2015-01-06 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / inline.ads
blob632cbc2c2e5ee5d638454e84d1b503de9e1ac74d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- This module handles four kinds of inlining activity:
28 -- a) Instantiation of generic bodies. This is done unconditionally, after
29 -- analysis and expansion of the main unit.
31 -- b) Compilation of unit bodies that contain the bodies of inlined sub-
32 -- programs. This is done only if inlining is enabled (-gnatn). Full inlining
33 -- requires that a) an b) be mutually recursive, because each step may
34 -- generate another generic expansion and further inlined calls. For now each
35 -- of them uses a workpile algorithm, but they are called independently from
36 -- Frontend, and thus are not mutually recursive.
38 -- c) Front-end inlining for Inline_Always subprograms. This is primarily an
39 -- expansion activity that is performed for performance reasons, and when the
40 -- target does not use the gcc backend.
42 -- d) Front-end inlining for GNATprove, to perform source transformations
43 -- to simplify formal verification. The machinery used is the same than for
44 -- Inline_Always subprograms, but there are fewer restrictions on the source
45 -- of subprograms.
47 with Alloc;
48 with Opt; use Opt;
49 with Sem; use Sem;
50 with Table;
51 with Types; use Types;
52 with Warnsw; use Warnsw;
54 package Inline is
56 --------------------------------
57 -- Generic Body Instantiation --
58 --------------------------------
60 -- The bodies of generic instantiations are built after semantic analysis
61 -- of the main unit is complete. Generic instantiations are saved in a
62 -- global data structure, and the bodies constructed by means of a separate
63 -- analysis and expansion step.
65 -- See full description in body of Sem_Ch12 for more details
67 type Pending_Body_Info is record
68 Inst_Node : Node_Id;
69 -- Node for instantiation that requires the body
71 Act_Decl : Node_Id;
72 -- Declaration for package or subprogram spec for instantiation
74 Expander_Status : Boolean;
75 -- If the body is instantiated only for semantic checking, expansion
76 -- must be inhibited.
78 Current_Sem_Unit : Unit_Number_Type;
79 -- The semantic unit within which the instantiation is found. Must
80 -- be restored when compiling the body, to insure that internal enti-
81 -- ties use the same counter and are unique over spec and body.
83 Scope_Suppress : Suppress_Record;
84 Local_Suppress_Stack_Top : Suppress_Stack_Entry_Ptr;
85 -- Save suppress information at the point of instantiation. Used to
86 -- properly inherit check status active at this point (see RM 11.5
87 -- (7.2/2), AI95-00224-01):
89 -- "If a checking pragma applies to a generic instantiation, then the
90 -- checking pragma also applies to the instance. If a checking pragma
91 -- applies to a call to a subprogram that has a pragma Inline applied
92 -- to it, then the checking pragma also applies to the inlined
93 -- subprogram body".
95 -- This means we have to capture this information from the current scope
96 -- at the point of instantiation.
98 Version : Ada_Version_Type;
99 -- The body must be compiled with the same language version as the
100 -- spec. The version may be set by a configuration pragma in a separate
101 -- file or in the current file, and may differ from body to body.
103 Version_Pragma : Node_Id;
104 -- This is linked with the Version value
106 Warnings : Warning_Record;
107 -- Capture values of warning flags
109 SPARK_Mode : SPARK_Mode_Type;
110 SPARK_Mode_Pragma : Node_Id;
111 -- SPARK_Mode for an instance is the one applicable at the point of
112 -- instantiation. SPARK_Mode_Pragma is the related active pragma.
113 end record;
115 package Pending_Instantiations is new Table.Table (
116 Table_Component_Type => Pending_Body_Info,
117 Table_Index_Type => Int,
118 Table_Low_Bound => 0,
119 Table_Initial => Alloc.Pending_Instantiations_Initial,
120 Table_Increment => Alloc.Pending_Instantiations_Increment,
121 Table_Name => "Pending_Instantiations");
123 -- The following table records subprograms and packages for which
124 -- generation of subprogram descriptors must be delayed.
126 package Pending_Descriptor is new Table.Table (
127 Table_Component_Type => Entity_Id,
128 Table_Index_Type => Int,
129 Table_Low_Bound => 0,
130 Table_Initial => Alloc.Pending_Instantiations_Initial,
131 Table_Increment => Alloc.Pending_Instantiations_Increment,
132 Table_Name => "Pending_Descriptor");
134 -- The following should be initialized in an init call in Frontend, we
135 -- have thoughts of making the frontend reusable in future ???
137 -----------------
138 -- Subprograms --
139 -----------------
141 procedure Initialize;
142 -- Initialize internal tables
144 procedure Lock;
145 -- Lock internal tables before calling backend
147 procedure Instantiate_Bodies;
148 -- This procedure is called after semantic analysis is complete, to
149 -- instantiate the bodies of generic instantiations that appear in the
150 -- compilation unit.
152 procedure Add_Inlined_Body (E : Entity_Id);
153 -- E is an inlined subprogram appearing in a call, either explicitly, or
154 -- a discriminant check for which gigi builds a call. Add E's enclosing
155 -- unit to Inlined_Bodies so that body of E can be subsequently retrieved
156 -- and analyzed.
158 procedure Analyze_Inlined_Bodies;
159 -- At end of compilation, analyze the bodies of all units that contain
160 -- inlined subprograms that are actually called.
162 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
163 -- If a subprogram has pragma Inline and inlining is active, use generic
164 -- machinery to build an unexpanded body for the subprogram. This body is
165 -- subsequently used for inline expansions at call sites. If subprogram can
166 -- be inlined (depending on size and nature of local declarations) the
167 -- template body is created. Otherwise subprogram body is treated normally
168 -- and calls are not inlined in the frontend. If proper warnings are
169 -- enabled and the subprogram contains a construct that cannot be inlined,
170 -- the problematic construct is flagged accordingly.
172 procedure Cannot_Inline
173 (Msg : String;
174 N : Node_Id;
175 Subp : Entity_Id;
176 Is_Serious : Boolean := False);
177 -- This procedure is called if the node N, an instance of a call to
178 -- subprogram Subp, cannot be inlined. Msg is the message to be issued,
179 -- which ends with ? (it does not end with ?p?, this routine takes care of
180 -- the need to change ? to ?p?). The behavior of this routine depends on
181 -- the value of Back_End_Inlining:
183 -- * If Back_End_Inlining is not set (ie. legacy frontend inlining model)
184 -- then if Subp has a pragma Always_Inlined, then an error message is
185 -- issued (by removing the last character of Msg). If Subp is not
186 -- Always_Inlined, then a warning is issued if the flag Ineffective_
187 -- Inline_Warnings is set, adding ?p to the msg, and if not, the call
188 -- has no effect.
190 -- * If Back_End_Inlining is set then:
191 -- - If Is_Serious is true, then an error is reported (by removing the
192 -- last character of Msg);
194 -- - otherwise:
196 -- * Compiling without optimizations if Subp has a pragma
197 -- Always_Inlined, then an error message is issued; if Subp is
198 -- not Always_Inlined, then a warning is issued if the flag
199 -- Ineffective_Inline_Warnings is set (adding p?), and if not,
200 -- the call has no effect.
202 -- * Compiling with optimizations then a warning is issued if the
203 -- flag Ineffective_Inline_Warnings is set (adding p?); otherwise
204 -- no effect since inlining may be performed by the backend.
206 procedure Check_And_Split_Unconstrained_Function
207 (N : Node_Id;
208 Spec_Id : Entity_Id;
209 Body_Id : Entity_Id);
210 -- Spec_Id and Body_Id are the entities of the specification and body of
211 -- the subprogram body N. If N can be inlined by the frontend (supported
212 -- cases documented in Check_Body_To_Inline) then build the body-to-inline
213 -- associated with N and attach it to the declaration node of Spec_Id.
215 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id);
216 -- If front-end inlining is enabled and a package declaration contains
217 -- inlined subprograms, load and compile the package body to collect the
218 -- bodies of these subprograms, so they are available to inline calls.
219 -- N is the compilation unit for the package.
221 procedure Expand_Inlined_Call
222 (N : Node_Id;
223 Subp : Entity_Id;
224 Orig_Subp : Entity_Id);
225 -- If called subprogram can be inlined by the front-end, retrieve the
226 -- analyzed body, replace formals with actuals and expand call in place.
227 -- Generate thunks for actuals that are expressions, and insert the
228 -- corresponding constant declarations before the call. If the original
229 -- call is to a derived operation, the return type is the one of the
230 -- derived operation, but the body is that of the original, so return
231 -- expressions in the body must be converted to the desired type (which
232 -- is simply not noted in the tree without inline expansion).
234 function Has_Excluded_Declaration
235 (Subp : Entity_Id;
236 Decls : List_Id) return Boolean;
237 -- Check a list of declarations, Decls, that make the inlining of Subp not
238 -- worthwhile
240 function Has_Excluded_Statement
241 (Subp : Entity_Id;
242 Stats : List_Id) return Boolean;
243 -- Check a list of statements, Stats, that make inlining of Subp not
244 -- worthwhile, including any tasking statement, nested at any level.
246 procedure List_Inlining_Info;
247 -- Generate listing of calls inlined by the frontend plus listing of
248 -- calls to inline subprograms passed to the backend.
250 procedure Register_Backend_Call (N : Node_Id);
251 -- Append N to the list Backend_Calls
253 procedure Remove_Dead_Instance (N : Node_Id);
254 -- If an instantiation appears in unreachable code, delete the pending
255 -- body instance.
257 function Can_Be_Inlined_In_GNATprove_Mode
258 (Spec_Id : Entity_Id;
259 Body_Id : Entity_Id) return Boolean;
260 -- Returns True if the subprogram identified by Spec_Id and Body_Id can
261 -- be inlined in GNATprove mode. One but not both of Spec_Id and Body_Id
262 -- can be Empty. Body_Id is Empty when doing a partial check on a call
263 -- to a subprogram whose body has not been seen yet, to know whether this
264 -- subprogram could possibly be inlined. GNATprove relies on this to adapt
265 -- its treatment of the subprogram.
267 end Inline;