2014-05-06 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vect-loop.c
blob7607d956d9ef29adc9cfad4d6e7315806818c7c6
1 /* Loop Vectorization
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "cfgloop.h"
34 #include "expr.h"
35 #include "recog.h"
36 #include "optabs.h"
37 #include "params.h"
38 #include "diagnostic-core.h"
39 #include "tree-chrec.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-vectorizer.h"
42 #include "target.h"
44 /* Loop Vectorization Pass.
46 This pass tries to vectorize loops.
48 For example, the vectorizer transforms the following simple loop:
50 short a[N]; short b[N]; short c[N]; int i;
52 for (i=0; i<N; i++){
53 a[i] = b[i] + c[i];
56 as if it was manually vectorized by rewriting the source code into:
58 typedef int __attribute__((mode(V8HI))) v8hi;
59 short a[N]; short b[N]; short c[N]; int i;
60 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
61 v8hi va, vb, vc;
63 for (i=0; i<N/8; i++){
64 vb = pb[i];
65 vc = pc[i];
66 va = vb + vc;
67 pa[i] = va;
70 The main entry to this pass is vectorize_loops(), in which
71 the vectorizer applies a set of analyses on a given set of loops,
72 followed by the actual vectorization transformation for the loops that
73 had successfully passed the analysis phase.
74 Throughout this pass we make a distinction between two types of
75 data: scalars (which are represented by SSA_NAMES), and memory references
76 ("data-refs"). These two types of data require different handling both
77 during analysis and transformation. The types of data-refs that the
78 vectorizer currently supports are ARRAY_REFS which base is an array DECL
79 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
80 accesses are required to have a simple (consecutive) access pattern.
82 Analysis phase:
83 ===============
84 The driver for the analysis phase is vect_analyze_loop().
85 It applies a set of analyses, some of which rely on the scalar evolution
86 analyzer (scev) developed by Sebastian Pop.
88 During the analysis phase the vectorizer records some information
89 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
90 loop, as well as general information about the loop as a whole, which is
91 recorded in a "loop_vec_info" struct attached to each loop.
93 Transformation phase:
94 =====================
95 The loop transformation phase scans all the stmts in the loop, and
96 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
97 the loop that needs to be vectorized. It inserts the vector code sequence
98 just before the scalar stmt S, and records a pointer to the vector code
99 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
100 attached to S). This pointer will be used for the vectorization of following
101 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
102 otherwise, we rely on dead code elimination for removing it.
104 For example, say stmt S1 was vectorized into stmt VS1:
106 VS1: vb = px[i];
107 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
108 S2: a = b;
110 To vectorize stmt S2, the vectorizer first finds the stmt that defines
111 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
112 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
113 resulting sequence would be:
115 VS1: vb = px[i];
116 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
117 VS2: va = vb;
118 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
120 Operands that are not SSA_NAMEs, are data-refs that appear in
121 load/store operations (like 'x[i]' in S1), and are handled differently.
123 Target modeling:
124 =================
125 Currently the only target specific information that is used is the
126 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
127 Targets that can support different sizes of vectors, for now will need
128 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
129 flexibility will be added in the future.
131 Since we only vectorize operations which vector form can be
132 expressed using existing tree codes, to verify that an operation is
133 supported, the vectorizer checks the relevant optab at the relevant
134 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
135 the value found is CODE_FOR_nothing, then there's no target support, and
136 we can't vectorize the stmt.
138 For additional information on this project see:
139 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
142 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
184 gimple stmt, pattern_stmt = NULL;
185 gimple_seq pattern_def_seq = NULL;
186 gimple_stmt_iterator pattern_def_si = gsi_none ();
187 bool analyze_pattern_stmt = false;
189 if (dump_enabled_p ())
190 dump_printf_loc (MSG_NOTE, vect_location,
191 "=== vect_determine_vectorization_factor ===");
193 for (i = 0; i < nbbs; i++)
195 basic_block bb = bbs[i];
197 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
199 phi = gsi_stmt (si);
200 stmt_info = vinfo_for_stmt (phi);
201 if (dump_enabled_p ())
203 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
204 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
207 gcc_assert (stmt_info);
209 if (STMT_VINFO_RELEVANT_P (stmt_info))
211 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
212 scalar_type = TREE_TYPE (PHI_RESULT (phi));
214 if (dump_enabled_p ())
216 dump_printf_loc (MSG_NOTE, vect_location,
217 "get vectype for scalar type: ");
218 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
221 vectype = get_vectype_for_scalar_type (scalar_type);
222 if (!vectype)
224 if (dump_enabled_p ())
226 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
227 "not vectorized: unsupported "
228 "data-type ");
229 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
230 scalar_type);
232 return false;
234 STMT_VINFO_VECTYPE (stmt_info) = vectype;
236 if (dump_enabled_p ())
238 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
239 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
242 nunits = TYPE_VECTOR_SUBPARTS (vectype);
243 if (dump_enabled_p ())
244 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
246 if (!vectorization_factor
247 || (nunits > vectorization_factor))
248 vectorization_factor = nunits;
252 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
254 tree vf_vectype;
256 if (analyze_pattern_stmt)
257 stmt = pattern_stmt;
258 else
259 stmt = gsi_stmt (si);
261 stmt_info = vinfo_for_stmt (stmt);
263 if (dump_enabled_p ())
265 dump_printf_loc (MSG_NOTE, vect_location,
266 "==> examining statement: ");
267 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
270 gcc_assert (stmt_info);
272 /* Skip stmts which do not need to be vectorized. */
273 if (!STMT_VINFO_RELEVANT_P (stmt_info)
274 && !STMT_VINFO_LIVE_P (stmt_info))
276 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
277 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
278 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
279 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
281 stmt = pattern_stmt;
282 stmt_info = vinfo_for_stmt (pattern_stmt);
283 if (dump_enabled_p ())
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining pattern statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
290 else
292 if (dump_enabled_p ())
293 dump_printf_loc (MSG_NOTE, vect_location, "skip.");
294 gsi_next (&si);
295 continue;
298 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
299 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
302 analyze_pattern_stmt = true;
304 /* If a pattern statement has def stmts, analyze them too. */
305 if (is_pattern_stmt_p (stmt_info))
307 if (pattern_def_seq == NULL)
309 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
310 pattern_def_si = gsi_start (pattern_def_seq);
312 else if (!gsi_end_p (pattern_def_si))
313 gsi_next (&pattern_def_si);
314 if (pattern_def_seq != NULL)
316 gimple pattern_def_stmt = NULL;
317 stmt_vec_info pattern_def_stmt_info = NULL;
319 while (!gsi_end_p (pattern_def_si))
321 pattern_def_stmt = gsi_stmt (pattern_def_si);
322 pattern_def_stmt_info
323 = vinfo_for_stmt (pattern_def_stmt);
324 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
325 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
326 break;
327 gsi_next (&pattern_def_si);
330 if (!gsi_end_p (pattern_def_si))
332 if (dump_enabled_p ())
334 dump_printf_loc (MSG_NOTE, vect_location,
335 "==> examining pattern def stmt: ");
336 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
337 pattern_def_stmt, 0);
340 stmt = pattern_def_stmt;
341 stmt_info = pattern_def_stmt_info;
343 else
345 pattern_def_si = gsi_none ();
346 analyze_pattern_stmt = false;
349 else
350 analyze_pattern_stmt = false;
353 if (gimple_get_lhs (stmt) == NULL_TREE)
355 if (dump_enabled_p ())
357 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
358 "not vectorized: irregular stmt.");
359 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
362 return false;
365 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
367 if (dump_enabled_p ())
369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
370 "not vectorized: vector stmt in loop:");
371 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
373 return false;
376 if (STMT_VINFO_VECTYPE (stmt_info))
378 /* The only case when a vectype had been already set is for stmts
379 that contain a dataref, or for "pattern-stmts" (stmts
380 generated by the vectorizer to represent/replace a certain
381 idiom). */
382 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
383 || is_pattern_stmt_p (stmt_info)
384 || !gsi_end_p (pattern_def_si));
385 vectype = STMT_VINFO_VECTYPE (stmt_info);
387 else
389 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
390 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_NOTE, vect_location,
394 "get vectype for scalar type: ");
395 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
397 vectype = get_vectype_for_scalar_type (scalar_type);
398 if (!vectype)
400 if (dump_enabled_p ())
402 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
403 "not vectorized: unsupported "
404 "data-type ");
405 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
406 scalar_type);
408 return false;
411 STMT_VINFO_VECTYPE (stmt_info) = vectype;
414 /* The vectorization factor is according to the smallest
415 scalar type (or the largest vector size, but we only
416 support one vector size per loop). */
417 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
418 &dummy);
419 if (dump_enabled_p ())
421 dump_printf_loc (MSG_NOTE, vect_location,
422 "get vectype for scalar type: ");
423 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
425 vf_vectype = get_vectype_for_scalar_type (scalar_type);
426 if (!vf_vectype)
428 if (dump_enabled_p ())
430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
431 "not vectorized: unsupported data-type ");
432 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
433 scalar_type);
435 return false;
438 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
439 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
441 if (dump_enabled_p ())
443 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
444 "not vectorized: different sized vector "
445 "types in statement, ");
446 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
447 vectype);
448 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
449 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
450 vf_vectype);
452 return false;
455 if (dump_enabled_p ())
457 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
458 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
461 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
462 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
464 if (!vectorization_factor
465 || (nunits > vectorization_factor))
466 vectorization_factor = nunits;
468 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
470 pattern_def_seq = NULL;
471 gsi_next (&si);
476 /* TODO: Analyze cost. Decide if worth while to vectorize. */
477 if (dump_enabled_p ())
478 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d",
479 vectorization_factor);
480 if (vectorization_factor <= 1)
482 if (dump_enabled_p ())
483 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
484 "not vectorized: unsupported data-type");
485 return false;
487 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
489 return true;
493 /* Function vect_is_simple_iv_evolution.
495 FORNOW: A simple evolution of an induction variables in the loop is
496 considered a polynomial evolution with constant step. */
498 static bool
499 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
500 tree * step)
502 tree init_expr;
503 tree step_expr;
504 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
506 /* When there is no evolution in this loop, the evolution function
507 is not "simple". */
508 if (evolution_part == NULL_TREE)
509 return false;
511 /* When the evolution is a polynomial of degree >= 2
512 the evolution function is not "simple". */
513 if (tree_is_chrec (evolution_part))
514 return false;
516 step_expr = evolution_part;
517 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
519 if (dump_enabled_p ())
521 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
522 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
523 dump_printf (MSG_NOTE, ", init: ");
524 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
527 *init = init_expr;
528 *step = step_expr;
530 if (TREE_CODE (step_expr) != INTEGER_CST)
532 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "step unknown.");
535 return false;
538 return true;
541 /* Function vect_analyze_scalar_cycles_1.
543 Examine the cross iteration def-use cycles of scalar variables
544 in LOOP. LOOP_VINFO represents the loop that is now being
545 considered for vectorization (can be LOOP, or an outer-loop
546 enclosing LOOP). */
548 static void
549 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
551 basic_block bb = loop->header;
552 tree dumy;
553 vec<gimple> worklist;
554 worklist.create (64);
555 gimple_stmt_iterator gsi;
556 bool double_reduc;
558 if (dump_enabled_p ())
559 dump_printf_loc (MSG_NOTE, vect_location,
560 "=== vect_analyze_scalar_cycles ===");
562 /* First - identify all inductions. Reduction detection assumes that all the
563 inductions have been identified, therefore, this order must not be
564 changed. */
565 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
567 gimple phi = gsi_stmt (gsi);
568 tree access_fn = NULL;
569 tree def = PHI_RESULT (phi);
570 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
572 if (dump_enabled_p ())
574 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
575 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
578 /* Skip virtual phi's. The data dependences that are associated with
579 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
580 if (virtual_operand_p (def))
581 continue;
583 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
585 /* Analyze the evolution function. */
586 access_fn = analyze_scalar_evolution (loop, def);
587 if (access_fn)
589 STRIP_NOPS (access_fn);
590 if (dump_enabled_p ())
592 dump_printf_loc (MSG_NOTE, vect_location,
593 "Access function of PHI: ");
594 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
596 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
597 = evolution_part_in_loop_num (access_fn, loop->num);
600 if (!access_fn
601 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
603 worklist.safe_push (phi);
604 continue;
607 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
609 if (dump_enabled_p ())
610 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.");
611 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
615 /* Second - identify all reductions and nested cycles. */
616 while (worklist.length () > 0)
618 gimple phi = worklist.pop ();
619 tree def = PHI_RESULT (phi);
620 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
621 gimple reduc_stmt;
622 bool nested_cycle;
624 if (dump_enabled_p ())
626 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
627 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
630 gcc_assert (!virtual_operand_p (def)
631 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
633 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
634 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
635 &double_reduc);
636 if (reduc_stmt)
638 if (double_reduc)
640 if (dump_enabled_p ())
641 dump_printf_loc (MSG_NOTE, vect_location,
642 "Detected double reduction.");
644 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
645 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
646 vect_double_reduction_def;
648 else
650 if (nested_cycle)
652 if (dump_enabled_p ())
653 dump_printf_loc (MSG_NOTE, vect_location,
654 "Detected vectorizable nested cycle.");
656 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
657 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
658 vect_nested_cycle;
660 else
662 if (dump_enabled_p ())
663 dump_printf_loc (MSG_NOTE, vect_location,
664 "Detected reduction.");
666 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
667 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
668 vect_reduction_def;
669 /* Store the reduction cycles for possible vectorization in
670 loop-aware SLP. */
671 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
675 else
676 if (dump_enabled_p ())
677 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
678 "Unknown def-use cycle pattern.");
681 worklist.release ();
685 /* Function vect_analyze_scalar_cycles.
687 Examine the cross iteration def-use cycles of scalar variables, by
688 analyzing the loop-header PHIs of scalar variables. Classify each
689 cycle as one of the following: invariant, induction, reduction, unknown.
690 We do that for the loop represented by LOOP_VINFO, and also to its
691 inner-loop, if exists.
692 Examples for scalar cycles:
694 Example1: reduction:
696 loop1:
697 for (i=0; i<N; i++)
698 sum += a[i];
700 Example2: induction:
702 loop2:
703 for (i=0; i<N; i++)
704 a[i] = i; */
706 static void
707 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
709 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
711 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
713 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
714 Reductions in such inner-loop therefore have different properties than
715 the reductions in the nest that gets vectorized:
716 1. When vectorized, they are executed in the same order as in the original
717 scalar loop, so we can't change the order of computation when
718 vectorizing them.
719 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
720 current checks are too strict. */
722 if (loop->inner)
723 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
726 /* Function vect_get_loop_niters.
728 Determine how many iterations the loop is executed.
729 If an expression that represents the number of iterations
730 can be constructed, place it in NUMBER_OF_ITERATIONS.
731 Return the loop exit condition. */
733 static gimple
734 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
736 tree niters;
738 if (dump_enabled_p ())
739 dump_printf_loc (MSG_NOTE, vect_location,
740 "=== get_loop_niters ===");
741 niters = number_of_exit_cond_executions (loop);
743 if (niters != NULL_TREE
744 && niters != chrec_dont_know)
746 *number_of_iterations = niters;
748 if (dump_enabled_p ())
750 dump_printf_loc (MSG_NOTE, vect_location, "==> get_loop_niters:");
751 dump_generic_expr (MSG_NOTE, TDF_SLIM, *number_of_iterations);
755 return get_loop_exit_condition (loop);
759 /* Function bb_in_loop_p
761 Used as predicate for dfs order traversal of the loop bbs. */
763 static bool
764 bb_in_loop_p (const_basic_block bb, const void *data)
766 const struct loop *const loop = (const struct loop *)data;
767 if (flow_bb_inside_loop_p (loop, bb))
768 return true;
769 return false;
773 /* Function new_loop_vec_info.
775 Create and initialize a new loop_vec_info struct for LOOP, as well as
776 stmt_vec_info structs for all the stmts in LOOP. */
778 static loop_vec_info
779 new_loop_vec_info (struct loop *loop)
781 loop_vec_info res;
782 basic_block *bbs;
783 gimple_stmt_iterator si;
784 unsigned int i, nbbs;
786 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
787 LOOP_VINFO_LOOP (res) = loop;
789 bbs = get_loop_body (loop);
791 /* Create/Update stmt_info for all stmts in the loop. */
792 for (i = 0; i < loop->num_nodes; i++)
794 basic_block bb = bbs[i];
796 /* BBs in a nested inner-loop will have been already processed (because
797 we will have called vect_analyze_loop_form for any nested inner-loop).
798 Therefore, for stmts in an inner-loop we just want to update the
799 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
800 loop_info of the outer-loop we are currently considering to vectorize
801 (instead of the loop_info of the inner-loop).
802 For stmts in other BBs we need to create a stmt_info from scratch. */
803 if (bb->loop_father != loop)
805 /* Inner-loop bb. */
806 gcc_assert (loop->inner && bb->loop_father == loop->inner);
807 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
809 gimple phi = gsi_stmt (si);
810 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
811 loop_vec_info inner_loop_vinfo =
812 STMT_VINFO_LOOP_VINFO (stmt_info);
813 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
814 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
816 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
818 gimple stmt = gsi_stmt (si);
819 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
820 loop_vec_info inner_loop_vinfo =
821 STMT_VINFO_LOOP_VINFO (stmt_info);
822 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
823 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
826 else
828 /* bb in current nest. */
829 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
831 gimple phi = gsi_stmt (si);
832 gimple_set_uid (phi, 0);
833 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
836 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
838 gimple stmt = gsi_stmt (si);
839 gimple_set_uid (stmt, 0);
840 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
845 /* CHECKME: We want to visit all BBs before their successors (except for
846 latch blocks, for which this assertion wouldn't hold). In the simple
847 case of the loop forms we allow, a dfs order of the BBs would the same
848 as reversed postorder traversal, so we are safe. */
850 free (bbs);
851 bbs = XCNEWVEC (basic_block, loop->num_nodes);
852 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
853 bbs, loop->num_nodes, loop);
854 gcc_assert (nbbs == loop->num_nodes);
856 LOOP_VINFO_BBS (res) = bbs;
857 LOOP_VINFO_NITERS (res) = NULL;
858 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
859 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
860 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
861 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
862 LOOP_VINFO_VECT_FACTOR (res) = 0;
863 LOOP_VINFO_LOOP_NEST (res).create (3);
864 LOOP_VINFO_DATAREFS (res).create (10);
865 LOOP_VINFO_DDRS (res).create (10 * 10);
866 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
867 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
868 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
869 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
870 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
871 LOOP_VINFO_GROUPED_STORES (res).create (10);
872 LOOP_VINFO_REDUCTIONS (res).create (10);
873 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
874 LOOP_VINFO_SLP_INSTANCES (res).create (10);
875 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
876 LOOP_VINFO_PEELING_HTAB (res) = NULL;
877 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
878 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
879 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
881 return res;
885 /* Function destroy_loop_vec_info.
887 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
888 stmts in the loop. */
890 void
891 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
893 struct loop *loop;
894 basic_block *bbs;
895 int nbbs;
896 gimple_stmt_iterator si;
897 int j;
898 vec<slp_instance> slp_instances;
899 slp_instance instance;
900 bool swapped;
902 if (!loop_vinfo)
903 return;
905 loop = LOOP_VINFO_LOOP (loop_vinfo);
907 bbs = LOOP_VINFO_BBS (loop_vinfo);
908 nbbs = clean_stmts ? loop->num_nodes : 0;
909 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
911 for (j = 0; j < nbbs; j++)
913 basic_block bb = bbs[j];
914 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
915 free_stmt_vec_info (gsi_stmt (si));
917 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
919 gimple stmt = gsi_stmt (si);
921 /* We may have broken canonical form by moving a constant
922 into RHS1 of a commutative op. Fix such occurrences. */
923 if (swapped && is_gimple_assign (stmt))
925 enum tree_code code = gimple_assign_rhs_code (stmt);
927 if ((code == PLUS_EXPR
928 || code == POINTER_PLUS_EXPR
929 || code == MULT_EXPR)
930 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
931 swap_tree_operands (stmt,
932 gimple_assign_rhs1_ptr (stmt),
933 gimple_assign_rhs2_ptr (stmt));
936 /* Free stmt_vec_info. */
937 free_stmt_vec_info (stmt);
938 gsi_next (&si);
942 free (LOOP_VINFO_BBS (loop_vinfo));
943 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
944 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
945 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
946 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
947 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
948 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
949 FOR_EACH_VEC_ELT (slp_instances, j, instance)
950 vect_free_slp_instance (instance);
952 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
953 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
954 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
955 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
957 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
958 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
960 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
962 free (loop_vinfo);
963 loop->aux = NULL;
967 /* Function vect_analyze_loop_1.
969 Apply a set of analyses on LOOP, and create a loop_vec_info struct
970 for it. The different analyses will record information in the
971 loop_vec_info struct. This is a subset of the analyses applied in
972 vect_analyze_loop, to be applied on an inner-loop nested in the loop
973 that is now considered for (outer-loop) vectorization. */
975 static loop_vec_info
976 vect_analyze_loop_1 (struct loop *loop)
978 loop_vec_info loop_vinfo;
980 if (dump_enabled_p ())
981 dump_printf_loc (MSG_NOTE, vect_location,
982 "===== analyze_loop_nest_1 =====");
984 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
986 loop_vinfo = vect_analyze_loop_form (loop);
987 if (!loop_vinfo)
989 if (dump_enabled_p ())
990 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
991 "bad inner-loop form.");
992 return NULL;
995 return loop_vinfo;
999 /* Function vect_analyze_loop_form.
1001 Verify that certain CFG restrictions hold, including:
1002 - the loop has a pre-header
1003 - the loop has a single entry and exit
1004 - the loop exit condition is simple enough, and the number of iterations
1005 can be analyzed (a countable loop). */
1007 loop_vec_info
1008 vect_analyze_loop_form (struct loop *loop)
1010 loop_vec_info loop_vinfo;
1011 gimple loop_cond;
1012 tree number_of_iterations = NULL;
1013 loop_vec_info inner_loop_vinfo = NULL;
1015 if (dump_enabled_p ())
1016 dump_printf_loc (MSG_NOTE, vect_location,
1017 "=== vect_analyze_loop_form ===");
1019 /* Different restrictions apply when we are considering an inner-most loop,
1020 vs. an outer (nested) loop.
1021 (FORNOW. May want to relax some of these restrictions in the future). */
1023 if (!loop->inner)
1025 /* Inner-most loop. We currently require that the number of BBs is
1026 exactly 2 (the header and latch). Vectorizable inner-most loops
1027 look like this:
1029 (pre-header)
1031 header <--------+
1032 | | |
1033 | +--> latch --+
1035 (exit-bb) */
1037 if (loop->num_nodes != 2)
1039 if (dump_enabled_p ())
1040 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1041 "not vectorized: control flow in loop.");
1042 return NULL;
1045 if (empty_block_p (loop->header))
1047 if (dump_enabled_p ())
1048 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1049 "not vectorized: empty loop.");
1050 return NULL;
1053 else
1055 struct loop *innerloop = loop->inner;
1056 edge entryedge;
1058 /* Nested loop. We currently require that the loop is doubly-nested,
1059 contains a single inner loop, and the number of BBs is exactly 5.
1060 Vectorizable outer-loops look like this:
1062 (pre-header)
1064 header <---+
1066 inner-loop |
1068 tail ------+
1070 (exit-bb)
1072 The inner-loop has the properties expected of inner-most loops
1073 as described above. */
1075 if ((loop->inner)->inner || (loop->inner)->next)
1077 if (dump_enabled_p ())
1078 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1079 "not vectorized: multiple nested loops.");
1080 return NULL;
1083 /* Analyze the inner-loop. */
1084 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1085 if (!inner_loop_vinfo)
1087 if (dump_enabled_p ())
1088 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1089 "not vectorized: Bad inner loop.");
1090 return NULL;
1093 if (!expr_invariant_in_loop_p (loop,
1094 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1096 if (dump_enabled_p ())
1097 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1098 "not vectorized: inner-loop count not invariant.");
1099 destroy_loop_vec_info (inner_loop_vinfo, true);
1100 return NULL;
1103 if (loop->num_nodes != 5)
1105 if (dump_enabled_p ())
1106 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1107 "not vectorized: control flow in loop.");
1108 destroy_loop_vec_info (inner_loop_vinfo, true);
1109 return NULL;
1112 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1113 entryedge = EDGE_PRED (innerloop->header, 0);
1114 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1115 entryedge = EDGE_PRED (innerloop->header, 1);
1117 if (entryedge->src != loop->header
1118 || !single_exit (innerloop)
1119 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1121 if (dump_enabled_p ())
1122 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1123 "not vectorized: unsupported outerloop form.");
1124 destroy_loop_vec_info (inner_loop_vinfo, true);
1125 return NULL;
1128 if (dump_enabled_p ())
1129 dump_printf_loc (MSG_NOTE, vect_location,
1130 "Considering outer-loop vectorization.");
1133 if (!single_exit (loop)
1134 || EDGE_COUNT (loop->header->preds) != 2)
1136 if (dump_enabled_p ())
1138 if (!single_exit (loop))
1139 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1140 "not vectorized: multiple exits.");
1141 else if (EDGE_COUNT (loop->header->preds) != 2)
1142 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1143 "not vectorized: too many incoming edges.");
1145 if (inner_loop_vinfo)
1146 destroy_loop_vec_info (inner_loop_vinfo, true);
1147 return NULL;
1150 /* We assume that the loop exit condition is at the end of the loop. i.e,
1151 that the loop is represented as a do-while (with a proper if-guard
1152 before the loop if needed), where the loop header contains all the
1153 executable statements, and the latch is empty. */
1154 if (!empty_block_p (loop->latch)
1155 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1157 if (dump_enabled_p ())
1158 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1159 "not vectorized: latch block not empty.");
1160 if (inner_loop_vinfo)
1161 destroy_loop_vec_info (inner_loop_vinfo, true);
1162 return NULL;
1165 /* Make sure there exists a single-predecessor exit bb: */
1166 if (!single_pred_p (single_exit (loop)->dest))
1168 edge e = single_exit (loop);
1169 if (!(e->flags & EDGE_ABNORMAL))
1171 split_loop_exit_edge (e);
1172 if (dump_enabled_p ())
1173 dump_printf (MSG_NOTE, "split exit edge.");
1175 else
1177 if (dump_enabled_p ())
1178 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1179 "not vectorized: abnormal loop exit edge.");
1180 if (inner_loop_vinfo)
1181 destroy_loop_vec_info (inner_loop_vinfo, true);
1182 return NULL;
1186 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1187 if (!loop_cond)
1189 if (dump_enabled_p ())
1190 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1191 "not vectorized: complicated exit condition.");
1192 if (inner_loop_vinfo)
1193 destroy_loop_vec_info (inner_loop_vinfo, true);
1194 return NULL;
1197 if (!number_of_iterations)
1199 if (dump_enabled_p ())
1200 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1201 "not vectorized: number of iterations cannot be "
1202 "computed.");
1203 if (inner_loop_vinfo)
1204 destroy_loop_vec_info (inner_loop_vinfo, true);
1205 return NULL;
1208 if (chrec_contains_undetermined (number_of_iterations))
1210 if (dump_enabled_p ())
1211 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1212 "Infinite number of iterations.");
1213 if (inner_loop_vinfo)
1214 destroy_loop_vec_info (inner_loop_vinfo, true);
1215 return NULL;
1218 if (!NITERS_KNOWN_P (number_of_iterations))
1220 if (dump_enabled_p ())
1222 dump_printf_loc (MSG_NOTE, vect_location,
1223 "Symbolic number of iterations is ");
1224 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1227 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1229 if (dump_enabled_p ())
1230 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1231 "not vectorized: number of iterations = 0.");
1232 if (inner_loop_vinfo)
1233 destroy_loop_vec_info (inner_loop_vinfo, true);
1234 return NULL;
1237 loop_vinfo = new_loop_vec_info (loop);
1238 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1239 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1241 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1243 /* CHECKME: May want to keep it around it in the future. */
1244 if (inner_loop_vinfo)
1245 destroy_loop_vec_info (inner_loop_vinfo, false);
1247 gcc_assert (!loop->aux);
1248 loop->aux = loop_vinfo;
1249 return loop_vinfo;
1253 /* Function vect_analyze_loop_operations.
1255 Scan the loop stmts and make sure they are all vectorizable. */
1257 static bool
1258 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1260 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1261 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1262 int nbbs = loop->num_nodes;
1263 gimple_stmt_iterator si;
1264 unsigned int vectorization_factor = 0;
1265 int i;
1266 gimple phi;
1267 stmt_vec_info stmt_info;
1268 bool need_to_vectorize = false;
1269 int min_profitable_iters;
1270 int min_scalar_loop_bound;
1271 unsigned int th;
1272 bool only_slp_in_loop = true, ok;
1273 HOST_WIDE_INT max_niter;
1274 HOST_WIDE_INT estimated_niter;
1275 int min_profitable_estimate;
1277 if (dump_enabled_p ())
1278 dump_printf_loc (MSG_NOTE, vect_location,
1279 "=== vect_analyze_loop_operations ===");
1281 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1282 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1283 if (slp)
1285 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1286 vectorization factor of the loop is the unrolling factor required by
1287 the SLP instances. If that unrolling factor is 1, we say, that we
1288 perform pure SLP on loop - cross iteration parallelism is not
1289 exploited. */
1290 for (i = 0; i < nbbs; i++)
1292 basic_block bb = bbs[i];
1293 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1295 gimple stmt = gsi_stmt (si);
1296 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1297 gcc_assert (stmt_info);
1298 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1299 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1300 && !PURE_SLP_STMT (stmt_info))
1301 /* STMT needs both SLP and loop-based vectorization. */
1302 only_slp_in_loop = false;
1306 if (only_slp_in_loop)
1307 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1308 else
1309 vectorization_factor = least_common_multiple (vectorization_factor,
1310 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1312 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1313 if (dump_enabled_p ())
1314 dump_printf_loc (MSG_NOTE, vect_location,
1315 "Updating vectorization factor to %d ",
1316 vectorization_factor);
1319 for (i = 0; i < nbbs; i++)
1321 basic_block bb = bbs[i];
1323 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1325 phi = gsi_stmt (si);
1326 ok = true;
1328 stmt_info = vinfo_for_stmt (phi);
1329 if (dump_enabled_p ())
1331 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1332 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1335 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1336 (i.e., a phi in the tail of the outer-loop). */
1337 if (! is_loop_header_bb_p (bb))
1339 /* FORNOW: we currently don't support the case that these phis
1340 are not used in the outerloop (unless it is double reduction,
1341 i.e., this phi is vect_reduction_def), cause this case
1342 requires to actually do something here. */
1343 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1344 || STMT_VINFO_LIVE_P (stmt_info))
1345 && STMT_VINFO_DEF_TYPE (stmt_info)
1346 != vect_double_reduction_def)
1348 if (dump_enabled_p ())
1349 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1350 "Unsupported loop-closed phi in "
1351 "outer-loop.");
1352 return false;
1355 /* If PHI is used in the outer loop, we check that its operand
1356 is defined in the inner loop. */
1357 if (STMT_VINFO_RELEVANT_P (stmt_info))
1359 tree phi_op;
1360 gimple op_def_stmt;
1362 if (gimple_phi_num_args (phi) != 1)
1363 return false;
1365 phi_op = PHI_ARG_DEF (phi, 0);
1366 if (TREE_CODE (phi_op) != SSA_NAME)
1367 return false;
1369 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1370 if (!op_def_stmt
1371 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1372 || !vinfo_for_stmt (op_def_stmt))
1373 return false;
1375 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1376 != vect_used_in_outer
1377 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1378 != vect_used_in_outer_by_reduction)
1379 return false;
1382 continue;
1385 gcc_assert (stmt_info);
1387 if (STMT_VINFO_LIVE_P (stmt_info))
1389 /* FORNOW: not yet supported. */
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "not vectorized: value used after loop.");
1393 return false;
1396 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1397 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1399 /* A scalar-dependence cycle that we don't support. */
1400 if (dump_enabled_p ())
1401 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1402 "not vectorized: scalar dependence cycle.");
1403 return false;
1406 if (STMT_VINFO_RELEVANT_P (stmt_info))
1408 need_to_vectorize = true;
1409 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1410 ok = vectorizable_induction (phi, NULL, NULL);
1413 if (!ok)
1415 if (dump_enabled_p ())
1417 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1418 "not vectorized: relevant phi not "
1419 "supported: ");
1420 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1422 return false;
1426 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1428 gimple stmt = gsi_stmt (si);
1429 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1430 return false;
1432 } /* bbs */
1434 /* All operations in the loop are either irrelevant (deal with loop
1435 control, or dead), or only used outside the loop and can be moved
1436 out of the loop (e.g. invariants, inductions). The loop can be
1437 optimized away by scalar optimizations. We're better off not
1438 touching this loop. */
1439 if (!need_to_vectorize)
1441 if (dump_enabled_p ())
1442 dump_printf_loc (MSG_NOTE, vect_location,
1443 "All the computation can be taken out of the loop.");
1444 if (dump_enabled_p ())
1445 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1446 "not vectorized: redundant loop. no profit to "
1447 "vectorize.");
1448 return false;
1451 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1452 dump_printf_loc (MSG_NOTE, vect_location,
1453 "vectorization_factor = %d, niters = "
1454 HOST_WIDE_INT_PRINT_DEC, vectorization_factor,
1455 LOOP_VINFO_INT_NITERS (loop_vinfo));
1457 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1458 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1459 || ((max_niter = max_stmt_executions_int (loop)) != -1
1460 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1462 if (dump_enabled_p ())
1463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1464 "not vectorized: iteration count too small.");
1465 if (dump_enabled_p ())
1466 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1467 "not vectorized: iteration count smaller than "
1468 "vectorization factor.");
1469 return false;
1472 /* Analyze cost. Decide if worth while to vectorize. */
1474 /* Once VF is set, SLP costs should be updated since the number of created
1475 vector stmts depends on VF. */
1476 vect_update_slp_costs_according_to_vf (loop_vinfo);
1478 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1479 &min_profitable_estimate);
1480 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1482 if (min_profitable_iters < 0)
1484 if (dump_enabled_p ())
1485 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1486 "not vectorized: vectorization not profitable.");
1487 if (dump_enabled_p ())
1488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1489 "not vectorized: vector version will never be "
1490 "profitable.");
1491 return false;
1494 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1495 * vectorization_factor) - 1);
1498 /* Use the cost model only if it is more conservative than user specified
1499 threshold. */
1501 th = (unsigned) min_scalar_loop_bound;
1502 if (min_profitable_iters
1503 && (!min_scalar_loop_bound
1504 || min_profitable_iters > min_scalar_loop_bound))
1505 th = (unsigned) min_profitable_iters;
1507 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1508 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1510 if (dump_enabled_p ())
1511 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1512 "not vectorized: vectorization not profitable.");
1513 if (dump_enabled_p ())
1514 dump_printf_loc (MSG_NOTE, vect_location,
1515 "not vectorized: iteration count smaller than user "
1516 "specified loop bound parameter or minimum profitable "
1517 "iterations (whichever is more conservative).");
1518 return false;
1521 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1522 && ((unsigned HOST_WIDE_INT) estimated_niter
1523 <= MAX (th, (unsigned)min_profitable_estimate)))
1525 if (dump_enabled_p ())
1526 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1527 "not vectorized: estimated iteration count too "
1528 "small.");
1529 if (dump_enabled_p ())
1530 dump_printf_loc (MSG_NOTE, vect_location,
1531 "not vectorized: estimated iteration count smaller "
1532 "than specified loop bound parameter or minimum "
1533 "profitable iterations (whichever is more "
1534 "conservative).");
1535 return false;
1538 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1539 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1540 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1542 if (dump_enabled_p ())
1543 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required.");
1544 if (!vect_can_advance_ivs_p (loop_vinfo))
1546 if (dump_enabled_p ())
1547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1548 "not vectorized: can't create epilog loop 1.");
1549 return false;
1551 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1553 if (dump_enabled_p ())
1554 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1555 "not vectorized: can't create epilog loop 2.");
1556 return false;
1560 return true;
1564 /* Function vect_analyze_loop_2.
1566 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1567 for it. The different analyses will record information in the
1568 loop_vec_info struct. */
1569 static bool
1570 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1572 bool ok, slp = false;
1573 int max_vf = MAX_VECTORIZATION_FACTOR;
1574 int min_vf = 2;
1576 /* Find all data references in the loop (which correspond to vdefs/vuses)
1577 and analyze their evolution in the loop. Also adjust the minimal
1578 vectorization factor according to the loads and stores.
1580 FORNOW: Handle only simple, array references, which
1581 alignment can be forced, and aligned pointer-references. */
1583 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1584 if (!ok)
1586 if (dump_enabled_p ())
1587 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1588 "bad data references.");
1589 return false;
1592 /* Classify all cross-iteration scalar data-flow cycles.
1593 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1595 vect_analyze_scalar_cycles (loop_vinfo);
1597 vect_pattern_recog (loop_vinfo, NULL);
1599 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1601 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1602 if (!ok)
1604 if (dump_enabled_p ())
1605 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1606 "unexpected pattern.");
1607 return false;
1610 /* Analyze data dependences between the data-refs in the loop
1611 and adjust the maximum vectorization factor according to
1612 the dependences.
1613 FORNOW: fail at the first data dependence that we encounter. */
1615 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf);
1616 if (!ok
1617 || max_vf < min_vf)
1619 if (dump_enabled_p ())
1620 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1621 "bad data dependence.");
1622 return false;
1625 ok = vect_determine_vectorization_factor (loop_vinfo);
1626 if (!ok)
1628 if (dump_enabled_p ())
1629 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1630 "can't determine vectorization factor.");
1631 return false;
1633 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1635 if (dump_enabled_p ())
1636 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1637 "bad data dependence.");
1638 return false;
1641 /* Analyze the alignment of the data-refs in the loop.
1642 Fail if a data reference is found that cannot be vectorized. */
1644 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1645 if (!ok)
1647 if (dump_enabled_p ())
1648 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1649 "bad data alignment.");
1650 return false;
1653 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1654 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1656 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1657 if (!ok)
1659 if (dump_enabled_p ())
1660 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1661 "bad data access.");
1662 return false;
1665 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1666 It is important to call pruning after vect_analyze_data_ref_accesses,
1667 since we use grouping information gathered by interleaving analysis. */
1668 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1669 if (!ok)
1671 if (dump_enabled_p ())
1672 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1673 "too long list of versioning for alias "
1674 "run-time tests.");
1675 return false;
1678 /* This pass will decide on using loop versioning and/or loop peeling in
1679 order to enhance the alignment of data references in the loop. */
1681 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1682 if (!ok)
1684 if (dump_enabled_p ())
1685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1686 "bad data alignment.");
1687 return false;
1690 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1691 ok = vect_analyze_slp (loop_vinfo, NULL);
1692 if (ok)
1694 /* Decide which possible SLP instances to SLP. */
1695 slp = vect_make_slp_decision (loop_vinfo);
1697 /* Find stmts that need to be both vectorized and SLPed. */
1698 vect_detect_hybrid_slp (loop_vinfo);
1700 else
1701 return false;
1703 /* Scan all the operations in the loop and make sure they are
1704 vectorizable. */
1706 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1707 if (!ok)
1709 if (dump_enabled_p ())
1710 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1711 "bad operation or unsupported loop bound.");
1712 return false;
1715 return true;
1718 /* Function vect_analyze_loop.
1720 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1721 for it. The different analyses will record information in the
1722 loop_vec_info struct. */
1723 loop_vec_info
1724 vect_analyze_loop (struct loop *loop)
1726 loop_vec_info loop_vinfo;
1727 unsigned int vector_sizes;
1729 /* Autodetect first vector size we try. */
1730 current_vector_size = 0;
1731 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1733 if (dump_enabled_p ())
1734 dump_printf_loc (MSG_NOTE, vect_location,
1735 "===== analyze_loop_nest =====");
1737 if (loop_outer (loop)
1738 && loop_vec_info_for_loop (loop_outer (loop))
1739 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1741 if (dump_enabled_p ())
1742 dump_printf_loc (MSG_NOTE, vect_location,
1743 "outer-loop already vectorized.");
1744 return NULL;
1747 while (1)
1749 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1750 loop_vinfo = vect_analyze_loop_form (loop);
1751 if (!loop_vinfo)
1753 if (dump_enabled_p ())
1754 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1755 "bad loop form.");
1756 return NULL;
1759 if (vect_analyze_loop_2 (loop_vinfo))
1761 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1763 return loop_vinfo;
1766 destroy_loop_vec_info (loop_vinfo, true);
1768 vector_sizes &= ~current_vector_size;
1769 if (vector_sizes == 0
1770 || current_vector_size == 0)
1771 return NULL;
1773 /* Try the next biggest vector size. */
1774 current_vector_size = 1 << floor_log2 (vector_sizes);
1775 if (dump_enabled_p ())
1776 dump_printf_loc (MSG_NOTE, vect_location,
1777 "***** Re-trying analysis with "
1778 "vector size %d\n", current_vector_size);
1783 /* Function reduction_code_for_scalar_code
1785 Input:
1786 CODE - tree_code of a reduction operations.
1788 Output:
1789 REDUC_CODE - the corresponding tree-code to be used to reduce the
1790 vector of partial results into a single scalar result (which
1791 will also reside in a vector) or ERROR_MARK if the operation is
1792 a supported reduction operation, but does not have such tree-code.
1794 Return FALSE if CODE currently cannot be vectorized as reduction. */
1796 static bool
1797 reduction_code_for_scalar_code (enum tree_code code,
1798 enum tree_code *reduc_code)
1800 switch (code)
1802 case MAX_EXPR:
1803 *reduc_code = REDUC_MAX_EXPR;
1804 return true;
1806 case MIN_EXPR:
1807 *reduc_code = REDUC_MIN_EXPR;
1808 return true;
1810 case PLUS_EXPR:
1811 *reduc_code = REDUC_PLUS_EXPR;
1812 return true;
1814 case MULT_EXPR:
1815 case MINUS_EXPR:
1816 case BIT_IOR_EXPR:
1817 case BIT_XOR_EXPR:
1818 case BIT_AND_EXPR:
1819 *reduc_code = ERROR_MARK;
1820 return true;
1822 default:
1823 return false;
1828 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1829 STMT is printed with a message MSG. */
1831 static void
1832 report_vect_op (int msg_type, gimple stmt, const char *msg)
1834 dump_printf_loc (msg_type, vect_location, "%s", msg);
1835 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1839 /* Detect SLP reduction of the form:
1841 #a1 = phi <a5, a0>
1842 a2 = operation (a1)
1843 a3 = operation (a2)
1844 a4 = operation (a3)
1845 a5 = operation (a4)
1847 #a = phi <a5>
1849 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1850 FIRST_STMT is the first reduction stmt in the chain
1851 (a2 = operation (a1)).
1853 Return TRUE if a reduction chain was detected. */
1855 static bool
1856 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1858 struct loop *loop = (gimple_bb (phi))->loop_father;
1859 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1860 enum tree_code code;
1861 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1862 stmt_vec_info use_stmt_info, current_stmt_info;
1863 tree lhs;
1864 imm_use_iterator imm_iter;
1865 use_operand_p use_p;
1866 int nloop_uses, size = 0, n_out_of_loop_uses;
1867 bool found = false;
1869 if (loop != vect_loop)
1870 return false;
1872 lhs = PHI_RESULT (phi);
1873 code = gimple_assign_rhs_code (first_stmt);
1874 while (1)
1876 nloop_uses = 0;
1877 n_out_of_loop_uses = 0;
1878 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1880 gimple use_stmt = USE_STMT (use_p);
1881 if (is_gimple_debug (use_stmt))
1882 continue;
1884 use_stmt = USE_STMT (use_p);
1886 /* Check if we got back to the reduction phi. */
1887 if (use_stmt == phi)
1889 loop_use_stmt = use_stmt;
1890 found = true;
1891 break;
1894 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1896 if (vinfo_for_stmt (use_stmt)
1897 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1899 loop_use_stmt = use_stmt;
1900 nloop_uses++;
1903 else
1904 n_out_of_loop_uses++;
1906 /* There are can be either a single use in the loop or two uses in
1907 phi nodes. */
1908 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1909 return false;
1912 if (found)
1913 break;
1915 /* We reached a statement with no loop uses. */
1916 if (nloop_uses == 0)
1917 return false;
1919 /* This is a loop exit phi, and we haven't reached the reduction phi. */
1920 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
1921 return false;
1923 if (!is_gimple_assign (loop_use_stmt)
1924 || code != gimple_assign_rhs_code (loop_use_stmt)
1925 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
1926 return false;
1928 /* Insert USE_STMT into reduction chain. */
1929 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
1930 if (current_stmt)
1932 current_stmt_info = vinfo_for_stmt (current_stmt);
1933 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
1934 GROUP_FIRST_ELEMENT (use_stmt_info)
1935 = GROUP_FIRST_ELEMENT (current_stmt_info);
1937 else
1938 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
1940 lhs = gimple_assign_lhs (loop_use_stmt);
1941 current_stmt = loop_use_stmt;
1942 size++;
1945 if (!found || loop_use_stmt != phi || size < 2)
1946 return false;
1948 /* Swap the operands, if needed, to make the reduction operand be the second
1949 operand. */
1950 lhs = PHI_RESULT (phi);
1951 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1952 while (next_stmt)
1954 if (gimple_assign_rhs2 (next_stmt) == lhs)
1956 tree op = gimple_assign_rhs1 (next_stmt);
1957 gimple def_stmt = NULL;
1959 if (TREE_CODE (op) == SSA_NAME)
1960 def_stmt = SSA_NAME_DEF_STMT (op);
1962 /* Check that the other def is either defined in the loop
1963 ("vect_internal_def"), or it's an induction (defined by a
1964 loop-header phi-node). */
1965 if (def_stmt
1966 && gimple_bb (def_stmt)
1967 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1968 && (is_gimple_assign (def_stmt)
1969 || is_gimple_call (def_stmt)
1970 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1971 == vect_induction_def
1972 || (gimple_code (def_stmt) == GIMPLE_PHI
1973 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1974 == vect_internal_def
1975 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
1977 lhs = gimple_assign_lhs (next_stmt);
1978 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1979 continue;
1982 return false;
1984 else
1986 tree op = gimple_assign_rhs2 (next_stmt);
1987 gimple def_stmt = NULL;
1989 if (TREE_CODE (op) == SSA_NAME)
1990 def_stmt = SSA_NAME_DEF_STMT (op);
1992 /* Check that the other def is either defined in the loop
1993 ("vect_internal_def"), or it's an induction (defined by a
1994 loop-header phi-node). */
1995 if (def_stmt
1996 && gimple_bb (def_stmt)
1997 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1998 && (is_gimple_assign (def_stmt)
1999 || is_gimple_call (def_stmt)
2000 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2001 == vect_induction_def
2002 || (gimple_code (def_stmt) == GIMPLE_PHI
2003 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2004 == vect_internal_def
2005 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2007 if (dump_enabled_p ())
2009 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2010 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2013 swap_tree_operands (next_stmt,
2014 gimple_assign_rhs1_ptr (next_stmt),
2015 gimple_assign_rhs2_ptr (next_stmt));
2016 update_stmt (next_stmt);
2018 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2019 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2021 else
2022 return false;
2025 lhs = gimple_assign_lhs (next_stmt);
2026 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2029 /* Save the chain for further analysis in SLP detection. */
2030 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2031 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2032 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2034 return true;
2038 /* Function vect_is_simple_reduction_1
2040 (1) Detect a cross-iteration def-use cycle that represents a simple
2041 reduction computation. We look for the following pattern:
2043 loop_header:
2044 a1 = phi < a0, a2 >
2045 a3 = ...
2046 a2 = operation (a3, a1)
2048 such that:
2049 1. operation is commutative and associative and it is safe to
2050 change the order of the computation (if CHECK_REDUCTION is true)
2051 2. no uses for a2 in the loop (a2 is used out of the loop)
2052 3. no uses of a1 in the loop besides the reduction operation
2053 4. no uses of a1 outside the loop.
2055 Conditions 1,4 are tested here.
2056 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2058 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2059 nested cycles, if CHECK_REDUCTION is false.
2061 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2062 reductions:
2064 a1 = phi < a0, a2 >
2065 inner loop (def of a3)
2066 a2 = phi < a3 >
2068 If MODIFY is true it tries also to rework the code in-place to enable
2069 detection of more reduction patterns. For the time being we rewrite
2070 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2073 static gimple
2074 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2075 bool check_reduction, bool *double_reduc,
2076 bool modify)
2078 struct loop *loop = (gimple_bb (phi))->loop_father;
2079 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2080 edge latch_e = loop_latch_edge (loop);
2081 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2082 gimple def_stmt, def1 = NULL, def2 = NULL;
2083 enum tree_code orig_code, code;
2084 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2085 tree type;
2086 int nloop_uses;
2087 tree name;
2088 imm_use_iterator imm_iter;
2089 use_operand_p use_p;
2090 bool phi_def;
2092 *double_reduc = false;
2094 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2095 otherwise, we assume outer loop vectorization. */
2096 gcc_assert ((check_reduction && loop == vect_loop)
2097 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2099 name = PHI_RESULT (phi);
2100 /* ??? If there are no uses of the PHI result the inner loop reduction
2101 won't be detected as possibly double-reduction by vectorizable_reduction
2102 because that tries to walk the PHI arg from the preheader edge which
2103 can be constant. See PR60382. */
2104 if (has_zero_uses (name))
2105 return NULL;
2106 nloop_uses = 0;
2107 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2109 gimple use_stmt = USE_STMT (use_p);
2110 if (is_gimple_debug (use_stmt))
2111 continue;
2113 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2115 if (dump_enabled_p ())
2116 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2117 "intermediate value used outside loop.");
2119 return NULL;
2122 if (vinfo_for_stmt (use_stmt)
2123 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2124 nloop_uses++;
2125 if (nloop_uses > 1)
2127 if (dump_enabled_p ())
2128 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2129 "reduction used in loop.");
2130 return NULL;
2134 if (TREE_CODE (loop_arg) != SSA_NAME)
2136 if (dump_enabled_p ())
2138 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2139 "reduction: not ssa_name: ");
2140 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2142 return NULL;
2145 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2146 if (!def_stmt)
2148 if (dump_enabled_p ())
2149 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2150 "reduction: no def_stmt.");
2151 return NULL;
2154 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2156 if (dump_enabled_p ())
2157 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2158 return NULL;
2161 if (is_gimple_assign (def_stmt))
2163 name = gimple_assign_lhs (def_stmt);
2164 phi_def = false;
2166 else
2168 name = PHI_RESULT (def_stmt);
2169 phi_def = true;
2172 nloop_uses = 0;
2173 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2175 gimple use_stmt = USE_STMT (use_p);
2176 if (is_gimple_debug (use_stmt))
2177 continue;
2178 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2179 && vinfo_for_stmt (use_stmt)
2180 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2181 nloop_uses++;
2182 if (nloop_uses > 1)
2184 if (dump_enabled_p ())
2185 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2186 "reduction used in loop.");
2187 return NULL;
2191 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2192 defined in the inner loop. */
2193 if (phi_def)
2195 op1 = PHI_ARG_DEF (def_stmt, 0);
2197 if (gimple_phi_num_args (def_stmt) != 1
2198 || TREE_CODE (op1) != SSA_NAME)
2200 if (dump_enabled_p ())
2201 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2202 "unsupported phi node definition.");
2204 return NULL;
2207 def1 = SSA_NAME_DEF_STMT (op1);
2208 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2209 && loop->inner
2210 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2211 && is_gimple_assign (def1))
2213 if (dump_enabled_p ())
2214 report_vect_op (MSG_NOTE, def_stmt,
2215 "detected double reduction: ");
2217 *double_reduc = true;
2218 return def_stmt;
2221 return NULL;
2224 code = orig_code = gimple_assign_rhs_code (def_stmt);
2226 /* We can handle "res -= x[i]", which is non-associative by
2227 simply rewriting this into "res += -x[i]". Avoid changing
2228 gimple instruction for the first simple tests and only do this
2229 if we're allowed to change code at all. */
2230 if (code == MINUS_EXPR
2231 && modify
2232 && (op1 = gimple_assign_rhs1 (def_stmt))
2233 && TREE_CODE (op1) == SSA_NAME
2234 && SSA_NAME_DEF_STMT (op1) == phi)
2235 code = PLUS_EXPR;
2237 if (check_reduction
2238 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2240 if (dump_enabled_p ())
2241 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2242 "reduction: not commutative/associative: ");
2243 return NULL;
2246 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2248 if (code != COND_EXPR)
2250 if (dump_enabled_p ())
2251 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2252 "reduction: not binary operation: ");
2254 return NULL;
2257 op3 = gimple_assign_rhs1 (def_stmt);
2258 if (COMPARISON_CLASS_P (op3))
2260 op4 = TREE_OPERAND (op3, 1);
2261 op3 = TREE_OPERAND (op3, 0);
2264 op1 = gimple_assign_rhs2 (def_stmt);
2265 op2 = gimple_assign_rhs3 (def_stmt);
2267 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2269 if (dump_enabled_p ())
2270 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2271 "reduction: uses not ssa_names: ");
2273 return NULL;
2276 else
2278 op1 = gimple_assign_rhs1 (def_stmt);
2279 op2 = gimple_assign_rhs2 (def_stmt);
2281 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2283 if (dump_enabled_p ())
2284 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2285 "reduction: uses not ssa_names: ");
2287 return NULL;
2291 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2292 if ((TREE_CODE (op1) == SSA_NAME
2293 && !types_compatible_p (type,TREE_TYPE (op1)))
2294 || (TREE_CODE (op2) == SSA_NAME
2295 && !types_compatible_p (type, TREE_TYPE (op2)))
2296 || (op3 && TREE_CODE (op3) == SSA_NAME
2297 && !types_compatible_p (type, TREE_TYPE (op3)))
2298 || (op4 && TREE_CODE (op4) == SSA_NAME
2299 && !types_compatible_p (type, TREE_TYPE (op4))))
2301 if (dump_enabled_p ())
2303 dump_printf_loc (MSG_NOTE, vect_location,
2304 "reduction: multiple types: operation type: ");
2305 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2306 dump_printf (MSG_NOTE, ", operands types: ");
2307 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2308 TREE_TYPE (op1));
2309 dump_printf (MSG_NOTE, ",");
2310 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2311 TREE_TYPE (op2));
2312 if (op3)
2314 dump_printf (MSG_NOTE, ",");
2315 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2316 TREE_TYPE (op3));
2319 if (op4)
2321 dump_printf (MSG_NOTE, ",");
2322 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2323 TREE_TYPE (op4));
2327 return NULL;
2330 /* Check that it's ok to change the order of the computation.
2331 Generally, when vectorizing a reduction we change the order of the
2332 computation. This may change the behavior of the program in some
2333 cases, so we need to check that this is ok. One exception is when
2334 vectorizing an outer-loop: the inner-loop is executed sequentially,
2335 and therefore vectorizing reductions in the inner-loop during
2336 outer-loop vectorization is safe. */
2338 /* CHECKME: check for !flag_finite_math_only too? */
2339 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2340 && check_reduction)
2342 /* Changing the order of operations changes the semantics. */
2343 if (dump_enabled_p ())
2344 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2345 "reduction: unsafe fp math optimization: ");
2346 return NULL;
2348 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2349 && check_reduction)
2351 /* Changing the order of operations changes the semantics. */
2352 if (dump_enabled_p ())
2353 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2354 "reduction: unsafe int math optimization: ");
2355 return NULL;
2357 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2359 /* Changing the order of operations changes the semantics. */
2360 if (dump_enabled_p ())
2361 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2362 "reduction: unsafe fixed-point math optimization: ");
2363 return NULL;
2366 /* If we detected "res -= x[i]" earlier, rewrite it into
2367 "res += -x[i]" now. If this turns out to be useless reassoc
2368 will clean it up again. */
2369 if (orig_code == MINUS_EXPR)
2371 tree rhs = gimple_assign_rhs2 (def_stmt);
2372 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2373 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2374 rhs, NULL);
2375 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2376 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2377 loop_info, NULL));
2378 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2379 gimple_assign_set_rhs2 (def_stmt, negrhs);
2380 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2381 update_stmt (def_stmt);
2384 /* Reduction is safe. We're dealing with one of the following:
2385 1) integer arithmetic and no trapv
2386 2) floating point arithmetic, and special flags permit this optimization
2387 3) nested cycle (i.e., outer loop vectorization). */
2388 if (TREE_CODE (op1) == SSA_NAME)
2389 def1 = SSA_NAME_DEF_STMT (op1);
2391 if (TREE_CODE (op2) == SSA_NAME)
2392 def2 = SSA_NAME_DEF_STMT (op2);
2394 if (code != COND_EXPR
2395 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2397 if (dump_enabled_p ())
2398 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2399 return NULL;
2402 /* Check that one def is the reduction def, defined by PHI,
2403 the other def is either defined in the loop ("vect_internal_def"),
2404 or it's an induction (defined by a loop-header phi-node). */
2406 if (def2 && def2 == phi
2407 && (code == COND_EXPR
2408 || !def1 || gimple_nop_p (def1)
2409 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2410 && (is_gimple_assign (def1)
2411 || is_gimple_call (def1)
2412 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2413 == vect_induction_def
2414 || (gimple_code (def1) == GIMPLE_PHI
2415 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2416 == vect_internal_def
2417 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2419 if (dump_enabled_p ())
2420 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2421 return def_stmt;
2424 if (def1 && def1 == phi
2425 && (code == COND_EXPR
2426 || !def2 || gimple_nop_p (def2)
2427 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2428 && (is_gimple_assign (def2)
2429 || is_gimple_call (def2)
2430 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2431 == vect_induction_def
2432 || (gimple_code (def2) == GIMPLE_PHI
2433 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2434 == vect_internal_def
2435 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2437 if (check_reduction)
2439 /* Swap operands (just for simplicity - so that the rest of the code
2440 can assume that the reduction variable is always the last (second)
2441 argument). */
2442 if (dump_enabled_p ())
2443 report_vect_op (MSG_NOTE, def_stmt,
2444 "detected reduction: need to swap operands: ");
2446 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2447 gimple_assign_rhs2_ptr (def_stmt));
2449 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2450 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2452 else
2454 if (dump_enabled_p ())
2455 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2458 return def_stmt;
2461 /* Try to find SLP reduction chain. */
2462 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2464 if (dump_enabled_p ())
2465 report_vect_op (MSG_NOTE, def_stmt,
2466 "reduction: detected reduction chain: ");
2468 return def_stmt;
2471 if (dump_enabled_p ())
2472 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2473 "reduction: unknown pattern: ");
2475 return NULL;
2478 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2479 in-place. Arguments as there. */
2481 static gimple
2482 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2483 bool check_reduction, bool *double_reduc)
2485 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2486 double_reduc, false);
2489 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2490 in-place if it enables detection of more reductions. Arguments
2491 as there. */
2493 gimple
2494 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2495 bool check_reduction, bool *double_reduc)
2497 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2498 double_reduc, true);
2501 /* Calculate the cost of one scalar iteration of the loop. */
2503 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2505 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2506 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2507 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2508 int innerloop_iters, i, stmt_cost;
2510 /* Count statements in scalar loop. Using this as scalar cost for a single
2511 iteration for now.
2513 TODO: Add outer loop support.
2515 TODO: Consider assigning different costs to different scalar
2516 statements. */
2518 /* FORNOW. */
2519 innerloop_iters = 1;
2520 if (loop->inner)
2521 innerloop_iters = 50; /* FIXME */
2523 for (i = 0; i < nbbs; i++)
2525 gimple_stmt_iterator si;
2526 basic_block bb = bbs[i];
2528 if (bb->loop_father == loop->inner)
2529 factor = innerloop_iters;
2530 else
2531 factor = 1;
2533 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2535 gimple stmt = gsi_stmt (si);
2536 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2538 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2539 continue;
2541 /* Skip stmts that are not vectorized inside the loop. */
2542 if (stmt_info
2543 && !STMT_VINFO_RELEVANT_P (stmt_info)
2544 && (!STMT_VINFO_LIVE_P (stmt_info)
2545 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2546 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2547 continue;
2549 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2551 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2552 stmt_cost = vect_get_stmt_cost (scalar_load);
2553 else
2554 stmt_cost = vect_get_stmt_cost (scalar_store);
2556 else
2557 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2559 scalar_single_iter_cost += stmt_cost * factor;
2562 return scalar_single_iter_cost;
2565 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2567 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2568 int *peel_iters_epilogue,
2569 int scalar_single_iter_cost,
2570 stmt_vector_for_cost *prologue_cost_vec,
2571 stmt_vector_for_cost *epilogue_cost_vec)
2573 int retval = 0;
2574 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2576 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2578 *peel_iters_epilogue = vf/2;
2579 if (dump_enabled_p ())
2580 dump_printf_loc (MSG_NOTE, vect_location,
2581 "cost model: epilogue peel iters set to vf/2 "
2582 "because loop iterations are unknown .");
2584 /* If peeled iterations are known but number of scalar loop
2585 iterations are unknown, count a taken branch per peeled loop. */
2586 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2587 NULL, 0, vect_prologue);
2589 else
2591 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2592 peel_iters_prologue = niters < peel_iters_prologue ?
2593 niters : peel_iters_prologue;
2594 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2595 /* If we need to peel for gaps, but no peeling is required, we have to
2596 peel VF iterations. */
2597 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2598 *peel_iters_epilogue = vf;
2601 if (peel_iters_prologue)
2602 retval += record_stmt_cost (prologue_cost_vec,
2603 peel_iters_prologue * scalar_single_iter_cost,
2604 scalar_stmt, NULL, 0, vect_prologue);
2605 if (*peel_iters_epilogue)
2606 retval += record_stmt_cost (epilogue_cost_vec,
2607 *peel_iters_epilogue * scalar_single_iter_cost,
2608 scalar_stmt, NULL, 0, vect_epilogue);
2609 return retval;
2612 /* Function vect_estimate_min_profitable_iters
2614 Return the number of iterations required for the vector version of the
2615 loop to be profitable relative to the cost of the scalar version of the
2616 loop. */
2618 static void
2619 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2620 int *ret_min_profitable_niters,
2621 int *ret_min_profitable_estimate)
2623 int min_profitable_iters;
2624 int min_profitable_estimate;
2625 int peel_iters_prologue;
2626 int peel_iters_epilogue;
2627 unsigned vec_inside_cost = 0;
2628 int vec_outside_cost = 0;
2629 unsigned vec_prologue_cost = 0;
2630 unsigned vec_epilogue_cost = 0;
2631 int scalar_single_iter_cost = 0;
2632 int scalar_outside_cost = 0;
2633 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2634 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2635 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2637 /* Cost model disabled. */
2638 if (!flag_vect_cost_model)
2640 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.");
2641 *ret_min_profitable_niters = 0;
2642 *ret_min_profitable_estimate = 0;
2643 return;
2646 /* Requires loop versioning tests to handle misalignment. */
2647 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2649 /* FIXME: Make cost depend on complexity of individual check. */
2650 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2651 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2652 vect_prologue);
2653 dump_printf (MSG_NOTE,
2654 "cost model: Adding cost of checks for loop "
2655 "versioning to treat misalignment.\n");
2658 /* Requires loop versioning with alias checks. */
2659 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2661 /* FIXME: Make cost depend on complexity of individual check. */
2662 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2663 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2664 vect_prologue);
2665 dump_printf (MSG_NOTE,
2666 "cost model: Adding cost of checks for loop "
2667 "versioning aliasing.\n");
2670 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2671 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2672 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2673 vect_prologue);
2675 /* Count statements in scalar loop. Using this as scalar cost for a single
2676 iteration for now.
2678 TODO: Add outer loop support.
2680 TODO: Consider assigning different costs to different scalar
2681 statements. */
2683 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2685 /* Add additional cost for the peeled instructions in prologue and epilogue
2686 loop.
2688 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2689 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2691 TODO: Build an expression that represents peel_iters for prologue and
2692 epilogue to be used in a run-time test. */
2694 if (npeel < 0)
2696 peel_iters_prologue = vf/2;
2697 dump_printf (MSG_NOTE, "cost model: "
2698 "prologue peel iters set to vf/2.");
2700 /* If peeling for alignment is unknown, loop bound of main loop becomes
2701 unknown. */
2702 peel_iters_epilogue = vf/2;
2703 dump_printf (MSG_NOTE, "cost model: "
2704 "epilogue peel iters set to vf/2 because "
2705 "peeling for alignment is unknown.");
2707 /* If peeled iterations are unknown, count a taken branch and a not taken
2708 branch per peeled loop. Even if scalar loop iterations are known,
2709 vector iterations are not known since peeled prologue iterations are
2710 not known. Hence guards remain the same. */
2711 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2712 NULL, 0, vect_prologue);
2713 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2714 NULL, 0, vect_prologue);
2715 /* FORNOW: Don't attempt to pass individual scalar instructions to
2716 the model; just assume linear cost for scalar iterations. */
2717 (void) add_stmt_cost (target_cost_data,
2718 peel_iters_prologue * scalar_single_iter_cost,
2719 scalar_stmt, NULL, 0, vect_prologue);
2720 (void) add_stmt_cost (target_cost_data,
2721 peel_iters_epilogue * scalar_single_iter_cost,
2722 scalar_stmt, NULL, 0, vect_epilogue);
2724 else
2726 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2727 stmt_info_for_cost *si;
2728 int j;
2729 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2731 prologue_cost_vec.create (2);
2732 epilogue_cost_vec.create (2);
2733 peel_iters_prologue = npeel;
2735 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2736 &peel_iters_epilogue,
2737 scalar_single_iter_cost,
2738 &prologue_cost_vec,
2739 &epilogue_cost_vec);
2741 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2743 struct _stmt_vec_info *stmt_info
2744 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2745 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2746 si->misalign, vect_prologue);
2749 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2751 struct _stmt_vec_info *stmt_info
2752 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2753 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2754 si->misalign, vect_epilogue);
2757 prologue_cost_vec.release ();
2758 epilogue_cost_vec.release ();
2761 /* FORNOW: The scalar outside cost is incremented in one of the
2762 following ways:
2764 1. The vectorizer checks for alignment and aliasing and generates
2765 a condition that allows dynamic vectorization. A cost model
2766 check is ANDED with the versioning condition. Hence scalar code
2767 path now has the added cost of the versioning check.
2769 if (cost > th & versioning_check)
2770 jmp to vector code
2772 Hence run-time scalar is incremented by not-taken branch cost.
2774 2. The vectorizer then checks if a prologue is required. If the
2775 cost model check was not done before during versioning, it has to
2776 be done before the prologue check.
2778 if (cost <= th)
2779 prologue = scalar_iters
2780 if (prologue == 0)
2781 jmp to vector code
2782 else
2783 execute prologue
2784 if (prologue == num_iters)
2785 go to exit
2787 Hence the run-time scalar cost is incremented by a taken branch,
2788 plus a not-taken branch, plus a taken branch cost.
2790 3. The vectorizer then checks if an epilogue is required. If the
2791 cost model check was not done before during prologue check, it
2792 has to be done with the epilogue check.
2794 if (prologue == 0)
2795 jmp to vector code
2796 else
2797 execute prologue
2798 if (prologue == num_iters)
2799 go to exit
2800 vector code:
2801 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2802 jmp to epilogue
2804 Hence the run-time scalar cost should be incremented by 2 taken
2805 branches.
2807 TODO: The back end may reorder the BBS's differently and reverse
2808 conditions/branch directions. Change the estimates below to
2809 something more reasonable. */
2811 /* If the number of iterations is known and we do not do versioning, we can
2812 decide whether to vectorize at compile time. Hence the scalar version
2813 do not carry cost model guard costs. */
2814 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2815 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2816 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2818 /* Cost model check occurs at versioning. */
2819 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2820 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2821 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2822 else
2824 /* Cost model check occurs at prologue generation. */
2825 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2826 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2827 + vect_get_stmt_cost (cond_branch_not_taken);
2828 /* Cost model check occurs at epilogue generation. */
2829 else
2830 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2834 /* Complete the target-specific cost calculations. */
2835 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2836 &vec_inside_cost, &vec_epilogue_cost);
2838 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2840 /* Calculate number of iterations required to make the vector version
2841 profitable, relative to the loop bodies only. The following condition
2842 must hold true:
2843 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2844 where
2845 SIC = scalar iteration cost, VIC = vector iteration cost,
2846 VOC = vector outside cost, VF = vectorization factor,
2847 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2848 SOC = scalar outside cost for run time cost model check. */
2850 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2852 if (vec_outside_cost <= 0)
2853 min_profitable_iters = 1;
2854 else
2856 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2857 - vec_inside_cost * peel_iters_prologue
2858 - vec_inside_cost * peel_iters_epilogue)
2859 / ((scalar_single_iter_cost * vf)
2860 - vec_inside_cost);
2862 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2863 <= (((int) vec_inside_cost * min_profitable_iters)
2864 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2865 min_profitable_iters++;
2868 /* vector version will never be profitable. */
2869 else
2871 if (dump_enabled_p ())
2872 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2873 "cost model: the vector iteration cost = %d "
2874 "divided by the scalar iteration cost = %d "
2875 "is greater or equal to the vectorization factor = %d.",
2876 vec_inside_cost, scalar_single_iter_cost, vf);
2877 *ret_min_profitable_niters = -1;
2878 *ret_min_profitable_estimate = -1;
2879 return;
2882 if (dump_enabled_p ())
2884 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2885 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
2886 vec_inside_cost);
2887 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
2888 vec_prologue_cost);
2889 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
2890 vec_epilogue_cost);
2891 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
2892 scalar_single_iter_cost);
2893 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
2894 scalar_outside_cost);
2895 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
2896 vec_outside_cost);
2897 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
2898 peel_iters_prologue);
2899 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
2900 peel_iters_epilogue);
2901 dump_printf (MSG_NOTE,
2902 " Calculated minimum iters for profitability: %d\n",
2903 min_profitable_iters);
2906 min_profitable_iters =
2907 min_profitable_iters < vf ? vf : min_profitable_iters;
2909 /* Because the condition we create is:
2910 if (niters <= min_profitable_iters)
2911 then skip the vectorized loop. */
2912 min_profitable_iters--;
2914 if (dump_enabled_p ())
2915 dump_printf_loc (MSG_NOTE, vect_location,
2916 " Runtime profitability threshold = %d\n", min_profitable_iters);
2918 *ret_min_profitable_niters = min_profitable_iters;
2920 /* Calculate number of iterations required to make the vector version
2921 profitable, relative to the loop bodies only.
2923 Non-vectorized variant is SIC * niters and it must win over vector
2924 variant on the expected loop trip count. The following condition must hold true:
2925 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
2927 if (vec_outside_cost <= 0)
2928 min_profitable_estimate = 1;
2929 else
2931 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
2932 - vec_inside_cost * peel_iters_prologue
2933 - vec_inside_cost * peel_iters_epilogue)
2934 / ((scalar_single_iter_cost * vf)
2935 - vec_inside_cost);
2937 min_profitable_estimate --;
2938 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
2939 if (dump_enabled_p ())
2940 dump_printf_loc (MSG_NOTE, vect_location,
2941 " Static estimate profitability threshold = %d\n",
2942 min_profitable_iters);
2944 *ret_min_profitable_estimate = min_profitable_estimate;
2948 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2949 functions. Design better to avoid maintenance issues. */
2951 /* Function vect_model_reduction_cost.
2953 Models cost for a reduction operation, including the vector ops
2954 generated within the strip-mine loop, the initial definition before
2955 the loop, and the epilogue code that must be generated. */
2957 static bool
2958 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2959 int ncopies)
2961 int prologue_cost = 0, epilogue_cost = 0;
2962 enum tree_code code;
2963 optab optab;
2964 tree vectype;
2965 gimple stmt, orig_stmt;
2966 tree reduction_op;
2967 enum machine_mode mode;
2968 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2969 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2970 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2972 /* Cost of reduction op inside loop. */
2973 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
2974 stmt_info, 0, vect_body);
2975 stmt = STMT_VINFO_STMT (stmt_info);
2977 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2979 case GIMPLE_SINGLE_RHS:
2980 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2981 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2982 break;
2983 case GIMPLE_UNARY_RHS:
2984 reduction_op = gimple_assign_rhs1 (stmt);
2985 break;
2986 case GIMPLE_BINARY_RHS:
2987 reduction_op = gimple_assign_rhs2 (stmt);
2988 break;
2989 case GIMPLE_TERNARY_RHS:
2990 reduction_op = gimple_assign_rhs3 (stmt);
2991 break;
2992 default:
2993 gcc_unreachable ();
2996 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2997 if (!vectype)
2999 if (dump_enabled_p ())
3001 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3002 "unsupported data-type ");
3003 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3004 TREE_TYPE (reduction_op));
3006 return false;
3009 mode = TYPE_MODE (vectype);
3010 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3012 if (!orig_stmt)
3013 orig_stmt = STMT_VINFO_STMT (stmt_info);
3015 code = gimple_assign_rhs_code (orig_stmt);
3017 /* Add in cost for initial definition. */
3018 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3019 stmt_info, 0, vect_prologue);
3021 /* Determine cost of epilogue code.
3023 We have a reduction operator that will reduce the vector in one statement.
3024 Also requires scalar extract. */
3026 if (!nested_in_vect_loop_p (loop, orig_stmt))
3028 if (reduc_code != ERROR_MARK)
3030 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3031 stmt_info, 0, vect_epilogue);
3032 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3033 stmt_info, 0, vect_epilogue);
3035 else
3037 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3038 tree bitsize =
3039 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3040 int element_bitsize = tree_low_cst (bitsize, 1);
3041 int nelements = vec_size_in_bits / element_bitsize;
3043 optab = optab_for_tree_code (code, vectype, optab_default);
3045 /* We have a whole vector shift available. */
3046 if (VECTOR_MODE_P (mode)
3047 && optab_handler (optab, mode) != CODE_FOR_nothing
3048 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3050 /* Final reduction via vector shifts and the reduction operator.
3051 Also requires scalar extract. */
3052 epilogue_cost += add_stmt_cost (target_cost_data,
3053 exact_log2 (nelements) * 2,
3054 vector_stmt, stmt_info, 0,
3055 vect_epilogue);
3056 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3057 vec_to_scalar, stmt_info, 0,
3058 vect_epilogue);
3060 else
3061 /* Use extracts and reduction op for final reduction. For N
3062 elements, we have N extracts and N-1 reduction ops. */
3063 epilogue_cost += add_stmt_cost (target_cost_data,
3064 nelements + nelements - 1,
3065 vector_stmt, stmt_info, 0,
3066 vect_epilogue);
3070 if (dump_enabled_p ())
3071 dump_printf (MSG_NOTE,
3072 "vect_model_reduction_cost: inside_cost = %d, "
3073 "prologue_cost = %d, epilogue_cost = %d .", inside_cost,
3074 prologue_cost, epilogue_cost);
3076 return true;
3080 /* Function vect_model_induction_cost.
3082 Models cost for induction operations. */
3084 static void
3085 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3087 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3088 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3089 unsigned inside_cost, prologue_cost;
3091 /* loop cost for vec_loop. */
3092 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3093 stmt_info, 0, vect_body);
3095 /* prologue cost for vec_init and vec_step. */
3096 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3097 stmt_info, 0, vect_prologue);
3099 if (dump_enabled_p ())
3100 dump_printf_loc (MSG_NOTE, vect_location,
3101 "vect_model_induction_cost: inside_cost = %d, "
3102 "prologue_cost = %d .", inside_cost, prologue_cost);
3106 /* Function get_initial_def_for_induction
3108 Input:
3109 STMT - a stmt that performs an induction operation in the loop.
3110 IV_PHI - the initial value of the induction variable
3112 Output:
3113 Return a vector variable, initialized with the first VF values of
3114 the induction variable. E.g., for an iv with IV_PHI='X' and
3115 evolution S, for a vector of 4 units, we want to return:
3116 [X, X + S, X + 2*S, X + 3*S]. */
3118 static tree
3119 get_initial_def_for_induction (gimple iv_phi)
3121 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3122 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3123 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3124 tree vectype;
3125 int nunits;
3126 edge pe = loop_preheader_edge (loop);
3127 struct loop *iv_loop;
3128 basic_block new_bb;
3129 tree new_vec, vec_init, vec_step, t;
3130 tree new_var;
3131 tree new_name;
3132 gimple init_stmt, induction_phi, new_stmt;
3133 tree induc_def, vec_def, vec_dest;
3134 tree init_expr, step_expr;
3135 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3136 int i;
3137 int ncopies;
3138 tree expr;
3139 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3140 bool nested_in_vect_loop = false;
3141 gimple_seq stmts = NULL;
3142 imm_use_iterator imm_iter;
3143 use_operand_p use_p;
3144 gimple exit_phi;
3145 edge latch_e;
3146 tree loop_arg;
3147 gimple_stmt_iterator si;
3148 basic_block bb = gimple_bb (iv_phi);
3149 tree stepvectype;
3150 tree resvectype;
3152 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3153 if (nested_in_vect_loop_p (loop, iv_phi))
3155 nested_in_vect_loop = true;
3156 iv_loop = loop->inner;
3158 else
3159 iv_loop = loop;
3160 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3162 latch_e = loop_latch_edge (iv_loop);
3163 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3165 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3166 gcc_assert (step_expr != NULL_TREE);
3168 pe = loop_preheader_edge (iv_loop);
3169 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3170 loop_preheader_edge (iv_loop));
3172 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3173 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3174 gcc_assert (vectype);
3175 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3176 ncopies = vf / nunits;
3178 gcc_assert (phi_info);
3179 gcc_assert (ncopies >= 1);
3181 /* Convert the step to the desired type. */
3182 step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3183 step_expr),
3184 &stmts, true, NULL_TREE);
3185 if (stmts)
3187 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3188 gcc_assert (!new_bb);
3191 /* Find the first insertion point in the BB. */
3192 si = gsi_after_labels (bb);
3194 /* Create the vector that holds the initial_value of the induction. */
3195 if (nested_in_vect_loop)
3197 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3198 been created during vectorization of previous stmts. We obtain it
3199 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3200 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
3201 /* If the initial value is not of proper type, convert it. */
3202 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3204 new_stmt = gimple_build_assign_with_ops
3205 (VIEW_CONVERT_EXPR,
3206 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3207 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3208 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3209 gimple_assign_set_lhs (new_stmt, vec_init);
3210 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3211 new_stmt);
3212 gcc_assert (!new_bb);
3213 set_vinfo_for_stmt (new_stmt,
3214 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3217 else
3219 vec<constructor_elt, va_gc> *v;
3221 /* iv_loop is the loop to be vectorized. Create:
3222 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3223 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3224 vect_scalar_var, "var_");
3225 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3226 init_expr),
3227 &stmts, false, new_var);
3228 if (stmts)
3230 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3231 gcc_assert (!new_bb);
3234 vec_alloc (v, nunits);
3235 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3236 for (i = 1; i < nunits; i++)
3238 /* Create: new_name_i = new_name + step_expr */
3239 init_stmt = gimple_build_assign_with_ops (PLUS_EXPR, new_var,
3240 new_name, step_expr);
3241 new_name = make_ssa_name (new_var, init_stmt);
3242 gimple_assign_set_lhs (init_stmt, new_name);
3244 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3245 gcc_assert (!new_bb);
3247 if (dump_enabled_p ())
3249 dump_printf_loc (MSG_NOTE, vect_location,
3250 "created new init_stmt: ");
3251 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3253 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3255 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3256 new_vec = build_constructor (vectype, v);
3257 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3261 /* Create the vector that holds the step of the induction. */
3262 if (nested_in_vect_loop)
3263 /* iv_loop is nested in the loop to be vectorized. Generate:
3264 vec_step = [S, S, S, S] */
3265 new_name = step_expr;
3266 else
3268 /* iv_loop is the loop to be vectorized. Generate:
3269 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3270 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3271 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3272 expr, step_expr);
3275 t = unshare_expr (new_name);
3276 gcc_assert (CONSTANT_CLASS_P (new_name));
3277 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3278 gcc_assert (stepvectype);
3279 new_vec = build_vector_from_val (stepvectype, t);
3280 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3283 /* Create the following def-use cycle:
3284 loop prolog:
3285 vec_init = ...
3286 vec_step = ...
3287 loop:
3288 vec_iv = PHI <vec_init, vec_loop>
3290 STMT
3292 vec_loop = vec_iv + vec_step; */
3294 /* Create the induction-phi that defines the induction-operand. */
3295 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3296 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3297 set_vinfo_for_stmt (induction_phi,
3298 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3299 induc_def = PHI_RESULT (induction_phi);
3301 /* Create the iv update inside the loop */
3302 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3303 induc_def, vec_step);
3304 vec_def = make_ssa_name (vec_dest, new_stmt);
3305 gimple_assign_set_lhs (new_stmt, vec_def);
3306 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3307 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3308 NULL));
3310 /* Set the arguments of the phi node: */
3311 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3312 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3313 UNKNOWN_LOCATION);
3316 /* In case that vectorization factor (VF) is bigger than the number
3317 of elements that we can fit in a vectype (nunits), we have to generate
3318 more than one vector stmt - i.e - we need to "unroll" the
3319 vector stmt by a factor VF/nunits. For more details see documentation
3320 in vectorizable_operation. */
3322 if (ncopies > 1)
3324 stmt_vec_info prev_stmt_vinfo;
3325 /* FORNOW. This restriction should be relaxed. */
3326 gcc_assert (!nested_in_vect_loop);
3328 /* Create the vector that holds the step of the induction. */
3329 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3330 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3331 expr, step_expr);
3332 t = unshare_expr (new_name);
3333 gcc_assert (CONSTANT_CLASS_P (new_name));
3334 new_vec = build_vector_from_val (stepvectype, t);
3335 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3337 vec_def = induc_def;
3338 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3339 for (i = 1; i < ncopies; i++)
3341 /* vec_i = vec_prev + vec_step */
3342 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3343 vec_def, vec_step);
3344 vec_def = make_ssa_name (vec_dest, new_stmt);
3345 gimple_assign_set_lhs (new_stmt, vec_def);
3347 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3348 if (!useless_type_conversion_p (resvectype, vectype))
3350 new_stmt = gimple_build_assign_with_ops
3351 (VIEW_CONVERT_EXPR,
3352 vect_get_new_vect_var (resvectype, vect_simple_var,
3353 "vec_iv_"),
3354 build1 (VIEW_CONVERT_EXPR, resvectype,
3355 gimple_assign_lhs (new_stmt)), NULL_TREE);
3356 gimple_assign_set_lhs (new_stmt,
3357 make_ssa_name
3358 (gimple_assign_lhs (new_stmt), new_stmt));
3359 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3361 set_vinfo_for_stmt (new_stmt,
3362 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3363 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3364 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3368 if (nested_in_vect_loop)
3370 /* Find the loop-closed exit-phi of the induction, and record
3371 the final vector of induction results: */
3372 exit_phi = NULL;
3373 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3375 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3377 exit_phi = USE_STMT (use_p);
3378 break;
3381 if (exit_phi)
3383 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3384 /* FORNOW. Currently not supporting the case that an inner-loop induction
3385 is not used in the outer-loop (i.e. only outside the outer-loop). */
3386 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3387 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3389 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3390 if (dump_enabled_p ())
3392 dump_printf_loc (MSG_NOTE, vect_location,
3393 "vector of inductions after inner-loop:");
3394 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3400 if (dump_enabled_p ())
3402 dump_printf_loc (MSG_NOTE, vect_location,
3403 "transform induction: created def-use cycle: ");
3404 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3405 dump_printf (MSG_NOTE, "\n");
3406 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3407 SSA_NAME_DEF_STMT (vec_def), 0);
3410 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3411 if (!useless_type_conversion_p (resvectype, vectype))
3413 new_stmt = gimple_build_assign_with_ops
3414 (VIEW_CONVERT_EXPR,
3415 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3416 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3417 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3418 gimple_assign_set_lhs (new_stmt, induc_def);
3419 si = gsi_after_labels (bb);
3420 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3421 set_vinfo_for_stmt (new_stmt,
3422 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3423 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3424 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3427 return induc_def;
3431 /* Function get_initial_def_for_reduction
3433 Input:
3434 STMT - a stmt that performs a reduction operation in the loop.
3435 INIT_VAL - the initial value of the reduction variable
3437 Output:
3438 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3439 of the reduction (used for adjusting the epilog - see below).
3440 Return a vector variable, initialized according to the operation that STMT
3441 performs. This vector will be used as the initial value of the
3442 vector of partial results.
3444 Option1 (adjust in epilog): Initialize the vector as follows:
3445 add/bit or/xor: [0,0,...,0,0]
3446 mult/bit and: [1,1,...,1,1]
3447 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3448 and when necessary (e.g. add/mult case) let the caller know
3449 that it needs to adjust the result by init_val.
3451 Option2: Initialize the vector as follows:
3452 add/bit or/xor: [init_val,0,0,...,0]
3453 mult/bit and: [init_val,1,1,...,1]
3454 min/max/cond_expr: [init_val,init_val,...,init_val]
3455 and no adjustments are needed.
3457 For example, for the following code:
3459 s = init_val;
3460 for (i=0;i<n;i++)
3461 s = s + a[i];
3463 STMT is 's = s + a[i]', and the reduction variable is 's'.
3464 For a vector of 4 units, we want to return either [0,0,0,init_val],
3465 or [0,0,0,0] and let the caller know that it needs to adjust
3466 the result at the end by 'init_val'.
3468 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3469 initialization vector is simpler (same element in all entries), if
3470 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3472 A cost model should help decide between these two schemes. */
3474 tree
3475 get_initial_def_for_reduction (gimple stmt, tree init_val,
3476 tree *adjustment_def)
3478 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3479 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3480 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3481 tree scalar_type = TREE_TYPE (init_val);
3482 tree vectype = get_vectype_for_scalar_type (scalar_type);
3483 int nunits;
3484 enum tree_code code = gimple_assign_rhs_code (stmt);
3485 tree def_for_init;
3486 tree init_def;
3487 tree *elts;
3488 int i;
3489 bool nested_in_vect_loop = false;
3490 tree init_value;
3491 REAL_VALUE_TYPE real_init_val = dconst0;
3492 int int_init_val = 0;
3493 gimple def_stmt = NULL;
3495 gcc_assert (vectype);
3496 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3498 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3499 || SCALAR_FLOAT_TYPE_P (scalar_type));
3501 if (nested_in_vect_loop_p (loop, stmt))
3502 nested_in_vect_loop = true;
3503 else
3504 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3506 /* In case of double reduction we only create a vector variable to be put
3507 in the reduction phi node. The actual statement creation is done in
3508 vect_create_epilog_for_reduction. */
3509 if (adjustment_def && nested_in_vect_loop
3510 && TREE_CODE (init_val) == SSA_NAME
3511 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3512 && gimple_code (def_stmt) == GIMPLE_PHI
3513 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3514 && vinfo_for_stmt (def_stmt)
3515 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3516 == vect_double_reduction_def)
3518 *adjustment_def = NULL;
3519 return vect_create_destination_var (init_val, vectype);
3522 if (TREE_CONSTANT (init_val))
3524 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3525 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3526 else
3527 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3529 else
3530 init_value = init_val;
3532 switch (code)
3534 case WIDEN_SUM_EXPR:
3535 case DOT_PROD_EXPR:
3536 case PLUS_EXPR:
3537 case MINUS_EXPR:
3538 case BIT_IOR_EXPR:
3539 case BIT_XOR_EXPR:
3540 case MULT_EXPR:
3541 case BIT_AND_EXPR:
3542 /* ADJUSMENT_DEF is NULL when called from
3543 vect_create_epilog_for_reduction to vectorize double reduction. */
3544 if (adjustment_def)
3546 if (nested_in_vect_loop)
3547 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3548 NULL);
3549 else
3550 *adjustment_def = init_val;
3553 if (code == MULT_EXPR)
3555 real_init_val = dconst1;
3556 int_init_val = 1;
3559 if (code == BIT_AND_EXPR)
3560 int_init_val = -1;
3562 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3563 def_for_init = build_real (scalar_type, real_init_val);
3564 else
3565 def_for_init = build_int_cst (scalar_type, int_init_val);
3567 /* Create a vector of '0' or '1' except the first element. */
3568 elts = XALLOCAVEC (tree, nunits);
3569 for (i = nunits - 2; i >= 0; --i)
3570 elts[i + 1] = def_for_init;
3572 /* Option1: the first element is '0' or '1' as well. */
3573 if (adjustment_def)
3575 elts[0] = def_for_init;
3576 init_def = build_vector (vectype, elts);
3577 break;
3580 /* Option2: the first element is INIT_VAL. */
3581 elts[0] = init_val;
3582 if (TREE_CONSTANT (init_val))
3583 init_def = build_vector (vectype, elts);
3584 else
3586 vec<constructor_elt, va_gc> *v;
3587 vec_alloc (v, nunits);
3588 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3589 for (i = 1; i < nunits; ++i)
3590 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3591 init_def = build_constructor (vectype, v);
3594 break;
3596 case MIN_EXPR:
3597 case MAX_EXPR:
3598 case COND_EXPR:
3599 if (adjustment_def)
3601 *adjustment_def = NULL_TREE;
3602 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3603 break;
3606 init_def = build_vector_from_val (vectype, init_value);
3607 break;
3609 default:
3610 gcc_unreachable ();
3613 return init_def;
3617 /* Function vect_create_epilog_for_reduction
3619 Create code at the loop-epilog to finalize the result of a reduction
3620 computation.
3622 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3623 reduction statements.
3624 STMT is the scalar reduction stmt that is being vectorized.
3625 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3626 number of elements that we can fit in a vectype (nunits). In this case
3627 we have to generate more than one vector stmt - i.e - we need to "unroll"
3628 the vector stmt by a factor VF/nunits. For more details see documentation
3629 in vectorizable_operation.
3630 REDUC_CODE is the tree-code for the epilog reduction.
3631 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3632 computation.
3633 REDUC_INDEX is the index of the operand in the right hand side of the
3634 statement that is defined by REDUCTION_PHI.
3635 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3636 SLP_NODE is an SLP node containing a group of reduction statements. The
3637 first one in this group is STMT.
3639 This function:
3640 1. Creates the reduction def-use cycles: sets the arguments for
3641 REDUCTION_PHIS:
3642 The loop-entry argument is the vectorized initial-value of the reduction.
3643 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3644 sums.
3645 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3646 by applying the operation specified by REDUC_CODE if available, or by
3647 other means (whole-vector shifts or a scalar loop).
3648 The function also creates a new phi node at the loop exit to preserve
3649 loop-closed form, as illustrated below.
3651 The flow at the entry to this function:
3653 loop:
3654 vec_def = phi <null, null> # REDUCTION_PHI
3655 VECT_DEF = vector_stmt # vectorized form of STMT
3656 s_loop = scalar_stmt # (scalar) STMT
3657 loop_exit:
3658 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3659 use <s_out0>
3660 use <s_out0>
3662 The above is transformed by this function into:
3664 loop:
3665 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3666 VECT_DEF = vector_stmt # vectorized form of STMT
3667 s_loop = scalar_stmt # (scalar) STMT
3668 loop_exit:
3669 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3670 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3671 v_out2 = reduce <v_out1>
3672 s_out3 = extract_field <v_out2, 0>
3673 s_out4 = adjust_result <s_out3>
3674 use <s_out4>
3675 use <s_out4>
3678 static void
3679 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3680 int ncopies, enum tree_code reduc_code,
3681 vec<gimple> reduction_phis,
3682 int reduc_index, bool double_reduc,
3683 slp_tree slp_node)
3685 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3686 stmt_vec_info prev_phi_info;
3687 tree vectype;
3688 enum machine_mode mode;
3689 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3690 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3691 basic_block exit_bb;
3692 tree scalar_dest;
3693 tree scalar_type;
3694 gimple new_phi = NULL, phi;
3695 gimple_stmt_iterator exit_gsi;
3696 tree vec_dest;
3697 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3698 gimple epilog_stmt = NULL;
3699 enum tree_code code = gimple_assign_rhs_code (stmt);
3700 gimple exit_phi;
3701 tree bitsize, bitpos;
3702 tree adjustment_def = NULL;
3703 tree vec_initial_def = NULL;
3704 tree reduction_op, expr, def;
3705 tree orig_name, scalar_result;
3706 imm_use_iterator imm_iter, phi_imm_iter;
3707 use_operand_p use_p, phi_use_p;
3708 bool extract_scalar_result = false;
3709 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3710 bool nested_in_vect_loop = false;
3711 vec<gimple> new_phis = vNULL;
3712 vec<gimple> inner_phis = vNULL;
3713 enum vect_def_type dt = vect_unknown_def_type;
3714 int j, i;
3715 vec<tree> scalar_results = vNULL;
3716 unsigned int group_size = 1, k, ratio;
3717 vec<tree> vec_initial_defs = vNULL;
3718 vec<gimple> phis;
3719 bool slp_reduc = false;
3720 tree new_phi_result;
3721 gimple inner_phi = NULL;
3723 if (slp_node)
3724 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3726 if (nested_in_vect_loop_p (loop, stmt))
3728 outer_loop = loop;
3729 loop = loop->inner;
3730 nested_in_vect_loop = true;
3731 gcc_assert (!slp_node);
3734 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3736 case GIMPLE_SINGLE_RHS:
3737 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3738 == ternary_op);
3739 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3740 break;
3741 case GIMPLE_UNARY_RHS:
3742 reduction_op = gimple_assign_rhs1 (stmt);
3743 break;
3744 case GIMPLE_BINARY_RHS:
3745 reduction_op = reduc_index ?
3746 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3747 break;
3748 case GIMPLE_TERNARY_RHS:
3749 reduction_op = gimple_op (stmt, reduc_index + 1);
3750 break;
3751 default:
3752 gcc_unreachable ();
3755 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3756 gcc_assert (vectype);
3757 mode = TYPE_MODE (vectype);
3759 /* 1. Create the reduction def-use cycle:
3760 Set the arguments of REDUCTION_PHIS, i.e., transform
3762 loop:
3763 vec_def = phi <null, null> # REDUCTION_PHI
3764 VECT_DEF = vector_stmt # vectorized form of STMT
3767 into:
3769 loop:
3770 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3771 VECT_DEF = vector_stmt # vectorized form of STMT
3774 (in case of SLP, do it for all the phis). */
3776 /* Get the loop-entry arguments. */
3777 if (slp_node)
3778 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3779 NULL, slp_node, reduc_index);
3780 else
3782 vec_initial_defs.create (1);
3783 /* For the case of reduction, vect_get_vec_def_for_operand returns
3784 the scalar def before the loop, that defines the initial value
3785 of the reduction variable. */
3786 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3787 &adjustment_def);
3788 vec_initial_defs.quick_push (vec_initial_def);
3791 /* Set phi nodes arguments. */
3792 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3794 tree vec_init_def, def;
3795 gimple_seq stmts;
3796 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
3797 true, NULL_TREE);
3798 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
3799 def = vect_defs[i];
3800 for (j = 0; j < ncopies; j++)
3802 /* Set the loop-entry arg of the reduction-phi. */
3803 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3804 UNKNOWN_LOCATION);
3806 /* Set the loop-latch arg for the reduction-phi. */
3807 if (j > 0)
3808 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3810 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3812 if (dump_enabled_p ())
3814 dump_printf_loc (MSG_NOTE, vect_location,
3815 "transform reduction: created def-use cycle: ");
3816 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3817 dump_printf (MSG_NOTE, "\n");
3818 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3821 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3825 vec_initial_defs.release ();
3827 /* 2. Create epilog code.
3828 The reduction epilog code operates across the elements of the vector
3829 of partial results computed by the vectorized loop.
3830 The reduction epilog code consists of:
3832 step 1: compute the scalar result in a vector (v_out2)
3833 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3834 step 3: adjust the scalar result (s_out3) if needed.
3836 Step 1 can be accomplished using one the following three schemes:
3837 (scheme 1) using reduc_code, if available.
3838 (scheme 2) using whole-vector shifts, if available.
3839 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3840 combined.
3842 The overall epilog code looks like this:
3844 s_out0 = phi <s_loop> # original EXIT_PHI
3845 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3846 v_out2 = reduce <v_out1> # step 1
3847 s_out3 = extract_field <v_out2, 0> # step 2
3848 s_out4 = adjust_result <s_out3> # step 3
3850 (step 3 is optional, and steps 1 and 2 may be combined).
3851 Lastly, the uses of s_out0 are replaced by s_out4. */
3854 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3855 v_out1 = phi <VECT_DEF>
3856 Store them in NEW_PHIS. */
3858 exit_bb = single_exit (loop)->dest;
3859 prev_phi_info = NULL;
3860 new_phis.create (vect_defs.length ());
3861 FOR_EACH_VEC_ELT (vect_defs, i, def)
3863 for (j = 0; j < ncopies; j++)
3865 tree new_def = copy_ssa_name (def, NULL);
3866 phi = create_phi_node (new_def, exit_bb);
3867 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3868 if (j == 0)
3869 new_phis.quick_push (phi);
3870 else
3872 def = vect_get_vec_def_for_stmt_copy (dt, def);
3873 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3876 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3877 prev_phi_info = vinfo_for_stmt (phi);
3881 /* The epilogue is created for the outer-loop, i.e., for the loop being
3882 vectorized. Create exit phis for the outer loop. */
3883 if (double_reduc)
3885 loop = outer_loop;
3886 exit_bb = single_exit (loop)->dest;
3887 inner_phis.create (vect_defs.length ());
3888 FOR_EACH_VEC_ELT (new_phis, i, phi)
3890 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3891 gimple outer_phi = create_phi_node (new_result, exit_bb);
3892 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3893 PHI_RESULT (phi));
3894 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3895 loop_vinfo, NULL));
3896 inner_phis.quick_push (phi);
3897 new_phis[i] = outer_phi;
3898 prev_phi_info = vinfo_for_stmt (outer_phi);
3899 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
3901 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3902 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3903 outer_phi = create_phi_node (new_result, exit_bb);
3904 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3905 PHI_RESULT (phi));
3906 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3907 loop_vinfo, NULL));
3908 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
3909 prev_phi_info = vinfo_for_stmt (outer_phi);
3914 exit_gsi = gsi_after_labels (exit_bb);
3916 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3917 (i.e. when reduc_code is not available) and in the final adjustment
3918 code (if needed). Also get the original scalar reduction variable as
3919 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3920 represents a reduction pattern), the tree-code and scalar-def are
3921 taken from the original stmt that the pattern-stmt (STMT) replaces.
3922 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3923 are taken from STMT. */
3925 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3926 if (!orig_stmt)
3928 /* Regular reduction */
3929 orig_stmt = stmt;
3931 else
3933 /* Reduction pattern */
3934 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3935 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3936 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3939 code = gimple_assign_rhs_code (orig_stmt);
3940 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3941 partial results are added and not subtracted. */
3942 if (code == MINUS_EXPR)
3943 code = PLUS_EXPR;
3945 scalar_dest = gimple_assign_lhs (orig_stmt);
3946 scalar_type = TREE_TYPE (scalar_dest);
3947 scalar_results.create (group_size);
3948 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3949 bitsize = TYPE_SIZE (scalar_type);
3951 /* In case this is a reduction in an inner-loop while vectorizing an outer
3952 loop - we don't need to extract a single scalar result at the end of the
3953 inner-loop (unless it is double reduction, i.e., the use of reduction is
3954 outside the outer-loop). The final vector of partial results will be used
3955 in the vectorized outer-loop, or reduced to a scalar result at the end of
3956 the outer-loop. */
3957 if (nested_in_vect_loop && !double_reduc)
3958 goto vect_finalize_reduction;
3960 /* SLP reduction without reduction chain, e.g.,
3961 # a1 = phi <a2, a0>
3962 # b1 = phi <b2, b0>
3963 a2 = operation (a1)
3964 b2 = operation (b1) */
3965 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
3967 /* In case of reduction chain, e.g.,
3968 # a1 = phi <a3, a0>
3969 a2 = operation (a1)
3970 a3 = operation (a2),
3972 we may end up with more than one vector result. Here we reduce them to
3973 one vector. */
3974 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
3976 tree first_vect = PHI_RESULT (new_phis[0]);
3977 tree tmp;
3978 gimple new_vec_stmt = NULL;
3980 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3981 for (k = 1; k < new_phis.length (); k++)
3983 gimple next_phi = new_phis[k];
3984 tree second_vect = PHI_RESULT (next_phi);
3986 tmp = build2 (code, vectype, first_vect, second_vect);
3987 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
3988 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
3989 gimple_assign_set_lhs (new_vec_stmt, first_vect);
3990 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
3993 new_phi_result = first_vect;
3994 if (new_vec_stmt)
3996 new_phis.truncate (0);
3997 new_phis.safe_push (new_vec_stmt);
4000 else
4001 new_phi_result = PHI_RESULT (new_phis[0]);
4003 /* 2.3 Create the reduction code, using one of the three schemes described
4004 above. In SLP we simply need to extract all the elements from the
4005 vector (without reducing them), so we use scalar shifts. */
4006 if (reduc_code != ERROR_MARK && !slp_reduc)
4008 tree tmp;
4010 /*** Case 1: Create:
4011 v_out2 = reduc_expr <v_out1> */
4013 if (dump_enabled_p ())
4014 dump_printf_loc (MSG_NOTE, vect_location,
4015 "Reduce using direct vector reduction.");
4017 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4018 tmp = build1 (reduc_code, vectype, new_phi_result);
4019 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4020 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4021 gimple_assign_set_lhs (epilog_stmt, new_temp);
4022 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4024 extract_scalar_result = true;
4026 else
4028 enum tree_code shift_code = ERROR_MARK;
4029 bool have_whole_vector_shift = true;
4030 int bit_offset;
4031 int element_bitsize = tree_low_cst (bitsize, 1);
4032 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4033 tree vec_temp;
4035 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4036 shift_code = VEC_RSHIFT_EXPR;
4037 else
4038 have_whole_vector_shift = false;
4040 /* Regardless of whether we have a whole vector shift, if we're
4041 emulating the operation via tree-vect-generic, we don't want
4042 to use it. Only the first round of the reduction is likely
4043 to still be profitable via emulation. */
4044 /* ??? It might be better to emit a reduction tree code here, so that
4045 tree-vect-generic can expand the first round via bit tricks. */
4046 if (!VECTOR_MODE_P (mode))
4047 have_whole_vector_shift = false;
4048 else
4050 optab optab = optab_for_tree_code (code, vectype, optab_default);
4051 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4052 have_whole_vector_shift = false;
4055 if (have_whole_vector_shift && !slp_reduc)
4057 /*** Case 2: Create:
4058 for (offset = VS/2; offset >= element_size; offset/=2)
4060 Create: va' = vec_shift <va, offset>
4061 Create: va = vop <va, va'>
4062 } */
4064 if (dump_enabled_p ())
4065 dump_printf_loc (MSG_NOTE, vect_location,
4066 "Reduce using vector shifts");
4068 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4069 new_temp = new_phi_result;
4070 for (bit_offset = vec_size_in_bits/2;
4071 bit_offset >= element_bitsize;
4072 bit_offset /= 2)
4074 tree bitpos = size_int (bit_offset);
4076 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4077 vec_dest, new_temp, bitpos);
4078 new_name = make_ssa_name (vec_dest, epilog_stmt);
4079 gimple_assign_set_lhs (epilog_stmt, new_name);
4080 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4082 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4083 new_name, new_temp);
4084 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4085 gimple_assign_set_lhs (epilog_stmt, new_temp);
4086 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4089 extract_scalar_result = true;
4091 else
4093 tree rhs;
4095 /*** Case 3: Create:
4096 s = extract_field <v_out2, 0>
4097 for (offset = element_size;
4098 offset < vector_size;
4099 offset += element_size;)
4101 Create: s' = extract_field <v_out2, offset>
4102 Create: s = op <s, s'> // For non SLP cases
4103 } */
4105 if (dump_enabled_p ())
4106 dump_printf_loc (MSG_NOTE, vect_location,
4107 "Reduce using scalar code. ");
4109 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4110 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4112 if (gimple_code (new_phi) == GIMPLE_PHI)
4113 vec_temp = PHI_RESULT (new_phi);
4114 else
4115 vec_temp = gimple_assign_lhs (new_phi);
4116 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4117 bitsize_zero_node);
4118 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4119 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4120 gimple_assign_set_lhs (epilog_stmt, new_temp);
4121 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4123 /* In SLP we don't need to apply reduction operation, so we just
4124 collect s' values in SCALAR_RESULTS. */
4125 if (slp_reduc)
4126 scalar_results.safe_push (new_temp);
4128 for (bit_offset = element_bitsize;
4129 bit_offset < vec_size_in_bits;
4130 bit_offset += element_bitsize)
4132 tree bitpos = bitsize_int (bit_offset);
4133 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4134 bitsize, bitpos);
4136 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4137 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4138 gimple_assign_set_lhs (epilog_stmt, new_name);
4139 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4141 if (slp_reduc)
4143 /* In SLP we don't need to apply reduction operation, so
4144 we just collect s' values in SCALAR_RESULTS. */
4145 new_temp = new_name;
4146 scalar_results.safe_push (new_name);
4148 else
4150 epilog_stmt = gimple_build_assign_with_ops (code,
4151 new_scalar_dest, new_name, new_temp);
4152 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4153 gimple_assign_set_lhs (epilog_stmt, new_temp);
4154 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4159 /* The only case where we need to reduce scalar results in SLP, is
4160 unrolling. If the size of SCALAR_RESULTS is greater than
4161 GROUP_SIZE, we reduce them combining elements modulo
4162 GROUP_SIZE. */
4163 if (slp_reduc)
4165 tree res, first_res, new_res;
4166 gimple new_stmt;
4168 /* Reduce multiple scalar results in case of SLP unrolling. */
4169 for (j = group_size; scalar_results.iterate (j, &res);
4170 j++)
4172 first_res = scalar_results[j % group_size];
4173 new_stmt = gimple_build_assign_with_ops (code,
4174 new_scalar_dest, first_res, res);
4175 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4176 gimple_assign_set_lhs (new_stmt, new_res);
4177 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4178 scalar_results[j % group_size] = new_res;
4181 else
4182 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4183 scalar_results.safe_push (new_temp);
4185 extract_scalar_result = false;
4189 /* 2.4 Extract the final scalar result. Create:
4190 s_out3 = extract_field <v_out2, bitpos> */
4192 if (extract_scalar_result)
4194 tree rhs;
4196 if (dump_enabled_p ())
4197 dump_printf_loc (MSG_NOTE, vect_location,
4198 "extract scalar result");
4200 if (BYTES_BIG_ENDIAN)
4201 bitpos = size_binop (MULT_EXPR,
4202 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4203 TYPE_SIZE (scalar_type));
4204 else
4205 bitpos = bitsize_zero_node;
4207 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4208 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4209 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4210 gimple_assign_set_lhs (epilog_stmt, new_temp);
4211 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4212 scalar_results.safe_push (new_temp);
4215 vect_finalize_reduction:
4217 if (double_reduc)
4218 loop = loop->inner;
4220 /* 2.5 Adjust the final result by the initial value of the reduction
4221 variable. (When such adjustment is not needed, then
4222 'adjustment_def' is zero). For example, if code is PLUS we create:
4223 new_temp = loop_exit_def + adjustment_def */
4225 if (adjustment_def)
4227 gcc_assert (!slp_reduc);
4228 if (nested_in_vect_loop)
4230 new_phi = new_phis[0];
4231 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4232 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4233 new_dest = vect_create_destination_var (scalar_dest, vectype);
4235 else
4237 new_temp = scalar_results[0];
4238 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4239 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4240 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4243 epilog_stmt = gimple_build_assign (new_dest, expr);
4244 new_temp = make_ssa_name (new_dest, epilog_stmt);
4245 gimple_assign_set_lhs (epilog_stmt, new_temp);
4246 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
4247 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4248 if (nested_in_vect_loop)
4250 set_vinfo_for_stmt (epilog_stmt,
4251 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4252 NULL));
4253 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4254 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4256 if (!double_reduc)
4257 scalar_results.quick_push (new_temp);
4258 else
4259 scalar_results[0] = new_temp;
4261 else
4262 scalar_results[0] = new_temp;
4264 new_phis[0] = epilog_stmt;
4267 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4268 phis with new adjusted scalar results, i.e., replace use <s_out0>
4269 with use <s_out4>.
4271 Transform:
4272 loop_exit:
4273 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4274 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4275 v_out2 = reduce <v_out1>
4276 s_out3 = extract_field <v_out2, 0>
4277 s_out4 = adjust_result <s_out3>
4278 use <s_out0>
4279 use <s_out0>
4281 into:
4283 loop_exit:
4284 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4285 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4286 v_out2 = reduce <v_out1>
4287 s_out3 = extract_field <v_out2, 0>
4288 s_out4 = adjust_result <s_out3>
4289 use <s_out4>
4290 use <s_out4> */
4293 /* In SLP reduction chain we reduce vector results into one vector if
4294 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4295 the last stmt in the reduction chain, since we are looking for the loop
4296 exit phi node. */
4297 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4299 scalar_dest = gimple_assign_lhs (
4300 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4301 group_size = 1;
4304 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4305 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4306 need to match SCALAR_RESULTS with corresponding statements. The first
4307 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4308 the first vector stmt, etc.
4309 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4310 if (group_size > new_phis.length ())
4312 ratio = group_size / new_phis.length ();
4313 gcc_assert (!(group_size % new_phis.length ()));
4315 else
4316 ratio = 1;
4318 for (k = 0; k < group_size; k++)
4320 if (k % ratio == 0)
4322 epilog_stmt = new_phis[k / ratio];
4323 reduction_phi = reduction_phis[k / ratio];
4324 if (double_reduc)
4325 inner_phi = inner_phis[k / ratio];
4328 if (slp_reduc)
4330 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4332 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4333 /* SLP statements can't participate in patterns. */
4334 gcc_assert (!orig_stmt);
4335 scalar_dest = gimple_assign_lhs (current_stmt);
4338 phis.create (3);
4339 /* Find the loop-closed-use at the loop exit of the original scalar
4340 result. (The reduction result is expected to have two immediate uses -
4341 one at the latch block, and one at the loop exit). */
4342 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4343 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4344 && !is_gimple_debug (USE_STMT (use_p)))
4345 phis.safe_push (USE_STMT (use_p));
4347 /* While we expect to have found an exit_phi because of loop-closed-ssa
4348 form we can end up without one if the scalar cycle is dead. */
4350 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4352 if (outer_loop)
4354 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4355 gimple vect_phi;
4357 /* FORNOW. Currently not supporting the case that an inner-loop
4358 reduction is not used in the outer-loop (but only outside the
4359 outer-loop), unless it is double reduction. */
4360 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4361 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4362 || double_reduc);
4364 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4365 if (!double_reduc
4366 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4367 != vect_double_reduction_def)
4368 continue;
4370 /* Handle double reduction:
4372 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4373 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4374 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4375 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4377 At that point the regular reduction (stmt2 and stmt3) is
4378 already vectorized, as well as the exit phi node, stmt4.
4379 Here we vectorize the phi node of double reduction, stmt1, and
4380 update all relevant statements. */
4382 /* Go through all the uses of s2 to find double reduction phi
4383 node, i.e., stmt1 above. */
4384 orig_name = PHI_RESULT (exit_phi);
4385 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4387 stmt_vec_info use_stmt_vinfo;
4388 stmt_vec_info new_phi_vinfo;
4389 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4390 basic_block bb = gimple_bb (use_stmt);
4391 gimple use;
4393 /* Check that USE_STMT is really double reduction phi
4394 node. */
4395 if (gimple_code (use_stmt) != GIMPLE_PHI
4396 || gimple_phi_num_args (use_stmt) != 2
4397 || bb->loop_father != outer_loop)
4398 continue;
4399 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4400 if (!use_stmt_vinfo
4401 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4402 != vect_double_reduction_def)
4403 continue;
4405 /* Create vector phi node for double reduction:
4406 vs1 = phi <vs0, vs2>
4407 vs1 was created previously in this function by a call to
4408 vect_get_vec_def_for_operand and is stored in
4409 vec_initial_def;
4410 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4411 vs0 is created here. */
4413 /* Create vector phi node. */
4414 vect_phi = create_phi_node (vec_initial_def, bb);
4415 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4416 loop_vec_info_for_loop (outer_loop), NULL);
4417 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4419 /* Create vs0 - initial def of the double reduction phi. */
4420 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4421 loop_preheader_edge (outer_loop));
4422 init_def = get_initial_def_for_reduction (stmt,
4423 preheader_arg, NULL);
4424 vect_phi_init = vect_init_vector (use_stmt, init_def,
4425 vectype, NULL);
4427 /* Update phi node arguments with vs0 and vs2. */
4428 add_phi_arg (vect_phi, vect_phi_init,
4429 loop_preheader_edge (outer_loop),
4430 UNKNOWN_LOCATION);
4431 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4432 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4433 if (dump_enabled_p ())
4435 dump_printf_loc (MSG_NOTE, vect_location,
4436 "created double reduction phi node: ");
4437 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4440 vect_phi_res = PHI_RESULT (vect_phi);
4442 /* Replace the use, i.e., set the correct vs1 in the regular
4443 reduction phi node. FORNOW, NCOPIES is always 1, so the
4444 loop is redundant. */
4445 use = reduction_phi;
4446 for (j = 0; j < ncopies; j++)
4448 edge pr_edge = loop_preheader_edge (loop);
4449 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4450 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4456 phis.release ();
4457 if (nested_in_vect_loop)
4459 if (double_reduc)
4460 loop = outer_loop;
4461 else
4462 continue;
4465 phis.create (3);
4466 /* Find the loop-closed-use at the loop exit of the original scalar
4467 result. (The reduction result is expected to have two immediate uses,
4468 one at the latch block, and one at the loop exit). For double
4469 reductions we are looking for exit phis of the outer loop. */
4470 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4472 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4474 if (!is_gimple_debug (USE_STMT (use_p)))
4475 phis.safe_push (USE_STMT (use_p));
4477 else
4479 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4481 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4483 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4485 if (!flow_bb_inside_loop_p (loop,
4486 gimple_bb (USE_STMT (phi_use_p)))
4487 && !is_gimple_debug (USE_STMT (phi_use_p)))
4488 phis.safe_push (USE_STMT (phi_use_p));
4494 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4496 /* Replace the uses: */
4497 orig_name = PHI_RESULT (exit_phi);
4498 scalar_result = scalar_results[k];
4499 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4500 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4501 SET_USE (use_p, scalar_result);
4504 phis.release ();
4507 scalar_results.release ();
4508 inner_phis.release ();
4509 new_phis.release ();
4513 /* Function vectorizable_reduction.
4515 Check if STMT performs a reduction operation that can be vectorized.
4516 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4517 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4518 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4520 This function also handles reduction idioms (patterns) that have been
4521 recognized in advance during vect_pattern_recog. In this case, STMT may be
4522 of this form:
4523 X = pattern_expr (arg0, arg1, ..., X)
4524 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4525 sequence that had been detected and replaced by the pattern-stmt (STMT).
4527 In some cases of reduction patterns, the type of the reduction variable X is
4528 different than the type of the other arguments of STMT.
4529 In such cases, the vectype that is used when transforming STMT into a vector
4530 stmt is different than the vectype that is used to determine the
4531 vectorization factor, because it consists of a different number of elements
4532 than the actual number of elements that are being operated upon in parallel.
4534 For example, consider an accumulation of shorts into an int accumulator.
4535 On some targets it's possible to vectorize this pattern operating on 8
4536 shorts at a time (hence, the vectype for purposes of determining the
4537 vectorization factor should be V8HI); on the other hand, the vectype that
4538 is used to create the vector form is actually V4SI (the type of the result).
4540 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4541 indicates what is the actual level of parallelism (V8HI in the example), so
4542 that the right vectorization factor would be derived. This vectype
4543 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4544 be used to create the vectorized stmt. The right vectype for the vectorized
4545 stmt is obtained from the type of the result X:
4546 get_vectype_for_scalar_type (TREE_TYPE (X))
4548 This means that, contrary to "regular" reductions (or "regular" stmts in
4549 general), the following equation:
4550 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4551 does *NOT* necessarily hold for reduction patterns. */
4553 bool
4554 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4555 gimple *vec_stmt, slp_tree slp_node)
4557 tree vec_dest;
4558 tree scalar_dest;
4559 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4560 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4561 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4562 tree vectype_in = NULL_TREE;
4563 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4564 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4565 enum tree_code code, orig_code, epilog_reduc_code;
4566 enum machine_mode vec_mode;
4567 int op_type;
4568 optab optab, reduc_optab;
4569 tree new_temp = NULL_TREE;
4570 tree def;
4571 gimple def_stmt;
4572 enum vect_def_type dt;
4573 gimple new_phi = NULL;
4574 tree scalar_type;
4575 bool is_simple_use;
4576 gimple orig_stmt;
4577 stmt_vec_info orig_stmt_info;
4578 tree expr = NULL_TREE;
4579 int i;
4580 int ncopies;
4581 int epilog_copies;
4582 stmt_vec_info prev_stmt_info, prev_phi_info;
4583 bool single_defuse_cycle = false;
4584 tree reduc_def = NULL_TREE;
4585 gimple new_stmt = NULL;
4586 int j;
4587 tree ops[3];
4588 bool nested_cycle = false, found_nested_cycle_def = false;
4589 gimple reduc_def_stmt = NULL;
4590 /* The default is that the reduction variable is the last in statement. */
4591 int reduc_index = 2;
4592 bool double_reduc = false, dummy;
4593 basic_block def_bb;
4594 struct loop * def_stmt_loop, *outer_loop = NULL;
4595 tree def_arg;
4596 gimple def_arg_stmt;
4597 vec<tree> vec_oprnds0 = vNULL;
4598 vec<tree> vec_oprnds1 = vNULL;
4599 vec<tree> vect_defs = vNULL;
4600 vec<gimple> phis = vNULL;
4601 int vec_num;
4602 tree def0, def1, tem, op0, op1 = NULL_TREE;
4604 /* In case of reduction chain we switch to the first stmt in the chain, but
4605 we don't update STMT_INFO, since only the last stmt is marked as reduction
4606 and has reduction properties. */
4607 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4608 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4610 if (nested_in_vect_loop_p (loop, stmt))
4612 outer_loop = loop;
4613 loop = loop->inner;
4614 nested_cycle = true;
4617 /* 1. Is vectorizable reduction? */
4618 /* Not supportable if the reduction variable is used in the loop, unless
4619 it's a reduction chain. */
4620 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4621 && !GROUP_FIRST_ELEMENT (stmt_info))
4622 return false;
4624 /* Reductions that are not used even in an enclosing outer-loop,
4625 are expected to be "live" (used out of the loop). */
4626 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4627 && !STMT_VINFO_LIVE_P (stmt_info))
4628 return false;
4630 /* Make sure it was already recognized as a reduction computation. */
4631 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4632 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4633 return false;
4635 /* 2. Has this been recognized as a reduction pattern?
4637 Check if STMT represents a pattern that has been recognized
4638 in earlier analysis stages. For stmts that represent a pattern,
4639 the STMT_VINFO_RELATED_STMT field records the last stmt in
4640 the original sequence that constitutes the pattern. */
4642 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4643 if (orig_stmt)
4645 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4646 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4647 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4650 /* 3. Check the operands of the operation. The first operands are defined
4651 inside the loop body. The last operand is the reduction variable,
4652 which is defined by the loop-header-phi. */
4654 gcc_assert (is_gimple_assign (stmt));
4656 /* Flatten RHS. */
4657 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4659 case GIMPLE_SINGLE_RHS:
4660 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4661 if (op_type == ternary_op)
4663 tree rhs = gimple_assign_rhs1 (stmt);
4664 ops[0] = TREE_OPERAND (rhs, 0);
4665 ops[1] = TREE_OPERAND (rhs, 1);
4666 ops[2] = TREE_OPERAND (rhs, 2);
4667 code = TREE_CODE (rhs);
4669 else
4670 return false;
4671 break;
4673 case GIMPLE_BINARY_RHS:
4674 code = gimple_assign_rhs_code (stmt);
4675 op_type = TREE_CODE_LENGTH (code);
4676 gcc_assert (op_type == binary_op);
4677 ops[0] = gimple_assign_rhs1 (stmt);
4678 ops[1] = gimple_assign_rhs2 (stmt);
4679 break;
4681 case GIMPLE_TERNARY_RHS:
4682 code = gimple_assign_rhs_code (stmt);
4683 op_type = TREE_CODE_LENGTH (code);
4684 gcc_assert (op_type == ternary_op);
4685 ops[0] = gimple_assign_rhs1 (stmt);
4686 ops[1] = gimple_assign_rhs2 (stmt);
4687 ops[2] = gimple_assign_rhs3 (stmt);
4688 break;
4690 case GIMPLE_UNARY_RHS:
4691 return false;
4693 default:
4694 gcc_unreachable ();
4697 if (code == COND_EXPR && slp_node)
4698 return false;
4700 scalar_dest = gimple_assign_lhs (stmt);
4701 scalar_type = TREE_TYPE (scalar_dest);
4702 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4703 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4704 return false;
4706 /* Do not try to vectorize bit-precision reductions. */
4707 if ((TYPE_PRECISION (scalar_type)
4708 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4709 return false;
4711 /* All uses but the last are expected to be defined in the loop.
4712 The last use is the reduction variable. In case of nested cycle this
4713 assumption is not true: we use reduc_index to record the index of the
4714 reduction variable. */
4715 for (i = 0; i < op_type - 1; i++)
4717 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4718 if (i == 0 && code == COND_EXPR)
4719 continue;
4721 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4722 &def_stmt, &def, &dt, &tem);
4723 if (!vectype_in)
4724 vectype_in = tem;
4725 gcc_assert (is_simple_use);
4727 if (dt != vect_internal_def
4728 && dt != vect_external_def
4729 && dt != vect_constant_def
4730 && dt != vect_induction_def
4731 && !(dt == vect_nested_cycle && nested_cycle))
4732 return false;
4734 if (dt == vect_nested_cycle)
4736 found_nested_cycle_def = true;
4737 reduc_def_stmt = def_stmt;
4738 reduc_index = i;
4742 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4743 &def_stmt, &def, &dt, &tem);
4744 if (!vectype_in)
4745 vectype_in = tem;
4746 gcc_assert (is_simple_use);
4747 if (!(dt == vect_reduction_def
4748 || dt == vect_nested_cycle
4749 || ((dt == vect_internal_def || dt == vect_external_def
4750 || dt == vect_constant_def || dt == vect_induction_def)
4751 && nested_cycle && found_nested_cycle_def)))
4753 /* For pattern recognized stmts, orig_stmt might be a reduction,
4754 but some helper statements for the pattern might not, or
4755 might be COND_EXPRs with reduction uses in the condition. */
4756 gcc_assert (orig_stmt);
4757 return false;
4759 if (!found_nested_cycle_def)
4760 reduc_def_stmt = def_stmt;
4762 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4763 if (orig_stmt)
4764 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4765 reduc_def_stmt,
4766 !nested_cycle,
4767 &dummy));
4768 else
4770 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4771 !nested_cycle, &dummy);
4772 /* We changed STMT to be the first stmt in reduction chain, hence we
4773 check that in this case the first element in the chain is STMT. */
4774 gcc_assert (stmt == tmp
4775 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4778 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4779 return false;
4781 if (slp_node || PURE_SLP_STMT (stmt_info))
4782 ncopies = 1;
4783 else
4784 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4785 / TYPE_VECTOR_SUBPARTS (vectype_in));
4787 gcc_assert (ncopies >= 1);
4789 vec_mode = TYPE_MODE (vectype_in);
4791 if (code == COND_EXPR)
4793 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4795 if (dump_enabled_p ())
4796 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4797 "unsupported condition in reduction");
4799 return false;
4802 else
4804 /* 4. Supportable by target? */
4806 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4807 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4809 /* Shifts and rotates are only supported by vectorizable_shifts,
4810 not vectorizable_reduction. */
4811 if (dump_enabled_p ())
4812 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4813 "unsupported shift or rotation.");
4814 return false;
4817 /* 4.1. check support for the operation in the loop */
4818 optab = optab_for_tree_code (code, vectype_in, optab_default);
4819 if (!optab)
4821 if (dump_enabled_p ())
4822 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4823 "no optab.");
4825 return false;
4828 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4830 if (dump_enabled_p ())
4831 dump_printf (MSG_NOTE, "op not supported by target.");
4833 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4834 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4835 < vect_min_worthwhile_factor (code))
4836 return false;
4838 if (dump_enabled_p ())
4839 dump_printf (MSG_NOTE, "proceeding using word mode.");
4842 /* Worthwhile without SIMD support? */
4843 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4844 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4845 < vect_min_worthwhile_factor (code))
4847 if (dump_enabled_p ())
4848 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4849 "not worthwhile without SIMD support.");
4851 return false;
4855 /* 4.2. Check support for the epilog operation.
4857 If STMT represents a reduction pattern, then the type of the
4858 reduction variable may be different than the type of the rest
4859 of the arguments. For example, consider the case of accumulation
4860 of shorts into an int accumulator; The original code:
4861 S1: int_a = (int) short_a;
4862 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4864 was replaced with:
4865 STMT: int_acc = widen_sum <short_a, int_acc>
4867 This means that:
4868 1. The tree-code that is used to create the vector operation in the
4869 epilog code (that reduces the partial results) is not the
4870 tree-code of STMT, but is rather the tree-code of the original
4871 stmt from the pattern that STMT is replacing. I.e, in the example
4872 above we want to use 'widen_sum' in the loop, but 'plus' in the
4873 epilog.
4874 2. The type (mode) we use to check available target support
4875 for the vector operation to be created in the *epilog*, is
4876 determined by the type of the reduction variable (in the example
4877 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4878 However the type (mode) we use to check available target support
4879 for the vector operation to be created *inside the loop*, is
4880 determined by the type of the other arguments to STMT (in the
4881 example we'd check this: optab_handler (widen_sum_optab,
4882 vect_short_mode)).
4884 This is contrary to "regular" reductions, in which the types of all
4885 the arguments are the same as the type of the reduction variable.
4886 For "regular" reductions we can therefore use the same vector type
4887 (and also the same tree-code) when generating the epilog code and
4888 when generating the code inside the loop. */
4890 if (orig_stmt)
4892 /* This is a reduction pattern: get the vectype from the type of the
4893 reduction variable, and get the tree-code from orig_stmt. */
4894 orig_code = gimple_assign_rhs_code (orig_stmt);
4895 gcc_assert (vectype_out);
4896 vec_mode = TYPE_MODE (vectype_out);
4898 else
4900 /* Regular reduction: use the same vectype and tree-code as used for
4901 the vector code inside the loop can be used for the epilog code. */
4902 orig_code = code;
4905 if (nested_cycle)
4907 def_bb = gimple_bb (reduc_def_stmt);
4908 def_stmt_loop = def_bb->loop_father;
4909 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4910 loop_preheader_edge (def_stmt_loop));
4911 if (TREE_CODE (def_arg) == SSA_NAME
4912 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4913 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4914 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4915 && vinfo_for_stmt (def_arg_stmt)
4916 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4917 == vect_double_reduction_def)
4918 double_reduc = true;
4921 epilog_reduc_code = ERROR_MARK;
4922 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4924 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4925 optab_default);
4926 if (!reduc_optab)
4928 if (dump_enabled_p ())
4929 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4930 "no optab for reduction.");
4932 epilog_reduc_code = ERROR_MARK;
4935 if (reduc_optab
4936 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4938 if (dump_enabled_p ())
4939 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4940 "reduc op not supported by target.");
4942 epilog_reduc_code = ERROR_MARK;
4945 else
4947 if (!nested_cycle || double_reduc)
4949 if (dump_enabled_p ())
4950 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4951 "no reduc code for scalar code.");
4953 return false;
4957 if (double_reduc && ncopies > 1)
4959 if (dump_enabled_p ())
4960 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4961 "multiple types in double reduction");
4963 return false;
4966 /* In case of widenning multiplication by a constant, we update the type
4967 of the constant to be the type of the other operand. We check that the
4968 constant fits the type in the pattern recognition pass. */
4969 if (code == DOT_PROD_EXPR
4970 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
4972 if (TREE_CODE (ops[0]) == INTEGER_CST)
4973 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
4974 else if (TREE_CODE (ops[1]) == INTEGER_CST)
4975 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
4976 else
4978 if (dump_enabled_p ())
4979 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4980 "invalid types in dot-prod");
4982 return false;
4986 if (!vec_stmt) /* transformation not required. */
4988 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4989 return false;
4990 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4991 return true;
4994 /** Transform. **/
4996 if (dump_enabled_p ())
4997 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.");
4999 /* FORNOW: Multiple types are not supported for condition. */
5000 if (code == COND_EXPR)
5001 gcc_assert (ncopies == 1);
5003 /* Create the destination vector */
5004 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5006 /* In case the vectorization factor (VF) is bigger than the number
5007 of elements that we can fit in a vectype (nunits), we have to generate
5008 more than one vector stmt - i.e - we need to "unroll" the
5009 vector stmt by a factor VF/nunits. For more details see documentation
5010 in vectorizable_operation. */
5012 /* If the reduction is used in an outer loop we need to generate
5013 VF intermediate results, like so (e.g. for ncopies=2):
5014 r0 = phi (init, r0)
5015 r1 = phi (init, r1)
5016 r0 = x0 + r0;
5017 r1 = x1 + r1;
5018 (i.e. we generate VF results in 2 registers).
5019 In this case we have a separate def-use cycle for each copy, and therefore
5020 for each copy we get the vector def for the reduction variable from the
5021 respective phi node created for this copy.
5023 Otherwise (the reduction is unused in the loop nest), we can combine
5024 together intermediate results, like so (e.g. for ncopies=2):
5025 r = phi (init, r)
5026 r = x0 + r;
5027 r = x1 + r;
5028 (i.e. we generate VF/2 results in a single register).
5029 In this case for each copy we get the vector def for the reduction variable
5030 from the vectorized reduction operation generated in the previous iteration.
5033 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5035 single_defuse_cycle = true;
5036 epilog_copies = 1;
5038 else
5039 epilog_copies = ncopies;
5041 prev_stmt_info = NULL;
5042 prev_phi_info = NULL;
5043 if (slp_node)
5045 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5046 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5047 == TYPE_VECTOR_SUBPARTS (vectype_in));
5049 else
5051 vec_num = 1;
5052 vec_oprnds0.create (1);
5053 if (op_type == ternary_op)
5054 vec_oprnds1.create (1);
5057 phis.create (vec_num);
5058 vect_defs.create (vec_num);
5059 if (!slp_node)
5060 vect_defs.quick_push (NULL_TREE);
5062 for (j = 0; j < ncopies; j++)
5064 if (j == 0 || !single_defuse_cycle)
5066 for (i = 0; i < vec_num; i++)
5068 /* Create the reduction-phi that defines the reduction
5069 operand. */
5070 new_phi = create_phi_node (vec_dest, loop->header);
5071 set_vinfo_for_stmt (new_phi,
5072 new_stmt_vec_info (new_phi, loop_vinfo,
5073 NULL));
5074 if (j == 0 || slp_node)
5075 phis.quick_push (new_phi);
5079 if (code == COND_EXPR)
5081 gcc_assert (!slp_node);
5082 vectorizable_condition (stmt, gsi, vec_stmt,
5083 PHI_RESULT (phis[0]),
5084 reduc_index, NULL);
5085 /* Multiple types are not supported for condition. */
5086 break;
5089 /* Handle uses. */
5090 if (j == 0)
5092 op0 = ops[!reduc_index];
5093 if (op_type == ternary_op)
5095 if (reduc_index == 0)
5096 op1 = ops[2];
5097 else
5098 op1 = ops[1];
5101 if (slp_node)
5102 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5103 slp_node, -1);
5104 else
5106 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5107 stmt, NULL);
5108 vec_oprnds0.quick_push (loop_vec_def0);
5109 if (op_type == ternary_op)
5111 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5112 NULL);
5113 vec_oprnds1.quick_push (loop_vec_def1);
5117 else
5119 if (!slp_node)
5121 enum vect_def_type dt;
5122 gimple dummy_stmt;
5123 tree dummy;
5125 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5126 &dummy_stmt, &dummy, &dt);
5127 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5128 loop_vec_def0);
5129 vec_oprnds0[0] = loop_vec_def0;
5130 if (op_type == ternary_op)
5132 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5133 &dummy, &dt);
5134 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5135 loop_vec_def1);
5136 vec_oprnds1[0] = loop_vec_def1;
5140 if (single_defuse_cycle)
5141 reduc_def = gimple_assign_lhs (new_stmt);
5143 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5146 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5148 if (slp_node)
5149 reduc_def = PHI_RESULT (phis[i]);
5150 else
5152 if (!single_defuse_cycle || j == 0)
5153 reduc_def = PHI_RESULT (new_phi);
5156 def1 = ((op_type == ternary_op)
5157 ? vec_oprnds1[i] : NULL);
5158 if (op_type == binary_op)
5160 if (reduc_index == 0)
5161 expr = build2 (code, vectype_out, reduc_def, def0);
5162 else
5163 expr = build2 (code, vectype_out, def0, reduc_def);
5165 else
5167 if (reduc_index == 0)
5168 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5169 else
5171 if (reduc_index == 1)
5172 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5173 else
5174 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5178 new_stmt = gimple_build_assign (vec_dest, expr);
5179 new_temp = make_ssa_name (vec_dest, new_stmt);
5180 gimple_assign_set_lhs (new_stmt, new_temp);
5181 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5183 if (slp_node)
5185 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5186 vect_defs.quick_push (new_temp);
5188 else
5189 vect_defs[0] = new_temp;
5192 if (slp_node)
5193 continue;
5195 if (j == 0)
5196 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5197 else
5198 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5200 prev_stmt_info = vinfo_for_stmt (new_stmt);
5201 prev_phi_info = vinfo_for_stmt (new_phi);
5204 /* Finalize the reduction-phi (set its arguments) and create the
5205 epilog reduction code. */
5206 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5208 new_temp = gimple_assign_lhs (*vec_stmt);
5209 vect_defs[0] = new_temp;
5212 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5213 epilog_reduc_code, phis, reduc_index,
5214 double_reduc, slp_node);
5216 phis.release ();
5217 vect_defs.release ();
5218 vec_oprnds0.release ();
5219 vec_oprnds1.release ();
5221 return true;
5224 /* Function vect_min_worthwhile_factor.
5226 For a loop where we could vectorize the operation indicated by CODE,
5227 return the minimum vectorization factor that makes it worthwhile
5228 to use generic vectors. */
5230 vect_min_worthwhile_factor (enum tree_code code)
5232 switch (code)
5234 case PLUS_EXPR:
5235 case MINUS_EXPR:
5236 case NEGATE_EXPR:
5237 return 4;
5239 case BIT_AND_EXPR:
5240 case BIT_IOR_EXPR:
5241 case BIT_XOR_EXPR:
5242 case BIT_NOT_EXPR:
5243 return 2;
5245 default:
5246 return INT_MAX;
5251 /* Function vectorizable_induction
5253 Check if PHI performs an induction computation that can be vectorized.
5254 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5255 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5256 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5258 bool
5259 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5260 gimple *vec_stmt)
5262 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5263 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5264 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5265 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5266 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5267 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5268 tree vec_def;
5270 gcc_assert (ncopies >= 1);
5271 /* FORNOW. These restrictions should be relaxed. */
5272 if (nested_in_vect_loop_p (loop, phi))
5274 imm_use_iterator imm_iter;
5275 use_operand_p use_p;
5276 gimple exit_phi;
5277 edge latch_e;
5278 tree loop_arg;
5280 if (ncopies > 1)
5282 if (dump_enabled_p ())
5283 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5284 "multiple types in nested loop.");
5285 return false;
5288 exit_phi = NULL;
5289 latch_e = loop_latch_edge (loop->inner);
5290 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5291 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5293 if (!flow_bb_inside_loop_p (loop->inner,
5294 gimple_bb (USE_STMT (use_p))))
5296 exit_phi = USE_STMT (use_p);
5297 break;
5300 if (exit_phi)
5302 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5303 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5304 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5306 if (dump_enabled_p ())
5307 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5308 "inner-loop induction only used outside "
5309 "of the outer vectorized loop.");
5310 return false;
5315 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5316 return false;
5318 /* FORNOW: SLP not supported. */
5319 if (STMT_SLP_TYPE (stmt_info))
5320 return false;
5322 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5324 if (gimple_code (phi) != GIMPLE_PHI)
5325 return false;
5327 if (!vec_stmt) /* transformation not required. */
5329 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5330 if (dump_enabled_p ())
5331 dump_printf_loc (MSG_NOTE, vect_location,
5332 "=== vectorizable_induction ===");
5333 vect_model_induction_cost (stmt_info, ncopies);
5334 return true;
5337 /** Transform. **/
5339 if (dump_enabled_p ())
5340 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.");
5342 vec_def = get_initial_def_for_induction (phi);
5343 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5344 return true;
5347 /* Function vectorizable_live_operation.
5349 STMT computes a value that is used outside the loop. Check if
5350 it can be supported. */
5352 bool
5353 vectorizable_live_operation (gimple stmt,
5354 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5355 gimple *vec_stmt ATTRIBUTE_UNUSED)
5357 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5358 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5359 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5360 int i;
5361 int op_type;
5362 tree op;
5363 tree def;
5364 gimple def_stmt;
5365 enum vect_def_type dt;
5366 enum tree_code code;
5367 enum gimple_rhs_class rhs_class;
5369 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5371 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5372 return false;
5374 if (!is_gimple_assign (stmt))
5375 return false;
5377 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5378 return false;
5380 /* FORNOW. CHECKME. */
5381 if (nested_in_vect_loop_p (loop, stmt))
5382 return false;
5384 code = gimple_assign_rhs_code (stmt);
5385 op_type = TREE_CODE_LENGTH (code);
5386 rhs_class = get_gimple_rhs_class (code);
5387 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5388 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5390 /* FORNOW: support only if all uses are invariant. This means
5391 that the scalar operations can remain in place, unvectorized.
5392 The original last scalar value that they compute will be used. */
5394 for (i = 0; i < op_type; i++)
5396 if (rhs_class == GIMPLE_SINGLE_RHS)
5397 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5398 else
5399 op = gimple_op (stmt, i + 1);
5400 if (op
5401 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5402 &dt))
5404 if (dump_enabled_p ())
5405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5406 "use not simple.");
5407 return false;
5410 if (dt != vect_external_def && dt != vect_constant_def)
5411 return false;
5414 /* No transformation is required for the cases we currently support. */
5415 return true;
5418 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5420 static void
5421 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5423 ssa_op_iter op_iter;
5424 imm_use_iterator imm_iter;
5425 def_operand_p def_p;
5426 gimple ustmt;
5428 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5430 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5432 basic_block bb;
5434 if (!is_gimple_debug (ustmt))
5435 continue;
5437 bb = gimple_bb (ustmt);
5439 if (!flow_bb_inside_loop_p (loop, bb))
5441 if (gimple_debug_bind_p (ustmt))
5443 if (dump_enabled_p ())
5444 dump_printf_loc (MSG_NOTE, vect_location,
5445 "killing debug use");
5447 gimple_debug_bind_reset_value (ustmt);
5448 update_stmt (ustmt);
5450 else
5451 gcc_unreachable ();
5457 /* Function vect_transform_loop.
5459 The analysis phase has determined that the loop is vectorizable.
5460 Vectorize the loop - created vectorized stmts to replace the scalar
5461 stmts in the loop, and update the loop exit condition. */
5463 void
5464 vect_transform_loop (loop_vec_info loop_vinfo)
5466 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5467 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5468 int nbbs = loop->num_nodes;
5469 gimple_stmt_iterator si;
5470 int i;
5471 tree ratio = NULL;
5472 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5473 bool grouped_store;
5474 bool slp_scheduled = false;
5475 unsigned int nunits;
5476 gimple stmt, pattern_stmt;
5477 gimple_seq pattern_def_seq = NULL;
5478 gimple_stmt_iterator pattern_def_si = gsi_none ();
5479 bool transform_pattern_stmt = false;
5480 bool check_profitability = false;
5481 int th;
5482 /* Record number of iterations before we started tampering with the profile. */
5483 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5485 if (dump_enabled_p ())
5486 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===");
5488 /* If profile is inprecise, we have chance to fix it up. */
5489 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5490 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5492 /* Use the more conservative vectorization threshold. If the number
5493 of iterations is constant assume the cost check has been performed
5494 by our caller. If the threshold makes all loops profitable that
5495 run at least the vectorization factor number of times checking
5496 is pointless, too. */
5497 th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
5498 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
5499 th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
5500 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5501 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5503 if (dump_enabled_p ())
5504 dump_printf_loc (MSG_NOTE, vect_location,
5505 "Profitability threshold is %d loop iterations.", th);
5506 check_profitability = true;
5509 /* Peel the loop if there are data refs with unknown alignment.
5510 Only one data ref with unknown store is allowed. */
5512 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
5514 vect_do_peeling_for_alignment (loop_vinfo, th, check_profitability);
5515 check_profitability = false;
5518 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5519 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5521 vect_loop_versioning (loop_vinfo, th, check_profitability);
5522 check_profitability = false;
5525 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5526 compile time constant), or it is a constant that doesn't divide by the
5527 vectorization factor, then an epilog loop needs to be created.
5528 We therefore duplicate the loop: the original loop will be vectorized,
5529 and will compute the first (n/VF) iterations. The second copy of the loop
5530 will remain scalar and will compute the remaining (n%VF) iterations.
5531 (VF is the vectorization factor). */
5533 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5534 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5535 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
5536 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5537 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
5538 th, check_profitability);
5539 else
5540 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5541 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5543 /* 1) Make sure the loop header has exactly two entries
5544 2) Make sure we have a preheader basic block. */
5546 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5548 split_edge (loop_preheader_edge (loop));
5550 /* FORNOW: the vectorizer supports only loops which body consist
5551 of one basic block (header + empty latch). When the vectorizer will
5552 support more involved loop forms, the order by which the BBs are
5553 traversed need to be reconsidered. */
5555 for (i = 0; i < nbbs; i++)
5557 basic_block bb = bbs[i];
5558 stmt_vec_info stmt_info;
5559 gimple phi;
5561 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5563 phi = gsi_stmt (si);
5564 if (dump_enabled_p ())
5566 dump_printf_loc (MSG_NOTE, vect_location,
5567 "------>vectorizing phi: ");
5568 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5570 stmt_info = vinfo_for_stmt (phi);
5571 if (!stmt_info)
5572 continue;
5574 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5575 vect_loop_kill_debug_uses (loop, phi);
5577 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5578 && !STMT_VINFO_LIVE_P (stmt_info))
5579 continue;
5581 if (STMT_VINFO_VECTYPE (stmt_info)
5582 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5583 != (unsigned HOST_WIDE_INT) vectorization_factor)
5584 && dump_enabled_p ())
5585 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.");
5587 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5589 if (dump_enabled_p ())
5590 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.");
5591 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5595 pattern_stmt = NULL;
5596 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5598 bool is_store;
5600 if (transform_pattern_stmt)
5601 stmt = pattern_stmt;
5602 else
5603 stmt = gsi_stmt (si);
5605 if (dump_enabled_p ())
5607 dump_printf_loc (MSG_NOTE, vect_location,
5608 "------>vectorizing statement: ");
5609 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5612 stmt_info = vinfo_for_stmt (stmt);
5614 /* vector stmts created in the outer-loop during vectorization of
5615 stmts in an inner-loop may not have a stmt_info, and do not
5616 need to be vectorized. */
5617 if (!stmt_info)
5619 gsi_next (&si);
5620 continue;
5623 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5624 vect_loop_kill_debug_uses (loop, stmt);
5626 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5627 && !STMT_VINFO_LIVE_P (stmt_info))
5629 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5630 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5631 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5632 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5634 stmt = pattern_stmt;
5635 stmt_info = vinfo_for_stmt (stmt);
5637 else
5639 gsi_next (&si);
5640 continue;
5643 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5644 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5645 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5646 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5647 transform_pattern_stmt = true;
5649 /* If pattern statement has def stmts, vectorize them too. */
5650 if (is_pattern_stmt_p (stmt_info))
5652 if (pattern_def_seq == NULL)
5654 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5655 pattern_def_si = gsi_start (pattern_def_seq);
5657 else if (!gsi_end_p (pattern_def_si))
5658 gsi_next (&pattern_def_si);
5659 if (pattern_def_seq != NULL)
5661 gimple pattern_def_stmt = NULL;
5662 stmt_vec_info pattern_def_stmt_info = NULL;
5664 while (!gsi_end_p (pattern_def_si))
5666 pattern_def_stmt = gsi_stmt (pattern_def_si);
5667 pattern_def_stmt_info
5668 = vinfo_for_stmt (pattern_def_stmt);
5669 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5670 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5671 break;
5672 gsi_next (&pattern_def_si);
5675 if (!gsi_end_p (pattern_def_si))
5677 if (dump_enabled_p ())
5679 dump_printf_loc (MSG_NOTE, vect_location,
5680 "==> vectorizing pattern def "
5681 "stmt: ");
5682 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
5683 pattern_def_stmt, 0);
5686 stmt = pattern_def_stmt;
5687 stmt_info = pattern_def_stmt_info;
5689 else
5691 pattern_def_si = gsi_none ();
5692 transform_pattern_stmt = false;
5695 else
5696 transform_pattern_stmt = false;
5699 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5700 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
5701 STMT_VINFO_VECTYPE (stmt_info));
5702 if (!STMT_SLP_TYPE (stmt_info)
5703 && nunits != (unsigned int) vectorization_factor
5704 && dump_enabled_p ())
5705 /* For SLP VF is set according to unrolling factor, and not to
5706 vector size, hence for SLP this print is not valid. */
5707 dump_printf_loc (MSG_NOTE, vect_location,
5708 "multiple-types.");
5710 /* SLP. Schedule all the SLP instances when the first SLP stmt is
5711 reached. */
5712 if (STMT_SLP_TYPE (stmt_info))
5714 if (!slp_scheduled)
5716 slp_scheduled = true;
5718 if (dump_enabled_p ())
5719 dump_printf_loc (MSG_NOTE, vect_location,
5720 "=== scheduling SLP instances ===");
5722 vect_schedule_slp (loop_vinfo, NULL);
5725 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
5726 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
5728 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5730 pattern_def_seq = NULL;
5731 gsi_next (&si);
5733 continue;
5737 /* -------- vectorize statement ------------ */
5738 if (dump_enabled_p ())
5739 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.");
5741 grouped_store = false;
5742 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
5743 if (is_store)
5745 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
5747 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
5748 interleaving chain was completed - free all the stores in
5749 the chain. */
5750 gsi_next (&si);
5751 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
5752 continue;
5754 else
5756 /* Free the attached stmt_vec_info and remove the stmt. */
5757 gimple store = gsi_stmt (si);
5758 free_stmt_vec_info (store);
5759 unlink_stmt_vdef (store);
5760 gsi_remove (&si, true);
5761 release_defs (store);
5762 continue;
5766 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5768 pattern_def_seq = NULL;
5769 gsi_next (&si);
5771 } /* stmts in BB */
5772 } /* BBs in loop */
5774 slpeel_make_loop_iterate_ntimes (loop, ratio);
5776 /* Reduce loop iterations by the vectorization factor. */
5777 scale_loop_profile (loop, RDIV (REG_BR_PROB_BASE , vectorization_factor),
5778 expected_iterations / vectorization_factor);
5779 loop->nb_iterations_upper_bound
5780 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
5781 FLOOR_DIV_EXPR);
5782 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5783 && loop->nb_iterations_upper_bound != double_int_zero)
5784 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
5785 if (loop->any_estimate)
5787 loop->nb_iterations_estimate
5788 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
5789 FLOOR_DIV_EXPR);
5790 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5791 && loop->nb_iterations_estimate != double_int_zero)
5792 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
5795 /* The memory tags and pointers in vectorized statements need to
5796 have their SSA forms updated. FIXME, why can't this be delayed
5797 until all the loops have been transformed? */
5798 update_ssa (TODO_update_ssa);
5800 if (dump_enabled_p ())
5801 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location, "LOOP VECTORIZED.");
5802 if (loop->inner && dump_enabled_p ())
5803 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
5804 "OUTER LOOP VECTORIZED.");