Use MODE_BASE_REG_CLASS in legitimize macros.
[official-gcc.git] / gcc / recog.c
blob652038a62f02e8965679bc7b69f1a7620dceaa0f
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
30 #include "recog.h"
31 #include "regs.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "real.h"
36 #include "toplev.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "reload.h"
41 #ifndef STACK_PUSH_CODE
42 #ifdef STACK_GROWS_DOWNWARD
43 #define STACK_PUSH_CODE PRE_DEC
44 #else
45 #define STACK_PUSH_CODE PRE_INC
46 #endif
47 #endif
49 #ifndef STACK_POP_CODE
50 #ifdef STACK_GROWS_DOWNWARD
51 #define STACK_POP_CODE POST_INC
52 #else
53 #define STACK_POP_CODE POST_DEC
54 #endif
55 #endif
57 static void validate_replace_rtx_1 PARAMS ((rtx *, rtx, rtx, rtx));
58 static rtx *find_single_use_1 PARAMS ((rtx, rtx *));
59 static void validate_replace_src_1 PARAMS ((rtx *, void *));
60 static rtx split_insn PARAMS ((rtx));
62 /* Nonzero means allow operands to be volatile.
63 This should be 0 if you are generating rtl, such as if you are calling
64 the functions in optabs.c and expmed.c (most of the time).
65 This should be 1 if all valid insns need to be recognized,
66 such as in regclass.c and final.c and reload.c.
68 init_recog and init_recog_no_volatile are responsible for setting this. */
70 int volatile_ok;
72 struct recog_data recog_data;
74 /* Contains a vector of operand_alternative structures for every operand.
75 Set up by preprocess_constraints. */
76 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
78 /* On return from `constrain_operands', indicate which alternative
79 was satisfied. */
81 int which_alternative;
83 /* Nonzero after end of reload pass.
84 Set to 1 or 0 by toplev.c.
85 Controls the significance of (SUBREG (MEM)). */
87 int reload_completed;
89 /* Initialize data used by the function `recog'.
90 This must be called once in the compilation of a function
91 before any insn recognition may be done in the function. */
93 void
94 init_recog_no_volatile ()
96 volatile_ok = 0;
99 void
100 init_recog ()
102 volatile_ok = 1;
105 /* Try recognizing the instruction INSN,
106 and return the code number that results.
107 Remember the code so that repeated calls do not
108 need to spend the time for actual rerecognition.
110 This function is the normal interface to instruction recognition.
111 The automatically-generated function `recog' is normally called
112 through this one. (The only exception is in combine.c.) */
115 recog_memoized_1 (insn)
116 rtx insn;
118 if (INSN_CODE (insn) < 0)
119 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
120 return INSN_CODE (insn);
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
127 check_asm_operands (x)
128 rtx x;
130 int noperands;
131 rtx *operands;
132 const char **constraints;
133 int i;
135 /* Post-reload, be more strict with things. */
136 if (reload_completed)
138 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
139 extract_insn (make_insn_raw (x));
140 constrain_operands (1);
141 return which_alternative >= 0;
144 noperands = asm_noperands (x);
145 if (noperands < 0)
146 return 0;
147 if (noperands == 0)
148 return 1;
150 operands = (rtx *) alloca (noperands * sizeof (rtx));
151 constraints = (const char **) alloca (noperands * sizeof (char *));
153 decode_asm_operands (x, operands, NULL, constraints, NULL);
155 for (i = 0; i < noperands; i++)
157 const char *c = constraints[i];
158 if (c[0] == '%')
159 c++;
160 if (ISDIGIT ((unsigned char)c[0]) && c[1] == '\0')
161 c = constraints[c[0] - '0'];
163 if (! asm_operand_ok (operands[i], c))
164 return 0;
167 return 1;
170 /* Static data for the next two routines. */
172 typedef struct change_t
174 rtx object;
175 int old_code;
176 rtx *loc;
177 rtx old;
178 } change_t;
180 static change_t *changes;
181 static int changes_allocated;
183 static int num_changes = 0;
185 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
186 at which NEW will be placed. If OBJECT is zero, no validation is done,
187 the change is simply made.
189 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
190 will be called with the address and mode as parameters. If OBJECT is
191 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
192 the change in place.
194 IN_GROUP is non-zero if this is part of a group of changes that must be
195 performed as a group. In that case, the changes will be stored. The
196 function `apply_change_group' will validate and apply the changes.
198 If IN_GROUP is zero, this is a single change. Try to recognize the insn
199 or validate the memory reference with the change applied. If the result
200 is not valid for the machine, suppress the change and return zero.
201 Otherwise, perform the change and return 1. */
204 validate_change (object, loc, new, in_group)
205 rtx object;
206 rtx *loc;
207 rtx new;
208 int in_group;
210 rtx old = *loc;
212 if (old == new || rtx_equal_p (old, new))
213 return 1;
215 if (in_group == 0 && num_changes != 0)
216 abort ();
218 *loc = new;
220 /* Save the information describing this change. */
221 if (num_changes >= changes_allocated)
223 if (changes_allocated == 0)
224 /* This value allows for repeated substitutions inside complex
225 indexed addresses, or changes in up to 5 insns. */
226 changes_allocated = MAX_RECOG_OPERANDS * 5;
227 else
228 changes_allocated *= 2;
230 changes =
231 (change_t*) xrealloc (changes,
232 sizeof (change_t) * changes_allocated);
235 changes[num_changes].object = object;
236 changes[num_changes].loc = loc;
237 changes[num_changes].old = old;
239 if (object && GET_CODE (object) != MEM)
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
242 case invalid. */
243 changes[num_changes].old_code = INSN_CODE (object);
244 INSN_CODE (object) = -1;
247 num_changes++;
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
252 if (in_group)
253 return 1;
254 else
255 return apply_change_group ();
258 /* This subroutine of apply_change_group verifies whether the changes to INSN
259 were valid; i.e. whether INSN can still be recognized. */
262 insn_invalid_p (insn)
263 rtx insn;
265 rtx pat = PATTERN (insn);
266 int num_clobbers = 0;
267 /* If we are before reload and the pattern is a SET, see if we can add
268 clobbers. */
269 int icode = recog (pat, insn,
270 (GET_CODE (pat) == SET
271 && ! reload_completed && ! reload_in_progress)
272 ? &num_clobbers : 0);
273 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
276 /* If this is an asm and the operand aren't legal, then fail. Likewise if
277 this is not an asm and the insn wasn't recognized. */
278 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
279 || (!is_asm && icode < 0))
280 return 1;
282 /* If we have to add CLOBBERs, fail if we have to add ones that reference
283 hard registers since our callers can't know if they are live or not.
284 Otherwise, add them. */
285 if (num_clobbers > 0)
287 rtx newpat;
289 if (added_clobbers_hard_reg_p (icode))
290 return 1;
292 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
293 XVECEXP (newpat, 0, 0) = pat;
294 add_clobbers (newpat, icode);
295 PATTERN (insn) = pat = newpat;
298 /* After reload, verify that all constraints are satisfied. */
299 if (reload_completed)
301 extract_insn (insn);
303 if (! constrain_operands (1))
304 return 1;
307 INSN_CODE (insn) = icode;
308 return 0;
311 /* Apply a group of changes previously issued with `validate_change'.
312 Return 1 if all changes are valid, zero otherwise. */
315 apply_change_group ()
317 int i;
318 rtx last_validated = NULL_RTX;
320 /* The changes have been applied and all INSN_CODEs have been reset to force
321 rerecognition.
323 The changes are valid if we aren't given an object, or if we are
324 given a MEM and it still is a valid address, or if this is in insn
325 and it is recognized. In the latter case, if reload has completed,
326 we also require that the operands meet the constraints for
327 the insn. */
329 for (i = 0; i < num_changes; i++)
331 rtx object = changes[i].object;
333 /* if there is no object to test or if it is the same as the one we
334 already tested, ignore it. */
335 if (object == 0 || object == last_validated)
336 continue;
338 if (GET_CODE (object) == MEM)
340 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
341 break;
343 else if (insn_invalid_p (object))
345 rtx pat = PATTERN (object);
347 /* Perhaps we couldn't recognize the insn because there were
348 extra CLOBBERs at the end. If so, try to re-recognize
349 without the last CLOBBER (later iterations will cause each of
350 them to be eliminated, in turn). But don't do this if we
351 have an ASM_OPERAND. */
352 if (GET_CODE (pat) == PARALLEL
353 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
354 && asm_noperands (PATTERN (object)) < 0)
356 rtx newpat;
358 if (XVECLEN (pat, 0) == 2)
359 newpat = XVECEXP (pat, 0, 0);
360 else
362 int j;
364 newpat
365 = gen_rtx_PARALLEL (VOIDmode,
366 rtvec_alloc (XVECLEN (pat, 0) - 1));
367 for (j = 0; j < XVECLEN (newpat, 0); j++)
368 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
371 /* Add a new change to this group to replace the pattern
372 with this new pattern. Then consider this change
373 as having succeeded. The change we added will
374 cause the entire call to fail if things remain invalid.
376 Note that this can lose if a later change than the one
377 we are processing specified &XVECEXP (PATTERN (object), 0, X)
378 but this shouldn't occur. */
380 validate_change (object, &PATTERN (object), newpat, 1);
381 continue;
383 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
384 /* If this insn is a CLOBBER or USE, it is always valid, but is
385 never recognized. */
386 continue;
387 else
388 break;
390 last_validated = object;
393 if (i == num_changes)
395 num_changes = 0;
396 return 1;
398 else
400 cancel_changes (0);
401 return 0;
405 /* Return the number of changes so far in the current group. */
408 num_validated_changes ()
410 return num_changes;
413 /* Retract the changes numbered NUM and up. */
415 void
416 cancel_changes (num)
417 int num;
419 int i;
421 /* Back out all the changes. Do this in the opposite order in which
422 they were made. */
423 for (i = num_changes - 1; i >= num; i--)
425 *changes[i].loc = changes[i].old;
426 if (changes[i].object && GET_CODE (changes[i].object) != MEM)
427 INSN_CODE (changes[i].object) = changes[i].old_code;
429 num_changes = num;
432 /* Replace every occurrence of FROM in X with TO. Mark each change with
433 validate_change passing OBJECT. */
435 static void
436 validate_replace_rtx_1 (loc, from, to, object)
437 rtx *loc;
438 rtx from, to, object;
440 int i, j;
441 const char *fmt;
442 rtx x = *loc;
443 enum rtx_code code;
444 enum machine_mode op0_mode = VOIDmode;
445 int prev_changes = num_changes;
446 rtx new;
448 if (!x)
449 return;
451 code = GET_CODE (x);
452 fmt = GET_RTX_FORMAT (code);
453 if (fmt[0] == 'e')
454 op0_mode = GET_MODE (XEXP (x, 0));
456 /* X matches FROM if it is the same rtx or they are both referring to the
457 same register in the same mode. Avoid calling rtx_equal_p unless the
458 operands look similar. */
460 if (x == from
461 || (GET_CODE (x) == REG && GET_CODE (from) == REG
462 && GET_MODE (x) == GET_MODE (from)
463 && REGNO (x) == REGNO (from))
464 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
465 && rtx_equal_p (x, from)))
467 validate_change (object, loc, to, 1);
468 return;
471 /* Call ourself recursively to perform the replacements. */
473 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
475 if (fmt[i] == 'e')
476 validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
477 else if (fmt[i] == 'E')
478 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
479 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
482 /* If we didn't substitute, there is nothing more to do. */
483 if (num_changes == prev_changes)
484 return;
486 /* Allow substituted expression to have different mode. This is used by
487 regmove to change mode of pseudo register. */
488 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
489 op0_mode = GET_MODE (XEXP (x, 0));
491 /* Do changes needed to keep rtx consistent. Don't do any other
492 simplifications, as it is not our job. */
494 if ((GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
495 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
497 validate_change (object, loc,
498 gen_rtx_fmt_ee (GET_RTX_CLASS (code) == 'c' ? code
499 : swap_condition (code),
500 GET_MODE (x), XEXP (x, 1),
501 XEXP (x, 0)), 1);
502 x = *loc;
503 code = GET_CODE (x);
506 switch (code)
508 case PLUS:
509 /* If we have a PLUS whose second operand is now a CONST_INT, use
510 plus_constant to try to simplify it.
511 ??? We may want later to remove this, once simplification is
512 separated from this function. */
513 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
514 validate_change (object, loc,
515 simplify_gen_binary
516 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
517 break;
518 case MINUS:
519 if (GET_CODE (XEXP (x, 1)) == CONST_INT
520 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
521 validate_change (object, loc,
522 simplify_gen_binary
523 (PLUS, GET_MODE (x), XEXP (x, 0),
524 simplify_gen_unary (NEG,
525 GET_MODE (x), XEXP (x, 1),
526 GET_MODE (x))), 1);
527 break;
528 case ZERO_EXTEND:
529 case SIGN_EXTEND:
530 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
532 new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
533 op0_mode);
534 /* If any of the above failed, substitute in something that
535 we know won't be recognized. */
536 if (!new)
537 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
538 validate_change (object, loc, new, 1);
540 break;
541 case SUBREG:
542 /* All subregs possible to simplify should be simplified. */
543 new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
544 SUBREG_BYTE (x));
546 /* Subregs of VOIDmode operands are incorrect. */
547 if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
548 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
549 if (new)
550 validate_change (object, loc, new, 1);
551 break;
552 case ZERO_EXTRACT:
553 case SIGN_EXTRACT:
554 /* If we are replacing a register with memory, try to change the memory
555 to be the mode required for memory in extract operations (this isn't
556 likely to be an insertion operation; if it was, nothing bad will
557 happen, we might just fail in some cases). */
559 if (GET_CODE (XEXP (x, 0)) == MEM
560 && GET_CODE (XEXP (x, 1)) == CONST_INT
561 && GET_CODE (XEXP (x, 2)) == CONST_INT
562 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
563 && !MEM_VOLATILE_P (XEXP (x, 0)))
565 enum machine_mode wanted_mode = VOIDmode;
566 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
567 int pos = INTVAL (XEXP (x, 2));
569 if (GET_CODE (x) == ZERO_EXTRACT)
571 enum machine_mode new_mode
572 = mode_for_extraction (EP_extzv, 1);
573 if (new_mode != MAX_MACHINE_MODE)
574 wanted_mode = new_mode;
576 else if (GET_CODE (x) == SIGN_EXTRACT)
578 enum machine_mode new_mode
579 = mode_for_extraction (EP_extv, 1);
580 if (new_mode != MAX_MACHINE_MODE)
581 wanted_mode = new_mode;
584 /* If we have a narrower mode, we can do something. */
585 if (wanted_mode != VOIDmode
586 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
588 int offset = pos / BITS_PER_UNIT;
589 rtx newmem;
591 /* If the bytes and bits are counted differently, we
592 must adjust the offset. */
593 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
594 offset =
595 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
596 offset);
598 pos %= GET_MODE_BITSIZE (wanted_mode);
600 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
602 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
603 validate_change (object, &XEXP (x, 0), newmem, 1);
607 break;
609 default:
610 break;
614 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
615 with TO. After all changes have been made, validate by seeing
616 if INSN is still valid. */
619 validate_replace_rtx_subexp (from, to, insn, loc)
620 rtx from, to, insn, *loc;
622 validate_replace_rtx_1 (loc, from, to, insn);
623 return apply_change_group ();
626 /* Try replacing every occurrence of FROM in INSN with TO. After all
627 changes have been made, validate by seeing if INSN is still valid. */
630 validate_replace_rtx (from, to, insn)
631 rtx from, to, insn;
633 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
634 return apply_change_group ();
637 /* Try replacing every occurrence of FROM in INSN with TO. */
639 void
640 validate_replace_rtx_group (from, to, insn)
641 rtx from, to, insn;
643 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
646 /* Function called by note_uses to replace used subexpressions. */
647 struct validate_replace_src_data
649 rtx from; /* Old RTX */
650 rtx to; /* New RTX */
651 rtx insn; /* Insn in which substitution is occurring. */
654 static void
655 validate_replace_src_1 (x, data)
656 rtx *x;
657 void *data;
659 struct validate_replace_src_data *d
660 = (struct validate_replace_src_data *) data;
662 validate_replace_rtx_1 (x, d->from, d->to, d->insn);
665 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
666 SET_DESTs. After all changes have been made, validate by seeing if
667 INSN is still valid. */
670 validate_replace_src (from, to, insn)
671 rtx from, to, insn;
673 struct validate_replace_src_data d;
675 d.from = from;
676 d.to = to;
677 d.insn = insn;
678 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
679 return apply_change_group ();
682 #ifdef HAVE_cc0
683 /* Return 1 if the insn using CC0 set by INSN does not contain
684 any ordered tests applied to the condition codes.
685 EQ and NE tests do not count. */
688 next_insn_tests_no_inequality (insn)
689 rtx insn;
691 rtx next = next_cc0_user (insn);
693 /* If there is no next insn, we have to take the conservative choice. */
694 if (next == 0)
695 return 0;
697 return ((GET_CODE (next) == JUMP_INSN
698 || GET_CODE (next) == INSN
699 || GET_CODE (next) == CALL_INSN)
700 && ! inequality_comparisons_p (PATTERN (next)));
703 #if 0 /* This is useless since the insn that sets the cc's
704 must be followed immediately by the use of them. */
705 /* Return 1 if the CC value set up by INSN is not used. */
708 next_insns_test_no_inequality (insn)
709 rtx insn;
711 rtx next = NEXT_INSN (insn);
713 for (; next != 0; next = NEXT_INSN (next))
715 if (GET_CODE (next) == CODE_LABEL
716 || GET_CODE (next) == BARRIER)
717 return 1;
718 if (GET_CODE (next) == NOTE)
719 continue;
720 if (inequality_comparisons_p (PATTERN (next)))
721 return 0;
722 if (sets_cc0_p (PATTERN (next)) == 1)
723 return 1;
724 if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
725 return 1;
727 return 1;
729 #endif
730 #endif
732 /* This is used by find_single_use to locate an rtx that contains exactly one
733 use of DEST, which is typically either a REG or CC0. It returns a
734 pointer to the innermost rtx expression containing DEST. Appearances of
735 DEST that are being used to totally replace it are not counted. */
737 static rtx *
738 find_single_use_1 (dest, loc)
739 rtx dest;
740 rtx *loc;
742 rtx x = *loc;
743 enum rtx_code code = GET_CODE (x);
744 rtx *result = 0;
745 rtx *this_result;
746 int i;
747 const char *fmt;
749 switch (code)
751 case CONST_INT:
752 case CONST:
753 case LABEL_REF:
754 case SYMBOL_REF:
755 case CONST_DOUBLE:
756 case CLOBBER:
757 return 0;
759 case SET:
760 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
761 of a REG that occupies all of the REG, the insn uses DEST if
762 it is mentioned in the destination or the source. Otherwise, we
763 need just check the source. */
764 if (GET_CODE (SET_DEST (x)) != CC0
765 && GET_CODE (SET_DEST (x)) != PC
766 && GET_CODE (SET_DEST (x)) != REG
767 && ! (GET_CODE (SET_DEST (x)) == SUBREG
768 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
769 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
770 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
771 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
772 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
773 break;
775 return find_single_use_1 (dest, &SET_SRC (x));
777 case MEM:
778 case SUBREG:
779 return find_single_use_1 (dest, &XEXP (x, 0));
781 default:
782 break;
785 /* If it wasn't one of the common cases above, check each expression and
786 vector of this code. Look for a unique usage of DEST. */
788 fmt = GET_RTX_FORMAT (code);
789 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
791 if (fmt[i] == 'e')
793 if (dest == XEXP (x, i)
794 || (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
795 && REGNO (dest) == REGNO (XEXP (x, i))))
796 this_result = loc;
797 else
798 this_result = find_single_use_1 (dest, &XEXP (x, i));
800 if (result == 0)
801 result = this_result;
802 else if (this_result)
803 /* Duplicate usage. */
804 return 0;
806 else if (fmt[i] == 'E')
808 int j;
810 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
812 if (XVECEXP (x, i, j) == dest
813 || (GET_CODE (dest) == REG
814 && GET_CODE (XVECEXP (x, i, j)) == REG
815 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
816 this_result = loc;
817 else
818 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
820 if (result == 0)
821 result = this_result;
822 else if (this_result)
823 return 0;
828 return result;
831 /* See if DEST, produced in INSN, is used only a single time in the
832 sequel. If so, return a pointer to the innermost rtx expression in which
833 it is used.
835 If PLOC is non-zero, *PLOC is set to the insn containing the single use.
837 This routine will return usually zero either before flow is called (because
838 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
839 note can't be trusted).
841 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
842 care about REG_DEAD notes or LOG_LINKS.
844 Otherwise, we find the single use by finding an insn that has a
845 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
846 only referenced once in that insn, we know that it must be the first
847 and last insn referencing DEST. */
849 rtx *
850 find_single_use (dest, insn, ploc)
851 rtx dest;
852 rtx insn;
853 rtx *ploc;
855 rtx next;
856 rtx *result;
857 rtx link;
859 #ifdef HAVE_cc0
860 if (dest == cc0_rtx)
862 next = NEXT_INSN (insn);
863 if (next == 0
864 || (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
865 return 0;
867 result = find_single_use_1 (dest, &PATTERN (next));
868 if (result && ploc)
869 *ploc = next;
870 return result;
872 #endif
874 if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
875 return 0;
877 for (next = next_nonnote_insn (insn);
878 next != 0 && GET_CODE (next) != CODE_LABEL;
879 next = next_nonnote_insn (next))
880 if (INSN_P (next) && dead_or_set_p (next, dest))
882 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
883 if (XEXP (link, 0) == insn)
884 break;
886 if (link)
888 result = find_single_use_1 (dest, &PATTERN (next));
889 if (ploc)
890 *ploc = next;
891 return result;
895 return 0;
898 /* Return 1 if OP is a valid general operand for machine mode MODE.
899 This is either a register reference, a memory reference,
900 or a constant. In the case of a memory reference, the address
901 is checked for general validity for the target machine.
903 Register and memory references must have mode MODE in order to be valid,
904 but some constants have no machine mode and are valid for any mode.
906 If MODE is VOIDmode, OP is checked for validity for whatever mode
907 it has.
909 The main use of this function is as a predicate in match_operand
910 expressions in the machine description.
912 For an explanation of this function's behavior for registers of
913 class NO_REGS, see the comment for `register_operand'. */
916 general_operand (op, mode)
917 rtx op;
918 enum machine_mode mode;
920 enum rtx_code code = GET_CODE (op);
922 if (mode == VOIDmode)
923 mode = GET_MODE (op);
925 /* Don't accept CONST_INT or anything similar
926 if the caller wants something floating. */
927 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
928 && GET_MODE_CLASS (mode) != MODE_INT
929 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
930 return 0;
932 if (GET_CODE (op) == CONST_INT
933 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
934 return 0;
936 if (CONSTANT_P (op))
937 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
938 || mode == VOIDmode)
939 #ifdef LEGITIMATE_PIC_OPERAND_P
940 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
941 #endif
942 && LEGITIMATE_CONSTANT_P (op));
944 /* Except for certain constants with VOIDmode, already checked for,
945 OP's mode must match MODE if MODE specifies a mode. */
947 if (GET_MODE (op) != mode)
948 return 0;
950 if (code == SUBREG)
952 #ifdef INSN_SCHEDULING
953 /* On machines that have insn scheduling, we want all memory
954 reference to be explicit, so outlaw paradoxical SUBREGs. */
955 if (GET_CODE (SUBREG_REG (op)) == MEM
956 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
957 return 0;
958 #endif
959 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
960 may result in incorrect reference. We should simplify all valid
961 subregs of MEM anyway. But allow this after reload because we
962 might be called from cleanup_subreg_operands.
964 ??? This is a kludge. */
965 if (!reload_completed && SUBREG_BYTE (op) != 0
966 && GET_CODE (SUBREG_REG (op)) == MEM)
967 return 0;
969 op = SUBREG_REG (op);
970 code = GET_CODE (op);
973 if (code == REG)
974 /* A register whose class is NO_REGS is not a general operand. */
975 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
976 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
978 if (code == MEM)
980 rtx y = XEXP (op, 0);
982 if (! volatile_ok && MEM_VOLATILE_P (op))
983 return 0;
985 if (GET_CODE (y) == ADDRESSOF)
986 return 1;
988 /* Use the mem's mode, since it will be reloaded thus. */
989 mode = GET_MODE (op);
990 GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
993 /* Pretend this is an operand for now; we'll run force_operand
994 on its replacement in fixup_var_refs_1. */
995 if (code == ADDRESSOF)
996 return 1;
998 return 0;
1000 win:
1001 return 1;
1004 /* Return 1 if OP is a valid memory address for a memory reference
1005 of mode MODE.
1007 The main use of this function is as a predicate in match_operand
1008 expressions in the machine description. */
1011 address_operand (op, mode)
1012 rtx op;
1013 enum machine_mode mode;
1015 return memory_address_p (mode, op);
1018 /* Return 1 if OP is a register reference of mode MODE.
1019 If MODE is VOIDmode, accept a register in any mode.
1021 The main use of this function is as a predicate in match_operand
1022 expressions in the machine description.
1024 As a special exception, registers whose class is NO_REGS are
1025 not accepted by `register_operand'. The reason for this change
1026 is to allow the representation of special architecture artifacts
1027 (such as a condition code register) without extending the rtl
1028 definitions. Since registers of class NO_REGS cannot be used
1029 as registers in any case where register classes are examined,
1030 it is most consistent to keep this function from accepting them. */
1033 register_operand (op, mode)
1034 rtx op;
1035 enum machine_mode mode;
1037 if (GET_MODE (op) != mode && mode != VOIDmode)
1038 return 0;
1040 if (GET_CODE (op) == SUBREG)
1042 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1043 because it is guaranteed to be reloaded into one.
1044 Just make sure the MEM is valid in itself.
1045 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1046 but currently it does result from (SUBREG (REG)...) where the
1047 reg went on the stack.) */
1048 if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
1049 return general_operand (op, mode);
1051 #ifdef CLASS_CANNOT_CHANGE_MODE
1052 if (GET_CODE (SUBREG_REG (op)) == REG
1053 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER
1054 && (TEST_HARD_REG_BIT
1055 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1056 REGNO (SUBREG_REG (op))))
1057 && CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (SUBREG_REG (op)))
1058 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) != MODE_COMPLEX_INT
1059 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) != MODE_COMPLEX_FLOAT)
1060 return 0;
1061 #endif
1063 op = SUBREG_REG (op);
1066 /* If we have an ADDRESSOF, consider it valid since it will be
1067 converted into something that will not be a MEM. */
1068 if (GET_CODE (op) == ADDRESSOF)
1069 return 1;
1071 /* We don't consider registers whose class is NO_REGS
1072 to be a register operand. */
1073 return (GET_CODE (op) == REG
1074 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1075 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1078 /* Return 1 for a register in Pmode; ignore the tested mode. */
1081 pmode_register_operand (op, mode)
1082 rtx op;
1083 enum machine_mode mode ATTRIBUTE_UNUSED;
1085 return register_operand (op, Pmode);
1088 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1089 or a hard register. */
1092 scratch_operand (op, mode)
1093 rtx op;
1094 enum machine_mode mode;
1096 if (GET_MODE (op) != mode && mode != VOIDmode)
1097 return 0;
1099 return (GET_CODE (op) == SCRATCH
1100 || (GET_CODE (op) == REG
1101 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1104 /* Return 1 if OP is a valid immediate operand for mode MODE.
1106 The main use of this function is as a predicate in match_operand
1107 expressions in the machine description. */
1110 immediate_operand (op, mode)
1111 rtx op;
1112 enum machine_mode mode;
1114 /* Don't accept CONST_INT or anything similar
1115 if the caller wants something floating. */
1116 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1117 && GET_MODE_CLASS (mode) != MODE_INT
1118 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1119 return 0;
1121 if (GET_CODE (op) == CONST_INT
1122 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1123 return 0;
1125 /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
1126 result in 0/1. It seems a safe assumption that this is
1127 in range for everyone. */
1128 if (GET_CODE (op) == CONSTANT_P_RTX)
1129 return 1;
1131 return (CONSTANT_P (op)
1132 && (GET_MODE (op) == mode || mode == VOIDmode
1133 || GET_MODE (op) == VOIDmode)
1134 #ifdef LEGITIMATE_PIC_OPERAND_P
1135 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1136 #endif
1137 && LEGITIMATE_CONSTANT_P (op));
1140 /* Returns 1 if OP is an operand that is a CONST_INT. */
1143 const_int_operand (op, mode)
1144 rtx op;
1145 enum machine_mode mode;
1147 if (GET_CODE (op) != CONST_INT)
1148 return 0;
1150 if (mode != VOIDmode
1151 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1152 return 0;
1154 return 1;
1157 /* Returns 1 if OP is an operand that is a constant integer or constant
1158 floating-point number. */
1161 const_double_operand (op, mode)
1162 rtx op;
1163 enum machine_mode mode;
1165 /* Don't accept CONST_INT or anything similar
1166 if the caller wants something floating. */
1167 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1168 && GET_MODE_CLASS (mode) != MODE_INT
1169 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1170 return 0;
1172 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1173 && (mode == VOIDmode || GET_MODE (op) == mode
1174 || GET_MODE (op) == VOIDmode));
1177 /* Return 1 if OP is a general operand that is not an immediate operand. */
1180 nonimmediate_operand (op, mode)
1181 rtx op;
1182 enum machine_mode mode;
1184 return (general_operand (op, mode) && ! CONSTANT_P (op));
1187 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1190 nonmemory_operand (op, mode)
1191 rtx op;
1192 enum machine_mode mode;
1194 if (CONSTANT_P (op))
1196 /* Don't accept CONST_INT or anything similar
1197 if the caller wants something floating. */
1198 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1199 && GET_MODE_CLASS (mode) != MODE_INT
1200 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1201 return 0;
1203 if (GET_CODE (op) == CONST_INT
1204 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1205 return 0;
1207 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1208 || mode == VOIDmode)
1209 #ifdef LEGITIMATE_PIC_OPERAND_P
1210 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1211 #endif
1212 && LEGITIMATE_CONSTANT_P (op));
1215 if (GET_MODE (op) != mode && mode != VOIDmode)
1216 return 0;
1218 if (GET_CODE (op) == SUBREG)
1220 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1221 because it is guaranteed to be reloaded into one.
1222 Just make sure the MEM is valid in itself.
1223 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1224 but currently it does result from (SUBREG (REG)...) where the
1225 reg went on the stack.) */
1226 if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
1227 return general_operand (op, mode);
1228 op = SUBREG_REG (op);
1231 /* We don't consider registers whose class is NO_REGS
1232 to be a register operand. */
1233 return (GET_CODE (op) == REG
1234 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1235 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1238 /* Return 1 if OP is a valid operand that stands for pushing a
1239 value of mode MODE onto the stack.
1241 The main use of this function is as a predicate in match_operand
1242 expressions in the machine description. */
1245 push_operand (op, mode)
1246 rtx op;
1247 enum machine_mode mode;
1249 unsigned int rounded_size = GET_MODE_SIZE (mode);
1251 #ifdef PUSH_ROUNDING
1252 rounded_size = PUSH_ROUNDING (rounded_size);
1253 #endif
1255 if (GET_CODE (op) != MEM)
1256 return 0;
1258 if (mode != VOIDmode && GET_MODE (op) != mode)
1259 return 0;
1261 op = XEXP (op, 0);
1263 if (rounded_size == GET_MODE_SIZE (mode))
1265 if (GET_CODE (op) != STACK_PUSH_CODE)
1266 return 0;
1268 else
1270 if (GET_CODE (op) != PRE_MODIFY
1271 || GET_CODE (XEXP (op, 1)) != PLUS
1272 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1273 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1274 #ifdef STACK_GROWS_DOWNWARD
1275 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1276 #else
1277 || INTVAL (XEXP (XEXP (op, 1), 1)) != rounded_size
1278 #endif
1280 return 0;
1283 return XEXP (op, 0) == stack_pointer_rtx;
1286 /* Return 1 if OP is a valid operand that stands for popping a
1287 value of mode MODE off the stack.
1289 The main use of this function is as a predicate in match_operand
1290 expressions in the machine description. */
1293 pop_operand (op, mode)
1294 rtx op;
1295 enum machine_mode mode;
1297 if (GET_CODE (op) != MEM)
1298 return 0;
1300 if (mode != VOIDmode && GET_MODE (op) != mode)
1301 return 0;
1303 op = XEXP (op, 0);
1305 if (GET_CODE (op) != STACK_POP_CODE)
1306 return 0;
1308 return XEXP (op, 0) == stack_pointer_rtx;
1311 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1314 memory_address_p (mode, addr)
1315 enum machine_mode mode ATTRIBUTE_UNUSED;
1316 rtx addr;
1318 if (GET_CODE (addr) == ADDRESSOF)
1319 return 1;
1321 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1322 return 0;
1324 win:
1325 return 1;
1328 /* Return 1 if OP is a valid memory reference with mode MODE,
1329 including a valid address.
1331 The main use of this function is as a predicate in match_operand
1332 expressions in the machine description. */
1335 memory_operand (op, mode)
1336 rtx op;
1337 enum machine_mode mode;
1339 rtx inner;
1341 if (! reload_completed)
1342 /* Note that no SUBREG is a memory operand before end of reload pass,
1343 because (SUBREG (MEM...)) forces reloading into a register. */
1344 return GET_CODE (op) == MEM && general_operand (op, mode);
1346 if (mode != VOIDmode && GET_MODE (op) != mode)
1347 return 0;
1349 inner = op;
1350 if (GET_CODE (inner) == SUBREG)
1351 inner = SUBREG_REG (inner);
1353 return (GET_CODE (inner) == MEM && general_operand (op, mode));
1356 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1357 that is, a memory reference whose address is a general_operand. */
1360 indirect_operand (op, mode)
1361 rtx op;
1362 enum machine_mode mode;
1364 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1365 if (! reload_completed
1366 && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
1368 int offset = SUBREG_BYTE (op);
1369 rtx inner = SUBREG_REG (op);
1371 if (mode != VOIDmode && GET_MODE (op) != mode)
1372 return 0;
1374 /* The only way that we can have a general_operand as the resulting
1375 address is if OFFSET is zero and the address already is an operand
1376 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1377 operand. */
1379 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1380 || (GET_CODE (XEXP (inner, 0)) == PLUS
1381 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1382 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1383 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1386 return (GET_CODE (op) == MEM
1387 && memory_operand (op, mode)
1388 && general_operand (XEXP (op, 0), Pmode));
1391 /* Return 1 if this is a comparison operator. This allows the use of
1392 MATCH_OPERATOR to recognize all the branch insns. */
1395 comparison_operator (op, mode)
1396 rtx op;
1397 enum machine_mode mode;
1399 return ((mode == VOIDmode || GET_MODE (op) == mode)
1400 && GET_RTX_CLASS (GET_CODE (op)) == '<');
1403 /* If BODY is an insn body that uses ASM_OPERANDS,
1404 return the number of operands (both input and output) in the insn.
1405 Otherwise return -1. */
1408 asm_noperands (body)
1409 rtx body;
1411 switch (GET_CODE (body))
1413 case ASM_OPERANDS:
1414 /* No output operands: return number of input operands. */
1415 return ASM_OPERANDS_INPUT_LENGTH (body);
1416 case SET:
1417 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1418 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1419 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1420 else
1421 return -1;
1422 case PARALLEL:
1423 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1424 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1426 /* Multiple output operands, or 1 output plus some clobbers:
1427 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1428 int i;
1429 int n_sets;
1431 /* Count backwards through CLOBBERs to determine number of SETs. */
1432 for (i = XVECLEN (body, 0); i > 0; i--)
1434 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1435 break;
1436 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1437 return -1;
1440 /* N_SETS is now number of output operands. */
1441 n_sets = i;
1443 /* Verify that all the SETs we have
1444 came from a single original asm_operands insn
1445 (so that invalid combinations are blocked). */
1446 for (i = 0; i < n_sets; i++)
1448 rtx elt = XVECEXP (body, 0, i);
1449 if (GET_CODE (elt) != SET)
1450 return -1;
1451 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1452 return -1;
1453 /* If these ASM_OPERANDS rtx's came from different original insns
1454 then they aren't allowed together. */
1455 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1456 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1457 return -1;
1459 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1460 + n_sets);
1462 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1464 /* 0 outputs, but some clobbers:
1465 body is [(asm_operands ...) (clobber (reg ...))...]. */
1466 int i;
1468 /* Make sure all the other parallel things really are clobbers. */
1469 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1470 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1471 return -1;
1473 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1475 else
1476 return -1;
1477 default:
1478 return -1;
1482 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1483 copy its operands (both input and output) into the vector OPERANDS,
1484 the locations of the operands within the insn into the vector OPERAND_LOCS,
1485 and the constraints for the operands into CONSTRAINTS.
1486 Write the modes of the operands into MODES.
1487 Return the assembler-template.
1489 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1490 we don't store that info. */
1492 const char *
1493 decode_asm_operands (body, operands, operand_locs, constraints, modes)
1494 rtx body;
1495 rtx *operands;
1496 rtx **operand_locs;
1497 const char **constraints;
1498 enum machine_mode *modes;
1500 int i;
1501 int noperands;
1502 const char *template = 0;
1504 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1506 rtx asmop = SET_SRC (body);
1507 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1509 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1511 for (i = 1; i < noperands; i++)
1513 if (operand_locs)
1514 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1515 if (operands)
1516 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1517 if (constraints)
1518 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1519 if (modes)
1520 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1523 /* The output is in the SET.
1524 Its constraint is in the ASM_OPERANDS itself. */
1525 if (operands)
1526 operands[0] = SET_DEST (body);
1527 if (operand_locs)
1528 operand_locs[0] = &SET_DEST (body);
1529 if (constraints)
1530 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1531 if (modes)
1532 modes[0] = GET_MODE (SET_DEST (body));
1533 template = ASM_OPERANDS_TEMPLATE (asmop);
1535 else if (GET_CODE (body) == ASM_OPERANDS)
1537 rtx asmop = body;
1538 /* No output operands: BODY is (asm_operands ....). */
1540 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1542 /* The input operands are found in the 1st element vector. */
1543 /* Constraints for inputs are in the 2nd element vector. */
1544 for (i = 0; i < noperands; i++)
1546 if (operand_locs)
1547 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1548 if (operands)
1549 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1550 if (constraints)
1551 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1552 if (modes)
1553 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1555 template = ASM_OPERANDS_TEMPLATE (asmop);
1557 else if (GET_CODE (body) == PARALLEL
1558 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1559 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1561 rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
1562 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1563 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1564 int nout = 0; /* Does not include CLOBBERs. */
1566 /* At least one output, plus some CLOBBERs. */
1568 /* The outputs are in the SETs.
1569 Their constraints are in the ASM_OPERANDS itself. */
1570 for (i = 0; i < nparallel; i++)
1572 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1573 break; /* Past last SET */
1575 if (operands)
1576 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1577 if (operand_locs)
1578 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1579 if (constraints)
1580 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1581 if (modes)
1582 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1583 nout++;
1586 for (i = 0; i < nin; i++)
1588 if (operand_locs)
1589 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1590 if (operands)
1591 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1592 if (constraints)
1593 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1594 if (modes)
1595 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1598 template = ASM_OPERANDS_TEMPLATE (asmop);
1600 else if (GET_CODE (body) == PARALLEL
1601 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1603 /* No outputs, but some CLOBBERs. */
1605 rtx asmop = XVECEXP (body, 0, 0);
1606 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1608 for (i = 0; i < nin; i++)
1610 if (operand_locs)
1611 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1612 if (operands)
1613 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1614 if (constraints)
1615 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1616 if (modes)
1617 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1620 template = ASM_OPERANDS_TEMPLATE (asmop);
1623 return template;
1626 /* Check if an asm_operand matches it's constraints.
1627 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1630 asm_operand_ok (op, constraint)
1631 rtx op;
1632 const char *constraint;
1634 int result = 0;
1636 /* Use constrain_operands after reload. */
1637 if (reload_completed)
1638 abort ();
1640 while (*constraint)
1642 char c = *constraint++;
1643 switch (c)
1645 case '=':
1646 case '+':
1647 case '*':
1648 case '%':
1649 case '?':
1650 case '!':
1651 case '#':
1652 case '&':
1653 case ',':
1654 break;
1656 case '0': case '1': case '2': case '3': case '4':
1657 case '5': case '6': case '7': case '8': case '9':
1658 /* For best results, our caller should have given us the
1659 proper matching constraint, but we can't actually fail
1660 the check if they didn't. Indicate that results are
1661 inconclusive. */
1662 while (ISDIGIT (*constraint))
1663 constraint++;
1664 result = -1;
1665 break;
1667 case 'p':
1668 if (address_operand (op, VOIDmode))
1669 return 1;
1670 break;
1672 case 'm':
1673 case 'V': /* non-offsettable */
1674 if (memory_operand (op, VOIDmode))
1675 return 1;
1676 break;
1678 case 'o': /* offsettable */
1679 if (offsettable_nonstrict_memref_p (op))
1680 return 1;
1681 break;
1683 case '<':
1684 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1685 excepting those that expand_call created. Further, on some
1686 machines which do not have generalized auto inc/dec, an inc/dec
1687 is not a memory_operand.
1689 Match any memory and hope things are resolved after reload. */
1691 if (GET_CODE (op) == MEM
1692 && (1
1693 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1694 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1695 return 1;
1696 break;
1698 case '>':
1699 if (GET_CODE (op) == MEM
1700 && (1
1701 || GET_CODE (XEXP (op, 0)) == PRE_INC
1702 || GET_CODE (XEXP (op, 0)) == POST_INC))
1703 return 1;
1704 break;
1706 case 'E':
1707 #ifndef REAL_ARITHMETIC
1708 /* Match any floating double constant, but only if
1709 we can examine the bits of it reliably. */
1710 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1711 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1712 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1713 break;
1714 #endif
1715 /* FALLTHRU */
1717 case 'F':
1718 if (GET_CODE (op) == CONST_DOUBLE)
1719 return 1;
1720 break;
1722 case 'G':
1723 if (GET_CODE (op) == CONST_DOUBLE
1724 && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'G'))
1725 return 1;
1726 break;
1727 case 'H':
1728 if (GET_CODE (op) == CONST_DOUBLE
1729 && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'H'))
1730 return 1;
1731 break;
1733 case 's':
1734 if (GET_CODE (op) == CONST_INT
1735 || (GET_CODE (op) == CONST_DOUBLE
1736 && GET_MODE (op) == VOIDmode))
1737 break;
1738 /* FALLTHRU */
1740 case 'i':
1741 if (CONSTANT_P (op)
1742 #ifdef LEGITIMATE_PIC_OPERAND_P
1743 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1744 #endif
1746 return 1;
1747 break;
1749 case 'n':
1750 if (GET_CODE (op) == CONST_INT
1751 || (GET_CODE (op) == CONST_DOUBLE
1752 && GET_MODE (op) == VOIDmode))
1753 return 1;
1754 break;
1756 case 'I':
1757 if (GET_CODE (op) == CONST_INT
1758 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'I'))
1759 return 1;
1760 break;
1761 case 'J':
1762 if (GET_CODE (op) == CONST_INT
1763 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'J'))
1764 return 1;
1765 break;
1766 case 'K':
1767 if (GET_CODE (op) == CONST_INT
1768 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'K'))
1769 return 1;
1770 break;
1771 case 'L':
1772 if (GET_CODE (op) == CONST_INT
1773 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'))
1774 return 1;
1775 break;
1776 case 'M':
1777 if (GET_CODE (op) == CONST_INT
1778 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'M'))
1779 return 1;
1780 break;
1781 case 'N':
1782 if (GET_CODE (op) == CONST_INT
1783 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'N'))
1784 return 1;
1785 break;
1786 case 'O':
1787 if (GET_CODE (op) == CONST_INT
1788 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'))
1789 return 1;
1790 break;
1791 case 'P':
1792 if (GET_CODE (op) == CONST_INT
1793 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'P'))
1794 return 1;
1795 break;
1797 case 'X':
1798 return 1;
1800 case 'g':
1801 if (general_operand (op, VOIDmode))
1802 return 1;
1803 break;
1805 default:
1806 /* For all other letters, we first check for a register class,
1807 otherwise it is an EXTRA_CONSTRAINT. */
1808 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1810 case 'r':
1811 if (GET_MODE (op) == BLKmode)
1812 break;
1813 if (register_operand (op, VOIDmode))
1814 return 1;
1816 #ifdef EXTRA_CONSTRAINT
1817 if (EXTRA_CONSTRAINT (op, c))
1818 return 1;
1819 #endif
1820 break;
1824 return result;
1827 /* Given an rtx *P, if it is a sum containing an integer constant term,
1828 return the location (type rtx *) of the pointer to that constant term.
1829 Otherwise, return a null pointer. */
1831 rtx *
1832 find_constant_term_loc (p)
1833 rtx *p;
1835 rtx *tem;
1836 enum rtx_code code = GET_CODE (*p);
1838 /* If *P IS such a constant term, P is its location. */
1840 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1841 || code == CONST)
1842 return p;
1844 /* Otherwise, if not a sum, it has no constant term. */
1846 if (GET_CODE (*p) != PLUS)
1847 return 0;
1849 /* If one of the summands is constant, return its location. */
1851 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1852 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1853 return p;
1855 /* Otherwise, check each summand for containing a constant term. */
1857 if (XEXP (*p, 0) != 0)
1859 tem = find_constant_term_loc (&XEXP (*p, 0));
1860 if (tem != 0)
1861 return tem;
1864 if (XEXP (*p, 1) != 0)
1866 tem = find_constant_term_loc (&XEXP (*p, 1));
1867 if (tem != 0)
1868 return tem;
1871 return 0;
1874 /* Return 1 if OP is a memory reference
1875 whose address contains no side effects
1876 and remains valid after the addition
1877 of a positive integer less than the
1878 size of the object being referenced.
1880 We assume that the original address is valid and do not check it.
1882 This uses strict_memory_address_p as a subroutine, so
1883 don't use it before reload. */
1886 offsettable_memref_p (op)
1887 rtx op;
1889 return ((GET_CODE (op) == MEM)
1890 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1893 /* Similar, but don't require a strictly valid mem ref:
1894 consider pseudo-regs valid as index or base regs. */
1897 offsettable_nonstrict_memref_p (op)
1898 rtx op;
1900 return ((GET_CODE (op) == MEM)
1901 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1904 /* Return 1 if Y is a memory address which contains no side effects
1905 and would remain valid after the addition of a positive integer
1906 less than the size of that mode.
1908 We assume that the original address is valid and do not check it.
1909 We do check that it is valid for narrower modes.
1911 If STRICTP is nonzero, we require a strictly valid address,
1912 for the sake of use in reload.c. */
1915 offsettable_address_p (strictp, mode, y)
1916 int strictp;
1917 enum machine_mode mode;
1918 rtx y;
1920 enum rtx_code ycode = GET_CODE (y);
1921 rtx z;
1922 rtx y1 = y;
1923 rtx *y2;
1924 int (*addressp) PARAMS ((enum machine_mode, rtx)) =
1925 (strictp ? strict_memory_address_p : memory_address_p);
1926 unsigned int mode_sz = GET_MODE_SIZE (mode);
1928 if (CONSTANT_ADDRESS_P (y))
1929 return 1;
1931 /* Adjusting an offsettable address involves changing to a narrower mode.
1932 Make sure that's OK. */
1934 if (mode_dependent_address_p (y))
1935 return 0;
1937 /* ??? How much offset does an offsettable BLKmode reference need?
1938 Clearly that depends on the situation in which it's being used.
1939 However, the current situation in which we test 0xffffffff is
1940 less than ideal. Caveat user. */
1941 if (mode_sz == 0)
1942 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1944 /* If the expression contains a constant term,
1945 see if it remains valid when max possible offset is added. */
1947 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1949 int good;
1951 y1 = *y2;
1952 *y2 = plus_constant (*y2, mode_sz - 1);
1953 /* Use QImode because an odd displacement may be automatically invalid
1954 for any wider mode. But it should be valid for a single byte. */
1955 good = (*addressp) (QImode, y);
1957 /* In any case, restore old contents of memory. */
1958 *y2 = y1;
1959 return good;
1962 if (GET_RTX_CLASS (ycode) == 'a')
1963 return 0;
1965 /* The offset added here is chosen as the maximum offset that
1966 any instruction could need to add when operating on something
1967 of the specified mode. We assume that if Y and Y+c are
1968 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1969 go inside a LO_SUM here, so we do so as well. */
1970 if (GET_CODE (y) == LO_SUM)
1971 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1972 plus_constant (XEXP (y, 1), mode_sz - 1));
1973 else
1974 z = plus_constant (y, mode_sz - 1);
1976 /* Use QImode because an odd displacement may be automatically invalid
1977 for any wider mode. But it should be valid for a single byte. */
1978 return (*addressp) (QImode, z);
1981 /* Return 1 if ADDR is an address-expression whose effect depends
1982 on the mode of the memory reference it is used in.
1984 Autoincrement addressing is a typical example of mode-dependence
1985 because the amount of the increment depends on the mode. */
1988 mode_dependent_address_p (addr)
1989 rtx addr ATTRIBUTE_UNUSED; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
1991 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1992 return 0;
1993 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1994 win: ATTRIBUTE_UNUSED_LABEL
1995 return 1;
1998 /* Return 1 if OP is a general operand
1999 other than a memory ref with a mode dependent address. */
2002 mode_independent_operand (op, mode)
2003 enum machine_mode mode;
2004 rtx op;
2006 rtx addr;
2008 if (! general_operand (op, mode))
2009 return 0;
2011 if (GET_CODE (op) != MEM)
2012 return 1;
2014 addr = XEXP (op, 0);
2015 GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
2016 return 1;
2017 /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2018 lose: ATTRIBUTE_UNUSED_LABEL
2019 return 0;
2022 /* Like extract_insn, but save insn extracted and don't extract again, when
2023 called again for the same insn expecting that recog_data still contain the
2024 valid information. This is used primary by gen_attr infrastructure that
2025 often does extract insn again and again. */
2026 void
2027 extract_insn_cached (insn)
2028 rtx insn;
2030 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2031 return;
2032 extract_insn (insn);
2033 recog_data.insn = insn;
2035 /* Do cached extract_insn, constrain_operand and complain about failures.
2036 Used by insn_attrtab. */
2037 void
2038 extract_constrain_insn_cached (insn)
2039 rtx insn;
2041 extract_insn_cached (insn);
2042 if (which_alternative == -1
2043 && !constrain_operands (reload_completed))
2044 fatal_insn_not_found (insn);
2046 /* Do cached constrain_operand and complain about failures. */
2048 constrain_operands_cached (strict)
2049 int strict;
2051 if (which_alternative == -1)
2052 return constrain_operands (strict);
2053 else
2054 return 1;
2057 /* Analyze INSN and fill in recog_data. */
2059 void
2060 extract_insn (insn)
2061 rtx insn;
2063 int i;
2064 int icode;
2065 int noperands;
2066 rtx body = PATTERN (insn);
2068 recog_data.insn = NULL;
2069 recog_data.n_operands = 0;
2070 recog_data.n_alternatives = 0;
2071 recog_data.n_dups = 0;
2072 which_alternative = -1;
2074 switch (GET_CODE (body))
2076 case USE:
2077 case CLOBBER:
2078 case ASM_INPUT:
2079 case ADDR_VEC:
2080 case ADDR_DIFF_VEC:
2081 return;
2083 case SET:
2084 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2085 goto asm_insn;
2086 else
2087 goto normal_insn;
2088 case PARALLEL:
2089 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2090 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2091 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2092 goto asm_insn;
2093 else
2094 goto normal_insn;
2095 case ASM_OPERANDS:
2096 asm_insn:
2097 recog_data.n_operands = noperands = asm_noperands (body);
2098 if (noperands >= 0)
2100 /* This insn is an `asm' with operands. */
2102 /* expand_asm_operands makes sure there aren't too many operands. */
2103 if (noperands > MAX_RECOG_OPERANDS)
2104 abort ();
2106 /* Now get the operand values and constraints out of the insn. */
2107 decode_asm_operands (body, recog_data.operand,
2108 recog_data.operand_loc,
2109 recog_data.constraints,
2110 recog_data.operand_mode);
2111 if (noperands > 0)
2113 const char *p = recog_data.constraints[0];
2114 recog_data.n_alternatives = 1;
2115 while (*p)
2116 recog_data.n_alternatives += (*p++ == ',');
2118 break;
2120 fatal_insn_not_found (insn);
2122 default:
2123 normal_insn:
2124 /* Ordinary insn: recognize it, get the operands via insn_extract
2125 and get the constraints. */
2127 icode = recog_memoized (insn);
2128 if (icode < 0)
2129 fatal_insn_not_found (insn);
2131 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2132 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2133 recog_data.n_dups = insn_data[icode].n_dups;
2135 insn_extract (insn);
2137 for (i = 0; i < noperands; i++)
2139 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2140 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2141 /* VOIDmode match_operands gets mode from their real operand. */
2142 if (recog_data.operand_mode[i] == VOIDmode)
2143 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2146 for (i = 0; i < noperands; i++)
2147 recog_data.operand_type[i]
2148 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2149 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2150 : OP_IN);
2152 if (recog_data.n_alternatives > MAX_RECOG_ALTERNATIVES)
2153 abort ();
2156 /* After calling extract_insn, you can use this function to extract some
2157 information from the constraint strings into a more usable form.
2158 The collected data is stored in recog_op_alt. */
2159 void
2160 preprocess_constraints ()
2162 int i;
2164 memset (recog_op_alt, 0, sizeof recog_op_alt);
2165 for (i = 0; i < recog_data.n_operands; i++)
2167 int j;
2168 struct operand_alternative *op_alt;
2169 const char *p = recog_data.constraints[i];
2171 op_alt = recog_op_alt[i];
2173 for (j = 0; j < recog_data.n_alternatives; j++)
2175 op_alt[j].class = NO_REGS;
2176 op_alt[j].constraint = p;
2177 op_alt[j].matches = -1;
2178 op_alt[j].matched = -1;
2180 if (*p == '\0' || *p == ',')
2182 op_alt[j].anything_ok = 1;
2183 continue;
2186 for (;;)
2188 char c = *p++;
2189 if (c == '#')
2191 c = *p++;
2192 while (c != ',' && c != '\0');
2193 if (c == ',' || c == '\0')
2194 break;
2196 switch (c)
2198 case '=': case '+': case '*': case '%':
2199 case 'E': case 'F': case 'G': case 'H':
2200 case 's': case 'i': case 'n':
2201 case 'I': case 'J': case 'K': case 'L':
2202 case 'M': case 'N': case 'O': case 'P':
2203 /* These don't say anything we care about. */
2204 break;
2206 case '?':
2207 op_alt[j].reject += 6;
2208 break;
2209 case '!':
2210 op_alt[j].reject += 600;
2211 break;
2212 case '&':
2213 op_alt[j].earlyclobber = 1;
2214 break;
2216 case '0': case '1': case '2': case '3': case '4':
2217 case '5': case '6': case '7': case '8': case '9':
2219 char *end;
2220 op_alt[j].matches = strtoul (p - 1, &end, 10);
2221 recog_op_alt[op_alt[j].matches][j].matched = i;
2222 p = end;
2224 break;
2226 case 'm':
2227 op_alt[j].memory_ok = 1;
2228 break;
2229 case '<':
2230 op_alt[j].decmem_ok = 1;
2231 break;
2232 case '>':
2233 op_alt[j].incmem_ok = 1;
2234 break;
2235 case 'V':
2236 op_alt[j].nonoffmem_ok = 1;
2237 break;
2238 case 'o':
2239 op_alt[j].offmem_ok = 1;
2240 break;
2241 case 'X':
2242 op_alt[j].anything_ok = 1;
2243 break;
2245 case 'p':
2246 op_alt[j].is_address = 1;
2247 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
2248 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2249 break;
2251 case 'g': case 'r':
2252 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) GENERAL_REGS];
2253 break;
2255 default:
2256 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
2257 break;
2264 /* Check the operands of an insn against the insn's operand constraints
2265 and return 1 if they are valid.
2266 The information about the insn's operands, constraints, operand modes
2267 etc. is obtained from the global variables set up by extract_insn.
2269 WHICH_ALTERNATIVE is set to a number which indicates which
2270 alternative of constraints was matched: 0 for the first alternative,
2271 1 for the next, etc.
2273 In addition, when two operands are match
2274 and it happens that the output operand is (reg) while the
2275 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2276 make the output operand look like the input.
2277 This is because the output operand is the one the template will print.
2279 This is used in final, just before printing the assembler code and by
2280 the routines that determine an insn's attribute.
2282 If STRICT is a positive non-zero value, it means that we have been
2283 called after reload has been completed. In that case, we must
2284 do all checks strictly. If it is zero, it means that we have been called
2285 before reload has completed. In that case, we first try to see if we can
2286 find an alternative that matches strictly. If not, we try again, this
2287 time assuming that reload will fix up the insn. This provides a "best
2288 guess" for the alternative and is used to compute attributes of insns prior
2289 to reload. A negative value of STRICT is used for this internal call. */
2291 struct funny_match
2293 int this, other;
2297 constrain_operands (strict)
2298 int strict;
2300 const char *constraints[MAX_RECOG_OPERANDS];
2301 int matching_operands[MAX_RECOG_OPERANDS];
2302 int earlyclobber[MAX_RECOG_OPERANDS];
2303 int c;
2305 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2306 int funny_match_index;
2308 which_alternative = 0;
2309 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2310 return 1;
2312 for (c = 0; c < recog_data.n_operands; c++)
2314 constraints[c] = recog_data.constraints[c];
2315 matching_operands[c] = -1;
2320 int opno;
2321 int lose = 0;
2322 funny_match_index = 0;
2324 for (opno = 0; opno < recog_data.n_operands; opno++)
2326 rtx op = recog_data.operand[opno];
2327 enum machine_mode mode = GET_MODE (op);
2328 const char *p = constraints[opno];
2329 int offset = 0;
2330 int win = 0;
2331 int val;
2333 earlyclobber[opno] = 0;
2335 /* A unary operator may be accepted by the predicate, but it
2336 is irrelevant for matching constraints. */
2337 if (GET_RTX_CLASS (GET_CODE (op)) == '1')
2338 op = XEXP (op, 0);
2340 if (GET_CODE (op) == SUBREG)
2342 if (GET_CODE (SUBREG_REG (op)) == REG
2343 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2344 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2345 GET_MODE (SUBREG_REG (op)),
2346 SUBREG_BYTE (op),
2347 GET_MODE (op));
2348 op = SUBREG_REG (op);
2351 /* An empty constraint or empty alternative
2352 allows anything which matched the pattern. */
2353 if (*p == 0 || *p == ',')
2354 win = 1;
2356 while (*p && (c = *p++) != ',')
2357 switch (c)
2359 case '?': case '!': case '*': case '%':
2360 case '=': case '+':
2361 break;
2363 case '#':
2364 /* Ignore rest of this alternative as far as
2365 constraint checking is concerned. */
2366 while (*p && *p != ',')
2367 p++;
2368 break;
2370 case '&':
2371 earlyclobber[opno] = 1;
2372 break;
2374 case '0': case '1': case '2': case '3': case '4':
2375 case '5': case '6': case '7': case '8': case '9':
2377 /* This operand must be the same as a previous one.
2378 This kind of constraint is used for instructions such
2379 as add when they take only two operands.
2381 Note that the lower-numbered operand is passed first.
2383 If we are not testing strictly, assume that this
2384 constraint will be satisfied. */
2386 char *end;
2387 int match;
2389 match = strtoul (p - 1, &end, 10);
2390 p = end;
2392 if (strict < 0)
2393 val = 1;
2394 else
2396 rtx op1 = recog_data.operand[match];
2397 rtx op2 = recog_data.operand[opno];
2399 /* A unary operator may be accepted by the predicate,
2400 but it is irrelevant for matching constraints. */
2401 if (GET_RTX_CLASS (GET_CODE (op1)) == '1')
2402 op1 = XEXP (op1, 0);
2403 if (GET_RTX_CLASS (GET_CODE (op2)) == '1')
2404 op2 = XEXP (op2, 0);
2406 val = operands_match_p (op1, op2);
2409 matching_operands[opno] = match;
2410 matching_operands[match] = opno;
2412 if (val != 0)
2413 win = 1;
2415 /* If output is *x and input is *--x, arrange later
2416 to change the output to *--x as well, since the
2417 output op is the one that will be printed. */
2418 if (val == 2 && strict > 0)
2420 funny_match[funny_match_index].this = opno;
2421 funny_match[funny_match_index++].other = match;
2424 break;
2426 case 'p':
2427 /* p is used for address_operands. When we are called by
2428 gen_reload, no one will have checked that the address is
2429 strictly valid, i.e., that all pseudos requiring hard regs
2430 have gotten them. */
2431 if (strict <= 0
2432 || (strict_memory_address_p (recog_data.operand_mode[opno],
2433 op)))
2434 win = 1;
2435 break;
2437 /* No need to check general_operand again;
2438 it was done in insn-recog.c. */
2439 case 'g':
2440 /* Anything goes unless it is a REG and really has a hard reg
2441 but the hard reg is not in the class GENERAL_REGS. */
2442 if (strict < 0
2443 || GENERAL_REGS == ALL_REGS
2444 || GET_CODE (op) != REG
2445 || (reload_in_progress
2446 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2447 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2448 win = 1;
2449 break;
2451 case 'X':
2452 /* This is used for a MATCH_SCRATCH in the cases when
2453 we don't actually need anything. So anything goes
2454 any time. */
2455 win = 1;
2456 break;
2458 case 'm':
2459 if (GET_CODE (op) == MEM
2460 /* Before reload, accept what reload can turn into mem. */
2461 || (strict < 0 && CONSTANT_P (op))
2462 /* During reload, accept a pseudo */
2463 || (reload_in_progress && GET_CODE (op) == REG
2464 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2465 win = 1;
2466 break;
2468 case '<':
2469 if (GET_CODE (op) == MEM
2470 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2471 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2472 win = 1;
2473 break;
2475 case '>':
2476 if (GET_CODE (op) == MEM
2477 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2478 || GET_CODE (XEXP (op, 0)) == POST_INC))
2479 win = 1;
2480 break;
2482 case 'E':
2483 #ifndef REAL_ARITHMETIC
2484 /* Match any CONST_DOUBLE, but only if
2485 we can examine the bits of it reliably. */
2486 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
2487 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
2488 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
2489 break;
2490 #endif
2491 if (GET_CODE (op) == CONST_DOUBLE)
2492 win = 1;
2493 break;
2495 case 'F':
2496 if (GET_CODE (op) == CONST_DOUBLE)
2497 win = 1;
2498 break;
2500 case 'G':
2501 case 'H':
2502 if (GET_CODE (op) == CONST_DOUBLE
2503 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
2504 win = 1;
2505 break;
2507 case 's':
2508 if (GET_CODE (op) == CONST_INT
2509 || (GET_CODE (op) == CONST_DOUBLE
2510 && GET_MODE (op) == VOIDmode))
2511 break;
2512 case 'i':
2513 if (CONSTANT_P (op))
2514 win = 1;
2515 break;
2517 case 'n':
2518 if (GET_CODE (op) == CONST_INT
2519 || (GET_CODE (op) == CONST_DOUBLE
2520 && GET_MODE (op) == VOIDmode))
2521 win = 1;
2522 break;
2524 case 'I':
2525 case 'J':
2526 case 'K':
2527 case 'L':
2528 case 'M':
2529 case 'N':
2530 case 'O':
2531 case 'P':
2532 if (GET_CODE (op) == CONST_INT
2533 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
2534 win = 1;
2535 break;
2537 case 'V':
2538 if (GET_CODE (op) == MEM
2539 && ((strict > 0 && ! offsettable_memref_p (op))
2540 || (strict < 0
2541 && !(CONSTANT_P (op) || GET_CODE (op) == MEM))
2542 || (reload_in_progress
2543 && !(GET_CODE (op) == REG
2544 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2545 win = 1;
2546 break;
2548 case 'o':
2549 if ((strict > 0 && offsettable_memref_p (op))
2550 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2551 /* Before reload, accept what reload can handle. */
2552 || (strict < 0
2553 && (CONSTANT_P (op) || GET_CODE (op) == MEM))
2554 /* During reload, accept a pseudo */
2555 || (reload_in_progress && GET_CODE (op) == REG
2556 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2557 win = 1;
2558 break;
2560 default:
2562 enum reg_class class;
2564 class = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (c));
2565 if (class != NO_REGS)
2567 if (strict < 0
2568 || (strict == 0
2569 && GET_CODE (op) == REG
2570 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2571 || (strict == 0 && GET_CODE (op) == SCRATCH)
2572 || (GET_CODE (op) == REG
2573 && reg_fits_class_p (op, class, offset, mode)))
2574 win = 1;
2576 #ifdef EXTRA_CONSTRAINT
2577 else if (EXTRA_CONSTRAINT (op, c))
2578 win = 1;
2579 #endif
2580 break;
2584 constraints[opno] = p;
2585 /* If this operand did not win somehow,
2586 this alternative loses. */
2587 if (! win)
2588 lose = 1;
2590 /* This alternative won; the operands are ok.
2591 Change whichever operands this alternative says to change. */
2592 if (! lose)
2594 int opno, eopno;
2596 /* See if any earlyclobber operand conflicts with some other
2597 operand. */
2599 if (strict > 0)
2600 for (eopno = 0; eopno < recog_data.n_operands; eopno++)
2601 /* Ignore earlyclobber operands now in memory,
2602 because we would often report failure when we have
2603 two memory operands, one of which was formerly a REG. */
2604 if (earlyclobber[eopno]
2605 && GET_CODE (recog_data.operand[eopno]) == REG)
2606 for (opno = 0; opno < recog_data.n_operands; opno++)
2607 if ((GET_CODE (recog_data.operand[opno]) == MEM
2608 || recog_data.operand_type[opno] != OP_OUT)
2609 && opno != eopno
2610 /* Ignore things like match_operator operands. */
2611 && *recog_data.constraints[opno] != 0
2612 && ! (matching_operands[opno] == eopno
2613 && operands_match_p (recog_data.operand[opno],
2614 recog_data.operand[eopno]))
2615 && ! safe_from_earlyclobber (recog_data.operand[opno],
2616 recog_data.operand[eopno]))
2617 lose = 1;
2619 if (! lose)
2621 while (--funny_match_index >= 0)
2623 recog_data.operand[funny_match[funny_match_index].other]
2624 = recog_data.operand[funny_match[funny_match_index].this];
2627 return 1;
2631 which_alternative++;
2633 while (which_alternative < recog_data.n_alternatives);
2635 which_alternative = -1;
2636 /* If we are about to reject this, but we are not to test strictly,
2637 try a very loose test. Only return failure if it fails also. */
2638 if (strict == 0)
2639 return constrain_operands (-1);
2640 else
2641 return 0;
2644 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2645 is a hard reg in class CLASS when its regno is offset by OFFSET
2646 and changed to mode MODE.
2647 If REG occupies multiple hard regs, all of them must be in CLASS. */
2650 reg_fits_class_p (operand, class, offset, mode)
2651 rtx operand;
2652 enum reg_class class;
2653 int offset;
2654 enum machine_mode mode;
2656 int regno = REGNO (operand);
2657 if (regno < FIRST_PSEUDO_REGISTER
2658 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2659 regno + offset))
2661 int sr;
2662 regno += offset;
2663 for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
2664 sr > 0; sr--)
2665 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2666 regno + sr))
2667 break;
2668 return sr == 0;
2671 return 0;
2674 /* Split single instruction. Helper function for split_all_insns.
2675 Return last insn in the sequence if successful, or NULL if unsuccessful. */
2676 static rtx
2677 split_insn (insn)
2678 rtx insn;
2680 rtx set;
2681 if (!INSN_P (insn))
2683 /* Don't split no-op move insns. These should silently
2684 disappear later in final. Splitting such insns would
2685 break the code that handles REG_NO_CONFLICT blocks. */
2687 else if ((set = single_set (insn)) != NULL && set_noop_p (set))
2689 /* Nops get in the way while scheduling, so delete them
2690 now if register allocation has already been done. It
2691 is too risky to try to do this before register
2692 allocation, and there are unlikely to be very many
2693 nops then anyways. */
2694 if (reload_completed)
2696 PUT_CODE (insn, NOTE);
2697 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2698 NOTE_SOURCE_FILE (insn) = 0;
2701 else
2703 /* Split insns here to get max fine-grain parallelism. */
2704 rtx first = PREV_INSN (insn);
2705 rtx last = try_split (PATTERN (insn), insn, 1);
2707 if (last != insn)
2709 /* try_split returns the NOTE that INSN became. */
2710 PUT_CODE (insn, NOTE);
2711 NOTE_SOURCE_FILE (insn) = 0;
2712 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2714 /* ??? Coddle to md files that generate subregs in post-
2715 reload splitters instead of computing the proper
2716 hard register. */
2717 if (reload_completed && first != last)
2719 first = NEXT_INSN (first);
2720 while (1)
2722 if (INSN_P (first))
2723 cleanup_subreg_operands (first);
2724 if (first == last)
2725 break;
2726 first = NEXT_INSN (first);
2729 return last;
2732 return NULL_RTX;
2734 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2736 void
2737 split_all_insns (upd_life)
2738 int upd_life;
2740 sbitmap blocks;
2741 int changed;
2742 int i;
2744 blocks = sbitmap_alloc (n_basic_blocks);
2745 sbitmap_zero (blocks);
2746 changed = 0;
2748 for (i = n_basic_blocks - 1; i >= 0; --i)
2750 basic_block bb = BASIC_BLOCK (i);
2751 rtx insn, next;
2753 for (insn = bb->head; insn ; insn = next)
2755 rtx last;
2757 /* Can't use `next_real_insn' because that might go across
2758 CODE_LABELS and short-out basic blocks. */
2759 next = NEXT_INSN (insn);
2760 last = split_insn (insn);
2761 if (last)
2763 /* The split sequence may include barrier, but the
2764 BB boundary we are interested in will be set to previous
2765 one. */
2767 while (GET_CODE (last) == BARRIER)
2768 last = PREV_INSN (last);
2769 SET_BIT (blocks, i);
2770 changed = 1;
2771 insn = last;
2774 if (insn == bb->end)
2775 break;
2778 if (insn == NULL)
2779 abort ();
2782 if (changed)
2784 find_many_sub_basic_blocks (blocks);
2787 if (changed && upd_life)
2789 count_or_remove_death_notes (blocks, 1);
2790 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
2792 #ifdef ENABLE_CHECKING
2793 verify_flow_info ();
2794 #endif
2796 sbitmap_free (blocks);
2799 /* Same as split_all_insns, but do not expect CFG to be available.
2800 Used by machine depedent reorg passes. */
2802 void
2803 split_all_insns_noflow ()
2805 rtx next, insn;
2807 for (insn = get_insns (); insn; insn = next)
2809 next = NEXT_INSN (insn);
2810 split_insn (insn);
2812 return;
2815 #ifdef HAVE_peephole2
2816 struct peep2_insn_data
2818 rtx insn;
2819 regset live_before;
2822 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2823 static int peep2_current;
2825 /* A non-insn marker indicating the last insn of the block.
2826 The live_before regset for this element is correct, indicating
2827 global_live_at_end for the block. */
2828 #define PEEP2_EOB pc_rtx
2830 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2831 does not exist. Used by the recognizer to find the next insn to match
2832 in a multi-insn pattern. */
2835 peep2_next_insn (n)
2836 int n;
2838 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2839 abort ();
2841 n += peep2_current;
2842 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2843 n -= MAX_INSNS_PER_PEEP2 + 1;
2845 if (peep2_insn_data[n].insn == PEEP2_EOB)
2846 return NULL_RTX;
2847 return peep2_insn_data[n].insn;
2850 /* Return true if REGNO is dead before the Nth non-note insn
2851 after `current'. */
2854 peep2_regno_dead_p (ofs, regno)
2855 int ofs;
2856 int regno;
2858 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2859 abort ();
2861 ofs += peep2_current;
2862 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2863 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2865 if (peep2_insn_data[ofs].insn == NULL_RTX)
2866 abort ();
2868 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2871 /* Similarly for a REG. */
2874 peep2_reg_dead_p (ofs, reg)
2875 int ofs;
2876 rtx reg;
2878 int regno, n;
2880 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2881 abort ();
2883 ofs += peep2_current;
2884 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2885 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2887 if (peep2_insn_data[ofs].insn == NULL_RTX)
2888 abort ();
2890 regno = REGNO (reg);
2891 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2892 while (--n >= 0)
2893 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2894 return 0;
2895 return 1;
2898 /* Try to find a hard register of mode MODE, matching the register class in
2899 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2900 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2901 in which case the only condition is that the register must be available
2902 before CURRENT_INSN.
2903 Registers that already have bits set in REG_SET will not be considered.
2905 If an appropriate register is available, it will be returned and the
2906 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2907 returned. */
2910 peep2_find_free_register (from, to, class_str, mode, reg_set)
2911 int from, to;
2912 const char *class_str;
2913 enum machine_mode mode;
2914 HARD_REG_SET *reg_set;
2916 static int search_ofs;
2917 enum reg_class class;
2918 HARD_REG_SET live;
2919 int i;
2921 if (from >= MAX_INSNS_PER_PEEP2 + 1 || to >= MAX_INSNS_PER_PEEP2 + 1)
2922 abort ();
2924 from += peep2_current;
2925 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2926 from -= MAX_INSNS_PER_PEEP2 + 1;
2927 to += peep2_current;
2928 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2929 to -= MAX_INSNS_PER_PEEP2 + 1;
2931 if (peep2_insn_data[from].insn == NULL_RTX)
2932 abort ();
2933 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
2935 while (from != to)
2937 HARD_REG_SET this_live;
2939 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
2940 from = 0;
2941 if (peep2_insn_data[from].insn == NULL_RTX)
2942 abort ();
2943 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
2944 IOR_HARD_REG_SET (live, this_live);
2947 class = (class_str[0] == 'r' ? GENERAL_REGS
2948 : REG_CLASS_FROM_LETTER (class_str[0]));
2950 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2952 int raw_regno, regno, success, j;
2954 /* Distribute the free registers as much as possible. */
2955 raw_regno = search_ofs + i;
2956 if (raw_regno >= FIRST_PSEUDO_REGISTER)
2957 raw_regno -= FIRST_PSEUDO_REGISTER;
2958 #ifdef REG_ALLOC_ORDER
2959 regno = reg_alloc_order[raw_regno];
2960 #else
2961 regno = raw_regno;
2962 #endif
2964 /* Don't allocate fixed registers. */
2965 if (fixed_regs[regno])
2966 continue;
2967 /* Make sure the register is of the right class. */
2968 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno))
2969 continue;
2970 /* And can support the mode we need. */
2971 if (! HARD_REGNO_MODE_OK (regno, mode))
2972 continue;
2973 /* And that we don't create an extra save/restore. */
2974 if (! call_used_regs[regno] && ! regs_ever_live[regno])
2975 continue;
2976 /* And we don't clobber traceback for noreturn functions. */
2977 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
2978 && (! reload_completed || frame_pointer_needed))
2979 continue;
2981 success = 1;
2982 for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
2984 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
2985 || TEST_HARD_REG_BIT (live, regno + j))
2987 success = 0;
2988 break;
2991 if (success)
2993 for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
2994 SET_HARD_REG_BIT (*reg_set, regno + j);
2996 /* Start the next search with the next register. */
2997 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
2998 raw_regno = 0;
2999 search_ofs = raw_regno;
3001 return gen_rtx_REG (mode, regno);
3005 search_ofs = 0;
3006 return NULL_RTX;
3009 /* Perform the peephole2 optimization pass. */
3011 void
3012 peephole2_optimize (dump_file)
3013 FILE *dump_file ATTRIBUTE_UNUSED;
3015 regset_head rs_heads[MAX_INSNS_PER_PEEP2 + 2];
3016 rtx insn, prev;
3017 regset live;
3018 int i, b;
3019 #ifdef HAVE_conditional_execution
3020 sbitmap blocks;
3021 int changed;
3022 #endif
3024 /* Initialize the regsets we're going to use. */
3025 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3026 peep2_insn_data[i].live_before = INITIALIZE_REG_SET (rs_heads[i]);
3027 live = INITIALIZE_REG_SET (rs_heads[i]);
3029 #ifdef HAVE_conditional_execution
3030 blocks = sbitmap_alloc (n_basic_blocks);
3031 sbitmap_zero (blocks);
3032 changed = 0;
3033 #else
3034 count_or_remove_death_notes (NULL, 1);
3035 #endif
3037 for (b = n_basic_blocks - 1; b >= 0; --b)
3039 basic_block bb = BASIC_BLOCK (b);
3040 struct propagate_block_info *pbi;
3042 /* Indicate that all slots except the last holds invalid data. */
3043 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3044 peep2_insn_data[i].insn = NULL_RTX;
3046 /* Indicate that the last slot contains live_after data. */
3047 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3048 peep2_current = MAX_INSNS_PER_PEEP2;
3050 /* Start up propagation. */
3051 COPY_REG_SET (live, bb->global_live_at_end);
3052 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3054 #ifdef HAVE_conditional_execution
3055 pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
3056 #else
3057 pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
3058 #endif
3060 for (insn = bb->end; ; insn = prev)
3062 prev = PREV_INSN (insn);
3063 if (INSN_P (insn))
3065 rtx try;
3066 int match_len;
3068 /* Record this insn. */
3069 if (--peep2_current < 0)
3070 peep2_current = MAX_INSNS_PER_PEEP2;
3071 peep2_insn_data[peep2_current].insn = insn;
3072 propagate_one_insn (pbi, insn);
3073 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3075 /* Match the peephole. */
3076 try = peephole2_insns (PATTERN (insn), insn, &match_len);
3077 if (try != NULL)
3079 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3080 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3081 cfg-related call notes. */
3082 for (i = 0; i <= match_len; ++i)
3084 int j, k;
3085 rtx old_insn, new_insn, note;
3087 j = i + peep2_current;
3088 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3089 j -= MAX_INSNS_PER_PEEP2 + 1;
3090 old_insn = peep2_insn_data[j].insn;
3091 if (GET_CODE (old_insn) != CALL_INSN)
3092 continue;
3094 new_insn = NULL_RTX;
3095 if (GET_CODE (try) == SEQUENCE)
3096 for (k = XVECLEN (try, 0) - 1; k >= 0; k--)
3098 rtx x = XVECEXP (try, 0, k);
3099 if (GET_CODE (x) == CALL_INSN)
3101 new_insn = x;
3102 break;
3105 else if (GET_CODE (try) == CALL_INSN)
3106 new_insn = try;
3107 if (! new_insn)
3108 abort ();
3110 CALL_INSN_FUNCTION_USAGE (new_insn)
3111 = CALL_INSN_FUNCTION_USAGE (old_insn);
3113 for (note = REG_NOTES (old_insn);
3114 note;
3115 note = XEXP (note, 1))
3116 switch (REG_NOTE_KIND (note))
3118 case REG_EH_REGION:
3119 case REG_NORETURN:
3120 case REG_SETJMP:
3121 case REG_ALWAYS_RETURN:
3122 REG_NOTES (new_insn)
3123 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3124 XEXP (note, 0),
3125 REG_NOTES (new_insn));
3126 default:
3127 /* Discard all other reg notes. */
3128 break;
3131 /* Croak if there is another call in the sequence. */
3132 while (++i <= match_len)
3134 j = i + peep2_current;
3135 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3136 j -= MAX_INSNS_PER_PEEP2 + 1;
3137 old_insn = peep2_insn_data[j].insn;
3138 if (GET_CODE (old_insn) == CALL_INSN)
3139 abort ();
3141 break;
3144 i = match_len + peep2_current;
3145 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3146 i -= MAX_INSNS_PER_PEEP2 + 1;
3148 /* Replace the old sequence with the new. */
3149 try = emit_insn_after (try, peep2_insn_data[i].insn);
3150 delete_insn_chain (insn, peep2_insn_data[i].insn);
3152 #ifdef HAVE_conditional_execution
3153 /* With conditional execution, we cannot back up the
3154 live information so easily, since the conditional
3155 death data structures are not so self-contained.
3156 So record that we've made a modification to this
3157 block and update life information at the end. */
3158 SET_BIT (blocks, b);
3159 changed = 1;
3161 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3162 peep2_insn_data[i].insn = NULL_RTX;
3163 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3164 #else
3165 /* Back up lifetime information past the end of the
3166 newly created sequence. */
3167 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3168 i = 0;
3169 COPY_REG_SET (live, peep2_insn_data[i].live_before);
3171 /* Update life information for the new sequence. */
3174 if (INSN_P (try))
3176 if (--i < 0)
3177 i = MAX_INSNS_PER_PEEP2;
3178 peep2_insn_data[i].insn = try;
3179 propagate_one_insn (pbi, try);
3180 COPY_REG_SET (peep2_insn_data[i].live_before, live);
3182 try = PREV_INSN (try);
3184 while (try != prev);
3186 /* ??? Should verify that LIVE now matches what we
3187 had before the new sequence. */
3189 peep2_current = i;
3190 #endif
3194 if (insn == bb->head)
3195 break;
3198 free_propagate_block_info (pbi);
3201 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3202 FREE_REG_SET (peep2_insn_data[i].live_before);
3203 FREE_REG_SET (live);
3205 #ifdef HAVE_conditional_execution
3206 count_or_remove_death_notes (blocks, 1);
3207 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3208 sbitmap_free (blocks);
3209 #endif
3211 #endif /* HAVE_peephole2 */