This is done directly in routine
7548 -- Inherit_Components.
7550 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7552 -- In both tagged and untagged derived types, regular non discriminant
7553 -- components are inherited in the derived type from the parent type. In
7554 -- the absence of discriminants component, inheritance is straightforward
7555 -- as components can simply be copied from the parent.
7557 -- If the parent has discriminants, inheriting components constrained with
7558 -- these discriminants requires caution. Consider the following example:
7560 -- type R (D1, D2 : Positive) is [tagged] record
7561 -- S : String (D1 .. D2);
7562 -- end record;
7564 -- type T1 is new R [with null record];
7565 -- type T2 (X : positive) is new R (1, X) [with null record];
7567 -- As explained in 6. above, T1 is rewritten as
7568 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7569 -- which makes the treatment for T1 and T2 identical.
7571 -- What we want when inheriting S, is that references to D1 and D2 in R are
7572 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7573 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7574 -- with either discriminant references in the derived type or expressions.
7575 -- This replacement is achieved as follows: before inheriting R's
7576 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7577 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7578 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7579 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7580 -- by String (1 .. X).
7582 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7584 -- We explain here the rules governing private type extensions relevant to
7585 -- type derivation. These rules are explained on the following example:
7587 -- type D [(...)] is new A [(...)] with private; <-- partial view
7588 -- type D [(...)] is new P [(...)] with null record; <-- full view
7590 -- Type A is called the ancestor subtype of the private extension.
7591 -- Type P is the parent type of the full view of the private extension. It
7592 -- must be A or a type derived from A.
7594 -- The rules concerning the discriminants of private type extensions are
7595 -- [7.3(10-13)]:
7597 -- o If a private extension inherits known discriminants from the ancestor
7598 -- subtype, then the full view must also inherit its discriminants from
7599 -- the ancestor subtype and the parent subtype of the full view must be
7600 -- constrained if and only if the ancestor subtype is constrained.
7602 -- o If a partial view has unknown discriminants, then the full view may
7603 -- define a definite or an indefinite subtype, with or without
7604 -- discriminants.
7606 -- o If a partial view has neither known nor unknown discriminants, then
7607 -- the full view must define a definite subtype.
7609 -- o If the ancestor subtype of a private extension has constrained
7610 -- discriminants, then the parent subtype of the full view must impose a
7611 -- statically matching constraint on those discriminants.
7613 -- This means that only the following forms of private extensions are
7614 -- allowed:
7616 -- type D is new A with private; <-- partial view
7617 -- type D is new P with null record; <-- full view
7619 -- If A has no discriminants than P has no discriminants, otherwise P must
7620 -- inherit A's discriminants.
7622 -- type D is new A (...) with private; <-- partial view
7623 -- type D is new P (:::) with null record; <-- full view
7625 -- P must inherit A's discriminants and (...) and (:::) must statically
7626 -- match.
7628 -- subtype A is R (...);
7629 -- type D is new A with private; <-- partial view
7630 -- type D is new P with null record; <-- full view
7632 -- P must have inherited R's discriminants and must be derived from A or
7633 -- any of its subtypes.
7635 -- type D (..) is new A with private; <-- partial view
7636 -- type D (..) is new P [(:::)] with null record; <-- full view
7638 -- No specific constraints on P's discriminants or constraint (:::).
7639 -- Note that A can be unconstrained, but the parent subtype P must either
7640 -- be constrained or (:::) must be present.
7642 -- type D (..) is new A [(...)] with private; <-- partial view
7643 -- type D (..) is new P [(:::)] with null record; <-- full view
7645 -- P's constraints on A's discriminants must statically match those
7646 -- imposed by (...).
7648 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7650 -- The full view of a private extension is handled exactly as described
7651 -- above. The model chose for the private view of a private extension is
7652 -- the same for what concerns discriminants (i.e. they receive the same
7653 -- treatment as in the tagged case). However, the private view of the
7654 -- private extension always inherits the components of the parent base,
7655 -- without replacing any discriminant reference. Strictly speaking this is
7656 -- incorrect. However, Gigi never uses this view to generate code so this
7657 -- is a purely semantic issue. In theory, a set of transformations similar
7658 -- to those given in 5. and 6. above could be applied to private views of
7659 -- private extensions to have the same model of component inheritance as
7660 -- for non private extensions. However, this is not done because it would
7661 -- further complicate private type processing. Semantically speaking, this
7662 -- leaves us in an uncomfortable situation. As an example consider:
7664 -- package Pack is
7665 -- type R (D : integer) is tagged record
7666 -- S : String (1 .. D);
7667 -- end record;
7668 -- procedure P (X : R);
7669 -- type T is new R (1) with private;
7670 -- private
7671 -- type T is new R (1) with null record;
7672 -- end;
7674 -- This is transformed into:
7676 -- package Pack is
7677 -- type R (D : integer) is tagged record
7678 -- S : String (1 .. D);
7679 -- end record;
7680 -- procedure P (X : R);
7681 -- type T is new R (1) with private;
7682 -- private
7683 -- type BaseT is new R with null record;
7684 -- subtype T is BaseT (1);
7685 -- end;
7687 -- (strictly speaking the above is incorrect Ada)
7689 -- From the semantic standpoint the private view of private extension T
7690 -- should be flagged as constrained since one can clearly have
7692 -- Obj : T;
7694 -- in a unit withing Pack. However, when deriving subprograms for the
7695 -- private view of private extension T, T must be seen as unconstrained
7696 -- since T has discriminants (this is a constraint of the current
7697 -- subprogram derivation model). Thus, when processing the private view of
7698 -- a private extension such as T, we first mark T as unconstrained, we
7699 -- process it, we perform program derivation and just before returning from
7700 -- Build_Derived_Record_Type we mark T as constrained.
7702 -- ??? Are there are other uncomfortable cases that we will have to
7703 -- deal with.
7705 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7707 -- Types that are derived from a visible record type and have a private
7708 -- extension present other peculiarities. They behave mostly like private
7709 -- types, but if they have primitive operations defined, these will not
7710 -- have the proper signatures for further inheritance, because other
7711 -- primitive operations will use the implicit base that we define for
7712 -- private derivations below. This affect subprogram inheritance (see
7713 -- Derive_Subprograms for details). We also derive the implicit base from
7714 -- the base type of the full view, so that the implicit base is a record
7715 -- type and not another private type, This avoids infinite loops.
7717 procedure Build_Derived_Record_Type
7718 (N : Node_Id;
7719 Parent_Type : Entity_Id;
7720 Derived_Type : Entity_Id;
7721 Derive_Subps : Boolean := True)
7723 function Implements_Ghost_Interface (Typ : Entity_Id) return Boolean;
7724 -- Determine whether type Typ implements at least one Ghost interface
7726 --------------------------------
7727 -- Implements_Ghost_Interface --
7728 --------------------------------
7730 function Implements_Ghost_Interface (Typ : Entity_Id) return Boolean is
7731 Iface_Elmt : Elmt_Id;
7732 begin
7733 -- Traverse the list of interfaces looking for a Ghost interface
7735 if Is_Tagged_Type (Typ) and then Present (Interfaces (Typ)) then
7736 Iface_Elmt := First_Elmt (Interfaces (Typ));
7737 while Present (Iface_Elmt) loop
7738 if Is_Ghost_Entity (Node (Iface_Elmt)) then
7739 return True;
7740 end if;
7742 Next_Elmt (Iface_Elmt);
7743 end loop;
7744 end if;
7746 return False;
7747 end Implements_Ghost_Interface;
7749 -- Local variables
7751 Discriminant_Specs : constant Boolean :=
7752 Present (Discriminant_Specifications (N));
7753 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7754 Loc : constant Source_Ptr := Sloc (N);
7755 Private_Extension : constant Boolean :=
7756 Nkind (N) = N_Private_Extension_Declaration;
7757 Assoc_List : Elist_Id;
7758 Constraint_Present : Boolean;
7759 Constrs : Elist_Id;
7760 Discrim : Entity_Id;
7761 Indic : Node_Id;
7762 Inherit_Discrims : Boolean := False;
7763 Last_Discrim : Entity_Id;
7764 New_Base : Entity_Id;
7765 New_Decl : Node_Id;
7766 New_Discrs : Elist_Id;
7767 New_Indic : Node_Id;
7768 Parent_Base : Entity_Id;
7769 Save_Etype : Entity_Id;
7770 Save_Discr_Constr : Elist_Id;
7771 Save_Next_Entity : Entity_Id;
7772 Type_Def : Node_Id;
7774 Discs : Elist_Id := New_Elmt_List;
7775 -- An empty Discs list means that there were no constraints in the
7776 -- subtype indication or that there was an error processing it.
7778 -- Start of processing for Build_Derived_Record_Type
7780 begin
7781 if Ekind (Parent_Type) = E_Record_Type_With_Private
7782 and then Present (Full_View (Parent_Type))
7783 and then Has_Discriminants (Parent_Type)
7784 then
7785 Parent_Base := Base_Type (Full_View (Parent_Type));
7786 else
7787 Parent_Base := Base_Type (Parent_Type);
7788 end if;
7790 -- AI05-0115 : if this is a derivation from a private type in some
7791 -- other scope that may lead to invisible components for the derived
7792 -- type, mark it accordingly.
7794 if Is_Private_Type (Parent_Type) then
7795 if Scope (Parent_Type) = Scope (Derived_Type) then
7796 null;
7798 elsif In_Open_Scopes (Scope (Parent_Type))
7799 and then In_Private_Part (Scope (Parent_Type))
7800 then
7801 null;
7803 else
7804 Set_Has_Private_Ancestor (Derived_Type);
7805 end if;
7807 else
7808 Set_Has_Private_Ancestor
7809 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7810 end if;
7812 -- Before we start the previously documented transformations, here is
7813 -- little fix for size and alignment of tagged types. Normally when we
7814 -- derive type D from type P, we copy the size and alignment of P as the
7815 -- default for D, and in the absence of explicit representation clauses
7816 -- for D, the size and alignment are indeed the same as the parent.
7818 -- But this is wrong for tagged types, since fields may be added, and
7819 -- the default size may need to be larger, and the default alignment may
7820 -- need to be larger.
7822 -- We therefore reset the size and alignment fields in the tagged case.
7823 -- Note that the size and alignment will in any case be at least as
7824 -- large as the parent type (since the derived type has a copy of the
7825 -- parent type in the _parent field)
7827 -- The type is also marked as being tagged here, which is needed when
7828 -- processing components with a self-referential anonymous access type
7829 -- in the call to Check_Anonymous_Access_Components below. Note that
7830 -- this flag is also set later on for completeness.
7832 if Is_Tagged then
7833 Set_Is_Tagged_Type (Derived_Type);
7834 Init_Size_Align (Derived_Type);
7835 end if;
7837 -- STEP 0a: figure out what kind of derived type declaration we have
7839 if Private_Extension then
7840 Type_Def := N;
7841 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7842 Set_Default_SSO (Derived_Type);
7844 else
7845 Type_Def := Type_Definition (N);
7847 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7848 -- Parent_Base can be a private type or private extension. However,
7849 -- for tagged types with an extension the newly added fields are
7850 -- visible and hence the Derived_Type is always an E_Record_Type.
7851 -- (except that the parent may have its own private fields).
7852 -- For untagged types we preserve the Ekind of the Parent_Base.
7854 if Present (Record_Extension_Part (Type_Def)) then
7855 Set_Ekind (Derived_Type, E_Record_Type);
7856 Set_Default_SSO (Derived_Type);
7858 -- Create internal access types for components with anonymous
7859 -- access types.
7861 if Ada_Version >= Ada_2005 then
7862 Check_Anonymous_Access_Components
7863 (N, Derived_Type, Derived_Type,
7864 Component_List (Record_Extension_Part (Type_Def)));
7865 end if;
7867 else
7868 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7869 end if;
7870 end if;
7872 -- Indic can either be an N_Identifier if the subtype indication
7873 -- contains no constraint or an N_Subtype_Indication if the subtype
7874 -- indication has a constraint.
7876 Indic := Subtype_Indication (Type_Def);
7877 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7879 -- Check that the type has visible discriminants. The type may be
7880 -- a private type with unknown discriminants whose full view has
7881 -- discriminants which are invisible.
7883 if Constraint_Present then
7884 if not Has_Discriminants (Parent_Base)
7885 or else
7886 (Has_Unknown_Discriminants (Parent_Base)
7887 and then Is_Private_Type (Parent_Base))
7888 then
7889 Error_Msg_N
7890 ("invalid constraint: type has no discriminant",
7891 Constraint (Indic));
7893 Constraint_Present := False;
7894 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7896 elsif Is_Constrained (Parent_Type) then
7897 Error_Msg_N
7898 ("invalid constraint: parent type is already constrained",
7899 Constraint (Indic));
7901 Constraint_Present := False;
7902 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7903 end if;
7904 end if;
7906 -- STEP 0b: If needed, apply transformation given in point 5. above
7908 if not Private_Extension
7909 and then Has_Discriminants (Parent_Type)
7910 and then not Discriminant_Specs
7911 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7912 then
7913 -- First, we must analyze the constraint (see comment in point 5.)
7914 -- The constraint may come from the subtype indication of the full
7915 -- declaration.
7917 if Constraint_Present then
7918 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7920 -- If there is no explicit constraint, there might be one that is
7921 -- inherited from a constrained parent type. In that case verify that
7922 -- it conforms to the constraint in the partial view. In perverse
7923 -- cases the parent subtypes of the partial and full view can have
7924 -- different constraints.
7926 elsif Present (Stored_Constraint (Parent_Type)) then
7927 New_Discrs := Stored_Constraint (Parent_Type);
7929 else
7930 New_Discrs := No_Elist;
7931 end if;
7933 if Has_Discriminants (Derived_Type)
7934 and then Has_Private_Declaration (Derived_Type)
7935 and then Present (Discriminant_Constraint (Derived_Type))
7936 and then Present (New_Discrs)
7937 then
7938 -- Verify that constraints of the full view statically match
7939 -- those given in the partial view.
7941 declare
7942 C1, C2 : Elmt_Id;
7944 begin
7945 C1 := First_Elmt (New_Discrs);
7946 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7947 while Present (C1) and then Present (C2) loop
7948 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7949 or else
7950 (Is_OK_Static_Expression (Node (C1))
7951 and then Is_OK_Static_Expression (Node (C2))
7952 and then
7953 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7954 then
7955 null;
7957 else
7958 if Constraint_Present then
7959 Error_Msg_N
7960 ("constraint not conformant to previous declaration",
7961 Node (C1));
7962 else
7963 Error_Msg_N
7964 ("constraint of full view is incompatible "
7965 & "with partial view", N);
7966 end if;
7967 end if;
7969 Next_Elmt (C1);
7970 Next_Elmt (C2);
7971 end loop;
7972 end;
7973 end if;
7975 -- Insert and analyze the declaration for the unconstrained base type
7977 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7979 New_Decl :=
7980 Make_Full_Type_Declaration (Loc,
7981 Defining_Identifier => New_Base,
7982 Type_Definition =>
7983 Make_Derived_Type_Definition (Loc,
7984 Abstract_Present => Abstract_Present (Type_Def),
7985 Limited_Present => Limited_Present (Type_Def),
7986 Subtype_Indication =>
7987 New_Occurrence_Of (Parent_Base, Loc),
7988 Record_Extension_Part =>
7989 Relocate_Node (Record_Extension_Part (Type_Def)),
7990 Interface_List => Interface_List (Type_Def)));
7992 Set_Parent (New_Decl, Parent (N));
7993 Mark_Rewrite_Insertion (New_Decl);
7994 Insert_Before (N, New_Decl);
7996 -- In the extension case, make sure ancestor is frozen appropriately
7997 -- (see also non-discriminated case below).
7999 if Present (Record_Extension_Part (Type_Def))
8000 or else Is_Interface (Parent_Base)
8001 then
8002 Freeze_Before (New_Decl, Parent_Type);
8003 end if;
8005 -- Note that this call passes False for the Derive_Subps parameter
8006 -- because subprogram derivation is deferred until after creating
8007 -- the subtype (see below).
8009 Build_Derived_Type
8010 (New_Decl, Parent_Base, New_Base,
8011 Is_Completion => False, Derive_Subps => False);
8013 -- ??? This needs re-examination to determine whether the
8014 -- above call can simply be replaced by a call to Analyze.
8016 Set_Analyzed (New_Decl);
8018 -- Insert and analyze the declaration for the constrained subtype
8020 if Constraint_Present then
8021 New_Indic :=
8022 Make_Subtype_Indication (Loc,
8023 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8024 Constraint => Relocate_Node (Constraint (Indic)));
8026 else
8027 declare
8028 Constr_List : constant List_Id := New_List;
8029 C : Elmt_Id;
8030 Expr : Node_Id;
8032 begin
8033 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8034 while Present (C) loop
8035 Expr := Node (C);
8037 -- It is safe here to call New_Copy_Tree since
8038 -- Force_Evaluation was called on each constraint in
8039 -- Build_Discriminant_Constraints.
8041 Append (New_Copy_Tree (Expr), To => Constr_List);
8043 Next_Elmt (C);
8044 end loop;
8046 New_Indic :=
8047 Make_Subtype_Indication (Loc,
8048 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8049 Constraint =>
8050 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8051 end;
8052 end if;
8054 Rewrite (N,
8055 Make_Subtype_Declaration (Loc,
8056 Defining_Identifier => Derived_Type,
8057 Subtype_Indication => New_Indic));
8059 Analyze (N);
8061 -- Derivation of subprograms must be delayed until the full subtype
8062 -- has been established, to ensure proper overriding of subprograms
8063 -- inherited by full types. If the derivations occurred as part of
8064 -- the call to Build_Derived_Type above, then the check for type
8065 -- conformance would fail because earlier primitive subprograms
8066 -- could still refer to the full type prior the change to the new
8067 -- subtype and hence would not match the new base type created here.
8068 -- Subprograms are not derived, however, when Derive_Subps is False
8069 -- (since otherwise there could be redundant derivations).
8071 if Derive_Subps then
8072 Derive_Subprograms (Parent_Type, Derived_Type);
8073 end if;
8075 -- For tagged types the Discriminant_Constraint of the new base itype
8076 -- is inherited from the first subtype so that no subtype conformance
8077 -- problem arise when the first subtype overrides primitive
8078 -- operations inherited by the implicit base type.
8080 if Is_Tagged then
8081 Set_Discriminant_Constraint
8082 (New_Base, Discriminant_Constraint (Derived_Type));
8083 end if;
8085 return;
8086 end if;
8088 -- If we get here Derived_Type will have no discriminants or it will be
8089 -- a discriminated unconstrained base type.
8091 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8093 if Is_Tagged then
8095 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8096 -- The declaration of a specific descendant of an interface type
8097 -- freezes the interface type (RM 13.14).
8099 if not Private_Extension or else Is_Interface (Parent_Base) then
8100 Freeze_Before (N, Parent_Type);
8101 end if;
8103 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8104 -- cannot be declared at a deeper level than its parent type is
8105 -- removed. The check on derivation within a generic body is also
8106 -- relaxed, but there's a restriction that a derived tagged type
8107 -- cannot be declared in a generic body if it's derived directly
8108 -- or indirectly from a formal type of that generic.
8110 if Ada_Version >= Ada_2005 then
8111 if Present (Enclosing_Generic_Body (Derived_Type)) then
8112 declare
8113 Ancestor_Type : Entity_Id;
8115 begin
8116 -- Check to see if any ancestor of the derived type is a
8117 -- formal type.
8119 Ancestor_Type := Parent_Type;
8120 while not Is_Generic_Type (Ancestor_Type)
8121 and then Etype (Ancestor_Type) /= Ancestor_Type
8122 loop
8123 Ancestor_Type := Etype (Ancestor_Type);
8124 end loop;
8126 -- If the derived type does have a formal type as an
8127 -- ancestor, then it's an error if the derived type is
8128 -- declared within the body of the generic unit that
8129 -- declares the formal type in its generic formal part. It's
8130 -- sufficient to check whether the ancestor type is declared
8131 -- inside the same generic body as the derived type (such as
8132 -- within a nested generic spec), in which case the
8133 -- derivation is legal. If the formal type is declared
8134 -- outside of that generic body, then it's guaranteed that
8135 -- the derived type is declared within the generic body of
8136 -- the generic unit declaring the formal type.
8138 if Is_Generic_Type (Ancestor_Type)
8139 and then Enclosing_Generic_Body (Ancestor_Type) /=
8140 Enclosing_Generic_Body (Derived_Type)
8141 then
8142 Error_Msg_NE
8143 ("parent type of& must not be descendant of formal type"
8144 & " of an enclosing generic body",
8145 Indic, Derived_Type);
8146 end if;
8147 end;
8148 end if;
8150 elsif Type_Access_Level (Derived_Type) /=
8151 Type_Access_Level (Parent_Type)
8152 and then not Is_Generic_Type (Derived_Type)
8153 then
8154 if Is_Controlled (Parent_Type) then
8155 Error_Msg_N
8156 ("controlled type must be declared at the library level",
8157 Indic);
8158 else
8159 Error_Msg_N
8160 ("type extension at deeper accessibility level than parent",
8161 Indic);
8162 end if;
8164 else
8165 declare
8166 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8167 begin
8168 if Present (GB)
8169 and then GB /= Enclosing_Generic_Body (Parent_Base)
8170 then
8171 Error_Msg_NE
8172 ("parent type of& must not be outside generic body"
8173 & " (RM 3.9.1(4))",
8174 Indic, Derived_Type);
8175 end if;
8176 end;
8177 end if;
8178 end if;
8180 -- Ada 2005 (AI-251)
8182 if Ada_Version >= Ada_2005 and then Is_Tagged then
8184 -- "The declaration of a specific descendant of an interface type
8185 -- freezes the interface type" (RM 13.14).
8187 declare
8188 Iface : Node_Id;
8189 begin
8190 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8191 Iface := First (Interface_List (Type_Def));
8192 while Present (Iface) loop
8193 Freeze_Before (N, Etype (Iface));
8194 Next (Iface);
8195 end loop;
8196 end if;
8197 end;
8198 end if;
8200 -- STEP 1b : preliminary cleanup of the full view of private types
8202 -- If the type is already marked as having discriminants, then it's the
8203 -- completion of a private type or private extension and we need to
8204 -- retain the discriminants from the partial view if the current
8205 -- declaration has Discriminant_Specifications so that we can verify
8206 -- conformance. However, we must remove any existing components that
8207 -- were inherited from the parent (and attached in Copy_And_Swap)
8208 -- because the full type inherits all appropriate components anyway, and
8209 -- we do not want the partial view's components interfering.
8211 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8212 Discrim := First_Discriminant (Derived_Type);
8213 loop
8214 Last_Discrim := Discrim;
8215 Next_Discriminant (Discrim);
8216 exit when No (Discrim);
8217 end loop;
8219 Set_Last_Entity (Derived_Type, Last_Discrim);
8221 -- In all other cases wipe out the list of inherited components (even
8222 -- inherited discriminants), it will be properly rebuilt here.
8224 else
8225 Set_First_Entity (Derived_Type, Empty);
8226 Set_Last_Entity (Derived_Type, Empty);
8227 end if;
8229 -- STEP 1c: Initialize some flags for the Derived_Type
8231 -- The following flags must be initialized here so that
8232 -- Process_Discriminants can check that discriminants of tagged types do
8233 -- not have a default initial value and that access discriminants are
8234 -- only specified for limited records. For completeness, these flags are
8235 -- also initialized along with all the other flags below.
8237 -- AI-419: Limitedness is not inherited from an interface parent, so to
8238 -- be limited in that case the type must be explicitly declared as
8239 -- limited. However, task and protected interfaces are always limited.
8241 if Limited_Present (Type_Def) then
8242 Set_Is_Limited_Record (Derived_Type);
8244 elsif Is_Limited_Record (Parent_Type)
8245 or else (Present (Full_View (Parent_Type))
8246 and then Is_Limited_Record (Full_View (Parent_Type)))
8247 then
8248 if not Is_Interface (Parent_Type)
8249 or else Is_Synchronized_Interface (Parent_Type)
8250 or else Is_Protected_Interface (Parent_Type)
8251 or else Is_Task_Interface (Parent_Type)
8252 then
8253 Set_Is_Limited_Record (Derived_Type);
8254 end if;
8255 end if;
8257 -- STEP 2a: process discriminants of derived type if any
8259 Push_Scope (Derived_Type);
8261 if Discriminant_Specs then
8262 Set_Has_Unknown_Discriminants (Derived_Type, False);
8264 -- The following call initializes fields Has_Discriminants and
8265 -- Discriminant_Constraint, unless we are processing the completion
8266 -- of a private type declaration.
8268 Check_Or_Process_Discriminants (N, Derived_Type);
8270 -- For untagged types, the constraint on the Parent_Type must be
8271 -- present and is used to rename the discriminants.
8273 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8274 Error_Msg_N ("untagged parent must have discriminants", Indic);
8276 elsif not Is_Tagged and then not Constraint_Present then
8277 Error_Msg_N
8278 ("discriminant constraint needed for derived untagged records",
8279 Indic);
8281 -- Otherwise the parent subtype must be constrained unless we have a
8282 -- private extension.
8284 elsif not Constraint_Present
8285 and then not Private_Extension
8286 and then not Is_Constrained (Parent_Type)
8287 then
8288 Error_Msg_N
8289 ("unconstrained type not allowed in this context", Indic);
8291 elsif Constraint_Present then
8292 -- The following call sets the field Corresponding_Discriminant
8293 -- for the discriminants in the Derived_Type.
8295 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8297 -- For untagged types all new discriminants must rename
8298 -- discriminants in the parent. For private extensions new
8299 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8301 Discrim := First_Discriminant (Derived_Type);
8302 while Present (Discrim) loop
8303 if not Is_Tagged
8304 and then No (Corresponding_Discriminant (Discrim))
8305 then
8306 Error_Msg_N
8307 ("new discriminants must constrain old ones", Discrim);
8309 elsif Private_Extension
8310 and then Present (Corresponding_Discriminant (Discrim))
8311 then
8312 Error_Msg_N
8313 ("only static constraints allowed for parent"
8314 & " discriminants in the partial view", Indic);
8315 exit;
8316 end if;
8318 -- If a new discriminant is used in the constraint, then its
8319 -- subtype must be statically compatible with the parent
8320 -- discriminant's subtype (3.7(15)).
8322 -- However, if the record contains an array constrained by
8323 -- the discriminant but with some different bound, the compiler
8324 -- attemps to create a smaller range for the discriminant type.
8325 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8326 -- the discriminant type is a scalar type, the check must use
8327 -- the original discriminant type in the parent declaration.
8329 declare
8330 Corr_Disc : constant Entity_Id :=
8331 Corresponding_Discriminant (Discrim);
8332 Disc_Type : constant Entity_Id := Etype (Discrim);
8333 Corr_Type : Entity_Id;
8335 begin
8336 if Present (Corr_Disc) then
8337 if Is_Scalar_Type (Disc_Type) then
8338 Corr_Type :=
8339 Entity (Discriminant_Type (Parent (Corr_Disc)));
8340 else
8341 Corr_Type := Etype (Corr_Disc);
8342 end if;
8344 if not
8345 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8346 then
8347 Error_Msg_N
8348 ("subtype must be compatible "
8349 & "with parent discriminant",
8350 Discrim);
8351 end if;
8352 end if;
8353 end;
8355 Next_Discriminant (Discrim);
8356 end loop;
8358 -- Check whether the constraints of the full view statically
8359 -- match those imposed by the parent subtype [7.3(13)].
8361 if Present (Stored_Constraint (Derived_Type)) then
8362 declare
8363 C1, C2 : Elmt_Id;
8365 begin
8366 C1 := First_Elmt (Discs);
8367 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8368 while Present (C1) and then Present (C2) loop
8369 if not
8370 Fully_Conformant_Expressions (Node (C1), Node (C2))
8371 then
8372 Error_Msg_N
8373 ("not conformant with previous declaration",
8374 Node (C1));
8375 end if;
8377 Next_Elmt (C1);
8378 Next_Elmt (C2);
8379 end loop;
8380 end;
8381 end if;
8382 end if;
8384 -- STEP 2b: No new discriminants, inherit discriminants if any
8386 else
8387 if Private_Extension then
8388 Set_Has_Unknown_Discriminants
8389 (Derived_Type,
8390 Has_Unknown_Discriminants (Parent_Type)
8391 or else Unknown_Discriminants_Present (N));
8393 -- The partial view of the parent may have unknown discriminants,
8394 -- but if the full view has discriminants and the parent type is
8395 -- in scope they must be inherited.
8397 elsif Has_Unknown_Discriminants (Parent_Type)
8398 and then
8399 (not Has_Discriminants (Parent_Type)
8400 or else not In_Open_Scopes (Scope (Parent_Type)))
8401 then
8402 Set_Has_Unknown_Discriminants (Derived_Type);
8403 end if;
8405 if not Has_Unknown_Discriminants (Derived_Type)
8406 and then not Has_Unknown_Discriminants (Parent_Base)
8407 and then Has_Discriminants (Parent_Type)
8408 then
8409 Inherit_Discrims := True;
8410 Set_Has_Discriminants
8411 (Derived_Type, True);
8412 Set_Discriminant_Constraint
8413 (Derived_Type, Discriminant_Constraint (Parent_Base));
8414 end if;
8416 -- The following test is true for private types (remember
8417 -- transformation 5. is not applied to those) and in an error
8418 -- situation.
8420 if Constraint_Present then
8421 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8422 end if;
8424 -- For now mark a new derived type as constrained only if it has no
8425 -- discriminants. At the end of Build_Derived_Record_Type we properly
8426 -- set this flag in the case of private extensions. See comments in
8427 -- point 9. just before body of Build_Derived_Record_Type.
8429 Set_Is_Constrained
8430 (Derived_Type,
8431 not (Inherit_Discrims
8432 or else Has_Unknown_Discriminants (Derived_Type)));
8433 end if;
8435 -- STEP 3: initialize fields of derived type
8437 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8438 Set_Stored_Constraint (Derived_Type, No_Elist);
8440 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8441 -- but cannot be interfaces
8443 if not Private_Extension
8444 and then Ekind (Derived_Type) /= E_Private_Type
8445 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8446 then
8447 if Interface_Present (Type_Def) then
8448 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8449 end if;
8451 Set_Interfaces (Derived_Type, No_Elist);
8452 end if;
8454 -- Fields inherited from the Parent_Type
8456 Set_Has_Specified_Layout
8457 (Derived_Type, Has_Specified_Layout (Parent_Type));
8458 Set_Is_Limited_Composite
8459 (Derived_Type, Is_Limited_Composite (Parent_Type));
8460 Set_Is_Private_Composite
8461 (Derived_Type, Is_Private_Composite (Parent_Type));
8463 if Is_Tagged_Type (Parent_Type) then
8464 Set_No_Tagged_Streams_Pragma
8465 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8466 end if;
8468 -- Fields inherited from the Parent_Base
8470 Set_Has_Controlled_Component
8471 (Derived_Type, Has_Controlled_Component (Parent_Base));
8472 Set_Has_Non_Standard_Rep
8473 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8474 Set_Has_Primitive_Operations
8475 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8477 -- Fields inherited from the Parent_Base in the non-private case
8479 if Ekind (Derived_Type) = E_Record_Type then
8480 Set_Has_Complex_Representation
8481 (Derived_Type, Has_Complex_Representation (Parent_Base));
8482 end if;
8484 -- Fields inherited from the Parent_Base for record types
8486 if Is_Record_Type (Derived_Type) then
8487 declare
8488 Parent_Full : Entity_Id;
8490 begin
8491 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8492 -- Parent_Base can be a private type or private extension. Go
8493 -- to the full view here to get the E_Record_Type specific flags.
8495 if Present (Full_View (Parent_Base)) then
8496 Parent_Full := Full_View (Parent_Base);
8497 else
8498 Parent_Full := Parent_Base;
8499 end if;
8501 Set_OK_To_Reorder_Components
8502 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8503 end;
8504 end if;
8506 -- Set fields for private derived types
8508 if Is_Private_Type (Derived_Type) then
8509 Set_Depends_On_Private (Derived_Type, True);
8510 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8512 -- Inherit fields from non private record types. If this is the
8513 -- completion of a derivation from a private type, the parent itself
8514 -- is private, and the attributes come from its full view, which must
8515 -- be present.
8517 else
8518 if Is_Private_Type (Parent_Base)
8519 and then not Is_Record_Type (Parent_Base)
8520 then
8521 Set_Component_Alignment
8522 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8523 Set_C_Pass_By_Copy
8524 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8525 else
8526 Set_Component_Alignment
8527 (Derived_Type, Component_Alignment (Parent_Base));
8528 Set_C_Pass_By_Copy
8529 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8530 end if;
8531 end if;
8533 -- Set fields for tagged types
8535 if Is_Tagged then
8536 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8538 -- All tagged types defined in Ada.Finalization are controlled
8540 if Chars (Scope (Derived_Type)) = Name_Finalization
8541 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8542 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8543 then
8544 Set_Is_Controlled (Derived_Type);
8545 else
8546 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8547 end if;
8549 -- Minor optimization: there is no need to generate the class-wide
8550 -- entity associated with an underlying record view.
8552 if not Is_Underlying_Record_View (Derived_Type) then
8553 Make_Class_Wide_Type (Derived_Type);
8554 end if;
8556 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8558 if Has_Discriminants (Derived_Type)
8559 and then Constraint_Present
8560 then
8561 Set_Stored_Constraint
8562 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8563 end if;
8565 if Ada_Version >= Ada_2005 then
8566 declare
8567 Ifaces_List : Elist_Id;
8569 begin
8570 -- Checks rules 3.9.4 (13/2 and 14/2)
8572 if Comes_From_Source (Derived_Type)
8573 and then not Is_Private_Type (Derived_Type)
8574 and then Is_Interface (Parent_Type)
8575 and then not Is_Interface (Derived_Type)
8576 then
8577 if Is_Task_Interface (Parent_Type) then
8578 Error_Msg_N
8579 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8580 Derived_Type);
8582 elsif Is_Protected_Interface (Parent_Type) then
8583 Error_Msg_N
8584 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8585 Derived_Type);
8586 end if;
8587 end if;
8589 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8591 Check_Interfaces (N, Type_Def);
8593 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8594 -- not already in the parents.
8596 Collect_Interfaces
8597 (T => Derived_Type,
8598 Ifaces_List => Ifaces_List,
8599 Exclude_Parents => True);
8601 Set_Interfaces (Derived_Type, Ifaces_List);
8603 -- If the derived type is the anonymous type created for
8604 -- a declaration whose parent has a constraint, propagate
8605 -- the interface list to the source type. This must be done
8606 -- prior to the completion of the analysis of the source type
8607 -- because the components in the extension may contain current
8608 -- instances whose legality depends on some ancestor.
8610 if Is_Itype (Derived_Type) then
8611 declare
8612 Def : constant Node_Id :=
8613 Associated_Node_For_Itype (Derived_Type);
8614 begin
8615 if Present (Def)
8616 and then Nkind (Def) = N_Full_Type_Declaration
8617 then
8618 Set_Interfaces
8619 (Defining_Identifier (Def), Ifaces_List);
8620 end if;
8621 end;
8622 end if;
8624 -- A type extension is automatically Ghost when one of its
8625 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8626 -- also inherited when the parent type is Ghost, but this is
8627 -- done in Build_Derived_Type as the mechanism also handles
8628 -- untagged derivations.
8630 if Implements_Ghost_Interface (Derived_Type) then
8631 Set_Is_Ghost_Entity (Derived_Type);
8632 end if;
8633 end;
8634 end if;
8636 else
8637 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8638 Set_Has_Non_Standard_Rep
8639 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8640 end if;
8642 -- STEP 4: Inherit components from the parent base and constrain them.
8643 -- Apply the second transformation described in point 6. above.
8645 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8646 or else not Has_Discriminants (Parent_Type)
8647 or else not Is_Constrained (Parent_Type)
8648 then
8649 Constrs := Discs;
8650 else
8651 Constrs := Discriminant_Constraint (Parent_Type);
8652 end if;
8654 Assoc_List :=
8655 Inherit_Components
8656 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8658 -- STEP 5a: Copy the parent record declaration for untagged types
8660 if not Is_Tagged then
8662 -- Discriminant_Constraint (Derived_Type) has been properly
8663 -- constructed. Save it and temporarily set it to Empty because we
8664 -- do not want the call to New_Copy_Tree below to mess this list.
8666 if Has_Discriminants (Derived_Type) then
8667 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8668 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8669 else
8670 Save_Discr_Constr := No_Elist;
8671 end if;
8673 -- Save the Etype field of Derived_Type. It is correctly set now,
8674 -- but the call to New_Copy tree may remap it to point to itself,
8675 -- which is not what we want. Ditto for the Next_Entity field.
8677 Save_Etype := Etype (Derived_Type);
8678 Save_Next_Entity := Next_Entity (Derived_Type);
8680 -- Assoc_List maps all stored discriminants in the Parent_Base to
8681 -- stored discriminants in the Derived_Type. It is fundamental that
8682 -- no types or itypes with discriminants other than the stored
8683 -- discriminants appear in the entities declared inside
8684 -- Derived_Type, since the back end cannot deal with it.
8686 New_Decl :=
8687 New_Copy_Tree
8688 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8690 -- Restore the fields saved prior to the New_Copy_Tree call
8691 -- and compute the stored constraint.
8693 Set_Etype (Derived_Type, Save_Etype);
8694 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8696 if Has_Discriminants (Derived_Type) then
8697 Set_Discriminant_Constraint
8698 (Derived_Type, Save_Discr_Constr);
8699 Set_Stored_Constraint
8700 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8701 Replace_Components (Derived_Type, New_Decl);
8702 Set_Has_Implicit_Dereference
8703 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8704 end if;
8706 -- Insert the new derived type declaration
8708 Rewrite (N, New_Decl);
8710 -- STEP 5b: Complete the processing for record extensions in generics
8712 -- There is no completion for record extensions declared in the
8713 -- parameter part of a generic, so we need to complete processing for
8714 -- these generic record extensions here. The Record_Type_Definition call
8715 -- will change the Ekind of the components from E_Void to E_Component.
8717 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8718 Record_Type_Definition (Empty, Derived_Type);
8720 -- STEP 5c: Process the record extension for non private tagged types
8722 elsif not Private_Extension then
8723 Expand_Record_Extension (Derived_Type, Type_Def);
8725 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8726 -- derived type to propagate some semantic information. This led
8727 -- to other ASIS failures and has been removed.
8729 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8730 -- implemented interfaces if we are in expansion mode
8732 if Expander_Active
8733 and then Has_Interfaces (Derived_Type)
8734 then
8735 Add_Interface_Tag_Components (N, Derived_Type);
8736 end if;
8738 -- Analyze the record extension
8740 Record_Type_Definition
8741 (Record_Extension_Part (Type_Def), Derived_Type);
8742 end if;
8744 End_Scope;
8746 -- Nothing else to do if there is an error in the derivation.
8747 -- An unusual case: the full view may be derived from a type in an
8748 -- instance, when the partial view was used illegally as an actual
8749 -- in that instance, leading to a circular definition.
8751 if Etype (Derived_Type) = Any_Type
8752 or else Etype (Parent_Type) = Derived_Type
8753 then
8754 return;
8755 end if;
8757 -- Set delayed freeze and then derive subprograms, we need to do
8758 -- this in this order so that derived subprograms inherit the
8759 -- derived freeze if necessary.
8761 Set_Has_Delayed_Freeze (Derived_Type);
8763 if Derive_Subps then
8764 Derive_Subprograms (Parent_Type, Derived_Type);
8765 end if;
8767 -- If we have a private extension which defines a constrained derived
8768 -- type mark as constrained here after we have derived subprograms. See
8769 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8771 if Private_Extension and then Inherit_Discrims then
8772 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8773 Set_Is_Constrained (Derived_Type, True);
8774 Set_Discriminant_Constraint (Derived_Type, Discs);
8776 elsif Is_Constrained (Parent_Type) then
8777 Set_Is_Constrained
8778 (Derived_Type, True);
8779 Set_Discriminant_Constraint
8780 (Derived_Type, Discriminant_Constraint (Parent_Type));
8781 end if;
8782 end if;
8784 -- Update the class-wide type, which shares the now-completed entity
8785 -- list with its specific type. In case of underlying record views,
8786 -- we do not generate the corresponding class wide entity.
8788 if Is_Tagged
8789 and then not Is_Underlying_Record_View (Derived_Type)
8790 then
8791 Set_First_Entity
8792 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8793 Set_Last_Entity
8794 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8795 end if;
8797 Check_Function_Writable_Actuals (N);
8798 end Build_Derived_Record_Type;
8800 ------------------------
8801 -- Build_Derived_Type --
8802 ------------------------
8804 procedure Build_Derived_Type
8805 (N : Node_Id;
8806 Parent_Type : Entity_Id;
8807 Derived_Type : Entity_Id;
8808 Is_Completion : Boolean;
8809 Derive_Subps : Boolean := True)
8811 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8813 begin
8814 -- Set common attributes
8816 Set_Scope (Derived_Type, Current_Scope);
8818 Set_Etype (Derived_Type, Parent_Base);
8819 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8820 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8821 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8823 Set_Size_Info (Derived_Type, Parent_Type);
8824 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8825 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8826 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8827 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8829 if Is_Tagged_Type (Derived_Type) then
8830 Set_No_Tagged_Streams_Pragma
8831 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8832 end if;
8834 -- If the parent has primitive routines, set the derived type link
8836 if Has_Primitive_Operations (Parent_Type) then
8837 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8838 end if;
8840 -- If the parent type is a private subtype, the convention on the base
8841 -- type may be set in the private part, and not propagated to the
8842 -- subtype until later, so we obtain the convention from the base type.
8844 Set_Convention (Derived_Type, Convention (Parent_Base));
8846 -- Set SSO default for record or array type
8848 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8849 and then Is_Base_Type (Derived_Type)
8850 then
8851 Set_Default_SSO (Derived_Type);
8852 end if;
8854 -- Propagate invariant information. The new type has invariants if
8855 -- they are inherited from the parent type, and these invariants can
8856 -- be further inherited, so both flags are set.
8858 -- We similarly inherit predicates
8860 if Has_Predicates (Parent_Type) then
8861 Set_Has_Predicates (Derived_Type);
8862 end if;
8864 -- The derived type inherits the representation clauses of the parent
8866 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8868 -- Propagate the attributes related to pragma Default_Initial_Condition
8869 -- from the parent type to the private extension. A derived type always
8870 -- inherits the default initial condition flag from the parent type. If
8871 -- the derived type carries its own Default_Initial_Condition pragma,
8872 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8873 -- mutually exclusive.
8875 Propagate_Default_Init_Cond_Attributes
8876 (From_Typ => Parent_Type,
8877 To_Typ => Derived_Type,
8878 Parent_To_Derivation => True);
8880 -- If the parent type has delayed rep aspects, then mark the derived
8881 -- type as possibly inheriting a delayed rep aspect.
8883 if Has_Delayed_Rep_Aspects (Parent_Type) then
8884 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8885 end if;
8887 -- Propagate the attributes related to pragma Ghost from the parent type
8888 -- to the derived type or type extension (SPARK RM 6.9(9)).
8890 if Is_Ghost_Entity (Parent_Type) then
8891 Set_Is_Ghost_Entity (Derived_Type);
8892 end if;
8894 -- Type dependent processing
8896 case Ekind (Parent_Type) is
8897 when Numeric_Kind =>
8898 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8900 when Array_Kind =>
8901 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8903 when E_Record_Type
8904 | E_Record_Subtype
8905 | Class_Wide_Kind =>
8906 Build_Derived_Record_Type
8907 (N, Parent_Type, Derived_Type, Derive_Subps);
8908 return;
8910 when Enumeration_Kind =>
8911 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8913 when Access_Kind =>
8914 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8916 when Incomplete_Or_Private_Kind =>
8917 Build_Derived_Private_Type
8918 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8920 -- For discriminated types, the derivation includes deriving
8921 -- primitive operations. For others it is done below.
8923 if Is_Tagged_Type (Parent_Type)
8924 or else Has_Discriminants (Parent_Type)
8925 or else (Present (Full_View (Parent_Type))
8926 and then Has_Discriminants (Full_View (Parent_Type)))
8927 then
8928 return;
8929 end if;
8931 when Concurrent_Kind =>
8932 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8934 when others =>
8935 raise Program_Error;
8936 end case;
8938 -- Nothing more to do if some error occurred
8940 if Etype (Derived_Type) = Any_Type then
8941 return;
8942 end if;
8944 -- Set delayed freeze and then derive subprograms, we need to do this
8945 -- in this order so that derived subprograms inherit the derived freeze
8946 -- if necessary.
8948 Set_Has_Delayed_Freeze (Derived_Type);
8950 if Derive_Subps then
8951 Derive_Subprograms (Parent_Type, Derived_Type);
8952 end if;
8954 Set_Has_Primitive_Operations
8955 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8956 end Build_Derived_Type;
8958 -----------------------
8959 -- Build_Discriminal --
8960 -----------------------
8962 procedure Build_Discriminal (Discrim : Entity_Id) is
8963 D_Minal : Entity_Id;
8964 CR_Disc : Entity_Id;
8966 begin
8967 -- A discriminal has the same name as the discriminant
8969 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8971 Set_Ekind (D_Minal, E_In_Parameter);
8972 Set_Mechanism (D_Minal, Default_Mechanism);
8973 Set_Etype (D_Minal, Etype (Discrim));
8974 Set_Scope (D_Minal, Current_Scope);
8976 Set_Discriminal (Discrim, D_Minal);
8977 Set_Discriminal_Link (D_Minal, Discrim);
8979 -- For task types, build at once the discriminants of the corresponding
8980 -- record, which are needed if discriminants are used in entry defaults
8981 -- and in family bounds.
8983 if Is_Concurrent_Type (Current_Scope)
8984 or else
8985 Is_Limited_Type (Current_Scope)
8986 then
8987 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8989 Set_Ekind (CR_Disc, E_In_Parameter);
8990 Set_Mechanism (CR_Disc, Default_Mechanism);
8991 Set_Etype (CR_Disc, Etype (Discrim));
8992 Set_Scope (CR_Disc, Current_Scope);
8993 Set_Discriminal_Link (CR_Disc, Discrim);
8994 Set_CR_Discriminant (Discrim, CR_Disc);
8995 end if;
8996 end Build_Discriminal;
8998 ------------------------------------
8999 -- Build_Discriminant_Constraints --
9000 ------------------------------------
9002 function Build_Discriminant_Constraints
9003 (T : Entity_Id;
9004 Def : Node_Id;
9005 Derived_Def : Boolean := False) return Elist_Id
9007 C : constant Node_Id := Constraint (Def);
9008 Nb_Discr : constant Nat := Number_Discriminants (T);
9010 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9011 -- Saves the expression corresponding to a given discriminant in T
9013 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9014 -- Return the Position number within array Discr_Expr of a discriminant
9015 -- D within the discriminant list of the discriminated type T.
9017 procedure Process_Discriminant_Expression
9018 (Expr : Node_Id;
9019 D : Entity_Id);
9020 -- If this is a discriminant constraint on a partial view, do not
9021 -- generate an overflow check on the discriminant expression. The check
9022 -- will be generated when constraining the full view. Otherwise the
9023 -- backend creates duplicate symbols for the temporaries corresponding
9024 -- to the expressions to be checked, causing spurious assembler errors.
9026 ------------------
9027 -- Pos_Of_Discr --
9028 ------------------
9030 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9031 Disc : Entity_Id;
9033 begin
9034 Disc := First_Discriminant (T);
9035 for J in Discr_Expr'Range loop
9036 if Disc = D then
9037 return J;
9038 end if;
9040 Next_Discriminant (Disc);
9041 end loop;
9043 -- Note: Since this function is called on discriminants that are
9044 -- known to belong to the discriminated type, falling through the
9045 -- loop with no match signals an internal compiler error.
9047 raise Program_Error;
9048 end Pos_Of_Discr;
9050 -------------------------------------
9051 -- Process_Discriminant_Expression --
9052 -------------------------------------
9054 procedure Process_Discriminant_Expression
9055 (Expr : Node_Id;
9056 D : Entity_Id)
9058 BDT : constant Entity_Id := Base_Type (Etype (D));
9060 begin
9061 -- If this is a discriminant constraint on a partial view, do
9062 -- not generate an overflow on the discriminant expression. The
9063 -- check will be generated when constraining the full view.
9065 if Is_Private_Type (T)
9066 and then Present (Full_View (T))
9067 then
9068 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9069 else
9070 Analyze_And_Resolve (Expr, BDT);
9071 end if;
9072 end Process_Discriminant_Expression;
9074 -- Declarations local to Build_Discriminant_Constraints
9076 Discr : Entity_Id;
9077 E : Entity_Id;
9078 Elist : constant Elist_Id := New_Elmt_List;
9080 Constr : Node_Id;
9081 Expr : Node_Id;
9082 Id : Node_Id;
9083 Position : Nat;
9084 Found : Boolean;
9086 Discrim_Present : Boolean := False;
9088 -- Start of processing for Build_Discriminant_Constraints
9090 begin
9091 -- The following loop will process positional associations only.
9092 -- For a positional association, the (single) discriminant is
9093 -- implicitly specified by position, in textual order (RM 3.7.2).
9095 Discr := First_Discriminant (T);
9096 Constr := First (Constraints (C));
9097 for D in Discr_Expr'Range loop
9098 exit when Nkind (Constr) = N_Discriminant_Association;
9100 if No (Constr) then
9101 Error_Msg_N ("too few discriminants given in constraint", C);
9102 return New_Elmt_List;
9104 elsif Nkind (Constr) = N_Range
9105 or else (Nkind (Constr) = N_Attribute_Reference
9106 and then Attribute_Name (Constr) = Name_Range)
9107 then
9108 Error_Msg_N
9109 ("a range is not a valid discriminant constraint", Constr);
9110 Discr_Expr (D) := Error;
9112 else
9113 Process_Discriminant_Expression (Constr, Discr);
9114 Discr_Expr (D) := Constr;
9115 end if;
9117 Next_Discriminant (Discr);
9118 Next (Constr);
9119 end loop;
9121 if No (Discr) and then Present (Constr) then
9122 Error_Msg_N ("too many discriminants given in constraint", Constr);
9123 return New_Elmt_List;
9124 end if;
9126 -- Named associations can be given in any order, but if both positional
9127 -- and named associations are used in the same discriminant constraint,
9128 -- then positional associations must occur first, at their normal
9129 -- position. Hence once a named association is used, the rest of the
9130 -- discriminant constraint must use only named associations.
9132 while Present (Constr) loop
9134 -- Positional association forbidden after a named association
9136 if Nkind (Constr) /= N_Discriminant_Association then
9137 Error_Msg_N ("positional association follows named one", Constr);
9138 return New_Elmt_List;
9140 -- Otherwise it is a named association
9142 else
9143 -- E records the type of the discriminants in the named
9144 -- association. All the discriminants specified in the same name
9145 -- association must have the same type.
9147 E := Empty;
9149 -- Search the list of discriminants in T to see if the simple name
9150 -- given in the constraint matches any of them.
9152 Id := First (Selector_Names (Constr));
9153 while Present (Id) loop
9154 Found := False;
9156 -- If Original_Discriminant is present, we are processing a
9157 -- generic instantiation and this is an instance node. We need
9158 -- to find the name of the corresponding discriminant in the
9159 -- actual record type T and not the name of the discriminant in
9160 -- the generic formal. Example:
9162 -- generic
9163 -- type G (D : int) is private;
9164 -- package P is
9165 -- subtype W is G (D => 1);
9166 -- end package;
9167 -- type Rec (X : int) is record ... end record;
9168 -- package Q is new P (G => Rec);
9170 -- At the point of the instantiation, formal type G is Rec
9171 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9172 -- which really looks like "subtype W is Rec (D => 1);" at
9173 -- the point of instantiation, we want to find the discriminant
9174 -- that corresponds to D in Rec, i.e. X.
9176 if Present (Original_Discriminant (Id))
9177 and then In_Instance
9178 then
9179 Discr := Find_Corresponding_Discriminant (Id, T);
9180 Found := True;
9182 else
9183 Discr := First_Discriminant (T);
9184 while Present (Discr) loop
9185 if Chars (Discr) = Chars (Id) then
9186 Found := True;
9187 exit;
9188 end if;
9190 Next_Discriminant (Discr);
9191 end loop;
9193 if not Found then
9194 Error_Msg_N ("& does not match any discriminant", Id);
9195 return New_Elmt_List;
9197 -- If the parent type is a generic formal, preserve the
9198 -- name of the discriminant for subsequent instances.
9199 -- see comment at the beginning of this if statement.
9201 elsif Is_Generic_Type (Root_Type (T)) then
9202 Set_Original_Discriminant (Id, Discr);
9203 end if;
9204 end if;
9206 Position := Pos_Of_Discr (T, Discr);
9208 if Present (Discr_Expr (Position)) then
9209 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9211 else
9212 -- Each discriminant specified in the same named association
9213 -- must be associated with a separate copy of the
9214 -- corresponding expression.
9216 if Present (Next (Id)) then
9217 Expr := New_Copy_Tree (Expression (Constr));
9218 Set_Parent (Expr, Parent (Expression (Constr)));
9219 else
9220 Expr := Expression (Constr);
9221 end if;
9223 Discr_Expr (Position) := Expr;
9224 Process_Discriminant_Expression (Expr, Discr);
9225 end if;
9227 -- A discriminant association with more than one discriminant
9228 -- name is only allowed if the named discriminants are all of
9229 -- the same type (RM 3.7.1(8)).
9231 if E = Empty then
9232 E := Base_Type (Etype (Discr));
9234 elsif Base_Type (Etype (Discr)) /= E then
9235 Error_Msg_N
9236 ("all discriminants in an association " &
9237 "must have the same type", Id);
9238 end if;
9240 Next (Id);
9241 end loop;
9242 end if;
9244 Next (Constr);
9245 end loop;
9247 -- A discriminant constraint must provide exactly one value for each
9248 -- discriminant of the type (RM 3.7.1(8)).
9250 for J in Discr_Expr'Range loop
9251 if No (Discr_Expr (J)) then
9252 Error_Msg_N ("too few discriminants given in constraint", C);
9253 return New_Elmt_List;
9254 end if;
9255 end loop;
9257 -- Determine if there are discriminant expressions in the constraint
9259 for J in Discr_Expr'Range loop
9260 if Denotes_Discriminant
9261 (Discr_Expr (J), Check_Concurrent => True)
9262 then
9263 Discrim_Present := True;
9264 end if;
9265 end loop;
9267 -- Build an element list consisting of the expressions given in the
9268 -- discriminant constraint and apply the appropriate checks. The list
9269 -- is constructed after resolving any named discriminant associations
9270 -- and therefore the expressions appear in the textual order of the
9271 -- discriminants.
9273 Discr := First_Discriminant (T);
9274 for J in Discr_Expr'Range loop
9275 if Discr_Expr (J) /= Error then
9276 Append_Elmt (Discr_Expr (J), Elist);
9278 -- If any of the discriminant constraints is given by a
9279 -- discriminant and we are in a derived type declaration we
9280 -- have a discriminant renaming. Establish link between new
9281 -- and old discriminant.
9283 if Denotes_Discriminant (Discr_Expr (J)) then
9284 if Derived_Def then
9285 Set_Corresponding_Discriminant
9286 (Entity (Discr_Expr (J)), Discr);
9287 end if;
9289 -- Force the evaluation of non-discriminant expressions.
9290 -- If we have found a discriminant in the constraint 3.4(26)
9291 -- and 3.8(18) demand that no range checks are performed are
9292 -- after evaluation. If the constraint is for a component
9293 -- definition that has a per-object constraint, expressions are
9294 -- evaluated but not checked either. In all other cases perform
9295 -- a range check.
9297 else
9298 if Discrim_Present then
9299 null;
9301 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9302 and then
9303 Has_Per_Object_Constraint
9304 (Defining_Identifier (Parent (Parent (Def))))
9305 then
9306 null;
9308 elsif Is_Access_Type (Etype (Discr)) then
9309 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9311 else
9312 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9313 end if;
9315 Force_Evaluation (Discr_Expr (J));
9316 end if;
9318 -- Check that the designated type of an access discriminant's
9319 -- expression is not a class-wide type unless the discriminant's
9320 -- designated type is also class-wide.
9322 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9323 and then not Is_Class_Wide_Type
9324 (Designated_Type (Etype (Discr)))
9325 and then Etype (Discr_Expr (J)) /= Any_Type
9326 and then Is_Class_Wide_Type
9327 (Designated_Type (Etype (Discr_Expr (J))))
9328 then
9329 Wrong_Type (Discr_Expr (J), Etype (Discr));
9331 elsif Is_Access_Type (Etype (Discr))
9332 and then not Is_Access_Constant (Etype (Discr))
9333 and then Is_Access_Type (Etype (Discr_Expr (J)))
9334 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9335 then
9336 Error_Msg_NE
9337 ("constraint for discriminant& must be access to variable",
9338 Def, Discr);
9339 end if;
9340 end if;
9342 Next_Discriminant (Discr);
9343 end loop;
9345 return Elist;
9346 end Build_Discriminant_Constraints;
9348 ---------------------------------
9349 -- Build_Discriminated_Subtype --
9350 ---------------------------------
9352 procedure Build_Discriminated_Subtype
9353 (T : Entity_Id;
9354 Def_Id : Entity_Id;
9355 Elist : Elist_Id;
9356 Related_Nod : Node_Id;
9357 For_Access : Boolean := False)
9359 Has_Discrs : constant Boolean := Has_Discriminants (T);
9360 Constrained : constant Boolean :=
9361 (Has_Discrs
9362 and then not Is_Empty_Elmt_List (Elist)
9363 and then not Is_Class_Wide_Type (T))
9364 or else Is_Constrained (T);
9366 begin
9367 if Ekind (T) = E_Record_Type then
9368 if For_Access then
9369 Set_Ekind (Def_Id, E_Private_Subtype);
9370 Set_Is_For_Access_Subtype (Def_Id, True);
9371 else
9372 Set_Ekind (Def_Id, E_Record_Subtype);
9373 end if;
9375 -- Inherit preelaboration flag from base, for types for which it
9376 -- may have been set: records, private types, protected types.
9378 Set_Known_To_Have_Preelab_Init
9379 (Def_Id, Known_To_Have_Preelab_Init (T));
9381 elsif Ekind (T) = E_Task_Type then
9382 Set_Ekind (Def_Id, E_Task_Subtype);
9384 elsif Ekind (T) = E_Protected_Type then
9385 Set_Ekind (Def_Id, E_Protected_Subtype);
9386 Set_Known_To_Have_Preelab_Init
9387 (Def_Id, Known_To_Have_Preelab_Init (T));
9389 elsif Is_Private_Type (T) then
9390 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9391 Set_Known_To_Have_Preelab_Init
9392 (Def_Id, Known_To_Have_Preelab_Init (T));
9394 -- Private subtypes may have private dependents
9396 Set_Private_Dependents (Def_Id, New_Elmt_List);
9398 elsif Is_Class_Wide_Type (T) then
9399 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9401 else
9402 -- Incomplete type. Attach subtype to list of dependents, to be
9403 -- completed with full view of parent type, unless is it the
9404 -- designated subtype of a record component within an init_proc.
9405 -- This last case arises for a component of an access type whose
9406 -- designated type is incomplete (e.g. a Taft Amendment type).
9407 -- The designated subtype is within an inner scope, and needs no
9408 -- elaboration, because only the access type is needed in the
9409 -- initialization procedure.
9411 Set_Ekind (Def_Id, Ekind (T));
9413 if For_Access and then Within_Init_Proc then
9414 null;
9415 else
9416 Append_Elmt (Def_Id, Private_Dependents (T));
9417 end if;
9418 end if;
9420 Set_Etype (Def_Id, T);
9421 Init_Size_Align (Def_Id);
9422 Set_Has_Discriminants (Def_Id, Has_Discrs);
9423 Set_Is_Constrained (Def_Id, Constrained);
9425 Set_First_Entity (Def_Id, First_Entity (T));
9426 Set_Last_Entity (Def_Id, Last_Entity (T));
9427 Set_Has_Implicit_Dereference
9428 (Def_Id, Has_Implicit_Dereference (T));
9430 -- If the subtype is the completion of a private declaration, there may
9431 -- have been representation clauses for the partial view, and they must
9432 -- be preserved. Build_Derived_Type chains the inherited clauses with
9433 -- the ones appearing on the extension. If this comes from a subtype
9434 -- declaration, all clauses are inherited.
9436 if No (First_Rep_Item (Def_Id)) then
9437 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9438 end if;
9440 if Is_Tagged_Type (T) then
9441 Set_Is_Tagged_Type (Def_Id);
9442 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9443 Make_Class_Wide_Type (Def_Id);
9444 end if;
9446 Set_Stored_Constraint (Def_Id, No_Elist);
9448 if Has_Discrs then
9449 Set_Discriminant_Constraint (Def_Id, Elist);
9450 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9451 end if;
9453 if Is_Tagged_Type (T) then
9455 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9456 -- concurrent record type (which has the list of primitive
9457 -- operations).
9459 if Ada_Version >= Ada_2005
9460 and then Is_Concurrent_Type (T)
9461 then
9462 Set_Corresponding_Record_Type (Def_Id,
9463 Corresponding_Record_Type (T));
9464 else
9465 Set_Direct_Primitive_Operations (Def_Id,
9466 Direct_Primitive_Operations (T));
9467 end if;
9469 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9470 end if;
9472 -- Subtypes introduced by component declarations do not need to be
9473 -- marked as delayed, and do not get freeze nodes, because the semantics
9474 -- verifies that the parents of the subtypes are frozen before the
9475 -- enclosing record is frozen.
9477 if not Is_Type (Scope (Def_Id)) then
9478 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9480 if Is_Private_Type (T)
9481 and then Present (Full_View (T))
9482 then
9483 Conditional_Delay (Def_Id, Full_View (T));
9484 else
9485 Conditional_Delay (Def_Id, T);
9486 end if;
9487 end if;
9489 if Is_Record_Type (T) then
9490 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9492 if Has_Discrs
9493 and then not Is_Empty_Elmt_List (Elist)
9494 and then not For_Access
9495 then
9496 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9497 elsif not For_Access then
9498 Set_Cloned_Subtype (Def_Id, T);
9499 end if;
9500 end if;
9501 end Build_Discriminated_Subtype;
9503 ---------------------------
9504 -- Build_Itype_Reference --
9505 ---------------------------
9507 procedure Build_Itype_Reference
9508 (Ityp : Entity_Id;
9509 Nod : Node_Id)
9511 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9512 begin
9514 -- Itype references are only created for use by the back-end
9516 if Inside_A_Generic then
9517 return;
9518 else
9519 Set_Itype (IR, Ityp);
9520 Insert_After (Nod, IR);
9521 end if;
9522 end Build_Itype_Reference;
9524 ------------------------
9525 -- Build_Scalar_Bound --
9526 ------------------------
9528 function Build_Scalar_Bound
9529 (Bound : Node_Id;
9530 Par_T : Entity_Id;
9531 Der_T : Entity_Id) return Node_Id
9533 New_Bound : Entity_Id;
9535 begin
9536 -- Note: not clear why this is needed, how can the original bound
9537 -- be unanalyzed at this point? and if it is, what business do we
9538 -- have messing around with it? and why is the base type of the
9539 -- parent type the right type for the resolution. It probably is
9540 -- not. It is OK for the new bound we are creating, but not for
9541 -- the old one??? Still if it never happens, no problem.
9543 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9545 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9546 New_Bound := New_Copy (Bound);
9547 Set_Etype (New_Bound, Der_T);
9548 Set_Analyzed (New_Bound);
9550 elsif Is_Entity_Name (Bound) then
9551 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9553 -- The following is almost certainly wrong. What business do we have
9554 -- relocating a node (Bound) that is presumably still attached to
9555 -- the tree elsewhere???
9557 else
9558 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9559 end if;
9561 Set_Etype (New_Bound, Der_T);
9562 return New_Bound;
9563 end Build_Scalar_Bound;
9565 --------------------------------
9566 -- Build_Underlying_Full_View --
9567 --------------------------------
9569 procedure Build_Underlying_Full_View
9570 (N : Node_Id;
9571 Typ : Entity_Id;
9572 Par : Entity_Id)
9574 Loc : constant Source_Ptr := Sloc (N);
9575 Subt : constant Entity_Id :=
9576 Make_Defining_Identifier
9577 (Loc, New_External_Name (Chars (Typ), 'S'));
9579 Constr : Node_Id;
9580 Indic : Node_Id;
9581 C : Node_Id;
9582 Id : Node_Id;
9584 procedure Set_Discriminant_Name (Id : Node_Id);
9585 -- If the derived type has discriminants, they may rename discriminants
9586 -- of the parent. When building the full view of the parent, we need to
9587 -- recover the names of the original discriminants if the constraint is
9588 -- given by named associations.
9590 ---------------------------
9591 -- Set_Discriminant_Name --
9592 ---------------------------
9594 procedure Set_Discriminant_Name (Id : Node_Id) is
9595 Disc : Entity_Id;
9597 begin
9598 Set_Original_Discriminant (Id, Empty);
9600 if Has_Discriminants (Typ) then
9601 Disc := First_Discriminant (Typ);
9602 while Present (Disc) loop
9603 if Chars (Disc) = Chars (Id)
9604 and then Present (Corresponding_Discriminant (Disc))
9605 then
9606 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9607 end if;
9608 Next_Discriminant (Disc);
9609 end loop;
9610 end if;
9611 end Set_Discriminant_Name;
9613 -- Start of processing for Build_Underlying_Full_View
9615 begin
9616 if Nkind (N) = N_Full_Type_Declaration then
9617 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9619 elsif Nkind (N) = N_Subtype_Declaration then
9620 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9622 elsif Nkind (N) = N_Component_Declaration then
9623 Constr :=
9624 New_Copy_Tree
9625 (Constraint (Subtype_Indication (Component_Definition (N))));
9627 else
9628 raise Program_Error;
9629 end if;
9631 C := First (Constraints (Constr));
9632 while Present (C) loop
9633 if Nkind (C) = N_Discriminant_Association then
9634 Id := First (Selector_Names (C));
9635 while Present (Id) loop
9636 Set_Discriminant_Name (Id);
9637 Next (Id);
9638 end loop;
9639 end if;
9641 Next (C);
9642 end loop;
9644 Indic :=
9645 Make_Subtype_Declaration (Loc,
9646 Defining_Identifier => Subt,
9647 Subtype_Indication =>
9648 Make_Subtype_Indication (Loc,
9649 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9650 Constraint => New_Copy_Tree (Constr)));
9652 -- If this is a component subtype for an outer itype, it is not
9653 -- a list member, so simply set the parent link for analysis: if
9654 -- the enclosing type does not need to be in a declarative list,
9655 -- neither do the components.
9657 if Is_List_Member (N)
9658 and then Nkind (N) /= N_Component_Declaration
9659 then
9660 Insert_Before (N, Indic);
9661 else
9662 Set_Parent (Indic, Parent (N));
9663 end if;
9665 Analyze (Indic);
9666 Set_Underlying_Full_View (Typ, Full_View (Subt));
9667 end Build_Underlying_Full_View;
9669 -------------------------------
9670 -- Check_Abstract_Overriding --
9671 -------------------------------
9673 procedure Check_Abstract_Overriding (T : Entity_Id) is
9674 Alias_Subp : Entity_Id;
9675 Elmt : Elmt_Id;
9676 Op_List : Elist_Id;
9677 Subp : Entity_Id;
9678 Type_Def : Node_Id;
9680 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9681 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9682 -- which has pragma Implemented already set. Check whether Subp's entity
9683 -- kind conforms to the implementation kind of the overridden routine.
9685 procedure Check_Pragma_Implemented
9686 (Subp : Entity_Id;
9687 Iface_Subp : Entity_Id);
9688 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9689 -- Iface_Subp and both entities have pragma Implemented already set on
9690 -- them. Check whether the two implementation kinds are conforming.
9692 procedure Inherit_Pragma_Implemented
9693 (Subp : Entity_Id;
9694 Iface_Subp : Entity_Id);
9695 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9696 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9697 -- Propagate the implementation kind of Iface_Subp to Subp.
9699 ------------------------------
9700 -- Check_Pragma_Implemented --
9701 ------------------------------
9703 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9704 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9705 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9706 Subp_Alias : constant Entity_Id := Alias (Subp);
9707 Contr_Typ : Entity_Id;
9708 Impl_Subp : Entity_Id;
9710 begin
9711 -- Subp must have an alias since it is a hidden entity used to link
9712 -- an interface subprogram to its overriding counterpart.
9714 pragma Assert (Present (Subp_Alias));
9716 -- Handle aliases to synchronized wrappers
9718 Impl_Subp := Subp_Alias;
9720 if Is_Primitive_Wrapper (Impl_Subp) then
9721 Impl_Subp := Wrapped_Entity (Impl_Subp);
9722 end if;
9724 -- Extract the type of the controlling formal
9726 Contr_Typ := Etype (First_Formal (Subp_Alias));
9728 if Is_Concurrent_Record_Type (Contr_Typ) then
9729 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9730 end if;
9732 -- An interface subprogram whose implementation kind is By_Entry must
9733 -- be implemented by an entry.
9735 if Impl_Kind = Name_By_Entry
9736 and then Ekind (Impl_Subp) /= E_Entry
9737 then
9738 Error_Msg_Node_2 := Iface_Alias;
9739 Error_Msg_NE
9740 ("type & must implement abstract subprogram & with an entry",
9741 Subp_Alias, Contr_Typ);
9743 elsif Impl_Kind = Name_By_Protected_Procedure then
9745 -- An interface subprogram whose implementation kind is By_
9746 -- Protected_Procedure cannot be implemented by a primitive
9747 -- procedure of a task type.
9749 if Ekind (Contr_Typ) /= E_Protected_Type then
9750 Error_Msg_Node_2 := Contr_Typ;
9751 Error_Msg_NE
9752 ("interface subprogram & cannot be implemented by a " &
9753 "primitive procedure of task type &", Subp_Alias,
9754 Iface_Alias);
9756 -- An interface subprogram whose implementation kind is By_
9757 -- Protected_Procedure must be implemented by a procedure.
9759 elsif Ekind (Impl_Subp) /= E_Procedure then
9760 Error_Msg_Node_2 := Iface_Alias;
9761 Error_Msg_NE
9762 ("type & must implement abstract subprogram & with a " &
9763 "procedure", Subp_Alias, Contr_Typ);
9765 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9766 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9767 then
9768 Error_Msg_Name_1 := Impl_Kind;
9769 Error_Msg_N
9770 ("overriding operation& must have synchronization%",
9771 Subp_Alias);
9772 end if;
9774 -- If primitive has Optional synchronization, overriding operation
9775 -- must match if it has an explicit synchronization..
9777 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9778 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9779 then
9780 Error_Msg_Name_1 := Impl_Kind;
9781 Error_Msg_N
9782 ("overriding operation& must have syncrhonization%",
9783 Subp_Alias);
9784 end if;
9785 end Check_Pragma_Implemented;
9787 ------------------------------
9788 -- Check_Pragma_Implemented --
9789 ------------------------------
9791 procedure Check_Pragma_Implemented
9792 (Subp : Entity_Id;
9793 Iface_Subp : Entity_Id)
9795 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9796 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9798 begin
9799 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9800 -- and overriding subprogram are different. In general this is an
9801 -- error except when the implementation kind of the overridden
9802 -- subprograms is By_Any or Optional.
9804 if Iface_Kind /= Subp_Kind
9805 and then Iface_Kind /= Name_By_Any
9806 and then Iface_Kind /= Name_Optional
9807 then
9808 if Iface_Kind = Name_By_Entry then
9809 Error_Msg_N
9810 ("incompatible implementation kind, overridden subprogram " &
9811 "is marked By_Entry", Subp);
9812 else
9813 Error_Msg_N
9814 ("incompatible implementation kind, overridden subprogram " &
9815 "is marked By_Protected_Procedure", Subp);
9816 end if;
9817 end if;
9818 end Check_Pragma_Implemented;
9820 --------------------------------
9821 -- Inherit_Pragma_Implemented --
9822 --------------------------------
9824 procedure Inherit_Pragma_Implemented
9825 (Subp : Entity_Id;
9826 Iface_Subp : Entity_Id)
9828 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9829 Loc : constant Source_Ptr := Sloc (Subp);
9830 Impl_Prag : Node_Id;
9832 begin
9833 -- Since the implementation kind is stored as a representation item
9834 -- rather than a flag, create a pragma node.
9836 Impl_Prag :=
9837 Make_Pragma (Loc,
9838 Chars => Name_Implemented,
9839 Pragma_Argument_Associations => New_List (
9840 Make_Pragma_Argument_Association (Loc,
9841 Expression => New_Occurrence_Of (Subp, Loc)),
9843 Make_Pragma_Argument_Association (Loc,
9844 Expression => Make_Identifier (Loc, Iface_Kind))));
9846 -- The pragma doesn't need to be analyzed because it is internally
9847 -- built. It is safe to directly register it as a rep item since we
9848 -- are only interested in the characters of the implementation kind.
9850 Record_Rep_Item (Subp, Impl_Prag);
9851 end Inherit_Pragma_Implemented;
9853 -- Start of processing for Check_Abstract_Overriding
9855 begin
9856 Op_List := Primitive_Operations (T);
9858 -- Loop to check primitive operations
9860 Elmt := First_Elmt (Op_List);
9861 while Present (Elmt) loop
9862 Subp := Node (Elmt);
9863 Alias_Subp := Alias (Subp);
9865 -- Inherited subprograms are identified by the fact that they do not
9866 -- come from source, and the associated source location is the
9867 -- location of the first subtype of the derived type.
9869 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9870 -- subprograms that "require overriding".
9872 -- Special exception, do not complain about failure to override the
9873 -- stream routines _Input and _Output, as well as the primitive
9874 -- operations used in dispatching selects since we always provide
9875 -- automatic overridings for these subprograms.
9877 -- Also ignore this rule for convention CIL since .NET libraries
9878 -- do bizarre things with interfaces???
9880 -- The partial view of T may have been a private extension, for
9881 -- which inherited functions dispatching on result are abstract.
9882 -- If the full view is a null extension, there is no need for
9883 -- overriding in Ada 2005, but wrappers need to be built for them
9884 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9886 if Is_Null_Extension (T)
9887 and then Has_Controlling_Result (Subp)
9888 and then Ada_Version >= Ada_2005
9889 and then Present (Alias_Subp)
9890 and then not Comes_From_Source (Subp)
9891 and then not Is_Abstract_Subprogram (Alias_Subp)
9892 and then not Is_Access_Type (Etype (Subp))
9893 then
9894 null;
9896 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9897 -- processing because this check is done with the aliased
9898 -- entity
9900 elsif Present (Interface_Alias (Subp)) then
9901 null;
9903 elsif (Is_Abstract_Subprogram (Subp)
9904 or else Requires_Overriding (Subp)
9905 or else
9906 (Has_Controlling_Result (Subp)
9907 and then Present (Alias_Subp)
9908 and then not Comes_From_Source (Subp)
9909 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9910 and then not Is_TSS (Subp, TSS_Stream_Input)
9911 and then not Is_TSS (Subp, TSS_Stream_Output)
9912 and then not Is_Abstract_Type (T)
9913 and then Convention (T) /= Convention_CIL
9914 and then not Is_Predefined_Interface_Primitive (Subp)
9916 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9917 -- with abstract interface types because the check will be done
9918 -- with the aliased entity (otherwise we generate a duplicated
9919 -- error message).
9921 and then not Present (Interface_Alias (Subp))
9922 then
9923 if Present (Alias_Subp) then
9925 -- Only perform the check for a derived subprogram when the
9926 -- type has an explicit record extension. This avoids incorrect
9927 -- flagging of abstract subprograms for the case of a type
9928 -- without an extension that is derived from a formal type
9929 -- with a tagged actual (can occur within a private part).
9931 -- Ada 2005 (AI-391): In the case of an inherited function with
9932 -- a controlling result of the type, the rule does not apply if
9933 -- the type is a null extension (unless the parent function
9934 -- itself is abstract, in which case the function must still be
9935 -- be overridden). The expander will generate an overriding
9936 -- wrapper function calling the parent subprogram (see
9937 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9939 Type_Def := Type_Definition (Parent (T));
9941 if Nkind (Type_Def) = N_Derived_Type_Definition
9942 and then Present (Record_Extension_Part (Type_Def))
9943 and then
9944 (Ada_Version < Ada_2005
9945 or else not Is_Null_Extension (T)
9946 or else Ekind (Subp) = E_Procedure
9947 or else not Has_Controlling_Result (Subp)
9948 or else Is_Abstract_Subprogram (Alias_Subp)
9949 or else Requires_Overriding (Subp)
9950 or else Is_Access_Type (Etype (Subp)))
9951 then
9952 -- Avoid reporting error in case of abstract predefined
9953 -- primitive inherited from interface type because the
9954 -- body of internally generated predefined primitives
9955 -- of tagged types are generated later by Freeze_Type
9957 if Is_Interface (Root_Type (T))
9958 and then Is_Abstract_Subprogram (Subp)
9959 and then Is_Predefined_Dispatching_Operation (Subp)
9960 and then not Comes_From_Source (Ultimate_Alias (Subp))
9961 then
9962 null;
9964 -- A null extension is not obliged to override an inherited
9965 -- procedure subject to pragma Extensions_Visible with value
9966 -- False and at least one controlling OUT parameter
9967 -- (SPARK RM 6.1.7(6)).
9969 elsif Is_Null_Extension (T)
9970 and then Is_EVF_Procedure (Subp)
9971 then
9972 null;
9974 else
9975 Error_Msg_NE
9976 ("type must be declared abstract or & overridden",
9977 T, Subp);
9979 -- Traverse the whole chain of aliased subprograms to
9980 -- complete the error notification. This is especially
9981 -- useful for traceability of the chain of entities when
9982 -- the subprogram corresponds with an interface
9983 -- subprogram (which may be defined in another package).
9985 if Present (Alias_Subp) then
9986 declare
9987 E : Entity_Id;
9989 begin
9990 E := Subp;
9991 while Present (Alias (E)) loop
9993 -- Avoid reporting redundant errors on entities
9994 -- inherited from interfaces
9996 if Sloc (E) /= Sloc (T) then
9997 Error_Msg_Sloc := Sloc (E);
9998 Error_Msg_NE
9999 ("\& has been inherited #", T, Subp);
10000 end if;
10002 E := Alias (E);
10003 end loop;
10005 Error_Msg_Sloc := Sloc (E);
10007 -- AI05-0068: report if there is an overriding
10008 -- non-abstract subprogram that is invisible.
10010 if Is_Hidden (E)
10011 and then not Is_Abstract_Subprogram (E)
10012 then
10013 Error_Msg_NE
10014 ("\& subprogram# is not visible",
10015 T, Subp);
10017 -- Clarify the case where a non-null extension must
10018 -- override inherited procedure subject to pragma
10019 -- Extensions_Visible with value False and at least
10020 -- one controlling OUT param.
10022 elsif Is_EVF_Procedure (E) then
10023 Error_Msg_NE
10024 ("\& # is subject to Extensions_Visible False",
10025 T, Subp);
10027 else
10028 Error_Msg_NE
10029 ("\& has been inherited from subprogram #",
10030 T, Subp);
10031 end if;
10032 end;
10033 end if;
10034 end if;
10036 -- Ada 2005 (AI-345): Protected or task type implementing
10037 -- abstract interfaces.
10039 elsif Is_Concurrent_Record_Type (T)
10040 and then Present (Interfaces (T))
10041 then
10042 -- If an inherited subprogram is implemented by a protected
10043 -- procedure or an entry, then the first parameter of the
10044 -- inherited subprogram shall be of mode OUT or IN OUT, or
10045 -- an access-to-variable parameter (RM 9.4(11.9/3))
10047 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
10048 and then Ekind (First_Formal (Subp)) = E_In_Parameter
10049 and then Ekind (Subp) /= E_Function
10050 and then not Is_Predefined_Dispatching_Operation (Subp)
10051 then
10052 Error_Msg_PT (T, Subp);
10054 -- Some other kind of overriding failure
10056 else
10057 Error_Msg_NE
10058 ("interface subprogram & must be overridden",
10059 T, Subp);
10061 -- Examine primitive operations of synchronized type,
10062 -- to find homonyms that have the wrong profile.
10064 declare
10065 Prim : Entity_Id;
10067 begin
10068 Prim :=
10069 First_Entity (Corresponding_Concurrent_Type (T));
10070 while Present (Prim) loop
10071 if Chars (Prim) = Chars (Subp) then
10072 Error_Msg_NE
10073 ("profile is not type conformant with "
10074 & "prefixed view profile of "
10075 & "inherited operation&", Prim, Subp);
10076 end if;
10078 Next_Entity (Prim);
10079 end loop;
10080 end;
10081 end if;
10082 end if;
10084 else
10085 Error_Msg_Node_2 := T;
10086 Error_Msg_N
10087 ("abstract subprogram& not allowed for type&", Subp);
10089 -- Also post unconditional warning on the type (unconditional
10090 -- so that if there are more than one of these cases, we get
10091 -- them all, and not just the first one).
10093 Error_Msg_Node_2 := Subp;
10094 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10095 end if;
10097 -- A subprogram subject to pragma Extensions_Visible with value
10098 -- "True" cannot override a subprogram subject to the same pragma
10099 -- with value "False" (SPARK RM 6.1.7(5)).
10101 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10102 and then Present (Overridden_Operation (Subp))
10103 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10104 Extensions_Visible_False
10105 then
10106 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10107 Error_Msg_N
10108 ("subprogram & with Extensions_Visible True cannot override "
10109 & "subprogram # with Extensions_Visible False", Subp);
10110 end if;
10112 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10114 -- Subp is an expander-generated procedure which maps an interface
10115 -- alias to a protected wrapper. The interface alias is flagged by
10116 -- pragma Implemented. Ensure that Subp is a procedure when the
10117 -- implementation kind is By_Protected_Procedure or an entry when
10118 -- By_Entry.
10120 if Ada_Version >= Ada_2012
10121 and then Is_Hidden (Subp)
10122 and then Present (Interface_Alias (Subp))
10123 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10124 then
10125 Check_Pragma_Implemented (Subp);
10126 end if;
10128 -- Subp is an interface primitive which overrides another interface
10129 -- primitive marked with pragma Implemented.
10131 if Ada_Version >= Ada_2012
10132 and then Present (Overridden_Operation (Subp))
10133 and then Has_Rep_Pragma
10134 (Overridden_Operation (Subp), Name_Implemented)
10135 then
10136 -- If the overriding routine is also marked by Implemented, check
10137 -- that the two implementation kinds are conforming.
10139 if Has_Rep_Pragma (Subp, Name_Implemented) then
10140 Check_Pragma_Implemented
10141 (Subp => Subp,
10142 Iface_Subp => Overridden_Operation (Subp));
10144 -- Otherwise the overriding routine inherits the implementation
10145 -- kind from the overridden subprogram.
10147 else
10148 Inherit_Pragma_Implemented
10149 (Subp => Subp,
10150 Iface_Subp => Overridden_Operation (Subp));
10151 end if;
10152 end if;
10154 -- If the operation is a wrapper for a synchronized primitive, it
10155 -- may be called indirectly through a dispatching select. We assume
10156 -- that it will be referenced elsewhere indirectly, and suppress
10157 -- warnings about an unused entity.
10159 if Is_Primitive_Wrapper (Subp)
10160 and then Present (Wrapped_Entity (Subp))
10161 then
10162 Set_Referenced (Wrapped_Entity (Subp));
10163 end if;
10165 Next_Elmt (Elmt);
10166 end loop;
10167 end Check_Abstract_Overriding;
10169 ------------------------------------------------
10170 -- Check_Access_Discriminant_Requires_Limited --
10171 ------------------------------------------------
10173 procedure Check_Access_Discriminant_Requires_Limited
10174 (D : Node_Id;
10175 Loc : Node_Id)
10177 begin
10178 -- A discriminant_specification for an access discriminant shall appear
10179 -- only in the declaration for a task or protected type, or for a type
10180 -- with the reserved word 'limited' in its definition or in one of its
10181 -- ancestors (RM 3.7(10)).
10183 -- AI-0063: The proper condition is that type must be immutably limited,
10184 -- or else be a partial view.
10186 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10187 if Is_Limited_View (Current_Scope)
10188 or else
10189 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10190 and then Limited_Present (Parent (Current_Scope)))
10191 then
10192 null;
10194 else
10195 Error_Msg_N
10196 ("access discriminants allowed only for limited types", Loc);
10197 end if;
10198 end if;
10199 end Check_Access_Discriminant_Requires_Limited;
10201 -----------------------------------
10202 -- Check_Aliased_Component_Types --
10203 -----------------------------------
10205 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10206 C : Entity_Id;
10208 begin
10209 -- ??? Also need to check components of record extensions, but not
10210 -- components of protected types (which are always limited).
10212 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10213 -- types to be unconstrained. This is safe because it is illegal to
10214 -- create access subtypes to such types with explicit discriminant
10215 -- constraints.
10217 if not Is_Limited_Type (T) then
10218 if Ekind (T) = E_Record_Type then
10219 C := First_Component (T);
10220 while Present (C) loop
10221 if Is_Aliased (C)
10222 and then Has_Discriminants (Etype (C))
10223 and then not Is_Constrained (Etype (C))
10224 and then not In_Instance_Body
10225 and then Ada_Version < Ada_2005
10226 then
10227 Error_Msg_N
10228 ("aliased component must be constrained (RM 3.6(11))",
10230 end if;
10232 Next_Component (C);
10233 end loop;
10235 elsif Ekind (T) = E_Array_Type then
10236 if Has_Aliased_Components (T)
10237 and then Has_Discriminants (Component_Type (T))
10238 and then not Is_Constrained (Component_Type (T))
10239 and then not In_Instance_Body
10240 and then Ada_Version < Ada_2005
10241 then
10242 Error_Msg_N
10243 ("aliased component type must be constrained (RM 3.6(11))",
10245 end if;
10246 end if;
10247 end if;
10248 end Check_Aliased_Component_Types;
10250 ---------------------------------------
10251 -- Check_Anonymous_Access_Components --
10252 ---------------------------------------
10254 procedure Check_Anonymous_Access_Components
10255 (Typ_Decl : Node_Id;
10256 Typ : Entity_Id;
10257 Prev : Entity_Id;
10258 Comp_List : Node_Id)
10260 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10261 Anon_Access : Entity_Id;
10262 Acc_Def : Node_Id;
10263 Comp : Node_Id;
10264 Comp_Def : Node_Id;
10265 Decl : Node_Id;
10266 Type_Def : Node_Id;
10268 procedure Build_Incomplete_Type_Declaration;
10269 -- If the record type contains components that include an access to the
10270 -- current record, then create an incomplete type declaration for the
10271 -- record, to be used as the designated type of the anonymous access.
10272 -- This is done only once, and only if there is no previous partial
10273 -- view of the type.
10275 function Designates_T (Subt : Node_Id) return Boolean;
10276 -- Check whether a node designates the enclosing record type, or 'Class
10277 -- of that type
10279 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10280 -- Check whether an access definition includes a reference to
10281 -- the enclosing record type. The reference can be a subtype mark
10282 -- in the access definition itself, a 'Class attribute reference, or
10283 -- recursively a reference appearing in a parameter specification
10284 -- or result definition of an access_to_subprogram definition.
10286 --------------------------------------
10287 -- Build_Incomplete_Type_Declaration --
10288 --------------------------------------
10290 procedure Build_Incomplete_Type_Declaration is
10291 Decl : Node_Id;
10292 Inc_T : Entity_Id;
10293 H : Entity_Id;
10295 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10296 -- it's "is new ... with record" or else "is tagged record ...".
10298 Is_Tagged : constant Boolean :=
10299 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10300 and then
10301 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10302 or else
10303 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10304 and then Tagged_Present (Type_Definition (Typ_Decl)));
10306 begin
10307 -- If there is a previous partial view, no need to create a new one
10308 -- If the partial view, given by Prev, is incomplete, If Prev is
10309 -- a private declaration, full declaration is flagged accordingly.
10311 if Prev /= Typ then
10312 if Is_Tagged then
10313 Make_Class_Wide_Type (Prev);
10314 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10315 Set_Etype (Class_Wide_Type (Typ), Typ);
10316 end if;
10318 return;
10320 elsif Has_Private_Declaration (Typ) then
10322 -- If we refer to T'Class inside T, and T is the completion of a
10323 -- private type, then make sure the class-wide type exists.
10325 if Is_Tagged then
10326 Make_Class_Wide_Type (Typ);
10327 end if;
10329 return;
10331 -- If there was a previous anonymous access type, the incomplete
10332 -- type declaration will have been created already.
10334 elsif Present (Current_Entity (Typ))
10335 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10336 and then Full_View (Current_Entity (Typ)) = Typ
10337 then
10338 if Is_Tagged
10339 and then Comes_From_Source (Current_Entity (Typ))
10340 and then not Is_Tagged_Type (Current_Entity (Typ))
10341 then
10342 Make_Class_Wide_Type (Typ);
10343 Error_Msg_N
10344 ("incomplete view of tagged type should be declared tagged??",
10345 Parent (Current_Entity (Typ)));
10346 end if;
10347 return;
10349 else
10350 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10351 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10353 -- Type has already been inserted into the current scope. Remove
10354 -- it, and add incomplete declaration for type, so that subsequent
10355 -- anonymous access types can use it. The entity is unchained from
10356 -- the homonym list and from immediate visibility. After analysis,
10357 -- the entity in the incomplete declaration becomes immediately
10358 -- visible in the record declaration that follows.
10360 H := Current_Entity (Typ);
10362 if H = Typ then
10363 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10364 else
10365 while Present (H)
10366 and then Homonym (H) /= Typ
10367 loop
10368 H := Homonym (Typ);
10369 end loop;
10371 Set_Homonym (H, Homonym (Typ));
10372 end if;
10374 Insert_Before (Typ_Decl, Decl);
10375 Analyze (Decl);
10376 Set_Full_View (Inc_T, Typ);
10378 if Is_Tagged then
10380 -- Create a common class-wide type for both views, and set the
10381 -- Etype of the class-wide type to the full view.
10383 Make_Class_Wide_Type (Inc_T);
10384 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10385 Set_Etype (Class_Wide_Type (Typ), Typ);
10386 end if;
10387 end if;
10388 end Build_Incomplete_Type_Declaration;
10390 ------------------
10391 -- Designates_T --
10392 ------------------
10394 function Designates_T (Subt : Node_Id) return Boolean is
10395 Type_Id : constant Name_Id := Chars (Typ);
10397 function Names_T (Nam : Node_Id) return Boolean;
10398 -- The record type has not been introduced in the current scope
10399 -- yet, so we must examine the name of the type itself, either
10400 -- an identifier T, or an expanded name of the form P.T, where
10401 -- P denotes the current scope.
10403 -------------
10404 -- Names_T --
10405 -------------
10407 function Names_T (Nam : Node_Id) return Boolean is
10408 begin
10409 if Nkind (Nam) = N_Identifier then
10410 return Chars (Nam) = Type_Id;
10412 elsif Nkind (Nam) = N_Selected_Component then
10413 if Chars (Selector_Name (Nam)) = Type_Id then
10414 if Nkind (Prefix (Nam)) = N_Identifier then
10415 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10417 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10418 return Chars (Selector_Name (Prefix (Nam))) =
10419 Chars (Current_Scope);
10420 else
10421 return False;
10422 end if;
10424 else
10425 return False;
10426 end if;
10428 else
10429 return False;
10430 end if;
10431 end Names_T;
10433 -- Start of processing for Designates_T
10435 begin
10436 if Nkind (Subt) = N_Identifier then
10437 return Chars (Subt) = Type_Id;
10439 -- Reference can be through an expanded name which has not been
10440 -- analyzed yet, and which designates enclosing scopes.
10442 elsif Nkind (Subt) = N_Selected_Component then
10443 if Names_T (Subt) then
10444 return True;
10446 -- Otherwise it must denote an entity that is already visible.
10447 -- The access definition may name a subtype of the enclosing
10448 -- type, if there is a previous incomplete declaration for it.
10450 else
10451 Find_Selected_Component (Subt);
10452 return
10453 Is_Entity_Name (Subt)
10454 and then Scope (Entity (Subt)) = Current_Scope
10455 and then
10456 (Chars (Base_Type (Entity (Subt))) = Type_Id
10457 or else
10458 (Is_Class_Wide_Type (Entity (Subt))
10459 and then
10460 Chars (Etype (Base_Type (Entity (Subt)))) =
10461 Type_Id));
10462 end if;
10464 -- A reference to the current type may appear as the prefix of
10465 -- a 'Class attribute.
10467 elsif Nkind (Subt) = N_Attribute_Reference
10468 and then Attribute_Name (Subt) = Name_Class
10469 then
10470 return Names_T (Prefix (Subt));
10472 else
10473 return False;
10474 end if;
10475 end Designates_T;
10477 ----------------
10478 -- Mentions_T --
10479 ----------------
10481 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10482 Param_Spec : Node_Id;
10484 Acc_Subprg : constant Node_Id :=
10485 Access_To_Subprogram_Definition (Acc_Def);
10487 begin
10488 if No (Acc_Subprg) then
10489 return Designates_T (Subtype_Mark (Acc_Def));
10490 end if;
10492 -- Component is an access_to_subprogram: examine its formals,
10493 -- and result definition in the case of an access_to_function.
10495 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10496 while Present (Param_Spec) loop
10497 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10498 and then Mentions_T (Parameter_Type (Param_Spec))
10499 then
10500 return True;
10502 elsif Designates_T (Parameter_Type (Param_Spec)) then
10503 return True;
10504 end if;
10506 Next (Param_Spec);
10507 end loop;
10509 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10510 if Nkind (Result_Definition (Acc_Subprg)) =
10511 N_Access_Definition
10512 then
10513 return Mentions_T (Result_Definition (Acc_Subprg));
10514 else
10515 return Designates_T (Result_Definition (Acc_Subprg));
10516 end if;
10517 end if;
10519 return False;
10520 end Mentions_T;
10522 -- Start of processing for Check_Anonymous_Access_Components
10524 begin
10525 if No (Comp_List) then
10526 return;
10527 end if;
10529 Comp := First (Component_Items (Comp_List));
10530 while Present (Comp) loop
10531 if Nkind (Comp) = N_Component_Declaration
10532 and then Present
10533 (Access_Definition (Component_Definition (Comp)))
10534 and then
10535 Mentions_T (Access_Definition (Component_Definition (Comp)))
10536 then
10537 Comp_Def := Component_Definition (Comp);
10538 Acc_Def :=
10539 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10541 Build_Incomplete_Type_Declaration;
10542 Anon_Access := Make_Temporary (Loc, 'S');
10544 -- Create a declaration for the anonymous access type: either
10545 -- an access_to_object or an access_to_subprogram.
10547 if Present (Acc_Def) then
10548 if Nkind (Acc_Def) = N_Access_Function_Definition then
10549 Type_Def :=
10550 Make_Access_Function_Definition (Loc,
10551 Parameter_Specifications =>
10552 Parameter_Specifications (Acc_Def),
10553 Result_Definition => Result_Definition (Acc_Def));
10554 else
10555 Type_Def :=
10556 Make_Access_Procedure_Definition (Loc,
10557 Parameter_Specifications =>
10558 Parameter_Specifications (Acc_Def));
10559 end if;
10561 else
10562 Type_Def :=
10563 Make_Access_To_Object_Definition (Loc,
10564 Subtype_Indication =>
10565 Relocate_Node
10566 (Subtype_Mark (Access_Definition (Comp_Def))));
10568 Set_Constant_Present
10569 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10570 Set_All_Present
10571 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10572 end if;
10574 Set_Null_Exclusion_Present
10575 (Type_Def,
10576 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10578 Decl :=
10579 Make_Full_Type_Declaration (Loc,
10580 Defining_Identifier => Anon_Access,
10581 Type_Definition => Type_Def);
10583 Insert_Before (Typ_Decl, Decl);
10584 Analyze (Decl);
10586 -- If an access to subprogram, create the extra formals
10588 if Present (Acc_Def) then
10589 Create_Extra_Formals (Designated_Type (Anon_Access));
10591 -- If an access to object, preserve entity of designated type,
10592 -- for ASIS use, before rewriting the component definition.
10594 else
10595 declare
10596 Desig : Entity_Id;
10598 begin
10599 Desig := Entity (Subtype_Indication (Type_Def));
10601 -- If the access definition is to the current record,
10602 -- the visible entity at this point is an incomplete
10603 -- type. Retrieve the full view to simplify ASIS queries
10605 if Ekind (Desig) = E_Incomplete_Type then
10606 Desig := Full_View (Desig);
10607 end if;
10609 Set_Entity
10610 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10611 end;
10612 end if;
10614 Rewrite (Comp_Def,
10615 Make_Component_Definition (Loc,
10616 Subtype_Indication =>
10617 New_Occurrence_Of (Anon_Access, Loc)));
10619 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10620 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10621 else
10622 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10623 end if;
10625 Set_Is_Local_Anonymous_Access (Anon_Access);
10626 end if;
10628 Next (Comp);
10629 end loop;
10631 if Present (Variant_Part (Comp_List)) then
10632 declare
10633 V : Node_Id;
10634 begin
10635 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10636 while Present (V) loop
10637 Check_Anonymous_Access_Components
10638 (Typ_Decl, Typ, Prev, Component_List (V));
10639 Next_Non_Pragma (V);
10640 end loop;
10641 end;
10642 end if;
10643 end Check_Anonymous_Access_Components;
10645 ----------------------
10646 -- Check_Completion --
10647 ----------------------
10649 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10650 E : Entity_Id;
10652 procedure Post_Error;
10653 -- Post error message for lack of completion for entity E
10655 ----------------
10656 -- Post_Error --
10657 ----------------
10659 procedure Post_Error is
10661 procedure Missing_Body;
10662 -- Output missing body message
10664 ------------------
10665 -- Missing_Body --
10666 ------------------
10668 procedure Missing_Body is
10669 begin
10670 -- Spec is in same unit, so we can post on spec
10672 if In_Same_Source_Unit (Body_Id, E) then
10673 Error_Msg_N ("missing body for &", E);
10675 -- Spec is in a separate unit, so we have to post on the body
10677 else
10678 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10679 end if;
10680 end Missing_Body;
10682 -- Start of processing for Post_Error
10684 begin
10685 if not Comes_From_Source (E) then
10687 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10689 -- It may be an anonymous protected type created for a
10690 -- single variable. Post error on variable, if present.
10692 declare
10693 Var : Entity_Id;
10695 begin
10696 Var := First_Entity (Current_Scope);
10697 while Present (Var) loop
10698 exit when Etype (Var) = E
10699 and then Comes_From_Source (Var);
10701 Next_Entity (Var);
10702 end loop;
10704 if Present (Var) then
10705 E := Var;
10706 end if;
10707 end;
10708 end if;
10709 end if;
10711 -- If a generated entity has no completion, then either previous
10712 -- semantic errors have disabled the expansion phase, or else we had
10713 -- missing subunits, or else we are compiling without expansion,
10714 -- or else something is very wrong.
10716 if not Comes_From_Source (E) then
10717 pragma Assert
10718 (Serious_Errors_Detected > 0
10719 or else Configurable_Run_Time_Violations > 0
10720 or else Subunits_Missing
10721 or else not Expander_Active);
10722 return;
10724 -- Here for source entity
10726 else
10727 -- Here if no body to post the error message, so we post the error
10728 -- on the declaration that has no completion. This is not really
10729 -- the right place to post it, think about this later ???
10731 if No (Body_Id) then
10732 if Is_Type (E) then
10733 Error_Msg_NE
10734 ("missing full declaration for }", Parent (E), E);
10735 else
10736 Error_Msg_NE ("missing body for &", Parent (E), E);
10737 end if;
10739 -- Package body has no completion for a declaration that appears
10740 -- in the corresponding spec. Post error on the body, with a
10741 -- reference to the non-completed declaration.
10743 else
10744 Error_Msg_Sloc := Sloc (E);
10746 if Is_Type (E) then
10747 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10749 elsif Is_Overloadable (E)
10750 and then Current_Entity_In_Scope (E) /= E
10751 then
10752 -- It may be that the completion is mistyped and appears as
10753 -- a distinct overloading of the entity.
10755 declare
10756 Candidate : constant Entity_Id :=
10757 Current_Entity_In_Scope (E);
10758 Decl : constant Node_Id :=
10759 Unit_Declaration_Node (Candidate);
10761 begin
10762 if Is_Overloadable (Candidate)
10763 and then Ekind (Candidate) = Ekind (E)
10764 and then Nkind (Decl) = N_Subprogram_Body
10765 and then Acts_As_Spec (Decl)
10766 then
10767 Check_Type_Conformant (Candidate, E);
10769 else
10770 Missing_Body;
10771 end if;
10772 end;
10774 else
10775 Missing_Body;
10776 end if;
10777 end if;
10778 end if;
10779 end Post_Error;
10781 -- Local variables
10783 Pack_Id : constant Entity_Id := Current_Scope;
10785 -- Start of processing for Check_Completion
10787 begin
10788 E := First_Entity (Pack_Id);
10789 while Present (E) loop
10790 if Is_Intrinsic_Subprogram (E) then
10791 null;
10793 -- A Ghost entity declared in a non-Ghost package does not force the
10794 -- need for a body (SPARK RM 6.9(11)).
10796 elsif not Is_Ghost_Entity (Pack_Id) and then Is_Ghost_Entity (E) then
10797 null;
10799 -- The following situation requires special handling: a child unit
10800 -- that appears in the context clause of the body of its parent:
10802 -- procedure Parent.Child (...);
10804 -- with Parent.Child;
10805 -- package body Parent is
10807 -- Here Parent.Child appears as a local entity, but should not be
10808 -- flagged as requiring completion, because it is a compilation
10809 -- unit.
10811 -- Ignore missing completion for a subprogram that does not come from
10812 -- source (including the _Call primitive operation of RAS types,
10813 -- which has to have the flag Comes_From_Source for other purposes):
10814 -- we assume that the expander will provide the missing completion.
10815 -- In case of previous errors, other expansion actions that provide
10816 -- bodies for null procedures with not be invoked, so inhibit message
10817 -- in those cases.
10819 -- Note that E_Operator is not in the list that follows, because
10820 -- this kind is reserved for predefined operators, that are
10821 -- intrinsic and do not need completion.
10823 elsif Ekind_In (E, E_Function,
10824 E_Procedure,
10825 E_Generic_Function,
10826 E_Generic_Procedure)
10827 then
10828 if Has_Completion (E) then
10829 null;
10831 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10832 null;
10834 elsif Is_Subprogram (E)
10835 and then (not Comes_From_Source (E)
10836 or else Chars (E) = Name_uCall)
10837 then
10838 null;
10840 elsif
10841 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10842 then
10843 null;
10845 elsif Nkind (Parent (E)) = N_Procedure_Specification
10846 and then Null_Present (Parent (E))
10847 and then Serious_Errors_Detected > 0
10848 then
10849 null;
10851 else
10852 Post_Error;
10853 end if;
10855 elsif Is_Entry (E) then
10856 if not Has_Completion (E) and then
10857 (Ekind (Scope (E)) = E_Protected_Object
10858 or else Ekind (Scope (E)) = E_Protected_Type)
10859 then
10860 Post_Error;
10861 end if;
10863 elsif Is_Package_Or_Generic_Package (E) then
10864 if Unit_Requires_Body (E) then
10865 if not Has_Completion (E)
10866 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10867 N_Compilation_Unit
10868 then
10869 Post_Error;
10870 end if;
10872 elsif not Is_Child_Unit (E) then
10873 May_Need_Implicit_Body (E);
10874 end if;
10876 -- A formal incomplete type (Ada 2012) does not require a completion;
10877 -- other incomplete type declarations do.
10879 elsif Ekind (E) = E_Incomplete_Type
10880 and then No (Underlying_Type (E))
10881 and then not Is_Generic_Type (E)
10882 then
10883 Post_Error;
10885 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10886 and then not Has_Completion (E)
10887 then
10888 Post_Error;
10890 -- A single task declared in the current scope is a constant, verify
10891 -- that the body of its anonymous type is in the same scope. If the
10892 -- task is defined elsewhere, this may be a renaming declaration for
10893 -- which no completion is needed.
10895 elsif Ekind (E) = E_Constant
10896 and then Ekind (Etype (E)) = E_Task_Type
10897 and then not Has_Completion (Etype (E))
10898 and then Scope (Etype (E)) = Current_Scope
10899 then
10900 Post_Error;
10902 elsif Ekind (E) = E_Protected_Object
10903 and then not Has_Completion (Etype (E))
10904 then
10905 Post_Error;
10907 elsif Ekind (E) = E_Record_Type then
10908 if Is_Tagged_Type (E) then
10909 Check_Abstract_Overriding (E);
10910 Check_Conventions (E);
10911 end if;
10913 Check_Aliased_Component_Types (E);
10915 elsif Ekind (E) = E_Array_Type then
10916 Check_Aliased_Component_Types (E);
10918 end if;
10920 Next_Entity (E);
10921 end loop;
10922 end Check_Completion;
10924 ------------------------------------
10925 -- Check_CPP_Type_Has_No_Defaults --
10926 ------------------------------------
10928 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10929 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10930 Clist : Node_Id;
10931 Comp : Node_Id;
10933 begin
10934 -- Obtain the component list
10936 if Nkind (Tdef) = N_Record_Definition then
10937 Clist := Component_List (Tdef);
10938 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10939 Clist := Component_List (Record_Extension_Part (Tdef));
10940 end if;
10942 -- Check all components to ensure no default expressions
10944 if Present (Clist) then
10945 Comp := First (Component_Items (Clist));
10946 while Present (Comp) loop
10947 if Present (Expression (Comp)) then
10948 Error_Msg_N
10949 ("component of imported 'C'P'P type cannot have "
10950 & "default expression", Expression (Comp));
10951 end if;
10953 Next (Comp);
10954 end loop;
10955 end if;
10956 end Check_CPP_Type_Has_No_Defaults;
10958 ----------------------------
10959 -- Check_Delta_Expression --
10960 ----------------------------
10962 procedure Check_Delta_Expression (E : Node_Id) is
10963 begin
10964 if not (Is_Real_Type (Etype (E))) then
10965 Wrong_Type (E, Any_Real);
10967 elsif not Is_OK_Static_Expression (E) then
10968 Flag_Non_Static_Expr
10969 ("non-static expression used for delta value!", E);
10971 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10972 Error_Msg_N ("delta expression must be positive", E);
10974 else
10975 return;
10976 end if;
10978 -- If any of above errors occurred, then replace the incorrect
10979 -- expression by the real 0.1, which should prevent further errors.
10981 Rewrite (E,
10982 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10983 Analyze_And_Resolve (E, Standard_Float);
10984 end Check_Delta_Expression;
10986 -----------------------------
10987 -- Check_Digits_Expression --
10988 -----------------------------
10990 procedure Check_Digits_Expression (E : Node_Id) is
10991 begin
10992 if not (Is_Integer_Type (Etype (E))) then
10993 Wrong_Type (E, Any_Integer);
10995 elsif not Is_OK_Static_Expression (E) then
10996 Flag_Non_Static_Expr
10997 ("non-static expression used for digits value!", E);
10999 elsif Expr_Value (E) <= 0 then
11000 Error_Msg_N ("digits value must be greater than zero", E);
11002 else
11003 return;
11004 end if;
11006 -- If any of above errors occurred, then replace the incorrect
11007 -- expression by the integer 1, which should prevent further errors.
11009 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11010 Analyze_And_Resolve (E, Standard_Integer);
11012 end Check_Digits_Expression;
11014 --------------------------
11015 -- Check_Initialization --
11016 --------------------------
11018 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11019 begin
11020 -- Special processing for limited types
11022 if Is_Limited_Type (T)
11023 and then not In_Instance
11024 and then not In_Inlined_Body
11025 then
11026 if not OK_For_Limited_Init (T, Exp) then
11028 -- In GNAT mode, this is just a warning, to allow it to be evilly
11029 -- turned off. Otherwise it is a real error.
11031 if GNAT_Mode then
11032 Error_Msg_N
11033 ("??cannot initialize entities of limited type!", Exp);
11035 elsif Ada_Version < Ada_2005 then
11037 -- The side effect removal machinery may generate illegal Ada
11038 -- code to avoid the usage of access types and 'reference in
11039 -- SPARK mode. Since this is legal code with respect to theorem
11040 -- proving, do not emit the error.
11042 if GNATprove_Mode
11043 and then Nkind (Exp) = N_Function_Call
11044 and then Nkind (Parent (Exp)) = N_Object_Declaration
11045 and then not Comes_From_Source
11046 (Defining_Identifier (Parent (Exp)))
11047 then
11048 null;
11050 else
11051 Error_Msg_N
11052 ("cannot initialize entities of limited type", Exp);
11053 Explain_Limited_Type (T, Exp);
11054 end if;
11056 else
11057 -- Specialize error message according to kind of illegal
11058 -- initial expression.
11060 if Nkind (Exp) = N_Type_Conversion
11061 and then Nkind (Expression (Exp)) = N_Function_Call
11062 then
11063 Error_Msg_N
11064 ("illegal context for call"
11065 & " to function with limited result", Exp);
11067 else
11068 Error_Msg_N
11069 ("initialization of limited object requires aggregate "
11070 & "or function call", Exp);
11071 end if;
11072 end if;
11073 end if;
11074 end if;
11076 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11077 -- set unless we can be sure that no range check is required.
11079 if (GNATprove_Mode or not Expander_Active)
11080 and then Is_Scalar_Type (T)
11081 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11082 then
11083 Set_Do_Range_Check (Exp);
11084 end if;
11085 end Check_Initialization;
11087 ----------------------
11088 -- Check_Interfaces --
11089 ----------------------
11091 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11092 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11094 Iface : Node_Id;
11095 Iface_Def : Node_Id;
11096 Iface_Typ : Entity_Id;
11097 Parent_Node : Node_Id;
11099 Is_Task : Boolean := False;
11100 -- Set True if parent type or any progenitor is a task interface
11102 Is_Protected : Boolean := False;
11103 -- Set True if parent type or any progenitor is a protected interface
11105 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11106 -- Check that a progenitor is compatible with declaration. If an error
11107 -- message is output, it is posted on Error_Node.
11109 ------------------
11110 -- Check_Ifaces --
11111 ------------------
11113 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11114 Iface_Id : constant Entity_Id :=
11115 Defining_Identifier (Parent (Iface_Def));
11116 Type_Def : Node_Id;
11118 begin
11119 if Nkind (N) = N_Private_Extension_Declaration then
11120 Type_Def := N;
11121 else
11122 Type_Def := Type_Definition (N);
11123 end if;
11125 if Is_Task_Interface (Iface_Id) then
11126 Is_Task := True;
11128 elsif Is_Protected_Interface (Iface_Id) then
11129 Is_Protected := True;
11130 end if;
11132 if Is_Synchronized_Interface (Iface_Id) then
11134 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11135 -- extension derived from a synchronized interface must explicitly
11136 -- be declared synchronized, because the full view will be a
11137 -- synchronized type.
11139 if Nkind (N) = N_Private_Extension_Declaration then
11140 if not Synchronized_Present (N) then
11141 Error_Msg_NE
11142 ("private extension of& must be explicitly synchronized",
11143 N, Iface_Id);
11144 end if;
11146 -- However, by 3.9.4(16/2), a full type that is a record extension
11147 -- is never allowed to derive from a synchronized interface (note
11148 -- that interfaces must be excluded from this check, because those
11149 -- are represented by derived type definitions in some cases).
11151 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11152 and then not Interface_Present (Type_Definition (N))
11153 then
11154 Error_Msg_N ("record extension cannot derive from synchronized "
11155 & "interface", Error_Node);
11156 end if;
11157 end if;
11159 -- Check that the characteristics of the progenitor are compatible
11160 -- with the explicit qualifier in the declaration.
11161 -- The check only applies to qualifiers that come from source.
11162 -- Limited_Present also appears in the declaration of corresponding
11163 -- records, and the check does not apply to them.
11165 if Limited_Present (Type_Def)
11166 and then not
11167 Is_Concurrent_Record_Type (Defining_Identifier (N))
11168 then
11169 if Is_Limited_Interface (Parent_Type)
11170 and then not Is_Limited_Interface (Iface_Id)
11171 then
11172 Error_Msg_NE
11173 ("progenitor & must be limited interface",
11174 Error_Node, Iface_Id);
11176 elsif
11177 (Task_Present (Iface_Def)
11178 or else Protected_Present (Iface_Def)
11179 or else Synchronized_Present (Iface_Def))
11180 and then Nkind (N) /= N_Private_Extension_Declaration
11181 and then not Error_Posted (N)
11182 then
11183 Error_Msg_NE
11184 ("progenitor & must be limited interface",
11185 Error_Node, Iface_Id);
11186 end if;
11188 -- Protected interfaces can only inherit from limited, synchronized
11189 -- or protected interfaces.
11191 elsif Nkind (N) = N_Full_Type_Declaration
11192 and then Protected_Present (Type_Def)
11193 then
11194 if Limited_Present (Iface_Def)
11195 or else Synchronized_Present (Iface_Def)
11196 or else Protected_Present (Iface_Def)
11197 then
11198 null;
11200 elsif Task_Present (Iface_Def) then
11201 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11202 & "from task interface", Error_Node);
11204 else
11205 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11206 & "from non-limited interface", Error_Node);
11207 end if;
11209 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11210 -- limited and synchronized.
11212 elsif Synchronized_Present (Type_Def) then
11213 if Limited_Present (Iface_Def)
11214 or else Synchronized_Present (Iface_Def)
11215 then
11216 null;
11218 elsif Protected_Present (Iface_Def)
11219 and then Nkind (N) /= N_Private_Extension_Declaration
11220 then
11221 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11222 & "from protected interface", Error_Node);
11224 elsif Task_Present (Iface_Def)
11225 and then Nkind (N) /= N_Private_Extension_Declaration
11226 then
11227 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11228 & "from task interface", Error_Node);
11230 elsif not Is_Limited_Interface (Iface_Id) then
11231 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11232 & "from non-limited interface", Error_Node);
11233 end if;
11235 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11236 -- synchronized or task interfaces.
11238 elsif Nkind (N) = N_Full_Type_Declaration
11239 and then Task_Present (Type_Def)
11240 then
11241 if Limited_Present (Iface_Def)
11242 or else Synchronized_Present (Iface_Def)
11243 or else Task_Present (Iface_Def)
11244 then
11245 null;
11247 elsif Protected_Present (Iface_Def) then
11248 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11249 & "protected interface", Error_Node);
11251 else
11252 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11253 & "non-limited interface", Error_Node);
11254 end if;
11255 end if;
11256 end Check_Ifaces;
11258 -- Start of processing for Check_Interfaces
11260 begin
11261 if Is_Interface (Parent_Type) then
11262 if Is_Task_Interface (Parent_Type) then
11263 Is_Task := True;
11265 elsif Is_Protected_Interface (Parent_Type) then
11266 Is_Protected := True;
11267 end if;
11268 end if;
11270 if Nkind (N) = N_Private_Extension_Declaration then
11272 -- Check that progenitors are compatible with declaration
11274 Iface := First (Interface_List (Def));
11275 while Present (Iface) loop
11276 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11278 Parent_Node := Parent (Base_Type (Iface_Typ));
11279 Iface_Def := Type_Definition (Parent_Node);
11281 if not Is_Interface (Iface_Typ) then
11282 Diagnose_Interface (Iface, Iface_Typ);
11283 else
11284 Check_Ifaces (Iface_Def, Iface);
11285 end if;
11287 Next (Iface);
11288 end loop;
11290 if Is_Task and Is_Protected then
11291 Error_Msg_N
11292 ("type cannot derive from task and protected interface", N);
11293 end if;
11295 return;
11296 end if;
11298 -- Full type declaration of derived type.
11299 -- Check compatibility with parent if it is interface type
11301 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11302 and then Is_Interface (Parent_Type)
11303 then
11304 Parent_Node := Parent (Parent_Type);
11306 -- More detailed checks for interface varieties
11308 Check_Ifaces
11309 (Iface_Def => Type_Definition (Parent_Node),
11310 Error_Node => Subtype_Indication (Type_Definition (N)));
11311 end if;
11313 Iface := First (Interface_List (Def));
11314 while Present (Iface) loop
11315 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11317 Parent_Node := Parent (Base_Type (Iface_Typ));
11318 Iface_Def := Type_Definition (Parent_Node);
11320 if not Is_Interface (Iface_Typ) then
11321 Diagnose_Interface (Iface, Iface_Typ);
11323 else
11324 -- "The declaration of a specific descendant of an interface
11325 -- type freezes the interface type" RM 13.14
11327 Freeze_Before (N, Iface_Typ);
11328 Check_Ifaces (Iface_Def, Error_Node => Iface);
11329 end if;
11331 Next (Iface);
11332 end loop;
11334 if Is_Task and Is_Protected then
11335 Error_Msg_N
11336 ("type cannot derive from task and protected interface", N);
11337 end if;
11338 end Check_Interfaces;
11340 ------------------------------------
11341 -- Check_Or_Process_Discriminants --
11342 ------------------------------------
11344 -- If an incomplete or private type declaration was already given for the
11345 -- type, the discriminants may have already been processed if they were
11346 -- present on the incomplete declaration. In this case a full conformance
11347 -- check has been performed in Find_Type_Name, and we then recheck here
11348 -- some properties that can't be checked on the partial view alone.
11349 -- Otherwise we call Process_Discriminants.
11351 procedure Check_Or_Process_Discriminants
11352 (N : Node_Id;
11353 T : Entity_Id;
11354 Prev : Entity_Id := Empty)
11356 begin
11357 if Has_Discriminants (T) then
11359 -- Discriminants are already set on T if they were already present
11360 -- on the partial view. Make them visible to component declarations.
11362 declare
11363 D : Entity_Id;
11364 -- Discriminant on T (full view) referencing expr on partial view
11366 Prev_D : Entity_Id;
11367 -- Entity of corresponding discriminant on partial view
11369 New_D : Node_Id;
11370 -- Discriminant specification for full view, expression is
11371 -- the syntactic copy on full view (which has been checked for
11372 -- conformance with partial view), only used here to post error
11373 -- message.
11375 begin
11376 D := First_Discriminant (T);
11377 New_D := First (Discriminant_Specifications (N));
11378 while Present (D) loop
11379 Prev_D := Current_Entity (D);
11380 Set_Current_Entity (D);
11381 Set_Is_Immediately_Visible (D);
11382 Set_Homonym (D, Prev_D);
11384 -- Handle the case where there is an untagged partial view and
11385 -- the full view is tagged: must disallow discriminants with
11386 -- defaults, unless compiling for Ada 2012, which allows a
11387 -- limited tagged type to have defaulted discriminants (see
11388 -- AI05-0214). However, suppress error here if it was already
11389 -- reported on the default expression of the partial view.
11391 if Is_Tagged_Type (T)
11392 and then Present (Expression (Parent (D)))
11393 and then (not Is_Limited_Type (Current_Scope)
11394 or else Ada_Version < Ada_2012)
11395 and then not Error_Posted (Expression (Parent (D)))
11396 then
11397 if Ada_Version >= Ada_2012 then
11398 Error_Msg_N
11399 ("discriminants of nonlimited tagged type cannot have "
11400 & "defaults",
11401 Expression (New_D));
11402 else
11403 Error_Msg_N
11404 ("discriminants of tagged type cannot have defaults",
11405 Expression (New_D));
11406 end if;
11407 end if;
11409 -- Ada 2005 (AI-230): Access discriminant allowed in
11410 -- non-limited record types.
11412 if Ada_Version < Ada_2005 then
11414 -- This restriction gets applied to the full type here. It
11415 -- has already been applied earlier to the partial view.
11417 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11418 end if;
11420 Next_Discriminant (D);
11421 Next (New_D);
11422 end loop;
11423 end;
11425 elsif Present (Discriminant_Specifications (N)) then
11426 Process_Discriminants (N, Prev);
11427 end if;
11428 end Check_Or_Process_Discriminants;
11430 ----------------------
11431 -- Check_Real_Bound --
11432 ----------------------
11434 procedure Check_Real_Bound (Bound : Node_Id) is
11435 begin
11436 if not Is_Real_Type (Etype (Bound)) then
11437 Error_Msg_N
11438 ("bound in real type definition must be of real type", Bound);
11440 elsif not Is_OK_Static_Expression (Bound) then
11441 Flag_Non_Static_Expr
11442 ("non-static expression used for real type bound!", Bound);
11444 else
11445 return;
11446 end if;
11448 Rewrite
11449 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11450 Analyze (Bound);
11451 Resolve (Bound, Standard_Float);
11452 end Check_Real_Bound;
11454 ------------------------------
11455 -- Complete_Private_Subtype --
11456 ------------------------------
11458 procedure Complete_Private_Subtype
11459 (Priv : Entity_Id;
11460 Full : Entity_Id;
11461 Full_Base : Entity_Id;
11462 Related_Nod : Node_Id)
11464 Save_Next_Entity : Entity_Id;
11465 Save_Homonym : Entity_Id;
11467 begin
11468 -- Set semantic attributes for (implicit) private subtype completion.
11469 -- If the full type has no discriminants, then it is a copy of the
11470 -- full view of the base. Otherwise, it is a subtype of the base with
11471 -- a possible discriminant constraint. Save and restore the original
11472 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11473 -- not corrupt the entity chain.
11475 -- Note that the type of the full view is the same entity as the type
11476 -- of the partial view. In this fashion, the subtype has access to the
11477 -- correct view of the parent.
11479 Save_Next_Entity := Next_Entity (Full);
11480 Save_Homonym := Homonym (Priv);
11482 case Ekind (Full_Base) is
11483 when E_Record_Type |
11484 E_Record_Subtype |
11485 Class_Wide_Kind |
11486 Private_Kind |
11487 Task_Kind |
11488 Protected_Kind =>
11489 Copy_Node (Priv, Full);
11491 Set_Has_Discriminants
11492 (Full, Has_Discriminants (Full_Base));
11493 Set_Has_Unknown_Discriminants
11494 (Full, Has_Unknown_Discriminants (Full_Base));
11495 Set_First_Entity (Full, First_Entity (Full_Base));
11496 Set_Last_Entity (Full, Last_Entity (Full_Base));
11498 -- If the underlying base type is constrained, we know that the
11499 -- full view of the subtype is constrained as well (the converse
11500 -- is not necessarily true).
11502 if Is_Constrained (Full_Base) then
11503 Set_Is_Constrained (Full);
11504 end if;
11506 when others =>
11507 Copy_Node (Full_Base, Full);
11509 Set_Chars (Full, Chars (Priv));
11510 Conditional_Delay (Full, Priv);
11511 Set_Sloc (Full, Sloc (Priv));
11512 end case;
11514 Set_Next_Entity (Full, Save_Next_Entity);
11515 Set_Homonym (Full, Save_Homonym);
11516 Set_Associated_Node_For_Itype (Full, Related_Nod);
11518 -- Set common attributes for all subtypes: kind, convention, etc.
11520 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11521 Set_Convention (Full, Convention (Full_Base));
11523 -- The Etype of the full view is inconsistent. Gigi needs to see the
11524 -- structural full view, which is what the current scheme gives: the
11525 -- Etype of the full view is the etype of the full base. However, if the
11526 -- full base is a derived type, the full view then looks like a subtype
11527 -- of the parent, not a subtype of the full base. If instead we write:
11529 -- Set_Etype (Full, Full_Base);
11531 -- then we get inconsistencies in the front-end (confusion between
11532 -- views). Several outstanding bugs are related to this ???
11534 Set_Is_First_Subtype (Full, False);
11535 Set_Scope (Full, Scope (Priv));
11536 Set_Size_Info (Full, Full_Base);
11537 Set_RM_Size (Full, RM_Size (Full_Base));
11538 Set_Is_Itype (Full);
11540 -- A subtype of a private-type-without-discriminants, whose full-view
11541 -- has discriminants with default expressions, is not constrained.
11543 if not Has_Discriminants (Priv) then
11544 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11546 if Has_Discriminants (Full_Base) then
11547 Set_Discriminant_Constraint
11548 (Full, Discriminant_Constraint (Full_Base));
11550 -- The partial view may have been indefinite, the full view
11551 -- might not be.
11553 Set_Has_Unknown_Discriminants
11554 (Full, Has_Unknown_Discriminants (Full_Base));
11555 end if;
11556 end if;
11558 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11559 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11561 -- Freeze the private subtype entity if its parent is delayed, and not
11562 -- already frozen. We skip this processing if the type is an anonymous
11563 -- subtype of a record component, or is the corresponding record of a
11564 -- protected type, since ???
11566 if not Is_Type (Scope (Full)) then
11567 Set_Has_Delayed_Freeze (Full,
11568 Has_Delayed_Freeze (Full_Base)
11569 and then (not Is_Frozen (Full_Base)));
11570 end if;
11572 Set_Freeze_Node (Full, Empty);
11573 Set_Is_Frozen (Full, False);
11574 Set_Full_View (Priv, Full);
11576 if Has_Discriminants (Full) then
11577 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11578 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11580 if Has_Unknown_Discriminants (Full) then
11581 Set_Discriminant_Constraint (Full, No_Elist);
11582 end if;
11583 end if;
11585 if Ekind (Full_Base) = E_Record_Type
11586 and then Has_Discriminants (Full_Base)
11587 and then Has_Discriminants (Priv) -- might not, if errors
11588 and then not Has_Unknown_Discriminants (Priv)
11589 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11590 then
11591 Create_Constrained_Components
11592 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11594 -- If the full base is itself derived from private, build a congruent
11595 -- subtype of its underlying type, for use by the back end. For a
11596 -- constrained record component, the declaration cannot be placed on
11597 -- the component list, but it must nevertheless be built an analyzed, to
11598 -- supply enough information for Gigi to compute the size of component.
11600 elsif Ekind (Full_Base) in Private_Kind
11601 and then Is_Derived_Type (Full_Base)
11602 and then Has_Discriminants (Full_Base)
11603 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11604 then
11605 if not Is_Itype (Priv)
11606 and then
11607 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11608 then
11609 Build_Underlying_Full_View
11610 (Parent (Priv), Full, Etype (Full_Base));
11612 elsif Nkind (Related_Nod) = N_Component_Declaration then
11613 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11614 end if;
11616 elsif Is_Record_Type (Full_Base) then
11618 -- Show Full is simply a renaming of Full_Base
11620 Set_Cloned_Subtype (Full, Full_Base);
11621 end if;
11623 -- It is unsafe to share the bounds of a scalar type, because the Itype
11624 -- is elaborated on demand, and if a bound is non-static then different
11625 -- orders of elaboration in different units will lead to different
11626 -- external symbols.
11628 if Is_Scalar_Type (Full_Base) then
11629 Set_Scalar_Range (Full,
11630 Make_Range (Sloc (Related_Nod),
11631 Low_Bound =>
11632 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11633 High_Bound =>
11634 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11636 -- This completion inherits the bounds of the full parent, but if
11637 -- the parent is an unconstrained floating point type, so is the
11638 -- completion.
11640 if Is_Floating_Point_Type (Full_Base) then
11641 Set_Includes_Infinities
11642 (Scalar_Range (Full), Has_Infinities (Full_Base));
11643 end if;
11644 end if;
11646 -- ??? It seems that a lot of fields are missing that should be copied
11647 -- from Full_Base to Full. Here are some that are introduced in a
11648 -- non-disruptive way but a cleanup is necessary.
11650 if Is_Tagged_Type (Full_Base) then
11651 Set_Is_Tagged_Type (Full);
11652 Set_Direct_Primitive_Operations
11653 (Full, Direct_Primitive_Operations (Full_Base));
11654 Set_No_Tagged_Streams_Pragma
11655 (Full, No_Tagged_Streams_Pragma (Full_Base));
11657 -- Inherit class_wide type of full_base in case the partial view was
11658 -- not tagged. Otherwise it has already been created when the private
11659 -- subtype was analyzed.
11661 if No (Class_Wide_Type (Full)) then
11662 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11663 end if;
11665 -- If this is a subtype of a protected or task type, constrain its
11666 -- corresponding record, unless this is a subtype without constraints,
11667 -- i.e. a simple renaming as with an actual subtype in an instance.
11669 elsif Is_Concurrent_Type (Full_Base) then
11670 if Has_Discriminants (Full)
11671 and then Present (Corresponding_Record_Type (Full_Base))
11672 and then
11673 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11674 then
11675 Set_Corresponding_Record_Type (Full,
11676 Constrain_Corresponding_Record
11677 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11679 else
11680 Set_Corresponding_Record_Type (Full,
11681 Corresponding_Record_Type (Full_Base));
11682 end if;
11683 end if;
11685 -- Link rep item chain, and also setting of Has_Predicates from private
11686 -- subtype to full subtype, since we will need these on the full subtype
11687 -- to create the predicate function. Note that the full subtype may
11688 -- already have rep items, inherited from the full view of the base
11689 -- type, so we must be sure not to overwrite these entries.
11691 declare
11692 Append : Boolean;
11693 Item : Node_Id;
11694 Next_Item : Node_Id;
11696 begin
11697 Item := First_Rep_Item (Full);
11699 -- If no existing rep items on full type, we can just link directly
11700 -- to the list of items on the private type, if any exist.. Same if
11701 -- the rep items are only those inherited from the base
11703 if (No (Item)
11704 or else Nkind (Item) /= N_Aspect_Specification
11705 or else Entity (Item) = Full_Base)
11706 and then Present (First_Rep_Item (Priv))
11707 then
11708 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11710 -- Otherwise, search to the end of items currently linked to the full
11711 -- subtype and append the private items to the end. However, if Priv
11712 -- and Full already have the same list of rep items, then the append
11713 -- is not done, as that would create a circularity.
11715 elsif Item /= First_Rep_Item (Priv) then
11716 Append := True;
11717 loop
11718 Next_Item := Next_Rep_Item (Item);
11719 exit when No (Next_Item);
11720 Item := Next_Item;
11722 -- If the private view has aspect specifications, the full view
11723 -- inherits them. Since these aspects may already have been
11724 -- attached to the full view during derivation, do not append
11725 -- them if already present.
11727 if Item = First_Rep_Item (Priv) then
11728 Append := False;
11729 exit;
11730 end if;
11731 end loop;
11733 -- And link the private type items at the end of the chain
11735 if Append then
11736 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11737 end if;
11738 end if;
11739 end;
11741 -- Make sure Has_Predicates is set on full type if it is set on the
11742 -- private type. Note that it may already be set on the full type and
11743 -- if so, we don't want to unset it.
11745 if Has_Predicates (Priv) then
11746 Set_Has_Predicates (Full);
11747 end if;
11748 end Complete_Private_Subtype;
11750 ----------------------------
11751 -- Constant_Redeclaration --
11752 ----------------------------
11754 procedure Constant_Redeclaration
11755 (Id : Entity_Id;
11756 N : Node_Id;
11757 T : out Entity_Id)
11759 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11760 Obj_Def : constant Node_Id := Object_Definition (N);
11761 New_T : Entity_Id;
11763 procedure Check_Possible_Deferred_Completion
11764 (Prev_Id : Entity_Id;
11765 Prev_Obj_Def : Node_Id;
11766 Curr_Obj_Def : Node_Id);
11767 -- Determine whether the two object definitions describe the partial
11768 -- and the full view of a constrained deferred constant. Generate
11769 -- a subtype for the full view and verify that it statically matches
11770 -- the subtype of the partial view.
11772 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11773 -- If deferred constant is an access type initialized with an allocator,
11774 -- check whether there is an illegal recursion in the definition,
11775 -- through a default value of some record subcomponent. This is normally
11776 -- detected when generating init procs, but requires this additional
11777 -- mechanism when expansion is disabled.
11779 ----------------------------------------
11780 -- Check_Possible_Deferred_Completion --
11781 ----------------------------------------
11783 procedure Check_Possible_Deferred_Completion
11784 (Prev_Id : Entity_Id;
11785 Prev_Obj_Def : Node_Id;
11786 Curr_Obj_Def : Node_Id)
11788 begin
11789 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11790 and then Present (Constraint (Prev_Obj_Def))
11791 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11792 and then Present (Constraint (Curr_Obj_Def))
11793 then
11794 declare
11795 Loc : constant Source_Ptr := Sloc (N);
11796 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11797 Decl : constant Node_Id :=
11798 Make_Subtype_Declaration (Loc,
11799 Defining_Identifier => Def_Id,
11800 Subtype_Indication =>
11801 Relocate_Node (Curr_Obj_Def));
11803 begin
11804 Insert_Before_And_Analyze (N, Decl);
11805 Set_Etype (Id, Def_Id);
11807 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11808 Error_Msg_Sloc := Sloc (Prev_Id);
11809 Error_Msg_N ("subtype does not statically match deferred "
11810 & "declaration #", N);
11811 end if;
11812 end;
11813 end if;
11814 end Check_Possible_Deferred_Completion;
11816 ---------------------------------
11817 -- Check_Recursive_Declaration --
11818 ---------------------------------
11820 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11821 Comp : Entity_Id;
11823 begin
11824 if Is_Record_Type (Typ) then
11825 Comp := First_Component (Typ);
11826 while Present (Comp) loop
11827 if Comes_From_Source (Comp) then
11828 if Present (Expression (Parent (Comp)))
11829 and then Is_Entity_Name (Expression (Parent (Comp)))
11830 and then Entity (Expression (Parent (Comp))) = Prev
11831 then
11832 Error_Msg_Sloc := Sloc (Parent (Comp));
11833 Error_Msg_NE
11834 ("illegal circularity with declaration for & #",
11835 N, Comp);
11836 return;
11838 elsif Is_Record_Type (Etype (Comp)) then
11839 Check_Recursive_Declaration (Etype (Comp));
11840 end if;
11841 end if;
11843 Next_Component (Comp);
11844 end loop;
11845 end if;
11846 end Check_Recursive_Declaration;
11848 -- Start of processing for Constant_Redeclaration
11850 begin
11851 if Nkind (Parent (Prev)) = N_Object_Declaration then
11852 if Nkind (Object_Definition
11853 (Parent (Prev))) = N_Subtype_Indication
11854 then
11855 -- Find type of new declaration. The constraints of the two
11856 -- views must match statically, but there is no point in
11857 -- creating an itype for the full view.
11859 if Nkind (Obj_Def) = N_Subtype_Indication then
11860 Find_Type (Subtype_Mark (Obj_Def));
11861 New_T := Entity (Subtype_Mark (Obj_Def));
11863 else
11864 Find_Type (Obj_Def);
11865 New_T := Entity (Obj_Def);
11866 end if;
11868 T := Etype (Prev);
11870 else
11871 -- The full view may impose a constraint, even if the partial
11872 -- view does not, so construct the subtype.
11874 New_T := Find_Type_Of_Object (Obj_Def, N);
11875 T := New_T;
11876 end if;
11878 else
11879 -- Current declaration is illegal, diagnosed below in Enter_Name
11881 T := Empty;
11882 New_T := Any_Type;
11883 end if;
11885 -- If previous full declaration or a renaming declaration exists, or if
11886 -- a homograph is present, let Enter_Name handle it, either with an
11887 -- error or with the removal of an overridden implicit subprogram.
11888 -- The previous one is a full declaration if it has an expression
11889 -- (which in the case of an aggregate is indicated by the Init flag).
11891 if Ekind (Prev) /= E_Constant
11892 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11893 or else Present (Expression (Parent (Prev)))
11894 or else Has_Init_Expression (Parent (Prev))
11895 or else Present (Full_View (Prev))
11896 then
11897 Enter_Name (Id);
11899 -- Verify that types of both declarations match, or else that both types
11900 -- are anonymous access types whose designated subtypes statically match
11901 -- (as allowed in Ada 2005 by AI-385).
11903 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11904 and then
11905 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11906 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11907 or else Is_Access_Constant (Etype (New_T)) /=
11908 Is_Access_Constant (Etype (Prev))
11909 or else Can_Never_Be_Null (Etype (New_T)) /=
11910 Can_Never_Be_Null (Etype (Prev))
11911 or else Null_Exclusion_Present (Parent (Prev)) /=
11912 Null_Exclusion_Present (Parent (Id))
11913 or else not Subtypes_Statically_Match
11914 (Designated_Type (Etype (Prev)),
11915 Designated_Type (Etype (New_T))))
11916 then
11917 Error_Msg_Sloc := Sloc (Prev);
11918 Error_Msg_N ("type does not match declaration#", N);
11919 Set_Full_View (Prev, Id);
11920 Set_Etype (Id, Any_Type);
11922 -- A deferred constant whose type is an anonymous array is always
11923 -- illegal (unless imported). A detailed error message might be
11924 -- helpful for Ada beginners.
11926 if Nkind (Object_Definition (Parent (Prev)))
11927 = N_Constrained_Array_Definition
11928 and then Nkind (Object_Definition (N))
11929 = N_Constrained_Array_Definition
11930 then
11931 Error_Msg_N ("\each anonymous array is a distinct type", N);
11932 Error_Msg_N ("a deferred constant must have a named type",
11933 Object_Definition (Parent (Prev)));
11934 end if;
11936 elsif
11937 Null_Exclusion_Present (Parent (Prev))
11938 and then not Null_Exclusion_Present (N)
11939 then
11940 Error_Msg_Sloc := Sloc (Prev);
11941 Error_Msg_N ("null-exclusion does not match declaration#", N);
11942 Set_Full_View (Prev, Id);
11943 Set_Etype (Id, Any_Type);
11945 -- If so, process the full constant declaration
11947 else
11948 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11949 -- the deferred declaration is constrained, then the subtype defined
11950 -- by the subtype_indication in the full declaration shall match it
11951 -- statically.
11953 Check_Possible_Deferred_Completion
11954 (Prev_Id => Prev,
11955 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11956 Curr_Obj_Def => Obj_Def);
11958 Set_Full_View (Prev, Id);
11959 Set_Is_Public (Id, Is_Public (Prev));
11960 Set_Is_Internal (Id);
11961 Append_Entity (Id, Current_Scope);
11963 -- Check ALIASED present if present before (RM 7.4(7))
11965 if Is_Aliased (Prev)
11966 and then not Aliased_Present (N)
11967 then
11968 Error_Msg_Sloc := Sloc (Prev);
11969 Error_Msg_N ("ALIASED required (see declaration #)", N);
11970 end if;
11972 -- Check that placement is in private part and that the incomplete
11973 -- declaration appeared in the visible part.
11975 if Ekind (Current_Scope) = E_Package
11976 and then not In_Private_Part (Current_Scope)
11977 then
11978 Error_Msg_Sloc := Sloc (Prev);
11979 Error_Msg_N
11980 ("full constant for declaration # must be in private part", N);
11982 elsif Ekind (Current_Scope) = E_Package
11983 and then
11984 List_Containing (Parent (Prev)) /=
11985 Visible_Declarations (Package_Specification (Current_Scope))
11986 then
11987 Error_Msg_N
11988 ("deferred constant must be declared in visible part",
11989 Parent (Prev));
11990 end if;
11992 if Is_Access_Type (T)
11993 and then Nkind (Expression (N)) = N_Allocator
11994 then
11995 Check_Recursive_Declaration (Designated_Type (T));
11996 end if;
11998 -- A deferred constant is a visible entity. If type has invariants,
11999 -- verify that the initial value satisfies them.
12001 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12002 Insert_After (N,
12003 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12004 end if;
12005 end if;
12006 end Constant_Redeclaration;
12008 ----------------------
12009 -- Constrain_Access --
12010 ----------------------
12012 procedure Constrain_Access
12013 (Def_Id : in out Entity_Id;
12014 S : Node_Id;
12015 Related_Nod : Node_Id)
12017 T : constant Entity_Id := Entity (Subtype_Mark (S));
12018 Desig_Type : constant Entity_Id := Designated_Type (T);
12019 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12020 Constraint_OK : Boolean := True;
12022 begin
12023 if Is_Array_Type (Desig_Type) then
12024 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12026 elsif (Is_Record_Type (Desig_Type)
12027 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12028 and then not Is_Constrained (Desig_Type)
12029 then
12030 -- ??? The following code is a temporary bypass to ignore a
12031 -- discriminant constraint on access type if it is constraining
12032 -- the current record. Avoid creating the implicit subtype of the
12033 -- record we are currently compiling since right now, we cannot
12034 -- handle these. For now, just return the access type itself.
12036 if Desig_Type = Current_Scope
12037 and then No (Def_Id)
12038 then
12039 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12040 Def_Id := Entity (Subtype_Mark (S));
12042 -- This call added to ensure that the constraint is analyzed
12043 -- (needed for a B test). Note that we still return early from
12044 -- this procedure to avoid recursive processing. ???
12046 Constrain_Discriminated_Type
12047 (Desig_Subtype, S, Related_Nod, For_Access => True);
12048 return;
12049 end if;
12051 -- Enforce rule that the constraint is illegal if there is an
12052 -- unconstrained view of the designated type. This means that the
12053 -- partial view (either a private type declaration or a derivation
12054 -- from a private type) has no discriminants. (Defect Report
12055 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12057 -- Rule updated for Ada 2005: The private type is said to have
12058 -- a constrained partial view, given that objects of the type
12059 -- can be declared. Furthermore, the rule applies to all access
12060 -- types, unlike the rule concerning default discriminants (see
12061 -- RM 3.7.1(7/3))
12063 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12064 and then Has_Private_Declaration (Desig_Type)
12065 and then In_Open_Scopes (Scope (Desig_Type))
12066 and then Has_Discriminants (Desig_Type)
12067 then
12068 declare
12069 Pack : constant Node_Id :=
12070 Unit_Declaration_Node (Scope (Desig_Type));
12071 Decls : List_Id;
12072 Decl : Node_Id;
12074 begin
12075 if Nkind (Pack) = N_Package_Declaration then
12076 Decls := Visible_Declarations (Specification (Pack));
12077 Decl := First (Decls);
12078 while Present (Decl) loop
12079 if (Nkind (Decl) = N_Private_Type_Declaration
12080 and then Chars (Defining_Identifier (Decl)) =
12081 Chars (Desig_Type))
12083 or else
12084 (Nkind (Decl) = N_Full_Type_Declaration
12085 and then
12086 Chars (Defining_Identifier (Decl)) =
12087 Chars (Desig_Type)
12088 and then Is_Derived_Type (Desig_Type)
12089 and then
12090 Has_Private_Declaration (Etype (Desig_Type)))
12091 then
12092 if No (Discriminant_Specifications (Decl)) then
12093 Error_Msg_N
12094 ("cannot constrain access type if designated "
12095 & "type has constrained partial view", S);
12096 end if;
12098 exit;
12099 end if;
12101 Next (Decl);
12102 end loop;
12103 end if;
12104 end;
12105 end if;
12107 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12108 For_Access => True);
12110 elsif Is_Concurrent_Type (Desig_Type)
12111 and then not Is_Constrained (Desig_Type)
12112 then
12113 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12115 else
12116 Error_Msg_N ("invalid constraint on access type", S);
12118 -- We simply ignore an invalid constraint
12120 Desig_Subtype := Desig_Type;
12121 Constraint_OK := False;
12122 end if;
12124 if No (Def_Id) then
12125 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12126 else
12127 Set_Ekind (Def_Id, E_Access_Subtype);
12128 end if;
12130 if Constraint_OK then
12131 Set_Etype (Def_Id, Base_Type (T));
12133 if Is_Private_Type (Desig_Type) then
12134 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12135 end if;
12136 else
12137 Set_Etype (Def_Id, Any_Type);
12138 end if;
12140 Set_Size_Info (Def_Id, T);
12141 Set_Is_Constrained (Def_Id, Constraint_OK);
12142 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12143 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12144 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12146 Conditional_Delay (Def_Id, T);
12148 -- AI-363 : Subtypes of general access types whose designated types have
12149 -- default discriminants are disallowed. In instances, the rule has to
12150 -- be checked against the actual, of which T is the subtype. In a
12151 -- generic body, the rule is checked assuming that the actual type has
12152 -- defaulted discriminants.
12154 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12155 if Ekind (Base_Type (T)) = E_General_Access_Type
12156 and then Has_Defaulted_Discriminants (Desig_Type)
12157 then
12158 if Ada_Version < Ada_2005 then
12159 Error_Msg_N
12160 ("access subtype of general access type would not " &
12161 "be allowed in Ada 2005?y?", S);
12162 else
12163 Error_Msg_N
12164 ("access subtype of general access type not allowed", S);
12165 end if;
12167 Error_Msg_N ("\discriminants have defaults", S);
12169 elsif Is_Access_Type (T)
12170 and then Is_Generic_Type (Desig_Type)
12171 and then Has_Discriminants (Desig_Type)
12172 and then In_Package_Body (Current_Scope)
12173 then
12174 if Ada_Version < Ada_2005 then
12175 Error_Msg_N
12176 ("access subtype would not be allowed in generic body "
12177 & "in Ada 2005?y?", S);
12178 else
12179 Error_Msg_N
12180 ("access subtype not allowed in generic body", S);
12181 end if;
12183 Error_Msg_N
12184 ("\designated type is a discriminated formal", S);
12185 end if;
12186 end if;
12187 end Constrain_Access;
12189 ---------------------
12190 -- Constrain_Array --
12191 ---------------------
12193 procedure Constrain_Array
12194 (Def_Id : in out Entity_Id;
12195 SI : Node_Id;
12196 Related_Nod : Node_Id;
12197 Related_Id : Entity_Id;
12198 Suffix : Character)
12200 C : constant Node_Id := Constraint (SI);
12201 Number_Of_Constraints : Nat := 0;
12202 Index : Node_Id;
12203 S, T : Entity_Id;
12204 Constraint_OK : Boolean := True;
12206 begin
12207 T := Entity (Subtype_Mark (SI));
12209 if Is_Access_Type (T) then
12210 T := Designated_Type (T);
12211 end if;
12213 -- If an index constraint follows a subtype mark in a subtype indication
12214 -- then the type or subtype denoted by the subtype mark must not already
12215 -- impose an index constraint. The subtype mark must denote either an
12216 -- unconstrained array type or an access type whose designated type
12217 -- is such an array type... (RM 3.6.1)
12219 if Is_Constrained (T) then
12220 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12221 Constraint_OK := False;
12223 else
12224 S := First (Constraints (C));
12225 while Present (S) loop
12226 Number_Of_Constraints := Number_Of_Constraints + 1;
12227 Next (S);
12228 end loop;
12230 -- In either case, the index constraint must provide a discrete
12231 -- range for each index of the array type and the type of each
12232 -- discrete range must be the same as that of the corresponding
12233 -- index. (RM 3.6.1)
12235 if Number_Of_Constraints /= Number_Dimensions (T) then
12236 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12237 Constraint_OK := False;
12239 else
12240 S := First (Constraints (C));
12241 Index := First_Index (T);
12242 Analyze (Index);
12244 -- Apply constraints to each index type
12246 for J in 1 .. Number_Of_Constraints loop
12247 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12248 Next (Index);
12249 Next (S);
12250 end loop;
12252 end if;
12253 end if;
12255 if No (Def_Id) then
12256 Def_Id :=
12257 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12258 Set_Parent (Def_Id, Related_Nod);
12260 else
12261 Set_Ekind (Def_Id, E_Array_Subtype);
12262 end if;
12264 Set_Size_Info (Def_Id, (T));
12265 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12266 Set_Etype (Def_Id, Base_Type (T));
12268 if Constraint_OK then
12269 Set_First_Index (Def_Id, First (Constraints (C)));
12270 else
12271 Set_First_Index (Def_Id, First_Index (T));
12272 end if;
12274 Set_Is_Constrained (Def_Id, True);
12275 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12276 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12278 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12279 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12281 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12282 -- We need to initialize the attribute because if Def_Id is previously
12283 -- analyzed through a limited_with clause, it will have the attributes
12284 -- of an incomplete type, one of which is an Elist that overlaps the
12285 -- Packed_Array_Impl_Type field.
12287 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12289 -- Build a freeze node if parent still needs one. Also make sure that
12290 -- the Depends_On_Private status is set because the subtype will need
12291 -- reprocessing at the time the base type does, and also we must set a
12292 -- conditional delay.
12294 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12295 Conditional_Delay (Def_Id, T);
12296 end Constrain_Array;
12298 ------------------------------
12299 -- Constrain_Component_Type --
12300 ------------------------------
12302 function Constrain_Component_Type
12303 (Comp : Entity_Id;
12304 Constrained_Typ : Entity_Id;
12305 Related_Node : Node_Id;
12306 Typ : Entity_Id;
12307 Constraints : Elist_Id) return Entity_Id
12309 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12310 Compon_Type : constant Entity_Id := Etype (Comp);
12312 function Build_Constrained_Array_Type
12313 (Old_Type : Entity_Id) return Entity_Id;
12314 -- If Old_Type is an array type, one of whose indexes is constrained
12315 -- by a discriminant, build an Itype whose constraint replaces the
12316 -- discriminant with its value in the constraint.
12318 function Build_Constrained_Discriminated_Type
12319 (Old_Type : Entity_Id) return Entity_Id;
12320 -- Ditto for record components
12322 function Build_Constrained_Access_Type
12323 (Old_Type : Entity_Id) return Entity_Id;
12324 -- Ditto for access types. Makes use of previous two functions, to
12325 -- constrain designated type.
12327 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12328 -- T is an array or discriminated type, C is a list of constraints
12329 -- that apply to T. This routine builds the constrained subtype.
12331 function Is_Discriminant (Expr : Node_Id) return Boolean;
12332 -- Returns True if Expr is a discriminant
12334 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12335 -- Find the value of discriminant Discrim in Constraint
12337 -----------------------------------
12338 -- Build_Constrained_Access_Type --
12339 -----------------------------------
12341 function Build_Constrained_Access_Type
12342 (Old_Type : Entity_Id) return Entity_Id
12344 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12345 Itype : Entity_Id;
12346 Desig_Subtype : Entity_Id;
12347 Scop : Entity_Id;
12349 begin
12350 -- if the original access type was not embedded in the enclosing
12351 -- type definition, there is no need to produce a new access
12352 -- subtype. In fact every access type with an explicit constraint
12353 -- generates an itype whose scope is the enclosing record.
12355 if not Is_Type (Scope (Old_Type)) then
12356 return Old_Type;
12358 elsif Is_Array_Type (Desig_Type) then
12359 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12361 elsif Has_Discriminants (Desig_Type) then
12363 -- This may be an access type to an enclosing record type for
12364 -- which we are constructing the constrained components. Return
12365 -- the enclosing record subtype. This is not always correct,
12366 -- but avoids infinite recursion. ???
12368 Desig_Subtype := Any_Type;
12370 for J in reverse 0 .. Scope_Stack.Last loop
12371 Scop := Scope_Stack.Table (J).Entity;
12373 if Is_Type (Scop)
12374 and then Base_Type (Scop) = Base_Type (Desig_Type)
12375 then
12376 Desig_Subtype := Scop;
12377 end if;
12379 exit when not Is_Type (Scop);
12380 end loop;
12382 if Desig_Subtype = Any_Type then
12383 Desig_Subtype :=
12384 Build_Constrained_Discriminated_Type (Desig_Type);
12385 end if;
12387 else
12388 return Old_Type;
12389 end if;
12391 if Desig_Subtype /= Desig_Type then
12393 -- The Related_Node better be here or else we won't be able
12394 -- to attach new itypes to a node in the tree.
12396 pragma Assert (Present (Related_Node));
12398 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12400 Set_Etype (Itype, Base_Type (Old_Type));
12401 Set_Size_Info (Itype, (Old_Type));
12402 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12403 Set_Depends_On_Private (Itype, Has_Private_Component
12404 (Old_Type));
12405 Set_Is_Access_Constant (Itype, Is_Access_Constant
12406 (Old_Type));
12408 -- The new itype needs freezing when it depends on a not frozen
12409 -- type and the enclosing subtype needs freezing.
12411 if Has_Delayed_Freeze (Constrained_Typ)
12412 and then not Is_Frozen (Constrained_Typ)
12413 then
12414 Conditional_Delay (Itype, Base_Type (Old_Type));
12415 end if;
12417 return Itype;
12419 else
12420 return Old_Type;
12421 end if;
12422 end Build_Constrained_Access_Type;
12424 ----------------------------------
12425 -- Build_Constrained_Array_Type --
12426 ----------------------------------
12428 function Build_Constrained_Array_Type
12429 (Old_Type : Entity_Id) return Entity_Id
12431 Lo_Expr : Node_Id;
12432 Hi_Expr : Node_Id;
12433 Old_Index : Node_Id;
12434 Range_Node : Node_Id;
12435 Constr_List : List_Id;
12437 Need_To_Create_Itype : Boolean := False;
12439 begin
12440 Old_Index := First_Index (Old_Type);
12441 while Present (Old_Index) loop
12442 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12444 if Is_Discriminant (Lo_Expr)
12445 or else
12446 Is_Discriminant (Hi_Expr)
12447 then
12448 Need_To_Create_Itype := True;
12449 end if;
12451 Next_Index (Old_Index);
12452 end loop;
12454 if Need_To_Create_Itype then
12455 Constr_List := New_List;
12457 Old_Index := First_Index (Old_Type);
12458 while Present (Old_Index) loop
12459 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12461 if Is_Discriminant (Lo_Expr) then
12462 Lo_Expr := Get_Discr_Value (Lo_Expr);
12463 end if;
12465 if Is_Discriminant (Hi_Expr) then
12466 Hi_Expr := Get_Discr_Value (Hi_Expr);
12467 end if;
12469 Range_Node :=
12470 Make_Range
12471 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12473 Append (Range_Node, To => Constr_List);
12475 Next_Index (Old_Index);
12476 end loop;
12478 return Build_Subtype (Old_Type, Constr_List);
12480 else
12481 return Old_Type;
12482 end if;
12483 end Build_Constrained_Array_Type;
12485 ------------------------------------------
12486 -- Build_Constrained_Discriminated_Type --
12487 ------------------------------------------
12489 function Build_Constrained_Discriminated_Type
12490 (Old_Type : Entity_Id) return Entity_Id
12492 Expr : Node_Id;
12493 Constr_List : List_Id;
12494 Old_Constraint : Elmt_Id;
12496 Need_To_Create_Itype : Boolean := False;
12498 begin
12499 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12500 while Present (Old_Constraint) loop
12501 Expr := Node (Old_Constraint);
12503 if Is_Discriminant (Expr) then
12504 Need_To_Create_Itype := True;
12505 end if;
12507 Next_Elmt (Old_Constraint);
12508 end loop;
12510 if Need_To_Create_Itype then
12511 Constr_List := New_List;
12513 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12514 while Present (Old_Constraint) loop
12515 Expr := Node (Old_Constraint);
12517 if Is_Discriminant (Expr) then
12518 Expr := Get_Discr_Value (Expr);
12519 end if;
12521 Append (New_Copy_Tree (Expr), To => Constr_List);
12523 Next_Elmt (Old_Constraint);
12524 end loop;
12526 return Build_Subtype (Old_Type, Constr_List);
12528 else
12529 return Old_Type;
12530 end if;
12531 end Build_Constrained_Discriminated_Type;
12533 -------------------
12534 -- Build_Subtype --
12535 -------------------
12537 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12538 Indic : Node_Id;
12539 Subtyp_Decl : Node_Id;
12540 Def_Id : Entity_Id;
12541 Btyp : Entity_Id := Base_Type (T);
12543 begin
12544 -- The Related_Node better be here or else we won't be able to
12545 -- attach new itypes to a node in the tree.
12547 pragma Assert (Present (Related_Node));
12549 -- If the view of the component's type is incomplete or private
12550 -- with unknown discriminants, then the constraint must be applied
12551 -- to the full type.
12553 if Has_Unknown_Discriminants (Btyp)
12554 and then Present (Underlying_Type (Btyp))
12555 then
12556 Btyp := Underlying_Type (Btyp);
12557 end if;
12559 Indic :=
12560 Make_Subtype_Indication (Loc,
12561 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12562 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12564 Def_Id := Create_Itype (Ekind (T), Related_Node);
12566 Subtyp_Decl :=
12567 Make_Subtype_Declaration (Loc,
12568 Defining_Identifier => Def_Id,
12569 Subtype_Indication => Indic);
12571 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12573 -- Itypes must be analyzed with checks off (see package Itypes)
12575 Analyze (Subtyp_Decl, Suppress => All_Checks);
12577 return Def_Id;
12578 end Build_Subtype;
12580 ---------------------
12581 -- Get_Discr_Value --
12582 ---------------------
12584 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12585 D : Entity_Id;
12586 E : Elmt_Id;
12588 begin
12589 -- The discriminant may be declared for the type, in which case we
12590 -- find it by iterating over the list of discriminants. If the
12591 -- discriminant is inherited from a parent type, it appears as the
12592 -- corresponding discriminant of the current type. This will be the
12593 -- case when constraining an inherited component whose constraint is
12594 -- given by a discriminant of the parent.
12596 D := First_Discriminant (Typ);
12597 E := First_Elmt (Constraints);
12599 while Present (D) loop
12600 if D = Entity (Discrim)
12601 or else D = CR_Discriminant (Entity (Discrim))
12602 or else Corresponding_Discriminant (D) = Entity (Discrim)
12603 then
12604 return Node (E);
12605 end if;
12607 Next_Discriminant (D);
12608 Next_Elmt (E);
12609 end loop;
12611 -- The Corresponding_Discriminant mechanism is incomplete, because
12612 -- the correspondence between new and old discriminants is not one
12613 -- to one: one new discriminant can constrain several old ones. In
12614 -- that case, scan sequentially the stored_constraint, the list of
12615 -- discriminants of the parents, and the constraints.
12617 -- Previous code checked for the present of the Stored_Constraint
12618 -- list for the derived type, but did not use it at all. Should it
12619 -- be present when the component is a discriminated task type?
12621 if Is_Derived_Type (Typ)
12622 and then Scope (Entity (Discrim)) = Etype (Typ)
12623 then
12624 D := First_Discriminant (Etype (Typ));
12625 E := First_Elmt (Constraints);
12626 while Present (D) loop
12627 if D = Entity (Discrim) then
12628 return Node (E);
12629 end if;
12631 Next_Discriminant (D);
12632 Next_Elmt (E);
12633 end loop;
12634 end if;
12636 -- Something is wrong if we did not find the value
12638 raise Program_Error;
12639 end Get_Discr_Value;
12641 ---------------------
12642 -- Is_Discriminant --
12643 ---------------------
12645 function Is_Discriminant (Expr : Node_Id) return Boolean is
12646 Discrim_Scope : Entity_Id;
12648 begin
12649 if Denotes_Discriminant (Expr) then
12650 Discrim_Scope := Scope (Entity (Expr));
12652 -- Either we have a reference to one of Typ's discriminants,
12654 pragma Assert (Discrim_Scope = Typ
12656 -- or to the discriminants of the parent type, in the case
12657 -- of a derivation of a tagged type with variants.
12659 or else Discrim_Scope = Etype (Typ)
12660 or else Full_View (Discrim_Scope) = Etype (Typ)
12662 -- or same as above for the case where the discriminants
12663 -- were declared in Typ's private view.
12665 or else (Is_Private_Type (Discrim_Scope)
12666 and then Chars (Discrim_Scope) = Chars (Typ))
12668 -- or else we are deriving from the full view and the
12669 -- discriminant is declared in the private entity.
12671 or else (Is_Private_Type (Typ)
12672 and then Chars (Discrim_Scope) = Chars (Typ))
12674 -- Or we are constrained the corresponding record of a
12675 -- synchronized type that completes a private declaration.
12677 or else (Is_Concurrent_Record_Type (Typ)
12678 and then
12679 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12681 -- or we have a class-wide type, in which case make sure the
12682 -- discriminant found belongs to the root type.
12684 or else (Is_Class_Wide_Type (Typ)
12685 and then Etype (Typ) = Discrim_Scope));
12687 return True;
12688 end if;
12690 -- In all other cases we have something wrong
12692 return False;
12693 end Is_Discriminant;
12695 -- Start of processing for Constrain_Component_Type
12697 begin
12698 if Nkind (Parent (Comp)) = N_Component_Declaration
12699 and then Comes_From_Source (Parent (Comp))
12700 and then Comes_From_Source
12701 (Subtype_Indication (Component_Definition (Parent (Comp))))
12702 and then
12703 Is_Entity_Name
12704 (Subtype_Indication (Component_Definition (Parent (Comp))))
12705 then
12706 return Compon_Type;
12708 elsif Is_Array_Type (Compon_Type) then
12709 return Build_Constrained_Array_Type (Compon_Type);
12711 elsif Has_Discriminants (Compon_Type) then
12712 return Build_Constrained_Discriminated_Type (Compon_Type);
12714 elsif Is_Access_Type (Compon_Type) then
12715 return Build_Constrained_Access_Type (Compon_Type);
12717 else
12718 return Compon_Type;
12719 end if;
12720 end Constrain_Component_Type;
12722 --------------------------
12723 -- Constrain_Concurrent --
12724 --------------------------
12726 -- For concurrent types, the associated record value type carries the same
12727 -- discriminants, so when we constrain a concurrent type, we must constrain
12728 -- the corresponding record type as well.
12730 procedure Constrain_Concurrent
12731 (Def_Id : in out Entity_Id;
12732 SI : Node_Id;
12733 Related_Nod : Node_Id;
12734 Related_Id : Entity_Id;
12735 Suffix : Character)
12737 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12738 -- case of a private subtype (needed when only doing semantic analysis).
12740 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12741 T_Val : Entity_Id;
12743 begin
12744 if Is_Access_Type (T_Ent) then
12745 T_Ent := Designated_Type (T_Ent);
12746 end if;
12748 T_Val := Corresponding_Record_Type (T_Ent);
12750 if Present (T_Val) then
12752 if No (Def_Id) then
12753 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12754 end if;
12756 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12758 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12759 Set_Corresponding_Record_Type (Def_Id,
12760 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12762 else
12763 -- If there is no associated record, expansion is disabled and this
12764 -- is a generic context. Create a subtype in any case, so that
12765 -- semantic analysis can proceed.
12767 if No (Def_Id) then
12768 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12769 end if;
12771 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12772 end if;
12773 end Constrain_Concurrent;
12775 ------------------------------------
12776 -- Constrain_Corresponding_Record --
12777 ------------------------------------
12779 function Constrain_Corresponding_Record
12780 (Prot_Subt : Entity_Id;
12781 Corr_Rec : Entity_Id;
12782 Related_Nod : Node_Id) return Entity_Id
12784 T_Sub : constant Entity_Id :=
12785 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12787 begin
12788 Set_Etype (T_Sub, Corr_Rec);
12789 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12790 Set_Is_Constrained (T_Sub, True);
12791 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12792 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12794 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12795 Set_Discriminant_Constraint
12796 (T_Sub, Discriminant_Constraint (Prot_Subt));
12797 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12798 Create_Constrained_Components
12799 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12800 end if;
12802 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12804 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12805 Conditional_Delay (T_Sub, Corr_Rec);
12807 else
12808 -- This is a component subtype: it will be frozen in the context of
12809 -- the enclosing record's init_proc, so that discriminant references
12810 -- are resolved to discriminals. (Note: we used to skip freezing
12811 -- altogether in that case, which caused errors downstream for
12812 -- components of a bit packed array type).
12814 Set_Has_Delayed_Freeze (T_Sub);
12815 end if;
12817 return T_Sub;
12818 end Constrain_Corresponding_Record;
12820 -----------------------
12821 -- Constrain_Decimal --
12822 -----------------------
12824 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12825 T : constant Entity_Id := Entity (Subtype_Mark (S));
12826 C : constant Node_Id := Constraint (S);
12827 Loc : constant Source_Ptr := Sloc (C);
12828 Range_Expr : Node_Id;
12829 Digits_Expr : Node_Id;
12830 Digits_Val : Uint;
12831 Bound_Val : Ureal;
12833 begin
12834 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12836 if Nkind (C) = N_Range_Constraint then
12837 Range_Expr := Range_Expression (C);
12838 Digits_Val := Digits_Value (T);
12840 else
12841 pragma Assert (Nkind (C) = N_Digits_Constraint);
12843 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12845 Digits_Expr := Digits_Expression (C);
12846 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12848 Check_Digits_Expression (Digits_Expr);
12849 Digits_Val := Expr_Value (Digits_Expr);
12851 if Digits_Val > Digits_Value (T) then
12852 Error_Msg_N
12853 ("digits expression is incompatible with subtype", C);
12854 Digits_Val := Digits_Value (T);
12855 end if;
12857 if Present (Range_Constraint (C)) then
12858 Range_Expr := Range_Expression (Range_Constraint (C));
12859 else
12860 Range_Expr := Empty;
12861 end if;
12862 end if;
12864 Set_Etype (Def_Id, Base_Type (T));
12865 Set_Size_Info (Def_Id, (T));
12866 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12867 Set_Delta_Value (Def_Id, Delta_Value (T));
12868 Set_Scale_Value (Def_Id, Scale_Value (T));
12869 Set_Small_Value (Def_Id, Small_Value (T));
12870 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12871 Set_Digits_Value (Def_Id, Digits_Val);
12873 -- Manufacture range from given digits value if no range present
12875 if No (Range_Expr) then
12876 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12877 Range_Expr :=
12878 Make_Range (Loc,
12879 Low_Bound =>
12880 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12881 High_Bound =>
12882 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12883 end if;
12885 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12886 Set_Discrete_RM_Size (Def_Id);
12888 -- Unconditionally delay the freeze, since we cannot set size
12889 -- information in all cases correctly until the freeze point.
12891 Set_Has_Delayed_Freeze (Def_Id);
12892 end Constrain_Decimal;
12894 ----------------------------------
12895 -- Constrain_Discriminated_Type --
12896 ----------------------------------
12898 procedure Constrain_Discriminated_Type
12899 (Def_Id : Entity_Id;
12900 S : Node_Id;
12901 Related_Nod : Node_Id;
12902 For_Access : Boolean := False)
12904 E : constant Entity_Id := Entity (Subtype_Mark (S));
12905 T : Entity_Id;
12906 C : Node_Id;
12907 Elist : Elist_Id := New_Elmt_List;
12909 procedure Fixup_Bad_Constraint;
12910 -- This is called after finding a bad constraint, and after having
12911 -- posted an appropriate error message. The mission is to leave the
12912 -- entity T in as reasonable state as possible.
12914 --------------------------
12915 -- Fixup_Bad_Constraint --
12916 --------------------------
12918 procedure Fixup_Bad_Constraint is
12919 begin
12920 -- Set a reasonable Ekind for the entity. For an incomplete type,
12921 -- we can't do much, but for other types, we can set the proper
12922 -- corresponding subtype kind.
12924 if Ekind (T) = E_Incomplete_Type then
12925 Set_Ekind (Def_Id, Ekind (T));
12926 else
12927 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12928 end if;
12930 -- Set Etype to the known type, to reduce chances of cascaded errors
12932 Set_Etype (Def_Id, E);
12933 Set_Error_Posted (Def_Id);
12934 end Fixup_Bad_Constraint;
12936 -- Start of processing for Constrain_Discriminated_Type
12938 begin
12939 C := Constraint (S);
12941 -- A discriminant constraint is only allowed in a subtype indication,
12942 -- after a subtype mark. This subtype mark must denote either a type
12943 -- with discriminants, or an access type whose designated type is a
12944 -- type with discriminants. A discriminant constraint specifies the
12945 -- values of these discriminants (RM 3.7.2(5)).
12947 T := Base_Type (Entity (Subtype_Mark (S)));
12949 if Is_Access_Type (T) then
12950 T := Designated_Type (T);
12951 end if;
12953 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12954 -- Avoid generating an error for access-to-incomplete subtypes.
12956 if Ada_Version >= Ada_2005
12957 and then Ekind (T) = E_Incomplete_Type
12958 and then Nkind (Parent (S)) = N_Subtype_Declaration
12959 and then not Is_Itype (Def_Id)
12960 then
12961 -- A little sanity check, emit an error message if the type
12962 -- has discriminants to begin with. Type T may be a regular
12963 -- incomplete type or imported via a limited with clause.
12965 if Has_Discriminants (T)
12966 or else (From_Limited_With (T)
12967 and then Present (Non_Limited_View (T))
12968 and then Nkind (Parent (Non_Limited_View (T))) =
12969 N_Full_Type_Declaration
12970 and then Present (Discriminant_Specifications
12971 (Parent (Non_Limited_View (T)))))
12972 then
12973 Error_Msg_N
12974 ("(Ada 2005) incomplete subtype may not be constrained", C);
12975 else
12976 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12977 end if;
12979 Fixup_Bad_Constraint;
12980 return;
12982 -- Check that the type has visible discriminants. The type may be
12983 -- a private type with unknown discriminants whose full view has
12984 -- discriminants which are invisible.
12986 elsif not Has_Discriminants (T)
12987 or else
12988 (Has_Unknown_Discriminants (T)
12989 and then Is_Private_Type (T))
12990 then
12991 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12992 Fixup_Bad_Constraint;
12993 return;
12995 elsif Is_Constrained (E)
12996 or else (Ekind (E) = E_Class_Wide_Subtype
12997 and then Present (Discriminant_Constraint (E)))
12998 then
12999 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13000 Fixup_Bad_Constraint;
13001 return;
13002 end if;
13004 -- T may be an unconstrained subtype (e.g. a generic actual).
13005 -- Constraint applies to the base type.
13007 T := Base_Type (T);
13009 Elist := Build_Discriminant_Constraints (T, S);
13011 -- If the list returned was empty we had an error in building the
13012 -- discriminant constraint. We have also already signalled an error
13013 -- in the incomplete type case
13015 if Is_Empty_Elmt_List (Elist) then
13016 Fixup_Bad_Constraint;
13017 return;
13018 end if;
13020 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13021 end Constrain_Discriminated_Type;
13023 ---------------------------
13024 -- Constrain_Enumeration --
13025 ---------------------------
13027 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13028 T : constant Entity_Id := Entity (Subtype_Mark (S));
13029 C : constant Node_Id := Constraint (S);
13031 begin
13032 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13034 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13036 Set_Etype (Def_Id, Base_Type (T));
13037 Set_Size_Info (Def_Id, (T));
13038 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13039 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13041 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13043 Set_Discrete_RM_Size (Def_Id);
13044 end Constrain_Enumeration;
13046 ----------------------
13047 -- Constrain_Float --
13048 ----------------------
13050 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13051 T : constant Entity_Id := Entity (Subtype_Mark (S));
13052 C : Node_Id;
13053 D : Node_Id;
13054 Rais : Node_Id;
13056 begin
13057 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13059 Set_Etype (Def_Id, Base_Type (T));
13060 Set_Size_Info (Def_Id, (T));
13061 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13063 -- Process the constraint
13065 C := Constraint (S);
13067 -- Digits constraint present
13069 if Nkind (C) = N_Digits_Constraint then
13071 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13072 Check_Restriction (No_Obsolescent_Features, C);
13074 if Warn_On_Obsolescent_Feature then
13075 Error_Msg_N
13076 ("subtype digits constraint is an " &
13077 "obsolescent feature (RM J.3(8))?j?", C);
13078 end if;
13080 D := Digits_Expression (C);
13081 Analyze_And_Resolve (D, Any_Integer);
13082 Check_Digits_Expression (D);
13083 Set_Digits_Value (Def_Id, Expr_Value (D));
13085 -- Check that digits value is in range. Obviously we can do this
13086 -- at compile time, but it is strictly a runtime check, and of
13087 -- course there is an ACVC test that checks this.
13089 if Digits_Value (Def_Id) > Digits_Value (T) then
13090 Error_Msg_Uint_1 := Digits_Value (T);
13091 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13092 Rais :=
13093 Make_Raise_Constraint_Error (Sloc (D),
13094 Reason => CE_Range_Check_Failed);
13095 Insert_Action (Declaration_Node (Def_Id), Rais);
13096 end if;
13098 C := Range_Constraint (C);
13100 -- No digits constraint present
13102 else
13103 Set_Digits_Value (Def_Id, Digits_Value (T));
13104 end if;
13106 -- Range constraint present
13108 if Nkind (C) = N_Range_Constraint then
13109 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13111 -- No range constraint present
13113 else
13114 pragma Assert (No (C));
13115 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13116 end if;
13118 Set_Is_Constrained (Def_Id);
13119 end Constrain_Float;
13121 ---------------------
13122 -- Constrain_Index --
13123 ---------------------
13125 procedure Constrain_Index
13126 (Index : Node_Id;
13127 S : Node_Id;
13128 Related_Nod : Node_Id;
13129 Related_Id : Entity_Id;
13130 Suffix : Character;
13131 Suffix_Index : Nat)
13133 Def_Id : Entity_Id;
13134 R : Node_Id := Empty;
13135 T : constant Entity_Id := Etype (Index);
13137 begin
13138 if Nkind (S) = N_Range
13139 or else
13140 (Nkind (S) = N_Attribute_Reference
13141 and then Attribute_Name (S) = Name_Range)
13142 then
13143 -- A Range attribute will be transformed into N_Range by Resolve
13145 Analyze (S);
13146 Set_Etype (S, T);
13147 R := S;
13149 Process_Range_Expr_In_Decl (R, T);
13151 if not Error_Posted (S)
13152 and then
13153 (Nkind (S) /= N_Range
13154 or else not Covers (T, (Etype (Low_Bound (S))))
13155 or else not Covers (T, (Etype (High_Bound (S)))))
13156 then
13157 if Base_Type (T) /= Any_Type
13158 and then Etype (Low_Bound (S)) /= Any_Type
13159 and then Etype (High_Bound (S)) /= Any_Type
13160 then
13161 Error_Msg_N ("range expected", S);
13162 end if;
13163 end if;
13165 elsif Nkind (S) = N_Subtype_Indication then
13167 -- The parser has verified that this is a discrete indication
13169 Resolve_Discrete_Subtype_Indication (S, T);
13170 Bad_Predicated_Subtype_Use
13171 ("subtype& has predicate, not allowed in index constraint",
13172 S, Entity (Subtype_Mark (S)));
13174 R := Range_Expression (Constraint (S));
13176 -- Capture values of bounds and generate temporaries for them if
13177 -- needed, since checks may cause duplication of the expressions
13178 -- which must not be reevaluated.
13180 -- The forced evaluation removes side effects from expressions, which
13181 -- should occur also in GNATprove mode. Otherwise, we end up with
13182 -- unexpected insertions of actions at places where this is not
13183 -- supposed to occur, e.g. on default parameters of a call.
13185 if Expander_Active or GNATprove_Mode then
13186 Force_Evaluation (Low_Bound (R));
13187 Force_Evaluation (High_Bound (R));
13188 end if;
13190 elsif Nkind (S) = N_Discriminant_Association then
13192 -- Syntactically valid in subtype indication
13194 Error_Msg_N ("invalid index constraint", S);
13195 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13196 return;
13198 -- Subtype_Mark case, no anonymous subtypes to construct
13200 else
13201 Analyze (S);
13203 if Is_Entity_Name (S) then
13204 if not Is_Type (Entity (S)) then
13205 Error_Msg_N ("expect subtype mark for index constraint", S);
13207 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13208 Wrong_Type (S, Base_Type (T));
13210 -- Check error of subtype with predicate in index constraint
13212 else
13213 Bad_Predicated_Subtype_Use
13214 ("subtype& has predicate, not allowed in index constraint",
13215 S, Entity (S));
13216 end if;
13218 return;
13220 else
13221 Error_Msg_N ("invalid index constraint", S);
13222 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13223 return;
13224 end if;
13225 end if;
13227 Def_Id :=
13228 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13230 Set_Etype (Def_Id, Base_Type (T));
13232 if Is_Modular_Integer_Type (T) then
13233 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13235 elsif Is_Integer_Type (T) then
13236 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13238 else
13239 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13240 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13241 Set_First_Literal (Def_Id, First_Literal (T));
13242 end if;
13244 Set_Size_Info (Def_Id, (T));
13245 Set_RM_Size (Def_Id, RM_Size (T));
13246 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13248 Set_Scalar_Range (Def_Id, R);
13250 Set_Etype (S, Def_Id);
13251 Set_Discrete_RM_Size (Def_Id);
13252 end Constrain_Index;
13254 -----------------------
13255 -- Constrain_Integer --
13256 -----------------------
13258 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13259 T : constant Entity_Id := Entity (Subtype_Mark (S));
13260 C : constant Node_Id := Constraint (S);
13262 begin
13263 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13265 if Is_Modular_Integer_Type (T) then
13266 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13267 else
13268 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13269 end if;
13271 Set_Etype (Def_Id, Base_Type (T));
13272 Set_Size_Info (Def_Id, (T));
13273 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13274 Set_Discrete_RM_Size (Def_Id);
13275 end Constrain_Integer;
13277 ------------------------------
13278 -- Constrain_Ordinary_Fixed --
13279 ------------------------------
13281 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13282 T : constant Entity_Id := Entity (Subtype_Mark (S));
13283 C : Node_Id;
13284 D : Node_Id;
13285 Rais : Node_Id;
13287 begin
13288 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13289 Set_Etype (Def_Id, Base_Type (T));
13290 Set_Size_Info (Def_Id, (T));
13291 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13292 Set_Small_Value (Def_Id, Small_Value (T));
13294 -- Process the constraint
13296 C := Constraint (S);
13298 -- Delta constraint present
13300 if Nkind (C) = N_Delta_Constraint then
13302 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13303 Check_Restriction (No_Obsolescent_Features, C);
13305 if Warn_On_Obsolescent_Feature then
13306 Error_Msg_S
13307 ("subtype delta constraint is an " &
13308 "obsolescent feature (RM J.3(7))?j?");
13309 end if;
13311 D := Delta_Expression (C);
13312 Analyze_And_Resolve (D, Any_Real);
13313 Check_Delta_Expression (D);
13314 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13316 -- Check that delta value is in range. Obviously we can do this
13317 -- at compile time, but it is strictly a runtime check, and of
13318 -- course there is an ACVC test that checks this.
13320 if Delta_Value (Def_Id) < Delta_Value (T) then
13321 Error_Msg_N ("??delta value is too small", D);
13322 Rais :=
13323 Make_Raise_Constraint_Error (Sloc (D),
13324 Reason => CE_Range_Check_Failed);
13325 Insert_Action (Declaration_Node (Def_Id), Rais);
13326 end if;
13328 C := Range_Constraint (C);
13330 -- No delta constraint present
13332 else
13333 Set_Delta_Value (Def_Id, Delta_Value (T));
13334 end if;
13336 -- Range constraint present
13338 if Nkind (C) = N_Range_Constraint then
13339 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13341 -- No range constraint present
13343 else
13344 pragma Assert (No (C));
13345 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13347 end if;
13349 Set_Discrete_RM_Size (Def_Id);
13351 -- Unconditionally delay the freeze, since we cannot set size
13352 -- information in all cases correctly until the freeze point.
13354 Set_Has_Delayed_Freeze (Def_Id);
13355 end Constrain_Ordinary_Fixed;
13357 -----------------------
13358 -- Contain_Interface --
13359 -----------------------
13361 function Contain_Interface
13362 (Iface : Entity_Id;
13363 Ifaces : Elist_Id) return Boolean
13365 Iface_Elmt : Elmt_Id;
13367 begin
13368 if Present (Ifaces) then
13369 Iface_Elmt := First_Elmt (Ifaces);
13370 while Present (Iface_Elmt) loop
13371 if Node (Iface_Elmt) = Iface then
13372 return True;
13373 end if;
13375 Next_Elmt (Iface_Elmt);
13376 end loop;
13377 end if;
13379 return False;
13380 end Contain_Interface;
13382 ---------------------------
13383 -- Convert_Scalar_Bounds --
13384 ---------------------------
13386 procedure Convert_Scalar_Bounds
13387 (N : Node_Id;
13388 Parent_Type : Entity_Id;
13389 Derived_Type : Entity_Id;
13390 Loc : Source_Ptr)
13392 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13394 Lo : Node_Id;
13395 Hi : Node_Id;
13396 Rng : Node_Id;
13398 begin
13399 -- Defend against previous errors
13401 if No (Scalar_Range (Derived_Type)) then
13402 Check_Error_Detected;
13403 return;
13404 end if;
13406 Lo := Build_Scalar_Bound
13407 (Type_Low_Bound (Derived_Type),
13408 Parent_Type, Implicit_Base);
13410 Hi := Build_Scalar_Bound
13411 (Type_High_Bound (Derived_Type),
13412 Parent_Type, Implicit_Base);
13414 Rng :=
13415 Make_Range (Loc,
13416 Low_Bound => Lo,
13417 High_Bound => Hi);
13419 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13421 Set_Parent (Rng, N);
13422 Set_Scalar_Range (Derived_Type, Rng);
13424 -- Analyze the bounds
13426 Analyze_And_Resolve (Lo, Implicit_Base);
13427 Analyze_And_Resolve (Hi, Implicit_Base);
13429 -- Analyze the range itself, except that we do not analyze it if
13430 -- the bounds are real literals, and we have a fixed-point type.
13431 -- The reason for this is that we delay setting the bounds in this
13432 -- case till we know the final Small and Size values (see circuit
13433 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13435 if Is_Fixed_Point_Type (Parent_Type)
13436 and then Nkind (Lo) = N_Real_Literal
13437 and then Nkind (Hi) = N_Real_Literal
13438 then
13439 return;
13441 -- Here we do the analysis of the range
13443 -- Note: we do this manually, since if we do a normal Analyze and
13444 -- Resolve call, there are problems with the conversions used for
13445 -- the derived type range.
13447 else
13448 Set_Etype (Rng, Implicit_Base);
13449 Set_Analyzed (Rng, True);
13450 end if;
13451 end Convert_Scalar_Bounds;
13453 -------------------
13454 -- Copy_And_Swap --
13455 -------------------
13457 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13458 begin
13459 -- Initialize new full declaration entity by copying the pertinent
13460 -- fields of the corresponding private declaration entity.
13462 -- We temporarily set Ekind to a value appropriate for a type to
13463 -- avoid assert failures in Einfo from checking for setting type
13464 -- attributes on something that is not a type. Ekind (Priv) is an
13465 -- appropriate choice, since it allowed the attributes to be set
13466 -- in the first place. This Ekind value will be modified later.
13468 Set_Ekind (Full, Ekind (Priv));
13470 -- Also set Etype temporarily to Any_Type, again, in the absence
13471 -- of errors, it will be properly reset, and if there are errors,
13472 -- then we want a value of Any_Type to remain.
13474 Set_Etype (Full, Any_Type);
13476 -- Now start copying attributes
13478 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13480 if Has_Discriminants (Full) then
13481 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13482 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13483 end if;
13485 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13486 Set_Homonym (Full, Homonym (Priv));
13487 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13488 Set_Is_Public (Full, Is_Public (Priv));
13489 Set_Is_Pure (Full, Is_Pure (Priv));
13490 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13491 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13492 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13493 Set_Has_Pragma_Unreferenced_Objects
13494 (Full, Has_Pragma_Unreferenced_Objects
13495 (Priv));
13497 Conditional_Delay (Full, Priv);
13499 if Is_Tagged_Type (Full) then
13500 Set_Direct_Primitive_Operations
13501 (Full, Direct_Primitive_Operations (Priv));
13502 Set_No_Tagged_Streams_Pragma
13503 (Full, No_Tagged_Streams_Pragma (Priv));
13505 if Is_Base_Type (Priv) then
13506 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13507 end if;
13508 end if;
13510 Set_Is_Volatile (Full, Is_Volatile (Priv));
13511 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13512 Set_Scope (Full, Scope (Priv));
13513 Set_Next_Entity (Full, Next_Entity (Priv));
13514 Set_First_Entity (Full, First_Entity (Priv));
13515 Set_Last_Entity (Full, Last_Entity (Priv));
13517 -- If access types have been recorded for later handling, keep them in
13518 -- the full view so that they get handled when the full view freeze
13519 -- node is expanded.
13521 if Present (Freeze_Node (Priv))
13522 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13523 then
13524 Ensure_Freeze_Node (Full);
13525 Set_Access_Types_To_Process
13526 (Freeze_Node (Full),
13527 Access_Types_To_Process (Freeze_Node (Priv)));
13528 end if;
13530 -- Swap the two entities. Now Private is the full type entity and Full
13531 -- is the private one. They will be swapped back at the end of the
13532 -- private part. This swapping ensures that the entity that is visible
13533 -- in the private part is the full declaration.
13535 Exchange_Entities (Priv, Full);
13536 Append_Entity (Full, Scope (Full));
13537 end Copy_And_Swap;
13539 -------------------------------------
13540 -- Copy_Array_Base_Type_Attributes --
13541 -------------------------------------
13543 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13544 begin
13545 Set_Component_Alignment (T1, Component_Alignment (T2));
13546 Set_Component_Type (T1, Component_Type (T2));
13547 Set_Component_Size (T1, Component_Size (T2));
13548 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13549 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13550 Set_Has_Protected (T1, Has_Protected (T2));
13551 Set_Has_Task (T1, Has_Task (T2));
13552 Set_Is_Packed (T1, Is_Packed (T2));
13553 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13554 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13555 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13556 end Copy_Array_Base_Type_Attributes;
13558 -----------------------------------
13559 -- Copy_Array_Subtype_Attributes --
13560 -----------------------------------
13562 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13563 begin
13564 Set_Size_Info (T1, T2);
13566 Set_First_Index (T1, First_Index (T2));
13567 Set_Is_Aliased (T1, Is_Aliased (T2));
13568 Set_Is_Volatile (T1, Is_Volatile (T2));
13569 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13570 Set_Is_Constrained (T1, Is_Constrained (T2));
13571 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13572 Inherit_Rep_Item_Chain (T1, T2);
13573 Set_Convention (T1, Convention (T2));
13574 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13575 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13576 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13577 end Copy_Array_Subtype_Attributes;
13579 -----------------------------------
13580 -- Create_Constrained_Components --
13581 -----------------------------------
13583 procedure Create_Constrained_Components
13584 (Subt : Entity_Id;
13585 Decl_Node : Node_Id;
13586 Typ : Entity_Id;
13587 Constraints : Elist_Id)
13589 Loc : constant Source_Ptr := Sloc (Subt);
13590 Comp_List : constant Elist_Id := New_Elmt_List;
13591 Parent_Type : constant Entity_Id := Etype (Typ);
13592 Assoc_List : constant List_Id := New_List;
13593 Discr_Val : Elmt_Id;
13594 Errors : Boolean;
13595 New_C : Entity_Id;
13596 Old_C : Entity_Id;
13597 Is_Static : Boolean := True;
13599 procedure Collect_Fixed_Components (Typ : Entity_Id);
13600 -- Collect parent type components that do not appear in a variant part
13602 procedure Create_All_Components;
13603 -- Iterate over Comp_List to create the components of the subtype
13605 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13606 -- Creates a new component from Old_Compon, copying all the fields from
13607 -- it, including its Etype, inserts the new component in the Subt entity
13608 -- chain and returns the new component.
13610 function Is_Variant_Record (T : Entity_Id) return Boolean;
13611 -- If true, and discriminants are static, collect only components from
13612 -- variants selected by discriminant values.
13614 ------------------------------
13615 -- Collect_Fixed_Components --
13616 ------------------------------
13618 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13619 begin
13620 -- Build association list for discriminants, and find components of the
13621 -- variant part selected by the values of the discriminants.
13623 Old_C := First_Discriminant (Typ);
13624 Discr_Val := First_Elmt (Constraints);
13625 while Present (Old_C) loop
13626 Append_To (Assoc_List,
13627 Make_Component_Association (Loc,
13628 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13629 Expression => New_Copy (Node (Discr_Val))));
13631 Next_Elmt (Discr_Val);
13632 Next_Discriminant (Old_C);
13633 end loop;
13635 -- The tag and the possible parent component are unconditionally in
13636 -- the subtype.
13638 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13639 Old_C := First_Component (Typ);
13640 while Present (Old_C) loop
13641 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13642 Append_Elmt (Old_C, Comp_List);
13643 end if;
13645 Next_Component (Old_C);
13646 end loop;
13647 end if;
13648 end Collect_Fixed_Components;
13650 ---------------------------
13651 -- Create_All_Components --
13652 ---------------------------
13654 procedure Create_All_Components is
13655 Comp : Elmt_Id;
13657 begin
13658 Comp := First_Elmt (Comp_List);
13659 while Present (Comp) loop
13660 Old_C := Node (Comp);
13661 New_C := Create_Component (Old_C);
13663 Set_Etype
13664 (New_C,
13665 Constrain_Component_Type
13666 (Old_C, Subt, Decl_Node, Typ, Constraints));
13667 Set_Is_Public (New_C, Is_Public (Subt));
13669 Next_Elmt (Comp);
13670 end loop;
13671 end Create_All_Components;
13673 ----------------------
13674 -- Create_Component --
13675 ----------------------
13677 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13678 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13680 begin
13681 if Ekind (Old_Compon) = E_Discriminant
13682 and then Is_Completely_Hidden (Old_Compon)
13683 then
13684 -- This is a shadow discriminant created for a discriminant of
13685 -- the parent type, which needs to be present in the subtype.
13686 -- Give the shadow discriminant an internal name that cannot
13687 -- conflict with that of visible components.
13689 Set_Chars (New_Compon, New_Internal_Name ('C'));
13690 end if;
13692 -- Set the parent so we have a proper link for freezing etc. This is
13693 -- not a real parent pointer, since of course our parent does not own
13694 -- up to us and reference us, we are an illegitimate child of the
13695 -- original parent.
13697 Set_Parent (New_Compon, Parent (Old_Compon));
13699 -- If the old component's Esize was already determined and is a
13700 -- static value, then the new component simply inherits it. Otherwise
13701 -- the old component's size may require run-time determination, but
13702 -- the new component's size still might be statically determinable
13703 -- (if, for example it has a static constraint). In that case we want
13704 -- Layout_Type to recompute the component's size, so we reset its
13705 -- size and positional fields.
13707 if Frontend_Layout_On_Target
13708 and then not Known_Static_Esize (Old_Compon)
13709 then
13710 Set_Esize (New_Compon, Uint_0);
13711 Init_Normalized_First_Bit (New_Compon);
13712 Init_Normalized_Position (New_Compon);
13713 Init_Normalized_Position_Max (New_Compon);
13714 end if;
13716 -- We do not want this node marked as Comes_From_Source, since
13717 -- otherwise it would get first class status and a separate cross-
13718 -- reference line would be generated. Illegitimate children do not
13719 -- rate such recognition.
13721 Set_Comes_From_Source (New_Compon, False);
13723 -- But it is a real entity, and a birth certificate must be properly
13724 -- registered by entering it into the entity list.
13726 Enter_Name (New_Compon);
13728 return New_Compon;
13729 end Create_Component;
13731 -----------------------
13732 -- Is_Variant_Record --
13733 -----------------------
13735 function Is_Variant_Record (T : Entity_Id) return Boolean is
13736 begin
13737 return Nkind (Parent (T)) = N_Full_Type_Declaration
13738 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13739 and then Present (Component_List (Type_Definition (Parent (T))))
13740 and then
13741 Present
13742 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13743 end Is_Variant_Record;
13745 -- Start of processing for Create_Constrained_Components
13747 begin
13748 pragma Assert (Subt /= Base_Type (Subt));
13749 pragma Assert (Typ = Base_Type (Typ));
13751 Set_First_Entity (Subt, Empty);
13752 Set_Last_Entity (Subt, Empty);
13754 -- Check whether constraint is fully static, in which case we can
13755 -- optimize the list of components.
13757 Discr_Val := First_Elmt (Constraints);
13758 while Present (Discr_Val) loop
13759 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13760 Is_Static := False;
13761 exit;
13762 end if;
13764 Next_Elmt (Discr_Val);
13765 end loop;
13767 Set_Has_Static_Discriminants (Subt, Is_Static);
13769 Push_Scope (Subt);
13771 -- Inherit the discriminants of the parent type
13773 Add_Discriminants : declare
13774 Num_Disc : Int;
13775 Num_Gird : Int;
13777 begin
13778 Num_Disc := 0;
13779 Old_C := First_Discriminant (Typ);
13781 while Present (Old_C) loop
13782 Num_Disc := Num_Disc + 1;
13783 New_C := Create_Component (Old_C);
13784 Set_Is_Public (New_C, Is_Public (Subt));
13785 Next_Discriminant (Old_C);
13786 end loop;
13788 -- For an untagged derived subtype, the number of discriminants may
13789 -- be smaller than the number of inherited discriminants, because
13790 -- several of them may be renamed by a single new discriminant or
13791 -- constrained. In this case, add the hidden discriminants back into
13792 -- the subtype, because they need to be present if the optimizer of
13793 -- the GCC 4.x back-end decides to break apart assignments between
13794 -- objects using the parent view into member-wise assignments.
13796 Num_Gird := 0;
13798 if Is_Derived_Type (Typ)
13799 and then not Is_Tagged_Type (Typ)
13800 then
13801 Old_C := First_Stored_Discriminant (Typ);
13803 while Present (Old_C) loop
13804 Num_Gird := Num_Gird + 1;
13805 Next_Stored_Discriminant (Old_C);
13806 end loop;
13807 end if;
13809 if Num_Gird > Num_Disc then
13811 -- Find out multiple uses of new discriminants, and add hidden
13812 -- components for the extra renamed discriminants. We recognize
13813 -- multiple uses through the Corresponding_Discriminant of a
13814 -- new discriminant: if it constrains several old discriminants,
13815 -- this field points to the last one in the parent type. The
13816 -- stored discriminants of the derived type have the same name
13817 -- as those of the parent.
13819 declare
13820 Constr : Elmt_Id;
13821 New_Discr : Entity_Id;
13822 Old_Discr : Entity_Id;
13824 begin
13825 Constr := First_Elmt (Stored_Constraint (Typ));
13826 Old_Discr := First_Stored_Discriminant (Typ);
13827 while Present (Constr) loop
13828 if Is_Entity_Name (Node (Constr))
13829 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13830 then
13831 New_Discr := Entity (Node (Constr));
13833 if Chars (Corresponding_Discriminant (New_Discr)) /=
13834 Chars (Old_Discr)
13835 then
13836 -- The new discriminant has been used to rename a
13837 -- subsequent old discriminant. Introduce a shadow
13838 -- component for the current old discriminant.
13840 New_C := Create_Component (Old_Discr);
13841 Set_Original_Record_Component (New_C, Old_Discr);
13842 end if;
13844 else
13845 -- The constraint has eliminated the old discriminant.
13846 -- Introduce a shadow component.
13848 New_C := Create_Component (Old_Discr);
13849 Set_Original_Record_Component (New_C, Old_Discr);
13850 end if;
13852 Next_Elmt (Constr);
13853 Next_Stored_Discriminant (Old_Discr);
13854 end loop;
13855 end;
13856 end if;
13857 end Add_Discriminants;
13859 if Is_Static
13860 and then Is_Variant_Record (Typ)
13861 then
13862 Collect_Fixed_Components (Typ);
13864 Gather_Components (
13865 Typ,
13866 Component_List (Type_Definition (Parent (Typ))),
13867 Governed_By => Assoc_List,
13868 Into => Comp_List,
13869 Report_Errors => Errors);
13870 pragma Assert (not Errors);
13872 Create_All_Components;
13874 -- If the subtype declaration is created for a tagged type derivation
13875 -- with constraints, we retrieve the record definition of the parent
13876 -- type to select the components of the proper variant.
13878 elsif Is_Static
13879 and then Is_Tagged_Type (Typ)
13880 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13881 and then
13882 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13883 and then Is_Variant_Record (Parent_Type)
13884 then
13885 Collect_Fixed_Components (Typ);
13887 Gather_Components (
13888 Typ,
13889 Component_List (Type_Definition (Parent (Parent_Type))),
13890 Governed_By => Assoc_List,
13891 Into => Comp_List,
13892 Report_Errors => Errors);
13893 pragma Assert (not Errors);
13895 -- If the tagged derivation has a type extension, collect all the
13896 -- new components therein.
13898 if Present
13899 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13900 then
13901 Old_C := First_Component (Typ);
13902 while Present (Old_C) loop
13903 if Original_Record_Component (Old_C) = Old_C
13904 and then Chars (Old_C) /= Name_uTag
13905 and then Chars (Old_C) /= Name_uParent
13906 then
13907 Append_Elmt (Old_C, Comp_List);
13908 end if;
13910 Next_Component (Old_C);
13911 end loop;
13912 end if;
13914 Create_All_Components;
13916 else
13917 -- If discriminants are not static, or if this is a multi-level type
13918 -- extension, we have to include all components of the parent type.
13920 Old_C := First_Component (Typ);
13921 while Present (Old_C) loop
13922 New_C := Create_Component (Old_C);
13924 Set_Etype
13925 (New_C,
13926 Constrain_Component_Type
13927 (Old_C, Subt, Decl_Node, Typ, Constraints));
13928 Set_Is_Public (New_C, Is_Public (Subt));
13930 Next_Component (Old_C);
13931 end loop;
13932 end if;
13934 End_Scope;
13935 end Create_Constrained_Components;
13937 ------------------------------------------
13938 -- Decimal_Fixed_Point_Type_Declaration --
13939 ------------------------------------------
13941 procedure Decimal_Fixed_Point_Type_Declaration
13942 (T : Entity_Id;
13943 Def : Node_Id)
13945 Loc : constant Source_Ptr := Sloc (Def);
13946 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13947 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13948 Implicit_Base : Entity_Id;
13949 Digs_Val : Uint;
13950 Delta_Val : Ureal;
13951 Scale_Val : Uint;
13952 Bound_Val : Ureal;
13954 begin
13955 Check_SPARK_05_Restriction
13956 ("decimal fixed point type is not allowed", Def);
13957 Check_Restriction (No_Fixed_Point, Def);
13959 -- Create implicit base type
13961 Implicit_Base :=
13962 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13963 Set_Etype (Implicit_Base, Implicit_Base);
13965 -- Analyze and process delta expression
13967 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13969 Check_Delta_Expression (Delta_Expr);
13970 Delta_Val := Expr_Value_R (Delta_Expr);
13972 -- Check delta is power of 10, and determine scale value from it
13974 declare
13975 Val : Ureal;
13977 begin
13978 Scale_Val := Uint_0;
13979 Val := Delta_Val;
13981 if Val < Ureal_1 then
13982 while Val < Ureal_1 loop
13983 Val := Val * Ureal_10;
13984 Scale_Val := Scale_Val + 1;
13985 end loop;
13987 if Scale_Val > 18 then
13988 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13989 Scale_Val := UI_From_Int (+18);
13990 end if;
13992 else
13993 while Val > Ureal_1 loop
13994 Val := Val / Ureal_10;
13995 Scale_Val := Scale_Val - 1;
13996 end loop;
13998 if Scale_Val < -18 then
13999 Error_Msg_N ("scale is less than minimum value of -18", Def);
14000 Scale_Val := UI_From_Int (-18);
14001 end if;
14002 end if;
14004 if Val /= Ureal_1 then
14005 Error_Msg_N ("delta expression must be a power of 10", Def);
14006 Delta_Val := Ureal_10 ** (-Scale_Val);
14007 end if;
14008 end;
14010 -- Set delta, scale and small (small = delta for decimal type)
14012 Set_Delta_Value (Implicit_Base, Delta_Val);
14013 Set_Scale_Value (Implicit_Base, Scale_Val);
14014 Set_Small_Value (Implicit_Base, Delta_Val);
14016 -- Analyze and process digits expression
14018 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14019 Check_Digits_Expression (Digs_Expr);
14020 Digs_Val := Expr_Value (Digs_Expr);
14022 if Digs_Val > 18 then
14023 Digs_Val := UI_From_Int (+18);
14024 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14025 end if;
14027 Set_Digits_Value (Implicit_Base, Digs_Val);
14028 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14030 -- Set range of base type from digits value for now. This will be
14031 -- expanded to represent the true underlying base range by Freeze.
14033 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14035 -- Note: We leave size as zero for now, size will be set at freeze
14036 -- time. We have to do this for ordinary fixed-point, because the size
14037 -- depends on the specified small, and we might as well do the same for
14038 -- decimal fixed-point.
14040 pragma Assert (Esize (Implicit_Base) = Uint_0);
14042 -- If there are bounds given in the declaration use them as the
14043 -- bounds of the first named subtype.
14045 if Present (Real_Range_Specification (Def)) then
14046 declare
14047 RRS : constant Node_Id := Real_Range_Specification (Def);
14048 Low : constant Node_Id := Low_Bound (RRS);
14049 High : constant Node_Id := High_Bound (RRS);
14050 Low_Val : Ureal;
14051 High_Val : Ureal;
14053 begin
14054 Analyze_And_Resolve (Low, Any_Real);
14055 Analyze_And_Resolve (High, Any_Real);
14056 Check_Real_Bound (Low);
14057 Check_Real_Bound (High);
14058 Low_Val := Expr_Value_R (Low);
14059 High_Val := Expr_Value_R (High);
14061 if Low_Val < (-Bound_Val) then
14062 Error_Msg_N
14063 ("range low bound too small for digits value", Low);
14064 Low_Val := -Bound_Val;
14065 end if;
14067 if High_Val > Bound_Val then
14068 Error_Msg_N
14069 ("range high bound too large for digits value", High);
14070 High_Val := Bound_Val;
14071 end if;
14073 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14074 end;
14076 -- If no explicit range, use range that corresponds to given
14077 -- digits value. This will end up as the final range for the
14078 -- first subtype.
14080 else
14081 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14082 end if;
14084 -- Complete entity for first subtype. The inheritance of the rep item
14085 -- chain ensures that SPARK-related pragmas are not clobbered when the
14086 -- decimal fixed point type acts as a full view of a private type.
14088 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14089 Set_Etype (T, Implicit_Base);
14090 Set_Size_Info (T, Implicit_Base);
14091 Inherit_Rep_Item_Chain (T, Implicit_Base);
14092 Set_Digits_Value (T, Digs_Val);
14093 Set_Delta_Value (T, Delta_Val);
14094 Set_Small_Value (T, Delta_Val);
14095 Set_Scale_Value (T, Scale_Val);
14096 Set_Is_Constrained (T);
14097 end Decimal_Fixed_Point_Type_Declaration;
14099 -----------------------------------
14100 -- Derive_Progenitor_Subprograms --
14101 -----------------------------------
14103 procedure Derive_Progenitor_Subprograms
14104 (Parent_Type : Entity_Id;
14105 Tagged_Type : Entity_Id)
14107 E : Entity_Id;
14108 Elmt : Elmt_Id;
14109 Iface : Entity_Id;
14110 Iface_Elmt : Elmt_Id;
14111 Iface_Subp : Entity_Id;
14112 New_Subp : Entity_Id := Empty;
14113 Prim_Elmt : Elmt_Id;
14114 Subp : Entity_Id;
14115 Typ : Entity_Id;
14117 begin
14118 pragma Assert (Ada_Version >= Ada_2005
14119 and then Is_Record_Type (Tagged_Type)
14120 and then Is_Tagged_Type (Tagged_Type)
14121 and then Has_Interfaces (Tagged_Type));
14123 -- Step 1: Transfer to the full-view primitives associated with the
14124 -- partial-view that cover interface primitives. Conceptually this
14125 -- work should be done later by Process_Full_View; done here to
14126 -- simplify its implementation at later stages. It can be safely
14127 -- done here because interfaces must be visible in the partial and
14128 -- private view (RM 7.3(7.3/2)).
14130 -- Small optimization: This work is only required if the parent may
14131 -- have entities whose Alias attribute reference an interface primitive.
14132 -- Such a situation may occur if the parent is an abstract type and the
14133 -- primitive has not been yet overridden or if the parent is a generic
14134 -- formal type covering interfaces.
14136 -- If the tagged type is not abstract, it cannot have abstract
14137 -- primitives (the only entities in the list of primitives of
14138 -- non-abstract tagged types that can reference abstract primitives
14139 -- through its Alias attribute are the internal entities that have
14140 -- attribute Interface_Alias, and these entities are generated later
14141 -- by Add_Internal_Interface_Entities).
14143 if In_Private_Part (Current_Scope)
14144 and then (Is_Abstract_Type (Parent_Type)
14145 or else
14146 Is_Generic_Type (Parent_Type))
14147 then
14148 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14149 while Present (Elmt) loop
14150 Subp := Node (Elmt);
14152 -- At this stage it is not possible to have entities in the list
14153 -- of primitives that have attribute Interface_Alias.
14155 pragma Assert (No (Interface_Alias (Subp)));
14157 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14159 if Is_Interface (Typ) then
14160 E := Find_Primitive_Covering_Interface
14161 (Tagged_Type => Tagged_Type,
14162 Iface_Prim => Subp);
14164 if Present (E)
14165 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14166 then
14167 Replace_Elmt (Elmt, E);
14168 Remove_Homonym (Subp);
14169 end if;
14170 end if;
14172 Next_Elmt (Elmt);
14173 end loop;
14174 end if;
14176 -- Step 2: Add primitives of progenitors that are not implemented by
14177 -- parents of Tagged_Type.
14179 if Present (Interfaces (Base_Type (Tagged_Type))) then
14180 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14181 while Present (Iface_Elmt) loop
14182 Iface := Node (Iface_Elmt);
14184 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14185 while Present (Prim_Elmt) loop
14186 Iface_Subp := Node (Prim_Elmt);
14188 -- Exclude derivation of predefined primitives except those
14189 -- that come from source, or are inherited from one that comes
14190 -- from source. Required to catch declarations of equality
14191 -- operators of interfaces. For example:
14193 -- type Iface is interface;
14194 -- function "=" (Left, Right : Iface) return Boolean;
14196 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14197 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14198 then
14199 E := Find_Primitive_Covering_Interface
14200 (Tagged_Type => Tagged_Type,
14201 Iface_Prim => Iface_Subp);
14203 -- If not found we derive a new primitive leaving its alias
14204 -- attribute referencing the interface primitive.
14206 if No (E) then
14207 Derive_Subprogram
14208 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14210 -- Ada 2012 (AI05-0197): If the covering primitive's name
14211 -- differs from the name of the interface primitive then it
14212 -- is a private primitive inherited from a parent type. In
14213 -- such case, given that Tagged_Type covers the interface,
14214 -- the inherited private primitive becomes visible. For such
14215 -- purpose we add a new entity that renames the inherited
14216 -- private primitive.
14218 elsif Chars (E) /= Chars (Iface_Subp) then
14219 pragma Assert (Has_Suffix (E, 'P'));
14220 Derive_Subprogram
14221 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14222 Set_Alias (New_Subp, E);
14223 Set_Is_Abstract_Subprogram (New_Subp,
14224 Is_Abstract_Subprogram (E));
14226 -- Propagate to the full view interface entities associated
14227 -- with the partial view.
14229 elsif In_Private_Part (Current_Scope)
14230 and then Present (Alias (E))
14231 and then Alias (E) = Iface_Subp
14232 and then
14233 List_Containing (Parent (E)) /=
14234 Private_Declarations
14235 (Specification
14236 (Unit_Declaration_Node (Current_Scope)))
14237 then
14238 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14239 end if;
14240 end if;
14242 Next_Elmt (Prim_Elmt);
14243 end loop;
14245 Next_Elmt (Iface_Elmt);
14246 end loop;
14247 end if;
14248 end Derive_Progenitor_Subprograms;
14250 -----------------------
14251 -- Derive_Subprogram --
14252 -----------------------
14254 procedure Derive_Subprogram
14255 (New_Subp : in out Entity_Id;
14256 Parent_Subp : Entity_Id;
14257 Derived_Type : Entity_Id;
14258 Parent_Type : Entity_Id;
14259 Actual_Subp : Entity_Id := Empty)
14261 Formal : Entity_Id;
14262 -- Formal parameter of parent primitive operation
14264 Formal_Of_Actual : Entity_Id;
14265 -- Formal parameter of actual operation, when the derivation is to
14266 -- create a renaming for a primitive operation of an actual in an
14267 -- instantiation.
14269 New_Formal : Entity_Id;
14270 -- Formal of inherited operation
14272 Visible_Subp : Entity_Id := Parent_Subp;
14274 function Is_Private_Overriding return Boolean;
14275 -- If Subp is a private overriding of a visible operation, the inherited
14276 -- operation derives from the overridden op (even though its body is the
14277 -- overriding one) and the inherited operation is visible now. See
14278 -- sem_disp to see the full details of the handling of the overridden
14279 -- subprogram, which is removed from the list of primitive operations of
14280 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14281 -- and used to diagnose abstract operations that need overriding in the
14282 -- derived type.
14284 procedure Replace_Type (Id, New_Id : Entity_Id);
14285 -- When the type is an anonymous access type, create a new access type
14286 -- designating the derived type.
14288 procedure Set_Derived_Name;
14289 -- This procedure sets the appropriate Chars name for New_Subp. This
14290 -- is normally just a copy of the parent name. An exception arises for
14291 -- type support subprograms, where the name is changed to reflect the
14292 -- name of the derived type, e.g. if type foo is derived from type bar,
14293 -- then a procedure barDA is derived with a name fooDA.
14295 ---------------------------
14296 -- Is_Private_Overriding --
14297 ---------------------------
14299 function Is_Private_Overriding return Boolean is
14300 Prev : Entity_Id;
14302 begin
14303 -- If the parent is not a dispatching operation there is no
14304 -- need to investigate overridings
14306 if not Is_Dispatching_Operation (Parent_Subp) then
14307 return False;
14308 end if;
14310 -- The visible operation that is overridden is a homonym of the
14311 -- parent subprogram. We scan the homonym chain to find the one
14312 -- whose alias is the subprogram we are deriving.
14314 Prev := Current_Entity (Parent_Subp);
14315 while Present (Prev) loop
14316 if Ekind (Prev) = Ekind (Parent_Subp)
14317 and then Alias (Prev) = Parent_Subp
14318 and then Scope (Parent_Subp) = Scope (Prev)
14319 and then not Is_Hidden (Prev)
14320 then
14321 Visible_Subp := Prev;
14322 return True;
14323 end if;
14325 Prev := Homonym (Prev);
14326 end loop;
14328 return False;
14329 end Is_Private_Overriding;
14331 ------------------
14332 -- Replace_Type --
14333 ------------------
14335 procedure Replace_Type (Id, New_Id : Entity_Id) is
14336 Id_Type : constant Entity_Id := Etype (Id);
14337 Acc_Type : Entity_Id;
14338 Par : constant Node_Id := Parent (Derived_Type);
14340 begin
14341 -- When the type is an anonymous access type, create a new access
14342 -- type designating the derived type. This itype must be elaborated
14343 -- at the point of the derivation, not on subsequent calls that may
14344 -- be out of the proper scope for Gigi, so we insert a reference to
14345 -- it after the derivation.
14347 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14348 declare
14349 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14351 begin
14352 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14353 and then Present (Full_View (Desig_Typ))
14354 and then not Is_Private_Type (Parent_Type)
14355 then
14356 Desig_Typ := Full_View (Desig_Typ);
14357 end if;
14359 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14361 -- Ada 2005 (AI-251): Handle also derivations of abstract
14362 -- interface primitives.
14364 or else (Is_Interface (Desig_Typ)
14365 and then not Is_Class_Wide_Type (Desig_Typ))
14366 then
14367 Acc_Type := New_Copy (Id_Type);
14368 Set_Etype (Acc_Type, Acc_Type);
14369 Set_Scope (Acc_Type, New_Subp);
14371 -- Set size of anonymous access type. If we have an access
14372 -- to an unconstrained array, this is a fat pointer, so it
14373 -- is sizes at twice addtress size.
14375 if Is_Array_Type (Desig_Typ)
14376 and then not Is_Constrained (Desig_Typ)
14377 then
14378 Init_Size (Acc_Type, 2 * System_Address_Size);
14380 -- Other cases use a thin pointer
14382 else
14383 Init_Size (Acc_Type, System_Address_Size);
14384 end if;
14386 -- Set remaining characterstics of anonymous access type
14388 Init_Alignment (Acc_Type);
14389 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14391 Set_Etype (New_Id, Acc_Type);
14392 Set_Scope (New_Id, New_Subp);
14394 -- Create a reference to it
14396 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14398 else
14399 Set_Etype (New_Id, Id_Type);
14400 end if;
14401 end;
14403 -- In Ada2012, a formal may have an incomplete type but the type
14404 -- derivation that inherits the primitive follows the full view.
14406 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14407 or else
14408 (Ekind (Id_Type) = E_Record_Type_With_Private
14409 and then Present (Full_View (Id_Type))
14410 and then
14411 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14412 or else
14413 (Ada_Version >= Ada_2012
14414 and then Ekind (Id_Type) = E_Incomplete_Type
14415 and then Full_View (Id_Type) = Parent_Type)
14416 then
14417 -- Constraint checks on formals are generated during expansion,
14418 -- based on the signature of the original subprogram. The bounds
14419 -- of the derived type are not relevant, and thus we can use
14420 -- the base type for the formals. However, the return type may be
14421 -- used in a context that requires that the proper static bounds
14422 -- be used (a case statement, for example) and for those cases
14423 -- we must use the derived type (first subtype), not its base.
14425 -- If the derived_type_definition has no constraints, we know that
14426 -- the derived type has the same constraints as the first subtype
14427 -- of the parent, and we can also use it rather than its base,
14428 -- which can lead to more efficient code.
14430 if Etype (Id) = Parent_Type then
14431 if Is_Scalar_Type (Parent_Type)
14432 and then
14433 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14434 then
14435 Set_Etype (New_Id, Derived_Type);
14437 elsif Nkind (Par) = N_Full_Type_Declaration
14438 and then
14439 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14440 and then
14441 Is_Entity_Name
14442 (Subtype_Indication (Type_Definition (Par)))
14443 then
14444 Set_Etype (New_Id, Derived_Type);
14446 else
14447 Set_Etype (New_Id, Base_Type (Derived_Type));
14448 end if;
14450 else
14451 Set_Etype (New_Id, Base_Type (Derived_Type));
14452 end if;
14454 else
14455 Set_Etype (New_Id, Etype (Id));
14456 end if;
14457 end Replace_Type;
14459 ----------------------
14460 -- Set_Derived_Name --
14461 ----------------------
14463 procedure Set_Derived_Name is
14464 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14465 begin
14466 if Nm = TSS_Null then
14467 Set_Chars (New_Subp, Chars (Parent_Subp));
14468 else
14469 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14470 end if;
14471 end Set_Derived_Name;
14473 -- Start of processing for Derive_Subprogram
14475 begin
14476 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14477 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14478 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
14480 -- Check whether the inherited subprogram is a private operation that
14481 -- should be inherited but not yet made visible. Such subprograms can
14482 -- become visible at a later point (e.g., the private part of a public
14483 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14484 -- following predicate is true, then this is not such a private
14485 -- operation and the subprogram simply inherits the name of the parent
14486 -- subprogram. Note the special check for the names of controlled
14487 -- operations, which are currently exempted from being inherited with
14488 -- a hidden name because they must be findable for generation of
14489 -- implicit run-time calls.
14491 if not Is_Hidden (Parent_Subp)
14492 or else Is_Internal (Parent_Subp)
14493 or else Is_Private_Overriding
14494 or else Is_Internal_Name (Chars (Parent_Subp))
14495 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14496 Name_Adjust,
14497 Name_Finalize)
14498 then
14499 Set_Derived_Name;
14501 -- An inherited dispatching equality will be overridden by an internally
14502 -- generated one, or by an explicit one, so preserve its name and thus
14503 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14504 -- private operation it may become invisible if the full view has
14505 -- progenitors, and the dispatch table will be malformed.
14506 -- We check that the type is limited to handle the anomalous declaration
14507 -- of Limited_Controlled, which is derived from a non-limited type, and
14508 -- which is handled specially elsewhere as well.
14510 elsif Chars (Parent_Subp) = Name_Op_Eq
14511 and then Is_Dispatching_Operation (Parent_Subp)
14512 and then Etype (Parent_Subp) = Standard_Boolean
14513 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14514 and then
14515 Etype (First_Formal (Parent_Subp)) =
14516 Etype (Next_Formal (First_Formal (Parent_Subp)))
14517 then
14518 Set_Derived_Name;
14520 -- If parent is hidden, this can be a regular derivation if the
14521 -- parent is immediately visible in a non-instantiating context,
14522 -- or if we are in the private part of an instance. This test
14523 -- should still be refined ???
14525 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14526 -- operation as a non-visible operation in cases where the parent
14527 -- subprogram might not be visible now, but was visible within the
14528 -- original generic, so it would be wrong to make the inherited
14529 -- subprogram non-visible now. (Not clear if this test is fully
14530 -- correct; are there any cases where we should declare the inherited
14531 -- operation as not visible to avoid it being overridden, e.g., when
14532 -- the parent type is a generic actual with private primitives ???)
14534 -- (they should be treated the same as other private inherited
14535 -- subprograms, but it's not clear how to do this cleanly). ???
14537 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14538 and then Is_Immediately_Visible (Parent_Subp)
14539 and then not In_Instance)
14540 or else In_Instance_Not_Visible
14541 then
14542 Set_Derived_Name;
14544 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14545 -- overrides an interface primitive because interface primitives
14546 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14548 elsif Ada_Version >= Ada_2005
14549 and then Is_Dispatching_Operation (Parent_Subp)
14550 and then Covers_Some_Interface (Parent_Subp)
14551 then
14552 Set_Derived_Name;
14554 -- Otherwise, the type is inheriting a private operation, so enter
14555 -- it with a special name so it can't be overridden.
14557 else
14558 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14559 end if;
14561 Set_Parent (New_Subp, Parent (Derived_Type));
14563 if Present (Actual_Subp) then
14564 Replace_Type (Actual_Subp, New_Subp);
14565 else
14566 Replace_Type (Parent_Subp, New_Subp);
14567 end if;
14569 Conditional_Delay (New_Subp, Parent_Subp);
14571 -- If we are creating a renaming for a primitive operation of an
14572 -- actual of a generic derived type, we must examine the signature
14573 -- of the actual primitive, not that of the generic formal, which for
14574 -- example may be an interface. However the name and initial value
14575 -- of the inherited operation are those of the formal primitive.
14577 Formal := First_Formal (Parent_Subp);
14579 if Present (Actual_Subp) then
14580 Formal_Of_Actual := First_Formal (Actual_Subp);
14581 else
14582 Formal_Of_Actual := Empty;
14583 end if;
14585 while Present (Formal) loop
14586 New_Formal := New_Copy (Formal);
14588 -- Normally we do not go copying parents, but in the case of
14589 -- formals, we need to link up to the declaration (which is the
14590 -- parameter specification), and it is fine to link up to the
14591 -- original formal's parameter specification in this case.
14593 Set_Parent (New_Formal, Parent (Formal));
14594 Append_Entity (New_Formal, New_Subp);
14596 if Present (Formal_Of_Actual) then
14597 Replace_Type (Formal_Of_Actual, New_Formal);
14598 Next_Formal (Formal_Of_Actual);
14599 else
14600 Replace_Type (Formal, New_Formal);
14601 end if;
14603 Next_Formal (Formal);
14604 end loop;
14606 -- If this derivation corresponds to a tagged generic actual, then
14607 -- primitive operations rename those of the actual. Otherwise the
14608 -- primitive operations rename those of the parent type, If the parent
14609 -- renames an intrinsic operator, so does the new subprogram. We except
14610 -- concatenation, which is always properly typed, and does not get
14611 -- expanded as other intrinsic operations.
14613 if No (Actual_Subp) then
14614 if Is_Intrinsic_Subprogram (Parent_Subp) then
14615 Set_Is_Intrinsic_Subprogram (New_Subp);
14617 if Present (Alias (Parent_Subp))
14618 and then Chars (Parent_Subp) /= Name_Op_Concat
14619 then
14620 Set_Alias (New_Subp, Alias (Parent_Subp));
14621 else
14622 Set_Alias (New_Subp, Parent_Subp);
14623 end if;
14625 else
14626 Set_Alias (New_Subp, Parent_Subp);
14627 end if;
14629 else
14630 Set_Alias (New_Subp, Actual_Subp);
14631 end if;
14633 -- Derived subprograms of a tagged type must inherit the convention
14634 -- of the parent subprogram (a requirement of AI-117). Derived
14635 -- subprograms of untagged types simply get convention Ada by default.
14637 -- If the derived type is a tagged generic formal type with unknown
14638 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14640 -- However, if the type is derived from a generic formal, the further
14641 -- inherited subprogram has the convention of the non-generic ancestor.
14642 -- Otherwise there would be no way to override the operation.
14643 -- (This is subject to forthcoming ARG discussions).
14645 if Is_Tagged_Type (Derived_Type) then
14646 if Is_Generic_Type (Derived_Type)
14647 and then Has_Unknown_Discriminants (Derived_Type)
14648 then
14649 Set_Convention (New_Subp, Convention_Intrinsic);
14651 else
14652 if Is_Generic_Type (Parent_Type)
14653 and then Has_Unknown_Discriminants (Parent_Type)
14654 then
14655 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14656 else
14657 Set_Convention (New_Subp, Convention (Parent_Subp));
14658 end if;
14659 end if;
14660 end if;
14662 -- Predefined controlled operations retain their name even if the parent
14663 -- is hidden (see above), but they are not primitive operations if the
14664 -- ancestor is not visible, for example if the parent is a private
14665 -- extension completed with a controlled extension. Note that a full
14666 -- type that is controlled can break privacy: the flag Is_Controlled is
14667 -- set on both views of the type.
14669 if Is_Controlled (Parent_Type)
14670 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14671 Name_Adjust,
14672 Name_Finalize)
14673 and then Is_Hidden (Parent_Subp)
14674 and then not Is_Visibly_Controlled (Parent_Type)
14675 then
14676 Set_Is_Hidden (New_Subp);
14677 end if;
14679 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14680 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14682 if Ekind (Parent_Subp) = E_Procedure then
14683 Set_Is_Valued_Procedure
14684 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14685 else
14686 Set_Has_Controlling_Result
14687 (New_Subp, Has_Controlling_Result (Parent_Subp));
14688 end if;
14690 -- No_Return must be inherited properly. If this is overridden in the
14691 -- case of a dispatching operation, then a check is made in Sem_Disp
14692 -- that the overriding operation is also No_Return (no such check is
14693 -- required for the case of non-dispatching operation.
14695 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14697 -- A derived function with a controlling result is abstract. If the
14698 -- Derived_Type is a nonabstract formal generic derived type, then
14699 -- inherited operations are not abstract: the required check is done at
14700 -- instantiation time. If the derivation is for a generic actual, the
14701 -- function is not abstract unless the actual is.
14703 if Is_Generic_Type (Derived_Type)
14704 and then not Is_Abstract_Type (Derived_Type)
14705 then
14706 null;
14708 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14709 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14711 -- A subprogram subject to pragma Extensions_Visible with value False
14712 -- requires overriding if the subprogram has at least one controlling
14713 -- OUT parameter (SPARK RM 6.1.7(6)).
14715 elsif Ada_Version >= Ada_2005
14716 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14717 or else (Is_Tagged_Type (Derived_Type)
14718 and then Etype (New_Subp) = Derived_Type
14719 and then not Is_Null_Extension (Derived_Type))
14720 or else (Is_Tagged_Type (Derived_Type)
14721 and then Ekind (Etype (New_Subp)) =
14722 E_Anonymous_Access_Type
14723 and then Designated_Type (Etype (New_Subp)) =
14724 Derived_Type
14725 and then not Is_Null_Extension (Derived_Type))
14726 or else (Comes_From_Source (Alias (New_Subp))
14727 and then Is_EVF_Procedure (Alias (New_Subp))))
14728 and then No (Actual_Subp)
14729 then
14730 if not Is_Tagged_Type (Derived_Type)
14731 or else Is_Abstract_Type (Derived_Type)
14732 or else Is_Abstract_Subprogram (Alias (New_Subp))
14733 then
14734 Set_Is_Abstract_Subprogram (New_Subp);
14735 else
14736 Set_Requires_Overriding (New_Subp);
14737 end if;
14739 elsif Ada_Version < Ada_2005
14740 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14741 or else (Is_Tagged_Type (Derived_Type)
14742 and then Etype (New_Subp) = Derived_Type
14743 and then No (Actual_Subp)))
14744 then
14745 Set_Is_Abstract_Subprogram (New_Subp);
14747 -- AI05-0097 : an inherited operation that dispatches on result is
14748 -- abstract if the derived type is abstract, even if the parent type
14749 -- is concrete and the derived type is a null extension.
14751 elsif Has_Controlling_Result (Alias (New_Subp))
14752 and then Is_Abstract_Type (Etype (New_Subp))
14753 then
14754 Set_Is_Abstract_Subprogram (New_Subp);
14756 -- Finally, if the parent type is abstract we must verify that all
14757 -- inherited operations are either non-abstract or overridden, or that
14758 -- the derived type itself is abstract (this check is performed at the
14759 -- end of a package declaration, in Check_Abstract_Overriding). A
14760 -- private overriding in the parent type will not be visible in the
14761 -- derivation if we are not in an inner package or in a child unit of
14762 -- the parent type, in which case the abstractness of the inherited
14763 -- operation is carried to the new subprogram.
14765 elsif Is_Abstract_Type (Parent_Type)
14766 and then not In_Open_Scopes (Scope (Parent_Type))
14767 and then Is_Private_Overriding
14768 and then Is_Abstract_Subprogram (Visible_Subp)
14769 then
14770 if No (Actual_Subp) then
14771 Set_Alias (New_Subp, Visible_Subp);
14772 Set_Is_Abstract_Subprogram (New_Subp, True);
14774 else
14775 -- If this is a derivation for an instance of a formal derived
14776 -- type, abstractness comes from the primitive operation of the
14777 -- actual, not from the operation inherited from the ancestor.
14779 Set_Is_Abstract_Subprogram
14780 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14781 end if;
14782 end if;
14784 New_Overloaded_Entity (New_Subp, Derived_Type);
14786 -- Check for case of a derived subprogram for the instantiation of a
14787 -- formal derived tagged type, if so mark the subprogram as dispatching
14788 -- and inherit the dispatching attributes of the actual subprogram. The
14789 -- derived subprogram is effectively renaming of the actual subprogram,
14790 -- so it needs to have the same attributes as the actual.
14792 if Present (Actual_Subp)
14793 and then Is_Dispatching_Operation (Actual_Subp)
14794 then
14795 Set_Is_Dispatching_Operation (New_Subp);
14797 if Present (DTC_Entity (Actual_Subp)) then
14798 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14799 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14800 end if;
14801 end if;
14803 -- Indicate that a derived subprogram does not require a body and that
14804 -- it does not require processing of default expressions.
14806 Set_Has_Completion (New_Subp);
14807 Set_Default_Expressions_Processed (New_Subp);
14809 if Ekind (New_Subp) = E_Function then
14810 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14811 end if;
14812 end Derive_Subprogram;
14814 ------------------------
14815 -- Derive_Subprograms --
14816 ------------------------
14818 procedure Derive_Subprograms
14819 (Parent_Type : Entity_Id;
14820 Derived_Type : Entity_Id;
14821 Generic_Actual : Entity_Id := Empty)
14823 Op_List : constant Elist_Id :=
14824 Collect_Primitive_Operations (Parent_Type);
14826 function Check_Derived_Type return Boolean;
14827 -- Check that all the entities derived from Parent_Type are found in
14828 -- the list of primitives of Derived_Type exactly in the same order.
14830 procedure Derive_Interface_Subprogram
14831 (New_Subp : in out Entity_Id;
14832 Subp : Entity_Id;
14833 Actual_Subp : Entity_Id);
14834 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14835 -- (which is an interface primitive). If Generic_Actual is present then
14836 -- Actual_Subp is the actual subprogram corresponding with the generic
14837 -- subprogram Subp.
14839 function Check_Derived_Type return Boolean is
14840 E : Entity_Id;
14841 Elmt : Elmt_Id;
14842 List : Elist_Id;
14843 New_Subp : Entity_Id;
14844 Op_Elmt : Elmt_Id;
14845 Subp : Entity_Id;
14847 begin
14848 -- Traverse list of entities in the current scope searching for
14849 -- an incomplete type whose full-view is derived type
14851 E := First_Entity (Scope (Derived_Type));
14852 while Present (E) and then E /= Derived_Type loop
14853 if Ekind (E) = E_Incomplete_Type
14854 and then Present (Full_View (E))
14855 and then Full_View (E) = Derived_Type
14856 then
14857 -- Disable this test if Derived_Type completes an incomplete
14858 -- type because in such case more primitives can be added
14859 -- later to the list of primitives of Derived_Type by routine
14860 -- Process_Incomplete_Dependents
14862 return True;
14863 end if;
14865 E := Next_Entity (E);
14866 end loop;
14868 List := Collect_Primitive_Operations (Derived_Type);
14869 Elmt := First_Elmt (List);
14871 Op_Elmt := First_Elmt (Op_List);
14872 while Present (Op_Elmt) loop
14873 Subp := Node (Op_Elmt);
14874 New_Subp := Node (Elmt);
14876 -- At this early stage Derived_Type has no entities with attribute
14877 -- Interface_Alias. In addition, such primitives are always
14878 -- located at the end of the list of primitives of Parent_Type.
14879 -- Therefore, if found we can safely stop processing pending
14880 -- entities.
14882 exit when Present (Interface_Alias (Subp));
14884 -- Handle hidden entities
14886 if not Is_Predefined_Dispatching_Operation (Subp)
14887 and then Is_Hidden (Subp)
14888 then
14889 if Present (New_Subp)
14890 and then Primitive_Names_Match (Subp, New_Subp)
14891 then
14892 Next_Elmt (Elmt);
14893 end if;
14895 else
14896 if not Present (New_Subp)
14897 or else Ekind (Subp) /= Ekind (New_Subp)
14898 or else not Primitive_Names_Match (Subp, New_Subp)
14899 then
14900 return False;
14901 end if;
14903 Next_Elmt (Elmt);
14904 end if;
14906 Next_Elmt (Op_Elmt);
14907 end loop;
14909 return True;
14910 end Check_Derived_Type;
14912 ---------------------------------
14913 -- Derive_Interface_Subprogram --
14914 ---------------------------------
14916 procedure Derive_Interface_Subprogram
14917 (New_Subp : in out Entity_Id;
14918 Subp : Entity_Id;
14919 Actual_Subp : Entity_Id)
14921 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14922 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14924 begin
14925 pragma Assert (Is_Interface (Iface_Type));
14927 Derive_Subprogram
14928 (New_Subp => New_Subp,
14929 Parent_Subp => Iface_Subp,
14930 Derived_Type => Derived_Type,
14931 Parent_Type => Iface_Type,
14932 Actual_Subp => Actual_Subp);
14934 -- Given that this new interface entity corresponds with a primitive
14935 -- of the parent that was not overridden we must leave it associated
14936 -- with its parent primitive to ensure that it will share the same
14937 -- dispatch table slot when overridden.
14939 if No (Actual_Subp) then
14940 Set_Alias (New_Subp, Subp);
14942 -- For instantiations this is not needed since the previous call to
14943 -- Derive_Subprogram leaves the entity well decorated.
14945 else
14946 pragma Assert (Alias (New_Subp) = Actual_Subp);
14947 null;
14948 end if;
14949 end Derive_Interface_Subprogram;
14951 -- Local variables
14953 Alias_Subp : Entity_Id;
14954 Act_List : Elist_Id;
14955 Act_Elmt : Elmt_Id;
14956 Act_Subp : Entity_Id := Empty;
14957 Elmt : Elmt_Id;
14958 Need_Search : Boolean := False;
14959 New_Subp : Entity_Id := Empty;
14960 Parent_Base : Entity_Id;
14961 Subp : Entity_Id;
14963 -- Start of processing for Derive_Subprograms
14965 begin
14966 if Ekind (Parent_Type) = E_Record_Type_With_Private
14967 and then Has_Discriminants (Parent_Type)
14968 and then Present (Full_View (Parent_Type))
14969 then
14970 Parent_Base := Full_View (Parent_Type);
14971 else
14972 Parent_Base := Parent_Type;
14973 end if;
14975 if Present (Generic_Actual) then
14976 Act_List := Collect_Primitive_Operations (Generic_Actual);
14977 Act_Elmt := First_Elmt (Act_List);
14978 else
14979 Act_List := No_Elist;
14980 Act_Elmt := No_Elmt;
14981 end if;
14983 -- Derive primitives inherited from the parent. Note that if the generic
14984 -- actual is present, this is not really a type derivation, it is a
14985 -- completion within an instance.
14987 -- Case 1: Derived_Type does not implement interfaces
14989 if not Is_Tagged_Type (Derived_Type)
14990 or else (not Has_Interfaces (Derived_Type)
14991 and then not (Present (Generic_Actual)
14992 and then Has_Interfaces (Generic_Actual)))
14993 then
14994 Elmt := First_Elmt (Op_List);
14995 while Present (Elmt) loop
14996 Subp := Node (Elmt);
14998 -- Literals are derived earlier in the process of building the
14999 -- derived type, and are skipped here.
15001 if Ekind (Subp) = E_Enumeration_Literal then
15002 null;
15004 -- The actual is a direct descendant and the common primitive
15005 -- operations appear in the same order.
15007 -- If the generic parent type is present, the derived type is an
15008 -- instance of a formal derived type, and within the instance its
15009 -- operations are those of the actual. We derive from the formal
15010 -- type but make the inherited operations aliases of the
15011 -- corresponding operations of the actual.
15013 else
15014 pragma Assert (No (Node (Act_Elmt))
15015 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15016 and then
15017 Type_Conformant
15018 (Subp, Node (Act_Elmt),
15019 Skip_Controlling_Formals => True)));
15021 Derive_Subprogram
15022 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15024 if Present (Act_Elmt) then
15025 Next_Elmt (Act_Elmt);
15026 end if;
15027 end if;
15029 Next_Elmt (Elmt);
15030 end loop;
15032 -- Case 2: Derived_Type implements interfaces
15034 else
15035 -- If the parent type has no predefined primitives we remove
15036 -- predefined primitives from the list of primitives of generic
15037 -- actual to simplify the complexity of this algorithm.
15039 if Present (Generic_Actual) then
15040 declare
15041 Has_Predefined_Primitives : Boolean := False;
15043 begin
15044 -- Check if the parent type has predefined primitives
15046 Elmt := First_Elmt (Op_List);
15047 while Present (Elmt) loop
15048 Subp := Node (Elmt);
15050 if Is_Predefined_Dispatching_Operation (Subp)
15051 and then not Comes_From_Source (Ultimate_Alias (Subp))
15052 then
15053 Has_Predefined_Primitives := True;
15054 exit;
15055 end if;
15057 Next_Elmt (Elmt);
15058 end loop;
15060 -- Remove predefined primitives of Generic_Actual. We must use
15061 -- an auxiliary list because in case of tagged types the value
15062 -- returned by Collect_Primitive_Operations is the value stored
15063 -- in its Primitive_Operations attribute (and we don't want to
15064 -- modify its current contents).
15066 if not Has_Predefined_Primitives then
15067 declare
15068 Aux_List : constant Elist_Id := New_Elmt_List;
15070 begin
15071 Elmt := First_Elmt (Act_List);
15072 while Present (Elmt) loop
15073 Subp := Node (Elmt);
15075 if not Is_Predefined_Dispatching_Operation (Subp)
15076 or else Comes_From_Source (Subp)
15077 then
15078 Append_Elmt (Subp, Aux_List);
15079 end if;
15081 Next_Elmt (Elmt);
15082 end loop;
15084 Act_List := Aux_List;
15085 end;
15086 end if;
15088 Act_Elmt := First_Elmt (Act_List);
15089 Act_Subp := Node (Act_Elmt);
15090 end;
15091 end if;
15093 -- Stage 1: If the generic actual is not present we derive the
15094 -- primitives inherited from the parent type. If the generic parent
15095 -- type is present, the derived type is an instance of a formal
15096 -- derived type, and within the instance its operations are those of
15097 -- the actual. We derive from the formal type but make the inherited
15098 -- operations aliases of the corresponding operations of the actual.
15100 Elmt := First_Elmt (Op_List);
15101 while Present (Elmt) loop
15102 Subp := Node (Elmt);
15103 Alias_Subp := Ultimate_Alias (Subp);
15105 -- Do not derive internal entities of the parent that link
15106 -- interface primitives with their covering primitive. These
15107 -- entities will be added to this type when frozen.
15109 if Present (Interface_Alias (Subp)) then
15110 goto Continue;
15111 end if;
15113 -- If the generic actual is present find the corresponding
15114 -- operation in the generic actual. If the parent type is a
15115 -- direct ancestor of the derived type then, even if it is an
15116 -- interface, the operations are inherited from the primary
15117 -- dispatch table and are in the proper order. If we detect here
15118 -- that primitives are not in the same order we traverse the list
15119 -- of primitive operations of the actual to find the one that
15120 -- implements the interface primitive.
15122 if Need_Search
15123 or else
15124 (Present (Generic_Actual)
15125 and then Present (Act_Subp)
15126 and then not
15127 (Primitive_Names_Match (Subp, Act_Subp)
15128 and then
15129 Type_Conformant (Subp, Act_Subp,
15130 Skip_Controlling_Formals => True)))
15131 then
15132 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15133 Use_Full_View => True));
15135 -- Remember that we need searching for all pending primitives
15137 Need_Search := True;
15139 -- Handle entities associated with interface primitives
15141 if Present (Alias_Subp)
15142 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15143 and then not Is_Predefined_Dispatching_Operation (Subp)
15144 then
15145 -- Search for the primitive in the homonym chain
15147 Act_Subp :=
15148 Find_Primitive_Covering_Interface
15149 (Tagged_Type => Generic_Actual,
15150 Iface_Prim => Alias_Subp);
15152 -- Previous search may not locate primitives covering
15153 -- interfaces defined in generics units or instantiations.
15154 -- (it fails if the covering primitive has formals whose
15155 -- type is also defined in generics or instantiations).
15156 -- In such case we search in the list of primitives of the
15157 -- generic actual for the internal entity that links the
15158 -- interface primitive and the covering primitive.
15160 if No (Act_Subp)
15161 and then Is_Generic_Type (Parent_Type)
15162 then
15163 -- This code has been designed to handle only generic
15164 -- formals that implement interfaces that are defined
15165 -- in a generic unit or instantiation. If this code is
15166 -- needed for other cases we must review it because
15167 -- (given that it relies on Original_Location to locate
15168 -- the primitive of Generic_Actual that covers the
15169 -- interface) it could leave linked through attribute
15170 -- Alias entities of unrelated instantiations).
15172 pragma Assert
15173 (Is_Generic_Unit
15174 (Scope (Find_Dispatching_Type (Alias_Subp)))
15175 or else
15176 Instantiation_Depth
15177 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15179 declare
15180 Iface_Prim_Loc : constant Source_Ptr :=
15181 Original_Location (Sloc (Alias_Subp));
15183 Elmt : Elmt_Id;
15184 Prim : Entity_Id;
15186 begin
15187 Elmt :=
15188 First_Elmt (Primitive_Operations (Generic_Actual));
15190 Search : while Present (Elmt) loop
15191 Prim := Node (Elmt);
15193 if Present (Interface_Alias (Prim))
15194 and then Original_Location
15195 (Sloc (Interface_Alias (Prim))) =
15196 Iface_Prim_Loc
15197 then
15198 Act_Subp := Alias (Prim);
15199 exit Search;
15200 end if;
15202 Next_Elmt (Elmt);
15203 end loop Search;
15204 end;
15205 end if;
15207 pragma Assert (Present (Act_Subp)
15208 or else Is_Abstract_Type (Generic_Actual)
15209 or else Serious_Errors_Detected > 0);
15211 -- Handle predefined primitives plus the rest of user-defined
15212 -- primitives
15214 else
15215 Act_Elmt := First_Elmt (Act_List);
15216 while Present (Act_Elmt) loop
15217 Act_Subp := Node (Act_Elmt);
15219 exit when Primitive_Names_Match (Subp, Act_Subp)
15220 and then Type_Conformant
15221 (Subp, Act_Subp,
15222 Skip_Controlling_Formals => True)
15223 and then No (Interface_Alias (Act_Subp));
15225 Next_Elmt (Act_Elmt);
15226 end loop;
15228 if No (Act_Elmt) then
15229 Act_Subp := Empty;
15230 end if;
15231 end if;
15232 end if;
15234 -- Case 1: If the parent is a limited interface then it has the
15235 -- predefined primitives of synchronized interfaces. However, the
15236 -- actual type may be a non-limited type and hence it does not
15237 -- have such primitives.
15239 if Present (Generic_Actual)
15240 and then not Present (Act_Subp)
15241 and then Is_Limited_Interface (Parent_Base)
15242 and then Is_Predefined_Interface_Primitive (Subp)
15243 then
15244 null;
15246 -- Case 2: Inherit entities associated with interfaces that were
15247 -- not covered by the parent type. We exclude here null interface
15248 -- primitives because they do not need special management.
15250 -- We also exclude interface operations that are renamings. If the
15251 -- subprogram is an explicit renaming of an interface primitive,
15252 -- it is a regular primitive operation, and the presence of its
15253 -- alias is not relevant: it has to be derived like any other
15254 -- primitive.
15256 elsif Present (Alias (Subp))
15257 and then Nkind (Unit_Declaration_Node (Subp)) /=
15258 N_Subprogram_Renaming_Declaration
15259 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15260 and then not
15261 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15262 and then Null_Present (Parent (Alias_Subp)))
15263 then
15264 -- If this is an abstract private type then we transfer the
15265 -- derivation of the interface primitive from the partial view
15266 -- to the full view. This is safe because all the interfaces
15267 -- must be visible in the partial view. Done to avoid adding
15268 -- a new interface derivation to the private part of the
15269 -- enclosing package; otherwise this new derivation would be
15270 -- decorated as hidden when the analysis of the enclosing
15271 -- package completes.
15273 if Is_Abstract_Type (Derived_Type)
15274 and then In_Private_Part (Current_Scope)
15275 and then Has_Private_Declaration (Derived_Type)
15276 then
15277 declare
15278 Partial_View : Entity_Id;
15279 Elmt : Elmt_Id;
15280 Ent : Entity_Id;
15282 begin
15283 Partial_View := First_Entity (Current_Scope);
15284 loop
15285 exit when No (Partial_View)
15286 or else (Has_Private_Declaration (Partial_View)
15287 and then
15288 Full_View (Partial_View) = Derived_Type);
15290 Next_Entity (Partial_View);
15291 end loop;
15293 -- If the partial view was not found then the source code
15294 -- has errors and the derivation is not needed.
15296 if Present (Partial_View) then
15297 Elmt :=
15298 First_Elmt (Primitive_Operations (Partial_View));
15299 while Present (Elmt) loop
15300 Ent := Node (Elmt);
15302 if Present (Alias (Ent))
15303 and then Ultimate_Alias (Ent) = Alias (Subp)
15304 then
15305 Append_Elmt
15306 (Ent, Primitive_Operations (Derived_Type));
15307 exit;
15308 end if;
15310 Next_Elmt (Elmt);
15311 end loop;
15313 -- If the interface primitive was not found in the
15314 -- partial view then this interface primitive was
15315 -- overridden. We add a derivation to activate in
15316 -- Derive_Progenitor_Subprograms the machinery to
15317 -- search for it.
15319 if No (Elmt) then
15320 Derive_Interface_Subprogram
15321 (New_Subp => New_Subp,
15322 Subp => Subp,
15323 Actual_Subp => Act_Subp);
15324 end if;
15325 end if;
15326 end;
15327 else
15328 Derive_Interface_Subprogram
15329 (New_Subp => New_Subp,
15330 Subp => Subp,
15331 Actual_Subp => Act_Subp);
15332 end if;
15334 -- Case 3: Common derivation
15336 else
15337 Derive_Subprogram
15338 (New_Subp => New_Subp,
15339 Parent_Subp => Subp,
15340 Derived_Type => Derived_Type,
15341 Parent_Type => Parent_Base,
15342 Actual_Subp => Act_Subp);
15343 end if;
15345 -- No need to update Act_Elm if we must search for the
15346 -- corresponding operation in the generic actual
15348 if not Need_Search
15349 and then Present (Act_Elmt)
15350 then
15351 Next_Elmt (Act_Elmt);
15352 Act_Subp := Node (Act_Elmt);
15353 end if;
15355 <<Continue>>
15356 Next_Elmt (Elmt);
15357 end loop;
15359 -- Inherit additional operations from progenitors. If the derived
15360 -- type is a generic actual, there are not new primitive operations
15361 -- for the type because it has those of the actual, and therefore
15362 -- nothing needs to be done. The renamings generated above are not
15363 -- primitive operations, and their purpose is simply to make the
15364 -- proper operations visible within an instantiation.
15366 if No (Generic_Actual) then
15367 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15368 end if;
15369 end if;
15371 -- Final check: Direct descendants must have their primitives in the
15372 -- same order. We exclude from this test untagged types and instances
15373 -- of formal derived types. We skip this test if we have already
15374 -- reported serious errors in the sources.
15376 pragma Assert (not Is_Tagged_Type (Derived_Type)
15377 or else Present (Generic_Actual)
15378 or else Serious_Errors_Detected > 0
15379 or else Check_Derived_Type);
15380 end Derive_Subprograms;
15382 --------------------------------
15383 -- Derived_Standard_Character --
15384 --------------------------------
15386 procedure Derived_Standard_Character
15387 (N : Node_Id;
15388 Parent_Type : Entity_Id;
15389 Derived_Type : Entity_Id)
15391 Loc : constant Source_Ptr := Sloc (N);
15392 Def : constant Node_Id := Type_Definition (N);
15393 Indic : constant Node_Id := Subtype_Indication (Def);
15394 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15395 Implicit_Base : constant Entity_Id :=
15396 Create_Itype
15397 (E_Enumeration_Type, N, Derived_Type, 'B');
15399 Lo : Node_Id;
15400 Hi : Node_Id;
15402 begin
15403 Discard_Node (Process_Subtype (Indic, N));
15405 Set_Etype (Implicit_Base, Parent_Base);
15406 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15407 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15409 Set_Is_Character_Type (Implicit_Base, True);
15410 Set_Has_Delayed_Freeze (Implicit_Base);
15412 -- The bounds of the implicit base are the bounds of the parent base.
15413 -- Note that their type is the parent base.
15415 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15416 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15418 Set_Scalar_Range (Implicit_Base,
15419 Make_Range (Loc,
15420 Low_Bound => Lo,
15421 High_Bound => Hi));
15423 Conditional_Delay (Derived_Type, Parent_Type);
15425 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15426 Set_Etype (Derived_Type, Implicit_Base);
15427 Set_Size_Info (Derived_Type, Parent_Type);
15429 if Unknown_RM_Size (Derived_Type) then
15430 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15431 end if;
15433 Set_Is_Character_Type (Derived_Type, True);
15435 if Nkind (Indic) /= N_Subtype_Indication then
15437 -- If no explicit constraint, the bounds are those
15438 -- of the parent type.
15440 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15441 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15442 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15443 end if;
15445 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15447 -- Because the implicit base is used in the conversion of the bounds, we
15448 -- have to freeze it now. This is similar to what is done for numeric
15449 -- types, and it equally suspicious, but otherwise a non-static bound
15450 -- will have a reference to an unfrozen type, which is rejected by Gigi
15451 -- (???). This requires specific care for definition of stream
15452 -- attributes. For details, see comments at the end of
15453 -- Build_Derived_Numeric_Type.
15455 Freeze_Before (N, Implicit_Base);
15456 end Derived_Standard_Character;
15458 ------------------------------
15459 -- Derived_Type_Declaration --
15460 ------------------------------
15462 procedure Derived_Type_Declaration
15463 (T : Entity_Id;
15464 N : Node_Id;
15465 Is_Completion : Boolean)
15467 Parent_Type : Entity_Id;
15469 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15470 -- Check whether the parent type is a generic formal, or derives
15471 -- directly or indirectly from one.
15473 ------------------------
15474 -- Comes_From_Generic --
15475 ------------------------
15477 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15478 begin
15479 if Is_Generic_Type (Typ) then
15480 return True;
15482 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15483 return True;
15485 elsif Is_Private_Type (Typ)
15486 and then Present (Full_View (Typ))
15487 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15488 then
15489 return True;
15491 elsif Is_Generic_Actual_Type (Typ) then
15492 return True;
15494 else
15495 return False;
15496 end if;
15497 end Comes_From_Generic;
15499 -- Local variables
15501 Def : constant Node_Id := Type_Definition (N);
15502 Iface_Def : Node_Id;
15503 Indic : constant Node_Id := Subtype_Indication (Def);
15504 Extension : constant Node_Id := Record_Extension_Part (Def);
15505 Parent_Node : Node_Id;
15506 Taggd : Boolean;
15508 -- Start of processing for Derived_Type_Declaration
15510 begin
15511 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15513 -- Ada 2005 (AI-251): In case of interface derivation check that the
15514 -- parent is also an interface.
15516 if Interface_Present (Def) then
15517 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15519 if not Is_Interface (Parent_Type) then
15520 Diagnose_Interface (Indic, Parent_Type);
15522 else
15523 Parent_Node := Parent (Base_Type (Parent_Type));
15524 Iface_Def := Type_Definition (Parent_Node);
15526 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15527 -- other limited interfaces.
15529 if Limited_Present (Def) then
15530 if Limited_Present (Iface_Def) then
15531 null;
15533 elsif Protected_Present (Iface_Def) then
15534 Error_Msg_NE
15535 ("descendant of& must be declared"
15536 & " as a protected interface",
15537 N, Parent_Type);
15539 elsif Synchronized_Present (Iface_Def) then
15540 Error_Msg_NE
15541 ("descendant of& must be declared"
15542 & " as a synchronized interface",
15543 N, Parent_Type);
15545 elsif Task_Present (Iface_Def) then
15546 Error_Msg_NE
15547 ("descendant of& must be declared as a task interface",
15548 N, Parent_Type);
15550 else
15551 Error_Msg_N
15552 ("(Ada 2005) limited interface cannot "
15553 & "inherit from non-limited interface", Indic);
15554 end if;
15556 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15557 -- from non-limited or limited interfaces.
15559 elsif not Protected_Present (Def)
15560 and then not Synchronized_Present (Def)
15561 and then not Task_Present (Def)
15562 then
15563 if Limited_Present (Iface_Def) then
15564 null;
15566 elsif Protected_Present (Iface_Def) then
15567 Error_Msg_NE
15568 ("descendant of& must be declared"
15569 & " as a protected interface",
15570 N, Parent_Type);
15572 elsif Synchronized_Present (Iface_Def) then
15573 Error_Msg_NE
15574 ("descendant of& must be declared"
15575 & " as a synchronized interface",
15576 N, Parent_Type);
15578 elsif Task_Present (Iface_Def) then
15579 Error_Msg_NE
15580 ("descendant of& must be declared as a task interface",
15581 N, Parent_Type);
15582 else
15583 null;
15584 end if;
15585 end if;
15586 end if;
15587 end if;
15589 if Is_Tagged_Type (Parent_Type)
15590 and then Is_Concurrent_Type (Parent_Type)
15591 and then not Is_Interface (Parent_Type)
15592 then
15593 Error_Msg_N
15594 ("parent type of a record extension cannot be "
15595 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15596 Set_Etype (T, Any_Type);
15597 return;
15598 end if;
15600 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15601 -- interfaces
15603 if Is_Tagged_Type (Parent_Type)
15604 and then Is_Non_Empty_List (Interface_List (Def))
15605 then
15606 declare
15607 Intf : Node_Id;
15608 T : Entity_Id;
15610 begin
15611 Intf := First (Interface_List (Def));
15612 while Present (Intf) loop
15613 T := Find_Type_Of_Subtype_Indic (Intf);
15615 if not Is_Interface (T) then
15616 Diagnose_Interface (Intf, T);
15618 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15619 -- a limited type from having a nonlimited progenitor.
15621 elsif (Limited_Present (Def)
15622 or else (not Is_Interface (Parent_Type)
15623 and then Is_Limited_Type (Parent_Type)))
15624 and then not Is_Limited_Interface (T)
15625 then
15626 Error_Msg_NE
15627 ("progenitor interface& of limited type must be limited",
15628 N, T);
15629 end if;
15631 Next (Intf);
15632 end loop;
15633 end;
15634 end if;
15636 if Parent_Type = Any_Type
15637 or else Etype (Parent_Type) = Any_Type
15638 or else (Is_Class_Wide_Type (Parent_Type)
15639 and then Etype (Parent_Type) = T)
15640 then
15641 -- If Parent_Type is undefined or illegal, make new type into a
15642 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15643 -- errors. If this is a self-definition, emit error now.
15645 if T = Parent_Type or else T = Etype (Parent_Type) then
15646 Error_Msg_N ("type cannot be used in its own definition", Indic);
15647 end if;
15649 Set_Ekind (T, Ekind (Parent_Type));
15650 Set_Etype (T, Any_Type);
15651 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15653 if Is_Tagged_Type (T)
15654 and then Is_Record_Type (T)
15655 then
15656 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15657 end if;
15659 return;
15660 end if;
15662 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15663 -- an interface is special because the list of interfaces in the full
15664 -- view can be given in any order. For example:
15666 -- type A is interface;
15667 -- type B is interface and A;
15668 -- type D is new B with private;
15669 -- private
15670 -- type D is new A and B with null record; -- 1 --
15672 -- In this case we perform the following transformation of -1-:
15674 -- type D is new B and A with null record;
15676 -- If the parent of the full-view covers the parent of the partial-view
15677 -- we have two possible cases:
15679 -- 1) They have the same parent
15680 -- 2) The parent of the full-view implements some further interfaces
15682 -- In both cases we do not need to perform the transformation. In the
15683 -- first case the source program is correct and the transformation is
15684 -- not needed; in the second case the source program does not fulfill
15685 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15686 -- later.
15688 -- This transformation not only simplifies the rest of the analysis of
15689 -- this type declaration but also simplifies the correct generation of
15690 -- the object layout to the expander.
15692 if In_Private_Part (Current_Scope)
15693 and then Is_Interface (Parent_Type)
15694 then
15695 declare
15696 Iface : Node_Id;
15697 Partial_View : Entity_Id;
15698 Partial_View_Parent : Entity_Id;
15699 New_Iface : Node_Id;
15701 begin
15702 -- Look for the associated private type declaration
15704 Partial_View := First_Entity (Current_Scope);
15705 loop
15706 exit when No (Partial_View)
15707 or else (Has_Private_Declaration (Partial_View)
15708 and then Full_View (Partial_View) = T);
15710 Next_Entity (Partial_View);
15711 end loop;
15713 -- If the partial view was not found then the source code has
15714 -- errors and the transformation is not needed.
15716 if Present (Partial_View) then
15717 Partial_View_Parent := Etype (Partial_View);
15719 -- If the parent of the full-view covers the parent of the
15720 -- partial-view we have nothing else to do.
15722 if Interface_Present_In_Ancestor
15723 (Parent_Type, Partial_View_Parent)
15724 then
15725 null;
15727 -- Traverse the list of interfaces of the full-view to look
15728 -- for the parent of the partial-view and perform the tree
15729 -- transformation.
15731 else
15732 Iface := First (Interface_List (Def));
15733 while Present (Iface) loop
15734 if Etype (Iface) = Etype (Partial_View) then
15735 Rewrite (Subtype_Indication (Def),
15736 New_Copy (Subtype_Indication
15737 (Parent (Partial_View))));
15739 New_Iface :=
15740 Make_Identifier (Sloc (N), Chars (Parent_Type));
15741 Append (New_Iface, Interface_List (Def));
15743 -- Analyze the transformed code
15745 Derived_Type_Declaration (T, N, Is_Completion);
15746 return;
15747 end if;
15749 Next (Iface);
15750 end loop;
15751 end if;
15752 end if;
15753 end;
15754 end if;
15756 -- Only composite types other than array types are allowed to have
15757 -- discriminants.
15759 if Present (Discriminant_Specifications (N)) then
15760 if (Is_Elementary_Type (Parent_Type)
15761 or else
15762 Is_Array_Type (Parent_Type))
15763 and then not Error_Posted (N)
15764 then
15765 Error_Msg_N
15766 ("elementary or array type cannot have discriminants",
15767 Defining_Identifier (First (Discriminant_Specifications (N))));
15768 Set_Has_Discriminants (T, False);
15770 -- The type is allowed to have discriminants
15772 else
15773 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15774 end if;
15775 end if;
15777 -- In Ada 83, a derived type defined in a package specification cannot
15778 -- be used for further derivation until the end of its visible part.
15779 -- Note that derivation in the private part of the package is allowed.
15781 if Ada_Version = Ada_83
15782 and then Is_Derived_Type (Parent_Type)
15783 and then In_Visible_Part (Scope (Parent_Type))
15784 then
15785 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15786 Error_Msg_N
15787 ("(Ada 83): premature use of type for derivation", Indic);
15788 end if;
15789 end if;
15791 -- Check for early use of incomplete or private type
15793 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15794 Error_Msg_N ("premature derivation of incomplete type", Indic);
15795 return;
15797 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15798 and then not Comes_From_Generic (Parent_Type))
15799 or else Has_Private_Component (Parent_Type)
15800 then
15801 -- The ancestor type of a formal type can be incomplete, in which
15802 -- case only the operations of the partial view are available in the
15803 -- generic. Subsequent checks may be required when the full view is
15804 -- analyzed to verify that a derivation from a tagged type has an
15805 -- extension.
15807 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15808 null;
15810 elsif No (Underlying_Type (Parent_Type))
15811 or else Has_Private_Component (Parent_Type)
15812 then
15813 Error_Msg_N
15814 ("premature derivation of derived or private type", Indic);
15816 -- Flag the type itself as being in error, this prevents some
15817 -- nasty problems with subsequent uses of the malformed type.
15819 Set_Error_Posted (T);
15821 -- Check that within the immediate scope of an untagged partial
15822 -- view it's illegal to derive from the partial view if the
15823 -- full view is tagged. (7.3(7))
15825 -- We verify that the Parent_Type is a partial view by checking
15826 -- that it is not a Full_Type_Declaration (i.e. a private type or
15827 -- private extension declaration), to distinguish a partial view
15828 -- from a derivation from a private type which also appears as
15829 -- E_Private_Type. If the parent base type is not declared in an
15830 -- enclosing scope there is no need to check.
15832 elsif Present (Full_View (Parent_Type))
15833 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15834 and then not Is_Tagged_Type (Parent_Type)
15835 and then Is_Tagged_Type (Full_View (Parent_Type))
15836 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15837 then
15838 Error_Msg_N
15839 ("premature derivation from type with tagged full view",
15840 Indic);
15841 end if;
15842 end if;
15844 -- Check that form of derivation is appropriate
15846 Taggd := Is_Tagged_Type (Parent_Type);
15848 -- Perhaps the parent type should be changed to the class-wide type's
15849 -- specific type in this case to prevent cascading errors ???
15851 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15852 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15853 return;
15854 end if;
15856 if Present (Extension) and then not Taggd then
15857 Error_Msg_N
15858 ("type derived from untagged type cannot have extension", Indic);
15860 elsif No (Extension) and then Taggd then
15862 -- If this declaration is within a private part (or body) of a
15863 -- generic instantiation then the derivation is allowed (the parent
15864 -- type can only appear tagged in this case if it's a generic actual
15865 -- type, since it would otherwise have been rejected in the analysis
15866 -- of the generic template).
15868 if not Is_Generic_Actual_Type (Parent_Type)
15869 or else In_Visible_Part (Scope (Parent_Type))
15870 then
15871 if Is_Class_Wide_Type (Parent_Type) then
15872 Error_Msg_N
15873 ("parent type must not be a class-wide type", Indic);
15875 -- Use specific type to prevent cascaded errors.
15877 Parent_Type := Etype (Parent_Type);
15879 else
15880 Error_Msg_N
15881 ("type derived from tagged type must have extension", Indic);
15882 end if;
15883 end if;
15884 end if;
15886 -- AI-443: Synchronized formal derived types require a private
15887 -- extension. There is no point in checking the ancestor type or
15888 -- the progenitors since the construct is wrong to begin with.
15890 if Ada_Version >= Ada_2005
15891 and then Is_Generic_Type (T)
15892 and then Present (Original_Node (N))
15893 then
15894 declare
15895 Decl : constant Node_Id := Original_Node (N);
15897 begin
15898 if Nkind (Decl) = N_Formal_Type_Declaration
15899 and then Nkind (Formal_Type_Definition (Decl)) =
15900 N_Formal_Derived_Type_Definition
15901 and then Synchronized_Present (Formal_Type_Definition (Decl))
15902 and then No (Extension)
15904 -- Avoid emitting a duplicate error message
15906 and then not Error_Posted (Indic)
15907 then
15908 Error_Msg_N
15909 ("synchronized derived type must have extension", N);
15910 end if;
15911 end;
15912 end if;
15914 if Null_Exclusion_Present (Def)
15915 and then not Is_Access_Type (Parent_Type)
15916 then
15917 Error_Msg_N ("null exclusion can only apply to an access type", N);
15918 end if;
15920 -- Avoid deriving parent primitives of underlying record views
15922 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15923 Derive_Subps => not Is_Underlying_Record_View (T));
15925 -- AI-419: The parent type of an explicitly limited derived type must
15926 -- be a limited type or a limited interface.
15928 if Limited_Present (Def) then
15929 Set_Is_Limited_Record (T);
15931 if Is_Interface (T) then
15932 Set_Is_Limited_Interface (T);
15933 end if;
15935 if not Is_Limited_Type (Parent_Type)
15936 and then
15937 (not Is_Interface (Parent_Type)
15938 or else not Is_Limited_Interface (Parent_Type))
15939 then
15940 -- AI05-0096: a derivation in the private part of an instance is
15941 -- legal if the generic formal is untagged limited, and the actual
15942 -- is non-limited.
15944 if Is_Generic_Actual_Type (Parent_Type)
15945 and then In_Private_Part (Current_Scope)
15946 and then
15947 not Is_Tagged_Type
15948 (Generic_Parent_Type (Parent (Parent_Type)))
15949 then
15950 null;
15952 else
15953 Error_Msg_NE
15954 ("parent type& of limited type must be limited",
15955 N, Parent_Type);
15956 end if;
15957 end if;
15958 end if;
15960 -- In SPARK, there are no derived type definitions other than type
15961 -- extensions of tagged record types.
15963 if No (Extension) then
15964 Check_SPARK_05_Restriction
15965 ("derived type is not allowed", Original_Node (N));
15966 end if;
15967 end Derived_Type_Declaration;
15969 ------------------------
15970 -- Diagnose_Interface --
15971 ------------------------
15973 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15974 begin
15975 if not Is_Interface (E)
15976 and then E /= Any_Type
15977 then
15978 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15979 end if;
15980 end Diagnose_Interface;
15982 ----------------------------------
15983 -- Enumeration_Type_Declaration --
15984 ----------------------------------
15986 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15987 Ev : Uint;
15988 L : Node_Id;
15989 R_Node : Node_Id;
15990 B_Node : Node_Id;
15992 begin
15993 -- Create identifier node representing lower bound
15995 B_Node := New_Node (N_Identifier, Sloc (Def));
15996 L := First (Literals (Def));
15997 Set_Chars (B_Node, Chars (L));
15998 Set_Entity (B_Node, L);
15999 Set_Etype (B_Node, T);
16000 Set_Is_Static_Expression (B_Node, True);
16002 R_Node := New_Node (N_Range, Sloc (Def));
16003 Set_Low_Bound (R_Node, B_Node);
16005 Set_Ekind (T, E_Enumeration_Type);
16006 Set_First_Literal (T, L);
16007 Set_Etype (T, T);
16008 Set_Is_Constrained (T);
16010 Ev := Uint_0;
16012 -- Loop through literals of enumeration type setting pos and rep values
16013 -- except that if the Ekind is already set, then it means the literal
16014 -- was already constructed (case of a derived type declaration and we
16015 -- should not disturb the Pos and Rep values.
16017 while Present (L) loop
16018 if Ekind (L) /= E_Enumeration_Literal then
16019 Set_Ekind (L, E_Enumeration_Literal);
16020 Set_Enumeration_Pos (L, Ev);
16021 Set_Enumeration_Rep (L, Ev);
16022 Set_Is_Known_Valid (L, True);
16023 end if;
16025 Set_Etype (L, T);
16026 New_Overloaded_Entity (L);
16027 Generate_Definition (L);
16028 Set_Convention (L, Convention_Intrinsic);
16030 -- Case of character literal
16032 if Nkind (L) = N_Defining_Character_Literal then
16033 Set_Is_Character_Type (T, True);
16035 -- Check violation of No_Wide_Characters
16037 if Restriction_Check_Required (No_Wide_Characters) then
16038 Get_Name_String (Chars (L));
16040 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16041 Check_Restriction (No_Wide_Characters, L);
16042 end if;
16043 end if;
16044 end if;
16046 Ev := Ev + 1;
16047 Next (L);
16048 end loop;
16050 -- Now create a node representing upper bound
16052 B_Node := New_Node (N_Identifier, Sloc (Def));
16053 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16054 Set_Entity (B_Node, Last (Literals (Def)));
16055 Set_Etype (B_Node, T);
16056 Set_Is_Static_Expression (B_Node, True);
16058 Set_High_Bound (R_Node, B_Node);
16060 -- Initialize various fields of the type. Some of this information
16061 -- may be overwritten later through rep.clauses.
16063 Set_Scalar_Range (T, R_Node);
16064 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16065 Set_Enum_Esize (T);
16066 Set_Enum_Pos_To_Rep (T, Empty);
16068 -- Set Discard_Names if configuration pragma set, or if there is
16069 -- a parameterless pragma in the current declarative region
16071 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16072 Set_Discard_Names (T);
16073 end if;
16075 -- Process end label if there is one
16077 if Present (Def) then
16078 Process_End_Label (Def, 'e', T);
16079 end if;
16080 end Enumeration_Type_Declaration;
16082 ---------------------------------
16083 -- Expand_To_Stored_Constraint --
16084 ---------------------------------
16086 function Expand_To_Stored_Constraint
16087 (Typ : Entity_Id;
16088 Constraint : Elist_Id) return Elist_Id
16090 Explicitly_Discriminated_Type : Entity_Id;
16091 Expansion : Elist_Id;
16092 Discriminant : Entity_Id;
16094 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16095 -- Find the nearest type that actually specifies discriminants
16097 ---------------------------------
16098 -- Type_With_Explicit_Discrims --
16099 ---------------------------------
16101 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16102 Typ : constant E := Base_Type (Id);
16104 begin
16105 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16106 if Present (Full_View (Typ)) then
16107 return Type_With_Explicit_Discrims (Full_View (Typ));
16108 end if;
16110 else
16111 if Has_Discriminants (Typ) then
16112 return Typ;
16113 end if;
16114 end if;
16116 if Etype (Typ) = Typ then
16117 return Empty;
16118 elsif Has_Discriminants (Typ) then
16119 return Typ;
16120 else
16121 return Type_With_Explicit_Discrims (Etype (Typ));
16122 end if;
16124 end Type_With_Explicit_Discrims;
16126 -- Start of processing for Expand_To_Stored_Constraint
16128 begin
16129 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16130 return No_Elist;
16131 end if;
16133 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16135 if No (Explicitly_Discriminated_Type) then
16136 return No_Elist;
16137 end if;
16139 Expansion := New_Elmt_List;
16141 Discriminant :=
16142 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16143 while Present (Discriminant) loop
16144 Append_Elmt
16145 (Get_Discriminant_Value
16146 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16147 To => Expansion);
16148 Next_Stored_Discriminant (Discriminant);
16149 end loop;
16151 return Expansion;
16152 end Expand_To_Stored_Constraint;
16154 ---------------------------
16155 -- Find_Hidden_Interface --
16156 ---------------------------
16158 function Find_Hidden_Interface
16159 (Src : Elist_Id;
16160 Dest : Elist_Id) return Entity_Id
16162 Iface : Entity_Id;
16163 Iface_Elmt : Elmt_Id;
16165 begin
16166 if Present (Src) and then Present (Dest) then
16167 Iface_Elmt := First_Elmt (Src);
16168 while Present (Iface_Elmt) loop
16169 Iface := Node (Iface_Elmt);
16171 if Is_Interface (Iface)
16172 and then not Contain_Interface (Iface, Dest)
16173 then
16174 return Iface;
16175 end if;
16177 Next_Elmt (Iface_Elmt);
16178 end loop;
16179 end if;
16181 return Empty;
16182 end Find_Hidden_Interface;
16184 --------------------
16185 -- Find_Type_Name --
16186 --------------------
16188 function Find_Type_Name (N : Node_Id) return Entity_Id is
16189 Id : constant Entity_Id := Defining_Identifier (N);
16190 Prev : Entity_Id;
16191 New_Id : Entity_Id;
16192 Prev_Par : Node_Id;
16194 procedure Check_Duplicate_Aspects;
16195 -- Check that aspects specified in a completion have not been specified
16196 -- already in the partial view. Type_Invariant and others can be
16197 -- specified on either view but never on both.
16199 procedure Tag_Mismatch;
16200 -- Diagnose a tagged partial view whose full view is untagged.
16201 -- We post the message on the full view, with a reference to
16202 -- the previous partial view. The partial view can be private
16203 -- or incomplete, and these are handled in a different manner,
16204 -- so we determine the position of the error message from the
16205 -- respective slocs of both.
16207 -----------------------------
16208 -- Check_Duplicate_Aspects --
16209 -----------------------------
16210 procedure Check_Duplicate_Aspects is
16211 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16212 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16213 F_Spec, P_Spec : Node_Id;
16215 begin
16216 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16217 F_Spec := First (Full_Aspects);
16218 while Present (F_Spec) loop
16219 P_Spec := First (Prev_Aspects);
16220 while Present (P_Spec) loop
16222 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16223 then
16224 Error_Msg_N
16225 ("aspect already specified in private declaration",
16226 F_Spec);
16227 Remove (F_Spec);
16228 return;
16229 end if;
16231 Next (P_Spec);
16232 end loop;
16234 Next (F_Spec);
16235 end loop;
16236 end if;
16237 end Check_Duplicate_Aspects;
16239 ------------------
16240 -- Tag_Mismatch --
16241 ------------------
16243 procedure Tag_Mismatch is
16244 begin
16245 if Sloc (Prev) < Sloc (Id) then
16246 if Ada_Version >= Ada_2012
16247 and then Nkind (N) = N_Private_Type_Declaration
16248 then
16249 Error_Msg_NE
16250 ("declaration of private } must be a tagged type ", Id, Prev);
16251 else
16252 Error_Msg_NE
16253 ("full declaration of } must be a tagged type ", Id, Prev);
16254 end if;
16256 else
16257 if Ada_Version >= Ada_2012
16258 and then Nkind (N) = N_Private_Type_Declaration
16259 then
16260 Error_Msg_NE
16261 ("declaration of private } must be a tagged type ", Prev, Id);
16262 else
16263 Error_Msg_NE
16264 ("full declaration of } must be a tagged type ", Prev, Id);
16265 end if;
16266 end if;
16267 end Tag_Mismatch;
16269 -- Start of processing for Find_Type_Name
16271 begin
16272 -- Find incomplete declaration, if one was given
16274 Prev := Current_Entity_In_Scope (Id);
16276 -- New type declaration
16278 if No (Prev) then
16279 Enter_Name (Id);
16280 return Id;
16282 -- Previous declaration exists
16284 else
16285 Prev_Par := Parent (Prev);
16287 -- Error if not incomplete/private case except if previous
16288 -- declaration is implicit, etc. Enter_Name will emit error if
16289 -- appropriate.
16291 if not Is_Incomplete_Or_Private_Type (Prev) then
16292 Enter_Name (Id);
16293 New_Id := Id;
16295 -- Check invalid completion of private or incomplete type
16297 elsif not Nkind_In (N, N_Full_Type_Declaration,
16298 N_Task_Type_Declaration,
16299 N_Protected_Type_Declaration)
16300 and then
16301 (Ada_Version < Ada_2012
16302 or else not Is_Incomplete_Type (Prev)
16303 or else not Nkind_In (N, N_Private_Type_Declaration,
16304 N_Private_Extension_Declaration))
16305 then
16306 -- Completion must be a full type declarations (RM 7.3(4))
16308 Error_Msg_Sloc := Sloc (Prev);
16309 Error_Msg_NE ("invalid completion of }", Id, Prev);
16311 -- Set scope of Id to avoid cascaded errors. Entity is never
16312 -- examined again, except when saving globals in generics.
16314 Set_Scope (Id, Current_Scope);
16315 New_Id := Id;
16317 -- If this is a repeated incomplete declaration, no further
16318 -- checks are possible.
16320 if Nkind (N) = N_Incomplete_Type_Declaration then
16321 return Prev;
16322 end if;
16324 -- Case of full declaration of incomplete type
16326 elsif Ekind (Prev) = E_Incomplete_Type
16327 and then (Ada_Version < Ada_2012
16328 or else No (Full_View (Prev))
16329 or else not Is_Private_Type (Full_View (Prev)))
16330 then
16331 -- Indicate that the incomplete declaration has a matching full
16332 -- declaration. The defining occurrence of the incomplete
16333 -- declaration remains the visible one, and the procedure
16334 -- Get_Full_View dereferences it whenever the type is used.
16336 if Present (Full_View (Prev)) then
16337 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16338 end if;
16340 Set_Full_View (Prev, Id);
16341 Append_Entity (Id, Current_Scope);
16342 Set_Is_Public (Id, Is_Public (Prev));
16343 Set_Is_Internal (Id);
16344 New_Id := Prev;
16346 -- If the incomplete view is tagged, a class_wide type has been
16347 -- created already. Use it for the private type as well, in order
16348 -- to prevent multiple incompatible class-wide types that may be
16349 -- created for self-referential anonymous access components.
16351 if Is_Tagged_Type (Prev)
16352 and then Present (Class_Wide_Type (Prev))
16353 then
16354 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16355 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16357 -- If the incomplete type is completed by a private declaration
16358 -- the class-wide type remains associated with the incomplete
16359 -- type, to prevent order-of-elaboration issues in gigi, else
16360 -- we associate the class-wide type with the known full view.
16362 if Nkind (N) /= N_Private_Type_Declaration then
16363 Set_Etype (Class_Wide_Type (Id), Id);
16364 end if;
16365 end if;
16367 -- Case of full declaration of private type
16369 else
16370 -- If the private type was a completion of an incomplete type then
16371 -- update Prev to reference the private type
16373 if Ada_Version >= Ada_2012
16374 and then Ekind (Prev) = E_Incomplete_Type
16375 and then Present (Full_View (Prev))
16376 and then Is_Private_Type (Full_View (Prev))
16377 then
16378 Prev := Full_View (Prev);
16379 Prev_Par := Parent (Prev);
16380 end if;
16382 if Nkind (N) = N_Full_Type_Declaration
16383 and then Nkind_In
16384 (Type_Definition (N), N_Record_Definition,
16385 N_Derived_Type_Definition)
16386 and then Interface_Present (Type_Definition (N))
16387 then
16388 Error_Msg_N
16389 ("completion of private type cannot be an interface", N);
16390 end if;
16392 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16393 if Etype (Prev) /= Prev then
16395 -- Prev is a private subtype or a derived type, and needs
16396 -- no completion.
16398 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16399 New_Id := Id;
16401 elsif Ekind (Prev) = E_Private_Type
16402 and then Nkind_In (N, N_Task_Type_Declaration,
16403 N_Protected_Type_Declaration)
16404 then
16405 Error_Msg_N
16406 ("completion of nonlimited type cannot be limited", N);
16408 elsif Ekind (Prev) = E_Record_Type_With_Private
16409 and then Nkind_In (N, N_Task_Type_Declaration,
16410 N_Protected_Type_Declaration)
16411 then
16412 if not Is_Limited_Record (Prev) then
16413 Error_Msg_N
16414 ("completion of nonlimited type cannot be limited", N);
16416 elsif No (Interface_List (N)) then
16417 Error_Msg_N
16418 ("completion of tagged private type must be tagged",
16420 end if;
16421 end if;
16423 -- Ada 2005 (AI-251): Private extension declaration of a task
16424 -- type or a protected type. This case arises when covering
16425 -- interface types.
16427 elsif Nkind_In (N, N_Task_Type_Declaration,
16428 N_Protected_Type_Declaration)
16429 then
16430 null;
16432 elsif Nkind (N) /= N_Full_Type_Declaration
16433 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16434 then
16435 Error_Msg_N
16436 ("full view of private extension must be an extension", N);
16438 elsif not (Abstract_Present (Parent (Prev)))
16439 and then Abstract_Present (Type_Definition (N))
16440 then
16441 Error_Msg_N
16442 ("full view of non-abstract extension cannot be abstract", N);
16443 end if;
16445 if not In_Private_Part (Current_Scope) then
16446 Error_Msg_N
16447 ("declaration of full view must appear in private part", N);
16448 end if;
16450 if Ada_Version >= Ada_2012 then
16451 Check_Duplicate_Aspects;
16452 end if;
16454 Copy_And_Swap (Prev, Id);
16455 Set_Has_Private_Declaration (Prev);
16456 Set_Has_Private_Declaration (Id);
16458 -- Preserve aspect and iterator flags that may have been set on
16459 -- the partial view.
16461 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16462 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16464 -- If no error, propagate freeze_node from private to full view.
16465 -- It may have been generated for an early operational item.
16467 if Present (Freeze_Node (Id))
16468 and then Serious_Errors_Detected = 0
16469 and then No (Full_View (Id))
16470 then
16471 Set_Freeze_Node (Prev, Freeze_Node (Id));
16472 Set_Freeze_Node (Id, Empty);
16473 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16474 end if;
16476 Set_Full_View (Id, Prev);
16477 New_Id := Prev;
16478 end if;
16480 -- Verify that full declaration conforms to partial one
16482 if Is_Incomplete_Or_Private_Type (Prev)
16483 and then Present (Discriminant_Specifications (Prev_Par))
16484 then
16485 if Present (Discriminant_Specifications (N)) then
16486 if Ekind (Prev) = E_Incomplete_Type then
16487 Check_Discriminant_Conformance (N, Prev, Prev);
16488 else
16489 Check_Discriminant_Conformance (N, Prev, Id);
16490 end if;
16492 else
16493 Error_Msg_N
16494 ("missing discriminants in full type declaration", N);
16496 -- To avoid cascaded errors on subsequent use, share the
16497 -- discriminants of the partial view.
16499 Set_Discriminant_Specifications (N,
16500 Discriminant_Specifications (Prev_Par));
16501 end if;
16502 end if;
16504 -- A prior untagged partial view can have an associated class-wide
16505 -- type due to use of the class attribute, and in this case the full
16506 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16507 -- of incomplete tagged declarations, but we check for it.
16509 if Is_Type (Prev)
16510 and then (Is_Tagged_Type (Prev)
16511 or else Present (Class_Wide_Type (Prev)))
16512 then
16513 -- Ada 2012 (AI05-0162): A private type may be the completion of
16514 -- an incomplete type.
16516 if Ada_Version >= Ada_2012
16517 and then Is_Incomplete_Type (Prev)
16518 and then Nkind_In (N, N_Private_Type_Declaration,
16519 N_Private_Extension_Declaration)
16520 then
16521 -- No need to check private extensions since they are tagged
16523 if Nkind (N) = N_Private_Type_Declaration
16524 and then not Tagged_Present (N)
16525 then
16526 Tag_Mismatch;
16527 end if;
16529 -- The full declaration is either a tagged type (including
16530 -- a synchronized type that implements interfaces) or a
16531 -- type extension, otherwise this is an error.
16533 elsif Nkind_In (N, N_Task_Type_Declaration,
16534 N_Protected_Type_Declaration)
16535 then
16536 if No (Interface_List (N))
16537 and then not Error_Posted (N)
16538 then
16539 Tag_Mismatch;
16540 end if;
16542 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16544 -- Indicate that the previous declaration (tagged incomplete
16545 -- or private declaration) requires the same on the full one.
16547 if not Tagged_Present (Type_Definition (N)) then
16548 Tag_Mismatch;
16549 Set_Is_Tagged_Type (Id);
16550 end if;
16552 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16553 if No (Record_Extension_Part (Type_Definition (N))) then
16554 Error_Msg_NE
16555 ("full declaration of } must be a record extension",
16556 Prev, Id);
16558 -- Set some attributes to produce a usable full view
16560 Set_Is_Tagged_Type (Id);
16561 end if;
16563 else
16564 Tag_Mismatch;
16565 end if;
16566 end if;
16568 if Present (Prev)
16569 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16570 and then Present (Premature_Use (Parent (Prev)))
16571 then
16572 Error_Msg_Sloc := Sloc (N);
16573 Error_Msg_N
16574 ("\full declaration #", Premature_Use (Parent (Prev)));
16575 end if;
16577 return New_Id;
16578 end if;
16579 end Find_Type_Name;
16581 -------------------------
16582 -- Find_Type_Of_Object --
16583 -------------------------
16585 function Find_Type_Of_Object
16586 (Obj_Def : Node_Id;
16587 Related_Nod : Node_Id) return Entity_Id
16589 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16590 P : Node_Id := Parent (Obj_Def);
16591 T : Entity_Id;
16592 Nam : Name_Id;
16594 begin
16595 -- If the parent is a component_definition node we climb to the
16596 -- component_declaration node
16598 if Nkind (P) = N_Component_Definition then
16599 P := Parent (P);
16600 end if;
16602 -- Case of an anonymous array subtype
16604 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16605 N_Unconstrained_Array_Definition)
16606 then
16607 T := Empty;
16608 Array_Type_Declaration (T, Obj_Def);
16610 -- Create an explicit subtype whenever possible
16612 elsif Nkind (P) /= N_Component_Declaration
16613 and then Def_Kind = N_Subtype_Indication
16614 then
16615 -- Base name of subtype on object name, which will be unique in
16616 -- the current scope.
16618 -- If this is a duplicate declaration, return base type, to avoid
16619 -- generating duplicate anonymous types.
16621 if Error_Posted (P) then
16622 Analyze (Subtype_Mark (Obj_Def));
16623 return Entity (Subtype_Mark (Obj_Def));
16624 end if;
16626 Nam :=
16627 New_External_Name
16628 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16630 T := Make_Defining_Identifier (Sloc (P), Nam);
16632 Insert_Action (Obj_Def,
16633 Make_Subtype_Declaration (Sloc (P),
16634 Defining_Identifier => T,
16635 Subtype_Indication => Relocate_Node (Obj_Def)));
16637 -- This subtype may need freezing, and this will not be done
16638 -- automatically if the object declaration is not in declarative
16639 -- part. Since this is an object declaration, the type cannot always
16640 -- be frozen here. Deferred constants do not freeze their type
16641 -- (which often enough will be private).
16643 if Nkind (P) = N_Object_Declaration
16644 and then Constant_Present (P)
16645 and then No (Expression (P))
16646 then
16647 null;
16649 -- Here we freeze the base type of object type to catch premature use
16650 -- of discriminated private type without a full view.
16652 else
16653 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16654 end if;
16656 -- Ada 2005 AI-406: the object definition in an object declaration
16657 -- can be an access definition.
16659 elsif Def_Kind = N_Access_Definition then
16660 T := Access_Definition (Related_Nod, Obj_Def);
16662 Set_Is_Local_Anonymous_Access
16664 V => (Ada_Version < Ada_2012)
16665 or else (Nkind (P) /= N_Object_Declaration)
16666 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16668 -- Otherwise, the object definition is just a subtype_mark
16670 else
16671 T := Process_Subtype (Obj_Def, Related_Nod);
16673 -- If expansion is disabled an object definition that is an aggregate
16674 -- will not get expanded and may lead to scoping problems in the back
16675 -- end, if the object is referenced in an inner scope. In that case
16676 -- create an itype reference for the object definition now. This
16677 -- may be redundant in some cases, but harmless.
16679 if Is_Itype (T)
16680 and then Nkind (Related_Nod) = N_Object_Declaration
16681 and then ASIS_Mode
16682 then
16683 Build_Itype_Reference (T, Related_Nod);
16684 end if;
16685 end if;
16687 return T;
16688 end Find_Type_Of_Object;
16690 --------------------------------
16691 -- Find_Type_Of_Subtype_Indic --
16692 --------------------------------
16694 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16695 Typ : Entity_Id;
16697 begin
16698 -- Case of subtype mark with a constraint
16700 if Nkind (S) = N_Subtype_Indication then
16701 Find_Type (Subtype_Mark (S));
16702 Typ := Entity (Subtype_Mark (S));
16704 if not
16705 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16706 then
16707 Error_Msg_N
16708 ("incorrect constraint for this kind of type", Constraint (S));
16709 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16710 end if;
16712 -- Otherwise we have a subtype mark without a constraint
16714 elsif Error_Posted (S) then
16715 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16716 return Any_Type;
16718 else
16719 Find_Type (S);
16720 Typ := Entity (S);
16721 end if;
16723 -- Check No_Wide_Characters restriction
16725 Check_Wide_Character_Restriction (Typ, S);
16727 return Typ;
16728 end Find_Type_Of_Subtype_Indic;
16730 -------------------------------------
16731 -- Floating_Point_Type_Declaration --
16732 -------------------------------------
16734 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16735 Digs : constant Node_Id := Digits_Expression (Def);
16736 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16737 Digs_Val : Uint;
16738 Base_Typ : Entity_Id;
16739 Implicit_Base : Entity_Id;
16740 Bound : Node_Id;
16742 function Can_Derive_From (E : Entity_Id) return Boolean;
16743 -- Find if given digits value, and possibly a specified range, allows
16744 -- derivation from specified type
16746 function Find_Base_Type return Entity_Id;
16747 -- Find a predefined base type that Def can derive from, or generate
16748 -- an error and substitute Long_Long_Float if none exists.
16750 ---------------------
16751 -- Can_Derive_From --
16752 ---------------------
16754 function Can_Derive_From (E : Entity_Id) return Boolean is
16755 Spec : constant Entity_Id := Real_Range_Specification (Def);
16757 begin
16758 -- Check specified "digits" constraint
16760 if Digs_Val > Digits_Value (E) then
16761 return False;
16762 end if;
16764 -- Check for matching range, if specified
16766 if Present (Spec) then
16767 if Expr_Value_R (Type_Low_Bound (E)) >
16768 Expr_Value_R (Low_Bound (Spec))
16769 then
16770 return False;
16771 end if;
16773 if Expr_Value_R (Type_High_Bound (E)) <
16774 Expr_Value_R (High_Bound (Spec))
16775 then
16776 return False;
16777 end if;
16778 end if;
16780 return True;
16781 end Can_Derive_From;
16783 --------------------
16784 -- Find_Base_Type --
16785 --------------------
16787 function Find_Base_Type return Entity_Id is
16788 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16790 begin
16791 -- Iterate over the predefined types in order, returning the first
16792 -- one that Def can derive from.
16794 while Present (Choice) loop
16795 if Can_Derive_From (Node (Choice)) then
16796 return Node (Choice);
16797 end if;
16799 Next_Elmt (Choice);
16800 end loop;
16802 -- If we can't derive from any existing type, use Long_Long_Float
16803 -- and give appropriate message explaining the problem.
16805 if Digs_Val > Max_Digs_Val then
16806 -- It might be the case that there is a type with the requested
16807 -- range, just not the combination of digits and range.
16809 Error_Msg_N
16810 ("no predefined type has requested range and precision",
16811 Real_Range_Specification (Def));
16813 else
16814 Error_Msg_N
16815 ("range too large for any predefined type",
16816 Real_Range_Specification (Def));
16817 end if;
16819 return Standard_Long_Long_Float;
16820 end Find_Base_Type;
16822 -- Start of processing for Floating_Point_Type_Declaration
16824 begin
16825 Check_Restriction (No_Floating_Point, Def);
16827 -- Create an implicit base type
16829 Implicit_Base :=
16830 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16832 -- Analyze and verify digits value
16834 Analyze_And_Resolve (Digs, Any_Integer);
16835 Check_Digits_Expression (Digs);
16836 Digs_Val := Expr_Value (Digs);
16838 -- Process possible range spec and find correct type to derive from
16840 Process_Real_Range_Specification (Def);
16842 -- Check that requested number of digits is not too high.
16844 if Digs_Val > Max_Digs_Val then
16845 -- The check for Max_Base_Digits may be somewhat expensive, as it
16846 -- requires reading System, so only do it when necessary.
16848 declare
16849 Max_Base_Digits : constant Uint :=
16850 Expr_Value
16851 (Expression
16852 (Parent (RTE (RE_Max_Base_Digits))));
16854 begin
16855 if Digs_Val > Max_Base_Digits then
16856 Error_Msg_Uint_1 := Max_Base_Digits;
16857 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16859 elsif No (Real_Range_Specification (Def)) then
16860 Error_Msg_Uint_1 := Max_Digs_Val;
16861 Error_Msg_N ("types with more than ^ digits need range spec "
16862 & "(RM 3.5.7(6))", Digs);
16863 end if;
16864 end;
16865 end if;
16867 -- Find a suitable type to derive from or complain and use a substitute
16869 Base_Typ := Find_Base_Type;
16871 -- If there are bounds given in the declaration use them as the bounds
16872 -- of the type, otherwise use the bounds of the predefined base type
16873 -- that was chosen based on the Digits value.
16875 if Present (Real_Range_Specification (Def)) then
16876 Set_Scalar_Range (T, Real_Range_Specification (Def));
16877 Set_Is_Constrained (T);
16879 -- The bounds of this range must be converted to machine numbers
16880 -- in accordance with RM 4.9(38).
16882 Bound := Type_Low_Bound (T);
16884 if Nkind (Bound) = N_Real_Literal then
16885 Set_Realval
16886 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16887 Set_Is_Machine_Number (Bound);
16888 end if;
16890 Bound := Type_High_Bound (T);
16892 if Nkind (Bound) = N_Real_Literal then
16893 Set_Realval
16894 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16895 Set_Is_Machine_Number (Bound);
16896 end if;
16898 else
16899 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16900 end if;
16902 -- Complete definition of implicit base and declared first subtype. The
16903 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16904 -- are not clobbered when the floating point type acts as a full view of
16905 -- a private type.
16907 Set_Etype (Implicit_Base, Base_Typ);
16908 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16909 Set_Size_Info (Implicit_Base, Base_Typ);
16910 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16911 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16912 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16913 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16915 Set_Ekind (T, E_Floating_Point_Subtype);
16916 Set_Etype (T, Implicit_Base);
16917 Set_Size_Info (T, Implicit_Base);
16918 Set_RM_Size (T, RM_Size (Implicit_Base));
16919 Inherit_Rep_Item_Chain (T, Implicit_Base);
16920 Set_Digits_Value (T, Digs_Val);
16921 end Floating_Point_Type_Declaration;
16923 ----------------------------
16924 -- Get_Discriminant_Value --
16925 ----------------------------
16927 -- This is the situation:
16929 -- There is a non-derived type
16931 -- type T0 (Dx, Dy, Dz...)
16933 -- There are zero or more levels of derivation, with each derivation
16934 -- either purely inheriting the discriminants, or defining its own.
16936 -- type Ti is new Ti-1
16937 -- or
16938 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16939 -- or
16940 -- subtype Ti is ...
16942 -- The subtype issue is avoided by the use of Original_Record_Component,
16943 -- and the fact that derived subtypes also derive the constraints.
16945 -- This chain leads back from
16947 -- Typ_For_Constraint
16949 -- Typ_For_Constraint has discriminants, and the value for each
16950 -- discriminant is given by its corresponding Elmt of Constraints.
16952 -- Discriminant is some discriminant in this hierarchy
16954 -- We need to return its value
16956 -- We do this by recursively searching each level, and looking for
16957 -- Discriminant. Once we get to the bottom, we start backing up
16958 -- returning the value for it which may in turn be a discriminant
16959 -- further up, so on the backup we continue the substitution.
16961 function Get_Discriminant_Value
16962 (Discriminant : Entity_Id;
16963 Typ_For_Constraint : Entity_Id;
16964 Constraint : Elist_Id) return Node_Id
16966 function Root_Corresponding_Discriminant
16967 (Discr : Entity_Id) return Entity_Id;
16968 -- Given a discriminant, traverse the chain of inherited discriminants
16969 -- and return the topmost discriminant.
16971 function Search_Derivation_Levels
16972 (Ti : Entity_Id;
16973 Discrim_Values : Elist_Id;
16974 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16975 -- This is the routine that performs the recursive search of levels
16976 -- as described above.
16978 -------------------------------------
16979 -- Root_Corresponding_Discriminant --
16980 -------------------------------------
16982 function Root_Corresponding_Discriminant
16983 (Discr : Entity_Id) return Entity_Id
16985 D : Entity_Id;
16987 begin
16988 D := Discr;
16989 while Present (Corresponding_Discriminant (D)) loop
16990 D := Corresponding_Discriminant (D);
16991 end loop;
16993 return D;
16994 end Root_Corresponding_Discriminant;
16996 ------------------------------
16997 -- Search_Derivation_Levels --
16998 ------------------------------
17000 function Search_Derivation_Levels
17001 (Ti : Entity_Id;
17002 Discrim_Values : Elist_Id;
17003 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17005 Assoc : Elmt_Id;
17006 Disc : Entity_Id;
17007 Result : Node_Or_Entity_Id;
17008 Result_Entity : Node_Id;
17010 begin
17011 -- If inappropriate type, return Error, this happens only in
17012 -- cascaded error situations, and we want to avoid a blow up.
17014 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17015 return Error;
17016 end if;
17018 -- Look deeper if possible. Use Stored_Constraints only for
17019 -- untagged types. For tagged types use the given constraint.
17020 -- This asymmetry needs explanation???
17022 if not Stored_Discrim_Values
17023 and then Present (Stored_Constraint (Ti))
17024 and then not Is_Tagged_Type (Ti)
17025 then
17026 Result :=
17027 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17028 else
17029 declare
17030 Td : constant Entity_Id := Etype (Ti);
17032 begin
17033 if Td = Ti then
17034 Result := Discriminant;
17036 else
17037 if Present (Stored_Constraint (Ti)) then
17038 Result :=
17039 Search_Derivation_Levels
17040 (Td, Stored_Constraint (Ti), True);
17041 else
17042 Result :=
17043 Search_Derivation_Levels
17044 (Td, Discrim_Values, Stored_Discrim_Values);
17045 end if;
17046 end if;
17047 end;
17048 end if;
17050 -- Extra underlying places to search, if not found above. For
17051 -- concurrent types, the relevant discriminant appears in the
17052 -- corresponding record. For a type derived from a private type
17053 -- without discriminant, the full view inherits the discriminants
17054 -- of the full view of the parent.
17056 if Result = Discriminant then
17057 if Is_Concurrent_Type (Ti)
17058 and then Present (Corresponding_Record_Type (Ti))
17059 then
17060 Result :=
17061 Search_Derivation_Levels (
17062 Corresponding_Record_Type (Ti),
17063 Discrim_Values,
17064 Stored_Discrim_Values);
17066 elsif Is_Private_Type (Ti)
17067 and then not Has_Discriminants (Ti)
17068 and then Present (Full_View (Ti))
17069 and then Etype (Full_View (Ti)) /= Ti
17070 then
17071 Result :=
17072 Search_Derivation_Levels (
17073 Full_View (Ti),
17074 Discrim_Values,
17075 Stored_Discrim_Values);
17076 end if;
17077 end if;
17079 -- If Result is not a (reference to a) discriminant, return it,
17080 -- otherwise set Result_Entity to the discriminant.
17082 if Nkind (Result) = N_Defining_Identifier then
17083 pragma Assert (Result = Discriminant);
17084 Result_Entity := Result;
17086 else
17087 if not Denotes_Discriminant (Result) then
17088 return Result;
17089 end if;
17091 Result_Entity := Entity (Result);
17092 end if;
17094 -- See if this level of derivation actually has discriminants
17095 -- because tagged derivations can add them, hence the lower
17096 -- levels need not have any.
17098 if not Has_Discriminants (Ti) then
17099 return Result;
17100 end if;
17102 -- Scan Ti's discriminants for Result_Entity,
17103 -- and return its corresponding value, if any.
17105 Result_Entity := Original_Record_Component (Result_Entity);
17107 Assoc := First_Elmt (Discrim_Values);
17109 if Stored_Discrim_Values then
17110 Disc := First_Stored_Discriminant (Ti);
17111 else
17112 Disc := First_Discriminant (Ti);
17113 end if;
17115 while Present (Disc) loop
17116 pragma Assert (Present (Assoc));
17118 if Original_Record_Component (Disc) = Result_Entity then
17119 return Node (Assoc);
17120 end if;
17122 Next_Elmt (Assoc);
17124 if Stored_Discrim_Values then
17125 Next_Stored_Discriminant (Disc);
17126 else
17127 Next_Discriminant (Disc);
17128 end if;
17129 end loop;
17131 -- Could not find it
17133 return Result;
17134 end Search_Derivation_Levels;
17136 -- Local Variables
17138 Result : Node_Or_Entity_Id;
17140 -- Start of processing for Get_Discriminant_Value
17142 begin
17143 -- ??? This routine is a gigantic mess and will be deleted. For the
17144 -- time being just test for the trivial case before calling recurse.
17146 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17147 declare
17148 D : Entity_Id;
17149 E : Elmt_Id;
17151 begin
17152 D := First_Discriminant (Typ_For_Constraint);
17153 E := First_Elmt (Constraint);
17154 while Present (D) loop
17155 if Chars (D) = Chars (Discriminant) then
17156 return Node (E);
17157 end if;
17159 Next_Discriminant (D);
17160 Next_Elmt (E);
17161 end loop;
17162 end;
17163 end if;
17165 Result := Search_Derivation_Levels
17166 (Typ_For_Constraint, Constraint, False);
17168 -- ??? hack to disappear when this routine is gone
17170 if Nkind (Result) = N_Defining_Identifier then
17171 declare
17172 D : Entity_Id;
17173 E : Elmt_Id;
17175 begin
17176 D := First_Discriminant (Typ_For_Constraint);
17177 E := First_Elmt (Constraint);
17178 while Present (D) loop
17179 if Root_Corresponding_Discriminant (D) = Discriminant then
17180 return Node (E);
17181 end if;
17183 Next_Discriminant (D);
17184 Next_Elmt (E);
17185 end loop;
17186 end;
17187 end if;
17189 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17190 return Result;
17191 end Get_Discriminant_Value;
17193 --------------------------
17194 -- Has_Range_Constraint --
17195 --------------------------
17197 function Has_Range_Constraint (N : Node_Id) return Boolean is
17198 C : constant Node_Id := Constraint (N);
17200 begin
17201 if Nkind (C) = N_Range_Constraint then
17202 return True;
17204 elsif Nkind (C) = N_Digits_Constraint then
17205 return
17206 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17207 or else Present (Range_Constraint (C));
17209 elsif Nkind (C) = N_Delta_Constraint then
17210 return Present (Range_Constraint (C));
17212 else
17213 return False;
17214 end if;
17215 end Has_Range_Constraint;
17217 ------------------------
17218 -- Inherit_Components --
17219 ------------------------
17221 function Inherit_Components
17222 (N : Node_Id;
17223 Parent_Base : Entity_Id;
17224 Derived_Base : Entity_Id;
17225 Is_Tagged : Boolean;
17226 Inherit_Discr : Boolean;
17227 Discs : Elist_Id) return Elist_Id
17229 Assoc_List : constant Elist_Id := New_Elmt_List;
17231 procedure Inherit_Component
17232 (Old_C : Entity_Id;
17233 Plain_Discrim : Boolean := False;
17234 Stored_Discrim : Boolean := False);
17235 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17236 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17237 -- True, Old_C is a stored discriminant. If they are both false then
17238 -- Old_C is a regular component.
17240 -----------------------
17241 -- Inherit_Component --
17242 -----------------------
17244 procedure Inherit_Component
17245 (Old_C : Entity_Id;
17246 Plain_Discrim : Boolean := False;
17247 Stored_Discrim : Boolean := False)
17249 procedure Set_Anonymous_Type (Id : Entity_Id);
17250 -- Id denotes the entity of an access discriminant or anonymous
17251 -- access component. Set the type of Id to either the same type of
17252 -- Old_C or create a new one depending on whether the parent and
17253 -- the child types are in the same scope.
17255 ------------------------
17256 -- Set_Anonymous_Type --
17257 ------------------------
17259 procedure Set_Anonymous_Type (Id : Entity_Id) is
17260 Old_Typ : constant Entity_Id := Etype (Old_C);
17262 begin
17263 if Scope (Parent_Base) = Scope (Derived_Base) then
17264 Set_Etype (Id, Old_Typ);
17266 -- The parent and the derived type are in two different scopes.
17267 -- Reuse the type of the original discriminant / component by
17268 -- copying it in order to preserve all attributes.
17270 else
17271 declare
17272 Typ : constant Entity_Id := New_Copy (Old_Typ);
17274 begin
17275 Set_Etype (Id, Typ);
17277 -- Since we do not generate component declarations for
17278 -- inherited components, associate the itype with the
17279 -- derived type.
17281 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17282 Set_Scope (Typ, Derived_Base);
17283 end;
17284 end if;
17285 end Set_Anonymous_Type;
17287 -- Local variables and constants
17289 New_C : constant Entity_Id := New_Copy (Old_C);
17291 Corr_Discrim : Entity_Id;
17292 Discrim : Entity_Id;
17294 -- Start of processing for Inherit_Component
17296 begin
17297 pragma Assert (not Is_Tagged or not Stored_Discrim);
17299 Set_Parent (New_C, Parent (Old_C));
17301 -- Regular discriminants and components must be inserted in the scope
17302 -- of the Derived_Base. Do it here.
17304 if not Stored_Discrim then
17305 Enter_Name (New_C);
17306 end if;
17308 -- For tagged types the Original_Record_Component must point to
17309 -- whatever this field was pointing to in the parent type. This has
17310 -- already been achieved by the call to New_Copy above.
17312 if not Is_Tagged then
17313 Set_Original_Record_Component (New_C, New_C);
17314 end if;
17316 -- Set the proper type of an access discriminant
17318 if Ekind (New_C) = E_Discriminant
17319 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17320 then
17321 Set_Anonymous_Type (New_C);
17322 end if;
17324 -- If we have inherited a component then see if its Etype contains
17325 -- references to Parent_Base discriminants. In this case, replace
17326 -- these references with the constraints given in Discs. We do not
17327 -- do this for the partial view of private types because this is
17328 -- not needed (only the components of the full view will be used
17329 -- for code generation) and cause problem. We also avoid this
17330 -- transformation in some error situations.
17332 if Ekind (New_C) = E_Component then
17334 -- Set the proper type of an anonymous access component
17336 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17337 Set_Anonymous_Type (New_C);
17339 elsif (Is_Private_Type (Derived_Base)
17340 and then not Is_Generic_Type (Derived_Base))
17341 or else (Is_Empty_Elmt_List (Discs)
17342 and then not Expander_Active)
17343 then
17344 Set_Etype (New_C, Etype (Old_C));
17346 else
17347 -- The current component introduces a circularity of the
17348 -- following kind:
17350 -- limited with Pack_2;
17351 -- package Pack_1 is
17352 -- type T_1 is tagged record
17353 -- Comp : access Pack_2.T_2;
17354 -- ...
17355 -- end record;
17356 -- end Pack_1;
17358 -- with Pack_1;
17359 -- package Pack_2 is
17360 -- type T_2 is new Pack_1.T_1 with ...;
17361 -- end Pack_2;
17363 Set_Etype
17364 (New_C,
17365 Constrain_Component_Type
17366 (Old_C, Derived_Base, N, Parent_Base, Discs));
17367 end if;
17368 end if;
17370 -- In derived tagged types it is illegal to reference a non
17371 -- discriminant component in the parent type. To catch this, mark
17372 -- these components with an Ekind of E_Void. This will be reset in
17373 -- Record_Type_Definition after processing the record extension of
17374 -- the derived type.
17376 -- If the declaration is a private extension, there is no further
17377 -- record extension to process, and the components retain their
17378 -- current kind, because they are visible at this point.
17380 if Is_Tagged and then Ekind (New_C) = E_Component
17381 and then Nkind (N) /= N_Private_Extension_Declaration
17382 then
17383 Set_Ekind (New_C, E_Void);
17384 end if;
17386 if Plain_Discrim then
17387 Set_Corresponding_Discriminant (New_C, Old_C);
17388 Build_Discriminal (New_C);
17390 -- If we are explicitly inheriting a stored discriminant it will be
17391 -- completely hidden.
17393 elsif Stored_Discrim then
17394 Set_Corresponding_Discriminant (New_C, Empty);
17395 Set_Discriminal (New_C, Empty);
17396 Set_Is_Completely_Hidden (New_C);
17398 -- Set the Original_Record_Component of each discriminant in the
17399 -- derived base to point to the corresponding stored that we just
17400 -- created.
17402 Discrim := First_Discriminant (Derived_Base);
17403 while Present (Discrim) loop
17404 Corr_Discrim := Corresponding_Discriminant (Discrim);
17406 -- Corr_Discrim could be missing in an error situation
17408 if Present (Corr_Discrim)
17409 and then Original_Record_Component (Corr_Discrim) = Old_C
17410 then
17411 Set_Original_Record_Component (Discrim, New_C);
17412 end if;
17414 Next_Discriminant (Discrim);
17415 end loop;
17417 Append_Entity (New_C, Derived_Base);
17418 end if;
17420 if not Is_Tagged then
17421 Append_Elmt (Old_C, Assoc_List);
17422 Append_Elmt (New_C, Assoc_List);
17423 end if;
17424 end Inherit_Component;
17426 -- Variables local to Inherit_Component
17428 Loc : constant Source_Ptr := Sloc (N);
17430 Parent_Discrim : Entity_Id;
17431 Stored_Discrim : Entity_Id;
17432 D : Entity_Id;
17433 Component : Entity_Id;
17435 -- Start of processing for Inherit_Components
17437 begin
17438 if not Is_Tagged then
17439 Append_Elmt (Parent_Base, Assoc_List);
17440 Append_Elmt (Derived_Base, Assoc_List);
17441 end if;
17443 -- Inherit parent discriminants if needed
17445 if Inherit_Discr then
17446 Parent_Discrim := First_Discriminant (Parent_Base);
17447 while Present (Parent_Discrim) loop
17448 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17449 Next_Discriminant (Parent_Discrim);
17450 end loop;
17451 end if;
17453 -- Create explicit stored discrims for untagged types when necessary
17455 if not Has_Unknown_Discriminants (Derived_Base)
17456 and then Has_Discriminants (Parent_Base)
17457 and then not Is_Tagged
17458 and then
17459 (not Inherit_Discr
17460 or else First_Discriminant (Parent_Base) /=
17461 First_Stored_Discriminant (Parent_Base))
17462 then
17463 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17464 while Present (Stored_Discrim) loop
17465 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17466 Next_Stored_Discriminant (Stored_Discrim);
17467 end loop;
17468 end if;
17470 -- See if we can apply the second transformation for derived types, as
17471 -- explained in point 6. in the comments above Build_Derived_Record_Type
17472 -- This is achieved by appending Derived_Base discriminants into Discs,
17473 -- which has the side effect of returning a non empty Discs list to the
17474 -- caller of Inherit_Components, which is what we want. This must be
17475 -- done for private derived types if there are explicit stored
17476 -- discriminants, to ensure that we can retrieve the values of the
17477 -- constraints provided in the ancestors.
17479 if Inherit_Discr
17480 and then Is_Empty_Elmt_List (Discs)
17481 and then Present (First_Discriminant (Derived_Base))
17482 and then
17483 (not Is_Private_Type (Derived_Base)
17484 or else Is_Completely_Hidden
17485 (First_Stored_Discriminant (Derived_Base))
17486 or else Is_Generic_Type (Derived_Base))
17487 then
17488 D := First_Discriminant (Derived_Base);
17489 while Present (D) loop
17490 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17491 Next_Discriminant (D);
17492 end loop;
17493 end if;
17495 -- Finally, inherit non-discriminant components unless they are not
17496 -- visible because defined or inherited from the full view of the
17497 -- parent. Don't inherit the _parent field of the parent type.
17499 Component := First_Entity (Parent_Base);
17500 while Present (Component) loop
17502 -- Ada 2005 (AI-251): Do not inherit components associated with
17503 -- secondary tags of the parent.
17505 if Ekind (Component) = E_Component
17506 and then Present (Related_Type (Component))
17507 then
17508 null;
17510 elsif Ekind (Component) /= E_Component
17511 or else Chars (Component) = Name_uParent
17512 then
17513 null;
17515 -- If the derived type is within the parent type's declarative
17516 -- region, then the components can still be inherited even though
17517 -- they aren't visible at this point. This can occur for cases
17518 -- such as within public child units where the components must
17519 -- become visible upon entering the child unit's private part.
17521 elsif not Is_Visible_Component (Component)
17522 and then not In_Open_Scopes (Scope (Parent_Base))
17523 then
17524 null;
17526 elsif Ekind_In (Derived_Base, E_Private_Type,
17527 E_Limited_Private_Type)
17528 then
17529 null;
17531 else
17532 Inherit_Component (Component);
17533 end if;
17535 Next_Entity (Component);
17536 end loop;
17538 -- For tagged derived types, inherited discriminants cannot be used in
17539 -- component declarations of the record extension part. To achieve this
17540 -- we mark the inherited discriminants as not visible.
17542 if Is_Tagged and then Inherit_Discr then
17543 D := First_Discriminant (Derived_Base);
17544 while Present (D) loop
17545 Set_Is_Immediately_Visible (D, False);
17546 Next_Discriminant (D);
17547 end loop;
17548 end if;
17550 return Assoc_List;
17551 end Inherit_Components;
17553 -----------------------------
17554 -- Inherit_Predicate_Flags --
17555 -----------------------------
17557 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17558 begin
17559 Set_Has_Predicates (Subt, Has_Predicates (Par));
17560 Set_Has_Static_Predicate_Aspect
17561 (Subt, Has_Static_Predicate_Aspect (Par));
17562 Set_Has_Dynamic_Predicate_Aspect
17563 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17564 end Inherit_Predicate_Flags;
17566 ----------------------
17567 -- Is_EVF_Procedure --
17568 ----------------------
17570 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17571 Formal : Entity_Id;
17573 begin
17574 -- Examine the formals of an Extensions_Visible False procedure looking
17575 -- for a controlling OUT parameter.
17577 if Ekind (Subp) = E_Procedure
17578 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17579 then
17580 Formal := First_Formal (Subp);
17581 while Present (Formal) loop
17582 if Ekind (Formal) = E_Out_Parameter
17583 and then Is_Controlling_Formal (Formal)
17584 then
17585 return True;
17586 end if;
17588 Next_Formal (Formal);
17589 end loop;
17590 end if;
17592 return False;
17593 end Is_EVF_Procedure;
17595 -----------------------
17596 -- Is_Null_Extension --
17597 -----------------------
17599 function Is_Null_Extension (T : Entity_Id) return Boolean is
17600 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17601 Comp_List : Node_Id;
17602 Comp : Node_Id;
17604 begin
17605 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17606 or else not Is_Tagged_Type (T)
17607 or else Nkind (Type_Definition (Type_Decl)) /=
17608 N_Derived_Type_Definition
17609 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17610 then
17611 return False;
17612 end if;
17614 Comp_List :=
17615 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17617 if Present (Discriminant_Specifications (Type_Decl)) then
17618 return False;
17620 elsif Present (Comp_List)
17621 and then Is_Non_Empty_List (Component_Items (Comp_List))
17622 then
17623 Comp := First (Component_Items (Comp_List));
17625 -- Only user-defined components are relevant. The component list
17626 -- may also contain a parent component and internal components
17627 -- corresponding to secondary tags, but these do not determine
17628 -- whether this is a null extension.
17630 while Present (Comp) loop
17631 if Comes_From_Source (Comp) then
17632 return False;
17633 end if;
17635 Next (Comp);
17636 end loop;
17638 return True;
17639 else
17640 return True;
17641 end if;
17642 end Is_Null_Extension;
17644 ------------------------------
17645 -- Is_Valid_Constraint_Kind --
17646 ------------------------------
17648 function Is_Valid_Constraint_Kind
17649 (T_Kind : Type_Kind;
17650 Constraint_Kind : Node_Kind) return Boolean
17652 begin
17653 case T_Kind is
17654 when Enumeration_Kind |
17655 Integer_Kind =>
17656 return Constraint_Kind = N_Range_Constraint;
17658 when Decimal_Fixed_Point_Kind =>
17659 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17660 N_Range_Constraint);
17662 when Ordinary_Fixed_Point_Kind =>
17663 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17664 N_Range_Constraint);
17666 when Float_Kind =>
17667 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17668 N_Range_Constraint);
17670 when Access_Kind |
17671 Array_Kind |
17672 E_Record_Type |
17673 E_Record_Subtype |
17674 Class_Wide_Kind |
17675 E_Incomplete_Type |
17676 Private_Kind |
17677 Concurrent_Kind =>
17678 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17680 when others =>
17681 return True; -- Error will be detected later
17682 end case;
17683 end Is_Valid_Constraint_Kind;
17685 --------------------------
17686 -- Is_Visible_Component --
17687 --------------------------
17689 function Is_Visible_Component
17690 (C : Entity_Id;
17691 N : Node_Id := Empty) return Boolean
17693 Original_Comp : Entity_Id := Empty;
17694 Original_Scope : Entity_Id;
17695 Type_Scope : Entity_Id;
17697 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17698 -- Check whether parent type of inherited component is declared locally,
17699 -- possibly within a nested package or instance. The current scope is
17700 -- the derived record itself.
17702 -------------------
17703 -- Is_Local_Type --
17704 -------------------
17706 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17707 Scop : Entity_Id;
17709 begin
17710 Scop := Scope (Typ);
17711 while Present (Scop)
17712 and then Scop /= Standard_Standard
17713 loop
17714 if Scop = Scope (Current_Scope) then
17715 return True;
17716 end if;
17718 Scop := Scope (Scop);
17719 end loop;
17721 return False;
17722 end Is_Local_Type;
17724 -- Start of processing for Is_Visible_Component
17726 begin
17727 if Ekind_In (C, E_Component, E_Discriminant) then
17728 Original_Comp := Original_Record_Component (C);
17729 end if;
17731 if No (Original_Comp) then
17733 -- Premature usage, or previous error
17735 return False;
17737 else
17738 Original_Scope := Scope (Original_Comp);
17739 Type_Scope := Scope (Base_Type (Scope (C)));
17740 end if;
17742 -- This test only concerns tagged types
17744 if not Is_Tagged_Type (Original_Scope) then
17745 return True;
17747 -- If it is _Parent or _Tag, there is no visibility issue
17749 elsif not Comes_From_Source (Original_Comp) then
17750 return True;
17752 -- Discriminants are visible unless the (private) type has unknown
17753 -- discriminants. If the discriminant reference is inserted for a
17754 -- discriminant check on a full view it is also visible.
17756 elsif Ekind (Original_Comp) = E_Discriminant
17757 and then
17758 (not Has_Unknown_Discriminants (Original_Scope)
17759 or else (Present (N)
17760 and then Nkind (N) = N_Selected_Component
17761 and then Nkind (Prefix (N)) = N_Type_Conversion
17762 and then not Comes_From_Source (Prefix (N))))
17763 then
17764 return True;
17766 -- In the body of an instantiation, no need to check for the visibility
17767 -- of a component.
17769 elsif In_Instance_Body then
17770 return True;
17772 -- If the component has been declared in an ancestor which is currently
17773 -- a private type, then it is not visible. The same applies if the
17774 -- component's containing type is not in an open scope and the original
17775 -- component's enclosing type is a visible full view of a private type
17776 -- (which can occur in cases where an attempt is being made to reference
17777 -- a component in a sibling package that is inherited from a visible
17778 -- component of a type in an ancestor package; the component in the
17779 -- sibling package should not be visible even though the component it
17780 -- inherited from is visible). This does not apply however in the case
17781 -- where the scope of the type is a private child unit, or when the
17782 -- parent comes from a local package in which the ancestor is currently
17783 -- visible. The latter suppression of visibility is needed for cases
17784 -- that are tested in B730006.
17786 elsif Is_Private_Type (Original_Scope)
17787 or else
17788 (not Is_Private_Descendant (Type_Scope)
17789 and then not In_Open_Scopes (Type_Scope)
17790 and then Has_Private_Declaration (Original_Scope))
17791 then
17792 -- If the type derives from an entity in a formal package, there
17793 -- are no additional visible components.
17795 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17796 N_Formal_Package_Declaration
17797 then
17798 return False;
17800 -- if we are not in the private part of the current package, there
17801 -- are no additional visible components.
17803 elsif Ekind (Scope (Current_Scope)) = E_Package
17804 and then not In_Private_Part (Scope (Current_Scope))
17805 then
17806 return False;
17807 else
17808 return
17809 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17810 and then In_Open_Scopes (Scope (Original_Scope))
17811 and then Is_Local_Type (Type_Scope);
17812 end if;
17814 -- There is another weird way in which a component may be invisible when
17815 -- the private and the full view are not derived from the same ancestor.
17816 -- Here is an example :
17818 -- type A1 is tagged record F1 : integer; end record;
17819 -- type A2 is new A1 with record F2 : integer; end record;
17820 -- type T is new A1 with private;
17821 -- private
17822 -- type T is new A2 with null record;
17824 -- In this case, the full view of T inherits F1 and F2 but the private
17825 -- view inherits only F1
17827 else
17828 declare
17829 Ancestor : Entity_Id := Scope (C);
17831 begin
17832 loop
17833 if Ancestor = Original_Scope then
17834 return True;
17835 elsif Ancestor = Etype (Ancestor) then
17836 return False;
17837 end if;
17839 Ancestor := Etype (Ancestor);
17840 end loop;
17841 end;
17842 end if;
17843 end Is_Visible_Component;
17845 --------------------------
17846 -- Make_Class_Wide_Type --
17847 --------------------------
17849 procedure Make_Class_Wide_Type (T : Entity_Id) is
17850 CW_Type : Entity_Id;
17851 CW_Name : Name_Id;
17852 Next_E : Entity_Id;
17854 begin
17855 if Present (Class_Wide_Type (T)) then
17857 -- The class-wide type is a partially decorated entity created for a
17858 -- unanalyzed tagged type referenced through a limited with clause.
17859 -- When the tagged type is analyzed, its class-wide type needs to be
17860 -- redecorated. Note that we reuse the entity created by Decorate_
17861 -- Tagged_Type in order to preserve all links.
17863 if Materialize_Entity (Class_Wide_Type (T)) then
17864 CW_Type := Class_Wide_Type (T);
17865 Set_Materialize_Entity (CW_Type, False);
17867 -- The class wide type can have been defined by the partial view, in
17868 -- which case everything is already done.
17870 else
17871 return;
17872 end if;
17874 -- Default case, we need to create a new class-wide type
17876 else
17877 CW_Type :=
17878 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17879 end if;
17881 -- Inherit root type characteristics
17883 CW_Name := Chars (CW_Type);
17884 Next_E := Next_Entity (CW_Type);
17885 Copy_Node (T, CW_Type);
17886 Set_Comes_From_Source (CW_Type, False);
17887 Set_Chars (CW_Type, CW_Name);
17888 Set_Parent (CW_Type, Parent (T));
17889 Set_Next_Entity (CW_Type, Next_E);
17891 -- Ensure we have a new freeze node for the class-wide type. The partial
17892 -- view may have freeze action of its own, requiring a proper freeze
17893 -- node, and the same freeze node cannot be shared between the two
17894 -- types.
17896 Set_Has_Delayed_Freeze (CW_Type);
17897 Set_Freeze_Node (CW_Type, Empty);
17899 -- Customize the class-wide type: It has no prim. op., it cannot be
17900 -- abstract and its Etype points back to the specific root type.
17902 Set_Ekind (CW_Type, E_Class_Wide_Type);
17903 Set_Is_Tagged_Type (CW_Type, True);
17904 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17905 Set_Is_Abstract_Type (CW_Type, False);
17906 Set_Is_Constrained (CW_Type, False);
17907 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17908 Set_Default_SSO (CW_Type);
17910 if Ekind (T) = E_Class_Wide_Subtype then
17911 Set_Etype (CW_Type, Etype (Base_Type (T)));
17912 else
17913 Set_Etype (CW_Type, T);
17914 end if;
17916 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17918 -- If this is the class_wide type of a constrained subtype, it does
17919 -- not have discriminants.
17921 Set_Has_Discriminants (CW_Type,
17922 Has_Discriminants (T) and then not Is_Constrained (T));
17924 Set_Has_Unknown_Discriminants (CW_Type, True);
17925 Set_Class_Wide_Type (T, CW_Type);
17926 Set_Equivalent_Type (CW_Type, Empty);
17928 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17930 Set_Class_Wide_Type (CW_Type, CW_Type);
17931 end Make_Class_Wide_Type;
17933 ----------------
17934 -- Make_Index --
17935 ----------------
17937 procedure Make_Index
17938 (N : Node_Id;
17939 Related_Nod : Node_Id;
17940 Related_Id : Entity_Id := Empty;
17941 Suffix_Index : Nat := 1;
17942 In_Iter_Schm : Boolean := False)
17944 R : Node_Id;
17945 T : Entity_Id;
17946 Def_Id : Entity_Id := Empty;
17947 Found : Boolean := False;
17949 begin
17950 -- For a discrete range used in a constrained array definition and
17951 -- defined by a range, an implicit conversion to the predefined type
17952 -- INTEGER is assumed if each bound is either a numeric literal, a named
17953 -- number, or an attribute, and the type of both bounds (prior to the
17954 -- implicit conversion) is the type universal_integer. Otherwise, both
17955 -- bounds must be of the same discrete type, other than universal
17956 -- integer; this type must be determinable independently of the
17957 -- context, but using the fact that the type must be discrete and that
17958 -- both bounds must have the same type.
17960 -- Character literals also have a universal type in the absence of
17961 -- of additional context, and are resolved to Standard_Character.
17963 if Nkind (N) = N_Range then
17965 -- The index is given by a range constraint. The bounds are known
17966 -- to be of a consistent type.
17968 if not Is_Overloaded (N) then
17969 T := Etype (N);
17971 -- For universal bounds, choose the specific predefined type
17973 if T = Universal_Integer then
17974 T := Standard_Integer;
17976 elsif T = Any_Character then
17977 Ambiguous_Character (Low_Bound (N));
17979 T := Standard_Character;
17980 end if;
17982 -- The node may be overloaded because some user-defined operators
17983 -- are available, but if a universal interpretation exists it is
17984 -- also the selected one.
17986 elsif Universal_Interpretation (N) = Universal_Integer then
17987 T := Standard_Integer;
17989 else
17990 T := Any_Type;
17992 declare
17993 Ind : Interp_Index;
17994 It : Interp;
17996 begin
17997 Get_First_Interp (N, Ind, It);
17998 while Present (It.Typ) loop
17999 if Is_Discrete_Type (It.Typ) then
18001 if Found
18002 and then not Covers (It.Typ, T)
18003 and then not Covers (T, It.Typ)
18004 then
18005 Error_Msg_N ("ambiguous bounds in discrete range", N);
18006 exit;
18007 else
18008 T := It.Typ;
18009 Found := True;
18010 end if;
18011 end if;
18013 Get_Next_Interp (Ind, It);
18014 end loop;
18016 if T = Any_Type then
18017 Error_Msg_N ("discrete type required for range", N);
18018 Set_Etype (N, Any_Type);
18019 return;
18021 elsif T = Universal_Integer then
18022 T := Standard_Integer;
18023 end if;
18024 end;
18025 end if;
18027 if not Is_Discrete_Type (T) then
18028 Error_Msg_N ("discrete type required for range", N);
18029 Set_Etype (N, Any_Type);
18030 return;
18031 end if;
18033 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18034 and then Attribute_Name (Low_Bound (N)) = Name_First
18035 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18036 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18037 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18038 then
18039 -- The type of the index will be the type of the prefix, as long
18040 -- as the upper bound is 'Last of the same type.
18042 Def_Id := Entity (Prefix (Low_Bound (N)));
18044 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18045 or else Attribute_Name (High_Bound (N)) /= Name_Last
18046 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18047 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18048 then
18049 Def_Id := Empty;
18050 end if;
18051 end if;
18053 R := N;
18054 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18056 elsif Nkind (N) = N_Subtype_Indication then
18058 -- The index is given by a subtype with a range constraint
18060 T := Base_Type (Entity (Subtype_Mark (N)));
18062 if not Is_Discrete_Type (T) then
18063 Error_Msg_N ("discrete type required for range", N);
18064 Set_Etype (N, Any_Type);
18065 return;
18066 end if;
18068 R := Range_Expression (Constraint (N));
18070 Resolve (R, T);
18071 Process_Range_Expr_In_Decl
18072 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18074 elsif Nkind (N) = N_Attribute_Reference then
18076 -- Catch beginner's error (use of attribute other than 'Range)
18078 if Attribute_Name (N) /= Name_Range then
18079 Error_Msg_N ("expect attribute ''Range", N);
18080 Set_Etype (N, Any_Type);
18081 return;
18082 end if;
18084 -- If the node denotes the range of a type mark, that is also the
18085 -- resulting type, and we do not need to create an Itype for it.
18087 if Is_Entity_Name (Prefix (N))
18088 and then Comes_From_Source (N)
18089 and then Is_Type (Entity (Prefix (N)))
18090 and then Is_Discrete_Type (Entity (Prefix (N)))
18091 then
18092 Def_Id := Entity (Prefix (N));
18093 end if;
18095 Analyze_And_Resolve (N);
18096 T := Etype (N);
18097 R := N;
18099 -- If none of the above, must be a subtype. We convert this to a
18100 -- range attribute reference because in the case of declared first
18101 -- named subtypes, the types in the range reference can be different
18102 -- from the type of the entity. A range attribute normalizes the
18103 -- reference and obtains the correct types for the bounds.
18105 -- This transformation is in the nature of an expansion, is only
18106 -- done if expansion is active. In particular, it is not done on
18107 -- formal generic types, because we need to retain the name of the
18108 -- original index for instantiation purposes.
18110 else
18111 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18112 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18113 Set_Etype (N, Any_Integer);
18114 return;
18116 else
18117 -- The type mark may be that of an incomplete type. It is only
18118 -- now that we can get the full view, previous analysis does
18119 -- not look specifically for a type mark.
18121 Set_Entity (N, Get_Full_View (Entity (N)));
18122 Set_Etype (N, Entity (N));
18123 Def_Id := Entity (N);
18125 if not Is_Discrete_Type (Def_Id) then
18126 Error_Msg_N ("discrete type required for index", N);
18127 Set_Etype (N, Any_Type);
18128 return;
18129 end if;
18130 end if;
18132 if Expander_Active then
18133 Rewrite (N,
18134 Make_Attribute_Reference (Sloc (N),
18135 Attribute_Name => Name_Range,
18136 Prefix => Relocate_Node (N)));
18138 -- The original was a subtype mark that does not freeze. This
18139 -- means that the rewritten version must not freeze either.
18141 Set_Must_Not_Freeze (N);
18142 Set_Must_Not_Freeze (Prefix (N));
18143 Analyze_And_Resolve (N);
18144 T := Etype (N);
18145 R := N;
18147 -- If expander is inactive, type is legal, nothing else to construct
18149 else
18150 return;
18151 end if;
18152 end if;
18154 if not Is_Discrete_Type (T) then
18155 Error_Msg_N ("discrete type required for range", N);
18156 Set_Etype (N, Any_Type);
18157 return;
18159 elsif T = Any_Type then
18160 Set_Etype (N, Any_Type);
18161 return;
18162 end if;
18164 -- We will now create the appropriate Itype to describe the range, but
18165 -- first a check. If we originally had a subtype, then we just label
18166 -- the range with this subtype. Not only is there no need to construct
18167 -- a new subtype, but it is wrong to do so for two reasons:
18169 -- 1. A legality concern, if we have a subtype, it must not freeze,
18170 -- and the Itype would cause freezing incorrectly
18172 -- 2. An efficiency concern, if we created an Itype, it would not be
18173 -- recognized as the same type for the purposes of eliminating
18174 -- checks in some circumstances.
18176 -- We signal this case by setting the subtype entity in Def_Id
18178 if No (Def_Id) then
18179 Def_Id :=
18180 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18181 Set_Etype (Def_Id, Base_Type (T));
18183 if Is_Signed_Integer_Type (T) then
18184 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18186 elsif Is_Modular_Integer_Type (T) then
18187 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18189 else
18190 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18191 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18192 Set_First_Literal (Def_Id, First_Literal (T));
18193 end if;
18195 Set_Size_Info (Def_Id, (T));
18196 Set_RM_Size (Def_Id, RM_Size (T));
18197 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18199 Set_Scalar_Range (Def_Id, R);
18200 Conditional_Delay (Def_Id, T);
18202 if Nkind (N) = N_Subtype_Indication then
18203 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18204 end if;
18206 -- In the subtype indication case, if the immediate parent of the
18207 -- new subtype is non-static, then the subtype we create is non-
18208 -- static, even if its bounds are static.
18210 if Nkind (N) = N_Subtype_Indication
18211 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18212 then
18213 Set_Is_Non_Static_Subtype (Def_Id);
18214 end if;
18215 end if;
18217 -- Final step is to label the index with this constructed type
18219 Set_Etype (N, Def_Id);
18220 end Make_Index;
18222 ------------------------------
18223 -- Modular_Type_Declaration --
18224 ------------------------------
18226 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18227 Mod_Expr : constant Node_Id := Expression (Def);
18228 M_Val : Uint;
18230 procedure Set_Modular_Size (Bits : Int);
18231 -- Sets RM_Size to Bits, and Esize to normal word size above this
18233 ----------------------
18234 -- Set_Modular_Size --
18235 ----------------------
18237 procedure Set_Modular_Size (Bits : Int) is
18238 begin
18239 Set_RM_Size (T, UI_From_Int (Bits));
18241 if Bits <= 8 then
18242 Init_Esize (T, 8);
18244 elsif Bits <= 16 then
18245 Init_Esize (T, 16);
18247 elsif Bits <= 32 then
18248 Init_Esize (T, 32);
18250 else
18251 Init_Esize (T, System_Max_Binary_Modulus_Power);
18252 end if;
18254 if not Non_Binary_Modulus (T)
18255 and then Esize (T) = RM_Size (T)
18256 then
18257 Set_Is_Known_Valid (T);
18258 end if;
18259 end Set_Modular_Size;
18261 -- Start of processing for Modular_Type_Declaration
18263 begin
18264 -- If the mod expression is (exactly) 2 * literal, where literal is
18265 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18267 if Warn_On_Suspicious_Modulus_Value
18268 and then Nkind (Mod_Expr) = N_Op_Multiply
18269 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18270 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18271 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18272 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18273 then
18274 Error_Msg_N
18275 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18276 end if;
18278 -- Proceed with analysis of mod expression
18280 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18281 Set_Etype (T, T);
18282 Set_Ekind (T, E_Modular_Integer_Type);
18283 Init_Alignment (T);
18284 Set_Is_Constrained (T);
18286 if not Is_OK_Static_Expression (Mod_Expr) then
18287 Flag_Non_Static_Expr
18288 ("non-static expression used for modular type bound!", Mod_Expr);
18289 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18290 else
18291 M_Val := Expr_Value (Mod_Expr);
18292 end if;
18294 if M_Val < 1 then
18295 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18296 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18297 end if;
18299 if M_Val > 2 ** Standard_Long_Integer_Size then
18300 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18301 end if;
18303 Set_Modulus (T, M_Val);
18305 -- Create bounds for the modular type based on the modulus given in
18306 -- the type declaration and then analyze and resolve those bounds.
18308 Set_Scalar_Range (T,
18309 Make_Range (Sloc (Mod_Expr),
18310 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18311 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18313 -- Properly analyze the literals for the range. We do this manually
18314 -- because we can't go calling Resolve, since we are resolving these
18315 -- bounds with the type, and this type is certainly not complete yet.
18317 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18318 Set_Etype (High_Bound (Scalar_Range (T)), T);
18319 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18320 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18322 -- Loop through powers of two to find number of bits required
18324 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18326 -- Binary case
18328 if M_Val = 2 ** Bits then
18329 Set_Modular_Size (Bits);
18330 return;
18332 -- Non-binary case
18334 elsif M_Val < 2 ** Bits then
18335 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18336 Set_Non_Binary_Modulus (T);
18338 if Bits > System_Max_Nonbinary_Modulus_Power then
18339 Error_Msg_Uint_1 :=
18340 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18341 Error_Msg_F
18342 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18343 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18344 return;
18346 else
18347 -- In the non-binary case, set size as per RM 13.3(55)
18349 Set_Modular_Size (Bits);
18350 return;
18351 end if;
18352 end if;
18354 end loop;
18356 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18357 -- so we just signal an error and set the maximum size.
18359 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18360 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18362 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18363 Init_Alignment (T);
18365 end Modular_Type_Declaration;
18367 --------------------------
18368 -- New_Concatenation_Op --
18369 --------------------------
18371 procedure New_Concatenation_Op (Typ : Entity_Id) is
18372 Loc : constant Source_Ptr := Sloc (Typ);
18373 Op : Entity_Id;
18375 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18376 -- Create abbreviated declaration for the formal of a predefined
18377 -- Operator 'Op' of type 'Typ'
18379 --------------------
18380 -- Make_Op_Formal --
18381 --------------------
18383 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18384 Formal : Entity_Id;
18385 begin
18386 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18387 Set_Etype (Formal, Typ);
18388 Set_Mechanism (Formal, Default_Mechanism);
18389 return Formal;
18390 end Make_Op_Formal;
18392 -- Start of processing for New_Concatenation_Op
18394 begin
18395 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18397 Set_Ekind (Op, E_Operator);
18398 Set_Scope (Op, Current_Scope);
18399 Set_Etype (Op, Typ);
18400 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18401 Set_Is_Immediately_Visible (Op);
18402 Set_Is_Intrinsic_Subprogram (Op);
18403 Set_Has_Completion (Op);
18404 Append_Entity (Op, Current_Scope);
18406 Set_Name_Entity_Id (Name_Op_Concat, Op);
18408 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18409 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18410 end New_Concatenation_Op;
18412 -------------------------
18413 -- OK_For_Limited_Init --
18414 -------------------------
18416 -- ???Check all calls of this, and compare the conditions under which it's
18417 -- called.
18419 function OK_For_Limited_Init
18420 (Typ : Entity_Id;
18421 Exp : Node_Id) return Boolean
18423 begin
18424 return Is_CPP_Constructor_Call (Exp)
18425 or else (Ada_Version >= Ada_2005
18426 and then not Debug_Flag_Dot_L
18427 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18428 end OK_For_Limited_Init;
18430 -------------------------------
18431 -- OK_For_Limited_Init_In_05 --
18432 -------------------------------
18434 function OK_For_Limited_Init_In_05
18435 (Typ : Entity_Id;
18436 Exp : Node_Id) return Boolean
18438 begin
18439 -- An object of a limited interface type can be initialized with any
18440 -- expression of a nonlimited descendant type.
18442 if Is_Class_Wide_Type (Typ)
18443 and then Is_Limited_Interface (Typ)
18444 and then not Is_Limited_Type (Etype (Exp))
18445 then
18446 return True;
18447 end if;
18449 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18450 -- case of limited aggregates (including extension aggregates), and
18451 -- function calls. The function call may have been given in prefixed
18452 -- notation, in which case the original node is an indexed component.
18453 -- If the function is parameterless, the original node was an explicit
18454 -- dereference. The function may also be parameterless, in which case
18455 -- the source node is just an identifier.
18457 case Nkind (Original_Node (Exp)) is
18458 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18459 return True;
18461 when N_Identifier =>
18462 return Present (Entity (Original_Node (Exp)))
18463 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18465 when N_Qualified_Expression =>
18466 return
18467 OK_For_Limited_Init_In_05
18468 (Typ, Expression (Original_Node (Exp)));
18470 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18471 -- with a function call, the expander has rewritten the call into an
18472 -- N_Type_Conversion node to force displacement of the pointer to
18473 -- reference the component containing the secondary dispatch table.
18474 -- Otherwise a type conversion is not a legal context.
18475 -- A return statement for a build-in-place function returning a
18476 -- synchronized type also introduces an unchecked conversion.
18478 when N_Type_Conversion |
18479 N_Unchecked_Type_Conversion =>
18480 return not Comes_From_Source (Exp)
18481 and then
18482 OK_For_Limited_Init_In_05
18483 (Typ, Expression (Original_Node (Exp)));
18485 when N_Indexed_Component |
18486 N_Selected_Component |
18487 N_Explicit_Dereference =>
18488 return Nkind (Exp) = N_Function_Call;
18490 -- A use of 'Input is a function call, hence allowed. Normally the
18491 -- attribute will be changed to a call, but the attribute by itself
18492 -- can occur with -gnatc.
18494 when N_Attribute_Reference =>
18495 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18497 -- For a case expression, all dependent expressions must be legal
18499 when N_Case_Expression =>
18500 declare
18501 Alt : Node_Id;
18503 begin
18504 Alt := First (Alternatives (Original_Node (Exp)));
18505 while Present (Alt) loop
18506 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18507 return False;
18508 end if;
18510 Next (Alt);
18511 end loop;
18513 return True;
18514 end;
18516 -- For an if expression, all dependent expressions must be legal
18518 when N_If_Expression =>
18519 declare
18520 Then_Expr : constant Node_Id :=
18521 Next (First (Expressions (Original_Node (Exp))));
18522 Else_Expr : constant Node_Id := Next (Then_Expr);
18523 begin
18524 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18525 and then
18526 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18527 end;
18529 when others =>
18530 return False;
18531 end case;
18532 end OK_For_Limited_Init_In_05;
18534 -------------------------------------------
18535 -- Ordinary_Fixed_Point_Type_Declaration --
18536 -------------------------------------------
18538 procedure Ordinary_Fixed_Point_Type_Declaration
18539 (T : Entity_Id;
18540 Def : Node_Id)
18542 Loc : constant Source_Ptr := Sloc (Def);
18543 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18544 RRS : constant Node_Id := Real_Range_Specification (Def);
18545 Implicit_Base : Entity_Id;
18546 Delta_Val : Ureal;
18547 Small_Val : Ureal;
18548 Low_Val : Ureal;
18549 High_Val : Ureal;
18551 begin
18552 Check_Restriction (No_Fixed_Point, Def);
18554 -- Create implicit base type
18556 Implicit_Base :=
18557 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18558 Set_Etype (Implicit_Base, Implicit_Base);
18560 -- Analyze and process delta expression
18562 Analyze_And_Resolve (Delta_Expr, Any_Real);
18564 Check_Delta_Expression (Delta_Expr);
18565 Delta_Val := Expr_Value_R (Delta_Expr);
18567 Set_Delta_Value (Implicit_Base, Delta_Val);
18569 -- Compute default small from given delta, which is the largest power
18570 -- of two that does not exceed the given delta value.
18572 declare
18573 Tmp : Ureal;
18574 Scale : Int;
18576 begin
18577 Tmp := Ureal_1;
18578 Scale := 0;
18580 if Delta_Val < Ureal_1 then
18581 while Delta_Val < Tmp loop
18582 Tmp := Tmp / Ureal_2;
18583 Scale := Scale + 1;
18584 end loop;
18586 else
18587 loop
18588 Tmp := Tmp * Ureal_2;
18589 exit when Tmp > Delta_Val;
18590 Scale := Scale - 1;
18591 end loop;
18592 end if;
18594 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18595 end;
18597 Set_Small_Value (Implicit_Base, Small_Val);
18599 -- If no range was given, set a dummy range
18601 if RRS <= Empty_Or_Error then
18602 Low_Val := -Small_Val;
18603 High_Val := Small_Val;
18605 -- Otherwise analyze and process given range
18607 else
18608 declare
18609 Low : constant Node_Id := Low_Bound (RRS);
18610 High : constant Node_Id := High_Bound (RRS);
18612 begin
18613 Analyze_And_Resolve (Low, Any_Real);
18614 Analyze_And_Resolve (High, Any_Real);
18615 Check_Real_Bound (Low);
18616 Check_Real_Bound (High);
18618 -- Obtain and set the range
18620 Low_Val := Expr_Value_R (Low);
18621 High_Val := Expr_Value_R (High);
18623 if Low_Val > High_Val then
18624 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18625 end if;
18626 end;
18627 end if;
18629 -- The range for both the implicit base and the declared first subtype
18630 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18631 -- set a temporary range in place. Note that the bounds of the base
18632 -- type will be widened to be symmetrical and to fill the available
18633 -- bits when the type is frozen.
18635 -- We could do this with all discrete types, and probably should, but
18636 -- we absolutely have to do it for fixed-point, since the end-points
18637 -- of the range and the size are determined by the small value, which
18638 -- could be reset before the freeze point.
18640 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18641 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18643 -- Complete definition of first subtype. The inheritance of the rep item
18644 -- chain ensures that SPARK-related pragmas are not clobbered when the
18645 -- ordinary fixed point type acts as a full view of a private type.
18647 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18648 Set_Etype (T, Implicit_Base);
18649 Init_Size_Align (T);
18650 Inherit_Rep_Item_Chain (T, Implicit_Base);
18651 Set_Small_Value (T, Small_Val);
18652 Set_Delta_Value (T, Delta_Val);
18653 Set_Is_Constrained (T);
18654 end Ordinary_Fixed_Point_Type_Declaration;
18656 ----------------------------------
18657 -- Preanalyze_Assert_Expression --
18658 ----------------------------------
18660 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18661 begin
18662 In_Assertion_Expr := In_Assertion_Expr + 1;
18663 Preanalyze_Spec_Expression (N, T);
18664 In_Assertion_Expr := In_Assertion_Expr - 1;
18665 end Preanalyze_Assert_Expression;
18667 -----------------------------------
18668 -- Preanalyze_Default_Expression --
18669 -----------------------------------
18671 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18672 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18673 begin
18674 In_Default_Expr := True;
18675 Preanalyze_Spec_Expression (N, T);
18676 In_Default_Expr := Save_In_Default_Expr;
18677 end Preanalyze_Default_Expression;
18679 --------------------------------
18680 -- Preanalyze_Spec_Expression --
18681 --------------------------------
18683 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18684 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18685 begin
18686 In_Spec_Expression := True;
18687 Preanalyze_And_Resolve (N, T);
18688 In_Spec_Expression := Save_In_Spec_Expression;
18689 end Preanalyze_Spec_Expression;
18691 ----------------------------------------
18692 -- Prepare_Private_Subtype_Completion --
18693 ----------------------------------------
18695 procedure Prepare_Private_Subtype_Completion
18696 (Id : Entity_Id;
18697 Related_Nod : Node_Id)
18699 Id_B : constant Entity_Id := Base_Type (Id);
18700 Full_B : Entity_Id := Full_View (Id_B);
18701 Full : Entity_Id;
18703 begin
18704 if Present (Full_B) then
18706 -- Get to the underlying full view if necessary
18708 if Is_Private_Type (Full_B)
18709 and then Present (Underlying_Full_View (Full_B))
18710 then
18711 Full_B := Underlying_Full_View (Full_B);
18712 end if;
18714 -- The Base_Type is already completed, we can complete the subtype
18715 -- now. We have to create a new entity with the same name, Thus we
18716 -- can't use Create_Itype.
18718 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18719 Set_Is_Itype (Full);
18720 Set_Associated_Node_For_Itype (Full, Related_Nod);
18721 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18722 end if;
18724 -- The parent subtype may be private, but the base might not, in some
18725 -- nested instances. In that case, the subtype does not need to be
18726 -- exchanged. It would still be nice to make private subtypes and their
18727 -- bases consistent at all times ???
18729 if Is_Private_Type (Id_B) then
18730 Append_Elmt (Id, Private_Dependents (Id_B));
18731 end if;
18732 end Prepare_Private_Subtype_Completion;
18734 ---------------------------
18735 -- Process_Discriminants --
18736 ---------------------------
18738 procedure Process_Discriminants
18739 (N : Node_Id;
18740 Prev : Entity_Id := Empty)
18742 Elist : constant Elist_Id := New_Elmt_List;
18743 Id : Node_Id;
18744 Discr : Node_Id;
18745 Discr_Number : Uint;
18746 Discr_Type : Entity_Id;
18747 Default_Present : Boolean := False;
18748 Default_Not_Present : Boolean := False;
18750 begin
18751 -- A composite type other than an array type can have discriminants.
18752 -- On entry, the current scope is the composite type.
18754 -- The discriminants are initially entered into the scope of the type
18755 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18756 -- use, as explained at the end of this procedure.
18758 Discr := First (Discriminant_Specifications (N));
18759 while Present (Discr) loop
18760 Enter_Name (Defining_Identifier (Discr));
18762 -- For navigation purposes we add a reference to the discriminant
18763 -- in the entity for the type. If the current declaration is a
18764 -- completion, place references on the partial view. Otherwise the
18765 -- type is the current scope.
18767 if Present (Prev) then
18769 -- The references go on the partial view, if present. If the
18770 -- partial view has discriminants, the references have been
18771 -- generated already.
18773 if not Has_Discriminants (Prev) then
18774 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18775 end if;
18776 else
18777 Generate_Reference
18778 (Current_Scope, Defining_Identifier (Discr), 'd');
18779 end if;
18781 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18782 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18784 -- Ada 2005 (AI-254)
18786 if Present (Access_To_Subprogram_Definition
18787 (Discriminant_Type (Discr)))
18788 and then Protected_Present (Access_To_Subprogram_Definition
18789 (Discriminant_Type (Discr)))
18790 then
18791 Discr_Type :=
18792 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18793 end if;
18795 else
18796 Find_Type (Discriminant_Type (Discr));
18797 Discr_Type := Etype (Discriminant_Type (Discr));
18799 if Error_Posted (Discriminant_Type (Discr)) then
18800 Discr_Type := Any_Type;
18801 end if;
18802 end if;
18804 -- Handling of discriminants that are access types
18806 if Is_Access_Type (Discr_Type) then
18808 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18809 -- limited record types
18811 if Ada_Version < Ada_2005 then
18812 Check_Access_Discriminant_Requires_Limited
18813 (Discr, Discriminant_Type (Discr));
18814 end if;
18816 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18817 Error_Msg_N
18818 ("(Ada 83) access discriminant not allowed", Discr);
18819 end if;
18821 -- If not access type, must be a discrete type
18823 elsif not Is_Discrete_Type (Discr_Type) then
18824 Error_Msg_N
18825 ("discriminants must have a discrete or access type",
18826 Discriminant_Type (Discr));
18827 end if;
18829 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18831 -- If a discriminant specification includes the assignment compound
18832 -- delimiter followed by an expression, the expression is the default
18833 -- expression of the discriminant; the default expression must be of
18834 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18835 -- a default expression, we do the special preanalysis, since this
18836 -- expression does not freeze (see section "Handling of Default and
18837 -- Per-Object Expressions" in spec of package Sem).
18839 if Present (Expression (Discr)) then
18840 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18842 -- Legaity checks
18844 if Nkind (N) = N_Formal_Type_Declaration then
18845 Error_Msg_N
18846 ("discriminant defaults not allowed for formal type",
18847 Expression (Discr));
18849 -- Flag an error for a tagged type with defaulted discriminants,
18850 -- excluding limited tagged types when compiling for Ada 2012
18851 -- (see AI05-0214).
18853 elsif Is_Tagged_Type (Current_Scope)
18854 and then (not Is_Limited_Type (Current_Scope)
18855 or else Ada_Version < Ada_2012)
18856 and then Comes_From_Source (N)
18857 then
18858 -- Note: see similar test in Check_Or_Process_Discriminants, to
18859 -- handle the (illegal) case of the completion of an untagged
18860 -- view with discriminants with defaults by a tagged full view.
18861 -- We skip the check if Discr does not come from source, to
18862 -- account for the case of an untagged derived type providing
18863 -- defaults for a renamed discriminant from a private untagged
18864 -- ancestor with a tagged full view (ACATS B460006).
18866 if Ada_Version >= Ada_2012 then
18867 Error_Msg_N
18868 ("discriminants of nonlimited tagged type cannot have"
18869 & " defaults",
18870 Expression (Discr));
18871 else
18872 Error_Msg_N
18873 ("discriminants of tagged type cannot have defaults",
18874 Expression (Discr));
18875 end if;
18877 else
18878 Default_Present := True;
18879 Append_Elmt (Expression (Discr), Elist);
18881 -- Tag the defining identifiers for the discriminants with
18882 -- their corresponding default expressions from the tree.
18884 Set_Discriminant_Default_Value
18885 (Defining_Identifier (Discr), Expression (Discr));
18886 end if;
18888 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18889 -- gets set unless we can be sure that no range check is required.
18891 if (GNATprove_Mode or not Expander_Active)
18892 and then not
18893 Is_In_Range
18894 (Expression (Discr), Discr_Type, Assume_Valid => True)
18895 then
18896 Set_Do_Range_Check (Expression (Discr));
18897 end if;
18899 -- No default discriminant value given
18901 else
18902 Default_Not_Present := True;
18903 end if;
18905 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18906 -- Discr_Type but with the null-exclusion attribute
18908 if Ada_Version >= Ada_2005 then
18910 -- Ada 2005 (AI-231): Static checks
18912 if Can_Never_Be_Null (Discr_Type) then
18913 Null_Exclusion_Static_Checks (Discr);
18915 elsif Is_Access_Type (Discr_Type)
18916 and then Null_Exclusion_Present (Discr)
18918 -- No need to check itypes because in their case this check
18919 -- was done at their point of creation
18921 and then not Is_Itype (Discr_Type)
18922 then
18923 if Can_Never_Be_Null (Discr_Type) then
18924 Error_Msg_NE
18925 ("`NOT NULL` not allowed (& already excludes null)",
18926 Discr,
18927 Discr_Type);
18928 end if;
18930 Set_Etype (Defining_Identifier (Discr),
18931 Create_Null_Excluding_Itype
18932 (T => Discr_Type,
18933 Related_Nod => Discr));
18935 -- Check for improper null exclusion if the type is otherwise
18936 -- legal for a discriminant.
18938 elsif Null_Exclusion_Present (Discr)
18939 and then Is_Discrete_Type (Discr_Type)
18940 then
18941 Error_Msg_N
18942 ("null exclusion can only apply to an access type", Discr);
18943 end if;
18945 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18946 -- can't have defaults. Synchronized types, or types that are
18947 -- explicitly limited are fine, but special tests apply to derived
18948 -- types in generics: in a generic body we have to assume the
18949 -- worst, and therefore defaults are not allowed if the parent is
18950 -- a generic formal private type (see ACATS B370001).
18952 if Is_Access_Type (Discr_Type) and then Default_Present then
18953 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18954 or else Is_Limited_Record (Current_Scope)
18955 or else Is_Concurrent_Type (Current_Scope)
18956 or else Is_Concurrent_Record_Type (Current_Scope)
18957 or else Ekind (Current_Scope) = E_Limited_Private_Type
18958 then
18959 if not Is_Derived_Type (Current_Scope)
18960 or else not Is_Generic_Type (Etype (Current_Scope))
18961 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18962 or else Limited_Present
18963 (Type_Definition (Parent (Current_Scope)))
18964 then
18965 null;
18967 else
18968 Error_Msg_N ("access discriminants of nonlimited types",
18969 Expression (Discr));
18970 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18971 end if;
18973 elsif Present (Expression (Discr)) then
18974 Error_Msg_N
18975 ("(Ada 2005) access discriminants of nonlimited types",
18976 Expression (Discr));
18977 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18978 end if;
18979 end if;
18980 end if;
18982 -- A discriminant cannot be effectively volatile. This check is only
18983 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18984 -- rule (SPARK RM 7.1.3(6)).
18986 if SPARK_Mode = On
18987 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18988 then
18989 Error_Msg_N ("discriminant cannot be volatile", Discr);
18990 end if;
18992 Next (Discr);
18993 end loop;
18995 -- An element list consisting of the default expressions of the
18996 -- discriminants is constructed in the above loop and used to set
18997 -- the Discriminant_Constraint attribute for the type. If an object
18998 -- is declared of this (record or task) type without any explicit
18999 -- discriminant constraint given, this element list will form the
19000 -- actual parameters for the corresponding initialization procedure
19001 -- for the type.
19003 Set_Discriminant_Constraint (Current_Scope, Elist);
19004 Set_Stored_Constraint (Current_Scope, No_Elist);
19006 -- Default expressions must be provided either for all or for none
19007 -- of the discriminants of a discriminant part. (RM 3.7.1)
19009 if Default_Present and then Default_Not_Present then
19010 Error_Msg_N
19011 ("incomplete specification of defaults for discriminants", N);
19012 end if;
19014 -- The use of the name of a discriminant is not allowed in default
19015 -- expressions of a discriminant part if the specification of the
19016 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19018 -- To detect this, the discriminant names are entered initially with an
19019 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19020 -- attempt to use a void entity (for example in an expression that is
19021 -- type-checked) produces the error message: premature usage. Now after
19022 -- completing the semantic analysis of the discriminant part, we can set
19023 -- the Ekind of all the discriminants appropriately.
19025 Discr := First (Discriminant_Specifications (N));
19026 Discr_Number := Uint_1;
19027 while Present (Discr) loop
19028 Id := Defining_Identifier (Discr);
19029 Set_Ekind (Id, E_Discriminant);
19030 Init_Component_Location (Id);
19031 Init_Esize (Id);
19032 Set_Discriminant_Number (Id, Discr_Number);
19034 -- Make sure this is always set, even in illegal programs
19036 Set_Corresponding_Discriminant (Id, Empty);
19038 -- Initialize the Original_Record_Component to the entity itself.
19039 -- Inherit_Components will propagate the right value to
19040 -- discriminants in derived record types.
19042 Set_Original_Record_Component (Id, Id);
19044 -- Create the discriminal for the discriminant
19046 Build_Discriminal (Id);
19048 Next (Discr);
19049 Discr_Number := Discr_Number + 1;
19050 end loop;
19052 Set_Has_Discriminants (Current_Scope);
19053 end Process_Discriminants;
19055 -----------------------
19056 -- Process_Full_View --
19057 -----------------------
19059 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19060 procedure Collect_Implemented_Interfaces
19061 (Typ : Entity_Id;
19062 Ifaces : Elist_Id);
19063 -- Ada 2005: Gather all the interfaces that Typ directly or
19064 -- inherently implements. Duplicate entries are not added to
19065 -- the list Ifaces.
19067 ------------------------------------
19068 -- Collect_Implemented_Interfaces --
19069 ------------------------------------
19071 procedure Collect_Implemented_Interfaces
19072 (Typ : Entity_Id;
19073 Ifaces : Elist_Id)
19075 Iface : Entity_Id;
19076 Iface_Elmt : Elmt_Id;
19078 begin
19079 -- Abstract interfaces are only associated with tagged record types
19081 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19082 return;
19083 end if;
19085 -- Recursively climb to the ancestors
19087 if Etype (Typ) /= Typ
19089 -- Protect the frontend against wrong cyclic declarations like:
19091 -- type B is new A with private;
19092 -- type C is new A with private;
19093 -- private
19094 -- type B is new C with null record;
19095 -- type C is new B with null record;
19097 and then Etype (Typ) /= Priv_T
19098 and then Etype (Typ) /= Full_T
19099 then
19100 -- Keep separate the management of private type declarations
19102 if Ekind (Typ) = E_Record_Type_With_Private then
19104 -- Handle the following illegal usage:
19105 -- type Private_Type is tagged private;
19106 -- private
19107 -- type Private_Type is new Type_Implementing_Iface;
19109 if Present (Full_View (Typ))
19110 and then Etype (Typ) /= Full_View (Typ)
19111 then
19112 if Is_Interface (Etype (Typ)) then
19113 Append_Unique_Elmt (Etype (Typ), Ifaces);
19114 end if;
19116 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19117 end if;
19119 -- Non-private types
19121 else
19122 if Is_Interface (Etype (Typ)) then
19123 Append_Unique_Elmt (Etype (Typ), Ifaces);
19124 end if;
19126 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19127 end if;
19128 end if;
19130 -- Handle entities in the list of abstract interfaces
19132 if Present (Interfaces (Typ)) then
19133 Iface_Elmt := First_Elmt (Interfaces (Typ));
19134 while Present (Iface_Elmt) loop
19135 Iface := Node (Iface_Elmt);
19137 pragma Assert (Is_Interface (Iface));
19139 if not Contain_Interface (Iface, Ifaces) then
19140 Append_Elmt (Iface, Ifaces);
19141 Collect_Implemented_Interfaces (Iface, Ifaces);
19142 end if;
19144 Next_Elmt (Iface_Elmt);
19145 end loop;
19146 end if;
19147 end Collect_Implemented_Interfaces;
19149 -- Local variables
19151 Full_Indic : Node_Id;
19152 Full_Parent : Entity_Id;
19153 Priv_Parent : Entity_Id;
19155 -- Start of processing for Process_Full_View
19157 begin
19158 -- First some sanity checks that must be done after semantic
19159 -- decoration of the full view and thus cannot be placed with other
19160 -- similar checks in Find_Type_Name
19162 if not Is_Limited_Type (Priv_T)
19163 and then (Is_Limited_Type (Full_T)
19164 or else Is_Limited_Composite (Full_T))
19165 then
19166 if In_Instance then
19167 null;
19168 else
19169 Error_Msg_N
19170 ("completion of nonlimited type cannot be limited", Full_T);
19171 Explain_Limited_Type (Full_T, Full_T);
19172 end if;
19174 elsif Is_Abstract_Type (Full_T)
19175 and then not Is_Abstract_Type (Priv_T)
19176 then
19177 Error_Msg_N
19178 ("completion of nonabstract type cannot be abstract", Full_T);
19180 elsif Is_Tagged_Type (Priv_T)
19181 and then Is_Limited_Type (Priv_T)
19182 and then not Is_Limited_Type (Full_T)
19183 then
19184 -- If pragma CPP_Class was applied to the private declaration
19185 -- propagate the limitedness to the full-view
19187 if Is_CPP_Class (Priv_T) then
19188 Set_Is_Limited_Record (Full_T);
19190 -- GNAT allow its own definition of Limited_Controlled to disobey
19191 -- this rule in order in ease the implementation. This test is safe
19192 -- because Root_Controlled is defined in a child of System that
19193 -- normal programs are not supposed to use.
19195 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19196 Set_Is_Limited_Composite (Full_T);
19197 else
19198 Error_Msg_N
19199 ("completion of limited tagged type must be limited", Full_T);
19200 end if;
19202 elsif Is_Generic_Type (Priv_T) then
19203 Error_Msg_N ("generic type cannot have a completion", Full_T);
19204 end if;
19206 -- Check that ancestor interfaces of private and full views are
19207 -- consistent. We omit this check for synchronized types because
19208 -- they are performed on the corresponding record type when frozen.
19210 if Ada_Version >= Ada_2005
19211 and then Is_Tagged_Type (Priv_T)
19212 and then Is_Tagged_Type (Full_T)
19213 and then not Is_Concurrent_Type (Full_T)
19214 then
19215 declare
19216 Iface : Entity_Id;
19217 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19218 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19220 begin
19221 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19222 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19224 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19225 -- an interface type if and only if the full type is descendant
19226 -- of the interface type (AARM 7.3 (7.3/2)).
19228 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19230 if Present (Iface) then
19231 Error_Msg_NE
19232 ("interface in partial view& not implemented by full type "
19233 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19234 end if;
19236 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19238 if Present (Iface) then
19239 Error_Msg_NE
19240 ("interface & not implemented by partial view "
19241 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19242 end if;
19243 end;
19244 end if;
19246 if Is_Tagged_Type (Priv_T)
19247 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19248 and then Is_Derived_Type (Full_T)
19249 then
19250 Priv_Parent := Etype (Priv_T);
19252 -- The full view of a private extension may have been transformed
19253 -- into an unconstrained derived type declaration and a subtype
19254 -- declaration (see build_derived_record_type for details).
19256 if Nkind (N) = N_Subtype_Declaration then
19257 Full_Indic := Subtype_Indication (N);
19258 Full_Parent := Etype (Base_Type (Full_T));
19259 else
19260 Full_Indic := Subtype_Indication (Type_Definition (N));
19261 Full_Parent := Etype (Full_T);
19262 end if;
19264 -- Check that the parent type of the full type is a descendant of
19265 -- the ancestor subtype given in the private extension. If either
19266 -- entity has an Etype equal to Any_Type then we had some previous
19267 -- error situation [7.3(8)].
19269 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19270 return;
19272 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19273 -- any order. Therefore we don't have to check that its parent must
19274 -- be a descendant of the parent of the private type declaration.
19276 elsif Is_Interface (Priv_Parent)
19277 and then Is_Interface (Full_Parent)
19278 then
19279 null;
19281 -- Ada 2005 (AI-251): If the parent of the private type declaration
19282 -- is an interface there is no need to check that it is an ancestor
19283 -- of the associated full type declaration. The required tests for
19284 -- this case are performed by Build_Derived_Record_Type.
19286 elsif not Is_Interface (Base_Type (Priv_Parent))
19287 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19288 then
19289 Error_Msg_N
19290 ("parent of full type must descend from parent"
19291 & " of private extension", Full_Indic);
19293 -- First check a formal restriction, and then proceed with checking
19294 -- Ada rules. Since the formal restriction is not a serious error, we
19295 -- don't prevent further error detection for this check, hence the
19296 -- ELSE.
19298 else
19299 -- In formal mode, when completing a private extension the type
19300 -- named in the private part must be exactly the same as that
19301 -- named in the visible part.
19303 if Priv_Parent /= Full_Parent then
19304 Error_Msg_Name_1 := Chars (Priv_Parent);
19305 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19306 end if;
19308 -- Check the rules of 7.3(10): if the private extension inherits
19309 -- known discriminants, then the full type must also inherit those
19310 -- discriminants from the same (ancestor) type, and the parent
19311 -- subtype of the full type must be constrained if and only if
19312 -- the ancestor subtype of the private extension is constrained.
19314 if No (Discriminant_Specifications (Parent (Priv_T)))
19315 and then not Has_Unknown_Discriminants (Priv_T)
19316 and then Has_Discriminants (Base_Type (Priv_Parent))
19317 then
19318 declare
19319 Priv_Indic : constant Node_Id :=
19320 Subtype_Indication (Parent (Priv_T));
19322 Priv_Constr : constant Boolean :=
19323 Is_Constrained (Priv_Parent)
19324 or else
19325 Nkind (Priv_Indic) = N_Subtype_Indication
19326 or else
19327 Is_Constrained (Entity (Priv_Indic));
19329 Full_Constr : constant Boolean :=
19330 Is_Constrained (Full_Parent)
19331 or else
19332 Nkind (Full_Indic) = N_Subtype_Indication
19333 or else
19334 Is_Constrained (Entity (Full_Indic));
19336 Priv_Discr : Entity_Id;
19337 Full_Discr : Entity_Id;
19339 begin
19340 Priv_Discr := First_Discriminant (Priv_Parent);
19341 Full_Discr := First_Discriminant (Full_Parent);
19342 while Present (Priv_Discr) and then Present (Full_Discr) loop
19343 if Original_Record_Component (Priv_Discr) =
19344 Original_Record_Component (Full_Discr)
19345 or else
19346 Corresponding_Discriminant (Priv_Discr) =
19347 Corresponding_Discriminant (Full_Discr)
19348 then
19349 null;
19350 else
19351 exit;
19352 end if;
19354 Next_Discriminant (Priv_Discr);
19355 Next_Discriminant (Full_Discr);
19356 end loop;
19358 if Present (Priv_Discr) or else Present (Full_Discr) then
19359 Error_Msg_N
19360 ("full view must inherit discriminants of the parent"
19361 & " type used in the private extension", Full_Indic);
19363 elsif Priv_Constr and then not Full_Constr then
19364 Error_Msg_N
19365 ("parent subtype of full type must be constrained",
19366 Full_Indic);
19368 elsif Full_Constr and then not Priv_Constr then
19369 Error_Msg_N
19370 ("parent subtype of full type must be unconstrained",
19371 Full_Indic);
19372 end if;
19373 end;
19375 -- Check the rules of 7.3(12): if a partial view has neither
19376 -- known or unknown discriminants, then the full type
19377 -- declaration shall define a definite subtype.
19379 elsif not Has_Unknown_Discriminants (Priv_T)
19380 and then not Has_Discriminants (Priv_T)
19381 and then not Is_Constrained (Full_T)
19382 then
19383 Error_Msg_N
19384 ("full view must define a constrained type if partial view"
19385 & " has no discriminants", Full_T);
19386 end if;
19388 -- ??????? Do we implement the following properly ?????
19389 -- If the ancestor subtype of a private extension has constrained
19390 -- discriminants, then the parent subtype of the full view shall
19391 -- impose a statically matching constraint on those discriminants
19392 -- [7.3(13)].
19393 end if;
19395 else
19396 -- For untagged types, verify that a type without discriminants is
19397 -- not completed with an unconstrained type. A separate error message
19398 -- is produced if the full type has defaulted discriminants.
19400 if not Is_Indefinite_Subtype (Priv_T)
19401 and then Is_Indefinite_Subtype (Full_T)
19402 then
19403 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19404 Error_Msg_NE
19405 ("full view of& not compatible with declaration#",
19406 Full_T, Priv_T);
19408 if not Is_Tagged_Type (Full_T) then
19409 Error_Msg_N
19410 ("\one is constrained, the other unconstrained", Full_T);
19411 end if;
19412 end if;
19413 end if;
19415 -- AI-419: verify that the use of "limited" is consistent
19417 declare
19418 Orig_Decl : constant Node_Id := Original_Node (N);
19420 begin
19421 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19422 and then not Limited_Present (Parent (Priv_T))
19423 and then not Synchronized_Present (Parent (Priv_T))
19424 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19425 and then Nkind
19426 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19427 and then Limited_Present (Type_Definition (Orig_Decl))
19428 then
19429 Error_Msg_N
19430 ("full view of non-limited extension cannot be limited", N);
19431 end if;
19432 end;
19434 -- Ada 2005 (AI-443): A synchronized private extension must be
19435 -- completed by a task or protected type.
19437 if Ada_Version >= Ada_2005
19438 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19439 and then Synchronized_Present (Parent (Priv_T))
19440 and then not Is_Concurrent_Type (Full_T)
19441 then
19442 Error_Msg_N ("full view of synchronized extension must " &
19443 "be synchronized type", N);
19444 end if;
19446 -- Ada 2005 AI-363: if the full view has discriminants with
19447 -- defaults, it is illegal to declare constrained access subtypes
19448 -- whose designated type is the current type. This allows objects
19449 -- of the type that are declared in the heap to be unconstrained.
19451 if not Has_Unknown_Discriminants (Priv_T)
19452 and then not Has_Discriminants (Priv_T)
19453 and then Has_Discriminants (Full_T)
19454 and then
19455 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19456 then
19457 Set_Has_Constrained_Partial_View (Full_T);
19458 Set_Has_Constrained_Partial_View (Priv_T);
19459 end if;
19461 -- Create a full declaration for all its subtypes recorded in
19462 -- Private_Dependents and swap them similarly to the base type. These
19463 -- are subtypes that have been define before the full declaration of
19464 -- the private type. We also swap the entry in Private_Dependents list
19465 -- so we can properly restore the private view on exit from the scope.
19467 declare
19468 Priv_Elmt : Elmt_Id;
19469 Priv_Scop : Entity_Id;
19470 Priv : Entity_Id;
19471 Full : Entity_Id;
19473 begin
19474 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19475 while Present (Priv_Elmt) loop
19476 Priv := Node (Priv_Elmt);
19477 Priv_Scop := Scope (Priv);
19479 if Ekind_In (Priv, E_Private_Subtype,
19480 E_Limited_Private_Subtype,
19481 E_Record_Subtype_With_Private)
19482 then
19483 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19484 Set_Is_Itype (Full);
19485 Set_Parent (Full, Parent (Priv));
19486 Set_Associated_Node_For_Itype (Full, N);
19488 -- Now we need to complete the private subtype, but since the
19489 -- base type has already been swapped, we must also swap the
19490 -- subtypes (and thus, reverse the arguments in the call to
19491 -- Complete_Private_Subtype). Also note that we may need to
19492 -- re-establish the scope of the private subtype.
19494 Copy_And_Swap (Priv, Full);
19496 if not In_Open_Scopes (Priv_Scop) then
19497 Push_Scope (Priv_Scop);
19499 else
19500 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19502 Priv_Scop := Empty;
19503 end if;
19505 Complete_Private_Subtype (Full, Priv, Full_T, N);
19507 if Present (Priv_Scop) then
19508 Pop_Scope;
19509 end if;
19511 Replace_Elmt (Priv_Elmt, Full);
19512 end if;
19514 Next_Elmt (Priv_Elmt);
19515 end loop;
19516 end;
19518 -- If the private view was tagged, copy the new primitive operations
19519 -- from the private view to the full view.
19521 if Is_Tagged_Type (Full_T) then
19522 declare
19523 Disp_Typ : Entity_Id;
19524 Full_List : Elist_Id;
19525 Prim : Entity_Id;
19526 Prim_Elmt : Elmt_Id;
19527 Priv_List : Elist_Id;
19529 function Contains
19530 (E : Entity_Id;
19531 L : Elist_Id) return Boolean;
19532 -- Determine whether list L contains element E
19534 --------------
19535 -- Contains --
19536 --------------
19538 function Contains
19539 (E : Entity_Id;
19540 L : Elist_Id) return Boolean
19542 List_Elmt : Elmt_Id;
19544 begin
19545 List_Elmt := First_Elmt (L);
19546 while Present (List_Elmt) loop
19547 if Node (List_Elmt) = E then
19548 return True;
19549 end if;
19551 Next_Elmt (List_Elmt);
19552 end loop;
19554 return False;
19555 end Contains;
19557 -- Start of processing
19559 begin
19560 if Is_Tagged_Type (Priv_T) then
19561 Priv_List := Primitive_Operations (Priv_T);
19562 Prim_Elmt := First_Elmt (Priv_List);
19564 -- In the case of a concurrent type completing a private tagged
19565 -- type, primitives may have been declared in between the two
19566 -- views. These subprograms need to be wrapped the same way
19567 -- entries and protected procedures are handled because they
19568 -- cannot be directly shared by the two views.
19570 if Is_Concurrent_Type (Full_T) then
19571 declare
19572 Conc_Typ : constant Entity_Id :=
19573 Corresponding_Record_Type (Full_T);
19574 Curr_Nod : Node_Id := Parent (Conc_Typ);
19575 Wrap_Spec : Node_Id;
19577 begin
19578 while Present (Prim_Elmt) loop
19579 Prim := Node (Prim_Elmt);
19581 if Comes_From_Source (Prim)
19582 and then not Is_Abstract_Subprogram (Prim)
19583 then
19584 Wrap_Spec :=
19585 Make_Subprogram_Declaration (Sloc (Prim),
19586 Specification =>
19587 Build_Wrapper_Spec
19588 (Subp_Id => Prim,
19589 Obj_Typ => Conc_Typ,
19590 Formals =>
19591 Parameter_Specifications (
19592 Parent (Prim))));
19594 Insert_After (Curr_Nod, Wrap_Spec);
19595 Curr_Nod := Wrap_Spec;
19597 Analyze (Wrap_Spec);
19598 end if;
19600 Next_Elmt (Prim_Elmt);
19601 end loop;
19603 return;
19604 end;
19606 -- For non-concurrent types, transfer explicit primitives, but
19607 -- omit those inherited from the parent of the private view
19608 -- since they will be re-inherited later on.
19610 else
19611 Full_List := Primitive_Operations (Full_T);
19613 while Present (Prim_Elmt) loop
19614 Prim := Node (Prim_Elmt);
19616 if Comes_From_Source (Prim)
19617 and then not Contains (Prim, Full_List)
19618 then
19619 Append_Elmt (Prim, Full_List);
19620 end if;
19622 Next_Elmt (Prim_Elmt);
19623 end loop;
19624 end if;
19626 -- Untagged private view
19628 else
19629 Full_List := Primitive_Operations (Full_T);
19631 -- In this case the partial view is untagged, so here we locate
19632 -- all of the earlier primitives that need to be treated as
19633 -- dispatching (those that appear between the two views). Note
19634 -- that these additional operations must all be new operations
19635 -- (any earlier operations that override inherited operations
19636 -- of the full view will already have been inserted in the
19637 -- primitives list, marked by Check_Operation_From_Private_View
19638 -- as dispatching. Note that implicit "/=" operators are
19639 -- excluded from being added to the primitives list since they
19640 -- shouldn't be treated as dispatching (tagged "/=" is handled
19641 -- specially).
19643 Prim := Next_Entity (Full_T);
19644 while Present (Prim) and then Prim /= Priv_T loop
19645 if Ekind_In (Prim, E_Procedure, E_Function) then
19646 Disp_Typ := Find_Dispatching_Type (Prim);
19648 if Disp_Typ = Full_T
19649 and then (Chars (Prim) /= Name_Op_Ne
19650 or else Comes_From_Source (Prim))
19651 then
19652 Check_Controlling_Formals (Full_T, Prim);
19654 if not Is_Dispatching_Operation (Prim) then
19655 Append_Elmt (Prim, Full_List);
19656 Set_Is_Dispatching_Operation (Prim, True);
19657 Set_DT_Position (Prim, No_Uint);
19658 end if;
19660 elsif Is_Dispatching_Operation (Prim)
19661 and then Disp_Typ /= Full_T
19662 then
19664 -- Verify that it is not otherwise controlled by a
19665 -- formal or a return value of type T.
19667 Check_Controlling_Formals (Disp_Typ, Prim);
19668 end if;
19669 end if;
19671 Next_Entity (Prim);
19672 end loop;
19673 end if;
19675 -- For the tagged case, the two views can share the same primitive
19676 -- operations list and the same class-wide type. Update attributes
19677 -- of the class-wide type which depend on the full declaration.
19679 if Is_Tagged_Type (Priv_T) then
19680 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19681 Set_Class_Wide_Type
19682 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19684 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19685 Set_Has_Protected
19686 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19687 end if;
19688 end;
19689 end if;
19691 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19693 if Known_To_Have_Preelab_Init (Priv_T) then
19695 -- Case where there is a pragma Preelaborable_Initialization. We
19696 -- always allow this in predefined units, which is cheating a bit,
19697 -- but it means we don't have to struggle to meet the requirements in
19698 -- the RM for having Preelaborable Initialization. Otherwise we
19699 -- require that the type meets the RM rules. But we can't check that
19700 -- yet, because of the rule about overriding Initialize, so we simply
19701 -- set a flag that will be checked at freeze time.
19703 if not In_Predefined_Unit (Full_T) then
19704 Set_Must_Have_Preelab_Init (Full_T);
19705 end if;
19706 end if;
19708 -- If pragma CPP_Class was applied to the private type declaration,
19709 -- propagate it now to the full type declaration.
19711 if Is_CPP_Class (Priv_T) then
19712 Set_Is_CPP_Class (Full_T);
19713 Set_Convention (Full_T, Convention_CPP);
19715 -- Check that components of imported CPP types do not have default
19716 -- expressions.
19718 Check_CPP_Type_Has_No_Defaults (Full_T);
19719 end if;
19721 -- If the private view has user specified stream attributes, then so has
19722 -- the full view.
19724 -- Why the test, how could these flags be already set in Full_T ???
19726 if Has_Specified_Stream_Read (Priv_T) then
19727 Set_Has_Specified_Stream_Read (Full_T);
19728 end if;
19730 if Has_Specified_Stream_Write (Priv_T) then
19731 Set_Has_Specified_Stream_Write (Full_T);
19732 end if;
19734 if Has_Specified_Stream_Input (Priv_T) then
19735 Set_Has_Specified_Stream_Input (Full_T);
19736 end if;
19738 if Has_Specified_Stream_Output (Priv_T) then
19739 Set_Has_Specified_Stream_Output (Full_T);
19740 end if;
19742 -- Propagate the attributes related to pragma Default_Initial_Condition
19743 -- from the private to the full view. Note that both flags are mutually
19744 -- exclusive.
19746 if Has_Default_Init_Cond (Priv_T)
19747 or else Has_Inherited_Default_Init_Cond (Priv_T)
19748 then
19749 Propagate_Default_Init_Cond_Attributes
19750 (From_Typ => Priv_T,
19751 To_Typ => Full_T,
19752 Private_To_Full_View => True);
19754 -- In the case where the full view is derived from another private type,
19755 -- the attributes related to pragma Default_Initial_Condition must be
19756 -- propagated from the full to the private view to maintain consistency
19757 -- of views.
19759 -- package Pack is
19760 -- type Parent_Typ is private
19761 -- with Default_Initial_Condition ...;
19762 -- private
19763 -- type Parent_Typ is ...;
19764 -- end Pack;
19766 -- with Pack; use Pack;
19767 -- package Pack_2 is
19768 -- type Deriv_Typ is private; -- must inherit
19769 -- private
19770 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19771 -- end Pack_2;
19773 elsif Has_Default_Init_Cond (Full_T)
19774 or else Has_Inherited_Default_Init_Cond (Full_T)
19775 then
19776 Propagate_Default_Init_Cond_Attributes
19777 (From_Typ => Full_T,
19778 To_Typ => Priv_T,
19779 Private_To_Full_View => True);
19780 end if;
19782 -- Propagate the attributes related to pragma Ghost from the private to
19783 -- the full view.
19785 if Is_Ghost_Entity (Priv_T) then
19786 Set_Is_Ghost_Entity (Full_T);
19788 -- The Ghost policy in effect at the point of declaration and at the
19789 -- point of completion must match (SPARK RM 6.9(15)).
19791 Check_Ghost_Completion (Priv_T, Full_T);
19793 -- In the case where the private view of a tagged type lacks a parent
19794 -- type and is subject to pragma Ghost, ensure that the parent type
19795 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19797 if Is_Derived_Type (Full_T) then
19798 Check_Ghost_Derivation (Full_T);
19799 end if;
19800 end if;
19802 -- Propagate invariants to full type
19804 if Has_Invariants (Priv_T) then
19805 Set_Has_Invariants (Full_T);
19806 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19807 end if;
19809 if Has_Inheritable_Invariants (Priv_T) then
19810 Set_Has_Inheritable_Invariants (Full_T);
19811 end if;
19813 -- Propagate predicates to full type, and predicate function if already
19814 -- defined. It is not clear that this can actually happen? the partial
19815 -- view cannot be frozen yet, and the predicate function has not been
19816 -- built. Still it is a cheap check and seems safer to make it.
19818 if Has_Predicates (Priv_T) then
19819 if Present (Predicate_Function (Priv_T)) then
19820 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19821 end if;
19823 Set_Has_Predicates (Full_T);
19824 end if;
19825 end Process_Full_View;
19827 -----------------------------------
19828 -- Process_Incomplete_Dependents --
19829 -----------------------------------
19831 procedure Process_Incomplete_Dependents
19832 (N : Node_Id;
19833 Full_T : Entity_Id;
19834 Inc_T : Entity_Id)
19836 Inc_Elmt : Elmt_Id;
19837 Priv_Dep : Entity_Id;
19838 New_Subt : Entity_Id;
19840 Disc_Constraint : Elist_Id;
19842 begin
19843 if No (Private_Dependents (Inc_T)) then
19844 return;
19845 end if;
19847 -- Itypes that may be generated by the completion of an incomplete
19848 -- subtype are not used by the back-end and not attached to the tree.
19849 -- They are created only for constraint-checking purposes.
19851 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19852 while Present (Inc_Elmt) loop
19853 Priv_Dep := Node (Inc_Elmt);
19855 if Ekind (Priv_Dep) = E_Subprogram_Type then
19857 -- An Access_To_Subprogram type may have a return type or a
19858 -- parameter type that is incomplete. Replace with the full view.
19860 if Etype (Priv_Dep) = Inc_T then
19861 Set_Etype (Priv_Dep, Full_T);
19862 end if;
19864 declare
19865 Formal : Entity_Id;
19867 begin
19868 Formal := First_Formal (Priv_Dep);
19869 while Present (Formal) loop
19870 if Etype (Formal) = Inc_T then
19871 Set_Etype (Formal, Full_T);
19872 end if;
19874 Next_Formal (Formal);
19875 end loop;
19876 end;
19878 elsif Is_Overloadable (Priv_Dep) then
19880 -- If a subprogram in the incomplete dependents list is primitive
19881 -- for a tagged full type then mark it as a dispatching operation,
19882 -- check whether it overrides an inherited subprogram, and check
19883 -- restrictions on its controlling formals. Note that a protected
19884 -- operation is never dispatching: only its wrapper operation
19885 -- (which has convention Ada) is.
19887 if Is_Tagged_Type (Full_T)
19888 and then Is_Primitive (Priv_Dep)
19889 and then Convention (Priv_Dep) /= Convention_Protected
19890 then
19891 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19892 Set_Is_Dispatching_Operation (Priv_Dep);
19893 Check_Controlling_Formals (Full_T, Priv_Dep);
19894 end if;
19896 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19898 -- Can happen during processing of a body before the completion
19899 -- of a TA type. Ignore, because spec is also on dependent list.
19901 return;
19903 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19904 -- corresponding subtype of the full view.
19906 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19907 Set_Subtype_Indication
19908 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19909 Set_Etype (Priv_Dep, Full_T);
19910 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19911 Set_Analyzed (Parent (Priv_Dep), False);
19913 -- Reanalyze the declaration, suppressing the call to
19914 -- Enter_Name to avoid duplicate names.
19916 Analyze_Subtype_Declaration
19917 (N => Parent (Priv_Dep),
19918 Skip => True);
19920 -- Dependent is a subtype
19922 else
19923 -- We build a new subtype indication using the full view of the
19924 -- incomplete parent. The discriminant constraints have been
19925 -- elaborated already at the point of the subtype declaration.
19927 New_Subt := Create_Itype (E_Void, N);
19929 if Has_Discriminants (Full_T) then
19930 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19931 else
19932 Disc_Constraint := No_Elist;
19933 end if;
19935 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19936 Set_Full_View (Priv_Dep, New_Subt);
19937 end if;
19939 Next_Elmt (Inc_Elmt);
19940 end loop;
19941 end Process_Incomplete_Dependents;
19943 --------------------------------
19944 -- Process_Range_Expr_In_Decl --
19945 --------------------------------
19947 procedure Process_Range_Expr_In_Decl
19948 (R : Node_Id;
19949 T : Entity_Id;
19950 Subtyp : Entity_Id := Empty;
19951 Check_List : List_Id := Empty_List;
19952 R_Check_Off : Boolean := False;
19953 In_Iter_Schm : Boolean := False)
19955 Lo, Hi : Node_Id;
19956 R_Checks : Check_Result;
19957 Insert_Node : Node_Id;
19958 Def_Id : Entity_Id;
19960 begin
19961 Analyze_And_Resolve (R, Base_Type (T));
19963 if Nkind (R) = N_Range then
19965 -- In SPARK, all ranges should be static, with the exception of the
19966 -- discrete type definition of a loop parameter specification.
19968 if not In_Iter_Schm
19969 and then not Is_OK_Static_Range (R)
19970 then
19971 Check_SPARK_05_Restriction ("range should be static", R);
19972 end if;
19974 Lo := Low_Bound (R);
19975 Hi := High_Bound (R);
19977 -- Validity checks on the range of a quantified expression are
19978 -- delayed until the construct is transformed into a loop.
19980 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
19981 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
19982 then
19983 null;
19985 -- We need to ensure validity of the bounds here, because if we
19986 -- go ahead and do the expansion, then the expanded code will get
19987 -- analyzed with range checks suppressed and we miss the check.
19989 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19990 -- the temporaries generated by routine Remove_Side_Effects by means
19991 -- of validity checks must use the same names. When a range appears
19992 -- in the parent of a generic, the range is processed with checks
19993 -- disabled as part of the generic context and with checks enabled
19994 -- for code generation purposes. This leads to link issues as the
19995 -- generic contains references to xxx_FIRST/_LAST, but the inlined
19996 -- template sees the temporaries generated by Remove_Side_Effects.
19998 else
19999 Validity_Check_Range (R, Subtyp);
20000 end if;
20002 -- If there were errors in the declaration, try and patch up some
20003 -- common mistakes in the bounds. The cases handled are literals
20004 -- which are Integer where the expected type is Real and vice versa.
20005 -- These corrections allow the compilation process to proceed further
20006 -- along since some basic assumptions of the format of the bounds
20007 -- are guaranteed.
20009 if Etype (R) = Any_Type then
20010 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20011 Rewrite (Lo,
20012 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20014 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20015 Rewrite (Hi,
20016 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20018 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20019 Rewrite (Lo,
20020 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20022 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20023 Rewrite (Hi,
20024 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20025 end if;
20027 Set_Etype (Lo, T);
20028 Set_Etype (Hi, T);
20029 end if;
20031 -- If the bounds of the range have been mistakenly given as string
20032 -- literals (perhaps in place of character literals), then an error
20033 -- has already been reported, but we rewrite the string literal as a
20034 -- bound of the range's type to avoid blowups in later processing
20035 -- that looks at static values.
20037 if Nkind (Lo) = N_String_Literal then
20038 Rewrite (Lo,
20039 Make_Attribute_Reference (Sloc (Lo),
20040 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20041 Attribute_Name => Name_First));
20042 Analyze_And_Resolve (Lo);
20043 end if;
20045 if Nkind (Hi) = N_String_Literal then
20046 Rewrite (Hi,
20047 Make_Attribute_Reference (Sloc (Hi),
20048 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20049 Attribute_Name => Name_First));
20050 Analyze_And_Resolve (Hi);
20051 end if;
20053 -- If bounds aren't scalar at this point then exit, avoiding
20054 -- problems with further processing of the range in this procedure.
20056 if not Is_Scalar_Type (Etype (Lo)) then
20057 return;
20058 end if;
20060 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20061 -- then range of the base type. Here we check whether the bounds
20062 -- are in the range of the subtype itself. Note that if the bounds
20063 -- represent the null range the Constraint_Error exception should
20064 -- not be raised.
20066 -- ??? The following code should be cleaned up as follows
20068 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20069 -- is done in the call to Range_Check (R, T); below
20071 -- 2. The use of R_Check_Off should be investigated and possibly
20072 -- removed, this would clean up things a bit.
20074 if Is_Null_Range (Lo, Hi) then
20075 null;
20077 else
20078 -- Capture values of bounds and generate temporaries for them
20079 -- if needed, before applying checks, since checks may cause
20080 -- duplication of the expression without forcing evaluation.
20082 -- The forced evaluation removes side effects from expressions,
20083 -- which should occur also in GNATprove mode. Otherwise, we end up
20084 -- with unexpected insertions of actions at places where this is
20085 -- not supposed to occur, e.g. on default parameters of a call.
20087 if Expander_Active or GNATprove_Mode then
20089 -- If no subtype name, then just call Force_Evaluation to
20090 -- create declarations as needed to deal with side effects.
20091 -- Also ignore calls from within a record type, where we
20092 -- have possible scoping issues.
20094 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
20095 Force_Evaluation (Lo);
20096 Force_Evaluation (Hi);
20098 -- If a subtype is given, then we capture the bounds if they
20099 -- are not known at compile time, using constant identifiers
20100 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
20102 -- Note: we do this transformation even if expansion is not
20103 -- active, and in particular we do it in GNATprove_Mode since
20104 -- the transformation is in general required to ensure that the
20105 -- resulting tree has proper Ada semantics.
20107 -- Historical note: We used to just do Force_Evaluation calls
20108 -- in all cases, but it is better to capture the bounds with
20109 -- proper non-serialized names, since these will be accessed
20110 -- from other units, and hence may be public, and also we can
20111 -- then expand 'First and 'Last references to be references to
20112 -- these special names.
20114 else
20115 if not Compile_Time_Known_Value (Lo)
20117 -- No need to capture bounds if they already are
20118 -- references to constants.
20120 and then not (Is_Entity_Name (Lo)
20121 and then Is_Constant_Object (Entity (Lo)))
20122 then
20123 declare
20124 Loc : constant Source_Ptr := Sloc (Lo);
20125 Lov : constant Entity_Id :=
20126 Make_Defining_Identifier (Loc,
20127 Chars =>
20128 New_External_Name (Chars (Subtyp), "_FIRST"));
20129 begin
20130 Insert_Action (R,
20131 Make_Object_Declaration (Loc,
20132 Defining_Identifier => Lov,
20133 Object_Definition =>
20134 New_Occurrence_Of (Base_Type (T), Loc),
20135 Constant_Present => True,
20136 Expression => Relocate_Node (Lo)));
20137 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
20138 end;
20139 end if;
20141 if not Compile_Time_Known_Value (Hi)
20142 and then not (Is_Entity_Name (Hi)
20143 and then Is_Constant_Object (Entity (Hi)))
20144 then
20145 declare
20146 Loc : constant Source_Ptr := Sloc (Hi);
20147 Hiv : constant Entity_Id :=
20148 Make_Defining_Identifier (Loc,
20149 Chars =>
20150 New_External_Name (Chars (Subtyp), "_LAST"));
20151 begin
20152 Insert_Action (R,
20153 Make_Object_Declaration (Loc,
20154 Defining_Identifier => Hiv,
20155 Object_Definition =>
20156 New_Occurrence_Of (Base_Type (T), Loc),
20157 Constant_Present => True,
20158 Expression => Relocate_Node (Hi)));
20159 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
20160 end;
20161 end if;
20162 end if;
20163 end if;
20165 -- We use a flag here instead of suppressing checks on the
20166 -- type because the type we check against isn't necessarily
20167 -- the place where we put the check.
20169 if not R_Check_Off then
20170 R_Checks := Get_Range_Checks (R, T);
20172 -- Look up tree to find an appropriate insertion point. We
20173 -- can't just use insert_actions because later processing
20174 -- depends on the insertion node. Prior to Ada 2012 the
20175 -- insertion point could only be a declaration or a loop, but
20176 -- quantified expressions can appear within any context in an
20177 -- expression, and the insertion point can be any statement,
20178 -- pragma, or declaration.
20180 Insert_Node := Parent (R);
20181 while Present (Insert_Node) loop
20182 exit when
20183 Nkind (Insert_Node) in N_Declaration
20184 and then
20185 not Nkind_In
20186 (Insert_Node, N_Component_Declaration,
20187 N_Loop_Parameter_Specification,
20188 N_Function_Specification,
20189 N_Procedure_Specification);
20191 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20192 or else Nkind (Insert_Node) in
20193 N_Statement_Other_Than_Procedure_Call
20194 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20195 N_Pragma);
20197 Insert_Node := Parent (Insert_Node);
20198 end loop;
20200 -- Why would Type_Decl not be present??? Without this test,
20201 -- short regression tests fail.
20203 if Present (Insert_Node) then
20205 -- Case of loop statement. Verify that the range is part
20206 -- of the subtype indication of the iteration scheme.
20208 if Nkind (Insert_Node) = N_Loop_Statement then
20209 declare
20210 Indic : Node_Id;
20212 begin
20213 Indic := Parent (R);
20214 while Present (Indic)
20215 and then Nkind (Indic) /= N_Subtype_Indication
20216 loop
20217 Indic := Parent (Indic);
20218 end loop;
20220 if Present (Indic) then
20221 Def_Id := Etype (Subtype_Mark (Indic));
20223 Insert_Range_Checks
20224 (R_Checks,
20225 Insert_Node,
20226 Def_Id,
20227 Sloc (Insert_Node),
20229 Do_Before => True);
20230 end if;
20231 end;
20233 -- Insertion before a declaration. If the declaration
20234 -- includes discriminants, the list of applicable checks
20235 -- is given by the caller.
20237 elsif Nkind (Insert_Node) in N_Declaration then
20238 Def_Id := Defining_Identifier (Insert_Node);
20240 if (Ekind (Def_Id) = E_Record_Type
20241 and then Depends_On_Discriminant (R))
20242 or else
20243 (Ekind (Def_Id) = E_Protected_Type
20244 and then Has_Discriminants (Def_Id))
20245 then
20246 Append_Range_Checks
20247 (R_Checks,
20248 Check_List, Def_Id, Sloc (Insert_Node), R);
20250 else
20251 Insert_Range_Checks
20252 (R_Checks,
20253 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20255 end if;
20257 -- Insertion before a statement. Range appears in the
20258 -- context of a quantified expression. Insertion will
20259 -- take place when expression is expanded.
20261 else
20262 null;
20263 end if;
20264 end if;
20265 end if;
20266 end if;
20268 -- Case of other than an explicit N_Range node
20270 -- The forced evaluation removes side effects from expressions, which
20271 -- should occur also in GNATprove mode. Otherwise, we end up with
20272 -- unexpected insertions of actions at places where this is not
20273 -- supposed to occur, e.g. on default parameters of a call.
20275 elsif Expander_Active or GNATprove_Mode then
20276 Get_Index_Bounds (R, Lo, Hi);
20277 Force_Evaluation (Lo);
20278 Force_Evaluation (Hi);
20279 end if;
20280 end Process_Range_Expr_In_Decl;
20282 --------------------------------------
20283 -- Process_Real_Range_Specification --
20284 --------------------------------------
20286 procedure Process_Real_Range_Specification (Def : Node_Id) is
20287 Spec : constant Node_Id := Real_Range_Specification (Def);
20288 Lo : Node_Id;
20289 Hi : Node_Id;
20290 Err : Boolean := False;
20292 procedure Analyze_Bound (N : Node_Id);
20293 -- Analyze and check one bound
20295 -------------------
20296 -- Analyze_Bound --
20297 -------------------
20299 procedure Analyze_Bound (N : Node_Id) is
20300 begin
20301 Analyze_And_Resolve (N, Any_Real);
20303 if not Is_OK_Static_Expression (N) then
20304 Flag_Non_Static_Expr
20305 ("bound in real type definition is not static!", N);
20306 Err := True;
20307 end if;
20308 end Analyze_Bound;
20310 -- Start of processing for Process_Real_Range_Specification
20312 begin
20313 if Present (Spec) then
20314 Lo := Low_Bound (Spec);
20315 Hi := High_Bound (Spec);
20316 Analyze_Bound (Lo);
20317 Analyze_Bound (Hi);
20319 -- If error, clear away junk range specification
20321 if Err then
20322 Set_Real_Range_Specification (Def, Empty);
20323 end if;
20324 end if;
20325 end Process_Real_Range_Specification;
20327 ---------------------
20328 -- Process_Subtype --
20329 ---------------------
20331 function Process_Subtype
20332 (S : Node_Id;
20333 Related_Nod : Node_Id;
20334 Related_Id : Entity_Id := Empty;
20335 Suffix : Character := ' ') return Entity_Id
20337 P : Node_Id;
20338 Def_Id : Entity_Id;
20339 Error_Node : Node_Id;
20340 Full_View_Id : Entity_Id;
20341 Subtype_Mark_Id : Entity_Id;
20343 May_Have_Null_Exclusion : Boolean;
20345 procedure Check_Incomplete (T : Entity_Id);
20346 -- Called to verify that an incomplete type is not used prematurely
20348 ----------------------
20349 -- Check_Incomplete --
20350 ----------------------
20352 procedure Check_Incomplete (T : Entity_Id) is
20353 begin
20354 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20356 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20357 and then
20358 not (Ada_Version >= Ada_2005
20359 and then
20360 (Nkind (Parent (T)) = N_Subtype_Declaration
20361 or else (Nkind (Parent (T)) = N_Subtype_Indication
20362 and then Nkind (Parent (Parent (T))) =
20363 N_Subtype_Declaration)))
20364 then
20365 Error_Msg_N ("invalid use of type before its full declaration", T);
20366 end if;
20367 end Check_Incomplete;
20369 -- Start of processing for Process_Subtype
20371 begin
20372 -- Case of no constraints present
20374 if Nkind (S) /= N_Subtype_Indication then
20375 Find_Type (S);
20376 Check_Incomplete (S);
20377 P := Parent (S);
20379 -- Ada 2005 (AI-231): Static check
20381 if Ada_Version >= Ada_2005
20382 and then Present (P)
20383 and then Null_Exclusion_Present (P)
20384 and then Nkind (P) /= N_Access_To_Object_Definition
20385 and then not Is_Access_Type (Entity (S))
20386 then
20387 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20388 end if;
20390 -- The following is ugly, can't we have a range or even a flag???
20392 May_Have_Null_Exclusion :=
20393 Nkind_In (P, N_Access_Definition,
20394 N_Access_Function_Definition,
20395 N_Access_Procedure_Definition,
20396 N_Access_To_Object_Definition,
20397 N_Allocator,
20398 N_Component_Definition)
20399 or else
20400 Nkind_In (P, N_Derived_Type_Definition,
20401 N_Discriminant_Specification,
20402 N_Formal_Object_Declaration,
20403 N_Object_Declaration,
20404 N_Object_Renaming_Declaration,
20405 N_Parameter_Specification,
20406 N_Subtype_Declaration);
20408 -- Create an Itype that is a duplicate of Entity (S) but with the
20409 -- null-exclusion attribute.
20411 if May_Have_Null_Exclusion
20412 and then Is_Access_Type (Entity (S))
20413 and then Null_Exclusion_Present (P)
20415 -- No need to check the case of an access to object definition.
20416 -- It is correct to define double not-null pointers.
20418 -- Example:
20419 -- type Not_Null_Int_Ptr is not null access Integer;
20420 -- type Acc is not null access Not_Null_Int_Ptr;
20422 and then Nkind (P) /= N_Access_To_Object_Definition
20423 then
20424 if Can_Never_Be_Null (Entity (S)) then
20425 case Nkind (Related_Nod) is
20426 when N_Full_Type_Declaration =>
20427 if Nkind (Type_Definition (Related_Nod))
20428 in N_Array_Type_Definition
20429 then
20430 Error_Node :=
20431 Subtype_Indication
20432 (Component_Definition
20433 (Type_Definition (Related_Nod)));
20434 else
20435 Error_Node :=
20436 Subtype_Indication (Type_Definition (Related_Nod));
20437 end if;
20439 when N_Subtype_Declaration =>
20440 Error_Node := Subtype_Indication (Related_Nod);
20442 when N_Object_Declaration =>
20443 Error_Node := Object_Definition (Related_Nod);
20445 when N_Component_Declaration =>
20446 Error_Node :=
20447 Subtype_Indication (Component_Definition (Related_Nod));
20449 when N_Allocator =>
20450 Error_Node := Expression (Related_Nod);
20452 when others =>
20453 pragma Assert (False);
20454 Error_Node := Related_Nod;
20455 end case;
20457 Error_Msg_NE
20458 ("`NOT NULL` not allowed (& already excludes null)",
20459 Error_Node,
20460 Entity (S));
20461 end if;
20463 Set_Etype (S,
20464 Create_Null_Excluding_Itype
20465 (T => Entity (S),
20466 Related_Nod => P));
20467 Set_Entity (S, Etype (S));
20468 end if;
20470 return Entity (S);
20472 -- Case of constraint present, so that we have an N_Subtype_Indication
20473 -- node (this node is created only if constraints are present).
20475 else
20476 Find_Type (Subtype_Mark (S));
20478 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20479 and then not
20480 (Nkind (Parent (S)) = N_Subtype_Declaration
20481 and then Is_Itype (Defining_Identifier (Parent (S))))
20482 then
20483 Check_Incomplete (Subtype_Mark (S));
20484 end if;
20486 P := Parent (S);
20487 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20489 -- Explicit subtype declaration case
20491 if Nkind (P) = N_Subtype_Declaration then
20492 Def_Id := Defining_Identifier (P);
20494 -- Explicit derived type definition case
20496 elsif Nkind (P) = N_Derived_Type_Definition then
20497 Def_Id := Defining_Identifier (Parent (P));
20499 -- Implicit case, the Def_Id must be created as an implicit type.
20500 -- The one exception arises in the case of concurrent types, array
20501 -- and access types, where other subsidiary implicit types may be
20502 -- created and must appear before the main implicit type. In these
20503 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20504 -- has not yet been called to create Def_Id.
20506 else
20507 if Is_Array_Type (Subtype_Mark_Id)
20508 or else Is_Concurrent_Type (Subtype_Mark_Id)
20509 or else Is_Access_Type (Subtype_Mark_Id)
20510 then
20511 Def_Id := Empty;
20513 -- For the other cases, we create a new unattached Itype,
20514 -- and set the indication to ensure it gets attached later.
20516 else
20517 Def_Id :=
20518 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20519 end if;
20520 end if;
20522 -- If the kind of constraint is invalid for this kind of type,
20523 -- then give an error, and then pretend no constraint was given.
20525 if not Is_Valid_Constraint_Kind
20526 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20527 then
20528 Error_Msg_N
20529 ("incorrect constraint for this kind of type", Constraint (S));
20531 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20533 -- Set Ekind of orphan itype, to prevent cascaded errors
20535 if Present (Def_Id) then
20536 Set_Ekind (Def_Id, Ekind (Any_Type));
20537 end if;
20539 -- Make recursive call, having got rid of the bogus constraint
20541 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20542 end if;
20544 -- Remaining processing depends on type. Select on Base_Type kind to
20545 -- ensure getting to the concrete type kind in the case of a private
20546 -- subtype (needed when only doing semantic analysis).
20548 case Ekind (Base_Type (Subtype_Mark_Id)) is
20549 when Access_Kind =>
20551 -- If this is a constraint on a class-wide type, discard it.
20552 -- There is currently no way to express a partial discriminant
20553 -- constraint on a type with unknown discriminants. This is
20554 -- a pathology that the ACATS wisely decides not to test.
20556 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20557 if Comes_From_Source (S) then
20558 Error_Msg_N
20559 ("constraint on class-wide type ignored??",
20560 Constraint (S));
20561 end if;
20563 if Nkind (P) = N_Subtype_Declaration then
20564 Set_Subtype_Indication (P,
20565 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20566 end if;
20568 return Subtype_Mark_Id;
20569 end if;
20571 Constrain_Access (Def_Id, S, Related_Nod);
20573 if Expander_Active
20574 and then Is_Itype (Designated_Type (Def_Id))
20575 and then Nkind (Related_Nod) = N_Subtype_Declaration
20576 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20577 then
20578 Build_Itype_Reference
20579 (Designated_Type (Def_Id), Related_Nod);
20580 end if;
20582 when Array_Kind =>
20583 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20585 when Decimal_Fixed_Point_Kind =>
20586 Constrain_Decimal (Def_Id, S);
20588 when Enumeration_Kind =>
20589 Constrain_Enumeration (Def_Id, S);
20590 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20592 when Ordinary_Fixed_Point_Kind =>
20593 Constrain_Ordinary_Fixed (Def_Id, S);
20595 when Float_Kind =>
20596 Constrain_Float (Def_Id, S);
20598 when Integer_Kind =>
20599 Constrain_Integer (Def_Id, S);
20600 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20602 when E_Record_Type |
20603 E_Record_Subtype |
20604 Class_Wide_Kind |
20605 E_Incomplete_Type =>
20606 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20608 if Ekind (Def_Id) = E_Incomplete_Type then
20609 Set_Private_Dependents (Def_Id, New_Elmt_List);
20610 end if;
20612 when Private_Kind =>
20613 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20614 Set_Private_Dependents (Def_Id, New_Elmt_List);
20616 -- In case of an invalid constraint prevent further processing
20617 -- since the type constructed is missing expected fields.
20619 if Etype (Def_Id) = Any_Type then
20620 return Def_Id;
20621 end if;
20623 -- If the full view is that of a task with discriminants,
20624 -- we must constrain both the concurrent type and its
20625 -- corresponding record type. Otherwise we will just propagate
20626 -- the constraint to the full view, if available.
20628 if Present (Full_View (Subtype_Mark_Id))
20629 and then Has_Discriminants (Subtype_Mark_Id)
20630 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20631 then
20632 Full_View_Id :=
20633 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20635 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20636 Constrain_Concurrent (Full_View_Id, S,
20637 Related_Nod, Related_Id, Suffix);
20638 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20639 Set_Full_View (Def_Id, Full_View_Id);
20641 -- Introduce an explicit reference to the private subtype,
20642 -- to prevent scope anomalies in gigi if first use appears
20643 -- in a nested context, e.g. a later function body.
20644 -- Should this be generated in other contexts than a full
20645 -- type declaration?
20647 if Is_Itype (Def_Id)
20648 and then
20649 Nkind (Parent (P)) = N_Full_Type_Declaration
20650 then
20651 Build_Itype_Reference (Def_Id, Parent (P));
20652 end if;
20654 else
20655 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20656 end if;
20658 when Concurrent_Kind =>
20659 Constrain_Concurrent (Def_Id, S,
20660 Related_Nod, Related_Id, Suffix);
20662 when others =>
20663 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20664 end case;
20666 -- Size and Convention are always inherited from the base type
20668 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20669 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20671 return Def_Id;
20672 end if;
20673 end Process_Subtype;
20675 --------------------------------------------
20676 -- Propagate_Default_Init_Cond_Attributes --
20677 --------------------------------------------
20679 procedure Propagate_Default_Init_Cond_Attributes
20680 (From_Typ : Entity_Id;
20681 To_Typ : Entity_Id;
20682 Parent_To_Derivation : Boolean := False;
20683 Private_To_Full_View : Boolean := False)
20685 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20686 -- Remove the default initial procedure (if any) from the rep chain of
20687 -- type Typ.
20689 ----------------------------------------
20690 -- Remove_Default_Init_Cond_Procedure --
20691 ----------------------------------------
20693 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20694 Found : Boolean := False;
20695 Prev : Entity_Id;
20696 Subp : Entity_Id;
20698 begin
20699 Prev := Typ;
20700 Subp := Subprograms_For_Type (Typ);
20701 while Present (Subp) loop
20702 if Is_Default_Init_Cond_Procedure (Subp) then
20703 Found := True;
20704 exit;
20705 end if;
20707 Prev := Subp;
20708 Subp := Subprograms_For_Type (Subp);
20709 end loop;
20711 if Found then
20712 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20713 Set_Subprograms_For_Type (Subp, Empty);
20714 end if;
20715 end Remove_Default_Init_Cond_Procedure;
20717 -- Local variables
20719 Inherit_Procedure : Boolean := False;
20721 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20723 begin
20724 if Has_Default_Init_Cond (From_Typ) then
20726 -- A derived type inherits the attributes from its parent type
20728 if Parent_To_Derivation then
20729 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20731 -- A full view shares the attributes with its private view
20733 else
20734 Set_Has_Default_Init_Cond (To_Typ);
20735 end if;
20737 Inherit_Procedure := True;
20739 -- Due to the order of expansion, a derived private type is processed
20740 -- by two routines which both attempt to set the attributes related
20741 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20742 -- Process_Full_View.
20744 -- package Pack is
20745 -- type Parent_Typ is private
20746 -- with Default_Initial_Condition ...;
20747 -- private
20748 -- type Parent_Typ is ...;
20749 -- end Pack;
20751 -- with Pack; use Pack;
20752 -- package Pack_2 is
20753 -- type Deriv_Typ is private
20754 -- with Default_Initial_Condition ...;
20755 -- private
20756 -- type Deriv_Typ is new Parent_Typ;
20757 -- end Pack_2;
20759 -- When Build_Derived_Type operates, it sets the attributes on the
20760 -- full view without taking into account that the private view may
20761 -- define its own default initial condition procedure. This becomes
20762 -- apparent in Process_Full_View which must undo some of the work by
20763 -- Build_Derived_Type and propagate the attributes from the private
20764 -- to the full view.
20766 if Private_To_Full_View then
20767 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20768 Remove_Default_Init_Cond_Procedure (To_Typ);
20769 end if;
20771 -- A type must inherit the default initial condition procedure from a
20772 -- parent type when the parent itself is inheriting the procedure or
20773 -- when it is defining one. This circuitry is also used when dealing
20774 -- with the private / full view of a type.
20776 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20777 or (Parent_To_Derivation
20778 and Present (Get_Pragma
20779 (From_Typ, Pragma_Default_Initial_Condition)))
20780 then
20781 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20782 Inherit_Procedure := True;
20783 end if;
20785 if Inherit_Procedure
20786 and then No (Default_Init_Cond_Procedure (To_Typ))
20787 then
20788 Set_Default_Init_Cond_Procedure
20789 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20790 end if;
20791 end Propagate_Default_Init_Cond_Attributes;
20793 -----------------------------
20794 -- Record_Type_Declaration --
20795 -----------------------------
20797 procedure Record_Type_Declaration
20798 (T : Entity_Id;
20799 N : Node_Id;
20800 Prev : Entity_Id)
20802 Def : constant Node_Id := Type_Definition (N);
20803 Is_Tagged : Boolean;
20804 Tag_Comp : Entity_Id;
20806 begin
20807 -- These flags must be initialized before calling Process_Discriminants
20808 -- because this routine makes use of them.
20810 Set_Ekind (T, E_Record_Type);
20811 Set_Etype (T, T);
20812 Init_Size_Align (T);
20813 Set_Interfaces (T, No_Elist);
20814 Set_Stored_Constraint (T, No_Elist);
20815 Set_Default_SSO (T);
20817 -- Normal case
20819 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20820 if Limited_Present (Def) then
20821 Check_SPARK_05_Restriction ("limited is not allowed", N);
20822 end if;
20824 if Abstract_Present (Def) then
20825 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20826 end if;
20828 -- The flag Is_Tagged_Type might have already been set by
20829 -- Find_Type_Name if it detected an error for declaration T. This
20830 -- arises in the case of private tagged types where the full view
20831 -- omits the word tagged.
20833 Is_Tagged :=
20834 Tagged_Present (Def)
20835 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20837 Set_Is_Limited_Record (T, Limited_Present (Def));
20839 if Is_Tagged then
20840 Set_Is_Tagged_Type (T, True);
20841 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20842 end if;
20844 -- Type is abstract if full declaration carries keyword, or if
20845 -- previous partial view did.
20847 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20848 or else Abstract_Present (Def));
20850 else
20851 Check_SPARK_05_Restriction ("interface is not allowed", N);
20853 Is_Tagged := True;
20854 Analyze_Interface_Declaration (T, Def);
20856 if Present (Discriminant_Specifications (N)) then
20857 Error_Msg_N
20858 ("interface types cannot have discriminants",
20859 Defining_Identifier
20860 (First (Discriminant_Specifications (N))));
20861 end if;
20862 end if;
20864 -- First pass: if there are self-referential access components,
20865 -- create the required anonymous access type declarations, and if
20866 -- need be an incomplete type declaration for T itself.
20868 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20870 if Ada_Version >= Ada_2005
20871 and then Present (Interface_List (Def))
20872 then
20873 Check_Interfaces (N, Def);
20875 declare
20876 Ifaces_List : Elist_Id;
20878 begin
20879 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20880 -- already in the parents.
20882 Collect_Interfaces
20883 (T => T,
20884 Ifaces_List => Ifaces_List,
20885 Exclude_Parents => True);
20887 Set_Interfaces (T, Ifaces_List);
20888 end;
20889 end if;
20891 -- Records constitute a scope for the component declarations within.
20892 -- The scope is created prior to the processing of these declarations.
20893 -- Discriminants are processed first, so that they are visible when
20894 -- processing the other components. The Ekind of the record type itself
20895 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20897 -- Enter record scope
20899 Push_Scope (T);
20901 -- If an incomplete or private type declaration was already given for
20902 -- the type, then this scope already exists, and the discriminants have
20903 -- been declared within. We must verify that the full declaration
20904 -- matches the incomplete one.
20906 Check_Or_Process_Discriminants (N, T, Prev);
20908 Set_Is_Constrained (T, not Has_Discriminants (T));
20909 Set_Has_Delayed_Freeze (T, True);
20911 -- For tagged types add a manually analyzed component corresponding
20912 -- to the component _tag, the corresponding piece of tree will be
20913 -- expanded as part of the freezing actions if it is not a CPP_Class.
20915 if Is_Tagged then
20917 -- Do not add the tag unless we are in expansion mode
20919 if Expander_Active then
20920 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20921 Enter_Name (Tag_Comp);
20923 Set_Ekind (Tag_Comp, E_Component);
20924 Set_Is_Tag (Tag_Comp);
20925 Set_Is_Aliased (Tag_Comp);
20926 Set_Etype (Tag_Comp, RTE (RE_Tag));
20927 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20928 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20929 Init_Component_Location (Tag_Comp);
20931 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20932 -- implemented interfaces.
20934 if Has_Interfaces (T) then
20935 Add_Interface_Tag_Components (N, T);
20936 end if;
20937 end if;
20939 Make_Class_Wide_Type (T);
20940 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20941 end if;
20943 -- We must suppress range checks when processing record components in
20944 -- the presence of discriminants, since we don't want spurious checks to
20945 -- be generated during their analysis, but Suppress_Range_Checks flags
20946 -- must be reset the after processing the record definition.
20948 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20949 -- couldn't we just use the normal range check suppression method here.
20950 -- That would seem cleaner ???
20952 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20953 Set_Kill_Range_Checks (T, True);
20954 Record_Type_Definition (Def, Prev);
20955 Set_Kill_Range_Checks (T, False);
20956 else
20957 Record_Type_Definition (Def, Prev);
20958 end if;
20960 -- Exit from record scope
20962 End_Scope;
20964 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20965 -- the implemented interfaces and associate them an aliased entity.
20967 if Is_Tagged
20968 and then not Is_Empty_List (Interface_List (Def))
20969 then
20970 Derive_Progenitor_Subprograms (T, T);
20971 end if;
20973 Check_Function_Writable_Actuals (N);
20974 end Record_Type_Declaration;
20976 ----------------------------
20977 -- Record_Type_Definition --
20978 ----------------------------
20980 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20981 Component : Entity_Id;
20982 Ctrl_Components : Boolean := False;
20983 Final_Storage_Only : Boolean;
20984 T : Entity_Id;
20986 begin
20987 if Ekind (Prev_T) = E_Incomplete_Type then
20988 T := Full_View (Prev_T);
20989 else
20990 T := Prev_T;
20991 end if;
20993 -- In SPARK, tagged types and type extensions may only be declared in
20994 -- the specification of library unit packages.
20996 if Present (Def) and then Is_Tagged_Type (T) then
20997 declare
20998 Typ : Node_Id;
20999 Ctxt : Node_Id;
21001 begin
21002 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21003 Typ := Parent (Def);
21004 else
21005 pragma Assert
21006 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21007 Typ := Parent (Parent (Def));
21008 end if;
21010 Ctxt := Parent (Typ);
21012 if Nkind (Ctxt) = N_Package_Body
21013 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21014 then
21015 Check_SPARK_05_Restriction
21016 ("type should be defined in package specification", Typ);
21018 elsif Nkind (Ctxt) /= N_Package_Specification
21019 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21020 then
21021 Check_SPARK_05_Restriction
21022 ("type should be defined in library unit package", Typ);
21023 end if;
21024 end;
21025 end if;
21027 Final_Storage_Only := not Is_Controlled (T);
21029 -- Ada 2005: Check whether an explicit Limited is present in a derived
21030 -- type declaration.
21032 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21033 and then Limited_Present (Parent (Def))
21034 then
21035 Set_Is_Limited_Record (T);
21036 end if;
21038 -- If the component list of a record type is defined by the reserved
21039 -- word null and there is no discriminant part, then the record type has
21040 -- no components and all records of the type are null records (RM 3.7)
21041 -- This procedure is also called to process the extension part of a
21042 -- record extension, in which case the current scope may have inherited
21043 -- components.
21045 if No (Def)
21046 or else No (Component_List (Def))
21047 or else Null_Present (Component_List (Def))
21048 then
21049 if not Is_Tagged_Type (T) then
21050 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21051 end if;
21053 else
21054 Analyze_Declarations (Component_Items (Component_List (Def)));
21056 if Present (Variant_Part (Component_List (Def))) then
21057 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21058 Analyze (Variant_Part (Component_List (Def)));
21059 end if;
21060 end if;
21062 -- After completing the semantic analysis of the record definition,
21063 -- record components, both new and inherited, are accessible. Set their
21064 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21065 -- whose Ekind may be void.
21067 Component := First_Entity (Current_Scope);
21068 while Present (Component) loop
21069 if Ekind (Component) = E_Void
21070 and then not Is_Itype (Component)
21071 then
21072 Set_Ekind (Component, E_Component);
21073 Init_Component_Location (Component);
21074 end if;
21076 if Has_Task (Etype (Component)) then
21077 Set_Has_Task (T);
21078 end if;
21080 if Has_Protected (Etype (Component)) then
21081 Set_Has_Protected (T);
21082 end if;
21084 if Ekind (Component) /= E_Component then
21085 null;
21087 -- Do not set Has_Controlled_Component on a class-wide equivalent
21088 -- type. See Make_CW_Equivalent_Type.
21090 elsif not Is_Class_Wide_Equivalent_Type (T)
21091 and then (Has_Controlled_Component (Etype (Component))
21092 or else (Chars (Component) /= Name_uParent
21093 and then Is_Controlled (Etype (Component))))
21094 then
21095 Set_Has_Controlled_Component (T, True);
21096 Final_Storage_Only :=
21097 Final_Storage_Only
21098 and then Finalize_Storage_Only (Etype (Component));
21099 Ctrl_Components := True;
21100 end if;
21102 Next_Entity (Component);
21103 end loop;
21105 -- A Type is Finalize_Storage_Only only if all its controlled components
21106 -- are also.
21108 if Ctrl_Components then
21109 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21110 end if;
21112 -- Place reference to end record on the proper entity, which may
21113 -- be a partial view.
21115 if Present (Def) then
21116 Process_End_Label (Def, 'e', Prev_T);
21117 end if;
21118 end Record_Type_Definition;
21120 ------------------------
21121 -- Replace_Components --
21122 ------------------------
21124 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21125 function Process (N : Node_Id) return Traverse_Result;
21127 -------------
21128 -- Process --
21129 -------------
21131 function Process (N : Node_Id) return Traverse_Result is
21132 Comp : Entity_Id;
21134 begin
21135 if Nkind (N) = N_Discriminant_Specification then
21136 Comp := First_Discriminant (Typ);
21137 while Present (Comp) loop
21138 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21139 Set_Defining_Identifier (N, Comp);
21140 exit;
21141 end if;
21143 Next_Discriminant (Comp);
21144 end loop;
21146 elsif Nkind (N) = N_Component_Declaration then
21147 Comp := First_Component (Typ);
21148 while Present (Comp) loop
21149 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21150 Set_Defining_Identifier (N, Comp);
21151 exit;
21152 end if;
21154 Next_Component (Comp);
21155 end loop;
21156 end if;
21158 return OK;
21159 end Process;
21161 procedure Replace is new Traverse_Proc (Process);
21163 -- Start of processing for Replace_Components
21165 begin
21166 Replace (Decl);
21167 end Replace_Components;
21169 -------------------------------
21170 -- Set_Completion_Referenced --
21171 -------------------------------
21173 procedure Set_Completion_Referenced (E : Entity_Id) is
21174 begin
21175 -- If in main unit, mark entity that is a completion as referenced,
21176 -- warnings go on the partial view when needed.
21178 if In_Extended_Main_Source_Unit (E) then
21179 Set_Referenced (E);
21180 end if;
21181 end Set_Completion_Referenced;
21183 ---------------------
21184 -- Set_Default_SSO --
21185 ---------------------
21187 procedure Set_Default_SSO (T : Entity_Id) is
21188 begin
21189 case Opt.Default_SSO is
21190 when ' ' =>
21191 null;
21192 when 'L' =>
21193 Set_SSO_Set_Low_By_Default (T, True);
21194 when 'H' =>
21195 Set_SSO_Set_High_By_Default (T, True);
21196 when others =>
21197 raise Program_Error;
21198 end case;
21199 end Set_Default_SSO;
21201 ---------------------
21202 -- Set_Fixed_Range --
21203 ---------------------
21205 -- The range for fixed-point types is complicated by the fact that we
21206 -- do not know the exact end points at the time of the declaration. This
21207 -- is true for three reasons:
21209 -- A size clause may affect the fudging of the end-points.
21210 -- A small clause may affect the values of the end-points.
21211 -- We try to include the end-points if it does not affect the size.
21213 -- This means that the actual end-points must be established at the
21214 -- point when the type is frozen. Meanwhile, we first narrow the range
21215 -- as permitted (so that it will fit if necessary in a small specified
21216 -- size), and then build a range subtree with these narrowed bounds.
21217 -- Set_Fixed_Range constructs the range from real literal values, and
21218 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21220 -- The parent of this range is set to point to the entity so that it is
21221 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21222 -- other scalar types, which are just pointers to the range in the
21223 -- original tree, this would otherwise be an orphan).
21225 -- The tree is left unanalyzed. When the type is frozen, the processing
21226 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21227 -- analyzed, and uses this as an indication that it should complete
21228 -- work on the range (it will know the final small and size values).
21230 procedure Set_Fixed_Range
21231 (E : Entity_Id;
21232 Loc : Source_Ptr;
21233 Lo : Ureal;
21234 Hi : Ureal)
21236 S : constant Node_Id :=
21237 Make_Range (Loc,
21238 Low_Bound => Make_Real_Literal (Loc, Lo),
21239 High_Bound => Make_Real_Literal (Loc, Hi));
21240 begin
21241 Set_Scalar_Range (E, S);
21242 Set_Parent (S, E);
21244 -- Before the freeze point, the bounds of a fixed point are universal
21245 -- and carry the corresponding type.
21247 Set_Etype (Low_Bound (S), Universal_Real);
21248 Set_Etype (High_Bound (S), Universal_Real);
21249 end Set_Fixed_Range;
21251 ----------------------------------
21252 -- Set_Scalar_Range_For_Subtype --
21253 ----------------------------------
21255 procedure Set_Scalar_Range_For_Subtype
21256 (Def_Id : Entity_Id;
21257 R : Node_Id;
21258 Subt : Entity_Id)
21260 Kind : constant Entity_Kind := Ekind (Def_Id);
21262 begin
21263 -- Defend against previous error
21265 if Nkind (R) = N_Error then
21266 return;
21267 end if;
21269 Set_Scalar_Range (Def_Id, R);
21271 -- We need to link the range into the tree before resolving it so
21272 -- that types that are referenced, including importantly the subtype
21273 -- itself, are properly frozen (Freeze_Expression requires that the
21274 -- expression be properly linked into the tree). Of course if it is
21275 -- already linked in, then we do not disturb the current link.
21277 if No (Parent (R)) then
21278 Set_Parent (R, Def_Id);
21279 end if;
21281 -- Reset the kind of the subtype during analysis of the range, to
21282 -- catch possible premature use in the bounds themselves.
21284 Set_Ekind (Def_Id, E_Void);
21285 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21286 Set_Ekind (Def_Id, Kind);
21287 end Set_Scalar_Range_For_Subtype;
21289 --------------------------------------------------------
21290 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21291 --------------------------------------------------------
21293 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21294 (E : Entity_Id)
21296 begin
21297 -- Make sure set if encountered during Expand_To_Stored_Constraint
21299 Set_Stored_Constraint (E, No_Elist);
21301 -- Give it the right value
21303 if Is_Constrained (E) and then Has_Discriminants (E) then
21304 Set_Stored_Constraint (E,
21305 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21306 end if;
21307 end Set_Stored_Constraint_From_Discriminant_Constraint;
21309 -------------------------------------
21310 -- Signed_Integer_Type_Declaration --
21311 -------------------------------------
21313 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21314 Implicit_Base : Entity_Id;
21315 Base_Typ : Entity_Id;
21316 Lo_Val : Uint;
21317 Hi_Val : Uint;
21318 Errs : Boolean := False;
21319 Lo : Node_Id;
21320 Hi : Node_Id;
21322 function Can_Derive_From (E : Entity_Id) return Boolean;
21323 -- Determine whether given bounds allow derivation from specified type
21325 procedure Check_Bound (Expr : Node_Id);
21326 -- Check bound to make sure it is integral and static. If not, post
21327 -- appropriate error message and set Errs flag
21329 ---------------------
21330 -- Can_Derive_From --
21331 ---------------------
21333 -- Note we check both bounds against both end values, to deal with
21334 -- strange types like ones with a range of 0 .. -12341234.
21336 function Can_Derive_From (E : Entity_Id) return Boolean is
21337 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21338 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21339 begin
21340 return Lo <= Lo_Val and then Lo_Val <= Hi
21341 and then
21342 Lo <= Hi_Val and then Hi_Val <= Hi;
21343 end Can_Derive_From;
21345 -----------------
21346 -- Check_Bound --
21347 -----------------
21349 procedure Check_Bound (Expr : Node_Id) is
21350 begin
21351 -- If a range constraint is used as an integer type definition, each
21352 -- bound of the range must be defined by a static expression of some
21353 -- integer type, but the two bounds need not have the same integer
21354 -- type (Negative bounds are allowed.) (RM 3.5.4)
21356 if not Is_Integer_Type (Etype (Expr)) then
21357 Error_Msg_N
21358 ("integer type definition bounds must be of integer type", Expr);
21359 Errs := True;
21361 elsif not Is_OK_Static_Expression (Expr) then
21362 Flag_Non_Static_Expr
21363 ("non-static expression used for integer type bound!", Expr);
21364 Errs := True;
21366 -- The bounds are folded into literals, and we set their type to be
21367 -- universal, to avoid typing difficulties: we cannot set the type
21368 -- of the literal to the new type, because this would be a forward
21369 -- reference for the back end, and if the original type is user-
21370 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21372 else
21373 if Is_Entity_Name (Expr) then
21374 Fold_Uint (Expr, Expr_Value (Expr), True);
21375 end if;
21377 Set_Etype (Expr, Universal_Integer);
21378 end if;
21379 end Check_Bound;
21381 -- Start of processing for Signed_Integer_Type_Declaration
21383 begin
21384 -- Create an anonymous base type
21386 Implicit_Base :=
21387 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21389 -- Analyze and check the bounds, they can be of any integer type
21391 Lo := Low_Bound (Def);
21392 Hi := High_Bound (Def);
21394 -- Arbitrarily use Integer as the type if either bound had an error
21396 if Hi = Error or else Lo = Error then
21397 Base_Typ := Any_Integer;
21398 Set_Error_Posted (T, True);
21400 -- Here both bounds are OK expressions
21402 else
21403 Analyze_And_Resolve (Lo, Any_Integer);
21404 Analyze_And_Resolve (Hi, Any_Integer);
21406 Check_Bound (Lo);
21407 Check_Bound (Hi);
21409 if Errs then
21410 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21411 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21412 end if;
21414 -- Find type to derive from
21416 Lo_Val := Expr_Value (Lo);
21417 Hi_Val := Expr_Value (Hi);
21419 if Can_Derive_From (Standard_Short_Short_Integer) then
21420 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21422 elsif Can_Derive_From (Standard_Short_Integer) then
21423 Base_Typ := Base_Type (Standard_Short_Integer);
21425 elsif Can_Derive_From (Standard_Integer) then
21426 Base_Typ := Base_Type (Standard_Integer);
21428 elsif Can_Derive_From (Standard_Long_Integer) then
21429 Base_Typ := Base_Type (Standard_Long_Integer);
21431 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21432 Check_Restriction (No_Long_Long_Integers, Def);
21433 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21435 else
21436 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21437 Error_Msg_N ("integer type definition bounds out of range", Def);
21438 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21439 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21440 end if;
21441 end if;
21443 -- Complete both implicit base and declared first subtype entities. The
21444 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21445 -- are not clobbered when the signed integer type acts as a full view of
21446 -- a private type.
21448 Set_Etype (Implicit_Base, Base_Typ);
21449 Set_Size_Info (Implicit_Base, Base_Typ);
21450 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21451 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21452 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21454 Set_Ekind (T, E_Signed_Integer_Subtype);
21455 Set_Etype (T, Implicit_Base);
21456 Set_Size_Info (T, Implicit_Base);
21457 Inherit_Rep_Item_Chain (T, Implicit_Base);
21458 Set_Scalar_Range (T, Def);
21459 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21460 Set_Is_Constrained (T);
21461 end Signed_Integer_Type_Declaration;
21463 end Sem_Ch3;