1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
42 #include "hard-reg-set.h"
44 #include "insn-config.h"
52 #include "dwarf2out.h"
53 #include "dwarf2asm.h"
59 #include "diagnostic.h"
62 #include "langhooks.h"
63 #include "hashtable.h"
65 #ifdef DWARF2_DEBUGGING_INFO
66 static void dwarf2out_source_line
PARAMS ((unsigned int, const char *));
69 /* DWARF2 Abbreviation Glossary:
70 CFA = Canonical Frame Address
71 a fixed address on the stack which identifies a call frame.
72 We define it to be the value of SP just before the call insn.
73 The CFA register and offset, which may change during the course
74 of the function, are used to calculate its value at runtime.
75 CFI = Call Frame Instruction
76 an instruction for the DWARF2 abstract machine
77 CIE = Common Information Entry
78 information describing information common to one or more FDEs
79 DIE = Debugging Information Entry
80 FDE = Frame Description Entry
81 information describing the stack call frame, in particular,
82 how to restore registers
84 DW_CFA_... = DWARF2 CFA call frame instruction
85 DW_TAG_... = DWARF2 DIE tag */
87 /* Decide whether we want to emit frame unwind information for the current
93 return (write_symbols
== DWARF2_DEBUG
94 || write_symbols
== VMS_AND_DWARF2_DEBUG
95 #ifdef DWARF2_FRAME_INFO
98 #ifdef DWARF2_UNWIND_INFO
100 || (flag_exceptions
&& ! USING_SJLJ_EXCEPTIONS
)
105 /* The number of the current function definition for which debugging
106 information is being generated. These numbers range from 1 up to the
107 maximum number of function definitions contained within the current
108 compilation unit. These numbers are used to create unique label id's
109 unique to each function definition. */
110 unsigned current_funcdef_number
= 0;
112 /* The size of the target's pointer type. */
114 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
117 /* Default version of targetm.eh_frame_section. Note this must appear
118 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
122 default_eh_frame_section ()
124 #ifdef EH_FRAME_SECTION_NAME
125 named_section_flags (EH_FRAME_SECTION_NAME
, SECTION_WRITE
);
127 tree label
= get_file_function_name ('F');
130 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
131 ASM_GLOBALIZE_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
132 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
136 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
138 /* How to start an assembler comment. */
139 #ifndef ASM_COMMENT_START
140 #define ASM_COMMENT_START ";#"
143 typedef struct dw_cfi_struct
*dw_cfi_ref
;
144 typedef struct dw_fde_struct
*dw_fde_ref
;
145 typedef union dw_cfi_oprnd_struct
*dw_cfi_oprnd_ref
;
147 /* Call frames are described using a sequence of Call Frame
148 Information instructions. The register number, offset
149 and address fields are provided as possible operands;
150 their use is selected by the opcode field. */
152 typedef union dw_cfi_oprnd_struct
154 unsigned long dw_cfi_reg_num
;
155 long int dw_cfi_offset
;
156 const char *dw_cfi_addr
;
157 struct dw_loc_descr_struct
*dw_cfi_loc
;
161 typedef struct dw_cfi_struct
163 dw_cfi_ref dw_cfi_next
;
164 enum dwarf_call_frame_info dw_cfi_opc
;
165 dw_cfi_oprnd dw_cfi_oprnd1
;
166 dw_cfi_oprnd dw_cfi_oprnd2
;
170 /* This is how we define the location of the CFA. We use to handle it
171 as REG + OFFSET all the time, but now it can be more complex.
172 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
173 Instead of passing around REG and OFFSET, we pass a copy
174 of this structure. */
175 typedef struct cfa_loc
180 int indirect
; /* 1 if CFA is accessed via a dereference. */
183 /* All call frame descriptions (FDE's) in the GCC generated DWARF
184 refer to a single Common Information Entry (CIE), defined at
185 the beginning of the .debug_frame section. This use of a single
186 CIE obviates the need to keep track of multiple CIE's
187 in the DWARF generation routines below. */
189 typedef struct dw_fde_struct
191 const char *dw_fde_begin
;
192 const char *dw_fde_current_label
;
193 const char *dw_fde_end
;
194 dw_cfi_ref dw_fde_cfi
;
195 unsigned funcdef_number
;
196 unsigned nothrow
: 1;
197 unsigned uses_eh_lsda
: 1;
201 /* Maximum size (in bytes) of an artificially generated label. */
202 #define MAX_ARTIFICIAL_LABEL_BYTES 30
204 /* The size of addresses as they appear in the Dwarf 2 data.
205 Some architectures use word addresses to refer to code locations,
206 but Dwarf 2 info always uses byte addresses. On such machines,
207 Dwarf 2 addresses need to be larger than the architecture's
209 #ifndef DWARF2_ADDR_SIZE
210 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
213 /* The size in bytes of a DWARF field indicating an offset or length
214 relative to a debug info section, specified to be 4 bytes in the
215 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
218 #ifndef DWARF_OFFSET_SIZE
219 #define DWARF_OFFSET_SIZE 4
222 #define DWARF_VERSION 2
224 /* Round SIZE up to the nearest BOUNDARY. */
225 #define DWARF_ROUND(SIZE,BOUNDARY) \
226 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
228 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
229 #ifndef DWARF_CIE_DATA_ALIGNMENT
230 #ifdef STACK_GROWS_DOWNWARD
231 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
233 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
237 /* A pointer to the base of a table that contains frame description
238 information for each routine. */
239 static dw_fde_ref fde_table
;
241 /* Number of elements currently allocated for fde_table. */
242 static unsigned fde_table_allocated
;
244 /* Number of elements in fde_table currently in use. */
245 static unsigned fde_table_in_use
;
247 /* Size (in elements) of increments by which we may expand the
249 #define FDE_TABLE_INCREMENT 256
251 /* A list of call frame insns for the CIE. */
252 static dw_cfi_ref cie_cfi_head
;
254 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
255 attribute that accelerates the lookup of the FDE associated
256 with the subprogram. This variable holds the table index of the FDE
257 associated with the current function (body) definition. */
258 static unsigned current_funcdef_fde
;
260 struct ht
*debug_str_hash
;
262 struct indirect_string_node
264 struct ht_identifier id
;
265 unsigned int refcount
;
270 /* Forward declarations for functions defined in this file. */
272 static char *stripattributes
PARAMS ((const char *));
273 static const char *dwarf_cfi_name
PARAMS ((unsigned));
274 static dw_cfi_ref new_cfi
PARAMS ((void));
275 static void add_cfi
PARAMS ((dw_cfi_ref
*, dw_cfi_ref
));
276 static void add_fde_cfi
PARAMS ((const char *, dw_cfi_ref
));
277 static void lookup_cfa_1
PARAMS ((dw_cfi_ref
,
279 static void lookup_cfa
PARAMS ((dw_cfa_location
*));
280 static void reg_save
PARAMS ((const char *, unsigned,
282 static void initial_return_save
PARAMS ((rtx
));
283 static long stack_adjust_offset
PARAMS ((rtx
));
284 static void output_cfi
PARAMS ((dw_cfi_ref
, dw_fde_ref
, int));
285 static void output_call_frame_info
PARAMS ((int));
286 static void dwarf2out_stack_adjust
PARAMS ((rtx
));
287 static void queue_reg_save
PARAMS ((const char *, rtx
, long));
288 static void flush_queued_reg_saves
PARAMS ((void));
289 static bool clobbers_queued_reg_save
PARAMS ((rtx
));
290 static void dwarf2out_frame_debug_expr
PARAMS ((rtx
, const char *));
292 /* Support for complex CFA locations. */
293 static void output_cfa_loc
PARAMS ((dw_cfi_ref
));
294 static void get_cfa_from_loc_descr
PARAMS ((dw_cfa_location
*,
295 struct dw_loc_descr_struct
*));
296 static struct dw_loc_descr_struct
*build_cfa_loc
297 PARAMS ((dw_cfa_location
*));
298 static void def_cfa_1
PARAMS ((const char *,
301 /* How to start an assembler comment. */
302 #ifndef ASM_COMMENT_START
303 #define ASM_COMMENT_START ";#"
306 /* Data and reference forms for relocatable data. */
307 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
308 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
310 /* Pseudo-op for defining a new section. */
311 #ifndef SECTION_ASM_OP
312 #define SECTION_ASM_OP "\t.section\t"
315 #ifndef DEBUG_FRAME_SECTION
316 #define DEBUG_FRAME_SECTION ".debug_frame"
319 #ifndef FUNC_BEGIN_LABEL
320 #define FUNC_BEGIN_LABEL "LFB"
323 #ifndef FUNC_END_LABEL
324 #define FUNC_END_LABEL "LFE"
327 #define FRAME_BEGIN_LABEL "Lframe"
328 #define CIE_AFTER_SIZE_LABEL "LSCIE"
329 #define CIE_END_LABEL "LECIE"
330 #define CIE_LENGTH_LABEL "LLCIE"
331 #define FDE_LABEL "LSFDE"
332 #define FDE_AFTER_SIZE_LABEL "LASFDE"
333 #define FDE_END_LABEL "LEFDE"
334 #define FDE_LENGTH_LABEL "LLFDE"
335 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
336 #define LINE_NUMBER_END_LABEL "LELT"
337 #define LN_PROLOG_AS_LABEL "LASLTP"
338 #define LN_PROLOG_END_LABEL "LELTP"
339 #define DIE_LABEL_PREFIX "DW"
341 /* Definitions of defaults for various types of primitive assembly language
342 output operations. These may be overridden from within the tm.h file,
343 but typically, that is unnecessary. */
346 #ifndef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
347 #define ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL(FILE, SY, HI, LO) \
349 fprintf (FILE, "%s", SET_ASM_OP); \
350 assemble_name (FILE, SY); \
352 assemble_name (FILE, HI); \
354 assemble_name (FILE, LO); \
359 /* The DWARF 2 CFA column which tracks the return address. Normally this
360 is the column for PC, or the first column after all of the hard
362 #ifndef DWARF_FRAME_RETURN_COLUMN
364 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
366 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
370 /* The mapping from gcc register number to DWARF 2 CFA column number. By
371 default, we just provide columns for all registers. */
372 #ifndef DWARF_FRAME_REGNUM
373 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
376 /* The offset from the incoming value of %sp to the top of the stack frame
377 for the current function. */
378 #ifndef INCOMING_FRAME_SP_OFFSET
379 #define INCOMING_FRAME_SP_OFFSET 0
382 /* Hook used by __throw. */
385 expand_builtin_dwarf_fp_regnum ()
387 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
));
390 /* Return a pointer to a copy of the section string name S with all
391 attributes stripped off, and an asterisk prepended (for assemble_name). */
397 char *stripped
= xmalloc (strlen (s
) + 2);
402 while (*s
&& *s
!= ',')
409 /* Generate code to initialize the register size table. */
412 expand_builtin_init_dwarf_reg_sizes (address
)
416 enum machine_mode mode
= TYPE_MODE (char_type_node
);
417 rtx addr
= expand_expr (address
, NULL_RTX
, VOIDmode
, 0);
418 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
420 for (i
= 0; i
< DWARF_FRAME_REGISTERS
; i
++)
422 HOST_WIDE_INT offset
= DWARF_FRAME_REGNUM (i
) * GET_MODE_SIZE (mode
);
423 HOST_WIDE_INT size
= GET_MODE_SIZE (reg_raw_mode
[i
]);
428 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
432 /* Convert a DWARF call frame info. operation to its string name */
435 dwarf_cfi_name (cfi_opc
)
440 case DW_CFA_advance_loc
:
441 return "DW_CFA_advance_loc";
443 return "DW_CFA_offset";
445 return "DW_CFA_restore";
449 return "DW_CFA_set_loc";
450 case DW_CFA_advance_loc1
:
451 return "DW_CFA_advance_loc1";
452 case DW_CFA_advance_loc2
:
453 return "DW_CFA_advance_loc2";
454 case DW_CFA_advance_loc4
:
455 return "DW_CFA_advance_loc4";
456 case DW_CFA_offset_extended
:
457 return "DW_CFA_offset_extended";
458 case DW_CFA_restore_extended
:
459 return "DW_CFA_restore_extended";
460 case DW_CFA_undefined
:
461 return "DW_CFA_undefined";
462 case DW_CFA_same_value
:
463 return "DW_CFA_same_value";
464 case DW_CFA_register
:
465 return "DW_CFA_register";
466 case DW_CFA_remember_state
:
467 return "DW_CFA_remember_state";
468 case DW_CFA_restore_state
:
469 return "DW_CFA_restore_state";
471 return "DW_CFA_def_cfa";
472 case DW_CFA_def_cfa_register
:
473 return "DW_CFA_def_cfa_register";
474 case DW_CFA_def_cfa_offset
:
475 return "DW_CFA_def_cfa_offset";
476 case DW_CFA_def_cfa_expression
:
477 return "DW_CFA_def_cfa_expression";
479 /* SGI/MIPS specific */
480 case DW_CFA_MIPS_advance_loc8
:
481 return "DW_CFA_MIPS_advance_loc8";
484 case DW_CFA_GNU_window_save
:
485 return "DW_CFA_GNU_window_save";
486 case DW_CFA_GNU_args_size
:
487 return "DW_CFA_GNU_args_size";
488 case DW_CFA_GNU_negative_offset_extended
:
489 return "DW_CFA_GNU_negative_offset_extended";
492 return "DW_CFA_<unknown>";
496 /* Return a pointer to a newly allocated Call Frame Instruction. */
498 static inline dw_cfi_ref
501 dw_cfi_ref cfi
= (dw_cfi_ref
) xmalloc (sizeof (dw_cfi_node
));
503 cfi
->dw_cfi_next
= NULL
;
504 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
505 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
510 /* Add a Call Frame Instruction to list of instructions. */
513 add_cfi (list_head
, cfi
)
514 dw_cfi_ref
*list_head
;
519 /* Find the end of the chain. */
520 for (p
= list_head
; (*p
) != NULL
; p
= &(*p
)->dw_cfi_next
)
526 /* Generate a new label for the CFI info to refer to. */
529 dwarf2out_cfi_label ()
531 static char label
[20];
532 static unsigned long label_num
= 0;
534 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", label_num
++);
535 ASM_OUTPUT_LABEL (asm_out_file
, label
);
539 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
540 or to the CIE if LABEL is NULL. */
543 add_fde_cfi (label
, cfi
)
549 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
552 label
= dwarf2out_cfi_label ();
554 if (fde
->dw_fde_current_label
== NULL
555 || strcmp (label
, fde
->dw_fde_current_label
) != 0)
559 fde
->dw_fde_current_label
= label
= xstrdup (label
);
561 /* Set the location counter to the new label. */
563 xcfi
->dw_cfi_opc
= DW_CFA_advance_loc4
;
564 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
565 add_cfi (&fde
->dw_fde_cfi
, xcfi
);
568 add_cfi (&fde
->dw_fde_cfi
, cfi
);
572 add_cfi (&cie_cfi_head
, cfi
);
575 /* Subroutine of lookup_cfa. */
578 lookup_cfa_1 (cfi
, loc
)
580 dw_cfa_location
*loc
;
582 switch (cfi
->dw_cfi_opc
)
584 case DW_CFA_def_cfa_offset
:
585 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
587 case DW_CFA_def_cfa_register
:
588 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
591 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
592 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
594 case DW_CFA_def_cfa_expression
:
595 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
602 /* Find the previous value for the CFA. */
606 dw_cfa_location
*loc
;
610 loc
->reg
= (unsigned long) -1;
613 loc
->base_offset
= 0;
615 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
616 lookup_cfa_1 (cfi
, loc
);
618 if (fde_table_in_use
)
620 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
621 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
622 lookup_cfa_1 (cfi
, loc
);
626 /* The current rule for calculating the DWARF2 canonical frame address. */
627 static dw_cfa_location cfa
;
629 /* The register used for saving registers to the stack, and its offset
631 static dw_cfa_location cfa_store
;
633 /* The running total of the size of arguments pushed onto the stack. */
634 static long args_size
;
636 /* The last args_size we actually output. */
637 static long old_args_size
;
639 /* Entry point to update the canonical frame address (CFA).
640 LABEL is passed to add_fde_cfi. The value of CFA is now to be
641 calculated from REG+OFFSET. */
644 dwarf2out_def_cfa (label
, reg
, offset
)
654 def_cfa_1 (label
, &loc
);
657 /* This routine does the actual work. The CFA is now calculated from
658 the dw_cfa_location structure. */
661 def_cfa_1 (label
, loc_p
)
663 dw_cfa_location
*loc_p
;
666 dw_cfa_location old_cfa
, loc
;
671 if (cfa_store
.reg
== loc
.reg
&& loc
.indirect
== 0)
672 cfa_store
.offset
= loc
.offset
;
674 loc
.reg
= DWARF_FRAME_REGNUM (loc
.reg
);
675 lookup_cfa (&old_cfa
);
677 /* If nothing changed, no need to issue any call frame instructions. */
678 if (loc
.reg
== old_cfa
.reg
&& loc
.offset
== old_cfa
.offset
679 && loc
.indirect
== old_cfa
.indirect
680 && (loc
.indirect
== 0 || loc
.base_offset
== old_cfa
.base_offset
))
685 if (loc
.reg
== old_cfa
.reg
&& !loc
.indirect
)
687 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
688 indicating the CFA register did not change but the offset
690 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
691 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= loc
.offset
;
694 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
695 else if (loc
.offset
== old_cfa
.offset
&& old_cfa
.reg
!= (unsigned long) -1
698 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
699 indicating the CFA register has changed to <register> but the
700 offset has not changed. */
701 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
702 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
706 else if (loc
.indirect
== 0)
708 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
709 indicating the CFA register has changed to <register> with
710 the specified offset. */
711 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
712 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
713 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= loc
.offset
;
717 /* Construct a DW_CFA_def_cfa_expression instruction to
718 calculate the CFA using a full location expression since no
719 register-offset pair is available. */
720 struct dw_loc_descr_struct
*loc_list
;
722 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
723 loc_list
= build_cfa_loc (&loc
);
724 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
727 add_fde_cfi (label
, cfi
);
730 /* Add the CFI for saving a register. REG is the CFA column number.
731 LABEL is passed to add_fde_cfi.
732 If SREG is -1, the register is saved at OFFSET from the CFA;
733 otherwise it is saved in SREG. */
736 reg_save (label
, reg
, sreg
, offset
)
742 dw_cfi_ref cfi
= new_cfi ();
744 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
746 /* The following comparison is correct. -1 is used to indicate that
747 the value isn't a register number. */
748 if (sreg
== (unsigned int) -1)
751 /* The register number won't fit in 6 bits, so we have to use
753 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
755 cfi
->dw_cfi_opc
= DW_CFA_offset
;
757 #ifdef ENABLE_CHECKING
759 /* If we get an offset that is not a multiple of
760 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
761 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
763 long check_offset
= offset
/ DWARF_CIE_DATA_ALIGNMENT
;
765 if (check_offset
* DWARF_CIE_DATA_ALIGNMENT
!= offset
)
769 offset
/= DWARF_CIE_DATA_ALIGNMENT
;
772 cfi
->dw_cfi_opc
= DW_CFA_GNU_negative_offset_extended
;
776 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
778 else if (sreg
== reg
)
779 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
783 cfi
->dw_cfi_opc
= DW_CFA_register
;
784 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
787 add_fde_cfi (label
, cfi
);
790 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
791 This CFI tells the unwinder that it needs to restore the window registers
792 from the previous frame's window save area.
794 ??? Perhaps we should note in the CIE where windows are saved (instead of
795 assuming 0(cfa)) and what registers are in the window. */
798 dwarf2out_window_save (label
)
801 dw_cfi_ref cfi
= new_cfi ();
803 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
804 add_fde_cfi (label
, cfi
);
807 /* Add a CFI to update the running total of the size of arguments
808 pushed onto the stack. */
811 dwarf2out_args_size (label
, size
)
817 if (size
== old_args_size
)
820 old_args_size
= size
;
823 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
824 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
825 add_fde_cfi (label
, cfi
);
828 /* Entry point for saving a register to the stack. REG is the GCC register
829 number. LABEL and OFFSET are passed to reg_save. */
832 dwarf2out_reg_save (label
, reg
, offset
)
837 reg_save (label
, DWARF_FRAME_REGNUM (reg
), -1, offset
);
840 /* Entry point for saving the return address in the stack.
841 LABEL and OFFSET are passed to reg_save. */
844 dwarf2out_return_save (label
, offset
)
848 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, -1, offset
);
851 /* Entry point for saving the return address in a register.
852 LABEL and SREG are passed to reg_save. */
855 dwarf2out_return_reg (label
, sreg
)
859 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, sreg
, 0);
862 /* Record the initial position of the return address. RTL is
863 INCOMING_RETURN_ADDR_RTX. */
866 initial_return_save (rtl
)
869 unsigned int reg
= (unsigned int) -1;
870 HOST_WIDE_INT offset
= 0;
872 switch (GET_CODE (rtl
))
875 /* RA is in a register. */
876 reg
= DWARF_FRAME_REGNUM (REGNO (rtl
));
880 /* RA is on the stack. */
882 switch (GET_CODE (rtl
))
885 if (REGNO (rtl
) != STACK_POINTER_REGNUM
)
891 if (REGNO (XEXP (rtl
, 0)) != STACK_POINTER_REGNUM
)
893 offset
= INTVAL (XEXP (rtl
, 1));
897 if (REGNO (XEXP (rtl
, 0)) != STACK_POINTER_REGNUM
)
899 offset
= -INTVAL (XEXP (rtl
, 1));
909 /* The return address is at some offset from any value we can
910 actually load. For instance, on the SPARC it is in %i7+8. Just
911 ignore the offset for now; it doesn't matter for unwinding frames. */
912 if (GET_CODE (XEXP (rtl
, 1)) != CONST_INT
)
914 initial_return_save (XEXP (rtl
, 0));
921 reg_save (NULL
, DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cfa
.offset
);
924 /* Given a SET, calculate the amount of stack adjustment it
928 stack_adjust_offset (pattern
)
931 rtx src
= SET_SRC (pattern
);
932 rtx dest
= SET_DEST (pattern
);
933 HOST_WIDE_INT offset
= 0;
936 if (dest
== stack_pointer_rtx
)
938 /* (set (reg sp) (plus (reg sp) (const_int))) */
939 code
= GET_CODE (src
);
940 if (! (code
== PLUS
|| code
== MINUS
)
941 || XEXP (src
, 0) != stack_pointer_rtx
942 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
945 offset
= INTVAL (XEXP (src
, 1));
947 else if (GET_CODE (dest
) == MEM
)
949 /* (set (mem (pre_dec (reg sp))) (foo)) */
950 src
= XEXP (dest
, 0);
951 code
= GET_CODE (src
);
953 if ((code
!= PRE_DEC
&& code
!= PRE_INC
&& code
!= PRE_MODIFY
)
954 || XEXP (src
, 0) != stack_pointer_rtx
)
957 if (code
== PRE_MODIFY
)
959 rtx val
= XEXP (XEXP (src
, 1), 1);
961 /* We handle only adjustments by constant amount. */
962 if (GET_CODE (XEXP (src
, 1)) != PLUS
||
963 GET_CODE (val
) != CONST_INT
)
966 offset
= -INTVAL (val
);
969 offset
= GET_MODE_SIZE (GET_MODE (dest
));
974 if (code
== PLUS
|| code
== PRE_INC
)
980 /* Check INSN to see if it looks like a push or a stack adjustment, and
981 make a note of it if it does. EH uses this information to find out how
982 much extra space it needs to pop off the stack. */
985 dwarf2out_stack_adjust (insn
)
988 HOST_WIDE_INT offset
;
992 if (!flag_asynchronous_unwind_tables
&& GET_CODE (insn
) == CALL_INSN
)
994 /* Extract the size of the args from the CALL rtx itself. */
995 insn
= PATTERN (insn
);
996 if (GET_CODE (insn
) == PARALLEL
)
997 insn
= XVECEXP (insn
, 0, 0);
998 if (GET_CODE (insn
) == SET
)
999 insn
= SET_SRC (insn
);
1000 if (GET_CODE (insn
) != CALL
)
1003 dwarf2out_args_size ("", INTVAL (XEXP (insn
, 1)));
1007 /* If only calls can throw, and we have a frame pointer,
1008 save up adjustments until we see the CALL_INSN. */
1009 else if (!flag_asynchronous_unwind_tables
&& cfa
.reg
!= STACK_POINTER_REGNUM
)
1012 if (GET_CODE (insn
) == BARRIER
)
1014 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1015 the compiler will have already emitted a stack adjustment, but
1016 doesn't bother for calls to noreturn functions. */
1017 #ifdef STACK_GROWS_DOWNWARD
1018 offset
= -args_size
;
1023 else if (GET_CODE (PATTERN (insn
)) == SET
)
1024 offset
= stack_adjust_offset (PATTERN (insn
));
1025 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1026 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1028 /* There may be stack adjustments inside compound insns. Search
1030 for (offset
= 0, i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
1031 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1032 offset
+= stack_adjust_offset (XVECEXP (PATTERN (insn
), 0, i
));
1040 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1041 cfa
.offset
+= offset
;
1043 #ifndef STACK_GROWS_DOWNWARD
1047 args_size
+= offset
;
1051 label
= dwarf2out_cfi_label ();
1052 def_cfa_1 (label
, &cfa
);
1053 dwarf2out_args_size (label
, args_size
);
1056 /* We delay emitting a register save until either (a) we reach the end
1057 of the prologue or (b) the register is clobbered. This clusters
1058 register saves so that there are fewer pc advances. */
1060 struct queued_reg_save
1062 struct queued_reg_save
*next
;
1067 static struct queued_reg_save
*queued_reg_saves
;
1068 static const char *last_reg_save_label
;
1071 queue_reg_save (label
, reg
, offset
)
1076 struct queued_reg_save
*q
= (struct queued_reg_save
*) xmalloc (sizeof (*q
));
1078 q
->next
= queued_reg_saves
;
1080 q
->cfa_offset
= offset
;
1081 queued_reg_saves
= q
;
1083 last_reg_save_label
= label
;
1087 flush_queued_reg_saves ()
1089 struct queued_reg_save
*q
, *next
;
1091 for (q
= queued_reg_saves
; q
; q
= next
)
1093 dwarf2out_reg_save (last_reg_save_label
, REGNO (q
->reg
), q
->cfa_offset
);
1098 queued_reg_saves
= NULL
;
1099 last_reg_save_label
= NULL
;
1103 clobbers_queued_reg_save (insn
)
1106 struct queued_reg_save
*q
;
1108 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1109 if (modified_in_p (q
->reg
, insn
))
1116 /* A temporary register holding an integral value used in adjusting SP
1117 or setting up the store_reg. The "offset" field holds the integer
1118 value, not an offset. */
1119 static dw_cfa_location cfa_temp
;
1121 /* Record call frame debugging information for an expression EXPR,
1122 which either sets SP or FP (adjusting how we calculate the frame
1123 address) or saves a register to the stack. LABEL indicates the
1126 This function encodes a state machine mapping rtxes to actions on
1127 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1128 users need not read the source code.
1130 The High-Level Picture
1132 Changes in the register we use to calculate the CFA: Currently we
1133 assume that if you copy the CFA register into another register, we
1134 should take the other one as the new CFA register; this seems to
1135 work pretty well. If it's wrong for some target, it's simple
1136 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1138 Changes in the register we use for saving registers to the stack:
1139 This is usually SP, but not always. Again, we deduce that if you
1140 copy SP into another register (and SP is not the CFA register),
1141 then the new register is the one we will be using for register
1142 saves. This also seems to work.
1144 Register saves: There's not much guesswork about this one; if
1145 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1146 register save, and the register used to calculate the destination
1147 had better be the one we think we're using for this purpose.
1149 Except: If the register being saved is the CFA register, and the
1150 offset is non-zero, we are saving the CFA, so we assume we have to
1151 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1152 the intent is to save the value of SP from the previous frame.
1154 Invariants / Summaries of Rules
1156 cfa current rule for calculating the CFA. It usually
1157 consists of a register and an offset.
1158 cfa_store register used by prologue code to save things to the stack
1159 cfa_store.offset is the offset from the value of
1160 cfa_store.reg to the actual CFA
1161 cfa_temp register holding an integral value. cfa_temp.offset
1162 stores the value, which will be used to adjust the
1163 stack pointer. cfa_temp is also used like cfa_store,
1164 to track stores to the stack via fp or a temp reg.
1166 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1167 with cfa.reg as the first operand changes the cfa.reg and its
1168 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1171 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1172 expression yielding a constant. This sets cfa_temp.reg
1173 and cfa_temp.offset.
1175 Rule 5: Create a new register cfa_store used to save items to the
1178 Rules 10-14: Save a register to the stack. Define offset as the
1179 difference of the original location and cfa_store's
1180 location (or cfa_temp's location if cfa_temp is used).
1184 "{a,b}" indicates a choice of a xor b.
1185 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1188 (set <reg1> <reg2>:cfa.reg)
1189 effects: cfa.reg = <reg1>
1190 cfa.offset unchanged
1191 cfa_temp.reg = <reg1>
1192 cfa_temp.offset = cfa.offset
1195 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1196 {<const_int>,<reg>:cfa_temp.reg}))
1197 effects: cfa.reg = sp if fp used
1198 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1199 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1200 if cfa_store.reg==sp
1203 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1204 effects: cfa.reg = fp
1205 cfa_offset += +/- <const_int>
1208 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1209 constraints: <reg1> != fp
1211 effects: cfa.reg = <reg1>
1212 cfa_temp.reg = <reg1>
1213 cfa_temp.offset = cfa.offset
1216 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1217 constraints: <reg1> != fp
1219 effects: cfa_store.reg = <reg1>
1220 cfa_store.offset = cfa.offset - cfa_temp.offset
1223 (set <reg> <const_int>)
1224 effects: cfa_temp.reg = <reg>
1225 cfa_temp.offset = <const_int>
1228 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1229 effects: cfa_temp.reg = <reg1>
1230 cfa_temp.offset |= <const_int>
1233 (set <reg> (high <exp>))
1237 (set <reg> (lo_sum <exp> <const_int>))
1238 effects: cfa_temp.reg = <reg>
1239 cfa_temp.offset = <const_int>
1242 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1243 effects: cfa_store.offset -= <const_int>
1244 cfa.offset = cfa_store.offset if cfa.reg == sp
1246 cfa.base_offset = -cfa_store.offset
1249 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1250 effects: cfa_store.offset += -/+ mode_size(mem)
1251 cfa.offset = cfa_store.offset if cfa.reg == sp
1253 cfa.base_offset = -cfa_store.offset
1256 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1259 effects: cfa.reg = <reg1>
1260 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1263 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1264 effects: cfa.reg = <reg1>
1265 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1268 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1269 effects: cfa.reg = <reg1>
1270 cfa.base_offset = -cfa_temp.offset
1271 cfa_temp.offset -= mode_size(mem) */
1274 dwarf2out_frame_debug_expr (expr
, label
)
1279 HOST_WIDE_INT offset
;
1281 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1282 the PARALLEL independently. The first element is always processed if
1283 it is a SET. This is for backward compatibility. Other elements
1284 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1285 flag is set in them. */
1286 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1289 int limit
= XVECLEN (expr
, 0);
1291 for (par_index
= 0; par_index
< limit
; par_index
++)
1292 if (GET_CODE (XVECEXP (expr
, 0, par_index
)) == SET
1293 && (RTX_FRAME_RELATED_P (XVECEXP (expr
, 0, par_index
))
1295 dwarf2out_frame_debug_expr (XVECEXP (expr
, 0, par_index
), label
);
1300 if (GET_CODE (expr
) != SET
)
1303 src
= SET_SRC (expr
);
1304 dest
= SET_DEST (expr
);
1306 switch (GET_CODE (dest
))
1310 /* Update the CFA rule wrt SP or FP. Make sure src is
1311 relative to the current CFA register. */
1312 switch (GET_CODE (src
))
1314 /* Setting FP from SP. */
1316 if (cfa
.reg
== (unsigned) REGNO (src
))
1322 /* We used to require that dest be either SP or FP, but the
1323 ARM copies SP to a temporary register, and from there to
1324 FP. So we just rely on the backends to only set
1325 RTX_FRAME_RELATED_P on appropriate insns. */
1326 cfa
.reg
= REGNO (dest
);
1327 cfa_temp
.reg
= cfa
.reg
;
1328 cfa_temp
.offset
= cfa
.offset
;
1334 if (dest
== stack_pointer_rtx
)
1338 switch (GET_CODE (XEXP (src
, 1)))
1341 offset
= INTVAL (XEXP (src
, 1));
1344 if ((unsigned) REGNO (XEXP (src
, 1)) != cfa_temp
.reg
)
1346 offset
= cfa_temp
.offset
;
1352 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1354 /* Restoring SP from FP in the epilogue. */
1355 if (cfa
.reg
!= (unsigned) HARD_FRAME_POINTER_REGNUM
)
1357 cfa
.reg
= STACK_POINTER_REGNUM
;
1359 else if (GET_CODE (src
) == LO_SUM
)
1360 /* Assume we've set the source reg of the LO_SUM from sp. */
1362 else if (XEXP (src
, 0) != stack_pointer_rtx
)
1365 if (GET_CODE (src
) != MINUS
)
1367 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1368 cfa
.offset
+= offset
;
1369 if (cfa_store
.reg
== STACK_POINTER_REGNUM
)
1370 cfa_store
.offset
+= offset
;
1372 else if (dest
== hard_frame_pointer_rtx
)
1375 /* Either setting the FP from an offset of the SP,
1376 or adjusting the FP */
1377 if (! frame_pointer_needed
)
1380 if (GET_CODE (XEXP (src
, 0)) == REG
1381 && (unsigned) REGNO (XEXP (src
, 0)) == cfa
.reg
1382 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1384 offset
= INTVAL (XEXP (src
, 1));
1385 if (GET_CODE (src
) != MINUS
)
1387 cfa
.offset
+= offset
;
1388 cfa
.reg
= HARD_FRAME_POINTER_REGNUM
;
1395 if (GET_CODE (src
) == MINUS
)
1399 if (GET_CODE (XEXP (src
, 0)) == REG
1400 && REGNO (XEXP (src
, 0)) == cfa
.reg
1401 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1403 /* Setting a temporary CFA register that will be copied
1404 into the FP later on. */
1405 offset
= - INTVAL (XEXP (src
, 1));
1406 cfa
.offset
+= offset
;
1407 cfa
.reg
= REGNO (dest
);
1408 /* Or used to save regs to the stack. */
1409 cfa_temp
.reg
= cfa
.reg
;
1410 cfa_temp
.offset
= cfa
.offset
;
1414 else if (GET_CODE (XEXP (src
, 0)) == REG
1415 && REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1416 && XEXP (src
, 1) == stack_pointer_rtx
)
1418 /* Setting a scratch register that we will use instead
1419 of SP for saving registers to the stack. */
1420 if (cfa
.reg
!= STACK_POINTER_REGNUM
)
1422 cfa_store
.reg
= REGNO (dest
);
1423 cfa_store
.offset
= cfa
.offset
- cfa_temp
.offset
;
1427 else if (GET_CODE (src
) == LO_SUM
1428 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1430 cfa_temp
.reg
= REGNO (dest
);
1431 cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1440 cfa_temp
.reg
= REGNO (dest
);
1441 cfa_temp
.offset
= INTVAL (src
);
1446 if (GET_CODE (XEXP (src
, 0)) != REG
1447 || (unsigned) REGNO (XEXP (src
, 0)) != cfa_temp
.reg
1448 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1451 if ((unsigned) REGNO (dest
) != cfa_temp
.reg
)
1452 cfa_temp
.reg
= REGNO (dest
);
1453 cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1456 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1457 which will fill in all of the bits. */
1466 def_cfa_1 (label
, &cfa
);
1470 if (GET_CODE (src
) != REG
)
1473 /* Saving a register to the stack. Make sure dest is relative to the
1475 switch (GET_CODE (XEXP (dest
, 0)))
1480 /* We can't handle variable size modifications. */
1481 if (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1)) != CONST_INT
)
1483 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1485 if (REGNO (XEXP (XEXP (dest
, 0), 0)) != STACK_POINTER_REGNUM
1486 || cfa_store
.reg
!= STACK_POINTER_REGNUM
)
1489 cfa_store
.offset
+= offset
;
1490 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1491 cfa
.offset
= cfa_store
.offset
;
1493 offset
= -cfa_store
.offset
;
1499 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1500 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1503 if (REGNO (XEXP (XEXP (dest
, 0), 0)) != STACK_POINTER_REGNUM
1504 || cfa_store
.reg
!= STACK_POINTER_REGNUM
)
1507 cfa_store
.offset
+= offset
;
1508 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1509 cfa
.offset
= cfa_store
.offset
;
1511 offset
= -cfa_store
.offset
;
1515 /* With an offset. */
1519 if (GET_CODE (XEXP (XEXP (dest
, 0), 1)) != CONST_INT
)
1521 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1522 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1525 if (cfa_store
.reg
== (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1526 offset
-= cfa_store
.offset
;
1527 else if (cfa_temp
.reg
== (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1528 offset
-= cfa_temp
.offset
;
1534 /* Without an offset. */
1536 if (cfa_store
.reg
== (unsigned) REGNO (XEXP (dest
, 0)))
1537 offset
= -cfa_store
.offset
;
1538 else if (cfa_temp
.reg
== (unsigned) REGNO (XEXP (dest
, 0)))
1539 offset
= -cfa_temp
.offset
;
1546 if (cfa_temp
.reg
!= (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)))
1548 offset
= -cfa_temp
.offset
;
1549 cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1556 if (REGNO (src
) != STACK_POINTER_REGNUM
1557 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1558 && (unsigned) REGNO (src
) == cfa
.reg
)
1560 /* We're storing the current CFA reg into the stack. */
1562 if (cfa
.offset
== 0)
1564 /* If the source register is exactly the CFA, assume
1565 we're saving SP like any other register; this happens
1567 def_cfa_1 (label
, &cfa
);
1568 queue_reg_save (label
, stack_pointer_rtx
, offset
);
1573 /* Otherwise, we'll need to look in the stack to
1574 calculate the CFA. */
1575 rtx x
= XEXP (dest
, 0);
1577 if (GET_CODE (x
) != REG
)
1579 if (GET_CODE (x
) != REG
)
1582 cfa
.reg
= REGNO (x
);
1583 cfa
.base_offset
= offset
;
1585 def_cfa_1 (label
, &cfa
);
1590 def_cfa_1 (label
, &cfa
);
1591 queue_reg_save (label
, src
, offset
);
1599 /* Record call frame debugging information for INSN, which either
1600 sets SP or FP (adjusting how we calculate the frame address) or saves a
1601 register to the stack. If INSN is NULL_RTX, initialize our state. */
1604 dwarf2out_frame_debug (insn
)
1610 if (insn
== NULL_RTX
)
1612 /* Flush any queued register saves. */
1613 flush_queued_reg_saves ();
1615 /* Set up state for generating call frame debug info. */
1617 if (cfa
.reg
!= (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
))
1620 cfa
.reg
= STACK_POINTER_REGNUM
;
1623 cfa_temp
.offset
= 0;
1627 if (GET_CODE (insn
) != INSN
|| clobbers_queued_reg_save (insn
))
1628 flush_queued_reg_saves ();
1630 if (! RTX_FRAME_RELATED_P (insn
))
1632 if (!ACCUMULATE_OUTGOING_ARGS
)
1633 dwarf2out_stack_adjust (insn
);
1638 label
= dwarf2out_cfi_label ();
1639 src
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
1641 insn
= XEXP (src
, 0);
1643 insn
= PATTERN (insn
);
1645 dwarf2out_frame_debug_expr (insn
, label
);
1648 /* Output a Call Frame Information opcode and its operand(s). */
1651 output_cfi (cfi
, fde
, for_eh
)
1656 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
1657 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1658 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
1659 "DW_CFA_advance_loc 0x%lx",
1660 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
1661 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
1663 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1664 | (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
& 0x3f)),
1665 "DW_CFA_offset, column 0x%lx",
1666 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
);
1667 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1669 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
1670 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
1671 | (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
& 0x3f)),
1672 "DW_CFA_restore, column 0x%lx",
1673 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
);
1676 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
1677 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
1679 switch (cfi
->dw_cfi_opc
)
1681 case DW_CFA_set_loc
:
1683 dw2_asm_output_encoded_addr_rtx (
1684 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1685 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
1688 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
1689 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
1692 case DW_CFA_advance_loc1
:
1693 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1694 fde
->dw_fde_current_label
, NULL
);
1695 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1698 case DW_CFA_advance_loc2
:
1699 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1700 fde
->dw_fde_current_label
, NULL
);
1701 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1704 case DW_CFA_advance_loc4
:
1705 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1706 fde
->dw_fde_current_label
, NULL
);
1707 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1710 case DW_CFA_MIPS_advance_loc8
:
1711 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
1712 fde
->dw_fde_current_label
, NULL
);
1713 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
1716 case DW_CFA_offset_extended
:
1717 case DW_CFA_GNU_negative_offset_extended
:
1718 case DW_CFA_def_cfa
:
1719 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1721 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
1724 case DW_CFA_restore_extended
:
1725 case DW_CFA_undefined
:
1726 case DW_CFA_same_value
:
1727 case DW_CFA_def_cfa_register
:
1728 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1732 case DW_CFA_register
:
1733 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
,
1735 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
,
1739 case DW_CFA_def_cfa_offset
:
1740 case DW_CFA_GNU_args_size
:
1741 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
1744 case DW_CFA_GNU_window_save
:
1747 case DW_CFA_def_cfa_expression
:
1748 output_cfa_loc (cfi
);
1757 /* Output the call frame information used to used to record information
1758 that relates to calculating the frame pointer, and records the
1759 location of saved registers. */
1762 output_call_frame_info (for_eh
)
1768 char l1
[20], l2
[20], section_start_label
[20];
1769 int any_lsda_needed
= 0;
1770 char augmentation
[6];
1771 int augmentation_size
;
1772 int fde_encoding
= DW_EH_PE_absptr
;
1773 int per_encoding
= DW_EH_PE_absptr
;
1774 int lsda_encoding
= DW_EH_PE_absptr
;
1776 /* If we don't have any functions we'll want to unwind out of, don't emit any
1777 EH unwind information. */
1780 int any_eh_needed
= flag_asynchronous_unwind_tables
;
1782 for (i
= 0; i
< fde_table_in_use
; i
++)
1783 if (fde_table
[i
].uses_eh_lsda
)
1784 any_eh_needed
= any_lsda_needed
= 1;
1785 else if (! fde_table
[i
].nothrow
)
1788 if (! any_eh_needed
)
1792 /* We're going to be generating comments, so turn on app. */
1797 (*targetm
.asm_out
.eh_frame_section
) ();
1799 named_section_flags (DEBUG_FRAME_SECTION
, SECTION_DEBUG
);
1801 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
1802 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
1804 /* Output the CIE. */
1805 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
1806 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
1807 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
1808 "Length of Common Information Entry");
1809 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
1811 /* Now that the CIE pointer is PC-relative for EH,
1812 use 0 to identify the CIE. */
1813 dw2_asm_output_data ((for_eh
? 4 : DWARF_OFFSET_SIZE
),
1814 (for_eh
? 0 : DW_CIE_ID
),
1815 "CIE Identifier Tag");
1817 dw2_asm_output_data (1, DW_CIE_VERSION
, "CIE Version");
1819 augmentation
[0] = 0;
1820 augmentation_size
= 0;
1826 z Indicates that a uleb128 is present to size the
1827 augmentation section.
1828 L Indicates the encoding (and thus presence) of
1829 an LSDA pointer in the FDE augmentation.
1830 R Indicates a non-default pointer encoding for
1832 P Indicates the presence of an encoding + language
1833 personality routine in the CIE augmentation. */
1835 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1836 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1837 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1839 p
= augmentation
+ 1;
1840 if (eh_personality_libfunc
)
1843 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
1845 if (any_lsda_needed
)
1848 augmentation_size
+= 1;
1850 if (fde_encoding
!= DW_EH_PE_absptr
)
1853 augmentation_size
+= 1;
1855 if (p
> augmentation
+ 1)
1857 augmentation
[0] = 'z';
1861 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
1862 if (eh_personality_libfunc
&& per_encoding
== DW_EH_PE_aligned
)
1864 int offset
= ( 4 /* Length */
1866 + 1 /* CIE version */
1867 + strlen (augmentation
) + 1 /* Augmentation */
1868 + size_of_uleb128 (1) /* Code alignment */
1869 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
1871 + 1 /* Augmentation size */
1872 + 1 /* Personality encoding */ );
1873 int pad
= -offset
& (PTR_SIZE
- 1);
1875 augmentation_size
+= pad
;
1877 /* Augmentations should be small, so there's scarce need to
1878 iterate for a solution. Die if we exceed one uleb128 byte. */
1879 if (size_of_uleb128 (augmentation_size
) != 1)
1884 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
1885 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
1886 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
1887 "CIE Data Alignment Factor");
1888 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN
, "CIE RA Column");
1890 if (augmentation
[0])
1892 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
1893 if (eh_personality_libfunc
)
1895 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
1896 eh_data_format_name (per_encoding
));
1897 dw2_asm_output_encoded_addr_rtx (per_encoding
,
1898 eh_personality_libfunc
, NULL
);
1901 if (any_lsda_needed
)
1902 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
1903 eh_data_format_name (lsda_encoding
));
1905 if (fde_encoding
!= DW_EH_PE_absptr
)
1906 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
1907 eh_data_format_name (fde_encoding
));
1910 for (cfi
= cie_cfi_head
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
1911 output_cfi (cfi
, NULL
, for_eh
);
1913 /* Pad the CIE out to an address sized boundary. */
1914 ASM_OUTPUT_ALIGN (asm_out_file
,
1915 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
1916 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
1918 /* Loop through all of the FDE's. */
1919 for (i
= 0; i
< fde_table_in_use
; i
++)
1921 fde
= &fde_table
[i
];
1923 /* Don't emit EH unwind info for leaf functions that don't need it. */
1924 if (for_eh
&& fde
->nothrow
&& ! fde
->uses_eh_lsda
)
1927 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, FDE_LABEL
, for_eh
+ i
* 2);
1928 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ i
* 2);
1929 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ i
* 2);
1930 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
1932 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
1935 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
1937 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, section_start_label
,
1942 dw2_asm_output_encoded_addr_rtx (fde_encoding
,
1943 gen_rtx_SYMBOL_REF (Pmode
, fde
->dw_fde_begin
),
1944 "FDE initial location");
1945 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
1946 fde
->dw_fde_end
, fde
->dw_fde_begin
,
1947 "FDE address range");
1951 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
1952 "FDE initial location");
1953 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
1954 fde
->dw_fde_end
, fde
->dw_fde_begin
,
1955 "FDE address range");
1958 if (augmentation
[0])
1960 if (any_lsda_needed
)
1962 int size
= size_of_encoded_value (lsda_encoding
);
1964 if (lsda_encoding
== DW_EH_PE_aligned
)
1966 int offset
= ( 4 /* Length */
1967 + 4 /* CIE offset */
1968 + 2 * size_of_encoded_value (fde_encoding
)
1969 + 1 /* Augmentation size */ );
1970 int pad
= -offset
& (PTR_SIZE
- 1);
1973 if (size_of_uleb128 (size
) != 1)
1977 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
1979 if (fde
->uses_eh_lsda
)
1981 ASM_GENERATE_INTERNAL_LABEL (l1
, "LLSDA",
1982 fde
->funcdef_number
);
1983 dw2_asm_output_encoded_addr_rtx (
1984 lsda_encoding
, gen_rtx_SYMBOL_REF (Pmode
, l1
),
1985 "Language Specific Data Area");
1989 if (lsda_encoding
== DW_EH_PE_aligned
)
1990 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
1992 (size_of_encoded_value (lsda_encoding
), 0,
1993 "Language Specific Data Area (none)");
1997 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2000 /* Loop through the Call Frame Instructions associated with
2002 fde
->dw_fde_current_label
= fde
->dw_fde_begin
;
2003 for (cfi
= fde
->dw_fde_cfi
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2004 output_cfi (cfi
, fde
, for_eh
);
2006 /* Pad the FDE out to an address sized boundary. */
2007 ASM_OUTPUT_ALIGN (asm_out_file
,
2008 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
2009 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2012 #ifndef EH_FRAME_SECTION_NAME
2014 dw2_asm_output_data (4, 0, "End of Table");
2016 #ifdef MIPS_DEBUGGING_INFO
2017 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2018 get a value of 0. Putting .align 0 after the label fixes it. */
2019 ASM_OUTPUT_ALIGN (asm_out_file
, 0);
2022 /* Turn off app to make assembly quicker. */
2027 /* Output a marker (i.e. a label) for the beginning of a function, before
2031 dwarf2out_begin_prologue (line
, file
)
2032 unsigned int line ATTRIBUTE_UNUSED
;
2033 const char *file ATTRIBUTE_UNUSED
;
2035 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2038 current_function_func_begin_label
= 0;
2040 #ifdef IA64_UNWIND_INFO
2041 /* ??? current_function_func_begin_label is also used by except.c
2042 for call-site information. We must emit this label if it might
2044 if ((! flag_exceptions
|| USING_SJLJ_EXCEPTIONS
)
2045 && ! dwarf2out_do_frame ())
2048 if (! dwarf2out_do_frame ())
2052 current_funcdef_number
++;
2053 function_section (current_function_decl
);
2054 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
2055 current_funcdef_number
);
2056 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
2057 current_funcdef_number
);
2058 current_function_func_begin_label
= get_identifier (label
);
2060 #ifdef IA64_UNWIND_INFO
2061 /* We can elide the fde allocation if we're not emitting debug info. */
2062 if (! dwarf2out_do_frame ())
2066 /* Expand the fde table if necessary. */
2067 if (fde_table_in_use
== fde_table_allocated
)
2069 fde_table_allocated
+= FDE_TABLE_INCREMENT
;
2071 = (dw_fde_ref
) xrealloc (fde_table
,
2072 fde_table_allocated
* sizeof (dw_fde_node
));
2075 /* Record the FDE associated with this function. */
2076 current_funcdef_fde
= fde_table_in_use
;
2078 /* Add the new FDE at the end of the fde_table. */
2079 fde
= &fde_table
[fde_table_in_use
++];
2080 fde
->dw_fde_begin
= xstrdup (label
);
2081 fde
->dw_fde_current_label
= NULL
;
2082 fde
->dw_fde_end
= NULL
;
2083 fde
->dw_fde_cfi
= NULL
;
2084 fde
->funcdef_number
= current_funcdef_number
;
2085 fde
->nothrow
= current_function_nothrow
;
2086 fde
->uses_eh_lsda
= cfun
->uses_eh_lsda
;
2088 args_size
= old_args_size
= 0;
2090 /* We only want to output line number information for the genuine dwarf2
2091 prologue case, not the eh frame case. */
2092 #ifdef DWARF2_DEBUGGING_INFO
2094 dwarf2out_source_line (line
, file
);
2098 /* Output a marker (i.e. a label) for the absolute end of the generated code
2099 for a function definition. This gets called *after* the epilogue code has
2103 dwarf2out_end_epilogue ()
2106 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2108 /* Output a label to mark the endpoint of the code generated for this
2110 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
, current_funcdef_number
);
2111 ASM_OUTPUT_LABEL (asm_out_file
, label
);
2112 fde
= &fde_table
[fde_table_in_use
- 1];
2113 fde
->dw_fde_end
= xstrdup (label
);
2117 dwarf2out_frame_init ()
2119 /* Allocate the initial hunk of the fde_table. */
2120 fde_table
= (dw_fde_ref
) xcalloc (FDE_TABLE_INCREMENT
, sizeof (dw_fde_node
));
2121 fde_table_allocated
= FDE_TABLE_INCREMENT
;
2122 fde_table_in_use
= 0;
2124 /* Generate the CFA instructions common to all FDE's. Do it now for the
2125 sake of lookup_cfa. */
2127 #ifdef DWARF2_UNWIND_INFO
2128 /* On entry, the Canonical Frame Address is at SP. */
2129 dwarf2out_def_cfa (NULL
, STACK_POINTER_REGNUM
, INCOMING_FRAME_SP_OFFSET
);
2130 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2135 dwarf2out_frame_finish ()
2137 /* Output call frame information. */
2138 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
2139 output_call_frame_info (0);
2141 if (! USING_SJLJ_EXCEPTIONS
&& (flag_unwind_tables
|| flag_exceptions
))
2142 output_call_frame_info (1);
2145 /* And now, the subset of the debugging information support code necessary
2146 for emitting location expressions. */
2148 typedef struct dw_val_struct
*dw_val_ref
;
2149 typedef struct die_struct
*dw_die_ref
;
2150 typedef struct dw_loc_descr_struct
*dw_loc_descr_ref
;
2151 typedef struct dw_loc_list_struct
*dw_loc_list_ref
;
2153 /* Each DIE may have a series of attribute/value pairs. Values
2154 can take on several forms. The forms that are used in this
2155 implementation are listed below. */
2160 dw_val_class_offset
,
2162 dw_val_class_loc_list
,
2163 dw_val_class_range_list
,
2165 dw_val_class_unsigned_const
,
2166 dw_val_class_long_long
,
2169 dw_val_class_die_ref
,
2170 dw_val_class_fde_ref
,
2171 dw_val_class_lbl_id
,
2172 dw_val_class_lbl_offset
,
2177 /* Describe a double word constant value. */
2178 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2180 typedef struct dw_long_long_struct
2187 /* Describe a floating point constant value. */
2189 typedef struct dw_fp_struct
2196 /* The dw_val_node describes an attribute's value, as it is
2197 represented internally. */
2199 typedef struct dw_val_struct
2201 dw_val_class val_class
;
2205 long unsigned val_offset
;
2206 dw_loc_list_ref val_loc_list
;
2207 dw_loc_descr_ref val_loc
;
2209 long unsigned val_unsigned
;
2210 dw_long_long_const val_long_long
;
2211 dw_float_const val_float
;
2217 unsigned val_fde_index
;
2218 struct indirect_string_node
*val_str
;
2220 unsigned char val_flag
;
2226 /* Locations in memory are described using a sequence of stack machine
2229 typedef struct dw_loc_descr_struct
2231 dw_loc_descr_ref dw_loc_next
;
2232 enum dwarf_location_atom dw_loc_opc
;
2233 dw_val_node dw_loc_oprnd1
;
2234 dw_val_node dw_loc_oprnd2
;
2239 /* Location lists are ranges + location descriptions for that range,
2240 so you can track variables that are in different places over
2241 their entire life. */
2242 typedef struct dw_loc_list_struct
2244 dw_loc_list_ref dw_loc_next
;
2245 const char *begin
; /* Label for begin address of range */
2246 const char *end
; /* Label for end address of range */
2247 char *ll_symbol
; /* Label for beginning of location list.
2248 Only on head of list */
2249 const char *section
; /* Section this loclist is relative to */
2250 dw_loc_descr_ref expr
;
2253 static const char *dwarf_stack_op_name
PARAMS ((unsigned));
2254 static dw_loc_descr_ref new_loc_descr
PARAMS ((enum dwarf_location_atom
,
2257 static void add_loc_descr
PARAMS ((dw_loc_descr_ref
*,
2259 static unsigned long size_of_loc_descr
PARAMS ((dw_loc_descr_ref
));
2260 static unsigned long size_of_locs
PARAMS ((dw_loc_descr_ref
));
2261 static void output_loc_operands
PARAMS ((dw_loc_descr_ref
));
2262 static void output_loc_sequence
PARAMS ((dw_loc_descr_ref
));
2264 /* Convert a DWARF stack opcode into its string name. */
2267 dwarf_stack_op_name (op
)
2273 return "DW_OP_addr";
2275 return "DW_OP_deref";
2277 return "DW_OP_const1u";
2279 return "DW_OP_const1s";
2281 return "DW_OP_const2u";
2283 return "DW_OP_const2s";
2285 return "DW_OP_const4u";
2287 return "DW_OP_const4s";
2289 return "DW_OP_const8u";
2291 return "DW_OP_const8s";
2293 return "DW_OP_constu";
2295 return "DW_OP_consts";
2299 return "DW_OP_drop";
2301 return "DW_OP_over";
2303 return "DW_OP_pick";
2305 return "DW_OP_swap";
2309 return "DW_OP_xderef";
2317 return "DW_OP_minus";
2329 return "DW_OP_plus";
2330 case DW_OP_plus_uconst
:
2331 return "DW_OP_plus_uconst";
2337 return "DW_OP_shra";
2355 return "DW_OP_skip";
2357 return "DW_OP_lit0";
2359 return "DW_OP_lit1";
2361 return "DW_OP_lit2";
2363 return "DW_OP_lit3";
2365 return "DW_OP_lit4";
2367 return "DW_OP_lit5";
2369 return "DW_OP_lit6";
2371 return "DW_OP_lit7";
2373 return "DW_OP_lit8";
2375 return "DW_OP_lit9";
2377 return "DW_OP_lit10";
2379 return "DW_OP_lit11";
2381 return "DW_OP_lit12";
2383 return "DW_OP_lit13";
2385 return "DW_OP_lit14";
2387 return "DW_OP_lit15";
2389 return "DW_OP_lit16";
2391 return "DW_OP_lit17";
2393 return "DW_OP_lit18";
2395 return "DW_OP_lit19";
2397 return "DW_OP_lit20";
2399 return "DW_OP_lit21";
2401 return "DW_OP_lit22";
2403 return "DW_OP_lit23";
2405 return "DW_OP_lit24";
2407 return "DW_OP_lit25";
2409 return "DW_OP_lit26";
2411 return "DW_OP_lit27";
2413 return "DW_OP_lit28";
2415 return "DW_OP_lit29";
2417 return "DW_OP_lit30";
2419 return "DW_OP_lit31";
2421 return "DW_OP_reg0";
2423 return "DW_OP_reg1";
2425 return "DW_OP_reg2";
2427 return "DW_OP_reg3";
2429 return "DW_OP_reg4";
2431 return "DW_OP_reg5";
2433 return "DW_OP_reg6";
2435 return "DW_OP_reg7";
2437 return "DW_OP_reg8";
2439 return "DW_OP_reg9";
2441 return "DW_OP_reg10";
2443 return "DW_OP_reg11";
2445 return "DW_OP_reg12";
2447 return "DW_OP_reg13";
2449 return "DW_OP_reg14";
2451 return "DW_OP_reg15";
2453 return "DW_OP_reg16";
2455 return "DW_OP_reg17";
2457 return "DW_OP_reg18";
2459 return "DW_OP_reg19";
2461 return "DW_OP_reg20";
2463 return "DW_OP_reg21";
2465 return "DW_OP_reg22";
2467 return "DW_OP_reg23";
2469 return "DW_OP_reg24";
2471 return "DW_OP_reg25";
2473 return "DW_OP_reg26";
2475 return "DW_OP_reg27";
2477 return "DW_OP_reg28";
2479 return "DW_OP_reg29";
2481 return "DW_OP_reg30";
2483 return "DW_OP_reg31";
2485 return "DW_OP_breg0";
2487 return "DW_OP_breg1";
2489 return "DW_OP_breg2";
2491 return "DW_OP_breg3";
2493 return "DW_OP_breg4";
2495 return "DW_OP_breg5";
2497 return "DW_OP_breg6";
2499 return "DW_OP_breg7";
2501 return "DW_OP_breg8";
2503 return "DW_OP_breg9";
2505 return "DW_OP_breg10";
2507 return "DW_OP_breg11";
2509 return "DW_OP_breg12";
2511 return "DW_OP_breg13";
2513 return "DW_OP_breg14";
2515 return "DW_OP_breg15";
2517 return "DW_OP_breg16";
2519 return "DW_OP_breg17";
2521 return "DW_OP_breg18";
2523 return "DW_OP_breg19";
2525 return "DW_OP_breg20";
2527 return "DW_OP_breg21";
2529 return "DW_OP_breg22";
2531 return "DW_OP_breg23";
2533 return "DW_OP_breg24";
2535 return "DW_OP_breg25";
2537 return "DW_OP_breg26";
2539 return "DW_OP_breg27";
2541 return "DW_OP_breg28";
2543 return "DW_OP_breg29";
2545 return "DW_OP_breg30";
2547 return "DW_OP_breg31";
2549 return "DW_OP_regx";
2551 return "DW_OP_fbreg";
2553 return "DW_OP_bregx";
2555 return "DW_OP_piece";
2556 case DW_OP_deref_size
:
2557 return "DW_OP_deref_size";
2558 case DW_OP_xderef_size
:
2559 return "DW_OP_xderef_size";
2563 return "OP_<unknown>";
2567 /* Return a pointer to a newly allocated location description. Location
2568 descriptions are simple expression terms that can be strung
2569 together to form more complicated location (address) descriptions. */
2571 static inline dw_loc_descr_ref
2572 new_loc_descr (op
, oprnd1
, oprnd2
)
2573 enum dwarf_location_atom op
;
2574 unsigned long oprnd1
;
2575 unsigned long oprnd2
;
2577 /* Use xcalloc here so we clear out all of the long_long constant in
2579 dw_loc_descr_ref descr
2580 = (dw_loc_descr_ref
) xcalloc (1, sizeof (dw_loc_descr_node
));
2582 descr
->dw_loc_opc
= op
;
2583 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
2584 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
2585 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
2586 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
2592 /* Add a location description term to a location description expression. */
2595 add_loc_descr (list_head
, descr
)
2596 dw_loc_descr_ref
*list_head
;
2597 dw_loc_descr_ref descr
;
2599 dw_loc_descr_ref
*d
;
2601 /* Find the end of the chain. */
2602 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
2608 /* Return the size of a location descriptor. */
2610 static unsigned long
2611 size_of_loc_descr (loc
)
2612 dw_loc_descr_ref loc
;
2614 unsigned long size
= 1;
2616 switch (loc
->dw_loc_opc
)
2619 size
+= DWARF2_ADDR_SIZE
;
2638 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2641 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2646 case DW_OP_plus_uconst
:
2647 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2685 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2688 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2691 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
2694 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2695 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
2698 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
2700 case DW_OP_deref_size
:
2701 case DW_OP_xderef_size
:
2711 /* Return the size of a series of location descriptors. */
2713 static unsigned long
2715 dw_loc_descr_ref loc
;
2719 for (size
= 0; loc
!= NULL
; loc
= loc
->dw_loc_next
)
2721 loc
->dw_loc_addr
= size
;
2722 size
+= size_of_loc_descr (loc
);
2728 /* Output location description stack opcode's operands (if any). */
2731 output_loc_operands (loc
)
2732 dw_loc_descr_ref loc
;
2734 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
2735 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
2737 switch (loc
->dw_loc_opc
)
2739 #ifdef DWARF2_DEBUGGING_INFO
2741 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
2745 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
2749 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
2753 if (HOST_BITS_PER_LONG
< 64)
2755 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
2762 if (val1
->val_class
== dw_val_class_loc
)
2763 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
2767 dw2_asm_output_data (2, offset
, NULL
);
2780 /* We currently don't make any attempt to make sure these are
2781 aligned properly like we do for the main unwind info, so
2782 don't support emitting things larger than a byte if we're
2783 only doing unwinding. */
2788 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2791 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2794 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2797 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2799 case DW_OP_plus_uconst
:
2800 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2834 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2837 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2840 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
2843 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2844 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
2847 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
2849 case DW_OP_deref_size
:
2850 case DW_OP_xderef_size
:
2851 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
2854 /* Other codes have no operands. */
2859 /* Output a sequence of location operations. */
2862 output_loc_sequence (loc
)
2863 dw_loc_descr_ref loc
;
2865 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
2867 /* Output the opcode. */
2868 dw2_asm_output_data (1, loc
->dw_loc_opc
,
2869 "%s", dwarf_stack_op_name (loc
->dw_loc_opc
));
2871 /* Output the operand(s) (if any). */
2872 output_loc_operands (loc
);
2876 /* This routine will generate the correct assembly data for a location
2877 description based on a cfi entry with a complex address. */
2880 output_cfa_loc (cfi
)
2883 dw_loc_descr_ref loc
;
2886 /* Output the size of the block. */
2887 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
2888 size
= size_of_locs (loc
);
2889 dw2_asm_output_data_uleb128 (size
, NULL
);
2891 /* Now output the operations themselves. */
2892 output_loc_sequence (loc
);
2895 /* This function builds a dwarf location descriptor sequence from
2896 a dw_cfa_location. */
2898 static struct dw_loc_descr_struct
*
2900 dw_cfa_location
*cfa
;
2902 struct dw_loc_descr_struct
*head
, *tmp
;
2904 if (cfa
->indirect
== 0)
2907 if (cfa
->base_offset
)
2910 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, cfa
->base_offset
, 0);
2912 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, cfa
->base_offset
);
2914 else if (cfa
->reg
<= 31)
2915 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
2917 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
2919 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
2920 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
2921 add_loc_descr (&head
, tmp
);
2922 if (cfa
->offset
!= 0)
2924 tmp
= new_loc_descr (DW_OP_plus_uconst
, cfa
->offset
, 0);
2925 add_loc_descr (&head
, tmp
);
2931 /* This function fills in aa dw_cfa_location structure from a dwarf location
2932 descriptor sequence. */
2935 get_cfa_from_loc_descr (cfa
, loc
)
2936 dw_cfa_location
*cfa
;
2937 struct dw_loc_descr_struct
*loc
;
2939 struct dw_loc_descr_struct
*ptr
;
2941 cfa
->base_offset
= 0;
2945 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
2947 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
2983 cfa
->reg
= op
- DW_OP_reg0
;
2986 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3020 cfa
->reg
= op
- DW_OP_breg0
;
3021 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3024 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3025 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
3030 case DW_OP_plus_uconst
:
3031 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
3034 internal_error ("DW_LOC_OP %s not implemented\n",
3035 dwarf_stack_op_name (ptr
->dw_loc_opc
));
3039 #endif /* .debug_frame support */
3041 /* And now, the support for symbolic debugging information. */
3042 #ifdef DWARF2_DEBUGGING_INFO
3044 /* .debug_str support. */
3045 static hashnode indirect_string_alloc
PARAMS ((hash_table
*));
3046 static int output_indirect_string
PARAMS ((struct cpp_reader
*,
3047 hashnode
, const PTR
));
3050 static void dwarf2out_init
PARAMS ((const char *));
3051 static void dwarf2out_finish
PARAMS ((const char *));
3052 static void dwarf2out_define
PARAMS ((unsigned int, const char *));
3053 static void dwarf2out_undef
PARAMS ((unsigned int, const char *));
3054 static void dwarf2out_start_source_file
PARAMS ((unsigned, const char *));
3055 static void dwarf2out_end_source_file
PARAMS ((unsigned));
3056 static void dwarf2out_begin_block
PARAMS ((unsigned, unsigned));
3057 static void dwarf2out_end_block
PARAMS ((unsigned, unsigned));
3058 static bool dwarf2out_ignore_block
PARAMS ((tree
));
3059 static void dwarf2out_global_decl
PARAMS ((tree
));
3060 static void dwarf2out_abstract_function
PARAMS ((tree
));
3062 /* The debug hooks structure. */
3064 struct gcc_debug_hooks dwarf2_debug_hooks
=
3070 dwarf2out_start_source_file
,
3071 dwarf2out_end_source_file
,
3072 dwarf2out_begin_block
,
3073 dwarf2out_end_block
,
3074 dwarf2out_ignore_block
,
3075 dwarf2out_source_line
,
3076 dwarf2out_begin_prologue
,
3077 debug_nothing_int
, /* end_prologue */
3078 dwarf2out_end_epilogue
,
3079 debug_nothing_tree
, /* begin_function */
3080 debug_nothing_int
, /* end_function */
3081 dwarf2out_decl
, /* function_decl */
3082 dwarf2out_global_decl
,
3083 debug_nothing_tree
, /* deferred_inline_function */
3084 /* The DWARF 2 backend tries to reduce debugging bloat by not
3085 emitting the abstract description of inline functions until
3086 something tries to reference them. */
3087 dwarf2out_abstract_function
, /* outlining_inline_function */
3088 debug_nothing_rtx
/* label */
3091 /* NOTE: In the comments in this file, many references are made to
3092 "Debugging Information Entries". This term is abbreviated as `DIE'
3093 throughout the remainder of this file. */
3095 /* An internal representation of the DWARF output is built, and then
3096 walked to generate the DWARF debugging info. The walk of the internal
3097 representation is done after the entire program has been compiled.
3098 The types below are used to describe the internal representation. */
3100 /* Various DIE's use offsets relative to the beginning of the
3101 .debug_info section to refer to each other. */
3103 typedef long int dw_offset
;
3105 /* Define typedefs here to avoid circular dependencies. */
3107 typedef struct dw_attr_struct
*dw_attr_ref
;
3108 typedef struct dw_line_info_struct
*dw_line_info_ref
;
3109 typedef struct dw_separate_line_info_struct
*dw_separate_line_info_ref
;
3110 typedef struct pubname_struct
*pubname_ref
;
3111 typedef struct dw_ranges_struct
*dw_ranges_ref
;
3113 /* Each entry in the line_info_table maintains the file and
3114 line number associated with the label generated for that
3115 entry. The label gives the PC value associated with
3116 the line number entry. */
3118 typedef struct dw_line_info_struct
3120 unsigned long dw_file_num
;
3121 unsigned long dw_line_num
;
3125 /* Line information for functions in separate sections; each one gets its
3127 typedef struct dw_separate_line_info_struct
3129 unsigned long dw_file_num
;
3130 unsigned long dw_line_num
;
3131 unsigned long function
;
3133 dw_separate_line_info_entry
;
3135 /* Each DIE attribute has a field specifying the attribute kind,
3136 a link to the next attribute in the chain, and an attribute value.
3137 Attributes are typically linked below the DIE they modify. */
3139 typedef struct dw_attr_struct
3141 enum dwarf_attribute dw_attr
;
3142 dw_attr_ref dw_attr_next
;
3143 dw_val_node dw_attr_val
;
3147 /* The Debugging Information Entry (DIE) structure */
3149 typedef struct die_struct
3151 enum dwarf_tag die_tag
;
3153 dw_attr_ref die_attr
;
3154 dw_die_ref die_parent
;
3155 dw_die_ref die_child
;
3157 dw_offset die_offset
;
3158 unsigned long die_abbrev
;
3163 /* The pubname structure */
3165 typedef struct pubname_struct
3172 struct dw_ranges_struct
3177 /* The limbo die list structure. */
3178 typedef struct limbo_die_struct
3182 struct limbo_die_struct
*next
;
3186 /* How to start an assembler comment. */
3187 #ifndef ASM_COMMENT_START
3188 #define ASM_COMMENT_START ";#"
3191 /* Define a macro which returns non-zero for a TYPE_DECL which was
3192 implicitly generated for a tagged type.
3194 Note that unlike the gcc front end (which generates a NULL named
3195 TYPE_DECL node for each complete tagged type, each array type, and
3196 each function type node created) the g++ front end generates a
3197 _named_ TYPE_DECL node for each tagged type node created.
3198 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3199 generate a DW_TAG_typedef DIE for them. */
3201 #define TYPE_DECL_IS_STUB(decl) \
3202 (DECL_NAME (decl) == NULL_TREE \
3203 || (DECL_ARTIFICIAL (decl) \
3204 && is_tagged_type (TREE_TYPE (decl)) \
3205 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3206 /* This is necessary for stub decls that \
3207 appear in nested inline functions. */ \
3208 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3209 && (decl_ultimate_origin (decl) \
3210 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3212 /* Information concerning the compilation unit's programming
3213 language, and compiler version. */
3215 extern int flag_traditional
;
3217 /* Fixed size portion of the DWARF compilation unit header. */
3218 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3220 /* Fixed size portion of debugging line information prolog. */
3221 #define DWARF_LINE_PROLOG_HEADER_SIZE 5
3223 /* Fixed size portion of public names info. */
3224 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3226 /* Fixed size portion of the address range info. */
3227 #define DWARF_ARANGES_HEADER_SIZE \
3228 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3229 - DWARF_OFFSET_SIZE)
3231 /* Size of padding portion in the address range info. It must be
3232 aligned to twice the pointer size. */
3233 #define DWARF_ARANGES_PAD_SIZE \
3234 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3235 - (2 * DWARF_OFFSET_SIZE + 4))
3237 /* Use assembler line directives if available. */
3238 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3239 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3240 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3242 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3246 /* Define the architecture-dependent minimum instruction length (in bytes).
3247 In this implementation of DWARF, this field is used for information
3248 purposes only. Since GCC generates assembly language, we have
3249 no a priori knowledge of how many instruction bytes are generated
3250 for each source line, and therefore can use only the DW_LNE_set_address
3251 and DW_LNS_fixed_advance_pc line information commands. */
3252 #ifndef DWARF_LINE_MIN_INSTR_LENGTH
3253 #define DWARF_LINE_MIN_INSTR_LENGTH 4
3256 /* Minimum line offset in a special line info. opcode.
3257 This value was chosen to give a reasonable range of values. */
3258 #define DWARF_LINE_BASE -10
3260 /* First special line opcode - leave room for the standard opcodes. */
3261 #define DWARF_LINE_OPCODE_BASE 10
3263 /* Range of line offsets in a special line info. opcode. */
3264 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3266 /* Flag that indicates the initial value of the is_stmt_start flag.
3267 In the present implementation, we do not mark any lines as
3268 the beginning of a source statement, because that information
3269 is not made available by the GCC front-end. */
3270 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3272 /* This location is used by calc_die_sizes() to keep track
3273 the offset of each DIE within the .debug_info section. */
3274 static unsigned long next_die_offset
;
3276 /* Record the root of the DIE's built for the current compilation unit. */
3277 static dw_die_ref comp_unit_die
;
3279 /* A list of DIEs with a NULL parent waiting to be relocated. */
3280 static limbo_die_node
*limbo_die_list
= 0;
3282 /* Structure used by lookup_filename to manage sets of filenames. */
3288 unsigned last_lookup_index
;
3291 /* Size (in elements) of increments by which we may expand the filename
3293 #define FILE_TABLE_INCREMENT 64
3295 /* Filenames referenced by this compilation unit. */
3296 static struct file_table file_table
;
3298 /* Local pointer to the name of the main input file. Initialized in
3300 static const char *primary_filename
;
3302 /* A pointer to the base of a table of references to DIE's that describe
3303 declarations. The table is indexed by DECL_UID() which is a unique
3304 number identifying each decl. */
3305 static dw_die_ref
*decl_die_table
;
3307 /* Number of elements currently allocated for the decl_die_table. */
3308 static unsigned decl_die_table_allocated
;
3310 /* Number of elements in decl_die_table currently in use. */
3311 static unsigned decl_die_table_in_use
;
3313 /* Size (in elements) of increments by which we may expand the
3315 #define DECL_DIE_TABLE_INCREMENT 256
3317 /* A pointer to the base of a table of references to declaration
3318 scopes. This table is a display which tracks the nesting
3319 of declaration scopes at the current scope and containing
3320 scopes. This table is used to find the proper place to
3321 define type declaration DIE's. */
3322 varray_type decl_scope_table
;
3324 /* A pointer to the base of a list of references to DIE's that
3325 are uniquely identified by their tag, presence/absence of
3326 children DIE's, and list of attribute/value pairs. */
3327 static dw_die_ref
*abbrev_die_table
;
3329 /* Number of elements currently allocated for abbrev_die_table. */
3330 static unsigned abbrev_die_table_allocated
;
3332 /* Number of elements in type_die_table currently in use. */
3333 static unsigned abbrev_die_table_in_use
;
3335 /* Size (in elements) of increments by which we may expand the
3336 abbrev_die_table. */
3337 #define ABBREV_DIE_TABLE_INCREMENT 256
3339 /* A pointer to the base of a table that contains line information
3340 for each source code line in .text in the compilation unit. */
3341 static dw_line_info_ref line_info_table
;
3343 /* Number of elements currently allocated for line_info_table. */
3344 static unsigned line_info_table_allocated
;
3346 /* Number of elements in separate_line_info_table currently in use. */
3347 static unsigned separate_line_info_table_in_use
;
3349 /* A pointer to the base of a table that contains line information
3350 for each source code line outside of .text in the compilation unit. */
3351 static dw_separate_line_info_ref separate_line_info_table
;
3353 /* Number of elements currently allocated for separate_line_info_table. */
3354 static unsigned separate_line_info_table_allocated
;
3356 /* Number of elements in line_info_table currently in use. */
3357 static unsigned line_info_table_in_use
;
3359 /* Size (in elements) of increments by which we may expand the
3361 #define LINE_INFO_TABLE_INCREMENT 1024
3363 /* A pointer to the base of a table that contains a list of publicly
3364 accessible names. */
3365 static pubname_ref pubname_table
;
3367 /* Number of elements currently allocated for pubname_table. */
3368 static unsigned pubname_table_allocated
;
3370 /* Number of elements in pubname_table currently in use. */
3371 static unsigned pubname_table_in_use
;
3373 /* Size (in elements) of increments by which we may expand the
3375 #define PUBNAME_TABLE_INCREMENT 64
3377 /* Array of dies for which we should generate .debug_arange info. */
3378 static dw_die_ref
*arange_table
;
3380 /* Number of elements currently allocated for arange_table. */
3381 static unsigned arange_table_allocated
;
3383 /* Number of elements in arange_table currently in use. */
3384 static unsigned arange_table_in_use
;
3386 /* Size (in elements) of increments by which we may expand the
3388 #define ARANGE_TABLE_INCREMENT 64
3390 /* Array of dies for which we should generate .debug_ranges info. */
3391 static dw_ranges_ref ranges_table
;
3393 /* Number of elements currently allocated for ranges_table. */
3394 static unsigned ranges_table_allocated
;
3396 /* Number of elements in ranges_table currently in use. */
3397 static unsigned ranges_table_in_use
;
3399 /* Size (in elements) of increments by which we may expand the
3401 #define RANGES_TABLE_INCREMENT 64
3403 /* Whether we have location lists that need outputting */
3404 static unsigned have_location_lists
;
3406 /* A pointer to the base of a list of incomplete types which might be
3407 completed at some later time. incomplete_types_list needs to be a VARRAY
3408 because we want to tell the garbage collector about it. */
3409 varray_type incomplete_types
;
3411 /* Record whether the function being analyzed contains inlined functions. */
3412 static int current_function_has_inlines
;
3413 #if 0 && defined (MIPS_DEBUGGING_INFO)
3414 static int comp_unit_has_inlines
;
3417 /* Array of RTXes referenced by the debugging information, which therefore
3418 must be kept around forever. This is a GC root. */
3419 static varray_type used_rtx_varray
;
3421 /* Forward declarations for functions defined in this file. */
3423 static int is_pseudo_reg
PARAMS ((rtx
));
3424 static tree type_main_variant
PARAMS ((tree
));
3425 static int is_tagged_type
PARAMS ((tree
));
3426 static const char *dwarf_tag_name
PARAMS ((unsigned));
3427 static const char *dwarf_attr_name
PARAMS ((unsigned));
3428 static const char *dwarf_form_name
PARAMS ((unsigned));
3430 static const char *dwarf_type_encoding_name
PARAMS ((unsigned));
3432 static tree decl_ultimate_origin
PARAMS ((tree
));
3433 static tree block_ultimate_origin
PARAMS ((tree
));
3434 static tree decl_class_context
PARAMS ((tree
));
3435 static void add_dwarf_attr
PARAMS ((dw_die_ref
, dw_attr_ref
));
3436 static inline dw_val_class AT_class
PARAMS ((dw_attr_ref
));
3437 static void add_AT_flag
PARAMS ((dw_die_ref
,
3438 enum dwarf_attribute
,
3440 static inline unsigned AT_flag
PARAMS ((dw_attr_ref
));
3441 static void add_AT_int
PARAMS ((dw_die_ref
,
3442 enum dwarf_attribute
, long));
3443 static inline long int AT_int
PARAMS ((dw_attr_ref
));
3444 static void add_AT_unsigned
PARAMS ((dw_die_ref
,
3445 enum dwarf_attribute
,
3447 static inline unsigned long AT_unsigned
PARAMS ((dw_attr_ref
));
3448 static void add_AT_long_long
PARAMS ((dw_die_ref
,
3449 enum dwarf_attribute
,
3452 static void add_AT_float
PARAMS ((dw_die_ref
,
3453 enum dwarf_attribute
,
3455 static void add_AT_string
PARAMS ((dw_die_ref
,
3456 enum dwarf_attribute
,
3458 static inline const char *AT_string
PARAMS ((dw_attr_ref
));
3459 static int AT_string_form
PARAMS ((dw_attr_ref
));
3460 static void add_AT_die_ref
PARAMS ((dw_die_ref
,
3461 enum dwarf_attribute
,
3463 static inline dw_die_ref AT_ref
PARAMS ((dw_attr_ref
));
3464 static inline int AT_ref_external
PARAMS ((dw_attr_ref
));
3465 static inline void set_AT_ref_external
PARAMS ((dw_attr_ref
, int));
3466 static void add_AT_fde_ref
PARAMS ((dw_die_ref
,
3467 enum dwarf_attribute
,
3469 static void add_AT_loc
PARAMS ((dw_die_ref
,
3470 enum dwarf_attribute
,
3472 static inline dw_loc_descr_ref AT_loc
PARAMS ((dw_attr_ref
));
3473 static void add_AT_loc_list
PARAMS ((dw_die_ref
,
3474 enum dwarf_attribute
,
3476 static inline dw_loc_list_ref AT_loc_list
PARAMS ((dw_attr_ref
));
3477 static void add_AT_addr
PARAMS ((dw_die_ref
,
3478 enum dwarf_attribute
,
3480 static inline rtx AT_addr
PARAMS ((dw_attr_ref
));
3481 static void add_AT_lbl_id
PARAMS ((dw_die_ref
,
3482 enum dwarf_attribute
,
3484 static void add_AT_lbl_offset
PARAMS ((dw_die_ref
,
3485 enum dwarf_attribute
,
3487 static void add_AT_offset
PARAMS ((dw_die_ref
,
3488 enum dwarf_attribute
,
3490 static void add_AT_range_list
PARAMS ((dw_die_ref
,
3491 enum dwarf_attribute
,
3493 static inline const char *AT_lbl
PARAMS ((dw_attr_ref
));
3494 static dw_attr_ref get_AT
PARAMS ((dw_die_ref
,
3495 enum dwarf_attribute
));
3496 static const char *get_AT_low_pc
PARAMS ((dw_die_ref
));
3497 static const char *get_AT_hi_pc
PARAMS ((dw_die_ref
));
3498 static const char *get_AT_string
PARAMS ((dw_die_ref
,
3499 enum dwarf_attribute
));
3500 static int get_AT_flag
PARAMS ((dw_die_ref
,
3501 enum dwarf_attribute
));
3502 static unsigned get_AT_unsigned
PARAMS ((dw_die_ref
,
3503 enum dwarf_attribute
));
3504 static inline dw_die_ref get_AT_ref
PARAMS ((dw_die_ref
,
3505 enum dwarf_attribute
));
3506 static int is_c_family
PARAMS ((void));
3507 static int is_cxx
PARAMS ((void));
3508 static int is_java
PARAMS ((void));
3509 static int is_fortran
PARAMS ((void));
3510 static void remove_AT
PARAMS ((dw_die_ref
,
3511 enum dwarf_attribute
));
3512 static inline void free_die
PARAMS ((dw_die_ref
));
3513 static void remove_children
PARAMS ((dw_die_ref
));
3514 static void add_child_die
PARAMS ((dw_die_ref
, dw_die_ref
));
3515 static dw_die_ref new_die
PARAMS ((enum dwarf_tag
, dw_die_ref
,
3517 static dw_die_ref lookup_type_die
PARAMS ((tree
));
3518 static void equate_type_number_to_die
PARAMS ((tree
, dw_die_ref
));
3519 static dw_die_ref lookup_decl_die
PARAMS ((tree
));
3520 static void equate_decl_number_to_die
PARAMS ((tree
, dw_die_ref
));
3521 static void print_spaces
PARAMS ((FILE *));
3522 static void print_die
PARAMS ((dw_die_ref
, FILE *));
3523 static void print_dwarf_line_table
PARAMS ((FILE *));
3524 static void reverse_die_lists
PARAMS ((dw_die_ref
));
3525 static void reverse_all_dies
PARAMS ((dw_die_ref
));
3526 static dw_die_ref push_new_compile_unit
PARAMS ((dw_die_ref
, dw_die_ref
));
3527 static dw_die_ref pop_compile_unit
PARAMS ((dw_die_ref
));
3528 static void loc_checksum
PARAMS ((dw_loc_descr_ref
,
3530 static void attr_checksum
PARAMS ((dw_attr_ref
,
3532 static void die_checksum
PARAMS ((dw_die_ref
,
3534 static void compute_section_prefix
PARAMS ((dw_die_ref
));
3535 static int is_type_die
PARAMS ((dw_die_ref
));
3536 static int is_comdat_die
PARAMS ((dw_die_ref
));
3537 static int is_symbol_die
PARAMS ((dw_die_ref
));
3538 static void assign_symbol_names
PARAMS ((dw_die_ref
));
3539 static void break_out_includes
PARAMS ((dw_die_ref
));
3540 static void add_sibling_attributes
PARAMS ((dw_die_ref
));
3541 static void build_abbrev_table
PARAMS ((dw_die_ref
));
3542 static void output_location_lists
PARAMS ((dw_die_ref
));
3543 static int constant_size
PARAMS ((long unsigned));
3544 static unsigned long size_of_die
PARAMS ((dw_die_ref
));
3545 static void calc_die_sizes
PARAMS ((dw_die_ref
));
3546 static void mark_dies
PARAMS ((dw_die_ref
));
3547 static void unmark_dies
PARAMS ((dw_die_ref
));
3548 static unsigned long size_of_pubnames
PARAMS ((void));
3549 static unsigned long size_of_aranges
PARAMS ((void));
3550 static enum dwarf_form value_format
PARAMS ((dw_attr_ref
));
3551 static void output_value_format
PARAMS ((dw_attr_ref
));
3552 static void output_abbrev_section
PARAMS ((void));
3553 static void output_die_symbol
PARAMS ((dw_die_ref
));
3554 static void output_die
PARAMS ((dw_die_ref
));
3555 static void output_compilation_unit_header
PARAMS ((void));
3556 static void output_comp_unit
PARAMS ((dw_die_ref
));
3557 static const char *dwarf2_name
PARAMS ((tree
, int));
3558 static void add_pubname
PARAMS ((tree
, dw_die_ref
));
3559 static void output_pubnames
PARAMS ((void));
3560 static void add_arange
PARAMS ((tree
, dw_die_ref
));
3561 static void output_aranges
PARAMS ((void));
3562 static unsigned int add_ranges
PARAMS ((tree
));
3563 static void output_ranges
PARAMS ((void));
3564 static void output_line_info
PARAMS ((void));
3565 static void output_file_names
PARAMS ((void));
3566 static dw_die_ref base_type_die
PARAMS ((tree
));
3567 static tree root_type
PARAMS ((tree
));
3568 static int is_base_type
PARAMS ((tree
));
3569 static dw_die_ref modified_type_die
PARAMS ((tree
, int, int, dw_die_ref
));
3570 static int type_is_enum
PARAMS ((tree
));
3571 static unsigned int reg_number
PARAMS ((rtx
));
3572 static dw_loc_descr_ref reg_loc_descriptor
PARAMS ((rtx
));
3573 static dw_loc_descr_ref int_loc_descriptor
PARAMS ((HOST_WIDE_INT
));
3574 static dw_loc_descr_ref based_loc_descr
PARAMS ((unsigned, long));
3575 static int is_based_loc
PARAMS ((rtx
));
3576 static dw_loc_descr_ref mem_loc_descriptor
PARAMS ((rtx
, enum machine_mode mode
));
3577 static dw_loc_descr_ref concat_loc_descriptor
PARAMS ((rtx
, rtx
));
3578 static dw_loc_descr_ref loc_descriptor
PARAMS ((rtx
));
3579 static dw_loc_descr_ref loc_descriptor_from_tree
PARAMS ((tree
, int));
3580 static HOST_WIDE_INT ceiling
PARAMS ((HOST_WIDE_INT
, unsigned int));
3581 static tree field_type
PARAMS ((tree
));
3582 static unsigned int simple_type_align_in_bits
PARAMS ((tree
));
3583 static unsigned int simple_decl_align_in_bits
PARAMS ((tree
));
3584 static unsigned HOST_WIDE_INT simple_type_size_in_bits
PARAMS ((tree
));
3585 static HOST_WIDE_INT field_byte_offset
PARAMS ((tree
));
3586 static void add_AT_location_description
PARAMS ((dw_die_ref
,
3587 enum dwarf_attribute
, rtx
));
3588 static void add_data_member_location_attribute
PARAMS ((dw_die_ref
, tree
));
3589 static void add_const_value_attribute
PARAMS ((dw_die_ref
, rtx
));
3590 static rtx rtl_for_decl_location
PARAMS ((tree
));
3591 static void add_location_or_const_value_attribute
PARAMS ((dw_die_ref
, tree
));
3592 static void tree_add_const_value_attribute
PARAMS ((dw_die_ref
, tree
));
3593 static void add_name_attribute
PARAMS ((dw_die_ref
, const char *));
3594 static void add_bound_info
PARAMS ((dw_die_ref
,
3595 enum dwarf_attribute
, tree
));
3596 static void add_subscript_info
PARAMS ((dw_die_ref
, tree
));
3597 static void add_byte_size_attribute
PARAMS ((dw_die_ref
, tree
));
3598 static void add_bit_offset_attribute
PARAMS ((dw_die_ref
, tree
));
3599 static void add_bit_size_attribute
PARAMS ((dw_die_ref
, tree
));
3600 static void add_prototyped_attribute
PARAMS ((dw_die_ref
, tree
));
3601 static void add_abstract_origin_attribute
PARAMS ((dw_die_ref
, tree
));
3602 static void add_pure_or_virtual_attribute
PARAMS ((dw_die_ref
, tree
));
3603 static void add_src_coords_attributes
PARAMS ((dw_die_ref
, tree
));
3604 static void add_name_and_src_coords_attributes
PARAMS ((dw_die_ref
, tree
));
3605 static void push_decl_scope
PARAMS ((tree
));
3606 static void pop_decl_scope
PARAMS ((void));
3607 static dw_die_ref scope_die_for
PARAMS ((tree
, dw_die_ref
));
3608 static inline int local_scope_p
PARAMS ((dw_die_ref
));
3609 static inline int class_scope_p
PARAMS ((dw_die_ref
));
3610 static void add_type_attribute
PARAMS ((dw_die_ref
, tree
, int, int,
3612 static const char *type_tag
PARAMS ((tree
));
3613 static tree member_declared_type
PARAMS ((tree
));
3615 static const char *decl_start_label
PARAMS ((tree
));
3617 static void gen_array_type_die
PARAMS ((tree
, dw_die_ref
));
3618 static void gen_set_type_die
PARAMS ((tree
, dw_die_ref
));
3620 static void gen_entry_point_die
PARAMS ((tree
, dw_die_ref
));
3622 static void gen_inlined_enumeration_type_die
PARAMS ((tree
, dw_die_ref
));
3623 static void gen_inlined_structure_type_die
PARAMS ((tree
, dw_die_ref
));
3624 static void gen_inlined_union_type_die
PARAMS ((tree
, dw_die_ref
));
3625 static void gen_enumeration_type_die
PARAMS ((tree
, dw_die_ref
));
3626 static dw_die_ref gen_formal_parameter_die
PARAMS ((tree
, dw_die_ref
));
3627 static void gen_unspecified_parameters_die
PARAMS ((tree
, dw_die_ref
));
3628 static void gen_formal_types_die
PARAMS ((tree
, dw_die_ref
));
3629 static void gen_subprogram_die
PARAMS ((tree
, dw_die_ref
));
3630 static void gen_variable_die
PARAMS ((tree
, dw_die_ref
));
3631 static void gen_label_die
PARAMS ((tree
, dw_die_ref
));
3632 static void gen_lexical_block_die
PARAMS ((tree
, dw_die_ref
, int));
3633 static void gen_inlined_subroutine_die
PARAMS ((tree
, dw_die_ref
, int));
3634 static void gen_field_die
PARAMS ((tree
, dw_die_ref
));
3635 static void gen_ptr_to_mbr_type_die
PARAMS ((tree
, dw_die_ref
));
3636 static dw_die_ref gen_compile_unit_die
PARAMS ((const char *));
3637 static void gen_string_type_die
PARAMS ((tree
, dw_die_ref
));
3638 static void gen_inheritance_die
PARAMS ((tree
, dw_die_ref
));
3639 static void gen_member_die
PARAMS ((tree
, dw_die_ref
));
3640 static void gen_struct_or_union_type_die
PARAMS ((tree
, dw_die_ref
));
3641 static void gen_subroutine_type_die
PARAMS ((tree
, dw_die_ref
));
3642 static void gen_typedef_die
PARAMS ((tree
, dw_die_ref
));
3643 static void gen_type_die
PARAMS ((tree
, dw_die_ref
));
3644 static void gen_tagged_type_instantiation_die
PARAMS ((tree
, dw_die_ref
));
3645 static void gen_block_die
PARAMS ((tree
, dw_die_ref
, int));
3646 static void decls_for_scope
PARAMS ((tree
, dw_die_ref
, int));
3647 static int is_redundant_typedef
PARAMS ((tree
));
3648 static void gen_decl_die
PARAMS ((tree
, dw_die_ref
));
3649 static unsigned lookup_filename
PARAMS ((const char *));
3650 static void init_file_table
PARAMS ((void));
3651 static void retry_incomplete_types
PARAMS ((void));
3652 static void gen_type_die_for_member
PARAMS ((tree
, tree
, dw_die_ref
));
3653 static void splice_child_die
PARAMS ((dw_die_ref
, dw_die_ref
));
3654 static int file_info_cmp
PARAMS ((const void *, const void *));
3655 static dw_loc_list_ref new_loc_list
PARAMS ((dw_loc_descr_ref
,
3656 const char *, const char *,
3657 const char *, unsigned));
3658 static void add_loc_descr_to_loc_list
PARAMS ((dw_loc_list_ref
*,
3660 const char *, const char *, const char *));
3661 static void output_loc_list
PARAMS ((dw_loc_list_ref
));
3662 static char *gen_internal_sym
PARAMS ((const char *));
3663 static void mark_limbo_die_list
PARAMS ((void *));
3665 /* Section names used to hold DWARF debugging information. */
3666 #ifndef DEBUG_INFO_SECTION
3667 #define DEBUG_INFO_SECTION ".debug_info"
3669 #ifndef DEBUG_ABBREV_SECTION
3670 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3672 #ifndef DEBUG_ARANGES_SECTION
3673 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3675 #ifndef DEBUG_MACINFO_SECTION
3676 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3678 #ifndef DEBUG_LINE_SECTION
3679 #define DEBUG_LINE_SECTION ".debug_line"
3681 #ifndef DEBUG_LOC_SECTION
3682 #define DEBUG_LOC_SECTION ".debug_loc"
3684 #ifndef DEBUG_PUBNAMES_SECTION
3685 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3687 #ifndef DEBUG_STR_SECTION
3688 #define DEBUG_STR_SECTION ".debug_str"
3690 #ifndef DEBUG_RANGES_SECTION
3691 #define DEBUG_RANGES_SECTION ".debug_ranges"
3694 /* Standard ELF section names for compiled code and data. */
3695 #ifndef TEXT_SECTION_NAME
3696 #define TEXT_SECTION_NAME ".text"
3699 /* Section flags for .debug_str section. */
3700 #ifdef HAVE_GAS_SHF_MERGE
3701 #define DEBUG_STR_SECTION_FLAGS \
3702 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3704 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3707 /* Labels we insert at beginning sections we can reference instead of
3708 the section names themselves. */
3710 #ifndef TEXT_SECTION_LABEL
3711 #define TEXT_SECTION_LABEL "Ltext"
3713 #ifndef DEBUG_LINE_SECTION_LABEL
3714 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3716 #ifndef DEBUG_INFO_SECTION_LABEL
3717 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3719 #ifndef DEBUG_ABBREV_SECTION_LABEL
3720 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3722 #ifndef DEBUG_LOC_SECTION_LABEL
3723 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3725 #ifndef DEBUG_RANGES_SECTION_LABEL
3726 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3728 #ifndef DEBUG_MACINFO_SECTION_LABEL
3729 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3732 /* Definitions of defaults for formats and names of various special
3733 (artificial) labels which may be generated within this file (when the -g
3734 options is used and DWARF_DEBUGGING_INFO is in effect.
3735 If necessary, these may be overridden from within the tm.h file, but
3736 typically, overriding these defaults is unnecessary. */
3738 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3739 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3740 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3741 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3742 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3743 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3744 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3745 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
3747 #ifndef TEXT_END_LABEL
3748 #define TEXT_END_LABEL "Letext"
3750 #ifndef DATA_END_LABEL
3751 #define DATA_END_LABEL "Ledata"
3753 #ifndef BSS_END_LABEL
3754 #define BSS_END_LABEL "Lebss"
3756 #ifndef BLOCK_BEGIN_LABEL
3757 #define BLOCK_BEGIN_LABEL "LBB"
3759 #ifndef BLOCK_END_LABEL
3760 #define BLOCK_END_LABEL "LBE"
3762 #ifndef BODY_BEGIN_LABEL
3763 #define BODY_BEGIN_LABEL "Lbb"
3765 #ifndef BODY_END_LABEL
3766 #define BODY_END_LABEL "Lbe"
3768 #ifndef LINE_CODE_LABEL
3769 #define LINE_CODE_LABEL "LM"
3771 #ifndef SEPARATE_LINE_CODE_LABEL
3772 #define SEPARATE_LINE_CODE_LABEL "LSM"
3775 /* We allow a language front-end to designate a function that is to be
3776 called to "demangle" any name before it it put into a DIE. */
3778 static const char *(*demangle_name_func
) PARAMS ((const char *));
3781 dwarf2out_set_demangle_name_func (func
)
3782 const char *(*func
) PARAMS ((const char *));
3784 demangle_name_func
= func
;
3787 /* Test if rtl node points to a pseudo register. */
3793 return ((GET_CODE (rtl
) == REG
&& REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
3794 || (GET_CODE (rtl
) == SUBREG
3795 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
3798 /* Return a reference to a type, with its const and volatile qualifiers
3802 type_main_variant (type
)
3805 type
= TYPE_MAIN_VARIANT (type
);
3807 /* ??? There really should be only one main variant among any group of
3808 variants of a given type (and all of the MAIN_VARIANT values for all
3809 members of the group should point to that one type) but sometimes the C
3810 front-end messes this up for array types, so we work around that bug
3812 if (TREE_CODE (type
) == ARRAY_TYPE
)
3813 while (type
!= TYPE_MAIN_VARIANT (type
))
3814 type
= TYPE_MAIN_VARIANT (type
);
3819 /* Return non-zero if the given type node represents a tagged type. */
3822 is_tagged_type (type
)
3825 enum tree_code code
= TREE_CODE (type
);
3827 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
3828 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
3831 /* Convert a DIE tag into its string name. */
3834 dwarf_tag_name (tag
)
3839 case DW_TAG_padding
:
3840 return "DW_TAG_padding";
3841 case DW_TAG_array_type
:
3842 return "DW_TAG_array_type";
3843 case DW_TAG_class_type
:
3844 return "DW_TAG_class_type";
3845 case DW_TAG_entry_point
:
3846 return "DW_TAG_entry_point";
3847 case DW_TAG_enumeration_type
:
3848 return "DW_TAG_enumeration_type";
3849 case DW_TAG_formal_parameter
:
3850 return "DW_TAG_formal_parameter";
3851 case DW_TAG_imported_declaration
:
3852 return "DW_TAG_imported_declaration";
3854 return "DW_TAG_label";
3855 case DW_TAG_lexical_block
:
3856 return "DW_TAG_lexical_block";
3858 return "DW_TAG_member";
3859 case DW_TAG_pointer_type
:
3860 return "DW_TAG_pointer_type";
3861 case DW_TAG_reference_type
:
3862 return "DW_TAG_reference_type";
3863 case DW_TAG_compile_unit
:
3864 return "DW_TAG_compile_unit";
3865 case DW_TAG_string_type
:
3866 return "DW_TAG_string_type";
3867 case DW_TAG_structure_type
:
3868 return "DW_TAG_structure_type";
3869 case DW_TAG_subroutine_type
:
3870 return "DW_TAG_subroutine_type";
3871 case DW_TAG_typedef
:
3872 return "DW_TAG_typedef";
3873 case DW_TAG_union_type
:
3874 return "DW_TAG_union_type";
3875 case DW_TAG_unspecified_parameters
:
3876 return "DW_TAG_unspecified_parameters";
3877 case DW_TAG_variant
:
3878 return "DW_TAG_variant";
3879 case DW_TAG_common_block
:
3880 return "DW_TAG_common_block";
3881 case DW_TAG_common_inclusion
:
3882 return "DW_TAG_common_inclusion";
3883 case DW_TAG_inheritance
:
3884 return "DW_TAG_inheritance";
3885 case DW_TAG_inlined_subroutine
:
3886 return "DW_TAG_inlined_subroutine";
3888 return "DW_TAG_module";
3889 case DW_TAG_ptr_to_member_type
:
3890 return "DW_TAG_ptr_to_member_type";
3891 case DW_TAG_set_type
:
3892 return "DW_TAG_set_type";
3893 case DW_TAG_subrange_type
:
3894 return "DW_TAG_subrange_type";
3895 case DW_TAG_with_stmt
:
3896 return "DW_TAG_with_stmt";
3897 case DW_TAG_access_declaration
:
3898 return "DW_TAG_access_declaration";
3899 case DW_TAG_base_type
:
3900 return "DW_TAG_base_type";
3901 case DW_TAG_catch_block
:
3902 return "DW_TAG_catch_block";
3903 case DW_TAG_const_type
:
3904 return "DW_TAG_const_type";
3905 case DW_TAG_constant
:
3906 return "DW_TAG_constant";
3907 case DW_TAG_enumerator
:
3908 return "DW_TAG_enumerator";
3909 case DW_TAG_file_type
:
3910 return "DW_TAG_file_type";
3912 return "DW_TAG_friend";
3913 case DW_TAG_namelist
:
3914 return "DW_TAG_namelist";
3915 case DW_TAG_namelist_item
:
3916 return "DW_TAG_namelist_item";
3917 case DW_TAG_packed_type
:
3918 return "DW_TAG_packed_type";
3919 case DW_TAG_subprogram
:
3920 return "DW_TAG_subprogram";
3921 case DW_TAG_template_type_param
:
3922 return "DW_TAG_template_type_param";
3923 case DW_TAG_template_value_param
:
3924 return "DW_TAG_template_value_param";
3925 case DW_TAG_thrown_type
:
3926 return "DW_TAG_thrown_type";
3927 case DW_TAG_try_block
:
3928 return "DW_TAG_try_block";
3929 case DW_TAG_variant_part
:
3930 return "DW_TAG_variant_part";
3931 case DW_TAG_variable
:
3932 return "DW_TAG_variable";
3933 case DW_TAG_volatile_type
:
3934 return "DW_TAG_volatile_type";
3935 case DW_TAG_MIPS_loop
:
3936 return "DW_TAG_MIPS_loop";
3937 case DW_TAG_format_label
:
3938 return "DW_TAG_format_label";
3939 case DW_TAG_function_template
:
3940 return "DW_TAG_function_template";
3941 case DW_TAG_class_template
:
3942 return "DW_TAG_class_template";
3943 case DW_TAG_GNU_BINCL
:
3944 return "DW_TAG_GNU_BINCL";
3945 case DW_TAG_GNU_EINCL
:
3946 return "DW_TAG_GNU_EINCL";
3948 return "DW_TAG_<unknown>";
3952 /* Convert a DWARF attribute code into its string name. */
3955 dwarf_attr_name (attr
)
3961 return "DW_AT_sibling";
3962 case DW_AT_location
:
3963 return "DW_AT_location";
3965 return "DW_AT_name";
3966 case DW_AT_ordering
:
3967 return "DW_AT_ordering";
3968 case DW_AT_subscr_data
:
3969 return "DW_AT_subscr_data";
3970 case DW_AT_byte_size
:
3971 return "DW_AT_byte_size";
3972 case DW_AT_bit_offset
:
3973 return "DW_AT_bit_offset";
3974 case DW_AT_bit_size
:
3975 return "DW_AT_bit_size";
3976 case DW_AT_element_list
:
3977 return "DW_AT_element_list";
3978 case DW_AT_stmt_list
:
3979 return "DW_AT_stmt_list";
3981 return "DW_AT_low_pc";
3983 return "DW_AT_high_pc";
3984 case DW_AT_language
:
3985 return "DW_AT_language";
3987 return "DW_AT_member";
3989 return "DW_AT_discr";
3990 case DW_AT_discr_value
:
3991 return "DW_AT_discr_value";
3992 case DW_AT_visibility
:
3993 return "DW_AT_visibility";
3995 return "DW_AT_import";
3996 case DW_AT_string_length
:
3997 return "DW_AT_string_length";
3998 case DW_AT_common_reference
:
3999 return "DW_AT_common_reference";
4000 case DW_AT_comp_dir
:
4001 return "DW_AT_comp_dir";
4002 case DW_AT_const_value
:
4003 return "DW_AT_const_value";
4004 case DW_AT_containing_type
:
4005 return "DW_AT_containing_type";
4006 case DW_AT_default_value
:
4007 return "DW_AT_default_value";
4009 return "DW_AT_inline";
4010 case DW_AT_is_optional
:
4011 return "DW_AT_is_optional";
4012 case DW_AT_lower_bound
:
4013 return "DW_AT_lower_bound";
4014 case DW_AT_producer
:
4015 return "DW_AT_producer";
4016 case DW_AT_prototyped
:
4017 return "DW_AT_prototyped";
4018 case DW_AT_return_addr
:
4019 return "DW_AT_return_addr";
4020 case DW_AT_start_scope
:
4021 return "DW_AT_start_scope";
4022 case DW_AT_stride_size
:
4023 return "DW_AT_stride_size";
4024 case DW_AT_upper_bound
:
4025 return "DW_AT_upper_bound";
4026 case DW_AT_abstract_origin
:
4027 return "DW_AT_abstract_origin";
4028 case DW_AT_accessibility
:
4029 return "DW_AT_accessibility";
4030 case DW_AT_address_class
:
4031 return "DW_AT_address_class";
4032 case DW_AT_artificial
:
4033 return "DW_AT_artificial";
4034 case DW_AT_base_types
:
4035 return "DW_AT_base_types";
4036 case DW_AT_calling_convention
:
4037 return "DW_AT_calling_convention";
4039 return "DW_AT_count";
4040 case DW_AT_data_member_location
:
4041 return "DW_AT_data_member_location";
4042 case DW_AT_decl_column
:
4043 return "DW_AT_decl_column";
4044 case DW_AT_decl_file
:
4045 return "DW_AT_decl_file";
4046 case DW_AT_decl_line
:
4047 return "DW_AT_decl_line";
4048 case DW_AT_declaration
:
4049 return "DW_AT_declaration";
4050 case DW_AT_discr_list
:
4051 return "DW_AT_discr_list";
4052 case DW_AT_encoding
:
4053 return "DW_AT_encoding";
4054 case DW_AT_external
:
4055 return "DW_AT_external";
4056 case DW_AT_frame_base
:
4057 return "DW_AT_frame_base";
4059 return "DW_AT_friend";
4060 case DW_AT_identifier_case
:
4061 return "DW_AT_identifier_case";
4062 case DW_AT_macro_info
:
4063 return "DW_AT_macro_info";
4064 case DW_AT_namelist_items
:
4065 return "DW_AT_namelist_items";
4066 case DW_AT_priority
:
4067 return "DW_AT_priority";
4069 return "DW_AT_segment";
4070 case DW_AT_specification
:
4071 return "DW_AT_specification";
4072 case DW_AT_static_link
:
4073 return "DW_AT_static_link";
4075 return "DW_AT_type";
4076 case DW_AT_use_location
:
4077 return "DW_AT_use_location";
4078 case DW_AT_variable_parameter
:
4079 return "DW_AT_variable_parameter";
4080 case DW_AT_virtuality
:
4081 return "DW_AT_virtuality";
4082 case DW_AT_vtable_elem_location
:
4083 return "DW_AT_vtable_elem_location";
4085 case DW_AT_allocated
:
4086 return "DW_AT_allocated";
4087 case DW_AT_associated
:
4088 return "DW_AT_associated";
4089 case DW_AT_data_location
:
4090 return "DW_AT_data_location";
4092 return "DW_AT_stride";
4093 case DW_AT_entry_pc
:
4094 return "DW_AT_entry_pc";
4095 case DW_AT_use_UTF8
:
4096 return "DW_AT_use_UTF8";
4097 case DW_AT_extension
:
4098 return "DW_AT_extension";
4100 return "DW_AT_ranges";
4101 case DW_AT_trampoline
:
4102 return "DW_AT_trampoline";
4103 case DW_AT_call_column
:
4104 return "DW_AT_call_column";
4105 case DW_AT_call_file
:
4106 return "DW_AT_call_file";
4107 case DW_AT_call_line
:
4108 return "DW_AT_call_line";
4110 case DW_AT_MIPS_fde
:
4111 return "DW_AT_MIPS_fde";
4112 case DW_AT_MIPS_loop_begin
:
4113 return "DW_AT_MIPS_loop_begin";
4114 case DW_AT_MIPS_tail_loop_begin
:
4115 return "DW_AT_MIPS_tail_loop_begin";
4116 case DW_AT_MIPS_epilog_begin
:
4117 return "DW_AT_MIPS_epilog_begin";
4118 case DW_AT_MIPS_loop_unroll_factor
:
4119 return "DW_AT_MIPS_loop_unroll_factor";
4120 case DW_AT_MIPS_software_pipeline_depth
:
4121 return "DW_AT_MIPS_software_pipeline_depth";
4122 case DW_AT_MIPS_linkage_name
:
4123 return "DW_AT_MIPS_linkage_name";
4124 case DW_AT_MIPS_stride
:
4125 return "DW_AT_MIPS_stride";
4126 case DW_AT_MIPS_abstract_name
:
4127 return "DW_AT_MIPS_abstract_name";
4128 case DW_AT_MIPS_clone_origin
:
4129 return "DW_AT_MIPS_clone_origin";
4130 case DW_AT_MIPS_has_inlines
:
4131 return "DW_AT_MIPS_has_inlines";
4133 case DW_AT_sf_names
:
4134 return "DW_AT_sf_names";
4135 case DW_AT_src_info
:
4136 return "DW_AT_src_info";
4137 case DW_AT_mac_info
:
4138 return "DW_AT_mac_info";
4139 case DW_AT_src_coords
:
4140 return "DW_AT_src_coords";
4141 case DW_AT_body_begin
:
4142 return "DW_AT_body_begin";
4143 case DW_AT_body_end
:
4144 return "DW_AT_body_end";
4145 case DW_AT_VMS_rtnbeg_pd_address
:
4146 return "DW_AT_VMS_rtnbeg_pd_address";
4149 return "DW_AT_<unknown>";
4153 /* Convert a DWARF value form code into its string name. */
4156 dwarf_form_name (form
)
4162 return "DW_FORM_addr";
4163 case DW_FORM_block2
:
4164 return "DW_FORM_block2";
4165 case DW_FORM_block4
:
4166 return "DW_FORM_block4";
4168 return "DW_FORM_data2";
4170 return "DW_FORM_data4";
4172 return "DW_FORM_data8";
4173 case DW_FORM_string
:
4174 return "DW_FORM_string";
4176 return "DW_FORM_block";
4177 case DW_FORM_block1
:
4178 return "DW_FORM_block1";
4180 return "DW_FORM_data1";
4182 return "DW_FORM_flag";
4184 return "DW_FORM_sdata";
4186 return "DW_FORM_strp";
4188 return "DW_FORM_udata";
4189 case DW_FORM_ref_addr
:
4190 return "DW_FORM_ref_addr";
4192 return "DW_FORM_ref1";
4194 return "DW_FORM_ref2";
4196 return "DW_FORM_ref4";
4198 return "DW_FORM_ref8";
4199 case DW_FORM_ref_udata
:
4200 return "DW_FORM_ref_udata";
4201 case DW_FORM_indirect
:
4202 return "DW_FORM_indirect";
4204 return "DW_FORM_<unknown>";
4208 /* Convert a DWARF type code into its string name. */
4212 dwarf_type_encoding_name (enc
)
4217 case DW_ATE_address
:
4218 return "DW_ATE_address";
4219 case DW_ATE_boolean
:
4220 return "DW_ATE_boolean";
4221 case DW_ATE_complex_float
:
4222 return "DW_ATE_complex_float";
4224 return "DW_ATE_float";
4226 return "DW_ATE_signed";
4227 case DW_ATE_signed_char
:
4228 return "DW_ATE_signed_char";
4229 case DW_ATE_unsigned
:
4230 return "DW_ATE_unsigned";
4231 case DW_ATE_unsigned_char
:
4232 return "DW_ATE_unsigned_char";
4234 return "DW_ATE_<unknown>";
4239 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4240 instance of an inlined instance of a decl which is local to an inline
4241 function, so we have to trace all of the way back through the origin chain
4242 to find out what sort of node actually served as the original seed for the
4246 decl_ultimate_origin (decl
)
4249 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4250 nodes in the function to point to themselves; ignore that if
4251 we're trying to output the abstract instance of this function. */
4252 if (DECL_ABSTRACT (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4255 #ifdef ENABLE_CHECKING
4256 if (DECL_FROM_INLINE (DECL_ORIGIN (decl
)))
4257 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4258 most distant ancestor, this should never happen. */
4262 return DECL_ABSTRACT_ORIGIN (decl
);
4265 /* Determine the "ultimate origin" of a block. The block may be an inlined
4266 instance of an inlined instance of a block which is local to an inline
4267 function, so we have to trace all of the way back through the origin chain
4268 to find out what sort of node actually served as the original seed for the
4272 block_ultimate_origin (block
)
4275 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
4277 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4278 nodes in the function to point to themselves; ignore that if
4279 we're trying to output the abstract instance of this function. */
4280 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
4283 if (immediate_origin
== NULL_TREE
)
4288 tree lookahead
= immediate_origin
;
4292 ret_val
= lookahead
;
4293 lookahead
= (TREE_CODE (ret_val
) == BLOCK
4294 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
4296 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
4302 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4303 of a virtual function may refer to a base class, so we check the 'this'
4307 decl_class_context (decl
)
4310 tree context
= NULL_TREE
;
4312 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4313 context
= DECL_CONTEXT (decl
);
4315 context
= TYPE_MAIN_VARIANT
4316 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4318 if (context
&& !TYPE_P (context
))
4319 context
= NULL_TREE
;
4324 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4325 addition order, and correct that in reverse_all_dies. */
4328 add_dwarf_attr (die
, attr
)
4332 if (die
!= NULL
&& attr
!= NULL
)
4334 attr
->dw_attr_next
= die
->die_attr
;
4335 die
->die_attr
= attr
;
4339 static inline dw_val_class
4343 return a
->dw_attr_val
.val_class
;
4346 /* Add a flag value attribute to a DIE. */
4349 add_AT_flag (die
, attr_kind
, flag
)
4351 enum dwarf_attribute attr_kind
;
4354 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4356 attr
->dw_attr_next
= NULL
;
4357 attr
->dw_attr
= attr_kind
;
4358 attr
->dw_attr_val
.val_class
= dw_val_class_flag
;
4359 attr
->dw_attr_val
.v
.val_flag
= flag
;
4360 add_dwarf_attr (die
, attr
);
4363 static inline unsigned
4367 if (a
&& AT_class (a
) == dw_val_class_flag
)
4368 return a
->dw_attr_val
.v
.val_flag
;
4373 /* Add a signed integer attribute value to a DIE. */
4376 add_AT_int (die
, attr_kind
, int_val
)
4378 enum dwarf_attribute attr_kind
;
4381 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4383 attr
->dw_attr_next
= NULL
;
4384 attr
->dw_attr
= attr_kind
;
4385 attr
->dw_attr_val
.val_class
= dw_val_class_const
;
4386 attr
->dw_attr_val
.v
.val_int
= int_val
;
4387 add_dwarf_attr (die
, attr
);
4390 static inline long int
4394 if (a
&& AT_class (a
) == dw_val_class_const
)
4395 return a
->dw_attr_val
.v
.val_int
;
4400 /* Add an unsigned integer attribute value to a DIE. */
4403 add_AT_unsigned (die
, attr_kind
, unsigned_val
)
4405 enum dwarf_attribute attr_kind
;
4406 unsigned long unsigned_val
;
4408 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4410 attr
->dw_attr_next
= NULL
;
4411 attr
->dw_attr
= attr_kind
;
4412 attr
->dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
4413 attr
->dw_attr_val
.v
.val_unsigned
= unsigned_val
;
4414 add_dwarf_attr (die
, attr
);
4417 static inline unsigned long
4421 if (a
&& AT_class (a
) == dw_val_class_unsigned_const
)
4422 return a
->dw_attr_val
.v
.val_unsigned
;
4427 /* Add an unsigned double integer attribute value to a DIE. */
4430 add_AT_long_long (die
, attr_kind
, val_hi
, val_low
)
4432 enum dwarf_attribute attr_kind
;
4433 unsigned long val_hi
;
4434 unsigned long val_low
;
4436 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4438 attr
->dw_attr_next
= NULL
;
4439 attr
->dw_attr
= attr_kind
;
4440 attr
->dw_attr_val
.val_class
= dw_val_class_long_long
;
4441 attr
->dw_attr_val
.v
.val_long_long
.hi
= val_hi
;
4442 attr
->dw_attr_val
.v
.val_long_long
.low
= val_low
;
4443 add_dwarf_attr (die
, attr
);
4446 /* Add a floating point attribute value to a DIE and return it. */
4449 add_AT_float (die
, attr_kind
, length
, array
)
4451 enum dwarf_attribute attr_kind
;
4455 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4457 attr
->dw_attr_next
= NULL
;
4458 attr
->dw_attr
= attr_kind
;
4459 attr
->dw_attr_val
.val_class
= dw_val_class_float
;
4460 attr
->dw_attr_val
.v
.val_float
.length
= length
;
4461 attr
->dw_attr_val
.v
.val_float
.array
= array
;
4462 add_dwarf_attr (die
, attr
);
4465 /* Add a string attribute value to a DIE. */
4468 add_AT_string (die
, attr_kind
, str
)
4470 enum dwarf_attribute attr_kind
;
4473 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4474 struct indirect_string_node
*node
;
4476 if (! debug_str_hash
)
4478 debug_str_hash
= ht_create (10);
4479 debug_str_hash
->alloc_node
= indirect_string_alloc
;
4482 node
= (struct indirect_string_node
*)
4483 ht_lookup (debug_str_hash
, (const unsigned char *) str
,
4484 strlen (str
), HT_ALLOC
);
4487 attr
->dw_attr_next
= NULL
;
4488 attr
->dw_attr
= attr_kind
;
4489 attr
->dw_attr_val
.val_class
= dw_val_class_str
;
4490 attr
->dw_attr_val
.v
.val_str
= node
;
4491 add_dwarf_attr (die
, attr
);
4494 static inline const char *
4498 if (a
&& AT_class (a
) == dw_val_class_str
)
4499 return (const char *) HT_STR (&a
->dw_attr_val
.v
.val_str
->id
);
4504 /* Find out whether a string should be output inline in DIE
4505 or out-of-line in .debug_str section. */
4511 if (a
&& AT_class (a
) == dw_val_class_str
)
4513 struct indirect_string_node
*node
;
4515 extern int const_labelno
;
4518 node
= a
->dw_attr_val
.v
.val_str
;
4522 len
= HT_LEN (&node
->id
) + 1;
4524 /* If the string is shorter or equal to the size of the reference, it is
4525 always better to put it inline. */
4526 if (len
<= DWARF_OFFSET_SIZE
|| node
->refcount
== 0)
4527 return node
->form
= DW_FORM_string
;
4529 /* If we cannot expect the linker to merge strings in .debug_str
4530 section, only put it into .debug_str if it is worth even in this
4532 if ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) == 0
4533 && (len
- DWARF_OFFSET_SIZE
) * node
->refcount
<= len
)
4534 return node
->form
= DW_FORM_string
;
4536 ASM_GENERATE_INTERNAL_LABEL (label
, "LC", const_labelno
);
4538 node
->label
= xstrdup (label
);
4540 return node
->form
= DW_FORM_strp
;
4546 /* Add a DIE reference attribute value to a DIE. */
4549 add_AT_die_ref (die
, attr_kind
, targ_die
)
4551 enum dwarf_attribute attr_kind
;
4552 dw_die_ref targ_die
;
4554 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4556 attr
->dw_attr_next
= NULL
;
4557 attr
->dw_attr
= attr_kind
;
4558 attr
->dw_attr_val
.val_class
= dw_val_class_die_ref
;
4559 attr
->dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
4560 attr
->dw_attr_val
.v
.val_die_ref
.external
= 0;
4561 add_dwarf_attr (die
, attr
);
4564 static inline dw_die_ref
4568 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4569 return a
->dw_attr_val
.v
.val_die_ref
.die
;
4578 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4579 return a
->dw_attr_val
.v
.val_die_ref
.external
;
4585 set_AT_ref_external (a
, i
)
4589 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
4590 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
4595 /* Add an FDE reference attribute value to a DIE. */
4598 add_AT_fde_ref (die
, attr_kind
, targ_fde
)
4600 enum dwarf_attribute attr_kind
;
4603 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4605 attr
->dw_attr_next
= NULL
;
4606 attr
->dw_attr
= attr_kind
;
4607 attr
->dw_attr_val
.val_class
= dw_val_class_fde_ref
;
4608 attr
->dw_attr_val
.v
.val_fde_index
= targ_fde
;
4609 add_dwarf_attr (die
, attr
);
4612 /* Add a location description attribute value to a DIE. */
4615 add_AT_loc (die
, attr_kind
, loc
)
4617 enum dwarf_attribute attr_kind
;
4618 dw_loc_descr_ref loc
;
4620 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4622 attr
->dw_attr_next
= NULL
;
4623 attr
->dw_attr
= attr_kind
;
4624 attr
->dw_attr_val
.val_class
= dw_val_class_loc
;
4625 attr
->dw_attr_val
.v
.val_loc
= loc
;
4626 add_dwarf_attr (die
, attr
);
4629 static inline dw_loc_descr_ref
4633 if (a
&& AT_class (a
) == dw_val_class_loc
)
4634 return a
->dw_attr_val
.v
.val_loc
;
4640 add_AT_loc_list (die
, attr_kind
, loc_list
)
4642 enum dwarf_attribute attr_kind
;
4643 dw_loc_list_ref loc_list
;
4645 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4647 attr
->dw_attr_next
= NULL
;
4648 attr
->dw_attr
= attr_kind
;
4649 attr
->dw_attr_val
.val_class
= dw_val_class_loc_list
;
4650 attr
->dw_attr_val
.v
.val_loc_list
= loc_list
;
4651 add_dwarf_attr (die
, attr
);
4652 have_location_lists
= 1;
4655 static inline dw_loc_list_ref
4659 if (a
&& AT_class (a
) == dw_val_class_loc_list
)
4660 return a
->dw_attr_val
.v
.val_loc_list
;
4665 /* Add an address constant attribute value to a DIE. */
4668 add_AT_addr (die
, attr_kind
, addr
)
4670 enum dwarf_attribute attr_kind
;
4673 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4675 attr
->dw_attr_next
= NULL
;
4676 attr
->dw_attr
= attr_kind
;
4677 attr
->dw_attr_val
.val_class
= dw_val_class_addr
;
4678 attr
->dw_attr_val
.v
.val_addr
= addr
;
4679 add_dwarf_attr (die
, attr
);
4686 if (a
&& AT_class (a
) == dw_val_class_addr
)
4687 return a
->dw_attr_val
.v
.val_addr
;
4692 /* Add a label identifier attribute value to a DIE. */
4695 add_AT_lbl_id (die
, attr_kind
, lbl_id
)
4697 enum dwarf_attribute attr_kind
;
4700 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4702 attr
->dw_attr_next
= NULL
;
4703 attr
->dw_attr
= attr_kind
;
4704 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_id
;
4705 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
4706 add_dwarf_attr (die
, attr
);
4709 /* Add a section offset attribute value to a DIE. */
4712 add_AT_lbl_offset (die
, attr_kind
, label
)
4714 enum dwarf_attribute attr_kind
;
4717 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4719 attr
->dw_attr_next
= NULL
;
4720 attr
->dw_attr
= attr_kind
;
4721 attr
->dw_attr_val
.val_class
= dw_val_class_lbl_offset
;
4722 attr
->dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
4723 add_dwarf_attr (die
, attr
);
4726 /* Add an offset attribute value to a DIE. */
4729 add_AT_offset (die
, attr_kind
, offset
)
4731 enum dwarf_attribute attr_kind
;
4732 unsigned long offset
;
4734 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4736 attr
->dw_attr_next
= NULL
;
4737 attr
->dw_attr
= attr_kind
;
4738 attr
->dw_attr_val
.val_class
= dw_val_class_offset
;
4739 attr
->dw_attr_val
.v
.val_offset
= offset
;
4740 add_dwarf_attr (die
, attr
);
4743 /* Add an range_list attribute value to a DIE. */
4746 add_AT_range_list (die
, attr_kind
, offset
)
4748 enum dwarf_attribute attr_kind
;
4749 unsigned long offset
;
4751 dw_attr_ref attr
= (dw_attr_ref
) xmalloc (sizeof (dw_attr_node
));
4753 attr
->dw_attr_next
= NULL
;
4754 attr
->dw_attr
= attr_kind
;
4755 attr
->dw_attr_val
.val_class
= dw_val_class_range_list
;
4756 attr
->dw_attr_val
.v
.val_offset
= offset
;
4757 add_dwarf_attr (die
, attr
);
4760 static inline const char *
4764 if (a
&& (AT_class (a
) == dw_val_class_lbl_id
4765 || AT_class (a
) == dw_val_class_lbl_offset
))
4766 return a
->dw_attr_val
.v
.val_lbl_id
;
4771 /* Get the attribute of type attr_kind. */
4773 static inline dw_attr_ref
4774 get_AT (die
, attr_kind
)
4776 enum dwarf_attribute attr_kind
;
4779 dw_die_ref spec
= NULL
;
4783 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
4784 if (a
->dw_attr
== attr_kind
)
4786 else if (a
->dw_attr
== DW_AT_specification
4787 || a
->dw_attr
== DW_AT_abstract_origin
)
4791 return get_AT (spec
, attr_kind
);
4797 /* Return the "low pc" attribute value, typically associated with a subprogram
4798 DIE. Return null if the "low pc" attribute is either not present, or if it
4799 cannot be represented as an assembler label identifier. */
4801 static inline const char *
4805 dw_attr_ref a
= get_AT (die
, DW_AT_low_pc
);
4807 return a
? AT_lbl (a
) : NULL
;
4810 /* Return the "high pc" attribute value, typically associated with a subprogram
4811 DIE. Return null if the "high pc" attribute is either not present, or if it
4812 cannot be represented as an assembler label identifier. */
4814 static inline const char *
4818 dw_attr_ref a
= get_AT (die
, DW_AT_high_pc
);
4820 return a
? AT_lbl (a
) : NULL
;
4823 /* Return the value of the string attribute designated by ATTR_KIND, or
4824 NULL if it is not present. */
4826 static inline const char *
4827 get_AT_string (die
, attr_kind
)
4829 enum dwarf_attribute attr_kind
;
4831 dw_attr_ref a
= get_AT (die
, attr_kind
);
4833 return a
? AT_string (a
) : NULL
;
4836 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4837 if it is not present. */
4840 get_AT_flag (die
, attr_kind
)
4842 enum dwarf_attribute attr_kind
;
4844 dw_attr_ref a
= get_AT (die
, attr_kind
);
4846 return a
? AT_flag (a
) : 0;
4849 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4850 if it is not present. */
4852 static inline unsigned
4853 get_AT_unsigned (die
, attr_kind
)
4855 enum dwarf_attribute attr_kind
;
4857 dw_attr_ref a
= get_AT (die
, attr_kind
);
4859 return a
? AT_unsigned (a
) : 0;
4862 static inline dw_die_ref
4863 get_AT_ref (die
, attr_kind
)
4865 enum dwarf_attribute attr_kind
;
4867 dw_attr_ref a
= get_AT (die
, attr_kind
);
4869 return a
? AT_ref (a
) : NULL
;
4875 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
4877 return (lang
== DW_LANG_C
|| lang
== DW_LANG_C89
4878 || lang
== DW_LANG_C_plus_plus
);
4884 return (get_AT_unsigned (comp_unit_die
, DW_AT_language
)
4885 == DW_LANG_C_plus_plus
);
4891 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
4893 return (lang
== DW_LANG_Fortran77
|| lang
== DW_LANG_Fortran90
);
4899 unsigned lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
4901 return (lang
== DW_LANG_Java
);
4904 /* Free up the memory used by A. */
4906 static inline void free_AT
PARAMS ((dw_attr_ref
));
4911 switch (AT_class (a
))
4913 case dw_val_class_str
:
4914 if (a
->dw_attr_val
.v
.val_str
->refcount
)
4915 a
->dw_attr_val
.v
.val_str
->refcount
--;
4918 case dw_val_class_lbl_id
:
4919 case dw_val_class_lbl_offset
:
4920 free (a
->dw_attr_val
.v
.val_lbl_id
);
4923 case dw_val_class_float
:
4924 free (a
->dw_attr_val
.v
.val_float
.array
);
4934 /* Remove the specified attribute if present. */
4937 remove_AT (die
, attr_kind
)
4939 enum dwarf_attribute attr_kind
;
4942 dw_attr_ref removed
= NULL
;
4946 for (p
= &(die
->die_attr
); *p
; p
= &((*p
)->dw_attr_next
))
4947 if ((*p
)->dw_attr
== attr_kind
)
4950 *p
= (*p
)->dw_attr_next
;
4959 /* Free up the memory used by DIE. */
4965 remove_children (die
);
4969 /* Discard the children of this DIE. */
4972 remove_children (die
)
4975 dw_die_ref child_die
= die
->die_child
;
4977 die
->die_child
= NULL
;
4979 while (child_die
!= NULL
)
4981 dw_die_ref tmp_die
= child_die
;
4984 child_die
= child_die
->die_sib
;
4986 for (a
= tmp_die
->die_attr
; a
!= NULL
;)
4988 dw_attr_ref tmp_a
= a
;
4990 a
= a
->dw_attr_next
;
4998 /* Add a child DIE below its parent. We build the lists up in reverse
4999 addition order, and correct that in reverse_all_dies. */
5002 add_child_die (die
, child_die
)
5004 dw_die_ref child_die
;
5006 if (die
!= NULL
&& child_die
!= NULL
)
5008 if (die
== child_die
)
5011 child_die
->die_parent
= die
;
5012 child_die
->die_sib
= die
->die_child
;
5013 die
->die_child
= child_die
;
5017 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5018 is the specification, to the front of PARENT's list of children. */
5021 splice_child_die (parent
, child
)
5022 dw_die_ref parent
, child
;
5026 /* We want the declaration DIE from inside the class, not the
5027 specification DIE at toplevel. */
5028 if (child
->die_parent
!= parent
)
5030 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5036 if (child
->die_parent
!= parent
5037 && child
->die_parent
!= get_AT_ref (parent
, DW_AT_specification
))
5040 for (p
= &(child
->die_parent
->die_child
); *p
; p
= &((*p
)->die_sib
))
5043 *p
= child
->die_sib
;
5047 child
->die_sib
= parent
->die_child
;
5048 parent
->die_child
= child
;
5051 /* Return a pointer to a newly created DIE node. */
5053 static inline dw_die_ref
5054 new_die (tag_value
, parent_die
, t
)
5055 enum dwarf_tag tag_value
;
5056 dw_die_ref parent_die
;
5059 dw_die_ref die
= (dw_die_ref
) xcalloc (1, sizeof (die_node
));
5061 die
->die_tag
= tag_value
;
5063 if (parent_die
!= NULL
)
5064 add_child_die (parent_die
, die
);
5067 limbo_die_node
*limbo_node
;
5069 limbo_node
= (limbo_die_node
*) xmalloc (sizeof (limbo_die_node
));
5070 limbo_node
->die
= die
;
5071 limbo_node
->created_for
= t
;
5072 limbo_node
->next
= limbo_die_list
;
5073 limbo_die_list
= limbo_node
;
5079 /* Return the DIE associated with the given type specifier. */
5081 static inline dw_die_ref
5082 lookup_type_die (type
)
5085 if (TREE_CODE (type
) == VECTOR_TYPE
)
5086 type
= TYPE_DEBUG_REPRESENTATION_TYPE (type
);
5088 return (dw_die_ref
) TYPE_SYMTAB_POINTER (type
);
5091 /* Equate a DIE to a given type specifier. */
5094 equate_type_number_to_die (type
, type_die
)
5096 dw_die_ref type_die
;
5098 TYPE_SYMTAB_POINTER (type
) = (char *) type_die
;
5101 /* Return the DIE associated with a given declaration. */
5103 static inline dw_die_ref
5104 lookup_decl_die (decl
)
5107 unsigned decl_id
= DECL_UID (decl
);
5109 return (decl_id
< decl_die_table_in_use
? decl_die_table
[decl_id
] : NULL
);
5112 /* Equate a DIE to a particular declaration. */
5115 equate_decl_number_to_die (decl
, decl_die
)
5117 dw_die_ref decl_die
;
5119 unsigned decl_id
= DECL_UID (decl
);
5120 unsigned num_allocated
;
5122 if (decl_id
>= decl_die_table_allocated
)
5125 = ((decl_id
+ 1 + DECL_DIE_TABLE_INCREMENT
- 1)
5126 / DECL_DIE_TABLE_INCREMENT
)
5127 * DECL_DIE_TABLE_INCREMENT
;
5130 = (dw_die_ref
*) xrealloc (decl_die_table
,
5131 sizeof (dw_die_ref
) * num_allocated
);
5133 memset ((char *) &decl_die_table
[decl_die_table_allocated
], 0,
5134 (num_allocated
- decl_die_table_allocated
) * sizeof (dw_die_ref
));
5135 decl_die_table_allocated
= num_allocated
;
5138 if (decl_id
>= decl_die_table_in_use
)
5139 decl_die_table_in_use
= (decl_id
+ 1);
5141 decl_die_table
[decl_id
] = decl_die
;
5144 /* Keep track of the number of spaces used to indent the
5145 output of the debugging routines that print the structure of
5146 the DIE internal representation. */
5147 static int print_indent
;
5149 /* Indent the line the number of spaces given by print_indent. */
5152 print_spaces (outfile
)
5155 fprintf (outfile
, "%*s", print_indent
, "");
5158 /* Print the information associated with a given DIE, and its children.
5159 This routine is a debugging aid only. */
5162 print_die (die
, outfile
)
5169 print_spaces (outfile
);
5170 fprintf (outfile
, "DIE %4lu: %s\n",
5171 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
5172 print_spaces (outfile
);
5173 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
5174 fprintf (outfile
, " offset: %lu\n", die
->die_offset
);
5176 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5178 print_spaces (outfile
);
5179 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
5181 switch (AT_class (a
))
5183 case dw_val_class_addr
:
5184 fprintf (outfile
, "address");
5186 case dw_val_class_offset
:
5187 fprintf (outfile
, "offset");
5189 case dw_val_class_loc
:
5190 fprintf (outfile
, "location descriptor");
5192 case dw_val_class_loc_list
:
5193 fprintf (outfile
, "location list -> label:%s",
5194 AT_loc_list (a
)->ll_symbol
);
5196 case dw_val_class_range_list
:
5197 fprintf (outfile
, "range list");
5199 case dw_val_class_const
:
5200 fprintf (outfile
, "%ld", AT_int (a
));
5202 case dw_val_class_unsigned_const
:
5203 fprintf (outfile
, "%lu", AT_unsigned (a
));
5205 case dw_val_class_long_long
:
5206 fprintf (outfile
, "constant (%lu,%lu)",
5207 a
->dw_attr_val
.v
.val_long_long
.hi
,
5208 a
->dw_attr_val
.v
.val_long_long
.low
);
5210 case dw_val_class_float
:
5211 fprintf (outfile
, "floating-point constant");
5213 case dw_val_class_flag
:
5214 fprintf (outfile
, "%u", AT_flag (a
));
5216 case dw_val_class_die_ref
:
5217 if (AT_ref (a
) != NULL
)
5219 if (AT_ref (a
)->die_symbol
)
5220 fprintf (outfile
, "die -> label: %s", AT_ref (a
)->die_symbol
);
5222 fprintf (outfile
, "die -> %lu", AT_ref (a
)->die_offset
);
5225 fprintf (outfile
, "die -> <null>");
5227 case dw_val_class_lbl_id
:
5228 case dw_val_class_lbl_offset
:
5229 fprintf (outfile
, "label: %s", AT_lbl (a
));
5231 case dw_val_class_str
:
5232 if (AT_string (a
) != NULL
)
5233 fprintf (outfile
, "\"%s\"", AT_string (a
));
5235 fprintf (outfile
, "<null>");
5241 fprintf (outfile
, "\n");
5244 if (die
->die_child
!= NULL
)
5247 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5248 print_die (c
, outfile
);
5252 if (print_indent
== 0)
5253 fprintf (outfile
, "\n");
5256 /* Print the contents of the source code line number correspondence table.
5257 This routine is a debugging aid only. */
5260 print_dwarf_line_table (outfile
)
5264 dw_line_info_ref line_info
;
5266 fprintf (outfile
, "\n\nDWARF source line information\n");
5267 for (i
= 1; i
< line_info_table_in_use
; i
++)
5269 line_info
= &line_info_table
[i
];
5270 fprintf (outfile
, "%5d: ", i
);
5271 fprintf (outfile
, "%-20s", file_table
.table
[line_info
->dw_file_num
]);
5272 fprintf (outfile
, "%6ld", line_info
->dw_line_num
);
5273 fprintf (outfile
, "\n");
5276 fprintf (outfile
, "\n\n");
5279 /* Print the information collected for a given DIE. */
5282 debug_dwarf_die (die
)
5285 print_die (die
, stderr
);
5288 /* Print all DWARF information collected for the compilation unit.
5289 This routine is a debugging aid only. */
5295 print_die (comp_unit_die
, stderr
);
5296 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
5297 print_dwarf_line_table (stderr
);
5300 /* We build up the lists of children and attributes by pushing new ones
5301 onto the beginning of the list. Reverse the lists for DIE so that
5302 they are in order of addition. */
5305 reverse_die_lists (die
)
5308 dw_die_ref c
, cp
, cn
;
5309 dw_attr_ref a
, ap
, an
;
5311 for (a
= die
->die_attr
, ap
= 0; a
; a
= an
)
5313 an
= a
->dw_attr_next
;
5314 a
->dw_attr_next
= ap
;
5320 for (c
= die
->die_child
, cp
= 0; c
; c
= cn
)
5327 die
->die_child
= cp
;
5330 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5331 reverse all dies in add_sibling_attributes, which runs through all the dies,
5332 it would reverse all the dies. Now, however, since we don't call
5333 reverse_die_lists in add_sibling_attributes, we need a routine to
5334 recursively reverse all the dies. This is that routine. */
5337 reverse_all_dies (die
)
5342 reverse_die_lists (die
);
5344 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5345 reverse_all_dies (c
);
5348 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5349 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5350 DIE that marks the start of the DIEs for this include file. */
5353 push_new_compile_unit (old_unit
, bincl_die
)
5354 dw_die_ref old_unit
, bincl_die
;
5356 const char *filename
= get_AT_string (bincl_die
, DW_AT_name
);
5357 dw_die_ref new_unit
= gen_compile_unit_die (filename
);
5359 new_unit
->die_sib
= old_unit
;
5363 /* Close an include-file CU and reopen the enclosing one. */
5366 pop_compile_unit (old_unit
)
5367 dw_die_ref old_unit
;
5369 dw_die_ref new_unit
= old_unit
->die_sib
;
5371 old_unit
->die_sib
= NULL
;
5375 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5376 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5378 /* Calculate the checksum of a location expression. */
5381 loc_checksum (loc
, ctx
)
5382 dw_loc_descr_ref loc
;
5383 struct md5_ctx
*ctx
;
5385 CHECKSUM (loc
->dw_loc_opc
);
5386 CHECKSUM (loc
->dw_loc_oprnd1
);
5387 CHECKSUM (loc
->dw_loc_oprnd2
);
5390 /* Calculate the checksum of an attribute. */
5393 attr_checksum (at
, ctx
)
5395 struct md5_ctx
*ctx
;
5397 dw_loc_descr_ref loc
;
5400 CHECKSUM (at
->dw_attr
);
5402 /* We don't care about differences in file numbering. */
5403 if (at
->dw_attr
== DW_AT_decl_file
5404 /* Or that this was compiled with a different compiler snapshot; if
5405 the output is the same, that's what matters. */
5406 || at
->dw_attr
== DW_AT_producer
)
5409 switch (AT_class (at
))
5411 case dw_val_class_const
:
5412 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
5414 case dw_val_class_unsigned_const
:
5415 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
5417 case dw_val_class_long_long
:
5418 CHECKSUM (at
->dw_attr_val
.v
.val_long_long
);
5420 case dw_val_class_float
:
5421 CHECKSUM (at
->dw_attr_val
.v
.val_float
);
5423 case dw_val_class_flag
:
5424 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
5426 case dw_val_class_str
:
5427 CHECKSUM_STRING (AT_string (at
));
5430 case dw_val_class_addr
:
5432 switch (GET_CODE (r
))
5435 CHECKSUM_STRING (XSTR (r
, 0));
5443 case dw_val_class_offset
:
5444 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
5447 case dw_val_class_loc
:
5448 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
5449 loc_checksum (loc
, ctx
);
5452 case dw_val_class_die_ref
:
5453 if (AT_ref (at
)->die_offset
)
5454 CHECKSUM (AT_ref (at
)->die_offset
);
5455 /* FIXME else use target die name or something. */
5457 case dw_val_class_fde_ref
:
5458 case dw_val_class_lbl_id
:
5459 case dw_val_class_lbl_offset
:
5467 /* Calculate the checksum of a DIE. */
5470 die_checksum (die
, ctx
)
5472 struct md5_ctx
*ctx
;
5477 CHECKSUM (die
->die_tag
);
5479 for (a
= die
->die_attr
; a
; a
= a
->dw_attr_next
)
5480 attr_checksum (a
, ctx
);
5482 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5483 die_checksum (c
, ctx
);
5487 #undef CHECKSUM_STRING
5489 /* The prefix to attach to symbols on DIEs in the current comdat debug
5491 static char *comdat_symbol_id
;
5493 /* The index of the current symbol within the current comdat CU. */
5494 static unsigned int comdat_symbol_number
;
5496 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5497 children, and set comdat_symbol_id accordingly. */
5500 compute_section_prefix (unit_die
)
5501 dw_die_ref unit_die
;
5503 const char *base
= lbasename (get_AT_string (unit_die
, DW_AT_name
));
5504 char *name
= (char *) alloca (strlen (base
) + 64);
5507 unsigned char checksum
[16];
5510 /* Compute the checksum of the DIE, then append part of it as hex digits to
5511 the name filename of the unit. */
5513 md5_init_ctx (&ctx
);
5514 die_checksum (unit_die
, &ctx
);
5515 md5_finish_ctx (&ctx
, checksum
);
5517 sprintf (name
, "%s.", base
);
5518 clean_symbol_name (name
);
5520 p
= name
+ strlen (name
);
5521 for (i
= 0; i
< 4; i
++)
5523 sprintf (p
, "%.2x", checksum
[i
]);
5527 comdat_symbol_id
= unit_die
->die_symbol
= xstrdup (name
);
5528 comdat_symbol_number
= 0;
5531 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5537 switch (die
->die_tag
)
5539 case DW_TAG_array_type
:
5540 case DW_TAG_class_type
:
5541 case DW_TAG_enumeration_type
:
5542 case DW_TAG_pointer_type
:
5543 case DW_TAG_reference_type
:
5544 case DW_TAG_string_type
:
5545 case DW_TAG_structure_type
:
5546 case DW_TAG_subroutine_type
:
5547 case DW_TAG_union_type
:
5548 case DW_TAG_ptr_to_member_type
:
5549 case DW_TAG_set_type
:
5550 case DW_TAG_subrange_type
:
5551 case DW_TAG_base_type
:
5552 case DW_TAG_const_type
:
5553 case DW_TAG_file_type
:
5554 case DW_TAG_packed_type
:
5555 case DW_TAG_volatile_type
:
5562 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5563 Basically, we want to choose the bits that are likely to be shared between
5564 compilations (types) and leave out the bits that are specific to individual
5565 compilations (functions). */
5571 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5572 we do for stabs. The advantage is a greater likelihood of sharing between
5573 objects that don't include headers in the same order (and therefore would
5574 put the base types in a different comdat). jason 8/28/00 */
5576 if (c
->die_tag
== DW_TAG_base_type
)
5579 if (c
->die_tag
== DW_TAG_pointer_type
5580 || c
->die_tag
== DW_TAG_reference_type
5581 || c
->die_tag
== DW_TAG_const_type
5582 || c
->die_tag
== DW_TAG_volatile_type
)
5584 dw_die_ref t
= get_AT_ref (c
, DW_AT_type
);
5586 return t
? is_comdat_die (t
) : 0;
5589 return is_type_die (c
);
5592 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5593 compilation unit. */
5599 return (is_type_die (c
)
5600 || (get_AT (c
, DW_AT_declaration
)
5601 && !get_AT (c
, DW_AT_specification
)));
5605 gen_internal_sym (prefix
)
5609 static int label_num
;
5611 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
5612 return xstrdup (buf
);
5615 /* Assign symbols to all worthy DIEs under DIE. */
5618 assign_symbol_names (die
)
5623 if (is_symbol_die (die
))
5625 if (comdat_symbol_id
)
5627 char *p
= alloca (strlen (comdat_symbol_id
) + 64);
5629 sprintf (p
, "%s.%s.%x", DIE_LABEL_PREFIX
,
5630 comdat_symbol_id
, comdat_symbol_number
++);
5631 die
->die_symbol
= xstrdup (p
);
5634 die
->die_symbol
= gen_internal_sym ("LDIE");
5637 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5638 assign_symbol_names (c
);
5641 /* Traverse the DIE (which is always comp_unit_die), and set up
5642 additional compilation units for each of the include files we see
5643 bracketed by BINCL/EINCL. */
5646 break_out_includes (die
)
5650 dw_die_ref unit
= NULL
;
5651 limbo_die_node
*node
;
5653 for (ptr
= &(die
->die_child
); *ptr
; )
5655 dw_die_ref c
= *ptr
;
5657 if (c
->die_tag
== DW_TAG_GNU_BINCL
|| c
->die_tag
== DW_TAG_GNU_EINCL
5658 || (unit
&& is_comdat_die (c
)))
5660 /* This DIE is for a secondary CU; remove it from the main one. */
5663 if (c
->die_tag
== DW_TAG_GNU_BINCL
)
5665 unit
= push_new_compile_unit (unit
, c
);
5668 else if (c
->die_tag
== DW_TAG_GNU_EINCL
)
5670 unit
= pop_compile_unit (unit
);
5674 add_child_die (unit
, c
);
5678 /* Leave this DIE in the main CU. */
5679 ptr
= &(c
->die_sib
);
5685 /* We can only use this in debugging, since the frontend doesn't check
5686 to make sure that we leave every include file we enter. */
5691 assign_symbol_names (die
);
5692 for (node
= limbo_die_list
; node
; node
= node
->next
)
5694 compute_section_prefix (node
->die
);
5695 assign_symbol_names (node
->die
);
5699 /* Traverse the DIE and add a sibling attribute if it may have the
5700 effect of speeding up access to siblings. To save some space,
5701 avoid generating sibling attributes for DIE's without children. */
5704 add_sibling_attributes (die
)
5709 if (die
->die_tag
!= DW_TAG_compile_unit
5710 && die
->die_sib
&& die
->die_child
!= NULL
)
5711 /* Add the sibling link to the front of the attribute list. */
5712 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
5714 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5715 add_sibling_attributes (c
);
5718 /* Output all location lists for the DIE and its children. */
5721 output_location_lists (die
)
5727 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
5728 if (AT_class (d_attr
) == dw_val_class_loc_list
)
5729 output_loc_list (AT_loc_list (d_attr
));
5731 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5732 output_location_lists (c
);
5735 /* The format of each DIE (and its attribute value pairs) is encoded in an
5736 abbreviation table. This routine builds the abbreviation table and assigns
5737 a unique abbreviation id for each abbreviation entry. The children of each
5738 die are visited recursively. */
5741 build_abbrev_table (die
)
5744 unsigned long abbrev_id
;
5745 unsigned int n_alloc
;
5747 dw_attr_ref d_attr
, a_attr
;
5749 /* Scan the DIE references, and mark as external any that refer to
5750 DIEs from other CUs (i.e. those which are not marked). */
5751 for (d_attr
= die
->die_attr
; d_attr
; d_attr
= d_attr
->dw_attr_next
)
5752 if (AT_class (d_attr
) == dw_val_class_die_ref
5753 && AT_ref (d_attr
)->die_mark
== 0)
5755 if (AT_ref (d_attr
)->die_symbol
== 0)
5758 set_AT_ref_external (d_attr
, 1);
5761 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
5763 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
5765 if (abbrev
->die_tag
== die
->die_tag
)
5767 if ((abbrev
->die_child
!= NULL
) == (die
->die_child
!= NULL
))
5769 a_attr
= abbrev
->die_attr
;
5770 d_attr
= die
->die_attr
;
5772 while (a_attr
!= NULL
&& d_attr
!= NULL
)
5774 if ((a_attr
->dw_attr
!= d_attr
->dw_attr
)
5775 || (value_format (a_attr
) != value_format (d_attr
)))
5778 a_attr
= a_attr
->dw_attr_next
;
5779 d_attr
= d_attr
->dw_attr_next
;
5782 if (a_attr
== NULL
&& d_attr
== NULL
)
5788 if (abbrev_id
>= abbrev_die_table_in_use
)
5790 if (abbrev_die_table_in_use
>= abbrev_die_table_allocated
)
5792 n_alloc
= abbrev_die_table_allocated
+ ABBREV_DIE_TABLE_INCREMENT
;
5794 = (dw_die_ref
*) xrealloc (abbrev_die_table
,
5795 sizeof (dw_die_ref
) * n_alloc
);
5797 memset ((char *) &abbrev_die_table
[abbrev_die_table_allocated
], 0,
5798 (n_alloc
- abbrev_die_table_allocated
) * sizeof (dw_die_ref
));
5799 abbrev_die_table_allocated
= n_alloc
;
5802 ++abbrev_die_table_in_use
;
5803 abbrev_die_table
[abbrev_id
] = die
;
5806 die
->die_abbrev
= abbrev_id
;
5807 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5808 build_abbrev_table (c
);
5811 /* Return the power-of-two number of bytes necessary to represent VALUE. */
5814 constant_size (value
)
5815 long unsigned value
;
5822 log
= floor_log2 (value
);
5825 log
= 1 << (floor_log2 (log
) + 1);
5830 /* Return the size of a DIE as it is represented in the
5831 .debug_info section. */
5833 static unsigned long
5837 unsigned long size
= 0;
5840 size
+= size_of_uleb128 (die
->die_abbrev
);
5841 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
5843 switch (AT_class (a
))
5845 case dw_val_class_addr
:
5846 size
+= DWARF2_ADDR_SIZE
;
5848 case dw_val_class_offset
:
5849 size
+= DWARF_OFFSET_SIZE
;
5851 case dw_val_class_loc
:
5853 unsigned long lsize
= size_of_locs (AT_loc (a
));
5856 size
+= constant_size (lsize
);
5860 case dw_val_class_loc_list
:
5861 size
+= DWARF_OFFSET_SIZE
;
5863 case dw_val_class_range_list
:
5864 size
+= DWARF_OFFSET_SIZE
;
5866 case dw_val_class_const
:
5867 size
+= size_of_sleb128 (AT_int (a
));
5869 case dw_val_class_unsigned_const
:
5870 size
+= constant_size (AT_unsigned (a
));
5872 case dw_val_class_long_long
:
5873 size
+= 1 + 2*HOST_BITS_PER_LONG
/HOST_BITS_PER_CHAR
; /* block */
5875 case dw_val_class_float
:
5876 size
+= 1 + a
->dw_attr_val
.v
.val_float
.length
* 4; /* block */
5878 case dw_val_class_flag
:
5881 case dw_val_class_die_ref
:
5882 size
+= DWARF_OFFSET_SIZE
;
5884 case dw_val_class_fde_ref
:
5885 size
+= DWARF_OFFSET_SIZE
;
5887 case dw_val_class_lbl_id
:
5888 size
+= DWARF2_ADDR_SIZE
;
5890 case dw_val_class_lbl_offset
:
5891 size
+= DWARF_OFFSET_SIZE
;
5893 case dw_val_class_str
:
5894 if (AT_string_form (a
) == DW_FORM_strp
)
5895 size
+= DWARF_OFFSET_SIZE
;
5897 size
+= HT_LEN (&a
->dw_attr_val
.v
.val_str
->id
) + 1;
5907 /* Size the debugging information associated with a given DIE. Visits the
5908 DIE's children recursively. Updates the global variable next_die_offset, on
5909 each time through. Uses the current value of next_die_offset to update the
5910 die_offset field in each DIE. */
5913 calc_die_sizes (die
)
5918 die
->die_offset
= next_die_offset
;
5919 next_die_offset
+= size_of_die (die
);
5921 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
5924 if (die
->die_child
!= NULL
)
5925 /* Count the null byte used to terminate sibling lists. */
5926 next_die_offset
+= 1;
5929 /* Set the marks for a die and its children. We do this so
5930 that we know whether or not a reference needs to use FORM_ref_addr; only
5931 DIEs in the same CU will be marked. We used to clear out the offset
5932 and use that as the flag, but ran into ordering problems. */
5941 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5945 /* Clear the marks for a die and its children. */
5954 for (c
= die
->die_child
; c
; c
= c
->die_sib
)
5958 /* Return the size of the .debug_pubnames table generated for the
5959 compilation unit. */
5961 static unsigned long
5967 size
= DWARF_PUBNAMES_HEADER_SIZE
;
5968 for (i
= 0; i
< pubname_table_in_use
; i
++)
5970 pubname_ref p
= &pubname_table
[i
];
5971 size
+= DWARF_OFFSET_SIZE
+ strlen (p
->name
) + 1;
5974 size
+= DWARF_OFFSET_SIZE
;
5978 /* Return the size of the information in the .debug_aranges section. */
5980 static unsigned long
5985 size
= DWARF_ARANGES_HEADER_SIZE
;
5987 /* Count the address/length pair for this compilation unit. */
5988 size
+= 2 * DWARF2_ADDR_SIZE
;
5989 size
+= 2 * DWARF2_ADDR_SIZE
* arange_table_in_use
;
5991 /* Count the two zero words used to terminated the address range table. */
5992 size
+= 2 * DWARF2_ADDR_SIZE
;
5996 /* Select the encoding of an attribute value. */
5998 static enum dwarf_form
6002 switch (a
->dw_attr_val
.val_class
)
6004 case dw_val_class_addr
:
6005 return DW_FORM_addr
;
6006 case dw_val_class_range_list
:
6007 case dw_val_class_offset
:
6008 if (DWARF_OFFSET_SIZE
== 4)
6009 return DW_FORM_data4
;
6010 if (DWARF_OFFSET_SIZE
== 8)
6011 return DW_FORM_data8
;
6013 case dw_val_class_loc_list
:
6014 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6015 .debug_loc section */
6016 return DW_FORM_data4
;
6017 case dw_val_class_loc
:
6018 switch (constant_size (size_of_locs (AT_loc (a
))))
6021 return DW_FORM_block1
;
6023 return DW_FORM_block2
;
6027 case dw_val_class_const
:
6028 return DW_FORM_sdata
;
6029 case dw_val_class_unsigned_const
:
6030 switch (constant_size (AT_unsigned (a
)))
6033 return DW_FORM_data1
;
6035 return DW_FORM_data2
;
6037 return DW_FORM_data4
;
6039 return DW_FORM_data8
;
6043 case dw_val_class_long_long
:
6044 return DW_FORM_block1
;
6045 case dw_val_class_float
:
6046 return DW_FORM_block1
;
6047 case dw_val_class_flag
:
6048 return DW_FORM_flag
;
6049 case dw_val_class_die_ref
:
6050 if (AT_ref_external (a
))
6051 return DW_FORM_ref_addr
;
6054 case dw_val_class_fde_ref
:
6055 return DW_FORM_data
;
6056 case dw_val_class_lbl_id
:
6057 return DW_FORM_addr
;
6058 case dw_val_class_lbl_offset
:
6059 return DW_FORM_data
;
6060 case dw_val_class_str
:
6061 return AT_string_form (a
);
6068 /* Output the encoding of an attribute value. */
6071 output_value_format (a
)
6074 enum dwarf_form form
= value_format (a
);
6076 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
6079 /* Output the .debug_abbrev section which defines the DIE abbreviation
6083 output_abbrev_section ()
6085 unsigned long abbrev_id
;
6089 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6091 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6093 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
6094 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
6095 dwarf_tag_name (abbrev
->die_tag
));
6097 if (abbrev
->die_child
!= NULL
)
6098 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
6100 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
6102 for (a_attr
= abbrev
->die_attr
; a_attr
!= NULL
;
6103 a_attr
= a_attr
->dw_attr_next
)
6105 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
6106 dwarf_attr_name (a_attr
->dw_attr
));
6107 output_value_format (a_attr
);
6110 dw2_asm_output_data (1, 0, NULL
);
6111 dw2_asm_output_data (1, 0, NULL
);
6114 /* Terminate the table. */
6115 dw2_asm_output_data (1, 0, NULL
);
6118 /* Output a symbol we can use to refer to this DIE from another CU. */
6121 output_die_symbol (die
)
6124 char *sym
= die
->die_symbol
;
6129 if (strncmp (sym
, DIE_LABEL_PREFIX
, sizeof (DIE_LABEL_PREFIX
) - 1) == 0)
6130 /* We make these global, not weak; if the target doesn't support
6131 .linkonce, it doesn't support combining the sections, so debugging
6133 ASM_GLOBALIZE_LABEL (asm_out_file
, sym
);
6135 ASM_OUTPUT_LABEL (asm_out_file
, sym
);
6138 /* Return a new location list, given the begin and end range, and the
6139 expression. gensym tells us whether to generate a new internal symbol for
6140 this location list node, which is done for the head of the list only. */
6142 static inline dw_loc_list_ref
6143 new_loc_list (expr
, begin
, end
, section
, gensym
)
6144 dw_loc_descr_ref expr
;
6147 const char *section
;
6150 dw_loc_list_ref retlist
6151 = (dw_loc_list_ref
) xcalloc (1, sizeof (dw_loc_list_node
));
6153 retlist
->begin
= begin
;
6155 retlist
->expr
= expr
;
6156 retlist
->section
= section
;
6158 retlist
->ll_symbol
= gen_internal_sym ("LLST");
6163 /* Add a location description expression to a location list */
6166 add_loc_descr_to_loc_list (list_head
, descr
, begin
, end
, section
)
6167 dw_loc_list_ref
*list_head
;
6168 dw_loc_descr_ref descr
;
6171 const char *section
;
6175 /* Find the end of the chain. */
6176 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
6179 /* Add a new location list node to the list */
6180 *d
= new_loc_list (descr
, begin
, end
, section
, 0);
6183 /* Output the location list given to us */
6186 output_loc_list (list_head
)
6187 dw_loc_list_ref list_head
;
6189 dw_loc_list_ref curr
= list_head
;
6191 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
6193 /* ??? This shouldn't be needed now that we've forced the
6194 compilation unit base address to zero when there is code
6195 in more than one section. */
6196 if (strcmp (curr
->section
, ".text") == 0)
6198 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6199 dw2_asm_output_data (DWARF2_ADDR_SIZE
, ~(unsigned HOST_WIDE_INT
) 0,
6200 "Location list base address specifier fake entry");
6201 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, curr
->section
,
6202 "Location list base address specifier base");
6205 for (curr
= list_head
; curr
!= NULL
; curr
=curr
->dw_loc_next
)
6209 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
6210 "Location list begin address (%s)",
6211 list_head
->ll_symbol
);
6212 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
6213 "Location list end address (%s)",
6214 list_head
->ll_symbol
);
6215 size
= size_of_locs (curr
->expr
);
6217 /* Output the block length for this list of location operations. */
6220 dw2_asm_output_data (2, size
, "%s", "Location expression size");
6222 output_loc_sequence (curr
->expr
);
6225 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0,
6226 "Location list terminator begin (%s)",
6227 list_head
->ll_symbol
);
6228 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0,
6229 "Location list terminator end (%s)",
6230 list_head
->ll_symbol
);
6233 /* Output the DIE and its attributes. Called recursively to generate
6234 the definitions of each child DIE. */
6244 /* If someone in another CU might refer to us, set up a symbol for
6245 them to point to. */
6246 if (die
->die_symbol
)
6247 output_die_symbol (die
);
6249 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (0x%lx) %s)",
6250 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
6252 for (a
= die
->die_attr
; a
!= NULL
; a
= a
->dw_attr_next
)
6254 const char *name
= dwarf_attr_name (a
->dw_attr
);
6256 switch (AT_class (a
))
6258 case dw_val_class_addr
:
6259 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
6262 case dw_val_class_offset
:
6263 dw2_asm_output_data (DWARF_OFFSET_SIZE
, a
->dw_attr_val
.v
.val_offset
,
6267 case dw_val_class_range_list
:
6269 char *p
= strchr (ranges_section_label
, '\0');
6271 sprintf (p
, "+0x%lx", a
->dw_attr_val
.v
.val_offset
);
6272 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, ranges_section_label
,
6278 case dw_val_class_loc
:
6279 size
= size_of_locs (AT_loc (a
));
6281 /* Output the block length for this list of location operations. */
6282 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
6284 output_loc_sequence (AT_loc (a
));
6287 case dw_val_class_const
:
6288 /* ??? It would be slightly more efficient to use a scheme like is
6289 used for unsigned constants below, but gdb 4.x does not sign
6290 extend. Gdb 5.x does sign extend. */
6291 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
6294 case dw_val_class_unsigned_const
:
6295 dw2_asm_output_data (constant_size (AT_unsigned (a
)),
6296 AT_unsigned (a
), "%s", name
);
6299 case dw_val_class_long_long
:
6301 unsigned HOST_WIDE_INT first
, second
;
6303 dw2_asm_output_data (1,
6304 2 * HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6307 if (WORDS_BIG_ENDIAN
)
6309 first
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6310 second
= a
->dw_attr_val
.v
.val_long_long
.low
;
6314 first
= a
->dw_attr_val
.v
.val_long_long
.low
;
6315 second
= a
->dw_attr_val
.v
.val_long_long
.hi
;
6318 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6319 first
, "long long constant");
6320 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
6325 case dw_val_class_float
:
6329 dw2_asm_output_data (1, a
->dw_attr_val
.v
.val_float
.length
* 4,
6332 for (i
= 0; i
< a
->dw_attr_val
.v
.val_float
.length
; i
++)
6333 dw2_asm_output_data (4, a
->dw_attr_val
.v
.val_float
.array
[i
],
6334 "fp constant word %u", i
);
6338 case dw_val_class_flag
:
6339 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
6342 case dw_val_class_loc_list
:
6344 char *sym
= AT_loc_list (a
)->ll_symbol
;
6348 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, sym
,
6349 loc_section_label
, "%s", name
);
6353 case dw_val_class_die_ref
:
6354 if (AT_ref_external (a
))
6356 char *sym
= AT_ref (a
)->die_symbol
;
6360 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, sym
, "%s", name
);
6362 else if (AT_ref (a
)->die_offset
== 0)
6365 dw2_asm_output_data (DWARF_OFFSET_SIZE
, AT_ref (a
)->die_offset
,
6369 case dw_val_class_fde_ref
:
6373 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
6374 a
->dw_attr_val
.v
.val_fde_index
* 2);
6375 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, l1
, "%s", name
);
6379 case dw_val_class_lbl_id
:
6380 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
6383 case dw_val_class_lbl_offset
:
6384 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
), "%s", name
);
6387 case dw_val_class_str
:
6388 if (AT_string_form (a
) == DW_FORM_strp
)
6389 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
6390 a
->dw_attr_val
.v
.val_str
->label
,
6391 "%s: \"%s\"", name
, AT_string (a
));
6393 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
6401 for (c
= die
->die_child
; c
!= NULL
; c
= c
->die_sib
)
6404 /* Add null byte to terminate sibling list. */
6405 if (die
->die_child
!= NULL
)
6406 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6410 /* Output the compilation unit that appears at the beginning of the
6411 .debug_info section, and precedes the DIE descriptions. */
6414 output_compilation_unit_header ()
6416 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
- DWARF_OFFSET_SIZE
,
6417 "Length of Compilation Unit Info");
6418 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF version number");
6419 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, abbrev_section_label
,
6420 "Offset Into Abbrev. Section");
6421 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
6424 /* Output the compilation unit DIE and its children. */
6427 output_comp_unit (die
)
6430 const char *secname
;
6432 /* Even if there are no children of this DIE, we must output the information
6433 about the compilation unit. Otherwise, on an empty translation unit, we
6434 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6435 will then complain when examining the file. First mark all the DIEs in
6436 this CU so we know which get local refs. */
6439 build_abbrev_table (die
);
6441 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6442 next_die_offset
= DWARF_COMPILE_UNIT_HEADER_SIZE
;
6443 calc_die_sizes (die
);
6445 if (die
->die_symbol
)
6447 char *tmp
= (char *) alloca (strlen (die
->die_symbol
) + 24);
6449 sprintf (tmp
, ".gnu.linkonce.wi.%s", die
->die_symbol
);
6451 die
->die_symbol
= NULL
;
6454 secname
= (const char *) DEBUG_INFO_SECTION
;
6456 /* Output debugging information. */
6457 named_section_flags (secname
, SECTION_DEBUG
);
6458 output_compilation_unit_header ();
6461 /* Leave the marks on the main CU, so we can check them in
6463 if (die
->die_symbol
)
6467 /* The DWARF2 pubname for a nested thingy looks like "A::f". The output
6468 of decl_printable_name for C++ looks like "A::f(int)". Let's drop the
6469 argument list, and maybe the scope. */
6472 dwarf2_name (decl
, scope
)
6476 return (*decl_printable_name
) (decl
, scope
? 1 : 0);
6479 /* Add a new entry to .debug_pubnames if appropriate. */
6482 add_pubname (decl
, die
)
6488 if (! TREE_PUBLIC (decl
))
6491 if (pubname_table_in_use
== pubname_table_allocated
)
6493 pubname_table_allocated
+= PUBNAME_TABLE_INCREMENT
;
6495 = (pubname_ref
) xrealloc (pubname_table
,
6496 (pubname_table_allocated
6497 * sizeof (pubname_entry
)));
6500 p
= &pubname_table
[pubname_table_in_use
++];
6502 p
->name
= xstrdup (dwarf2_name (decl
, 1));
6505 /* Output the public names table used to speed up access to externally
6506 visible names. For now, only generate entries for externally
6507 visible procedures. */
6513 unsigned long pubnames_length
= size_of_pubnames ();
6515 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
6516 "Length of Public Names Info");
6517 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
6518 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
6519 "Offset of Compilation Unit Info");
6520 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
,
6521 "Compilation Unit Length");
6523 for (i
= 0; i
< pubname_table_in_use
; i
++)
6525 pubname_ref pub
= &pubname_table
[i
];
6527 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6528 if (pub
->die
->die_mark
== 0)
6531 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pub
->die
->die_offset
,
6534 dw2_asm_output_nstring (pub
->name
, -1, "external name");
6537 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0, NULL
);
6540 /* Add a new entry to .debug_aranges if appropriate. */
6543 add_arange (decl
, die
)
6547 if (! DECL_SECTION_NAME (decl
))
6550 if (arange_table_in_use
== arange_table_allocated
)
6552 arange_table_allocated
+= ARANGE_TABLE_INCREMENT
;
6553 arange_table
= (dw_die_ref
*)
6554 xrealloc (arange_table
, arange_table_allocated
* sizeof (dw_die_ref
));
6557 arange_table
[arange_table_in_use
++] = die
;
6560 /* Output the information that goes into the .debug_aranges table.
6561 Namely, define the beginning and ending address range of the
6562 text section generated for this compilation unit. */
6568 unsigned long aranges_length
= size_of_aranges ();
6570 dw2_asm_output_data (DWARF_OFFSET_SIZE
, aranges_length
,
6571 "Length of Address Ranges Info");
6572 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
6573 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
6574 "Offset of Compilation Unit Info");
6575 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
6576 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6578 /* We need to align to twice the pointer size here. */
6579 if (DWARF_ARANGES_PAD_SIZE
)
6581 /* Pad using a 2 byte words so that padding is correct for any
6583 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6584 2 * DWARF2_ADDR_SIZE
);
6585 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
6586 dw2_asm_output_data (2, 0, NULL
);
6589 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_section_label
, "Address");
6590 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
6591 text_section_label
, "Length");
6593 for (i
= 0; i
< arange_table_in_use
; i
++)
6595 dw_die_ref die
= arange_table
[i
];
6597 /* We shouldn't see aranges for DIEs outside of the main CU. */
6598 if (die
->die_mark
== 0)
6601 if (die
->die_tag
== DW_TAG_subprogram
)
6603 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, get_AT_low_pc (die
),
6605 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, get_AT_hi_pc (die
),
6606 get_AT_low_pc (die
), "Length");
6610 /* A static variable; extract the symbol from DW_AT_location.
6611 Note that this code isn't currently hit, as we only emit
6612 aranges for functions (jason 9/23/99). */
6613 dw_attr_ref a
= get_AT (die
, DW_AT_location
);
6614 dw_loc_descr_ref loc
;
6616 if (! a
|| AT_class (a
) != dw_val_class_loc
)
6620 if (loc
->dw_loc_opc
!= DW_OP_addr
)
6623 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
,
6624 loc
->dw_loc_oprnd1
.v
.val_addr
, "Address");
6625 dw2_asm_output_data (DWARF2_ADDR_SIZE
,
6626 get_AT_unsigned (die
, DW_AT_byte_size
),
6631 /* Output the terminator words. */
6632 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
6633 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
6636 /* Add a new entry to .debug_ranges. Return the offset at which it
6643 unsigned int in_use
= ranges_table_in_use
;
6645 if (in_use
== ranges_table_allocated
)
6647 ranges_table_allocated
+= RANGES_TABLE_INCREMENT
;
6648 ranges_table
= (dw_ranges_ref
)
6649 xrealloc (ranges_table
, (ranges_table_allocated
6650 * sizeof (struct dw_ranges_struct
)));
6653 ranges_table
[in_use
].block_num
= (block
? BLOCK_NUMBER (block
) : 0);
6654 ranges_table_in_use
= in_use
+ 1;
6656 return in_use
* 2 * DWARF2_ADDR_SIZE
;
6663 static const char *const start_fmt
= "Offset 0x%x";
6664 const char *fmt
= start_fmt
;
6666 for (i
= 0; i
< ranges_table_in_use
; i
++)
6668 int block_num
= ranges_table
[i
].block_num
;
6672 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
6673 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
6675 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
6676 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
6678 /* If all code is in the text section, then the compilation
6679 unit base address defaults to DW_AT_low_pc, which is the
6680 base of the text section. */
6681 if (separate_line_info_table_in_use
== 0)
6683 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
6685 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
6686 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
6687 text_section_label
, NULL
);
6690 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6691 compilation unit base address to zero, which allows us to
6692 use absolute addresses, and not worry about whether the
6693 target supports cross-section arithmetic. */
6696 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
6697 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
6698 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
6705 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
6706 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
6712 /* Data structure containing information about input files. */
6715 char *path
; /* Complete file name. */
6716 char *fname
; /* File name part. */
6717 int length
; /* Length of entire string. */
6718 int file_idx
; /* Index in input file table. */
6719 int dir_idx
; /* Index in directory table. */
6722 /* Data structure containing information about directories with source
6726 char *path
; /* Path including directory name. */
6727 int length
; /* Path length. */
6728 int prefix
; /* Index of directory entry which is a prefix. */
6729 int count
; /* Number of files in this directory. */
6730 int dir_idx
; /* Index of directory used as base. */
6731 int used
; /* Used in the end? */
6734 /* Callback function for file_info comparison. We sort by looking at
6735 the directories in the path. */
6738 file_info_cmp (p1
, p2
)
6742 const struct file_info
*s1
= p1
;
6743 const struct file_info
*s2
= p2
;
6747 /* Take care of file names without directories. We need to make sure that
6748 we return consistent values to qsort since some will get confused if
6749 we return the same value when identical operands are passed in opposite
6750 orders. So if neither has a directory, return 0 and otherwise return
6751 1 or -1 depending on which one has the directory. */
6752 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
6753 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
6755 cp1
= (unsigned char *) s1
->path
;
6756 cp2
= (unsigned char *) s2
->path
;
6762 /* Reached the end of the first path? If so, handle like above. */
6763 if ((cp1
== (unsigned char *) s1
->fname
)
6764 || (cp2
== (unsigned char *) s2
->fname
))
6765 return ((cp2
== (unsigned char *) s2
->fname
)
6766 - (cp1
== (unsigned char *) s1
->fname
));
6768 /* Character of current path component the same? */
6769 else if (*cp1
!= *cp2
)
6774 /* Output the directory table and the file name table. We try to minimize
6775 the total amount of memory needed. A heuristic is used to avoid large
6776 slowdowns with many input files. */
6779 output_file_names ()
6781 struct file_info
*files
;
6782 struct dir_info
*dirs
;
6791 /* Allocate the various arrays we need. */
6792 files
= (struct file_info
*) alloca (file_table
.in_use
6793 * sizeof (struct file_info
));
6794 dirs
= (struct dir_info
*) alloca (file_table
.in_use
6795 * sizeof (struct dir_info
));
6797 /* Sort the file names. */
6798 for (i
= 1; i
< (int) file_table
.in_use
; i
++)
6802 /* Skip all leading "./". */
6803 f
= file_table
.table
[i
];
6804 while (f
[0] == '.' && f
[1] == '/')
6807 /* Create a new array entry. */
6809 files
[i
].length
= strlen (f
);
6810 files
[i
].file_idx
= i
;
6812 /* Search for the file name part. */
6813 f
= strrchr (f
, '/');
6814 files
[i
].fname
= f
== NULL
? files
[i
].path
: f
+ 1;
6817 qsort (files
+ 1, file_table
.in_use
- 1, sizeof (files
[0]), file_info_cmp
);
6819 /* Find all the different directories used. */
6820 dirs
[0].path
= files
[1].path
;
6821 dirs
[0].length
= files
[1].fname
- files
[1].path
;
6822 dirs
[0].prefix
= -1;
6824 dirs
[0].dir_idx
= 0;
6826 files
[1].dir_idx
= 0;
6829 for (i
= 2; i
< (int) file_table
.in_use
; i
++)
6830 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
6831 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
6832 dirs
[ndirs
- 1].length
) == 0)
6834 /* Same directory as last entry. */
6835 files
[i
].dir_idx
= ndirs
- 1;
6836 ++dirs
[ndirs
- 1].count
;
6842 /* This is a new directory. */
6843 dirs
[ndirs
].path
= files
[i
].path
;
6844 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
6845 dirs
[ndirs
].count
= 1;
6846 dirs
[ndirs
].dir_idx
= ndirs
;
6847 dirs
[ndirs
].used
= 0;
6848 files
[i
].dir_idx
= ndirs
;
6850 /* Search for a prefix. */
6851 dirs
[ndirs
].prefix
= -1;
6852 for (j
= 0; j
< ndirs
; j
++)
6853 if (dirs
[j
].length
< dirs
[ndirs
].length
6854 && dirs
[j
].length
> 1
6855 && (dirs
[ndirs
].prefix
== -1
6856 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
6857 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
6858 dirs
[ndirs
].prefix
= j
;
6863 /* Now to the actual work. We have to find a subset of the directories which
6864 allow expressing the file name using references to the directory table
6865 with the least amount of characters. We do not do an exhaustive search
6866 where we would have to check out every combination of every single
6867 possible prefix. Instead we use a heuristic which provides nearly optimal
6868 results in most cases and never is much off. */
6869 saved
= (int *) alloca (ndirs
* sizeof (int));
6870 savehere
= (int *) alloca (ndirs
* sizeof (int));
6872 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
6873 for (i
= 0; i
< ndirs
; i
++)
6878 /* We can always save some space for the current directory. But this
6879 does not mean it will be enough to justify adding the directory. */
6880 savehere
[i
] = dirs
[i
].length
;
6881 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
6883 for (j
= i
+ 1; j
< ndirs
; j
++)
6886 if (saved
[j
] < dirs
[i
].length
)
6888 /* Determine whether the dirs[i] path is a prefix of the
6893 while (k
!= -1 && k
!= i
)
6898 /* Yes it is. We can possibly safe some memory but
6899 writing the filenames in dirs[j] relative to
6901 savehere
[j
] = dirs
[i
].length
;
6902 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
6907 /* Check whether we can safe enough to justify adding the dirs[i]
6909 if (total
> dirs
[i
].length
+ 1)
6911 /* It's worthwhile adding. */
6912 for (j
= i
; j
< ndirs
; j
++)
6913 if (savehere
[j
] > 0)
6915 /* Remember how much we saved for this directory so far. */
6916 saved
[j
] = savehere
[j
];
6918 /* Remember the prefix directory. */
6919 dirs
[j
].dir_idx
= i
;
6924 /* We have to emit them in the order they appear in the file_table array
6925 since the index is used in the debug info generation. To do this
6926 efficiently we generate a back-mapping of the indices first. */
6927 backmap
= (int *) alloca (file_table
.in_use
* sizeof (int));
6928 for (i
= 1; i
< (int) file_table
.in_use
; i
++)
6930 backmap
[files
[i
].file_idx
] = i
;
6932 /* Mark this directory as used. */
6933 dirs
[dirs
[files
[i
].dir_idx
].dir_idx
].used
= 1;
6936 /* That was it. We are ready to emit the information. First emit the
6937 directory name table. We have to make sure the first actually emitted
6938 directory name has index one; zero is reserved for the current working
6939 directory. Make sure we do not confuse these indices with the one for the
6940 constructed table (even though most of the time they are identical). */
6942 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
6943 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
6944 if (dirs
[i
].used
!= 0)
6946 dirs
[i
].used
= idx
++;
6947 dw2_asm_output_nstring (dirs
[i
].path
, dirs
[i
].length
- 1,
6948 "Directory Entry: 0x%x", dirs
[i
].used
);
6951 dw2_asm_output_data (1, 0, "End directory table");
6953 /* Correct the index for the current working directory entry if it
6955 if (idx_offset
== 0)
6958 /* Now write all the file names. */
6959 for (i
= 1; i
< (int) file_table
.in_use
; i
++)
6961 int file_idx
= backmap
[i
];
6962 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
6964 dw2_asm_output_nstring (files
[file_idx
].path
+ dirs
[dir_idx
].length
, -1,
6965 "File Entry: 0x%x", i
);
6967 /* Include directory index. */
6968 dw2_asm_output_data_uleb128 (dirs
[dir_idx
].used
, NULL
);
6970 /* Modification time. */
6971 dw2_asm_output_data_uleb128 (0, NULL
);
6973 /* File length in bytes. */
6974 dw2_asm_output_data_uleb128 (0, NULL
);
6977 dw2_asm_output_data (1, 0, "End file name table");
6981 /* Output the source line number correspondence information. This
6982 information goes into the .debug_line section. */
6987 char l1
[20], l2
[20], p1
[20], p2
[20];
6988 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6989 char prev_line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6992 unsigned long lt_index
;
6993 unsigned long current_line
;
6996 unsigned long current_file
;
6997 unsigned long function
;
6999 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
, 0);
7000 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
, 0);
7001 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
, 0);
7002 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
, 0);
7004 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
7005 "Length of Source Line Info");
7006 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
7008 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7009 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, p2
, p1
, "Prolog Length");
7010 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
7012 dw2_asm_output_data (1, DWARF_LINE_MIN_INSTR_LENGTH
,
7013 "Minimum Instruction Length");
7014 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
7015 "Default is_stmt_start flag");
7016 dw2_asm_output_data (1, DWARF_LINE_BASE
,
7017 "Line Base Value (Special Opcodes)");
7018 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
7019 "Line Range Value (Special Opcodes)");
7020 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
7021 "Special Opcode Base");
7023 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
7027 case DW_LNS_advance_pc
:
7028 case DW_LNS_advance_line
:
7029 case DW_LNS_set_file
:
7030 case DW_LNS_set_column
:
7031 case DW_LNS_fixed_advance_pc
:
7039 dw2_asm_output_data (1, n_op_args
, "opcode: 0x%x has %d args",
7043 /* Write out the information about the files we use. */
7044 output_file_names ();
7045 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
7047 /* We used to set the address register to the first location in the text
7048 section here, but that didn't accomplish anything since we already
7049 have a line note for the opening brace of the first function. */
7051 /* Generate the line number to PC correspondence table, encoded as
7052 a series of state machine operations. */
7055 strcpy (prev_line_label
, text_section_label
);
7056 for (lt_index
= 1; lt_index
< line_info_table_in_use
; ++lt_index
)
7058 dw_line_info_ref line_info
= &line_info_table
[lt_index
];
7061 /* Disable this optimization for now; GDB wants to see two line notes
7062 at the beginning of a function so it can find the end of the
7065 /* Don't emit anything for redundant notes. Just updating the
7066 address doesn't accomplish anything, because we already assume
7067 that anything after the last address is this line. */
7068 if (line_info
->dw_line_num
== current_line
7069 && line_info
->dw_file_num
== current_file
)
7073 /* Emit debug info for the address of the current line.
7075 Unfortunately, we have little choice here currently, and must always
7076 use the most general form. GCC does not know the address delta
7077 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7078 attributes which will give an upper bound on the address range. We
7079 could perhaps use length attributes to determine when it is safe to
7080 use DW_LNS_fixed_advance_pc. */
7082 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, lt_index
);
7085 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7086 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7087 "DW_LNS_fixed_advance_pc");
7088 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7092 /* This can handle any delta. This takes
7093 4+DWARF2_ADDR_SIZE bytes. */
7094 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7095 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7096 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7097 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7100 strcpy (prev_line_label
, line_label
);
7102 /* Emit debug info for the source file of the current line, if
7103 different from the previous line. */
7104 if (line_info
->dw_file_num
!= current_file
)
7106 current_file
= line_info
->dw_file_num
;
7107 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7108 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7109 file_table
.table
[current_file
]);
7112 /* Emit debug info for the current line number, choosing the encoding
7113 that uses the least amount of space. */
7114 if (line_info
->dw_line_num
!= current_line
)
7116 line_offset
= line_info
->dw_line_num
- current_line
;
7117 line_delta
= line_offset
- DWARF_LINE_BASE
;
7118 current_line
= line_info
->dw_line_num
;
7119 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7120 /* This can handle deltas from -10 to 234, using the current
7121 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7123 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7124 "line %lu", current_line
);
7127 /* This can handle any delta. This takes at least 4 bytes,
7128 depending on the value being encoded. */
7129 dw2_asm_output_data (1, DW_LNS_advance_line
,
7130 "advance to line %lu", current_line
);
7131 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7132 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7136 /* We still need to start a new row, so output a copy insn. */
7137 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7140 /* Emit debug info for the address of the end of the function. */
7143 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7144 "DW_LNS_fixed_advance_pc");
7145 dw2_asm_output_delta (2, text_end_label
, prev_line_label
, NULL
);
7149 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7150 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7151 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7152 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_end_label
, NULL
);
7155 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7156 dw2_asm_output_data_uleb128 (1, NULL
);
7157 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7162 for (lt_index
= 0; lt_index
< separate_line_info_table_in_use
;)
7164 dw_separate_line_info_ref line_info
7165 = &separate_line_info_table
[lt_index
];
7168 /* Don't emit anything for redundant notes. */
7169 if (line_info
->dw_line_num
== current_line
7170 && line_info
->dw_file_num
== current_file
7171 && line_info
->function
== function
)
7175 /* Emit debug info for the address of the current line. If this is
7176 a new function, or the first line of a function, then we need
7177 to handle it differently. */
7178 ASM_GENERATE_INTERNAL_LABEL (line_label
, SEPARATE_LINE_CODE_LABEL
,
7180 if (function
!= line_info
->function
)
7182 function
= line_info
->function
;
7184 /* Set the address register to the first line in the function */
7185 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7186 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7187 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7188 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7192 /* ??? See the DW_LNS_advance_pc comment above. */
7195 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7196 "DW_LNS_fixed_advance_pc");
7197 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7201 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7202 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7203 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7204 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7208 strcpy (prev_line_label
, line_label
);
7210 /* Emit debug info for the source file of the current line, if
7211 different from the previous line. */
7212 if (line_info
->dw_file_num
!= current_file
)
7214 current_file
= line_info
->dw_file_num
;
7215 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7216 dw2_asm_output_data_uleb128 (current_file
, "(\"%s\")",
7217 file_table
.table
[current_file
]);
7220 /* Emit debug info for the current line number, choosing the encoding
7221 that uses the least amount of space. */
7222 if (line_info
->dw_line_num
!= current_line
)
7224 line_offset
= line_info
->dw_line_num
- current_line
;
7225 line_delta
= line_offset
- DWARF_LINE_BASE
;
7226 current_line
= line_info
->dw_line_num
;
7227 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
7228 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
7229 "line %lu", current_line
);
7232 dw2_asm_output_data (1, DW_LNS_advance_line
,
7233 "advance to line %lu", current_line
);
7234 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
7235 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7239 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
7247 /* If we're done with a function, end its sequence. */
7248 if (lt_index
== separate_line_info_table_in_use
7249 || separate_line_info_table
[lt_index
].function
!= function
)
7254 /* Emit debug info for the address of the end of the function. */
7255 ASM_GENERATE_INTERNAL_LABEL (line_label
, FUNC_END_LABEL
, function
);
7258 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7259 "DW_LNS_fixed_advance_pc");
7260 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7264 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7265 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7266 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7267 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7270 /* Output the marker for the end of this sequence. */
7271 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7272 dw2_asm_output_data_uleb128 (1, NULL
);
7273 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
7277 /* Output the marker for the end of the line number info. */
7278 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
7281 /* Given a pointer to a tree node for some base type, return a pointer to
7282 a DIE that describes the given type.
7284 This routine must only be called for GCC type nodes that correspond to
7285 Dwarf base (fundamental) types. */
7288 base_type_die (type
)
7291 dw_die_ref base_type_result
;
7292 const char *type_name
;
7293 enum dwarf_type encoding
;
7294 tree name
= TYPE_NAME (type
);
7296 if (TREE_CODE (type
) == ERROR_MARK
|| TREE_CODE (type
) == VOID_TYPE
)
7301 if (TREE_CODE (name
) == TYPE_DECL
)
7302 name
= DECL_NAME (name
);
7304 type_name
= IDENTIFIER_POINTER (name
);
7307 type_name
= "__unknown__";
7309 switch (TREE_CODE (type
))
7312 /* Carefully distinguish the C character types, without messing
7313 up if the language is not C. Note that we check only for the names
7314 that contain spaces; other names might occur by coincidence in other
7316 if (! (TYPE_PRECISION (type
) == CHAR_TYPE_SIZE
7317 && (type
== char_type_node
7318 || ! strcmp (type_name
, "signed char")
7319 || ! strcmp (type_name
, "unsigned char"))))
7321 if (TREE_UNSIGNED (type
))
7322 encoding
= DW_ATE_unsigned
;
7324 encoding
= DW_ATE_signed
;
7327 /* else fall through. */
7330 /* GNU Pascal/Ada CHAR type. Not used in C. */
7331 if (TREE_UNSIGNED (type
))
7332 encoding
= DW_ATE_unsigned_char
;
7334 encoding
= DW_ATE_signed_char
;
7338 encoding
= DW_ATE_float
;
7341 /* Dwarf2 doesn't know anything about complex ints, so use
7342 a user defined type for it. */
7344 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
7345 encoding
= DW_ATE_complex_float
;
7347 encoding
= DW_ATE_lo_user
;
7351 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7352 encoding
= DW_ATE_boolean
;
7356 /* No other TREE_CODEs are Dwarf fundamental types. */
7360 base_type_result
= new_die (DW_TAG_base_type
, comp_unit_die
, type
);
7361 if (demangle_name_func
)
7362 type_name
= (*demangle_name_func
) (type_name
);
7364 add_AT_string (base_type_result
, DW_AT_name
, type_name
);
7365 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
7366 int_size_in_bytes (type
));
7367 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
7369 return base_type_result
;
7372 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7373 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7374 a given type is generally the same as the given type, except that if the
7375 given type is a pointer or reference type, then the root type of the given
7376 type is the root type of the "basis" type for the pointer or reference
7377 type. (This definition of the "root" type is recursive.) Also, the root
7378 type of a `const' qualified type or a `volatile' qualified type is the
7379 root type of the given type without the qualifiers. */
7385 if (TREE_CODE (type
) == ERROR_MARK
)
7386 return error_mark_node
;
7388 switch (TREE_CODE (type
))
7391 return error_mark_node
;
7394 case REFERENCE_TYPE
:
7395 return type_main_variant (root_type (TREE_TYPE (type
)));
7398 return type_main_variant (type
);
7402 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
7403 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7409 switch (TREE_CODE (type
))
7424 case QUAL_UNION_TYPE
:
7429 case REFERENCE_TYPE
:
7443 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7444 entry that chains various modifiers in front of the given type. */
7447 modified_type_die (type
, is_const_type
, is_volatile_type
, context_die
)
7450 int is_volatile_type
;
7451 dw_die_ref context_die
;
7453 enum tree_code code
= TREE_CODE (type
);
7454 dw_die_ref mod_type_die
= NULL
;
7455 dw_die_ref sub_die
= NULL
;
7456 tree item_type
= NULL
;
7458 if (code
!= ERROR_MARK
)
7460 tree qualified_type
;
7462 /* See if we already have the appropriately qualified variant of
7465 = get_qualified_type (type
,
7466 ((is_const_type
? TYPE_QUAL_CONST
: 0)
7468 ? TYPE_QUAL_VOLATILE
: 0)));
7470 /* If we do, then we can just use its DIE, if it exists. */
7473 mod_type_die
= lookup_type_die (qualified_type
);
7475 return mod_type_die
;
7478 /* Handle C typedef types. */
7479 if (qualified_type
&& TYPE_NAME (qualified_type
)
7480 && TREE_CODE (TYPE_NAME (qualified_type
)) == TYPE_DECL
7481 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type
)))
7483 tree type_name
= TYPE_NAME (qualified_type
);
7484 tree dtype
= TREE_TYPE (type_name
);
7486 if (qualified_type
== dtype
)
7488 /* For a named type, use the typedef. */
7489 gen_type_die (qualified_type
, context_die
);
7490 mod_type_die
= lookup_type_die (qualified_type
);
7492 else if (is_const_type
< TYPE_READONLY (dtype
)
7493 || is_volatile_type
< TYPE_VOLATILE (dtype
))
7494 /* cv-unqualified version of named type. Just use the unnamed
7495 type to which it refers. */
7497 = modified_type_die (DECL_ORIGINAL_TYPE (type_name
),
7498 is_const_type
, is_volatile_type
,
7501 /* Else cv-qualified version of named type; fall through. */
7507 else if (is_const_type
)
7509 mod_type_die
= new_die (DW_TAG_const_type
, comp_unit_die
, type
);
7510 sub_die
= modified_type_die (type
, 0, is_volatile_type
, context_die
);
7512 else if (is_volatile_type
)
7514 mod_type_die
= new_die (DW_TAG_volatile_type
, comp_unit_die
, type
);
7515 sub_die
= modified_type_die (type
, 0, 0, context_die
);
7517 else if (code
== POINTER_TYPE
)
7519 mod_type_die
= new_die (DW_TAG_pointer_type
, comp_unit_die
, type
);
7520 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
7522 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
7524 item_type
= TREE_TYPE (type
);
7526 else if (code
== REFERENCE_TYPE
)
7528 mod_type_die
= new_die (DW_TAG_reference_type
, comp_unit_die
, type
);
7529 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
7531 add_AT_unsigned (mod_type_die
, DW_AT_address_class
, 0);
7533 item_type
= TREE_TYPE (type
);
7535 else if (is_base_type (type
))
7536 mod_type_die
= base_type_die (type
);
7539 gen_type_die (type
, context_die
);
7541 /* We have to get the type_main_variant here (and pass that to the
7542 `lookup_type_die' routine) because the ..._TYPE node we have
7543 might simply be a *copy* of some original type node (where the
7544 copy was created to help us keep track of typedef names) and
7545 that copy might have a different TYPE_UID from the original
7547 mod_type_die
= lookup_type_die (type_main_variant (type
));
7548 if (mod_type_die
== NULL
)
7552 /* We want to equate the qualified type to the die below. */
7554 type
= qualified_type
;
7557 equate_type_number_to_die (type
, mod_type_die
);
7559 /* We must do this after the equate_type_number_to_die call, in case
7560 this is a recursive type. This ensures that the modified_type_die
7561 recursion will terminate even if the type is recursive. Recursive
7562 types are possible in Ada. */
7563 sub_die
= modified_type_die (item_type
,
7564 TYPE_READONLY (item_type
),
7565 TYPE_VOLATILE (item_type
),
7568 if (sub_die
!= NULL
)
7569 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
7571 return mod_type_die
;
7574 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7575 an enumerated type. */
7581 return TREE_CODE (type
) == ENUMERAL_TYPE
;
7584 /* Return the register number described by a given RTL node. */
7590 unsigned regno
= REGNO (rtl
);
7592 if (regno
>= FIRST_PSEUDO_REGISTER
)
7595 return DBX_REGISTER_NUMBER (regno
);
7598 /* Return a location descriptor that designates a machine register or
7599 zero if there is no such. */
7601 static dw_loc_descr_ref
7602 reg_loc_descriptor (rtl
)
7605 dw_loc_descr_ref loc_result
= NULL
;
7608 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
7611 reg
= reg_number (rtl
);
7613 loc_result
= new_loc_descr (DW_OP_reg0
+ reg
, 0, 0);
7615 loc_result
= new_loc_descr (DW_OP_regx
, reg
, 0);
7620 /* Return a location descriptor that designates a constant. */
7622 static dw_loc_descr_ref
7623 int_loc_descriptor (i
)
7626 enum dwarf_location_atom op
;
7628 /* Pick the smallest representation of a constant, rather than just
7629 defaulting to the LEB encoding. */
7633 op
= DW_OP_lit0
+ i
;
7636 else if (i
<= 0xffff)
7638 else if (HOST_BITS_PER_WIDE_INT
== 32
7648 else if (i
>= -0x8000)
7650 else if (HOST_BITS_PER_WIDE_INT
== 32
7651 || i
>= -0x80000000)
7657 return new_loc_descr (op
, i
, 0);
7660 /* Return a location descriptor that designates a base+offset location. */
7662 static dw_loc_descr_ref
7663 based_loc_descr (reg
, offset
)
7667 dw_loc_descr_ref loc_result
;
7668 /* For the "frame base", we use the frame pointer or stack pointer
7669 registers, since the RTL for local variables is relative to one of
7671 unsigned fp_reg
= DBX_REGISTER_NUMBER (frame_pointer_needed
7672 ? HARD_FRAME_POINTER_REGNUM
7673 : STACK_POINTER_REGNUM
);
7676 loc_result
= new_loc_descr (DW_OP_fbreg
, offset
, 0);
7678 loc_result
= new_loc_descr (DW_OP_breg0
+ reg
, offset
, 0);
7680 loc_result
= new_loc_descr (DW_OP_bregx
, reg
, offset
);
7685 /* Return true if this RTL expression describes a base+offset calculation. */
7691 return (GET_CODE (rtl
) == PLUS
7692 && ((GET_CODE (XEXP (rtl
, 0)) == REG
7693 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
7694 && GET_CODE (XEXP (rtl
, 1)) == CONST_INT
)));
7697 /* The following routine converts the RTL for a variable or parameter
7698 (resident in memory) into an equivalent Dwarf representation of a
7699 mechanism for getting the address of that same variable onto the top of a
7700 hypothetical "address evaluation" stack.
7702 When creating memory location descriptors, we are effectively transforming
7703 the RTL for a memory-resident object into its Dwarf postfix expression
7704 equivalent. This routine recursively descends an RTL tree, turning
7705 it into Dwarf postfix code as it goes.
7707 MODE is the mode of the memory reference, needed to handle some
7708 autoincrement addressing modes.
7710 Return 0 if we can't represent the location. */
7712 static dw_loc_descr_ref
7713 mem_loc_descriptor (rtl
, mode
)
7715 enum machine_mode mode
;
7717 dw_loc_descr_ref mem_loc_result
= NULL
;
7719 /* Note that for a dynamically sized array, the location we will generate a
7720 description of here will be the lowest numbered location which is
7721 actually within the array. That's *not* necessarily the same as the
7722 zeroth element of the array. */
7724 #ifdef ASM_SIMPLIFY_DWARF_ADDR
7725 rtl
= ASM_SIMPLIFY_DWARF_ADDR (rtl
);
7728 switch (GET_CODE (rtl
))
7733 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
7734 just fall into the SUBREG code. */
7736 /* ... fall through ... */
7739 /* The case of a subreg may arise when we have a local (register)
7740 variable or a formal (register) parameter which doesn't quite fill
7741 up an entire register. For now, just assume that it is
7742 legitimate to make the Dwarf info refer to the whole register which
7743 contains the given subreg. */
7744 rtl
= SUBREG_REG (rtl
);
7746 /* ... fall through ... */
7749 /* Whenever a register number forms a part of the description of the
7750 method for calculating the (dynamic) address of a memory resident
7751 object, DWARF rules require the register number be referred to as
7752 a "base register". This distinction is not based in any way upon
7753 what category of register the hardware believes the given register
7754 belongs to. This is strictly DWARF terminology we're dealing with
7755 here. Note that in cases where the location of a memory-resident
7756 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
7757 OP_CONST (0)) the actual DWARF location descriptor that we generate
7758 may just be OP_BASEREG (basereg). This may look deceptively like
7759 the object in question was allocated to a register (rather than in
7760 memory) so DWARF consumers need to be aware of the subtle
7761 distinction between OP_REG and OP_BASEREG. */
7762 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
7763 mem_loc_result
= based_loc_descr (reg_number (rtl
), 0);
7767 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
));
7768 if (mem_loc_result
!= 0)
7769 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
7773 /* Some ports can transform a symbol ref into a label ref, because
7774 the symbol ref is too far away and has to be dumped into a constant
7778 /* Alternatively, the symbol in the constant pool might be referenced
7779 by a different symbol. */
7780 if (GET_CODE (rtl
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (rtl
))
7782 rtx tmp
= get_pool_constant (rtl
);
7784 if (GET_CODE (tmp
) == SYMBOL_REF
)
7788 mem_loc_result
= new_loc_descr (DW_OP_addr
, 0, 0);
7789 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
7790 mem_loc_result
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
7791 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
7795 /* Extract the PLUS expression nested inside and fall into
7797 rtl
= XEXP (rtl
, 1);
7802 /* Turn these into a PLUS expression and fall into the PLUS code
7804 rtl
= gen_rtx_PLUS (word_mode
, XEXP (rtl
, 0),
7805 GEN_INT (GET_CODE (rtl
) == PRE_INC
7806 ? GET_MODE_UNIT_SIZE (mode
)
7807 : -GET_MODE_UNIT_SIZE (mode
)));
7809 /* ... fall through ... */
7813 if (is_based_loc (rtl
))
7814 mem_loc_result
= based_loc_descr (reg_number (XEXP (rtl
, 0)),
7815 INTVAL (XEXP (rtl
, 1)));
7818 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
);
7819 if (mem_loc_result
== 0)
7822 if (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
7823 && INTVAL (XEXP (rtl
, 1)) >= 0)
7824 add_loc_descr (&mem_loc_result
,
7825 new_loc_descr (DW_OP_plus_uconst
,
7826 INTVAL (XEXP (rtl
, 1)), 0));
7829 add_loc_descr (&mem_loc_result
,
7830 mem_loc_descriptor (XEXP (rtl
, 1), mode
));
7831 add_loc_descr (&mem_loc_result
,
7832 new_loc_descr (DW_OP_plus
, 0, 0));
7839 /* If a pseudo-reg is optimized away, it is possible for it to
7840 be replaced with a MEM containing a multiply. */
7841 dw_loc_descr_ref op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
);
7842 dw_loc_descr_ref op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
);
7844 if (op0
== 0 || op1
== 0)
7847 mem_loc_result
= op0
;
7848 add_loc_descr (&mem_loc_result
, op1
);
7849 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_mul
, 0, 0));
7854 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
7861 return mem_loc_result
;
7864 /* Return a descriptor that describes the concatenation of two locations.
7865 This is typically a complex variable. */
7867 static dw_loc_descr_ref
7868 concat_loc_descriptor (x0
, x1
)
7871 dw_loc_descr_ref cc_loc_result
= NULL
;
7872 dw_loc_descr_ref x0_ref
= loc_descriptor (x0
);
7873 dw_loc_descr_ref x1_ref
= loc_descriptor (x1
);
7875 if (x0_ref
== 0 || x1_ref
== 0)
7878 cc_loc_result
= x0_ref
;
7879 add_loc_descr (&cc_loc_result
,
7880 new_loc_descr (DW_OP_piece
,
7881 GET_MODE_SIZE (GET_MODE (x0
)), 0));
7883 add_loc_descr (&cc_loc_result
, x1_ref
);
7884 add_loc_descr (&cc_loc_result
,
7885 new_loc_descr (DW_OP_piece
,
7886 GET_MODE_SIZE (GET_MODE (x1
)), 0));
7888 return cc_loc_result
;
7891 /* Output a proper Dwarf location descriptor for a variable or parameter
7892 which is either allocated in a register or in a memory location. For a
7893 register, we just generate an OP_REG and the register number. For a
7894 memory location we provide a Dwarf postfix expression describing how to
7895 generate the (dynamic) address of the object onto the address stack.
7897 If we don't know how to describe it, return 0. */
7899 static dw_loc_descr_ref
7900 loc_descriptor (rtl
)
7903 dw_loc_descr_ref loc_result
= NULL
;
7905 switch (GET_CODE (rtl
))
7908 /* The case of a subreg may arise when we have a local (register)
7909 variable or a formal (register) parameter which doesn't quite fill
7910 up an entire register. For now, just assume that it is
7911 legitimate to make the Dwarf info refer to the whole register which
7912 contains the given subreg. */
7913 rtl
= SUBREG_REG (rtl
);
7915 /* ... fall through ... */
7918 loc_result
= reg_loc_descriptor (rtl
);
7922 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
));
7926 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1));
7936 /* Similar, but generate the descriptor from trees instead of rtl. This comes
7937 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
7938 looking for an address. Otherwise, we return a value. If we can't make a
7939 descriptor, return 0. */
7941 static dw_loc_descr_ref
7942 loc_descriptor_from_tree (loc
, addressp
)
7946 dw_loc_descr_ref ret
, ret1
;
7948 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (loc
));
7949 enum dwarf_location_atom op
;
7951 /* ??? Most of the time we do not take proper care for sign/zero
7952 extending the values properly. Hopefully this won't be a real
7955 switch (TREE_CODE (loc
))
7960 case WITH_RECORD_EXPR
:
7961 case PLACEHOLDER_EXPR
:
7962 /* This case involves extracting fields from an object to determine the
7963 position of other fields. We don't try to encode this here. The
7964 only user of this is Ada, which encodes the needed information using
7965 the names of types. */
7971 rtx rtl
= rtl_for_decl_location (loc
);
7973 if (rtl
== NULL_RTX
)
7975 else if (CONSTANT_P (rtl
))
7977 ret
= new_loc_descr (DW_OP_addr
, 0, 0);
7978 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
7979 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
7984 enum machine_mode mode
= GET_MODE (rtl
);
7986 if (GET_CODE (rtl
) == MEM
)
7989 rtl
= XEXP (rtl
, 0);
7992 ret
= mem_loc_descriptor (rtl
, mode
);
7998 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8003 return loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), addressp
);
8007 case NON_LVALUE_EXPR
:
8008 case VIEW_CONVERT_EXPR
:
8010 return loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), addressp
);
8015 case ARRAY_RANGE_REF
:
8018 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
8019 enum machine_mode mode
;
8022 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
8023 &unsignedp
, &volatilep
);
8028 ret
= loc_descriptor_from_tree (obj
, 1);
8030 || bitpos
% BITS_PER_UNIT
!= 0 || bitsize
% BITS_PER_UNIT
!= 0)
8033 if (offset
!= NULL_TREE
)
8035 /* Variable offset. */
8036 add_loc_descr (&ret
, loc_descriptor_from_tree (offset
, 0));
8037 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8043 bytepos
= bitpos
/ BITS_PER_UNIT
;
8045 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, bytepos
, 0));
8046 else if (bytepos
< 0)
8048 add_loc_descr (&ret
, int_loc_descriptor (bytepos
));
8049 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
8055 if (host_integerp (loc
, 0))
8056 ret
= int_loc_descriptor (tree_low_cst (loc
, 0));
8073 case TRUNC_DIV_EXPR
:
8081 case TRUNC_MOD_EXPR
:
8094 op
= (unsignedp
? DW_OP_shr
: DW_OP_shra
);
8098 if (TREE_CODE (TREE_OPERAND (loc
, 1)) == INTEGER_CST
8099 && host_integerp (TREE_OPERAND (loc
, 1), 0))
8101 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8105 add_loc_descr (&ret
,
8106 new_loc_descr (DW_OP_plus_uconst
,
8107 tree_low_cst (TREE_OPERAND (loc
, 1),
8117 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8124 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8131 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8138 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
8153 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8154 ret1
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0);
8155 if (ret
== 0 || ret1
== 0)
8158 add_loc_descr (&ret
, ret1
);
8159 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
8175 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8179 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
8183 loc
= build (COND_EXPR
, TREE_TYPE (loc
),
8184 build (LT_EXPR
, integer_type_node
,
8185 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
8186 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
8188 /* ... fall through ... */
8192 dw_loc_descr_ref lhs
8193 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 1), 0);
8194 dw_loc_descr_ref rhs
8195 = loc_descriptor_from_tree (TREE_OPERAND (loc
, 2), 0);
8196 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
8198 ret
= loc_descriptor_from_tree (TREE_OPERAND (loc
, 0), 0);
8199 if (ret
== 0 || lhs
== 0 || rhs
== 0)
8202 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
8203 add_loc_descr (&ret
, bra_node
);
8205 add_loc_descr (&ret
, rhs
);
8206 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
8207 add_loc_descr (&ret
, jump_node
);
8209 add_loc_descr (&ret
, lhs
);
8210 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
8211 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
8213 /* ??? Need a node to point the skip at. Use a nop. */
8214 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
8215 add_loc_descr (&ret
, tmp
);
8216 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
8217 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
8225 /* Show if we can't fill the request for an address. */
8226 if (addressp
&& indirect_p
== 0)
8229 /* If we've got an address and don't want one, dereference. */
8230 if (!addressp
&& indirect_p
> 0)
8232 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
8234 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
8236 else if (size
== DWARF2_ADDR_SIZE
)
8239 op
= DW_OP_deref_size
;
8241 add_loc_descr (&ret
, new_loc_descr (op
, size
, 0));
8247 /* Given a value, round it up to the lowest multiple of `boundary'
8248 which is not less than the value itself. */
8250 static inline HOST_WIDE_INT
8251 ceiling (value
, boundary
)
8252 HOST_WIDE_INT value
;
8253 unsigned int boundary
;
8255 return (((value
+ boundary
- 1) / boundary
) * boundary
);
8258 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8259 pointer to the declared type for the relevant field variable, or return
8260 `integer_type_node' if the given node turns out to be an
8269 if (TREE_CODE (decl
) == ERROR_MARK
)
8270 return integer_type_node
;
8272 type
= DECL_BIT_FIELD_TYPE (decl
);
8273 if (type
== NULL_TREE
)
8274 type
= TREE_TYPE (decl
);
8279 /* Given a pointer to a tree node, return the alignment in bits for
8280 it, or else return BITS_PER_WORD if the node actually turns out to
8281 be an ERROR_MARK node. */
8283 static inline unsigned
8284 simple_type_align_in_bits (type
)
8287 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
8290 static inline unsigned
8291 simple_decl_align_in_bits (decl
)
8294 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
8297 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8298 node, return the size in bits for the type if it is a constant, or else
8299 return the alignment for the type if the type's size is not constant, or
8300 else return BITS_PER_WORD if the type actually turns out to be an
8303 static inline unsigned HOST_WIDE_INT
8304 simple_type_size_in_bits (type
)
8308 if (TREE_CODE (type
) == ERROR_MARK
)
8309 return BITS_PER_WORD
;
8310 else if (TYPE_SIZE (type
) == NULL_TREE
)
8312 else if (host_integerp (TYPE_SIZE (type
), 1))
8313 return tree_low_cst (TYPE_SIZE (type
), 1);
8315 return TYPE_ALIGN (type
);
8318 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8319 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8320 or return 0 if we are unable to determine what that offset is, either
8321 because the argument turns out to be a pointer to an ERROR_MARK node, or
8322 because the offset is actually variable. (We can't handle the latter case
8325 static HOST_WIDE_INT
8326 field_byte_offset (decl
)
8329 unsigned int type_align_in_bits
;
8330 unsigned int decl_align_in_bits
;
8331 unsigned HOST_WIDE_INT type_size_in_bits
;
8332 HOST_WIDE_INT object_offset_in_bits
;
8334 tree field_size_tree
;
8335 HOST_WIDE_INT bitpos_int
;
8336 HOST_WIDE_INT deepest_bitpos
;
8337 unsigned HOST_WIDE_INT field_size_in_bits
;
8339 if (TREE_CODE (decl
) == ERROR_MARK
)
8341 else if (TREE_CODE (decl
) != FIELD_DECL
)
8344 type
= field_type (decl
);
8345 field_size_tree
= DECL_SIZE (decl
);
8347 /* The size could be unspecified if there was an error, or for
8348 a flexible array member. */
8349 if (! field_size_tree
)
8350 field_size_tree
= bitsize_zero_node
;
8352 /* We cannot yet cope with fields whose positions are variable, so
8353 for now, when we see such things, we simply return 0. Someday, we may
8354 be able to handle such cases, but it will be damn difficult. */
8355 if (! host_integerp (bit_position (decl
), 0))
8358 bitpos_int
= int_bit_position (decl
);
8360 /* If we don't know the size of the field, pretend it's a full word. */
8361 if (host_integerp (field_size_tree
, 1))
8362 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
8364 field_size_in_bits
= BITS_PER_WORD
;
8366 type_size_in_bits
= simple_type_size_in_bits (type
);
8367 type_align_in_bits
= simple_type_align_in_bits (type
);
8368 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
8370 /* The GCC front-end doesn't make any attempt to keep track of the starting
8371 bit offset (relative to the start of the containing structure type) of the
8372 hypothetical "containing object" for a bit-field. Thus, when computing
8373 the byte offset value for the start of the "containing object" of a
8374 bit-field, we must deduce this information on our own. This can be rather
8375 tricky to do in some cases. For example, handling the following structure
8376 type definition when compiling for an i386/i486 target (which only aligns
8377 long long's to 32-bit boundaries) can be very tricky:
8379 struct S { int field1; long long field2:31; };
8381 Fortunately, there is a simple rule-of-thumb which can be used in such
8382 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8383 structure shown above. It decides to do this based upon one simple rule
8384 for bit-field allocation. GCC allocates each "containing object" for each
8385 bit-field at the first (i.e. lowest addressed) legitimate alignment
8386 boundary (based upon the required minimum alignment for the declared type
8387 of the field) which it can possibly use, subject to the condition that
8388 there is still enough available space remaining in the containing object
8389 (when allocated at the selected point) to fully accommodate all of the
8390 bits of the bit-field itself.
8392 This simple rule makes it obvious why GCC allocates 8 bytes for each
8393 object of the structure type shown above. When looking for a place to
8394 allocate the "containing object" for `field2', the compiler simply tries
8395 to allocate a 64-bit "containing object" at each successive 32-bit
8396 boundary (starting at zero) until it finds a place to allocate that 64-
8397 bit field such that at least 31 contiguous (and previously unallocated)
8398 bits remain within that selected 64 bit field. (As it turns out, for the
8399 example above, the compiler finds it is OK to allocate the "containing
8400 object" 64-bit field at bit-offset zero within the structure type.)
8402 Here we attempt to work backwards from the limited set of facts we're
8403 given, and we try to deduce from those facts, where GCC must have believed
8404 that the containing object started (within the structure type). The value
8405 we deduce is then used (by the callers of this routine) to generate
8406 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8407 and, in the case of DW_AT_location, regular fields as well). */
8409 /* Figure out the bit-distance from the start of the structure to the
8410 "deepest" bit of the bit-field. */
8411 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
8413 /* This is the tricky part. Use some fancy footwork to deduce where the
8414 lowest addressed bit of the containing object must be. */
8415 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
8417 /* Round up to type_align by default. This works best for bitfields. */
8418 object_offset_in_bits
+= type_align_in_bits
- 1;
8419 object_offset_in_bits
/= type_align_in_bits
;
8420 object_offset_in_bits
*= type_align_in_bits
;
8422 if (object_offset_in_bits
> bitpos_int
)
8424 /* Sigh, the decl must be packed. */
8425 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
8427 /* Round up to decl_align instead. */
8428 object_offset_in_bits
+= decl_align_in_bits
- 1;
8429 object_offset_in_bits
/= decl_align_in_bits
;
8430 object_offset_in_bits
*= decl_align_in_bits
;
8433 return object_offset_in_bits
/ BITS_PER_UNIT
;
8436 /* The following routines define various Dwarf attributes and any data
8437 associated with them. */
8439 /* Add a location description attribute value to a DIE.
8441 This emits location attributes suitable for whole variables and
8442 whole parameters. Note that the location attributes for struct fields are
8443 generated by the routine `data_member_location_attribute' below. */
8446 add_AT_location_description (die
, attr_kind
, rtl
)
8448 enum dwarf_attribute attr_kind
;
8451 dw_loc_descr_ref descr
= loc_descriptor (rtl
);
8454 add_AT_loc (die
, attr_kind
, descr
);
8457 /* Attach the specialized form of location attribute used for data members of
8458 struct and union types. In the special case of a FIELD_DECL node which
8459 represents a bit-field, the "offset" part of this special location
8460 descriptor must indicate the distance in bytes from the lowest-addressed
8461 byte of the containing struct or union type to the lowest-addressed byte of
8462 the "containing object" for the bit-field. (See the `field_byte_offset'
8465 For any given bit-field, the "containing object" is a hypothetical object
8466 (of some integral or enum type) within which the given bit-field lives. The
8467 type of this hypothetical "containing object" is always the same as the
8468 declared type of the individual bit-field itself (for GCC anyway... the
8469 DWARF spec doesn't actually mandate this). Note that it is the size (in
8470 bytes) of the hypothetical "containing object" which will be given in the
8471 DW_AT_byte_size attribute for this bit-field. (See the
8472 `byte_size_attribute' function below.) It is also used when calculating the
8473 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
8477 add_data_member_location_attribute (die
, decl
)
8482 dw_loc_descr_ref loc_descr
= 0;
8484 if (TREE_CODE (decl
) == TREE_VEC
)
8486 /* We're working on the TAG_inheritance for a base class. */
8487 if (TREE_VIA_VIRTUAL (decl
) && is_cxx ())
8489 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
8490 aren't at a fixed offset from all (sub)objects of the same
8491 type. We need to extract the appropriate offset from our
8492 vtable. The following dwarf expression means
8494 BaseAddr = ObAddr + *((*ObAddr) - Offset)
8496 This is specific to the V3 ABI, of course. */
8498 dw_loc_descr_ref tmp
;
8500 /* Make a copy of the object address. */
8501 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
8502 add_loc_descr (&loc_descr
, tmp
);
8504 /* Extract the vtable address. */
8505 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
8506 add_loc_descr (&loc_descr
, tmp
);
8508 /* Calculate the address of the offset. */
8509 offset
= tree_low_cst (BINFO_VPTR_FIELD (decl
), 0);
8513 tmp
= int_loc_descriptor (-offset
);
8514 add_loc_descr (&loc_descr
, tmp
);
8515 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
8516 add_loc_descr (&loc_descr
, tmp
);
8518 /* Extract the offset. */
8519 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
8520 add_loc_descr (&loc_descr
, tmp
);
8522 /* Add it to the object address. */
8523 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
8524 add_loc_descr (&loc_descr
, tmp
);
8527 offset
= tree_low_cst (BINFO_OFFSET (decl
), 0);
8530 offset
= field_byte_offset (decl
);
8534 enum dwarf_location_atom op
;
8536 /* The DWARF2 standard says that we should assume that the structure
8537 address is already on the stack, so we can specify a structure field
8538 address by using DW_OP_plus_uconst. */
8540 #ifdef MIPS_DEBUGGING_INFO
8541 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
8542 operator correctly. It works only if we leave the offset on the
8546 op
= DW_OP_plus_uconst
;
8549 loc_descr
= new_loc_descr (op
, offset
, 0);
8552 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
8555 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
8556 does not have a "location" either in memory or in a register. These
8557 things can arise in GNU C when a constant is passed as an actual parameter
8558 to an inlined function. They can also arise in C++ where declared
8559 constants do not necessarily get memory "homes". */
8562 add_const_value_attribute (die
, rtl
)
8566 switch (GET_CODE (rtl
))
8569 /* Note that a CONST_INT rtx could represent either an integer
8570 or a floating-point constant. A CONST_INT is used whenever
8571 the constant will fit into a single word. In all such
8572 cases, the original mode of the constant value is wiped
8573 out, and the CONST_INT rtx is assigned VOIDmode. */
8575 HOST_WIDE_INT val
= INTVAL (rtl
);
8577 /* ??? We really should be using HOST_WIDE_INT throughout. */
8578 if (val
< 0 && (long) val
== val
)
8579 add_AT_int (die
, DW_AT_const_value
, (long) val
);
8580 else if ((unsigned long) val
== (unsigned HOST_WIDE_INT
) val
)
8581 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned long) val
);
8584 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
8585 add_AT_long_long (die
, DW_AT_const_value
,
8586 val
>> HOST_BITS_PER_LONG
, val
);
8595 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
8596 floating-point constant. A CONST_DOUBLE is used whenever the
8597 constant requires more than one word in order to be adequately
8598 represented. We output CONST_DOUBLEs as blocks. */
8600 enum machine_mode mode
= GET_MODE (rtl
);
8602 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
8604 unsigned length
= GET_MODE_SIZE (mode
) / 4;
8605 long *array
= (long *) xmalloc (sizeof (long) * length
);
8608 REAL_VALUE_FROM_CONST_DOUBLE (rv
, rtl
);
8612 REAL_VALUE_TO_TARGET_SINGLE (rv
, array
[0]);
8616 REAL_VALUE_TO_TARGET_DOUBLE (rv
, array
);
8621 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, array
);
8628 add_AT_float (die
, DW_AT_const_value
, length
, array
);
8632 /* ??? We really should be using HOST_WIDE_INT throughout. */
8633 if (HOST_BITS_PER_LONG
!= HOST_BITS_PER_WIDE_INT
)
8636 add_AT_long_long (die
, DW_AT_const_value
,
8637 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
8643 add_AT_string (die
, DW_AT_const_value
, XSTR (rtl
, 0));
8649 add_AT_addr (die
, DW_AT_const_value
, rtl
);
8650 VARRAY_PUSH_RTX (used_rtx_varray
, rtl
);
8654 /* In cases where an inlined instance of an inline function is passed
8655 the address of an `auto' variable (which is local to the caller) we
8656 can get a situation where the DECL_RTL of the artificial local
8657 variable (for the inlining) which acts as a stand-in for the
8658 corresponding formal parameter (of the inline function) will look
8659 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
8660 exactly a compile-time constant expression, but it isn't the address
8661 of the (artificial) local variable either. Rather, it represents the
8662 *value* which the artificial local variable always has during its
8663 lifetime. We currently have no way to represent such quasi-constant
8664 values in Dwarf, so for now we just punt and generate nothing. */
8668 /* No other kinds of rtx should be possible here. */
8675 rtl_for_decl_location (decl
)
8680 /* Here we have to decide where we are going to say the parameter "lives"
8681 (as far as the debugger is concerned). We only have a couple of
8682 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
8684 DECL_RTL normally indicates where the parameter lives during most of the
8685 activation of the function. If optimization is enabled however, this
8686 could be either NULL or else a pseudo-reg. Both of those cases indicate
8687 that the parameter doesn't really live anywhere (as far as the code
8688 generation parts of GCC are concerned) during most of the function's
8689 activation. That will happen (for example) if the parameter is never
8690 referenced within the function.
8692 We could just generate a location descriptor here for all non-NULL
8693 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
8694 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
8695 where DECL_RTL is NULL or is a pseudo-reg.
8697 Note however that we can only get away with using DECL_INCOMING_RTL as
8698 a backup substitute for DECL_RTL in certain limited cases. In cases
8699 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
8700 we can be sure that the parameter was passed using the same type as it is
8701 declared to have within the function, and that its DECL_INCOMING_RTL
8702 points us to a place where a value of that type is passed.
8704 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
8705 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
8706 because in these cases DECL_INCOMING_RTL points us to a value of some
8707 type which is *different* from the type of the parameter itself. Thus,
8708 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
8709 such cases, the debugger would end up (for example) trying to fetch a
8710 `float' from a place which actually contains the first part of a
8711 `double'. That would lead to really incorrect and confusing
8712 output at debug-time.
8714 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
8715 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
8716 are a couple of exceptions however. On little-endian machines we can
8717 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
8718 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
8719 an integral type that is smaller than TREE_TYPE (decl). These cases arise
8720 when (on a little-endian machine) a non-prototyped function has a
8721 parameter declared to be of type `short' or `char'. In such cases,
8722 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
8723 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
8724 passed `int' value. If the debugger then uses that address to fetch
8725 a `short' or a `char' (on a little-endian machine) the result will be
8726 the correct data, so we allow for such exceptional cases below.
8728 Note that our goal here is to describe the place where the given formal
8729 parameter lives during most of the function's activation (i.e. between the
8730 end of the prologue and the start of the epilogue). We'll do that as best
8731 as we can. Note however that if the given formal parameter is modified
8732 sometime during the execution of the function, then a stack backtrace (at
8733 debug-time) will show the function as having been called with the *new*
8734 value rather than the value which was originally passed in. This happens
8735 rarely enough that it is not a major problem, but it *is* a problem, and
8738 A future version of dwarf2out.c may generate two additional attributes for
8739 any given DW_TAG_formal_parameter DIE which will describe the "passed
8740 type" and the "passed location" for the given formal parameter in addition
8741 to the attributes we now generate to indicate the "declared type" and the
8742 "active location" for each parameter. This additional set of attributes
8743 could be used by debuggers for stack backtraces. Separately, note that
8744 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
8745 This happens (for example) for inlined-instances of inline function formal
8746 parameters which are never referenced. This really shouldn't be
8747 happening. All PARM_DECL nodes should get valid non-NULL
8748 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
8749 values for inlined instances of inline function parameters, so when we see
8750 such cases, we are just out-of-luck for the time being (until integrate.c
8753 /* Use DECL_RTL as the "location" unless we find something better. */
8754 rtl
= DECL_RTL_IF_SET (decl
);
8756 /* When generating abstract instances, ignore everything except
8757 constants and symbols living in memory. */
8758 if (! reload_completed
)
8761 && (CONSTANT_P (rtl
)
8762 || (GET_CODE (rtl
) == MEM
8763 && CONSTANT_P (XEXP (rtl
, 0)))))
8767 else if (TREE_CODE (decl
) == PARM_DECL
)
8769 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
8771 tree declared_type
= type_main_variant (TREE_TYPE (decl
));
8772 tree passed_type
= type_main_variant (DECL_ARG_TYPE (decl
));
8774 /* This decl represents a formal parameter which was optimized out.
8775 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
8776 all cases where (rtl == NULL_RTX) just below. */
8777 if (declared_type
== passed_type
)
8778 rtl
= DECL_INCOMING_RTL (decl
);
8779 else if (! BYTES_BIG_ENDIAN
8780 && TREE_CODE (declared_type
) == INTEGER_TYPE
8781 && (GET_MODE_SIZE (TYPE_MODE (declared_type
))
8782 <= GET_MODE_SIZE (TYPE_MODE (passed_type
))))
8783 rtl
= DECL_INCOMING_RTL (decl
);
8786 /* If the parm was passed in registers, but lives on the stack, then
8787 make a big endian correction if the mode of the type of the
8788 parameter is not the same as the mode of the rtl. */
8789 /* ??? This is the same series of checks that are made in dbxout.c before
8790 we reach the big endian correction code there. It isn't clear if all
8791 of these checks are necessary here, but keeping them all is the safe
8793 else if (GET_CODE (rtl
) == MEM
8794 && XEXP (rtl
, 0) != const0_rtx
8795 && ! CONSTANT_P (XEXP (rtl
, 0))
8796 /* Not passed in memory. */
8797 && GET_CODE (DECL_INCOMING_RTL (decl
)) != MEM
8798 /* Not passed by invisible reference. */
8799 && (GET_CODE (XEXP (rtl
, 0)) != REG
8800 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
8801 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
8802 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
8803 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
8806 /* Big endian correction check. */
8808 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
8809 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)))
8812 int offset
= (UNITS_PER_WORD
8813 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
8815 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
8816 plus_constant (XEXP (rtl
, 0), offset
));
8820 if (rtl
!= NULL_RTX
)
8822 rtl
= eliminate_regs (rtl
, 0, NULL_RTX
);
8823 #ifdef LEAF_REG_REMAP
8824 if (current_function_uses_only_leaf_regs
)
8825 leaf_renumber_regs_insn (rtl
);
8829 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
8830 and will have been substituted directly into all expressions that use it.
8831 C does not have such a concept, but C++ and other languages do. */
8832 else if (TREE_CODE (decl
) == VAR_DECL
&& DECL_INITIAL (decl
))
8833 rtl
= expand_expr (DECL_INITIAL (decl
), NULL_RTX
, VOIDmode
,
8834 EXPAND_INITIALIZER
);
8839 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
8840 data attribute for a variable or a parameter. We generate the
8841 DW_AT_const_value attribute only in those cases where the given variable
8842 or parameter does not have a true "location" either in memory or in a
8843 register. This can happen (for example) when a constant is passed as an
8844 actual argument in a call to an inline function. (It's possible that
8845 these things can crop up in other ways also.) Note that one type of
8846 constant value which can be passed into an inlined function is a constant
8847 pointer. This can happen for example if an actual argument in an inlined
8848 function call evaluates to a compile-time constant address. */
8851 add_location_or_const_value_attribute (die
, decl
)
8857 if (TREE_CODE (decl
) == ERROR_MARK
)
8859 else if (TREE_CODE (decl
) != VAR_DECL
&& TREE_CODE (decl
) != PARM_DECL
)
8862 rtl
= rtl_for_decl_location (decl
);
8863 if (rtl
== NULL_RTX
)
8866 /* If we don't look past the constant pool, we risk emitting a
8867 reference to a constant pool entry that isn't referenced from
8868 code, and thus is not emitted. */
8869 rtl
= avoid_constant_pool_reference (rtl
);
8871 switch (GET_CODE (rtl
))
8874 /* The address of a variable that was optimized away; don't emit
8885 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
8886 add_const_value_attribute (die
, rtl
);
8893 add_AT_location_description (die
, DW_AT_location
, rtl
);
8901 /* If we don't have a copy of this variable in memory for some reason (such
8902 as a C++ member constant that doesn't have an out-of-line definition),
8903 we should tell the debugger about the constant value. */
8906 tree_add_const_value_attribute (var_die
, decl
)
8910 tree init
= DECL_INITIAL (decl
);
8911 tree type
= TREE_TYPE (decl
);
8913 if (TREE_READONLY (decl
) && ! TREE_THIS_VOLATILE (decl
) && init
8914 && initializer_constant_valid_p (init
, type
) == null_pointer_node
)
8919 switch (TREE_CODE (type
))
8922 if (host_integerp (init
, 0))
8923 add_AT_unsigned (var_die
, DW_AT_const_value
,
8924 tree_low_cst (init
, 0));
8926 add_AT_long_long (var_die
, DW_AT_const_value
,
8927 TREE_INT_CST_HIGH (init
),
8928 TREE_INT_CST_LOW (init
));
8935 /* Generate an DW_AT_name attribute given some string value to be included as
8936 the value of the attribute. */
8939 add_name_attribute (die
, name_string
)
8941 const char *name_string
;
8943 if (name_string
!= NULL
&& *name_string
!= 0)
8945 if (demangle_name_func
)
8946 name_string
= (*demangle_name_func
) (name_string
);
8948 add_AT_string (die
, DW_AT_name
, name_string
);
8952 /* Given a tree node describing an array bound (either lower or upper) output
8953 a representation for that bound. */
8956 add_bound_info (subrange_die
, bound_attr
, bound
)
8957 dw_die_ref subrange_die
;
8958 enum dwarf_attribute bound_attr
;
8961 switch (TREE_CODE (bound
))
8966 /* All fixed-bounds are represented by INTEGER_CST nodes. */
8968 if (! host_integerp (bound
, 0)
8969 || (bound_attr
== DW_AT_lower_bound
8970 && (((is_c_family () || is_java ()) && integer_zerop (bound
))
8971 || (is_fortran () && integer_onep (bound
)))))
8972 /* use the default */
8975 add_AT_unsigned (subrange_die
, bound_attr
, tree_low_cst (bound
, 0));
8980 case NON_LVALUE_EXPR
:
8981 case VIEW_CONVERT_EXPR
:
8982 add_bound_info (subrange_die
, bound_attr
, TREE_OPERAND (bound
, 0));
8986 /* If optimization is turned on, the SAVE_EXPRs that describe how to
8987 access the upper bound values may be bogus. If they refer to a
8988 register, they may only describe how to get at these values at the
8989 points in the generated code right after they have just been
8990 computed. Worse yet, in the typical case, the upper bound values
8991 will not even *be* computed in the optimized code (though the
8992 number of elements will), so these SAVE_EXPRs are entirely
8993 bogus. In order to compensate for this fact, we check here to see
8994 if optimization is enabled, and if so, we don't add an attribute
8995 for the (unknown and unknowable) upper bound. This should not
8996 cause too much trouble for existing (stupid?) debuggers because
8997 they have to deal with empty upper bounds location descriptions
8998 anyway in order to be able to deal with incomplete array types.
8999 Of course an intelligent debugger (GDB?) should be able to
9000 comprehend that a missing upper bound specification in an array
9001 type used for a storage class `auto' local array variable
9002 indicates that the upper bound is both unknown (at compile- time)
9003 and unknowable (at run-time) due to optimization.
9005 We assume that a MEM rtx is safe because gcc wouldn't put the
9006 value there unless it was going to be used repeatedly in the
9007 function, i.e. for cleanups. */
9008 if (SAVE_EXPR_RTL (bound
)
9009 && (! optimize
|| GET_CODE (SAVE_EXPR_RTL (bound
)) == MEM
))
9011 dw_die_ref ctx
= lookup_decl_die (current_function_decl
);
9012 dw_die_ref decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
9013 rtx loc
= SAVE_EXPR_RTL (bound
);
9015 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9016 it references an outer function's frame. */
9017 if (GET_CODE (loc
) == MEM
)
9019 rtx new_addr
= fix_lexical_addr (XEXP (loc
, 0), bound
);
9021 if (XEXP (loc
, 0) != new_addr
)
9022 loc
= gen_rtx_MEM (GET_MODE (loc
), new_addr
);
9025 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
9026 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
9027 add_AT_location_description (decl_die
, DW_AT_location
, loc
);
9028 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9031 /* Else leave out the attribute. */
9037 dw_die_ref decl_die
= lookup_decl_die (bound
);
9039 /* ??? Can this happen, or should the variable have been bound
9040 first? Probably it can, since I imagine that we try to create
9041 the types of parameters in the order in which they exist in
9042 the list, and won't have created a forward reference to a
9044 if (decl_die
!= NULL
)
9045 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9051 /* Otherwise try to create a stack operation procedure to
9052 evaluate the value of the array bound. */
9054 dw_die_ref ctx
, decl_die
;
9055 dw_loc_descr_ref loc
;
9057 loc
= loc_descriptor_from_tree (bound
, 0);
9061 if (current_function_decl
== 0)
9062 ctx
= comp_unit_die
;
9064 ctx
= lookup_decl_die (current_function_decl
);
9066 decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
9067 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
9068 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
9069 add_AT_loc (decl_die
, DW_AT_location
, loc
);
9071 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
9077 /* Note that the block of subscript information for an array type also
9078 includes information about the element type of type given array type. */
9081 add_subscript_info (type_die
, type
)
9082 dw_die_ref type_die
;
9085 #ifndef MIPS_DEBUGGING_INFO
9086 unsigned dimension_number
;
9089 dw_die_ref subrange_die
;
9091 /* The GNU compilers represent multidimensional array types as sequences of
9092 one dimensional array types whose element types are themselves array
9093 types. Here we squish that down, so that each multidimensional array
9094 type gets only one array_type DIE in the Dwarf debugging info. The draft
9095 Dwarf specification say that we are allowed to do this kind of
9096 compression in C (because there is no difference between an array or
9097 arrays and a multidimensional array in C) but for other source languages
9098 (e.g. Ada) we probably shouldn't do this. */
9100 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9101 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9102 We work around this by disabling this feature. See also
9103 gen_array_type_die. */
9104 #ifndef MIPS_DEBUGGING_INFO
9105 for (dimension_number
= 0;
9106 TREE_CODE (type
) == ARRAY_TYPE
;
9107 type
= TREE_TYPE (type
), dimension_number
++)
9110 tree domain
= TYPE_DOMAIN (type
);
9112 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9113 and (in GNU C only) variable bounds. Handle all three forms
9115 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
9118 /* We have an array type with specified bounds. */
9119 lower
= TYPE_MIN_VALUE (domain
);
9120 upper
= TYPE_MAX_VALUE (domain
);
9122 /* define the index type. */
9123 if (TREE_TYPE (domain
))
9125 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9126 TREE_TYPE field. We can't emit debug info for this
9127 because it is an unnamed integral type. */
9128 if (TREE_CODE (domain
) == INTEGER_TYPE
9129 && TYPE_NAME (domain
) == NULL_TREE
9130 && TREE_CODE (TREE_TYPE (domain
)) == INTEGER_TYPE
9131 && TYPE_NAME (TREE_TYPE (domain
)) == NULL_TREE
)
9134 add_type_attribute (subrange_die
, TREE_TYPE (domain
), 0, 0,
9138 /* ??? If upper is NULL, the array has unspecified length,
9139 but it does have a lower bound. This happens with Fortran
9141 Since the debugger is definitely going to need to know N
9142 to produce useful results, go ahead and output the lower
9143 bound solo, and hope the debugger can cope. */
9145 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
);
9147 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
);
9150 /* Otherwise we have an array type with an unspecified length. The
9151 DWARF-2 spec does not say how to handle this; let's just leave out the
9157 add_byte_size_attribute (die
, tree_node
)
9163 switch (TREE_CODE (tree_node
))
9171 case QUAL_UNION_TYPE
:
9172 size
= int_size_in_bytes (tree_node
);
9175 /* For a data member of a struct or union, the DW_AT_byte_size is
9176 generally given as the number of bytes normally allocated for an
9177 object of the *declared* type of the member itself. This is true
9178 even for bit-fields. */
9179 size
= simple_type_size_in_bits (field_type (tree_node
)) / BITS_PER_UNIT
;
9185 /* Note that `size' might be -1 when we get to this point. If it is, that
9186 indicates that the byte size of the entity in question is variable. We
9187 have no good way of expressing this fact in Dwarf at the present time,
9188 so just let the -1 pass on through. */
9189 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
9192 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9193 which specifies the distance in bits from the highest order bit of the
9194 "containing object" for the bit-field to the highest order bit of the
9197 For any given bit-field, the "containing object" is a hypothetical object
9198 (of some integral or enum type) within which the given bit-field lives. The
9199 type of this hypothetical "containing object" is always the same as the
9200 declared type of the individual bit-field itself. The determination of the
9201 exact location of the "containing object" for a bit-field is rather
9202 complicated. It's handled by the `field_byte_offset' function (above).
9204 Note that it is the size (in bytes) of the hypothetical "containing object"
9205 which will be given in the DW_AT_byte_size attribute for this bit-field.
9206 (See `byte_size_attribute' above). */
9209 add_bit_offset_attribute (die
, decl
)
9213 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
9214 tree type
= DECL_BIT_FIELD_TYPE (decl
);
9215 HOST_WIDE_INT bitpos_int
;
9216 HOST_WIDE_INT highest_order_object_bit_offset
;
9217 HOST_WIDE_INT highest_order_field_bit_offset
;
9218 HOST_WIDE_INT
unsigned bit_offset
;
9220 /* Must be a field and a bit field. */
9222 || TREE_CODE (decl
) != FIELD_DECL
)
9225 /* We can't yet handle bit-fields whose offsets are variable, so if we
9226 encounter such things, just return without generating any attribute
9227 whatsoever. Likewise for variable or too large size. */
9228 if (! host_integerp (bit_position (decl
), 0)
9229 || ! host_integerp (DECL_SIZE (decl
), 1))
9232 bitpos_int
= int_bit_position (decl
);
9234 /* Note that the bit offset is always the distance (in bits) from the
9235 highest-order bit of the "containing object" to the highest-order bit of
9236 the bit-field itself. Since the "high-order end" of any object or field
9237 is different on big-endian and little-endian machines, the computation
9238 below must take account of these differences. */
9239 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
9240 highest_order_field_bit_offset
= bitpos_int
;
9242 if (! BYTES_BIG_ENDIAN
)
9244 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 0);
9245 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
9249 = (! BYTES_BIG_ENDIAN
9250 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
9251 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
9253 add_AT_unsigned (die
, DW_AT_bit_offset
, bit_offset
);
9256 /* For a FIELD_DECL node which represents a bit field, output an attribute
9257 which specifies the length in bits of the given field. */
9260 add_bit_size_attribute (die
, decl
)
9264 /* Must be a field and a bit field. */
9265 if (TREE_CODE (decl
) != FIELD_DECL
9266 || ! DECL_BIT_FIELD_TYPE (decl
))
9269 if (host_integerp (DECL_SIZE (decl
), 1))
9270 add_AT_unsigned (die
, DW_AT_bit_size
, tree_low_cst (DECL_SIZE (decl
), 1));
9273 /* If the compiled language is ANSI C, then add a 'prototyped'
9274 attribute, if arg types are given for the parameters of a function. */
9277 add_prototyped_attribute (die
, func_type
)
9281 if (get_AT_unsigned (comp_unit_die
, DW_AT_language
) == DW_LANG_C89
9282 && TYPE_ARG_TYPES (func_type
) != NULL
)
9283 add_AT_flag (die
, DW_AT_prototyped
, 1);
9286 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9287 by looking in either the type declaration or object declaration
9291 add_abstract_origin_attribute (die
, origin
)
9295 dw_die_ref origin_die
= NULL
;
9297 if (TREE_CODE (origin
) != FUNCTION_DECL
)
9299 /* We may have gotten separated from the block for the inlined
9300 function, if we're in an exception handler or some such; make
9301 sure that the abstract function has been written out.
9303 Doing this for nested functions is wrong, however; functions are
9304 distinct units, and our context might not even be inline. */
9308 fn
= TYPE_STUB_DECL (fn
);
9310 fn
= decl_function_context (fn
);
9312 dwarf2out_abstract_function (fn
);
9315 if (DECL_P (origin
))
9316 origin_die
= lookup_decl_die (origin
);
9317 else if (TYPE_P (origin
))
9318 origin_die
= lookup_type_die (origin
);
9320 if (origin_die
== NULL
)
9323 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
9326 /* We do not currently support the pure_virtual attribute. */
9329 add_pure_or_virtual_attribute (die
, func_decl
)
9333 if (DECL_VINDEX (func_decl
))
9335 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
9337 if (host_integerp (DECL_VINDEX (func_decl
), 0))
9338 add_AT_loc (die
, DW_AT_vtable_elem_location
,
9339 new_loc_descr (DW_OP_constu
,
9340 tree_low_cst (DECL_VINDEX (func_decl
), 0),
9343 /* GNU extension: Record what type this method came from originally. */
9344 if (debug_info_level
> DINFO_LEVEL_TERSE
)
9345 add_AT_die_ref (die
, DW_AT_containing_type
,
9346 lookup_type_die (DECL_CONTEXT (func_decl
)));
9350 /* Add source coordinate attributes for the given decl. */
9353 add_src_coords_attributes (die
, decl
)
9357 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
9359 add_AT_unsigned (die
, DW_AT_decl_file
, file_index
);
9360 add_AT_unsigned (die
, DW_AT_decl_line
, DECL_SOURCE_LINE (decl
));
9363 /* Add an DW_AT_name attribute and source coordinate attribute for the
9364 given decl, but only if it actually has a name. */
9367 add_name_and_src_coords_attributes (die
, decl
)
9373 decl_name
= DECL_NAME (decl
);
9374 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
9376 add_name_attribute (die
, dwarf2_name (decl
, 0));
9377 if (! DECL_ARTIFICIAL (decl
))
9378 add_src_coords_attributes (die
, decl
);
9380 if ((TREE_CODE (decl
) == FUNCTION_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
9381 && TREE_PUBLIC (decl
)
9382 && DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
9383 && !DECL_ABSTRACT (decl
))
9384 add_AT_string (die
, DW_AT_MIPS_linkage_name
,
9385 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
9388 #ifdef VMS_DEBUGGING_INFO
9389 /* Get the function's name, as described by its RTL. This may be different
9390 from the DECL_NAME name used in the source file. */
9391 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
9393 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
9394 XEXP (DECL_RTL (decl
), 0));
9395 VARRAY_PUSH_RTX (used_rtx_varray
, XEXP (DECL_RTL (decl
), 0));
9400 /* Push a new declaration scope. */
9403 push_decl_scope (scope
)
9406 VARRAY_PUSH_TREE (decl_scope_table
, scope
);
9409 /* Pop a declaration scope. */
9414 if (VARRAY_ACTIVE_SIZE (decl_scope_table
) <= 0)
9417 VARRAY_POP (decl_scope_table
);
9420 /* Return the DIE for the scope that immediately contains this type.
9421 Non-named types get global scope. Named types nested in other
9422 types get their containing scope if it's open, or global scope
9423 otherwise. All other types (i.e. function-local named types) get
9424 the current active scope. */
9427 scope_die_for (t
, context_die
)
9429 dw_die_ref context_die
;
9431 dw_die_ref scope_die
= NULL
;
9432 tree containing_scope
;
9435 /* Non-types always go in the current scope. */
9439 containing_scope
= TYPE_CONTEXT (t
);
9441 /* Ignore namespaces for the moment. */
9442 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
9443 containing_scope
= NULL_TREE
;
9445 /* Ignore function type "scopes" from the C frontend. They mean that
9446 a tagged type is local to a parmlist of a function declarator, but
9447 that isn't useful to DWARF. */
9448 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
9449 containing_scope
= NULL_TREE
;
9451 if (containing_scope
== NULL_TREE
)
9452 scope_die
= comp_unit_die
;
9453 else if (TYPE_P (containing_scope
))
9455 /* For types, we can just look up the appropriate DIE. But
9456 first we check to see if we're in the middle of emitting it
9457 so we know where the new DIE should go. */
9458 for (i
= VARRAY_ACTIVE_SIZE (decl_scope_table
) - 1; i
>= 0; --i
)
9459 if (VARRAY_TREE (decl_scope_table
, i
) == containing_scope
)
9464 if (debug_info_level
> DINFO_LEVEL_TERSE
9465 && !TREE_ASM_WRITTEN (containing_scope
))
9468 /* If none of the current dies are suitable, we get file scope. */
9469 scope_die
= comp_unit_die
;
9472 scope_die
= lookup_type_die (containing_scope
);
9475 scope_die
= context_die
;
9480 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
9483 local_scope_p (context_die
)
9484 dw_die_ref context_die
;
9486 for (; context_die
; context_die
= context_die
->die_parent
)
9487 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
9488 || context_die
->die_tag
== DW_TAG_subprogram
)
9494 /* Returns nonzero if CONTEXT_DIE is a class. */
9497 class_scope_p (context_die
)
9498 dw_die_ref context_die
;
9501 && (context_die
->die_tag
== DW_TAG_structure_type
9502 || context_die
->die_tag
== DW_TAG_union_type
));
9505 /* Many forms of DIEs require a "type description" attribute. This
9506 routine locates the proper "type descriptor" die for the type given
9507 by 'type', and adds an DW_AT_type attribute below the given die. */
9510 add_type_attribute (object_die
, type
, decl_const
, decl_volatile
, context_die
)
9511 dw_die_ref object_die
;
9515 dw_die_ref context_die
;
9517 enum tree_code code
= TREE_CODE (type
);
9518 dw_die_ref type_die
= NULL
;
9520 /* ??? If this type is an unnamed subrange type of an integral or
9521 floating-point type, use the inner type. This is because we have no
9522 support for unnamed types in base_type_die. This can happen if this is
9523 an Ada subrange type. Correct solution is emit a subrange type die. */
9524 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
9525 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
9526 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
9528 if (code
== ERROR_MARK
9529 /* Handle a special case. For functions whose return type is void, we
9530 generate *no* type attribute. (Note that no object may have type
9531 `void', so this only applies to function return types). */
9532 || code
== VOID_TYPE
)
9535 type_die
= modified_type_die (type
,
9536 decl_const
|| TYPE_READONLY (type
),
9537 decl_volatile
|| TYPE_VOLATILE (type
),
9540 if (type_die
!= NULL
)
9541 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
9544 /* Given a tree pointer to a struct, class, union, or enum type node, return
9545 a pointer to the (string) tag name for the given type, or zero if the type
9546 was declared without a tag. */
9552 const char *name
= 0;
9554 if (TYPE_NAME (type
) != 0)
9558 /* Find the IDENTIFIER_NODE for the type name. */
9559 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
9560 t
= TYPE_NAME (type
);
9562 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
9563 a TYPE_DECL node, regardless of whether or not a `typedef' was
9565 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
9566 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
9567 t
= DECL_NAME (TYPE_NAME (type
));
9569 /* Now get the name as a string, or invent one. */
9571 name
= IDENTIFIER_POINTER (t
);
9574 return (name
== 0 || *name
== '\0') ? 0 : name
;
9577 /* Return the type associated with a data member, make a special check
9578 for bit field types. */
9581 member_declared_type (member
)
9584 return (DECL_BIT_FIELD_TYPE (member
)
9585 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
9588 /* Get the decl's label, as described by its RTL. This may be different
9589 from the DECL_NAME name used in the source file. */
9593 decl_start_label (decl
)
9599 x
= DECL_RTL (decl
);
9600 if (GET_CODE (x
) != MEM
)
9604 if (GET_CODE (x
) != SYMBOL_REF
)
9607 fnname
= XSTR (x
, 0);
9612 /* These routines generate the internal representation of the DIE's for
9613 the compilation unit. Debugging information is collected by walking
9614 the declaration trees passed in from dwarf2out_decl(). */
9617 gen_array_type_die (type
, context_die
)
9619 dw_die_ref context_die
;
9621 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
9622 dw_die_ref array_die
;
9625 /* ??? The SGI dwarf reader fails for array of array of enum types unless
9626 the inner array type comes before the outer array type. Thus we must
9627 call gen_type_die before we call new_die. See below also. */
9628 #ifdef MIPS_DEBUGGING_INFO
9629 gen_type_die (TREE_TYPE (type
), context_die
);
9632 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
9635 /* We default the array ordering. SDB will probably do
9636 the right things even if DW_AT_ordering is not present. It's not even
9637 an issue until we start to get into multidimensional arrays anyway. If
9638 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
9639 then we'll have to put the DW_AT_ordering attribute back in. (But if
9640 and when we find out that we need to put these in, we will only do so
9641 for multidimensional arrays. */
9642 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
9645 #ifdef MIPS_DEBUGGING_INFO
9646 /* The SGI compilers handle arrays of unknown bound by setting
9647 AT_declaration and not emitting any subrange DIEs. */
9648 if (! TYPE_DOMAIN (type
))
9649 add_AT_unsigned (array_die
, DW_AT_declaration
, 1);
9652 add_subscript_info (array_die
, type
);
9654 add_name_attribute (array_die
, type_tag (type
));
9655 equate_type_number_to_die (type
, array_die
);
9657 /* Add representation of the type of the elements of this array type. */
9658 element_type
= TREE_TYPE (type
);
9660 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9661 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9662 We work around this by disabling this feature. See also
9663 add_subscript_info. */
9664 #ifndef MIPS_DEBUGGING_INFO
9665 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
9666 element_type
= TREE_TYPE (element_type
);
9668 gen_type_die (element_type
, context_die
);
9671 add_type_attribute (array_die
, element_type
, 0, 0, context_die
);
9675 gen_set_type_die (type
, context_die
)
9677 dw_die_ref context_die
;
9680 = new_die (DW_TAG_set_type
, scope_die_for (type
, context_die
), type
);
9682 equate_type_number_to_die (type
, type_die
);
9683 add_type_attribute (type_die
, TREE_TYPE (type
), 0, 0, context_die
);
9688 gen_entry_point_die (decl
, context_die
)
9690 dw_die_ref context_die
;
9692 tree origin
= decl_ultimate_origin (decl
);
9693 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
9696 add_abstract_origin_attribute (decl_die
, origin
);
9699 add_name_and_src_coords_attributes (decl_die
, decl
);
9700 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
9704 if (DECL_ABSTRACT (decl
))
9705 equate_decl_number_to_die (decl
, decl_die
);
9707 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
9711 /* Walk through the list of incomplete types again, trying once more to
9712 emit full debugging info for them. */
9715 retry_incomplete_types ()
9719 for (i
= VARRAY_ACTIVE_SIZE (incomplete_types
) - 1; i
>= 0; i
--)
9720 gen_type_die (VARRAY_TREE (incomplete_types
, i
), comp_unit_die
);
9723 /* Generate a DIE to represent an inlined instance of an enumeration type. */
9726 gen_inlined_enumeration_type_die (type
, context_die
)
9728 dw_die_ref context_die
;
9730 dw_die_ref type_die
= new_die (DW_TAG_enumeration_type
, context_die
, type
);
9732 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9733 be incomplete and such types are not marked. */
9734 add_abstract_origin_attribute (type_die
, type
);
9737 /* Generate a DIE to represent an inlined instance of a structure type. */
9740 gen_inlined_structure_type_die (type
, context_die
)
9742 dw_die_ref context_die
;
9744 dw_die_ref type_die
= new_die (DW_TAG_structure_type
, context_die
, type
);
9746 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9747 be incomplete and such types are not marked. */
9748 add_abstract_origin_attribute (type_die
, type
);
9751 /* Generate a DIE to represent an inlined instance of a union type. */
9754 gen_inlined_union_type_die (type
, context_die
)
9756 dw_die_ref context_die
;
9758 dw_die_ref type_die
= new_die (DW_TAG_union_type
, context_die
, type
);
9760 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
9761 be incomplete and such types are not marked. */
9762 add_abstract_origin_attribute (type_die
, type
);
9765 /* Generate a DIE to represent an enumeration type. Note that these DIEs
9766 include all of the information about the enumeration values also. Each
9767 enumerated type name/value is listed as a child of the enumerated type
9771 gen_enumeration_type_die (type
, context_die
)
9773 dw_die_ref context_die
;
9775 dw_die_ref type_die
= lookup_type_die (type
);
9777 if (type_die
== NULL
)
9779 type_die
= new_die (DW_TAG_enumeration_type
,
9780 scope_die_for (type
, context_die
), type
);
9781 equate_type_number_to_die (type
, type_die
);
9782 add_name_attribute (type_die
, type_tag (type
));
9784 else if (! TYPE_SIZE (type
))
9787 remove_AT (type_die
, DW_AT_declaration
);
9789 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
9790 given enum type is incomplete, do not generate the DW_AT_byte_size
9791 attribute or the DW_AT_element_list attribute. */
9792 if (TYPE_SIZE (type
))
9796 TREE_ASM_WRITTEN (type
) = 1;
9797 add_byte_size_attribute (type_die
, type
);
9798 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
9799 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
9801 /* If the first reference to this type was as the return type of an
9802 inline function, then it may not have a parent. Fix this now. */
9803 if (type_die
->die_parent
== NULL
)
9804 add_child_die (scope_die_for (type
, context_die
), type_die
);
9806 for (link
= TYPE_FIELDS (type
);
9807 link
!= NULL
; link
= TREE_CHAIN (link
))
9809 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
9811 add_name_attribute (enum_die
,
9812 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
9814 if (host_integerp (TREE_VALUE (link
), 0))
9816 if (tree_int_cst_sgn (TREE_VALUE (link
)) < 0)
9817 add_AT_int (enum_die
, DW_AT_const_value
,
9818 tree_low_cst (TREE_VALUE (link
), 0));
9820 add_AT_unsigned (enum_die
, DW_AT_const_value
,
9821 tree_low_cst (TREE_VALUE (link
), 0));
9826 add_AT_flag (type_die
, DW_AT_declaration
, 1);
9829 /* Generate a DIE to represent either a real live formal parameter decl or to
9830 represent just the type of some formal parameter position in some function
9833 Note that this routine is a bit unusual because its argument may be a
9834 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
9835 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
9836 node. If it's the former then this function is being called to output a
9837 DIE to represent a formal parameter object (or some inlining thereof). If
9838 it's the latter, then this function is only being called to output a
9839 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
9840 argument type of some subprogram type. */
9843 gen_formal_parameter_die (node
, context_die
)
9845 dw_die_ref context_die
;
9848 = new_die (DW_TAG_formal_parameter
, context_die
, node
);
9851 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
9854 origin
= decl_ultimate_origin (node
);
9856 add_abstract_origin_attribute (parm_die
, origin
);
9859 add_name_and_src_coords_attributes (parm_die
, node
);
9860 add_type_attribute (parm_die
, TREE_TYPE (node
),
9861 TREE_READONLY (node
),
9862 TREE_THIS_VOLATILE (node
),
9864 if (DECL_ARTIFICIAL (node
))
9865 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
9868 equate_decl_number_to_die (node
, parm_die
);
9869 if (! DECL_ABSTRACT (node
))
9870 add_location_or_const_value_attribute (parm_die
, node
);
9875 /* We were called with some kind of a ..._TYPE node. */
9876 add_type_attribute (parm_die
, node
, 0, 0, context_die
);
9886 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
9887 at the end of an (ANSI prototyped) formal parameters list. */
9890 gen_unspecified_parameters_die (decl_or_type
, context_die
)
9892 dw_die_ref context_die
;
9894 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
9897 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
9898 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
9899 parameters as specified in some function type specification (except for
9900 those which appear as part of a function *definition*). */
9903 gen_formal_types_die (function_or_method_type
, context_die
)
9904 tree function_or_method_type
;
9905 dw_die_ref context_die
;
9908 tree formal_type
= NULL
;
9909 tree first_parm_type
;
9912 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
9914 arg
= DECL_ARGUMENTS (function_or_method_type
);
9915 function_or_method_type
= TREE_TYPE (function_or_method_type
);
9920 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
9922 /* Make our first pass over the list of formal parameter types and output a
9923 DW_TAG_formal_parameter DIE for each one. */
9924 for (link
= first_parm_type
; link
; )
9926 dw_die_ref parm_die
;
9928 formal_type
= TREE_VALUE (link
);
9929 if (formal_type
== void_type_node
)
9932 /* Output a (nameless) DIE to represent the formal parameter itself. */
9933 parm_die
= gen_formal_parameter_die (formal_type
, context_die
);
9934 if ((TREE_CODE (function_or_method_type
) == METHOD_TYPE
9935 && link
== first_parm_type
)
9936 || (arg
&& DECL_ARTIFICIAL (arg
)))
9937 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
9939 link
= TREE_CHAIN (link
);
9941 arg
= TREE_CHAIN (arg
);
9944 /* If this function type has an ellipsis, add a
9945 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
9946 if (formal_type
!= void_type_node
)
9947 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
9949 /* Make our second (and final) pass over the list of formal parameter types
9950 and output DIEs to represent those types (as necessary). */
9951 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
9952 link
&& TREE_VALUE (link
);
9953 link
= TREE_CHAIN (link
))
9954 gen_type_die (TREE_VALUE (link
), context_die
);
9957 /* We want to generate the DIE for TYPE so that we can generate the
9958 die for MEMBER, which has been defined; we will need to refer back
9959 to the member declaration nested within TYPE. If we're trying to
9960 generate minimal debug info for TYPE, processing TYPE won't do the
9961 trick; we need to attach the member declaration by hand. */
9964 gen_type_die_for_member (type
, member
, context_die
)
9966 dw_die_ref context_die
;
9968 gen_type_die (type
, context_die
);
9970 /* If we're trying to avoid duplicate debug info, we may not have
9971 emitted the member decl for this function. Emit it now. */
9972 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
9973 && ! lookup_decl_die (member
))
9975 if (decl_ultimate_origin (member
))
9978 push_decl_scope (type
);
9979 if (TREE_CODE (member
) == FUNCTION_DECL
)
9980 gen_subprogram_die (member
, lookup_type_die (type
));
9982 gen_variable_die (member
, lookup_type_die (type
));
9988 /* Generate the DWARF2 info for the "abstract" instance of a function which we
9989 may later generate inlined and/or out-of-line instances of. */
9992 dwarf2out_abstract_function (decl
)
9998 int was_abstract
= DECL_ABSTRACT (decl
);
10000 /* Make sure we have the actual abstract inline, not a clone. */
10001 decl
= DECL_ORIGIN (decl
);
10003 old_die
= lookup_decl_die (decl
);
10004 if (old_die
&& get_AT_unsigned (old_die
, DW_AT_inline
))
10005 /* We've already generated the abstract instance. */
10008 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10009 we don't get confused by DECL_ABSTRACT. */
10010 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10012 context
= decl_class_context (decl
);
10014 gen_type_die_for_member
10015 (context
, decl
, decl_function_context (decl
) ? NULL
: comp_unit_die
);
10018 /* Pretend we've just finished compiling this function. */
10019 save_fn
= current_function_decl
;
10020 current_function_decl
= decl
;
10022 set_decl_abstract_flags (decl
, 1);
10023 dwarf2out_decl (decl
);
10024 if (! was_abstract
)
10025 set_decl_abstract_flags (decl
, 0);
10027 current_function_decl
= save_fn
;
10030 /* Generate a DIE to represent a declared function (either file-scope or
10034 gen_subprogram_die (decl
, context_die
)
10036 dw_die_ref context_die
;
10038 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
10039 tree origin
= decl_ultimate_origin (decl
);
10040 dw_die_ref subr_die
;
10044 dw_die_ref old_die
= lookup_decl_die (decl
);
10045 int declaration
= (current_function_decl
!= decl
10046 || class_scope_p (context_die
));
10048 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10049 started to generate the abstract instance of an inline, decided to output
10050 its containing class, and proceeded to emit the declaration of the inline
10051 from the member list for the class. If so, DECLARATION takes priority;
10052 we'll get back to the abstract instance when done with the class. */
10054 /* The class-scope declaration DIE must be the primary DIE. */
10055 if (origin
&& declaration
&& class_scope_p (context_die
))
10062 if (origin
!= NULL
)
10064 if (declaration
&& ! local_scope_p (context_die
))
10067 /* Fixup die_parent for the abstract instance of a nested
10068 inline function. */
10069 if (old_die
&& old_die
->die_parent
== NULL
)
10070 add_child_die (context_die
, old_die
);
10072 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10073 add_abstract_origin_attribute (subr_die
, origin
);
10077 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
10079 if (!get_AT_flag (old_die
, DW_AT_declaration
)
10080 /* We can have a normal definition following an inline one in the
10081 case of redefinition of GNU C extern inlines.
10082 It seems reasonable to use AT_specification in this case. */
10083 && !get_AT_unsigned (old_die
, DW_AT_inline
))
10085 /* ??? This can happen if there is a bug in the program, for
10086 instance, if it has duplicate function definitions. Ideally,
10087 we should detect this case and ignore it. For now, if we have
10088 already reported an error, any error at all, then assume that
10089 we got here because of an input error, not a dwarf2 bug. */
10095 /* If the definition comes from the same place as the declaration,
10096 maybe use the old DIE. We always want the DIE for this function
10097 that has the *_pc attributes to be under comp_unit_die so the
10098 debugger can find it. We also need to do this for abstract
10099 instances of inlines, since the spec requires the out-of-line copy
10100 to have the same parent. For local class methods, this doesn't
10101 apply; we just use the old DIE. */
10102 if ((old_die
->die_parent
== comp_unit_die
|| context_die
== NULL
)
10103 && (DECL_ARTIFICIAL (decl
)
10104 || (get_AT_unsigned (old_die
, DW_AT_decl_file
) == file_index
10105 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
10106 == (unsigned) DECL_SOURCE_LINE (decl
)))))
10108 subr_die
= old_die
;
10110 /* Clear out the declaration attribute and the parm types. */
10111 remove_AT (subr_die
, DW_AT_declaration
);
10112 remove_children (subr_die
);
10116 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10117 add_AT_die_ref (subr_die
, DW_AT_specification
, old_die
);
10118 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
10119 add_AT_unsigned (subr_die
, DW_AT_decl_file
, file_index
);
10120 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
10121 != (unsigned) DECL_SOURCE_LINE (decl
))
10123 (subr_die
, DW_AT_decl_line
, DECL_SOURCE_LINE (decl
));
10128 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
10130 if (TREE_PUBLIC (decl
))
10131 add_AT_flag (subr_die
, DW_AT_external
, 1);
10133 add_name_and_src_coords_attributes (subr_die
, decl
);
10134 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10136 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
10137 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
10138 0, 0, context_die
);
10141 add_pure_or_virtual_attribute (subr_die
, decl
);
10142 if (DECL_ARTIFICIAL (decl
))
10143 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
10145 if (TREE_PROTECTED (decl
))
10146 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10147 else if (TREE_PRIVATE (decl
))
10148 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_private
);
10153 if (!old_die
|| !get_AT_unsigned (old_die
, DW_AT_inline
))
10155 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
10157 /* The first time we see a member function, it is in the context of
10158 the class to which it belongs. We make sure of this by emitting
10159 the class first. The next time is the definition, which is
10160 handled above. The two may come from the same source text. */
10161 if (DECL_CONTEXT (decl
) || DECL_ABSTRACT (decl
))
10162 equate_decl_number_to_die (decl
, subr_die
);
10165 else if (DECL_ABSTRACT (decl
))
10167 if (DECL_INLINE (decl
) && !flag_no_inline
)
10169 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10170 inline functions, but not for extern inline functions.
10171 We can't get this completely correct because information
10172 about whether the function was declared inline is not
10174 if (DECL_DEFER_OUTPUT (decl
))
10175 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_inlined
);
10177 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_inlined
);
10180 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
10182 equate_decl_number_to_die (decl
, subr_die
);
10184 else if (!DECL_EXTERNAL (decl
))
10186 if (!old_die
|| !get_AT_unsigned (old_die
, DW_AT_inline
))
10187 equate_decl_number_to_die (decl
, subr_die
);
10189 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_BEGIN_LABEL
,
10190 current_funcdef_number
);
10191 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label_id
);
10192 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
10193 current_funcdef_number
);
10194 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label_id
);
10196 add_pubname (decl
, subr_die
);
10197 add_arange (decl
, subr_die
);
10199 #ifdef MIPS_DEBUGGING_INFO
10200 /* Add a reference to the FDE for this routine. */
10201 add_AT_fde_ref (subr_die
, DW_AT_MIPS_fde
, current_funcdef_fde
);
10204 /* Define the "frame base" location for this routine. We use the
10205 frame pointer or stack pointer registers, since the RTL for local
10206 variables is relative to one of them. */
10208 = frame_pointer_needed
? hard_frame_pointer_rtx
: stack_pointer_rtx
;
10209 add_AT_loc (subr_die
, DW_AT_frame_base
, reg_loc_descriptor (fp_reg
));
10212 /* ??? This fails for nested inline functions, because context_display
10213 is not part of the state saved/restored for inline functions. */
10214 if (current_function_needs_context
)
10215 add_AT_location_description (subr_die
, DW_AT_static_link
,
10216 lookup_static_chain (decl
));
10220 /* Now output descriptions of the arguments for this function. This gets
10221 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10222 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10223 `...' at the end of the formal parameter list. In order to find out if
10224 there was a trailing ellipsis or not, we must instead look at the type
10225 associated with the FUNCTION_DECL. This will be a node of type
10226 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10227 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10228 an ellipsis at the end. */
10230 /* In the case where we are describing a mere function declaration, all we
10231 need to do here (and all we *can* do here) is to describe the *types* of
10232 its formal parameters. */
10233 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
10235 else if (declaration
)
10236 gen_formal_types_die (decl
, subr_die
);
10239 /* Generate DIEs to represent all known formal parameters */
10240 tree arg_decls
= DECL_ARGUMENTS (decl
);
10243 /* When generating DIEs, generate the unspecified_parameters DIE
10244 instead if we come across the arg "__builtin_va_alist" */
10245 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
10246 if (TREE_CODE (parm
) == PARM_DECL
)
10248 if (DECL_NAME (parm
)
10249 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
10250 "__builtin_va_alist"))
10251 gen_unspecified_parameters_die (parm
, subr_die
);
10253 gen_decl_die (parm
, subr_die
);
10256 /* Decide whether we need an unspecified_parameters DIE at the end.
10257 There are 2 more cases to do this for: 1) the ansi ... declaration -
10258 this is detectable when the end of the arg list is not a
10259 void_type_node 2) an unprototyped function declaration (not a
10260 definition). This just means that we have no info about the
10261 parameters at all. */
10262 fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
10263 if (fn_arg_types
!= NULL
)
10265 /* this is the prototyped case, check for ... */
10266 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
10267 gen_unspecified_parameters_die (decl
, subr_die
);
10269 else if (DECL_INITIAL (decl
) == NULL_TREE
)
10270 gen_unspecified_parameters_die (decl
, subr_die
);
10273 /* Output Dwarf info for all of the stuff within the body of the function
10274 (if it has one - it may be just a declaration). */
10275 outer_scope
= DECL_INITIAL (decl
);
10277 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10278 a function. This BLOCK actually represents the outermost binding contour
10279 for the function, i.e. the contour in which the function's formal
10280 parameters and labels get declared. Curiously, it appears that the front
10281 end doesn't actually put the PARM_DECL nodes for the current function onto
10282 the BLOCK_VARS list for this outer scope, but are strung off of the
10283 DECL_ARGUMENTS list for the function instead.
10285 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10286 the LABEL_DECL nodes for the function however, and we output DWARF info
10287 for those in decls_for_scope. Just within the `outer_scope' there will be
10288 a BLOCK node representing the function's outermost pair of curly braces,
10289 and any blocks used for the base and member initializers of a C++
10290 constructor function. */
10291 if (! declaration
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
10293 current_function_has_inlines
= 0;
10294 decls_for_scope (outer_scope
, subr_die
, 0);
10296 #if 0 && defined (MIPS_DEBUGGING_INFO)
10297 if (current_function_has_inlines
)
10299 add_AT_flag (subr_die
, DW_AT_MIPS_has_inlines
, 1);
10300 if (! comp_unit_has_inlines
)
10302 add_AT_flag (comp_unit_die
, DW_AT_MIPS_has_inlines
, 1);
10303 comp_unit_has_inlines
= 1;
10310 /* Generate a DIE to represent a declared data object. */
10313 gen_variable_die (decl
, context_die
)
10315 dw_die_ref context_die
;
10317 tree origin
= decl_ultimate_origin (decl
);
10318 dw_die_ref var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
10320 dw_die_ref old_die
= lookup_decl_die (decl
);
10321 int declaration
= (DECL_EXTERNAL (decl
)
10322 || class_scope_p (context_die
));
10324 if (origin
!= NULL
)
10325 add_abstract_origin_attribute (var_die
, origin
);
10327 /* Loop unrolling can create multiple blocks that refer to the same
10328 static variable, so we must test for the DW_AT_declaration flag.
10330 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10331 copy decls and set the DECL_ABSTRACT flag on them instead of
10334 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10335 else if (old_die
&& TREE_STATIC (decl
)
10336 && get_AT_flag (old_die
, DW_AT_declaration
) == 1)
10338 /* This is a definition of a C++ class level static. */
10339 add_AT_die_ref (var_die
, DW_AT_specification
, old_die
);
10340 if (DECL_NAME (decl
))
10342 unsigned file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
10344 if (get_AT_unsigned (old_die
, DW_AT_decl_file
) != file_index
)
10345 add_AT_unsigned (var_die
, DW_AT_decl_file
, file_index
);
10347 if (get_AT_unsigned (old_die
, DW_AT_decl_line
)
10348 != (unsigned) DECL_SOURCE_LINE (decl
))
10350 add_AT_unsigned (var_die
, DW_AT_decl_line
,
10351 DECL_SOURCE_LINE (decl
));
10356 add_name_and_src_coords_attributes (var_die
, decl
);
10357 add_type_attribute (var_die
, TREE_TYPE (decl
), TREE_READONLY (decl
),
10358 TREE_THIS_VOLATILE (decl
), context_die
);
10360 if (TREE_PUBLIC (decl
))
10361 add_AT_flag (var_die
, DW_AT_external
, 1);
10363 if (DECL_ARTIFICIAL (decl
))
10364 add_AT_flag (var_die
, DW_AT_artificial
, 1);
10366 if (TREE_PROTECTED (decl
))
10367 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10368 else if (TREE_PRIVATE (decl
))
10369 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_private
);
10373 add_AT_flag (var_die
, DW_AT_declaration
, 1);
10375 if (class_scope_p (context_die
) || DECL_ABSTRACT (decl
))
10376 equate_decl_number_to_die (decl
, var_die
);
10378 if (! declaration
&& ! DECL_ABSTRACT (decl
))
10380 add_location_or_const_value_attribute (var_die
, decl
);
10381 add_pubname (decl
, var_die
);
10384 tree_add_const_value_attribute (var_die
, decl
);
10387 /* Generate a DIE to represent a label identifier. */
10390 gen_label_die (decl
, context_die
)
10392 dw_die_ref context_die
;
10394 tree origin
= decl_ultimate_origin (decl
);
10395 dw_die_ref lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
10397 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10399 if (origin
!= NULL
)
10400 add_abstract_origin_attribute (lbl_die
, origin
);
10402 add_name_and_src_coords_attributes (lbl_die
, decl
);
10404 if (DECL_ABSTRACT (decl
))
10405 equate_decl_number_to_die (decl
, lbl_die
);
10408 insn
= DECL_RTL (decl
);
10410 /* Deleted labels are programmer specified labels which have been
10411 eliminated because of various optimisations. We still emit them
10412 here so that it is possible to put breakpoints on them. */
10413 if (GET_CODE (insn
) == CODE_LABEL
10414 || ((GET_CODE (insn
) == NOTE
10415 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
)))
10417 /* When optimization is enabled (via -O) some parts of the compiler
10418 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10419 represent source-level labels which were explicitly declared by
10420 the user. This really shouldn't be happening though, so catch
10421 it if it ever does happen. */
10422 if (INSN_DELETED_P (insn
))
10425 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
10426 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
10431 /* Generate a DIE for a lexical block. */
10434 gen_lexical_block_die (stmt
, context_die
, depth
)
10436 dw_die_ref context_die
;
10439 dw_die_ref stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
10440 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10442 if (! BLOCK_ABSTRACT (stmt
))
10444 if (BLOCK_FRAGMENT_CHAIN (stmt
))
10448 add_AT_range_list (stmt_die
, DW_AT_ranges
, add_ranges (stmt
));
10450 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
10453 add_ranges (chain
);
10454 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
10461 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
10462 BLOCK_NUMBER (stmt
));
10463 add_AT_lbl_id (stmt_die
, DW_AT_low_pc
, label
);
10464 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
10465 BLOCK_NUMBER (stmt
));
10466 add_AT_lbl_id (stmt_die
, DW_AT_high_pc
, label
);
10470 decls_for_scope (stmt
, stmt_die
, depth
);
10473 /* Generate a DIE for an inlined subprogram. */
10476 gen_inlined_subroutine_die (stmt
, context_die
, depth
)
10478 dw_die_ref context_die
;
10481 if (! BLOCK_ABSTRACT (stmt
))
10483 dw_die_ref subr_die
10484 = new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
10485 tree decl
= block_ultimate_origin (stmt
);
10486 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
10488 /* Emit info for the abstract instance first, if we haven't yet. */
10489 dwarf2out_abstract_function (decl
);
10491 add_abstract_origin_attribute (subr_die
, decl
);
10492 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
10493 BLOCK_NUMBER (stmt
));
10494 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label
);
10495 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
10496 BLOCK_NUMBER (stmt
));
10497 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label
);
10498 decls_for_scope (stmt
, subr_die
, depth
);
10499 current_function_has_inlines
= 1;
10503 /* Generate a DIE for a field in a record, or structure. */
10506 gen_field_die (decl
, context_die
)
10508 dw_die_ref context_die
;
10510 dw_die_ref decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
10512 add_name_and_src_coords_attributes (decl_die
, decl
);
10513 add_type_attribute (decl_die
, member_declared_type (decl
),
10514 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
),
10517 if (DECL_BIT_FIELD_TYPE (decl
))
10519 add_byte_size_attribute (decl_die
, decl
);
10520 add_bit_size_attribute (decl_die
, decl
);
10521 add_bit_offset_attribute (decl_die
, decl
);
10524 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
10525 add_data_member_location_attribute (decl_die
, decl
);
10527 if (DECL_ARTIFICIAL (decl
))
10528 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
10530 if (TREE_PROTECTED (decl
))
10531 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10532 else if (TREE_PRIVATE (decl
))
10533 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_private
);
10537 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10538 Use modified_type_die instead.
10539 We keep this code here just in case these types of DIEs may be needed to
10540 represent certain things in other languages (e.g. Pascal) someday. */
10543 gen_pointer_type_die (type
, context_die
)
10545 dw_die_ref context_die
;
10548 = new_die (DW_TAG_pointer_type
, scope_die_for (type
, context_die
), type
);
10550 equate_type_number_to_die (type
, ptr_die
);
10551 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
10552 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
10555 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
10556 Use modified_type_die instead.
10557 We keep this code here just in case these types of DIEs may be needed to
10558 represent certain things in other languages (e.g. Pascal) someday. */
10561 gen_reference_type_die (type
, context_die
)
10563 dw_die_ref context_die
;
10566 = new_die (DW_TAG_reference_type
, scope_die_for (type
, context_die
), type
);
10568 equate_type_number_to_die (type
, ref_die
);
10569 add_type_attribute (ref_die
, TREE_TYPE (type
), 0, 0, context_die
);
10570 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
10574 /* Generate a DIE for a pointer to a member type. */
10577 gen_ptr_to_mbr_type_die (type
, context_die
)
10579 dw_die_ref context_die
;
10582 = new_die (DW_TAG_ptr_to_member_type
,
10583 scope_die_for (type
, context_die
), type
);
10585 equate_type_number_to_die (type
, ptr_die
);
10586 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
10587 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
10588 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
10591 /* Generate the DIE for the compilation unit. */
10594 gen_compile_unit_die (filename
)
10595 const char *filename
;
10598 char producer
[250];
10599 const char *wd
= getpwd ();
10600 const char *language_string
= lang_hooks
.name
;
10603 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
10604 add_name_attribute (die
, filename
);
10606 if (wd
!= NULL
&& filename
[0] != DIR_SEPARATOR
)
10607 add_AT_string (die
, DW_AT_comp_dir
, wd
);
10609 sprintf (producer
, "%s %s", language_string
, version_string
);
10611 #ifdef MIPS_DEBUGGING_INFO
10612 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
10613 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
10614 not appear in the producer string, the debugger reaches the conclusion
10615 that the object file is stripped and has no debugging information.
10616 To get the MIPS/SGI debugger to believe that there is debugging
10617 information in the object file, we add a -g to the producer string. */
10618 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10619 strcat (producer
, " -g");
10622 add_AT_string (die
, DW_AT_producer
, producer
);
10624 if (strcmp (language_string
, "GNU C++") == 0)
10625 language
= DW_LANG_C_plus_plus
;
10626 else if (strcmp (language_string
, "GNU Ada") == 0)
10627 language
= DW_LANG_Ada83
;
10628 else if (strcmp (language_string
, "GNU F77") == 0)
10629 language
= DW_LANG_Fortran77
;
10630 else if (strcmp (language_string
, "GNU Pascal") == 0)
10631 language
= DW_LANG_Pascal83
;
10632 else if (strcmp (language_string
, "GNU Java") == 0)
10633 language
= DW_LANG_Java
;
10634 else if (flag_traditional
)
10635 language
= DW_LANG_C
;
10637 language
= DW_LANG_C89
;
10639 add_AT_unsigned (die
, DW_AT_language
, language
);
10643 /* Generate a DIE for a string type. */
10646 gen_string_type_die (type
, context_die
)
10648 dw_die_ref context_die
;
10650 dw_die_ref type_die
10651 = new_die (DW_TAG_string_type
, scope_die_for (type
, context_die
), type
);
10653 equate_type_number_to_die (type
, type_die
);
10655 /* ??? Fudge the string length attribute for now.
10656 TODO: add string length info. */
10658 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type
)));
10659 bound_representation (upper_bound
, 0, 'u');
10663 /* Generate the DIE for a base class. */
10666 gen_inheritance_die (binfo
, context_die
)
10668 dw_die_ref context_die
;
10670 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
10672 add_type_attribute (die
, BINFO_TYPE (binfo
), 0, 0, context_die
);
10673 add_data_member_location_attribute (die
, binfo
);
10675 if (TREE_VIA_VIRTUAL (binfo
))
10676 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
10678 if (TREE_VIA_PUBLIC (binfo
))
10679 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
10680 else if (TREE_VIA_PROTECTED (binfo
))
10681 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
10684 /* Generate a DIE for a class member. */
10687 gen_member_die (type
, context_die
)
10689 dw_die_ref context_die
;
10694 /* If this is not an incomplete type, output descriptions of each of its
10695 members. Note that as we output the DIEs necessary to represent the
10696 members of this record or union type, we will also be trying to output
10697 DIEs to represent the *types* of those members. However the `type'
10698 function (above) will specifically avoid generating type DIEs for member
10699 types *within* the list of member DIEs for this (containing) type except
10700 for those types (of members) which are explicitly marked as also being
10701 members of this (containing) type themselves. The g++ front- end can
10702 force any given type to be treated as a member of some other (containing)
10703 type by setting the TYPE_CONTEXT of the given (member) type to point to
10704 the TREE node representing the appropriate (containing) type. */
10706 /* First output info about the base classes. */
10707 if (TYPE_BINFO (type
) && TYPE_BINFO_BASETYPES (type
))
10709 tree bases
= TYPE_BINFO_BASETYPES (type
);
10710 int n_bases
= TREE_VEC_LENGTH (bases
);
10713 for (i
= 0; i
< n_bases
; i
++)
10714 gen_inheritance_die (TREE_VEC_ELT (bases
, i
), context_die
);
10717 /* Now output info about the data members and type members. */
10718 for (member
= TYPE_FIELDS (type
); member
; member
= TREE_CHAIN (member
))
10720 /* If we thought we were generating minimal debug info for TYPE
10721 and then changed our minds, some of the member declarations
10722 may have already been defined. Don't define them again, but
10723 do put them in the right order. */
10725 child
= lookup_decl_die (member
);
10727 splice_child_die (context_die
, child
);
10729 gen_decl_die (member
, context_die
);
10732 /* Now output info about the function members (if any). */
10733 for (member
= TYPE_METHODS (type
); member
; member
= TREE_CHAIN (member
))
10735 /* Don't include clones in the member list. */
10736 if (DECL_ABSTRACT_ORIGIN (member
))
10739 child
= lookup_decl_die (member
);
10741 splice_child_die (context_die
, child
);
10743 gen_decl_die (member
, context_die
);
10747 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
10748 is set, we pretend that the type was never defined, so we only get the
10749 member DIEs needed by later specification DIEs. */
10752 gen_struct_or_union_type_die (type
, context_die
)
10754 dw_die_ref context_die
;
10756 dw_die_ref type_die
= lookup_type_die (type
);
10757 dw_die_ref scope_die
= 0;
10759 int complete
= (TYPE_SIZE (type
)
10760 && (! TYPE_STUB_DECL (type
)
10761 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
10763 if (type_die
&& ! complete
)
10766 if (TYPE_CONTEXT (type
) != NULL_TREE
10767 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
)))
10770 scope_die
= scope_die_for (type
, context_die
);
10772 if (! type_die
|| (nested
&& scope_die
== comp_unit_die
))
10773 /* First occurrence of type or toplevel definition of nested class. */
10775 dw_die_ref old_die
= type_die
;
10777 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
10778 ? DW_TAG_structure_type
: DW_TAG_union_type
,
10780 equate_type_number_to_die (type
, type_die
);
10782 add_AT_die_ref (type_die
, DW_AT_specification
, old_die
);
10784 add_name_attribute (type_die
, type_tag (type
));
10787 remove_AT (type_die
, DW_AT_declaration
);
10789 /* If this type has been completed, then give it a byte_size attribute and
10790 then give a list of members. */
10793 /* Prevent infinite recursion in cases where the type of some member of
10794 this type is expressed in terms of this type itself. */
10795 TREE_ASM_WRITTEN (type
) = 1;
10796 add_byte_size_attribute (type_die
, type
);
10797 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
10798 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
10800 /* If the first reference to this type was as the return type of an
10801 inline function, then it may not have a parent. Fix this now. */
10802 if (type_die
->die_parent
== NULL
)
10803 add_child_die (scope_die
, type_die
);
10805 push_decl_scope (type
);
10806 gen_member_die (type
, type_die
);
10809 /* GNU extension: Record what type our vtable lives in. */
10810 if (TYPE_VFIELD (type
))
10812 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
10814 gen_type_die (vtype
, context_die
);
10815 add_AT_die_ref (type_die
, DW_AT_containing_type
,
10816 lookup_type_die (vtype
));
10821 add_AT_flag (type_die
, DW_AT_declaration
, 1);
10823 /* We don't need to do this for function-local types. */
10824 if (! decl_function_context (TYPE_STUB_DECL (type
)))
10825 VARRAY_PUSH_TREE (incomplete_types
, type
);
10829 /* Generate a DIE for a subroutine _type_. */
10832 gen_subroutine_type_die (type
, context_die
)
10834 dw_die_ref context_die
;
10836 tree return_type
= TREE_TYPE (type
);
10837 dw_die_ref subr_die
10838 = new_die (DW_TAG_subroutine_type
,
10839 scope_die_for (type
, context_die
), type
);
10841 equate_type_number_to_die (type
, subr_die
);
10842 add_prototyped_attribute (subr_die
, type
);
10843 add_type_attribute (subr_die
, return_type
, 0, 0, context_die
);
10844 gen_formal_types_die (type
, subr_die
);
10847 /* Generate a DIE for a type definition */
10850 gen_typedef_die (decl
, context_die
)
10852 dw_die_ref context_die
;
10854 dw_die_ref type_die
;
10857 if (TREE_ASM_WRITTEN (decl
))
10860 TREE_ASM_WRITTEN (decl
) = 1;
10861 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
10862 origin
= decl_ultimate_origin (decl
);
10863 if (origin
!= NULL
)
10864 add_abstract_origin_attribute (type_die
, origin
);
10869 add_name_and_src_coords_attributes (type_die
, decl
);
10870 if (DECL_ORIGINAL_TYPE (decl
))
10872 type
= DECL_ORIGINAL_TYPE (decl
);
10874 if (type
== TREE_TYPE (decl
))
10877 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
10880 type
= TREE_TYPE (decl
);
10882 add_type_attribute (type_die
, type
, TREE_READONLY (decl
),
10883 TREE_THIS_VOLATILE (decl
), context_die
);
10886 if (DECL_ABSTRACT (decl
))
10887 equate_decl_number_to_die (decl
, type_die
);
10890 /* Generate a type description DIE. */
10893 gen_type_die (type
, context_die
)
10895 dw_die_ref context_die
;
10899 if (type
== NULL_TREE
|| type
== error_mark_node
)
10902 /* We are going to output a DIE to represent the unqualified version of
10903 this type (i.e. without any const or volatile qualifiers) so get the
10904 main variant (i.e. the unqualified version) of this type now. */
10905 type
= type_main_variant (type
);
10907 if (TREE_ASM_WRITTEN (type
))
10910 if (TYPE_NAME (type
) && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
10911 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
10913 TREE_ASM_WRITTEN (type
) = 1;
10914 gen_decl_die (TYPE_NAME (type
), context_die
);
10918 switch (TREE_CODE (type
))
10924 case REFERENCE_TYPE
:
10925 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
10926 ensures that the gen_type_die recursion will terminate even if the
10927 type is recursive. Recursive types are possible in Ada. */
10928 /* ??? We could perhaps do this for all types before the switch
10930 TREE_ASM_WRITTEN (type
) = 1;
10932 /* For these types, all that is required is that we output a DIE (or a
10933 set of DIEs) to represent the "basis" type. */
10934 gen_type_die (TREE_TYPE (type
), context_die
);
10938 /* This code is used for C++ pointer-to-data-member types.
10939 Output a description of the relevant class type. */
10940 gen_type_die (TYPE_OFFSET_BASETYPE (type
), context_die
);
10942 /* Output a description of the type of the object pointed to. */
10943 gen_type_die (TREE_TYPE (type
), context_die
);
10945 /* Now output a DIE to represent this pointer-to-data-member type
10947 gen_ptr_to_mbr_type_die (type
, context_die
);
10951 gen_type_die (TYPE_DOMAIN (type
), context_die
);
10952 gen_set_type_die (type
, context_die
);
10956 gen_type_die (TREE_TYPE (type
), context_die
);
10957 abort (); /* No way to represent these in Dwarf yet! */
10960 case FUNCTION_TYPE
:
10961 /* Force out return type (in case it wasn't forced out already). */
10962 gen_type_die (TREE_TYPE (type
), context_die
);
10963 gen_subroutine_type_die (type
, context_die
);
10967 /* Force out return type (in case it wasn't forced out already). */
10968 gen_type_die (TREE_TYPE (type
), context_die
);
10969 gen_subroutine_type_die (type
, context_die
);
10973 if (TYPE_STRING_FLAG (type
) && TREE_CODE (TREE_TYPE (type
)) == CHAR_TYPE
)
10975 gen_type_die (TREE_TYPE (type
), context_die
);
10976 gen_string_type_die (type
, context_die
);
10979 gen_array_type_die (type
, context_die
);
10983 gen_type_die (TYPE_DEBUG_REPRESENTATION_TYPE (type
), context_die
);
10986 case ENUMERAL_TYPE
:
10989 case QUAL_UNION_TYPE
:
10990 /* If this is a nested type whose containing class hasn't been written
10991 out yet, writing it out will cover this one, too. This does not apply
10992 to instantiations of member class templates; they need to be added to
10993 the containing class as they are generated. FIXME: This hurts the
10994 idea of combining type decls from multiple TUs, since we can't predict
10995 what set of template instantiations we'll get. */
10996 if (TYPE_CONTEXT (type
)
10997 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
10998 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
11000 gen_type_die (TYPE_CONTEXT (type
), context_die
);
11002 if (TREE_ASM_WRITTEN (type
))
11005 /* If that failed, attach ourselves to the stub. */
11006 push_decl_scope (TYPE_CONTEXT (type
));
11007 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
11013 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
11014 gen_enumeration_type_die (type
, context_die
);
11016 gen_struct_or_union_type_die (type
, context_die
);
11021 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11022 it up if it is ever completed. gen_*_type_die will set it for us
11023 when appropriate. */
11032 /* No DIEs needed for fundamental types. */
11036 /* No Dwarf representation currently defined. */
11043 TREE_ASM_WRITTEN (type
) = 1;
11046 /* Generate a DIE for a tagged type instantiation. */
11049 gen_tagged_type_instantiation_die (type
, context_die
)
11051 dw_die_ref context_die
;
11053 if (type
== NULL_TREE
|| type
== error_mark_node
)
11056 /* We are going to output a DIE to represent the unqualified version of
11057 this type (i.e. without any const or volatile qualifiers) so make sure
11058 that we have the main variant (i.e. the unqualified version) of this
11060 if (type
!= type_main_variant (type
))
11063 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11064 an instance of an unresolved type. */
11066 switch (TREE_CODE (type
))
11071 case ENUMERAL_TYPE
:
11072 gen_inlined_enumeration_type_die (type
, context_die
);
11076 gen_inlined_structure_type_die (type
, context_die
);
11080 case QUAL_UNION_TYPE
:
11081 gen_inlined_union_type_die (type
, context_die
);
11089 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11090 things which are local to the given block. */
11093 gen_block_die (stmt
, context_die
, depth
)
11095 dw_die_ref context_die
;
11098 int must_output_die
= 0;
11101 enum tree_code origin_code
;
11103 /* Ignore blocks never really used to make RTL. */
11104 if (stmt
== NULL_TREE
|| !TREE_USED (stmt
)
11105 || (!TREE_ASM_WRITTEN (stmt
) && !BLOCK_ABSTRACT (stmt
)))
11108 /* If the block is one fragment of a non-contiguous block, do not
11109 process the variables, since they will have been done by the
11110 origin block. Do process subblocks. */
11111 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
11115 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
11116 gen_block_die (sub
, context_die
, depth
+ 1);
11121 /* Determine the "ultimate origin" of this block. This block may be an
11122 inlined instance of an inlined instance of inline function, so we have
11123 to trace all of the way back through the origin chain to find out what
11124 sort of node actually served as the original seed for the creation of
11125 the current block. */
11126 origin
= block_ultimate_origin (stmt
);
11127 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
11129 /* Determine if we need to output any Dwarf DIEs at all to represent this
11131 if (origin_code
== FUNCTION_DECL
)
11132 /* The outer scopes for inlinings *must* always be represented. We
11133 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11134 must_output_die
= 1;
11137 /* In the case where the current block represents an inlining of the
11138 "body block" of an inline function, we must *NOT* output any DIE for
11139 this block because we have already output a DIE to represent the whole
11140 inlined function scope and the "body block" of any function doesn't
11141 really represent a different scope according to ANSI C rules. So we
11142 check here to make sure that this block does not represent a "body
11143 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11144 if (! is_body_block (origin
? origin
: stmt
))
11146 /* Determine if this block directly contains any "significant"
11147 local declarations which we will need to output DIEs for. */
11148 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11149 /* We are not in terse mode so *any* local declaration counts
11150 as being a "significant" one. */
11151 must_output_die
= (BLOCK_VARS (stmt
) != NULL
);
11153 /* We are in terse mode, so only local (nested) function
11154 definitions count as "significant" local declarations. */
11155 for (decl
= BLOCK_VARS (stmt
);
11156 decl
!= NULL
; decl
= TREE_CHAIN (decl
))
11157 if (TREE_CODE (decl
) == FUNCTION_DECL
11158 && DECL_INITIAL (decl
))
11160 must_output_die
= 1;
11166 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11167 DIE for any block which contains no significant local declarations at
11168 all. Rather, in such cases we just call `decls_for_scope' so that any
11169 needed Dwarf info for any sub-blocks will get properly generated. Note
11170 that in terse mode, our definition of what constitutes a "significant"
11171 local declaration gets restricted to include only inlined function
11172 instances and local (nested) function definitions. */
11173 if (must_output_die
)
11175 if (origin_code
== FUNCTION_DECL
)
11176 gen_inlined_subroutine_die (stmt
, context_die
, depth
);
11178 gen_lexical_block_die (stmt
, context_die
, depth
);
11181 decls_for_scope (stmt
, context_die
, depth
);
11184 /* Generate all of the decls declared within a given scope and (recursively)
11185 all of its sub-blocks. */
11188 decls_for_scope (stmt
, context_die
, depth
)
11190 dw_die_ref context_die
;
11196 /* Ignore blocks never really used to make RTL. */
11197 if (stmt
== NULL_TREE
|| ! TREE_USED (stmt
))
11200 /* Output the DIEs to represent all of the data objects and typedefs
11201 declared directly within this block but not within any nested
11202 sub-blocks. Also, nested function and tag DIEs have been
11203 generated with a parent of NULL; fix that up now. */
11204 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= TREE_CHAIN (decl
))
11208 if (TREE_CODE (decl
) == FUNCTION_DECL
)
11209 die
= lookup_decl_die (decl
);
11210 else if (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
))
11211 die
= lookup_type_die (TREE_TYPE (decl
));
11215 if (die
!= NULL
&& die
->die_parent
== NULL
)
11216 add_child_die (context_die
, die
);
11218 gen_decl_die (decl
, context_die
);
11221 /* Output the DIEs to represent all sub-blocks (and the items declared
11222 therein) of this block. */
11223 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
11225 subblocks
= BLOCK_CHAIN (subblocks
))
11226 gen_block_die (subblocks
, context_die
, depth
+ 1);
11229 /* Is this a typedef we can avoid emitting? */
11232 is_redundant_typedef (decl
)
11235 if (TYPE_DECL_IS_STUB (decl
))
11238 if (DECL_ARTIFICIAL (decl
)
11239 && DECL_CONTEXT (decl
)
11240 && is_tagged_type (DECL_CONTEXT (decl
))
11241 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
11242 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
11243 /* Also ignore the artificial member typedef for the class name. */
11249 /* Generate Dwarf debug information for a decl described by DECL. */
11252 gen_decl_die (decl
, context_die
)
11254 dw_die_ref context_die
;
11258 if (DECL_P (decl
) && DECL_IGNORED_P (decl
))
11261 switch (TREE_CODE (decl
))
11267 /* The individual enumerators of an enum type get output when we output
11268 the Dwarf representation of the relevant enum type itself. */
11271 case FUNCTION_DECL
:
11272 /* Don't output any DIEs to represent mere function declarations,
11273 unless they are class members or explicit block externs. */
11274 if (DECL_INITIAL (decl
) == NULL_TREE
&& DECL_CONTEXT (decl
) == NULL_TREE
11275 && (current_function_decl
== NULL_TREE
|| DECL_ARTIFICIAL (decl
)))
11278 /* If we're emitting a clone, emit info for the abstract instance. */
11279 if (DECL_ORIGIN (decl
) != decl
)
11280 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl
));
11282 /* If we're emitting an out-of-line copy of an inline function,
11283 emit info for the abstract instance and set up to refer to it. */
11284 else if (DECL_INLINE (decl
) && ! DECL_ABSTRACT (decl
)
11285 && ! class_scope_p (context_die
)
11286 /* dwarf2out_abstract_function won't emit a die if this is just
11287 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11288 that case, because that works only if we have a die. */
11289 && DECL_INITIAL (decl
) != NULL_TREE
)
11291 dwarf2out_abstract_function (decl
);
11292 set_decl_origin_self (decl
);
11295 /* Otherwise we're emitting the primary DIE for this decl. */
11296 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
11298 /* Before we describe the FUNCTION_DECL itself, make sure that we
11299 have described its return type. */
11300 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
11302 /* And its virtual context. */
11303 if (DECL_VINDEX (decl
) != NULL_TREE
)
11304 gen_type_die (DECL_CONTEXT (decl
), context_die
);
11306 /* And its containing type. */
11307 origin
= decl_class_context (decl
);
11308 if (origin
!= NULL_TREE
)
11309 gen_type_die_for_member (origin
, decl
, context_die
);
11312 /* Now output a DIE to represent the function itself. */
11313 gen_subprogram_die (decl
, context_die
);
11317 /* If we are in terse mode, don't generate any DIEs to represent any
11318 actual typedefs. */
11319 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11322 /* In the special case of a TYPE_DECL node representing the declaration
11323 of some type tag, if the given TYPE_DECL is marked as having been
11324 instantiated from some other (original) TYPE_DECL node (e.g. one which
11325 was generated within the original definition of an inline function) we
11326 have to generate a special (abbreviated) DW_TAG_structure_type,
11327 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11328 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
)
11330 gen_tagged_type_instantiation_die (TREE_TYPE (decl
), context_die
);
11334 if (is_redundant_typedef (decl
))
11335 gen_type_die (TREE_TYPE (decl
), context_die
);
11337 /* Output a DIE to represent the typedef itself. */
11338 gen_typedef_die (decl
, context_die
);
11342 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
11343 gen_label_die (decl
, context_die
);
11347 /* If we are in terse mode, don't generate any DIEs to represent any
11348 variable declarations or definitions. */
11349 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11352 /* Output any DIEs that are needed to specify the type of this data
11354 gen_type_die (TREE_TYPE (decl
), context_die
);
11356 /* And its containing type. */
11357 origin
= decl_class_context (decl
);
11358 if (origin
!= NULL_TREE
)
11359 gen_type_die_for_member (origin
, decl
, context_die
);
11361 /* Now output the DIE to represent the data object itself. This gets
11362 complicated because of the possibility that the VAR_DECL really
11363 represents an inlined instance of a formal parameter for an inline
11365 origin
= decl_ultimate_origin (decl
);
11366 if (origin
!= NULL_TREE
&& TREE_CODE (origin
) == PARM_DECL
)
11367 gen_formal_parameter_die (decl
, context_die
);
11369 gen_variable_die (decl
, context_die
);
11373 /* Ignore the nameless fields that are used to skip bits but handle C++
11374 anonymous unions. */
11375 if (DECL_NAME (decl
) != NULL_TREE
11376 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
)
11378 gen_type_die (member_declared_type (decl
), context_die
);
11379 gen_field_die (decl
, context_die
);
11384 gen_type_die (TREE_TYPE (decl
), context_die
);
11385 gen_formal_parameter_die (decl
, context_die
);
11388 case NAMESPACE_DECL
:
11389 /* Ignore for now. */
11398 mark_limbo_die_list (ptr
)
11399 void *ptr ATTRIBUTE_UNUSED
;
11401 limbo_die_node
*node
;
11402 for (node
= limbo_die_list
; node
; node
= node
->next
)
11403 ggc_mark_tree (node
->created_for
);
11406 /* Add Ada "use" clause information for SGI Workshop debugger. */
11409 dwarf2out_add_library_unit_info (filename
, context_list
)
11410 const char *filename
;
11411 const char *context_list
;
11413 unsigned int file_index
;
11415 if (filename
!= NULL
)
11417 dw_die_ref unit_die
= new_die (DW_TAG_module
, comp_unit_die
, NULL
);
11418 tree context_list_decl
11419 = build_decl (LABEL_DECL
, get_identifier (context_list
),
11422 TREE_PUBLIC (context_list_decl
) = TRUE
;
11423 add_name_attribute (unit_die
, context_list
);
11424 file_index
= lookup_filename (filename
);
11425 add_AT_unsigned (unit_die
, DW_AT_decl_file
, file_index
);
11426 add_pubname (context_list_decl
, unit_die
);
11430 /* Output debug information for global decl DECL. Called from toplev.c after
11431 compilation proper has finished. */
11434 dwarf2out_global_decl (decl
)
11437 /* Output DWARF2 information for file-scope tentative data object
11438 declarations, file-scope (extern) function declarations (which had no
11439 corresponding body) and file-scope tagged type declarations and
11440 definitions which have not yet been forced out. */
11441 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
11442 dwarf2out_decl (decl
);
11445 /* Write the debugging output for DECL. */
11448 dwarf2out_decl (decl
)
11451 dw_die_ref context_die
= comp_unit_die
;
11453 switch (TREE_CODE (decl
))
11458 case FUNCTION_DECL
:
11459 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11460 builtin function. Explicit programmer-supplied declarations of
11461 these same functions should NOT be ignored however. */
11462 if (DECL_EXTERNAL (decl
) && DECL_BUILT_IN (decl
))
11465 /* What we would really like to do here is to filter out all mere
11466 file-scope declarations of file-scope functions which are never
11467 referenced later within this translation unit (and keep all of ones
11468 that *are* referenced later on) but we aren't clairvoyant, so we have
11469 no idea which functions will be referenced in the future (i.e. later
11470 on within the current translation unit). So here we just ignore all
11471 file-scope function declarations which are not also definitions. If
11472 and when the debugger needs to know something about these functions,
11473 it will have to hunt around and find the DWARF information associated
11474 with the definition of the function.
11476 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
11477 nodes represent definitions and which ones represent mere
11478 declarations. We have to check DECL_INITIAL instead. That's because
11479 the C front-end supports some weird semantics for "extern inline"
11480 function definitions. These can get inlined within the current
11481 translation unit (an thus, we need to generate Dwarf info for their
11482 abstract instances so that the Dwarf info for the concrete inlined
11483 instances can have something to refer to) but the compiler never
11484 generates any out-of-lines instances of such things (despite the fact
11485 that they *are* definitions).
11487 The important point is that the C front-end marks these "extern
11488 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
11489 them anyway. Note that the C++ front-end also plays some similar games
11490 for inline function definitions appearing within include files which
11491 also contain `#pragma interface' pragmas. */
11492 if (DECL_INITIAL (decl
) == NULL_TREE
)
11495 /* If we're a nested function, initially use a parent of NULL; if we're
11496 a plain function, this will be fixed up in decls_for_scope. If
11497 we're a method, it will be ignored, since we already have a DIE. */
11498 if (decl_function_context (decl
))
11499 context_die
= NULL
;
11503 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
11504 declaration and if the declaration was never even referenced from
11505 within this entire compilation unit. We suppress these DIEs in
11506 order to save space in the .debug section (by eliminating entries
11507 which are probably useless). Note that we must not suppress
11508 block-local extern declarations (whether used or not) because that
11509 would screw-up the debugger's name lookup mechanism and cause it to
11510 miss things which really ought to be in scope at a given point. */
11511 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
11514 /* If we are in terse mode, don't generate any DIEs to represent any
11515 variable declarations or definitions. */
11516 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11521 /* Don't emit stubs for types unless they are needed by other DIEs. */
11522 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
11525 /* Don't bother trying to generate any DIEs to represent any of the
11526 normal built-in types for the language we are compiling. */
11527 if (DECL_SOURCE_LINE (decl
) == 0)
11529 /* OK, we need to generate one for `bool' so GDB knows what type
11530 comparisons have. */
11531 if ((get_AT_unsigned (comp_unit_die
, DW_AT_language
)
11532 == DW_LANG_C_plus_plus
)
11533 && TREE_CODE (TREE_TYPE (decl
)) == BOOLEAN_TYPE
11534 && ! DECL_IGNORED_P (decl
))
11535 modified_type_die (TREE_TYPE (decl
), 0, 0, NULL
);
11540 /* If we are in terse mode, don't generate any DIEs for types. */
11541 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11544 /* If we're a function-scope tag, initially use a parent of NULL;
11545 this will be fixed up in decls_for_scope. */
11546 if (decl_function_context (decl
))
11547 context_die
= NULL
;
11555 gen_decl_die (decl
, context_die
);
11558 /* Output a marker (i.e. a label) for the beginning of the generated code for
11559 a lexical block. */
11562 dwarf2out_begin_block (line
, blocknum
)
11563 unsigned int line ATTRIBUTE_UNUSED
;
11564 unsigned int blocknum
;
11566 function_section (current_function_decl
);
11567 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
11570 /* Output a marker (i.e. a label) for the end of the generated code for a
11574 dwarf2out_end_block (line
, blocknum
)
11575 unsigned int line ATTRIBUTE_UNUSED
;
11576 unsigned int blocknum
;
11578 function_section (current_function_decl
);
11579 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
11582 /* Returns nonzero if it is appropriate not to emit any debugging
11583 information for BLOCK, because it doesn't contain any instructions.
11585 Don't allow this for blocks with nested functions or local classes
11586 as we would end up with orphans, and in the presence of scheduling
11587 we may end up calling them anyway. */
11590 dwarf2out_ignore_block (block
)
11595 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
11596 if (TREE_CODE (decl
) == FUNCTION_DECL
11597 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
11603 /* Lookup FILE_NAME (in the list of filenames that we know about here in
11604 dwarf2out.c) and return its "index". The index of each (known) filename is
11605 just a unique number which is associated with only that one filename. We
11606 need such numbers for the sake of generating labels (in the .debug_sfnames
11607 section) and references to those files numbers (in the .debug_srcinfo
11608 and.debug_macinfo sections). If the filename given as an argument is not
11609 found in our current list, add it to the list and assign it the next
11610 available unique index number. In order to speed up searches, we remember
11611 the index of the filename was looked up last. This handles the majority of
11615 lookup_filename (file_name
)
11616 const char *file_name
;
11620 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
11621 if (strcmp (file_name
, "<internal>") == 0
11622 || strcmp (file_name
, "<built-in>") == 0)
11625 /* Check to see if the file name that was searched on the previous
11626 call matches this file name. If so, return the index. */
11627 if (file_table
.last_lookup_index
!= 0)
11628 if (0 == strcmp (file_name
,
11629 file_table
.table
[file_table
.last_lookup_index
]))
11630 return file_table
.last_lookup_index
;
11632 /* Didn't match the previous lookup, search the table */
11633 for (i
= 1; i
< file_table
.in_use
; i
++)
11634 if (strcmp (file_name
, file_table
.table
[i
]) == 0)
11636 file_table
.last_lookup_index
= i
;
11640 /* Prepare to add a new table entry by making sure there is enough space in
11641 the table to do so. If not, expand the current table. */
11642 if (i
== file_table
.allocated
)
11644 file_table
.allocated
= i
+ FILE_TABLE_INCREMENT
;
11645 file_table
.table
= (char **)
11646 xrealloc (file_table
.table
, file_table
.allocated
* sizeof (char *));
11649 /* Add the new entry to the end of the filename table. */
11650 file_table
.table
[i
] = xstrdup (file_name
);
11651 file_table
.in_use
= i
+ 1;
11652 file_table
.last_lookup_index
= i
;
11654 if (DWARF2_ASM_LINE_DEBUG_INFO
)
11655 fprintf (asm_out_file
, "\t.file %u \"%s\"\n", i
, file_name
);
11663 /* Allocate the initial hunk of the file_table. */
11664 file_table
.table
= (char **) xcalloc (FILE_TABLE_INCREMENT
, sizeof (char *));
11665 file_table
.allocated
= FILE_TABLE_INCREMENT
;
11667 /* Skip the first entry - file numbers begin at 1. */
11668 file_table
.in_use
= 1;
11669 file_table
.last_lookup_index
= 0;
11672 /* Output a label to mark the beginning of a source code line entry
11673 and record information relating to this source line, in
11674 'line_info_table' for later output of the .debug_line section. */
11677 dwarf2out_source_line (line
, filename
)
11679 const char *filename
;
11681 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
11683 function_section (current_function_decl
);
11685 /* If requested, emit something human-readable. */
11686 if (flag_debug_asm
)
11687 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
11690 if (DWARF2_ASM_LINE_DEBUG_INFO
)
11692 unsigned file_num
= lookup_filename (filename
);
11694 /* Emit the .loc directive understood by GNU as. */
11695 fprintf (asm_out_file
, "\t.loc %d %d 0\n", file_num
, line
);
11697 /* Indicate that line number info exists. */
11698 line_info_table_in_use
++;
11700 /* Indicate that multiple line number tables exist. */
11701 if (DECL_SECTION_NAME (current_function_decl
))
11702 separate_line_info_table_in_use
++;
11704 else if (DECL_SECTION_NAME (current_function_decl
))
11706 dw_separate_line_info_ref line_info
;
11707 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, SEPARATE_LINE_CODE_LABEL
,
11708 separate_line_info_table_in_use
);
11710 /* expand the line info table if necessary */
11711 if (separate_line_info_table_in_use
11712 == separate_line_info_table_allocated
)
11714 separate_line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
11715 separate_line_info_table
11716 = (dw_separate_line_info_ref
)
11717 xrealloc (separate_line_info_table
,
11718 separate_line_info_table_allocated
11719 * sizeof (dw_separate_line_info_entry
));
11722 /* Add the new entry at the end of the line_info_table. */
11724 = &separate_line_info_table
[separate_line_info_table_in_use
++];
11725 line_info
->dw_file_num
= lookup_filename (filename
);
11726 line_info
->dw_line_num
= line
;
11727 line_info
->function
= current_funcdef_number
;
11731 dw_line_info_ref line_info
;
11733 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, LINE_CODE_LABEL
,
11734 line_info_table_in_use
);
11736 /* Expand the line info table if necessary. */
11737 if (line_info_table_in_use
== line_info_table_allocated
)
11739 line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
11741 = (dw_line_info_ref
)
11742 xrealloc (line_info_table
,
11743 (line_info_table_allocated
11744 * sizeof (dw_line_info_entry
)));
11747 /* Add the new entry at the end of the line_info_table. */
11748 line_info
= &line_info_table
[line_info_table_in_use
++];
11749 line_info
->dw_file_num
= lookup_filename (filename
);
11750 line_info
->dw_line_num
= line
;
11755 /* Record the beginning of a new source file. */
11758 dwarf2out_start_source_file (lineno
, filename
)
11759 unsigned int lineno
;
11760 const char *filename
;
11762 if (flag_eliminate_dwarf2_dups
)
11764 /* Record the beginning of the file for break_out_includes. */
11765 dw_die_ref bincl_die
= new_die (DW_TAG_GNU_BINCL
, comp_unit_die
, NULL
);
11766 add_AT_string (bincl_die
, DW_AT_name
, filename
);
11769 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
11771 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
11772 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
11773 dw2_asm_output_data_uleb128 (lineno
, "Included from line number %d",
11775 dw2_asm_output_data_uleb128 (lookup_filename (filename
),
11776 "Filename we just started");
11780 /* Record the end of a source file. */
11783 dwarf2out_end_source_file (lineno
)
11784 unsigned int lineno ATTRIBUTE_UNUSED
;
11786 if (flag_eliminate_dwarf2_dups
)
11787 /* Record the end of the file for break_out_includes. */
11788 new_die (DW_TAG_GNU_EINCL
, comp_unit_die
, NULL
);
11790 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
11792 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
11793 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
11797 /* Called from debug_define in toplev.c. The `buffer' parameter contains
11798 the tail part of the directive line, i.e. the part which is past the
11799 initial whitespace, #, whitespace, directive-name, whitespace part. */
11802 dwarf2out_define (lineno
, buffer
)
11803 unsigned lineno ATTRIBUTE_UNUSED
;
11804 const char *buffer ATTRIBUTE_UNUSED
;
11806 static int initialized
= 0;
11809 dwarf2out_start_source_file (0, primary_filename
);
11813 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
11815 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
11816 dw2_asm_output_data (1, DW_MACINFO_define
, "Define macro");
11817 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
11818 dw2_asm_output_nstring (buffer
, -1, "The macro");
11822 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
11823 the tail part of the directive line, i.e. the part which is past the
11824 initial whitespace, #, whitespace, directive-name, whitespace part. */
11827 dwarf2out_undef (lineno
, buffer
)
11828 unsigned lineno ATTRIBUTE_UNUSED
;
11829 const char *buffer ATTRIBUTE_UNUSED
;
11831 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
11833 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
11834 dw2_asm_output_data (1, DW_MACINFO_undef
, "Undefine macro");
11835 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
11836 dw2_asm_output_nstring (buffer
, -1, "The macro");
11840 /* Set up for Dwarf output at the start of compilation. */
11843 dwarf2out_init (main_input_filename
)
11844 const char *main_input_filename
;
11846 init_file_table ();
11848 /* Remember the name of the primary input file. */
11849 primary_filename
= main_input_filename
;
11851 /* Add it to the file table first, under the assumption that we'll
11852 be emitting line number data for it first, which avoids having
11853 to add an initial DW_LNS_set_file. */
11854 lookup_filename (main_input_filename
);
11856 /* Allocate the initial hunk of the decl_die_table. */
11858 = (dw_die_ref
*) xcalloc (DECL_DIE_TABLE_INCREMENT
, sizeof (dw_die_ref
));
11859 decl_die_table_allocated
= DECL_DIE_TABLE_INCREMENT
;
11860 decl_die_table_in_use
= 0;
11862 /* Allocate the initial hunk of the decl_scope_table. */
11863 VARRAY_TREE_INIT (decl_scope_table
, 256, "decl_scope_table");
11864 ggc_add_tree_varray_root (&decl_scope_table
, 1);
11866 /* Allocate the initial hunk of the abbrev_die_table. */
11868 = (dw_die_ref
*) xcalloc (ABBREV_DIE_TABLE_INCREMENT
,
11869 sizeof (dw_die_ref
));
11870 abbrev_die_table_allocated
= ABBREV_DIE_TABLE_INCREMENT
;
11871 /* Zero-th entry is allocated, but unused */
11872 abbrev_die_table_in_use
= 1;
11874 /* Allocate the initial hunk of the line_info_table. */
11876 = (dw_line_info_ref
) xcalloc (LINE_INFO_TABLE_INCREMENT
,
11877 sizeof (dw_line_info_entry
));
11878 line_info_table_allocated
= LINE_INFO_TABLE_INCREMENT
;
11880 /* Zero-th entry is allocated, but unused */
11881 line_info_table_in_use
= 1;
11883 /* Generate the initial DIE for the .debug section. Note that the (string)
11884 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
11885 will (typically) be a relative pathname and that this pathname should be
11886 taken as being relative to the directory from which the compiler was
11887 invoked when the given (base) source file was compiled. */
11888 comp_unit_die
= gen_compile_unit_die (main_input_filename
);
11890 VARRAY_TREE_INIT (incomplete_types
, 64, "incomplete_types");
11891 ggc_add_tree_varray_root (&incomplete_types
, 1);
11893 VARRAY_RTX_INIT (used_rtx_varray
, 32, "used_rtx_varray");
11894 ggc_add_rtx_varray_root (&used_rtx_varray
, 1);
11896 ggc_add_root (&limbo_die_list
, 1, 1, mark_limbo_die_list
);
11898 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
11899 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
11900 DEBUG_ABBREV_SECTION_LABEL
, 0);
11901 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
11902 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
11904 strcpy (text_section_label
, stripattributes (TEXT_SECTION_NAME
));
11906 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
11907 DEBUG_INFO_SECTION_LABEL
, 0);
11908 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
11909 DEBUG_LINE_SECTION_LABEL
, 0);
11910 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
11911 DEBUG_RANGES_SECTION_LABEL
, 0);
11912 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
11913 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
11914 named_section_flags (DEBUG_INFO_SECTION
, SECTION_DEBUG
);
11915 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
11916 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
11917 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
11919 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
11921 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
11922 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
11923 DEBUG_MACINFO_SECTION_LABEL
, 0);
11924 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
11927 if (DWARF2_GENERATE_TEXT_SECTION_LABEL
)
11930 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
11934 /* Allocate a string in .debug_str hash table. */
11937 indirect_string_alloc (tab
)
11938 hash_table
*tab ATTRIBUTE_UNUSED
;
11940 struct indirect_string_node
*node
;
11942 node
= xmalloc (sizeof (struct indirect_string_node
));
11943 node
->refcount
= 0;
11945 node
->label
= NULL
;
11947 return (hashnode
) node
;
11950 /* A helper function for dwarf2out_finish called through
11951 ht_forall. Emit one queued .debug_str string. */
11954 output_indirect_string (pfile
, h
, v
)
11955 struct cpp_reader
*pfile ATTRIBUTE_UNUSED
;
11957 const PTR v ATTRIBUTE_UNUSED
;
11959 struct indirect_string_node
*node
= (struct indirect_string_node
*) h
;
11961 if (node
->form
== DW_FORM_strp
)
11963 named_section_flags (DEBUG_STR_SECTION
, DEBUG_STR_SECTION_FLAGS
);
11964 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
11965 assemble_string ((const char *) HT_STR (&node
->id
),
11966 HT_LEN (&node
->id
) + 1);
11972 /* Output stuff that dwarf requires at the end of every file,
11973 and generate the DWARF-2 debugging info. */
11976 dwarf2out_finish (input_filename
)
11977 const char *input_filename ATTRIBUTE_UNUSED
;
11979 limbo_die_node
*node
, *next_node
;
11980 dw_die_ref die
= 0;
11982 /* Traverse the limbo die list, and add parent/child links. The only
11983 dies without parents that should be here are concrete instances of
11984 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
11985 For concrete instances, we can get the parent die from the abstract
11987 for (node
= limbo_die_list
; node
; node
= next_node
)
11989 next_node
= node
->next
;
11992 if (die
->die_parent
== NULL
)
11994 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
11998 add_child_die (origin
->die_parent
, die
);
11999 else if (die
== comp_unit_die
)
12001 else if (node
->created_for
12002 && ((DECL_P (node
->created_for
)
12003 && (context
= DECL_CONTEXT (node
->created_for
)))
12004 || (TYPE_P (node
->created_for
)
12005 && (context
= TYPE_CONTEXT (node
->created_for
))))
12006 && TREE_CODE (context
) == FUNCTION_DECL
)
12008 /* In certain situations, the lexical block containing a
12009 nested function can be optimized away, which results
12010 in the nested function die being orphaned. Likewise
12011 with the return type of that nested function. Force
12012 this to be a child of the containing function. */
12013 origin
= lookup_decl_die (context
);
12016 add_child_die (origin
, die
);
12018 else if (errorcount
> 0 || sorrycount
> 0)
12019 /* It's OK to be confused by errors in the input. */
12020 add_child_die (comp_unit_die
, die
);
12028 limbo_die_list
= NULL
;
12030 /* Walk through the list of incomplete types again, trying once more to
12031 emit full debugging info for them. */
12032 retry_incomplete_types ();
12034 /* We need to reverse all the dies before break_out_includes, or
12035 we'll see the end of an include file before the beginning. */
12036 reverse_all_dies (comp_unit_die
);
12038 /* Generate separate CUs for each of the include files we've seen.
12039 They will go into limbo_die_list. */
12040 if (flag_eliminate_dwarf2_dups
)
12041 break_out_includes (comp_unit_die
);
12043 /* Traverse the DIE's and add add sibling attributes to those DIE's
12044 that have children. */
12045 add_sibling_attributes (comp_unit_die
);
12046 for (node
= limbo_die_list
; node
; node
= node
->next
)
12047 add_sibling_attributes (node
->die
);
12049 /* Output a terminator label for the .text section. */
12051 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, TEXT_END_LABEL
, 0);
12053 /* Output the source line correspondence table. We must do this
12054 even if there is no line information. Otherwise, on an empty
12055 translation unit, we will generate a present, but empty,
12056 .debug_info section. IRIX 6.5 `nm' will then complain when
12057 examining the file. */
12058 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
12060 named_section_flags (DEBUG_LINE_SECTION
, SECTION_DEBUG
);
12061 output_line_info ();
12064 /* Output location list section if necessary. */
12065 if (have_location_lists
)
12067 /* Output the location lists info. */
12068 named_section_flags (DEBUG_LOC_SECTION
, SECTION_DEBUG
);
12069 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
,
12070 DEBUG_LOC_SECTION_LABEL
, 0);
12071 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
12072 output_location_lists (die
);
12073 have_location_lists
= 0;
12076 /* We can only use the low/high_pc attributes if all of the code was
12078 if (separate_line_info_table_in_use
== 0)
12080 add_AT_lbl_id (comp_unit_die
, DW_AT_low_pc
, text_section_label
);
12081 add_AT_lbl_id (comp_unit_die
, DW_AT_high_pc
, text_end_label
);
12084 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12085 "base address". Use zero so that these addresses become absolute. */
12086 else if (have_location_lists
|| ranges_table_in_use
)
12087 add_AT_addr (comp_unit_die
, DW_AT_entry_pc
, const0_rtx
);
12089 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
12090 add_AT_lbl_offset (comp_unit_die
, DW_AT_stmt_list
,
12091 debug_line_section_label
);
12093 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12094 add_AT_lbl_offset (comp_unit_die
, DW_AT_macro_info
, macinfo_section_label
);
12096 /* Output all of the compilation units. We put the main one last so that
12097 the offsets are available to output_pubnames. */
12098 for (node
= limbo_die_list
; node
; node
= node
->next
)
12099 output_comp_unit (node
->die
);
12101 output_comp_unit (comp_unit_die
);
12103 /* Output the abbreviation table. */
12104 named_section_flags (DEBUG_ABBREV_SECTION
, SECTION_DEBUG
);
12105 output_abbrev_section ();
12107 /* Output public names table if necessary. */
12108 if (pubname_table_in_use
)
12110 named_section_flags (DEBUG_PUBNAMES_SECTION
, SECTION_DEBUG
);
12111 output_pubnames ();
12114 /* Output the address range information. We only put functions in the arange
12115 table, so don't write it out if we don't have any. */
12116 if (fde_table_in_use
)
12118 named_section_flags (DEBUG_ARANGES_SECTION
, SECTION_DEBUG
);
12122 /* Output ranges section if necessary. */
12123 if (ranges_table_in_use
)
12125 named_section_flags (DEBUG_RANGES_SECTION
, SECTION_DEBUG
);
12126 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
12130 /* Have to end the primary source file. */
12131 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
12133 named_section_flags (DEBUG_MACINFO_SECTION
, SECTION_DEBUG
);
12134 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
12137 /* If we emitted any DW_FORM_strp form attribute, output the string
12139 if (debug_str_hash
)
12140 ht_forall (debug_str_hash
, output_indirect_string
, NULL
);
12142 #endif /* DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO */