1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
8 Bessel function of the first and second kinds of order zero.
11 // The original C code and the long comment below are
12 // from FreeBSD's /usr/src/lib/msun/src/e_j0.c and
13 // came with this notice. The go code is a simplified
14 // version of the original C.
16 // ====================================================
17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19 // Developed at SunPro, a Sun Microsystems, Inc. business.
20 // Permission to use, copy, modify, and distribute this
21 // software is freely granted, provided that this notice
23 // ====================================================
25 // __ieee754_j0(x), __ieee754_y0(x)
26 // Bessel function of the first and second kinds of order zero.
28 // 1. For tiny x, we use j0(x) = 1 - x**2/4 + x**4/64 - ...
29 // 2. Reduce x to |x| since j0(x)=j0(-x), and
31 // j0(x) = 1-z/4+ z**2*R0/S0, where z = x*x;
32 // (precision: |j0-1+z/4-z**2R0/S0 |<2**-63.67 )
34 // j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
35 // where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
37 // cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
38 // = 1/sqrt(2) * (cos(x) + sin(x))
39 // sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
40 // = 1/sqrt(2) * (sin(x) - cos(x))
41 // (To avoid cancellation, use
42 // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
43 // to compute the worse one.)
53 // y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x**2/4 - ...)
54 // therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
55 // We use the following function to approximate y0,
56 // y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x**2
58 // U(z) = u00 + u01*z + ... + u06*z**6
59 // V(z) = 1 + v01*z + ... + v04*z**4
60 // with absolute approximation error bounded by 2**-72.
61 // Note: For tiny x, U/V = u0 and j0(x)~1, hence
62 // y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
64 // y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
65 // where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
66 // by the method mentioned above.
67 // 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
70 // J0 returns the order-zero Bessel function of the first kind.
76 func J0(x
float64) float64 {
79 TwoM27
= 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
80 TwoM13
= 1.0 / (1 << 13) // 2**-13 0x3f20000000000000
81 Two129
= 1 << 129 // 2**129 0x4800000000000000
83 R02
= 1.56249999999999947958e-02 // 0x3F8FFFFFFFFFFFFD
84 R03
= -1.89979294238854721751e-04 // 0xBF28E6A5B61AC6E9
85 R04
= 1.82954049532700665670e-06 // 0x3EBEB1D10C503919
86 R05
= -4.61832688532103189199e-09 // 0xBE33D5E773D63FCE
87 S01
= 1.56191029464890010492e-02 // 0x3F8FFCE882C8C2A4
88 S02
= 1.16926784663337450260e-04 // 0x3F1EA6D2DD57DBF4
89 S03
= 5.13546550207318111446e-07 // 0x3EA13B54CE84D5A9
90 S04
= 1.16614003333790000205e-09 // 0x3E1408BCF4745D8F
110 // make sure x+x does not overflow
111 if x
< MaxFloat64
/2 {
120 // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
121 // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
124 if x
> Two129
{ // |x| > ~6.8056e+38
125 z
= (1 / SqrtPi
) * cc
/ Sqrt(x
)
129 z
= (1 / SqrtPi
) * (u
*cc
- v
*ss
) / Sqrt(x
)
131 return z
// |x| >= 2.0
133 if x
< TwoM13
{ // |x| < ~1.2207e-4
135 return 1 // |x| < ~7.4506e-9
137 return 1 - 0.25*x
*x
// ~7.4506e-9 < |x| < ~1.2207e-4
140 r
:= z
* (R02
+ z
*(R03
+z
*(R04
+z
*R05
)))
141 s
:= 1 + z
*(S01
+z
*(S02
+z
*(S03
+z
*S04
)))
143 return 1 + z
*(-0.25+(r
/s
)) // |x| < 1.00
146 return (1+u
)*(1-u
) + z
*(r
/s
) // 1.0 < |x| < 2.0
149 // Y0 returns the order-zero Bessel function of the second kind.
151 // Special cases are:
156 func Y0(x
float64) float64 {
158 TwoM27
= 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
159 Two129
= 1 << 129 // 2**129 0x4800000000000000
160 U00
= -7.38042951086872317523e-02 // 0xBFB2E4D699CBD01F
161 U01
= 1.76666452509181115538e-01 // 0x3FC69D019DE9E3FC
162 U02
= -1.38185671945596898896e-02 // 0xBF8C4CE8B16CFA97
163 U03
= 3.47453432093683650238e-04 // 0x3F36C54D20B29B6B
164 U04
= -3.81407053724364161125e-06 // 0xBECFFEA773D25CAD
165 U05
= 1.95590137035022920206e-08 // 0x3E5500573B4EABD4
166 U06
= -3.98205194132103398453e-11 // 0xBDC5E43D693FB3C8
167 V01
= 1.27304834834123699328e-02 // 0x3F8A127091C9C71A
168 V02
= 7.60068627350353253702e-05 // 0x3F13ECBBF578C6C1
169 V03
= 2.59150851840457805467e-07 // 0x3E91642D7FF202FD
170 V04
= 4.41110311332675467403e-10 // 0x3DFE50183BD6D9EF
174 case x
< 0 ||
IsNaN(x
):
182 if x
>= 2 { // |x| >= 2.0
184 // y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
187 // cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
188 // = 1/sqrt(2) * (sin(x) + cos(x))
189 // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
190 // = 1/sqrt(2) * (sin(x) - cos(x))
191 // To avoid cancellation, use
192 // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
193 // to compute the worse one.
199 // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
200 // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
202 // make sure x+x does not overflow
203 if x
< MaxFloat64
/2 {
212 if x
> Two129
{ // |x| > ~6.8056e+38
213 z
= (1 / SqrtPi
) * ss
/ Sqrt(x
)
217 z
= (1 / SqrtPi
) * (u
*ss
+ v
*cc
) / Sqrt(x
)
219 return z
// |x| >= 2.0
222 return U00
+ (2/Pi
)*Log(x
) // |x| < ~7.4506e-9
225 u
:= U00
+ z
*(U01
+z
*(U02
+z
*(U03
+z
*(U04
+z
*(U05
+z
*U06
)))))
226 v
:= 1 + z
*(V01
+z
*(V02
+z
*(V03
+z
*V04
)))
227 return u
/v
+ (2/Pi
)*J0(x
)*Log(x
) // ~7.4506e-9 < |x| < 2.0
230 // The asymptotic expansions of pzero is
231 // 1 - 9/128 s**2 + 11025/98304 s**4 - ..., where s = 1/x.
232 // For x >= 2, We approximate pzero by
233 // pzero(x) = 1 + (R/S)
234 // where R = pR0 + pR1*s**2 + pR2*s**4 + ... + pR5*s**10
235 // S = 1 + pS0*s**2 + ... + pS4*s**10
237 // | pzero(x)-1-R/S | <= 2 ** ( -60.26)
239 // for x in [inf, 8]=1/[0,0.125]
240 var p0R8
= [6]float64{
241 0.00000000000000000000e+00, // 0x0000000000000000
242 -7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32
243 -8.08167041275349795626e+00, // 0xC02029D0B44FA779
244 -2.57063105679704847262e+02, // 0xC07011027B19E863
245 -2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC
246 -5.25304380490729545272e+03, // 0xC0B4850B36CC643D
248 var p0S8
= [5]float64{
249 1.16534364619668181717e+02, // 0x405D223307A96751
250 3.83374475364121826715e+03, // 0x40ADF37D50596938
251 4.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F
252 1.16752972564375915681e+05, // 0x40FC810F8F9FA9BD
253 4.76277284146730962675e+04, // 0x40E741774F2C49DC
256 // for x in [8,4.5454]=1/[0.125,0.22001]
257 var p0R5
= [6]float64{
258 -1.14125464691894502584e-11, // 0xBDA918B147E495CC
259 -7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6
260 -4.15961064470587782438e+00, // 0xC010A370F90C6BBF
261 -6.76747652265167261021e+01, // 0xC050EB2F5A7D1783
262 -3.31231299649172967747e+02, // 0xC074B3B36742CC63
263 -3.46433388365604912451e+02, // 0xC075A6EF28A38BD7
265 var p0S5
= [5]float64{
266 6.07539382692300335975e+01, // 0x404E60810C98C5DE
267 1.05125230595704579173e+03, // 0x40906D025C7E2864
268 5.97897094333855784498e+03, // 0x40B75AF88FBE1D60
269 9.62544514357774460223e+03, // 0x40C2CCB8FA76FA38
270 2.40605815922939109441e+03, // 0x40A2CC1DC70BE864
273 // for x in [4.547,2.8571]=1/[0.2199,0.35001]
274 var p0R3
= [6]float64{
275 -2.54704601771951915620e-09, // 0xBE25E1036FE1AA86
276 -7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B
277 -2.40903221549529611423e+00, // 0xC00345B2AEA48074
278 -2.19659774734883086467e+01, // 0xC035F74A4CB94E14
279 -5.80791704701737572236e+01, // 0xC04D0A22420A1A45
280 -3.14479470594888503854e+01, // 0xC03F72ACA892D80F
282 var p0S3
= [5]float64{
283 3.58560338055209726349e+01, // 0x4041ED9284077DD3
284 3.61513983050303863820e+02, // 0x40769839464A7C0E
285 1.19360783792111533330e+03, // 0x4092A66E6D1061D6
286 1.12799679856907414432e+03, // 0x40919FFCB8C39B7E
287 1.73580930813335754692e+02, // 0x4065B296FC379081
290 // for x in [2.8570,2]=1/[0.3499,0.5]
291 var p0R2
= [6]float64{
292 -8.87534333032526411254e-08, // 0xBE77D316E927026D
293 -7.03030995483624743247e-02, // 0xBFB1FF62495E1E42
294 -1.45073846780952986357e+00, // 0xBFF736398A24A843
295 -7.63569613823527770791e+00, // 0xC01E8AF3EDAFA7F3
296 -1.11931668860356747786e+01, // 0xC02662E6C5246303
297 -3.23364579351335335033e+00, // 0xC009DE81AF8FE70F
299 var p0S2
= [5]float64{
300 2.22202997532088808441e+01, // 0x40363865908B5959
301 1.36206794218215208048e+02, // 0x4061069E0EE8878F
302 2.70470278658083486789e+02, // 0x4070E78642EA079B
303 1.53875394208320329881e+02, // 0x40633C033AB6FAFF
304 1.46576176948256193810e+01, // 0x402D50B344391809
307 func pzero(x
float64) float64 {
313 } else if x
>= 4.5454 {
316 } else if x
>= 2.8571 {
324 r
:= p
[0] + z
*(p
[1]+z
*(p
[2]+z
*(p
[3]+z
*(p
[4]+z
*p
[5]))))
325 s
:= 1 + z
*(q
[0]+z
*(q
[1]+z
*(q
[2]+z
*(q
[3]+z
*q
[4]))))
329 // For x >= 8, the asymptotic expansions of qzero is
330 // -1/8 s + 75/1024 s**3 - ..., where s = 1/x.
331 // We approximate pzero by
332 // qzero(x) = s*(-1.25 + (R/S))
333 // where R = qR0 + qR1*s**2 + qR2*s**4 + ... + qR5*s**10
334 // S = 1 + qS0*s**2 + ... + qS5*s**12
336 // | qzero(x)/s +1.25-R/S | <= 2**(-61.22)
338 // for x in [inf, 8]=1/[0,0.125]
339 var q0R8
= [6]float64{
340 0.00000000000000000000e+00, // 0x0000000000000000
341 7.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C
342 1.17682064682252693899e+01, // 0x402789525BB334D6
343 5.57673380256401856059e+02, // 0x40816D6315301825
344 8.85919720756468632317e+03, // 0x40C14D993E18F46D
345 3.70146267776887834771e+04, // 0x40E212D40E901566
347 var q0S8
= [6]float64{
348 1.63776026895689824414e+02, // 0x406478D5365B39BC
349 8.09834494656449805916e+03, // 0x40BFA2584E6B0563
350 1.42538291419120476348e+05, // 0x4101665254D38C3F
351 8.03309257119514397345e+05, // 0x412883DA83A52B43
352 8.40501579819060512818e+05, // 0x4129A66B28DE0B3D
353 -3.43899293537866615225e+05, // 0xC114FD6D2C9530C5
356 // for x in [8,4.5454]=1/[0.125,0.22001]
357 var q0R5
= [6]float64{
358 1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD9
359 7.32421766612684765896e-02, // 0x3FB2BFFFD172B04C
360 5.83563508962056953777e+00, // 0x401757B0B9953DD3
361 1.35111577286449829671e+02, // 0x4060E3920A8788E9
362 1.02724376596164097464e+03, // 0x40900CF99DC8C481
363 1.98997785864605384631e+03, // 0x409F17E953C6E3A6
365 var q0S5
= [6]float64{
366 8.27766102236537761883e+01, // 0x4054B1B3FB5E1543
367 2.07781416421392987104e+03, // 0x40A03BA0DA21C0CE
368 1.88472887785718085070e+04, // 0x40D267D27B591E6D
369 5.67511122894947329769e+04, // 0x40EBB5E397E02372
370 3.59767538425114471465e+04, // 0x40E191181F7A54A0
371 -5.35434275601944773371e+03, // 0xC0B4EA57BEDBC609
374 // for x in [4.547,2.8571]=1/[0.2199,0.35001]
375 var q0R3
= [6]float64{
376 4.37741014089738620906e-09, // 0x3E32CD036ADECB82
377 7.32411180042911447163e-02, // 0x3FB2BFEE0E8D0842
378 3.34423137516170720929e+00, // 0x400AC0FC61149CF5
379 4.26218440745412650017e+01, // 0x40454F98962DAEDD
380 1.70808091340565596283e+02, // 0x406559DBE25EFD1F
381 1.66733948696651168575e+02, // 0x4064D77C81FA21E0
383 var q0S3
= [6]float64{
384 4.87588729724587182091e+01, // 0x40486122BFE343A6
385 7.09689221056606015736e+02, // 0x40862D8386544EB3
386 3.70414822620111362994e+03, // 0x40ACF04BE44DFC63
387 6.46042516752568917582e+03, // 0x40B93C6CD7C76A28
388 2.51633368920368957333e+03, // 0x40A3A8AAD94FB1C0
389 -1.49247451836156386662e+02, // 0xC062A7EB201CF40F
392 // for x in [2.8570,2]=1/[0.3499,0.5]
393 var q0R2
= [6]float64{
394 1.50444444886983272379e-07, // 0x3E84313B54F76BDB
395 7.32234265963079278272e-02, // 0x3FB2BEC53E883E34
396 1.99819174093815998816e+00, // 0x3FFFF897E727779C
397 1.44956029347885735348e+01, // 0x402CFDBFAAF96FE5
398 3.16662317504781540833e+01, // 0x403FAA8E29FBDC4A
399 1.62527075710929267416e+01, // 0x403040B171814BB4
401 var q0S2
= [6]float64{
402 3.03655848355219184498e+01, // 0x403E5D96F7C07AED
403 2.69348118608049844624e+02, // 0x4070D591E4D14B40
404 8.44783757595320139444e+02, // 0x408A664522B3BF22
405 8.82935845112488550512e+02, // 0x408B977C9C5CC214
406 2.12666388511798828631e+02, // 0x406A95530E001365
407 -5.31095493882666946917e+00, // 0xC0153E6AF8B32931
410 func qzero(x
float64) float64 {
415 } else if x
>= 4.5454 {
418 } else if x
>= 2.8571 {
426 r
:= p
[0] + z
*(p
[1]+z
*(p
[2]+z
*(p
[3]+z
*(p
[4]+z
*p
[5]))))
427 s
:= 1 + z
*(q
[0]+z
*(q
[1]+z
*(q
[2]+z
*(q
[3]+z
*(q
[4]+z
*q
[5])))))
428 return (-0.125 + r
/s
) / x