Use MODE_BASE_REG_CLASS in legitimize macros.
[official-gcc.git] / gcc / combine.c
blob32120e53ccf3ec7b302b6ddbaf368b66b5624b0a
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 if (undobuf.frees)
428 buf = undobuf.frees, undobuf.frees = buf->next;
429 else
430 buf = (struct undo *) xmalloc (sizeof (struct undo));
432 buf->is_int = 0;
433 buf->where.r = into;
434 buf->old_contents.r = oldval;
435 *into = newval;
437 buf->next = undobuf.undos, undobuf.undos = buf;
440 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
442 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
443 for the value of a HOST_WIDE_INT value (including CONST_INT) is
444 not safe. */
446 static void
447 do_SUBST_INT (into, newval)
448 unsigned int *into, newval;
450 struct undo *buf;
451 unsigned int oldval = *into;
453 if (oldval == newval)
454 return;
456 if (undobuf.frees)
457 buf = undobuf.frees, undobuf.frees = buf->next;
458 else
459 buf = (struct undo *) xmalloc (sizeof (struct undo));
461 buf->is_int = 1;
462 buf->where.i = into;
463 buf->old_contents.i = oldval;
464 *into = newval;
466 buf->next = undobuf.undos, undobuf.undos = buf;
469 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
471 /* Main entry point for combiner. F is the first insn of the function.
472 NREGS is the first unused pseudo-reg number.
474 Return non-zero if the combiner has turned an indirect jump
475 instruction into a direct jump. */
477 combine_instructions (f, nregs)
478 rtx f;
479 unsigned int nregs;
481 rtx insn, next;
482 #ifdef HAVE_cc0
483 rtx prev;
484 #endif
485 int i;
486 rtx links, nextlinks;
488 int new_direct_jump_p = 0;
490 combine_attempts = 0;
491 combine_merges = 0;
492 combine_extras = 0;
493 combine_successes = 0;
495 combine_max_regno = nregs;
497 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
498 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
499 reg_sign_bit_copies
500 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
502 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
503 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
504 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
505 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
506 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
507 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
508 reg_last_set_mode
509 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
510 reg_last_set_nonzero_bits
511 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
512 reg_last_set_sign_bit_copies
513 = (char *) xmalloc (nregs * sizeof (char));
515 init_reg_last_arrays ();
517 init_recog_no_volatile ();
519 /* Compute maximum uid value so uid_cuid can be allocated. */
521 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
522 if (INSN_UID (insn) > i)
523 i = INSN_UID (insn);
525 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
526 max_uid_cuid = i;
528 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
530 /* Don't use reg_nonzero_bits when computing it. This can cause problems
531 when, for example, we have j <<= 1 in a loop. */
533 nonzero_sign_valid = 0;
535 /* Compute the mapping from uids to cuids.
536 Cuids are numbers assigned to insns, like uids,
537 except that cuids increase monotonically through the code.
539 Scan all SETs and see if we can deduce anything about what
540 bits are known to be zero for some registers and how many copies
541 of the sign bit are known to exist for those registers.
543 Also set any known values so that we can use it while searching
544 for what bits are known to be set. */
546 label_tick = 1;
548 /* We need to initialize it here, because record_dead_and_set_regs may call
549 get_last_value. */
550 subst_prev_insn = NULL_RTX;
552 setup_incoming_promotions ();
554 refresh_blocks = sbitmap_alloc (n_basic_blocks);
555 sbitmap_zero (refresh_blocks);
556 need_refresh = 0;
558 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
560 uid_cuid[INSN_UID (insn)] = ++i;
561 subst_low_cuid = i;
562 subst_insn = insn;
564 if (INSN_P (insn))
566 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
567 NULL);
568 record_dead_and_set_regs (insn);
570 #ifdef AUTO_INC_DEC
571 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
572 if (REG_NOTE_KIND (links) == REG_INC)
573 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
574 NULL);
575 #endif
578 if (GET_CODE (insn) == CODE_LABEL)
579 label_tick++;
582 nonzero_sign_valid = 1;
584 /* Now scan all the insns in forward order. */
586 this_basic_block = -1;
587 label_tick = 1;
588 last_call_cuid = 0;
589 mem_last_set = 0;
590 init_reg_last_arrays ();
591 setup_incoming_promotions ();
593 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
595 next = 0;
597 /* If INSN starts a new basic block, update our basic block number. */
598 if (this_basic_block + 1 < n_basic_blocks
599 && BLOCK_HEAD (this_basic_block + 1) == insn)
600 this_basic_block++;
602 if (GET_CODE (insn) == CODE_LABEL)
603 label_tick++;
605 else if (INSN_P (insn))
607 /* See if we know about function return values before this
608 insn based upon SUBREG flags. */
609 check_promoted_subreg (insn, PATTERN (insn));
611 /* Try this insn with each insn it links back to. */
613 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
614 if ((next = try_combine (insn, XEXP (links, 0),
615 NULL_RTX, &new_direct_jump_p)) != 0)
616 goto retry;
618 /* Try each sequence of three linked insns ending with this one. */
620 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
622 rtx link = XEXP (links, 0);
624 /* If the linked insn has been replaced by a note, then there
625 is no point in pursuing this chain any further. */
626 if (GET_CODE (link) == NOTE)
627 continue;
629 for (nextlinks = LOG_LINKS (link);
630 nextlinks;
631 nextlinks = XEXP (nextlinks, 1))
632 if ((next = try_combine (insn, link,
633 XEXP (nextlinks, 0),
634 &new_direct_jump_p)) != 0)
635 goto retry;
638 #ifdef HAVE_cc0
639 /* Try to combine a jump insn that uses CC0
640 with a preceding insn that sets CC0, and maybe with its
641 logical predecessor as well.
642 This is how we make decrement-and-branch insns.
643 We need this special code because data flow connections
644 via CC0 do not get entered in LOG_LINKS. */
646 if (GET_CODE (insn) == JUMP_INSN
647 && (prev = prev_nonnote_insn (insn)) != 0
648 && GET_CODE (prev) == INSN
649 && sets_cc0_p (PATTERN (prev)))
651 if ((next = try_combine (insn, prev,
652 NULL_RTX, &new_direct_jump_p)) != 0)
653 goto retry;
655 for (nextlinks = LOG_LINKS (prev); nextlinks;
656 nextlinks = XEXP (nextlinks, 1))
657 if ((next = try_combine (insn, prev,
658 XEXP (nextlinks, 0),
659 &new_direct_jump_p)) != 0)
660 goto retry;
663 /* Do the same for an insn that explicitly references CC0. */
664 if (GET_CODE (insn) == INSN
665 && (prev = prev_nonnote_insn (insn)) != 0
666 && GET_CODE (prev) == INSN
667 && sets_cc0_p (PATTERN (prev))
668 && GET_CODE (PATTERN (insn)) == SET
669 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
671 if ((next = try_combine (insn, prev,
672 NULL_RTX, &new_direct_jump_p)) != 0)
673 goto retry;
675 for (nextlinks = LOG_LINKS (prev); nextlinks;
676 nextlinks = XEXP (nextlinks, 1))
677 if ((next = try_combine (insn, prev,
678 XEXP (nextlinks, 0),
679 &new_direct_jump_p)) != 0)
680 goto retry;
683 /* Finally, see if any of the insns that this insn links to
684 explicitly references CC0. If so, try this insn, that insn,
685 and its predecessor if it sets CC0. */
686 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
687 if (GET_CODE (XEXP (links, 0)) == INSN
688 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
689 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
690 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
691 && GET_CODE (prev) == INSN
692 && sets_cc0_p (PATTERN (prev))
693 && (next = try_combine (insn, XEXP (links, 0),
694 prev, &new_direct_jump_p)) != 0)
695 goto retry;
696 #endif
698 /* Try combining an insn with two different insns whose results it
699 uses. */
700 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
701 for (nextlinks = XEXP (links, 1); nextlinks;
702 nextlinks = XEXP (nextlinks, 1))
703 if ((next = try_combine (insn, XEXP (links, 0),
704 XEXP (nextlinks, 0),
705 &new_direct_jump_p)) != 0)
706 goto retry;
708 if (GET_CODE (insn) != NOTE)
709 record_dead_and_set_regs (insn);
711 retry:
716 delete_noop_moves (f);
718 if (need_refresh)
720 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
721 PROP_DEATH_NOTES);
724 /* Clean up. */
725 sbitmap_free (refresh_blocks);
726 free (reg_nonzero_bits);
727 free (reg_sign_bit_copies);
728 free (reg_last_death);
729 free (reg_last_set);
730 free (reg_last_set_value);
731 free (reg_last_set_table_tick);
732 free (reg_last_set_label);
733 free (reg_last_set_invalid);
734 free (reg_last_set_mode);
735 free (reg_last_set_nonzero_bits);
736 free (reg_last_set_sign_bit_copies);
737 free (uid_cuid);
740 struct undo *undo, *next;
741 for (undo = undobuf.frees; undo; undo = next)
743 next = undo->next;
744 free (undo);
746 undobuf.frees = 0;
749 total_attempts += combine_attempts;
750 total_merges += combine_merges;
751 total_extras += combine_extras;
752 total_successes += combine_successes;
754 nonzero_sign_valid = 0;
756 /* Make recognizer allow volatile MEMs again. */
757 init_recog ();
759 return new_direct_jump_p;
762 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
764 static void
765 init_reg_last_arrays ()
767 unsigned int nregs = combine_max_regno;
769 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
770 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
771 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
772 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
773 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
774 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
775 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
776 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
777 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
780 /* Set up any promoted values for incoming argument registers. */
782 static void
783 setup_incoming_promotions ()
785 #ifdef PROMOTE_FUNCTION_ARGS
786 unsigned int regno;
787 rtx reg;
788 enum machine_mode mode;
789 int unsignedp;
790 rtx first = get_insns ();
792 #ifndef OUTGOING_REGNO
793 #define OUTGOING_REGNO(N) N
794 #endif
795 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
796 /* Check whether this register can hold an incoming pointer
797 argument. FUNCTION_ARG_REGNO_P tests outgoing register
798 numbers, so translate if necessary due to register windows. */
799 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
800 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
802 record_value_for_reg
803 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
804 : SIGN_EXTEND),
805 GET_MODE (reg),
806 gen_rtx_CLOBBER (mode, const0_rtx)));
808 #endif
811 /* Called via note_stores. If X is a pseudo that is narrower than
812 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
814 If we are setting only a portion of X and we can't figure out what
815 portion, assume all bits will be used since we don't know what will
816 be happening.
818 Similarly, set how many bits of X are known to be copies of the sign bit
819 at all locations in the function. This is the smallest number implied
820 by any set of X. */
822 static void
823 set_nonzero_bits_and_sign_copies (x, set, data)
824 rtx x;
825 rtx set;
826 void *data ATTRIBUTE_UNUSED;
828 unsigned int num;
830 if (GET_CODE (x) == REG
831 && REGNO (x) >= FIRST_PSEUDO_REGISTER
832 /* If this register is undefined at the start of the file, we can't
833 say what its contents were. */
834 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
835 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
837 if (set == 0 || GET_CODE (set) == CLOBBER)
839 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
840 reg_sign_bit_copies[REGNO (x)] = 1;
841 return;
844 /* If this is a complex assignment, see if we can convert it into a
845 simple assignment. */
846 set = expand_field_assignment (set);
848 /* If this is a simple assignment, or we have a paradoxical SUBREG,
849 set what we know about X. */
851 if (SET_DEST (set) == x
852 || (GET_CODE (SET_DEST (set)) == SUBREG
853 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
854 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
855 && SUBREG_REG (SET_DEST (set)) == x))
857 rtx src = SET_SRC (set);
859 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
860 /* If X is narrower than a word and SRC is a non-negative
861 constant that would appear negative in the mode of X,
862 sign-extend it for use in reg_nonzero_bits because some
863 machines (maybe most) will actually do the sign-extension
864 and this is the conservative approach.
866 ??? For 2.5, try to tighten up the MD files in this regard
867 instead of this kludge. */
869 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
870 && GET_CODE (src) == CONST_INT
871 && INTVAL (src) > 0
872 && 0 != (INTVAL (src)
873 & ((HOST_WIDE_INT) 1
874 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
875 src = GEN_INT (INTVAL (src)
876 | ((HOST_WIDE_INT) (-1)
877 << GET_MODE_BITSIZE (GET_MODE (x))));
878 #endif
880 reg_nonzero_bits[REGNO (x)]
881 |= nonzero_bits (src, nonzero_bits_mode);
882 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
883 if (reg_sign_bit_copies[REGNO (x)] == 0
884 || reg_sign_bit_copies[REGNO (x)] > num)
885 reg_sign_bit_copies[REGNO (x)] = num;
887 else
889 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
890 reg_sign_bit_copies[REGNO (x)] = 1;
895 /* See if INSN can be combined into I3. PRED and SUCC are optionally
896 insns that were previously combined into I3 or that will be combined
897 into the merger of INSN and I3.
899 Return 0 if the combination is not allowed for any reason.
901 If the combination is allowed, *PDEST will be set to the single
902 destination of INSN and *PSRC to the single source, and this function
903 will return 1. */
905 static int
906 can_combine_p (insn, i3, pred, succ, pdest, psrc)
907 rtx insn;
908 rtx i3;
909 rtx pred ATTRIBUTE_UNUSED;
910 rtx succ;
911 rtx *pdest, *psrc;
913 int i;
914 rtx set = 0, src, dest;
915 rtx p;
916 #ifdef AUTO_INC_DEC
917 rtx link;
918 #endif
919 int all_adjacent = (succ ? (next_active_insn (insn) == succ
920 && next_active_insn (succ) == i3)
921 : next_active_insn (insn) == i3);
923 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
924 or a PARALLEL consisting of such a SET and CLOBBERs.
926 If INSN has CLOBBER parallel parts, ignore them for our processing.
927 By definition, these happen during the execution of the insn. When it
928 is merged with another insn, all bets are off. If they are, in fact,
929 needed and aren't also supplied in I3, they may be added by
930 recog_for_combine. Otherwise, it won't match.
932 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
933 note.
935 Get the source and destination of INSN. If more than one, can't
936 combine. */
938 if (GET_CODE (PATTERN (insn)) == SET)
939 set = PATTERN (insn);
940 else if (GET_CODE (PATTERN (insn)) == PARALLEL
941 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
943 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
945 rtx elt = XVECEXP (PATTERN (insn), 0, i);
947 switch (GET_CODE (elt))
949 /* This is important to combine floating point insns
950 for the SH4 port. */
951 case USE:
952 /* Combining an isolated USE doesn't make sense.
953 We depend here on combinable_i3pat to reject them. */
954 /* The code below this loop only verifies that the inputs of
955 the SET in INSN do not change. We call reg_set_between_p
956 to verify that the REG in the USE does not change between
957 I3 and INSN.
958 If the USE in INSN was for a pseudo register, the matching
959 insn pattern will likely match any register; combining this
960 with any other USE would only be safe if we knew that the
961 used registers have identical values, or if there was
962 something to tell them apart, e.g. different modes. For
963 now, we forgo such complicated tests and simply disallow
964 combining of USES of pseudo registers with any other USE. */
965 if (GET_CODE (XEXP (elt, 0)) == REG
966 && GET_CODE (PATTERN (i3)) == PARALLEL)
968 rtx i3pat = PATTERN (i3);
969 int i = XVECLEN (i3pat, 0) - 1;
970 unsigned int regno = REGNO (XEXP (elt, 0));
974 rtx i3elt = XVECEXP (i3pat, 0, i);
976 if (GET_CODE (i3elt) == USE
977 && GET_CODE (XEXP (i3elt, 0)) == REG
978 && (REGNO (XEXP (i3elt, 0)) == regno
979 ? reg_set_between_p (XEXP (elt, 0),
980 PREV_INSN (insn), i3)
981 : regno >= FIRST_PSEUDO_REGISTER))
982 return 0;
984 while (--i >= 0);
986 break;
988 /* We can ignore CLOBBERs. */
989 case CLOBBER:
990 break;
992 case SET:
993 /* Ignore SETs whose result isn't used but not those that
994 have side-effects. */
995 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
996 && ! side_effects_p (elt))
997 break;
999 /* If we have already found a SET, this is a second one and
1000 so we cannot combine with this insn. */
1001 if (set)
1002 return 0;
1004 set = elt;
1005 break;
1007 default:
1008 /* Anything else means we can't combine. */
1009 return 0;
1013 if (set == 0
1014 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1015 so don't do anything with it. */
1016 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1017 return 0;
1019 else
1020 return 0;
1022 if (set == 0)
1023 return 0;
1025 set = expand_field_assignment (set);
1026 src = SET_SRC (set), dest = SET_DEST (set);
1028 /* Don't eliminate a store in the stack pointer. */
1029 if (dest == stack_pointer_rtx
1030 /* If we couldn't eliminate a field assignment, we can't combine. */
1031 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1032 /* Don't combine with an insn that sets a register to itself if it has
1033 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1034 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1035 /* Can't merge an ASM_OPERANDS. */
1036 || GET_CODE (src) == ASM_OPERANDS
1037 /* Can't merge a function call. */
1038 || GET_CODE (src) == CALL
1039 /* Don't eliminate a function call argument. */
1040 || (GET_CODE (i3) == CALL_INSN
1041 && (find_reg_fusage (i3, USE, dest)
1042 || (GET_CODE (dest) == REG
1043 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1044 && global_regs[REGNO (dest)])))
1045 /* Don't substitute into an incremented register. */
1046 || FIND_REG_INC_NOTE (i3, dest)
1047 || (succ && FIND_REG_INC_NOTE (succ, dest))
1048 #if 0
1049 /* Don't combine the end of a libcall into anything. */
1050 /* ??? This gives worse code, and appears to be unnecessary, since no
1051 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1052 use REG_RETVAL notes for noconflict blocks, but other code here
1053 makes sure that those insns don't disappear. */
1054 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1055 #endif
1056 /* Make sure that DEST is not used after SUCC but before I3. */
1057 || (succ && ! all_adjacent
1058 && reg_used_between_p (dest, succ, i3))
1059 /* Make sure that the value that is to be substituted for the register
1060 does not use any registers whose values alter in between. However,
1061 If the insns are adjacent, a use can't cross a set even though we
1062 think it might (this can happen for a sequence of insns each setting
1063 the same destination; reg_last_set of that register might point to
1064 a NOTE). If INSN has a REG_EQUIV note, the register is always
1065 equivalent to the memory so the substitution is valid even if there
1066 are intervening stores. Also, don't move a volatile asm or
1067 UNSPEC_VOLATILE across any other insns. */
1068 || (! all_adjacent
1069 && (((GET_CODE (src) != MEM
1070 || ! find_reg_note (insn, REG_EQUIV, src))
1071 && use_crosses_set_p (src, INSN_CUID (insn)))
1072 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1073 || GET_CODE (src) == UNSPEC_VOLATILE))
1074 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1075 better register allocation by not doing the combine. */
1076 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1077 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1078 /* Don't combine across a CALL_INSN, because that would possibly
1079 change whether the life span of some REGs crosses calls or not,
1080 and it is a pain to update that information.
1081 Exception: if source is a constant, moving it later can't hurt.
1082 Accept that special case, because it helps -fforce-addr a lot. */
1083 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1084 return 0;
1086 /* DEST must either be a REG or CC0. */
1087 if (GET_CODE (dest) == REG)
1089 /* If register alignment is being enforced for multi-word items in all
1090 cases except for parameters, it is possible to have a register copy
1091 insn referencing a hard register that is not allowed to contain the
1092 mode being copied and which would not be valid as an operand of most
1093 insns. Eliminate this problem by not combining with such an insn.
1095 Also, on some machines we don't want to extend the life of a hard
1096 register. */
1098 if (GET_CODE (src) == REG
1099 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1100 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1101 /* Don't extend the life of a hard register unless it is
1102 user variable (if we have few registers) or it can't
1103 fit into the desired register (meaning something special
1104 is going on).
1105 Also avoid substituting a return register into I3, because
1106 reload can't handle a conflict with constraints of other
1107 inputs. */
1108 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1109 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1110 return 0;
1112 else if (GET_CODE (dest) != CC0)
1113 return 0;
1115 /* Don't substitute for a register intended as a clobberable operand.
1116 Similarly, don't substitute an expression containing a register that
1117 will be clobbered in I3. */
1118 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1119 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1120 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1121 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1122 src)
1123 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1124 return 0;
1126 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1127 or not), reject, unless nothing volatile comes between it and I3 */
1129 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1131 /* Make sure succ doesn't contain a volatile reference. */
1132 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1133 return 0;
1135 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1136 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1137 return 0;
1140 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1141 to be an explicit register variable, and was chosen for a reason. */
1143 if (GET_CODE (src) == ASM_OPERANDS
1144 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1145 return 0;
1147 /* If there are any volatile insns between INSN and I3, reject, because
1148 they might affect machine state. */
1150 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1151 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1152 return 0;
1154 /* If INSN or I2 contains an autoincrement or autodecrement,
1155 make sure that register is not used between there and I3,
1156 and not already used in I3 either.
1157 Also insist that I3 not be a jump; if it were one
1158 and the incremented register were spilled, we would lose. */
1160 #ifdef AUTO_INC_DEC
1161 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1162 if (REG_NOTE_KIND (link) == REG_INC
1163 && (GET_CODE (i3) == JUMP_INSN
1164 || reg_used_between_p (XEXP (link, 0), insn, i3)
1165 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1166 return 0;
1167 #endif
1169 #ifdef HAVE_cc0
1170 /* Don't combine an insn that follows a CC0-setting insn.
1171 An insn that uses CC0 must not be separated from the one that sets it.
1172 We do, however, allow I2 to follow a CC0-setting insn if that insn
1173 is passed as I1; in that case it will be deleted also.
1174 We also allow combining in this case if all the insns are adjacent
1175 because that would leave the two CC0 insns adjacent as well.
1176 It would be more logical to test whether CC0 occurs inside I1 or I2,
1177 but that would be much slower, and this ought to be equivalent. */
1179 p = prev_nonnote_insn (insn);
1180 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1181 && ! all_adjacent)
1182 return 0;
1183 #endif
1185 /* If we get here, we have passed all the tests and the combination is
1186 to be allowed. */
1188 *pdest = dest;
1189 *psrc = src;
1191 return 1;
1194 /* Check if PAT is an insn - or a part of it - used to set up an
1195 argument for a function in a hard register. */
1197 static int
1198 sets_function_arg_p (pat)
1199 rtx pat;
1201 int i;
1202 rtx inner_dest;
1204 switch (GET_CODE (pat))
1206 case INSN:
1207 return sets_function_arg_p (PATTERN (pat));
1209 case PARALLEL:
1210 for (i = XVECLEN (pat, 0); --i >= 0;)
1211 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1212 return 1;
1214 break;
1216 case SET:
1217 inner_dest = SET_DEST (pat);
1218 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1219 || GET_CODE (inner_dest) == SUBREG
1220 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1221 inner_dest = XEXP (inner_dest, 0);
1223 return (GET_CODE (inner_dest) == REG
1224 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1225 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1227 default:
1228 break;
1231 return 0;
1234 /* LOC is the location within I3 that contains its pattern or the component
1235 of a PARALLEL of the pattern. We validate that it is valid for combining.
1237 One problem is if I3 modifies its output, as opposed to replacing it
1238 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1239 so would produce an insn that is not equivalent to the original insns.
1241 Consider:
1243 (set (reg:DI 101) (reg:DI 100))
1244 (set (subreg:SI (reg:DI 101) 0) <foo>)
1246 This is NOT equivalent to:
1248 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1249 (set (reg:DI 101) (reg:DI 100))])
1251 Not only does this modify 100 (in which case it might still be valid
1252 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1254 We can also run into a problem if I2 sets a register that I1
1255 uses and I1 gets directly substituted into I3 (not via I2). In that
1256 case, we would be getting the wrong value of I2DEST into I3, so we
1257 must reject the combination. This case occurs when I2 and I1 both
1258 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1259 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1260 of a SET must prevent combination from occurring.
1262 Before doing the above check, we first try to expand a field assignment
1263 into a set of logical operations.
1265 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1266 we place a register that is both set and used within I3. If more than one
1267 such register is detected, we fail.
1269 Return 1 if the combination is valid, zero otherwise. */
1271 static int
1272 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1273 rtx i3;
1274 rtx *loc;
1275 rtx i2dest;
1276 rtx i1dest;
1277 int i1_not_in_src;
1278 rtx *pi3dest_killed;
1280 rtx x = *loc;
1282 if (GET_CODE (x) == SET)
1284 rtx set = expand_field_assignment (x);
1285 rtx dest = SET_DEST (set);
1286 rtx src = SET_SRC (set);
1287 rtx inner_dest = dest;
1289 #if 0
1290 rtx inner_src = src;
1291 #endif
1293 SUBST (*loc, set);
1295 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1296 || GET_CODE (inner_dest) == SUBREG
1297 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1298 inner_dest = XEXP (inner_dest, 0);
1300 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1301 was added. */
1302 #if 0
1303 while (GET_CODE (inner_src) == STRICT_LOW_PART
1304 || GET_CODE (inner_src) == SUBREG
1305 || GET_CODE (inner_src) == ZERO_EXTRACT)
1306 inner_src = XEXP (inner_src, 0);
1308 /* If it is better that two different modes keep two different pseudos,
1309 avoid combining them. This avoids producing the following pattern
1310 on a 386:
1311 (set (subreg:SI (reg/v:QI 21) 0)
1312 (lshiftrt:SI (reg/v:SI 20)
1313 (const_int 24)))
1314 If that were made, reload could not handle the pair of
1315 reg 20/21, since it would try to get any GENERAL_REGS
1316 but some of them don't handle QImode. */
1318 if (rtx_equal_p (inner_src, i2dest)
1319 && GET_CODE (inner_dest) == REG
1320 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1321 return 0;
1322 #endif
1324 /* Check for the case where I3 modifies its output, as
1325 discussed above. */
1326 if ((inner_dest != dest
1327 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1328 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1330 /* This is the same test done in can_combine_p except we can't test
1331 all_adjacent; we don't have to, since this instruction will stay
1332 in place, thus we are not considering increasing the lifetime of
1333 INNER_DEST.
1335 Also, if this insn sets a function argument, combining it with
1336 something that might need a spill could clobber a previous
1337 function argument; the all_adjacent test in can_combine_p also
1338 checks this; here, we do a more specific test for this case. */
1340 || (GET_CODE (inner_dest) == REG
1341 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1342 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1343 GET_MODE (inner_dest))))
1344 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1345 return 0;
1347 /* If DEST is used in I3, it is being killed in this insn,
1348 so record that for later.
1349 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1350 STACK_POINTER_REGNUM, since these are always considered to be
1351 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1352 if (pi3dest_killed && GET_CODE (dest) == REG
1353 && reg_referenced_p (dest, PATTERN (i3))
1354 && REGNO (dest) != FRAME_POINTER_REGNUM
1355 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1356 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1357 #endif
1358 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1359 && (REGNO (dest) != ARG_POINTER_REGNUM
1360 || ! fixed_regs [REGNO (dest)])
1361 #endif
1362 && REGNO (dest) != STACK_POINTER_REGNUM)
1364 if (*pi3dest_killed)
1365 return 0;
1367 *pi3dest_killed = dest;
1371 else if (GET_CODE (x) == PARALLEL)
1373 int i;
1375 for (i = 0; i < XVECLEN (x, 0); i++)
1376 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1377 i1_not_in_src, pi3dest_killed))
1378 return 0;
1381 return 1;
1384 /* Return 1 if X is an arithmetic expression that contains a multiplication
1385 and division. We don't count multiplications by powers of two here. */
1387 static int
1388 contains_muldiv (x)
1389 rtx x;
1391 switch (GET_CODE (x))
1393 case MOD: case DIV: case UMOD: case UDIV:
1394 return 1;
1396 case MULT:
1397 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1398 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1399 default:
1400 switch (GET_RTX_CLASS (GET_CODE (x)))
1402 case 'c': case '<': case '2':
1403 return contains_muldiv (XEXP (x, 0))
1404 || contains_muldiv (XEXP (x, 1));
1406 case '1':
1407 return contains_muldiv (XEXP (x, 0));
1409 default:
1410 return 0;
1415 /* Determine whether INSN can be used in a combination. Return nonzero if
1416 not. This is used in try_combine to detect early some cases where we
1417 can't perform combinations. */
1419 static int
1420 cant_combine_insn_p (insn)
1421 rtx insn;
1423 rtx set;
1424 rtx src, dest;
1426 /* If this isn't really an insn, we can't do anything.
1427 This can occur when flow deletes an insn that it has merged into an
1428 auto-increment address. */
1429 if (! INSN_P (insn))
1430 return 1;
1432 /* Never combine loads and stores involving hard regs. The register
1433 allocator can usually handle such reg-reg moves by tying. If we allow
1434 the combiner to make substitutions of hard regs, we risk aborting in
1435 reload on machines that have SMALL_REGISTER_CLASSES.
1436 As an exception, we allow combinations involving fixed regs; these are
1437 not available to the register allocator so there's no risk involved. */
1439 set = single_set (insn);
1440 if (! set)
1441 return 0;
1442 src = SET_SRC (set);
1443 dest = SET_DEST (set);
1444 if (GET_CODE (src) == SUBREG)
1445 src = SUBREG_REG (src);
1446 if (GET_CODE (dest) == SUBREG)
1447 dest = SUBREG_REG (dest);
1448 if (REG_P (src) && REG_P (dest)
1449 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1450 && ! fixed_regs[REGNO (src)])
1451 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1452 && ! fixed_regs[REGNO (dest)])))
1453 return 1;
1455 return 0;
1458 /* Try to combine the insns I1 and I2 into I3.
1459 Here I1 and I2 appear earlier than I3.
1460 I1 can be zero; then we combine just I2 into I3.
1462 If we are combining three insns and the resulting insn is not recognized,
1463 try splitting it into two insns. If that happens, I2 and I3 are retained
1464 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1465 are pseudo-deleted.
1467 Return 0 if the combination does not work. Then nothing is changed.
1468 If we did the combination, return the insn at which combine should
1469 resume scanning.
1471 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1472 new direct jump instruction. */
1474 static rtx
1475 try_combine (i3, i2, i1, new_direct_jump_p)
1476 rtx i3, i2, i1;
1477 int *new_direct_jump_p;
1479 /* New patterns for I3 and I2, respectively. */
1480 rtx newpat, newi2pat = 0;
1481 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1482 int added_sets_1, added_sets_2;
1483 /* Total number of SETs to put into I3. */
1484 int total_sets;
1485 /* Nonzero is I2's body now appears in I3. */
1486 int i2_is_used;
1487 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1488 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1489 /* Contains I3 if the destination of I3 is used in its source, which means
1490 that the old life of I3 is being killed. If that usage is placed into
1491 I2 and not in I3, a REG_DEAD note must be made. */
1492 rtx i3dest_killed = 0;
1493 /* SET_DEST and SET_SRC of I2 and I1. */
1494 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1495 /* PATTERN (I2), or a copy of it in certain cases. */
1496 rtx i2pat;
1497 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1498 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1499 int i1_feeds_i3 = 0;
1500 /* Notes that must be added to REG_NOTES in I3 and I2. */
1501 rtx new_i3_notes, new_i2_notes;
1502 /* Notes that we substituted I3 into I2 instead of the normal case. */
1503 int i3_subst_into_i2 = 0;
1504 /* Notes that I1, I2 or I3 is a MULT operation. */
1505 int have_mult = 0;
1507 int maxreg;
1508 rtx temp;
1509 rtx link;
1510 int i;
1512 /* Exit early if one of the insns involved can't be used for
1513 combinations. */
1514 if (cant_combine_insn_p (i3)
1515 || cant_combine_insn_p (i2)
1516 || (i1 && cant_combine_insn_p (i1))
1517 /* We also can't do anything if I3 has a
1518 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1519 libcall. */
1520 #if 0
1521 /* ??? This gives worse code, and appears to be unnecessary, since no
1522 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1523 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1524 #endif
1526 return 0;
1528 combine_attempts++;
1529 undobuf.other_insn = 0;
1531 /* Reset the hard register usage information. */
1532 CLEAR_HARD_REG_SET (newpat_used_regs);
1534 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1535 code below, set I1 to be the earlier of the two insns. */
1536 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1537 temp = i1, i1 = i2, i2 = temp;
1539 added_links_insn = 0;
1541 /* First check for one important special-case that the code below will
1542 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1543 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1544 we may be able to replace that destination with the destination of I3.
1545 This occurs in the common code where we compute both a quotient and
1546 remainder into a structure, in which case we want to do the computation
1547 directly into the structure to avoid register-register copies.
1549 Note that this case handles both multiple sets in I2 and also
1550 cases where I2 has a number of CLOBBER or PARALLELs.
1552 We make very conservative checks below and only try to handle the
1553 most common cases of this. For example, we only handle the case
1554 where I2 and I3 are adjacent to avoid making difficult register
1555 usage tests. */
1557 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1558 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1559 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1560 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1561 && GET_CODE (PATTERN (i2)) == PARALLEL
1562 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1563 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1564 below would need to check what is inside (and reg_overlap_mentioned_p
1565 doesn't support those codes anyway). Don't allow those destinations;
1566 the resulting insn isn't likely to be recognized anyway. */
1567 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1568 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1569 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1570 SET_DEST (PATTERN (i3)))
1571 && next_real_insn (i2) == i3)
1573 rtx p2 = PATTERN (i2);
1575 /* Make sure that the destination of I3,
1576 which we are going to substitute into one output of I2,
1577 is not used within another output of I2. We must avoid making this:
1578 (parallel [(set (mem (reg 69)) ...)
1579 (set (reg 69) ...)])
1580 which is not well-defined as to order of actions.
1581 (Besides, reload can't handle output reloads for this.)
1583 The problem can also happen if the dest of I3 is a memory ref,
1584 if another dest in I2 is an indirect memory ref. */
1585 for (i = 0; i < XVECLEN (p2, 0); i++)
1586 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1587 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1588 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1589 SET_DEST (XVECEXP (p2, 0, i))))
1590 break;
1592 if (i == XVECLEN (p2, 0))
1593 for (i = 0; i < XVECLEN (p2, 0); i++)
1594 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1595 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1596 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1598 combine_merges++;
1600 subst_insn = i3;
1601 subst_low_cuid = INSN_CUID (i2);
1603 added_sets_2 = added_sets_1 = 0;
1604 i2dest = SET_SRC (PATTERN (i3));
1606 /* Replace the dest in I2 with our dest and make the resulting
1607 insn the new pattern for I3. Then skip to where we
1608 validate the pattern. Everything was set up above. */
1609 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1610 SET_DEST (PATTERN (i3)));
1612 newpat = p2;
1613 i3_subst_into_i2 = 1;
1614 goto validate_replacement;
1618 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1619 one of those words to another constant, merge them by making a new
1620 constant. */
1621 if (i1 == 0
1622 && (temp = single_set (i2)) != 0
1623 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1624 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1625 && GET_CODE (SET_DEST (temp)) == REG
1626 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1627 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1628 && GET_CODE (PATTERN (i3)) == SET
1629 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1630 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1631 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1632 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1633 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1635 HOST_WIDE_INT lo, hi;
1637 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1638 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1639 else
1641 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1642 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1645 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1647 /* We don't handle the case of the target word being wider
1648 than a host wide int. */
1649 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1650 abort ();
1652 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1653 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1654 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1656 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1657 hi = INTVAL (SET_SRC (PATTERN (i3)));
1658 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1660 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1661 >> (HOST_BITS_PER_WIDE_INT - 1));
1663 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1664 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1665 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1666 (INTVAL (SET_SRC (PATTERN (i3)))));
1667 if (hi == sign)
1668 hi = lo < 0 ? -1 : 0;
1670 else
1671 /* We don't handle the case of the higher word not fitting
1672 entirely in either hi or lo. */
1673 abort ();
1675 combine_merges++;
1676 subst_insn = i3;
1677 subst_low_cuid = INSN_CUID (i2);
1678 added_sets_2 = added_sets_1 = 0;
1679 i2dest = SET_DEST (temp);
1681 SUBST (SET_SRC (temp),
1682 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1684 newpat = PATTERN (i2);
1685 goto validate_replacement;
1688 #ifndef HAVE_cc0
1689 /* If we have no I1 and I2 looks like:
1690 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1691 (set Y OP)])
1692 make up a dummy I1 that is
1693 (set Y OP)
1694 and change I2 to be
1695 (set (reg:CC X) (compare:CC Y (const_int 0)))
1697 (We can ignore any trailing CLOBBERs.)
1699 This undoes a previous combination and allows us to match a branch-and-
1700 decrement insn. */
1702 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1703 && XVECLEN (PATTERN (i2), 0) >= 2
1704 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1705 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1706 == MODE_CC)
1707 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1708 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1709 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1710 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1711 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1712 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1714 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1715 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1716 break;
1718 if (i == 1)
1720 /* We make I1 with the same INSN_UID as I2. This gives it
1721 the same INSN_CUID for value tracking. Our fake I1 will
1722 never appear in the insn stream so giving it the same INSN_UID
1723 as I2 will not cause a problem. */
1725 subst_prev_insn = i1
1726 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1727 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1728 NULL_RTX);
1730 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1731 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1732 SET_DEST (PATTERN (i1)));
1735 #endif
1737 /* Verify that I2 and I1 are valid for combining. */
1738 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1739 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1741 undo_all ();
1742 return 0;
1745 /* Record whether I2DEST is used in I2SRC and similarly for the other
1746 cases. Knowing this will help in register status updating below. */
1747 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1748 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1749 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1751 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1752 in I2SRC. */
1753 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1755 /* Ensure that I3's pattern can be the destination of combines. */
1756 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1757 i1 && i2dest_in_i1src && i1_feeds_i3,
1758 &i3dest_killed))
1760 undo_all ();
1761 return 0;
1764 /* See if any of the insns is a MULT operation. Unless one is, we will
1765 reject a combination that is, since it must be slower. Be conservative
1766 here. */
1767 if (GET_CODE (i2src) == MULT
1768 || (i1 != 0 && GET_CODE (i1src) == MULT)
1769 || (GET_CODE (PATTERN (i3)) == SET
1770 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1771 have_mult = 1;
1773 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1774 We used to do this EXCEPT in one case: I3 has a post-inc in an
1775 output operand. However, that exception can give rise to insns like
1776 mov r3,(r3)+
1777 which is a famous insn on the PDP-11 where the value of r3 used as the
1778 source was model-dependent. Avoid this sort of thing. */
1780 #if 0
1781 if (!(GET_CODE (PATTERN (i3)) == SET
1782 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1783 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1784 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1785 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1786 /* It's not the exception. */
1787 #endif
1788 #ifdef AUTO_INC_DEC
1789 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1790 if (REG_NOTE_KIND (link) == REG_INC
1791 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1792 || (i1 != 0
1793 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1795 undo_all ();
1796 return 0;
1798 #endif
1800 /* See if the SETs in I1 or I2 need to be kept around in the merged
1801 instruction: whenever the value set there is still needed past I3.
1802 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1804 For the SET in I1, we have two cases: If I1 and I2 independently
1805 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1806 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1807 in I1 needs to be kept around unless I1DEST dies or is set in either
1808 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1809 I1DEST. If so, we know I1 feeds into I2. */
1811 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1813 added_sets_1
1814 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1815 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1817 /* If the set in I2 needs to be kept around, we must make a copy of
1818 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1819 PATTERN (I2), we are only substituting for the original I1DEST, not into
1820 an already-substituted copy. This also prevents making self-referential
1821 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1822 I2DEST. */
1824 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1825 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1826 : PATTERN (i2));
1828 if (added_sets_2)
1829 i2pat = copy_rtx (i2pat);
1831 combine_merges++;
1833 /* Substitute in the latest insn for the regs set by the earlier ones. */
1835 maxreg = max_reg_num ();
1837 subst_insn = i3;
1839 /* It is possible that the source of I2 or I1 may be performing an
1840 unneeded operation, such as a ZERO_EXTEND of something that is known
1841 to have the high part zero. Handle that case by letting subst look at
1842 the innermost one of them.
1844 Another way to do this would be to have a function that tries to
1845 simplify a single insn instead of merging two or more insns. We don't
1846 do this because of the potential of infinite loops and because
1847 of the potential extra memory required. However, doing it the way
1848 we are is a bit of a kludge and doesn't catch all cases.
1850 But only do this if -fexpensive-optimizations since it slows things down
1851 and doesn't usually win. */
1853 if (flag_expensive_optimizations)
1855 /* Pass pc_rtx so no substitutions are done, just simplifications.
1856 The cases that we are interested in here do not involve the few
1857 cases were is_replaced is checked. */
1858 if (i1)
1860 subst_low_cuid = INSN_CUID (i1);
1861 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1863 else
1865 subst_low_cuid = INSN_CUID (i2);
1866 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1870 #ifndef HAVE_cc0
1871 /* Many machines that don't use CC0 have insns that can both perform an
1872 arithmetic operation and set the condition code. These operations will
1873 be represented as a PARALLEL with the first element of the vector
1874 being a COMPARE of an arithmetic operation with the constant zero.
1875 The second element of the vector will set some pseudo to the result
1876 of the same arithmetic operation. If we simplify the COMPARE, we won't
1877 match such a pattern and so will generate an extra insn. Here we test
1878 for this case, where both the comparison and the operation result are
1879 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1880 I2SRC. Later we will make the PARALLEL that contains I2. */
1882 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1883 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1884 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1885 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1887 #ifdef EXTRA_CC_MODES
1888 rtx *cc_use;
1889 enum machine_mode compare_mode;
1890 #endif
1892 newpat = PATTERN (i3);
1893 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1895 i2_is_used = 1;
1897 #ifdef EXTRA_CC_MODES
1898 /* See if a COMPARE with the operand we substituted in should be done
1899 with the mode that is currently being used. If not, do the same
1900 processing we do in `subst' for a SET; namely, if the destination
1901 is used only once, try to replace it with a register of the proper
1902 mode and also replace the COMPARE. */
1903 if (undobuf.other_insn == 0
1904 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1905 &undobuf.other_insn))
1906 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1907 i2src, const0_rtx))
1908 != GET_MODE (SET_DEST (newpat))))
1910 unsigned int regno = REGNO (SET_DEST (newpat));
1911 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1913 if (regno < FIRST_PSEUDO_REGISTER
1914 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1915 && ! REG_USERVAR_P (SET_DEST (newpat))))
1917 if (regno >= FIRST_PSEUDO_REGISTER)
1918 SUBST (regno_reg_rtx[regno], new_dest);
1920 SUBST (SET_DEST (newpat), new_dest);
1921 SUBST (XEXP (*cc_use, 0), new_dest);
1922 SUBST (SET_SRC (newpat),
1923 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1925 else
1926 undobuf.other_insn = 0;
1928 #endif
1930 else
1931 #endif
1933 n_occurrences = 0; /* `subst' counts here */
1935 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1936 need to make a unique copy of I2SRC each time we substitute it
1937 to avoid self-referential rtl. */
1939 subst_low_cuid = INSN_CUID (i2);
1940 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1941 ! i1_feeds_i3 && i1dest_in_i1src);
1943 /* Record whether i2's body now appears within i3's body. */
1944 i2_is_used = n_occurrences;
1947 /* If we already got a failure, don't try to do more. Otherwise,
1948 try to substitute in I1 if we have it. */
1950 if (i1 && GET_CODE (newpat) != CLOBBER)
1952 /* Before we can do this substitution, we must redo the test done
1953 above (see detailed comments there) that ensures that I1DEST
1954 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1956 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1957 0, (rtx*) 0))
1959 undo_all ();
1960 return 0;
1963 n_occurrences = 0;
1964 subst_low_cuid = INSN_CUID (i1);
1965 newpat = subst (newpat, i1dest, i1src, 0, 0);
1968 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1969 to count all the ways that I2SRC and I1SRC can be used. */
1970 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1971 && i2_is_used + added_sets_2 > 1)
1972 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1973 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1974 > 1))
1975 /* Fail if we tried to make a new register (we used to abort, but there's
1976 really no reason to). */
1977 || max_reg_num () != maxreg
1978 /* Fail if we couldn't do something and have a CLOBBER. */
1979 || GET_CODE (newpat) == CLOBBER
1980 /* Fail if this new pattern is a MULT and we didn't have one before
1981 at the outer level. */
1982 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1983 && ! have_mult))
1985 undo_all ();
1986 return 0;
1989 /* If the actions of the earlier insns must be kept
1990 in addition to substituting them into the latest one,
1991 we must make a new PARALLEL for the latest insn
1992 to hold additional the SETs. */
1994 if (added_sets_1 || added_sets_2)
1996 combine_extras++;
1998 if (GET_CODE (newpat) == PARALLEL)
2000 rtvec old = XVEC (newpat, 0);
2001 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2002 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2003 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2004 sizeof (old->elem[0]) * old->num_elem);
2006 else
2008 rtx old = newpat;
2009 total_sets = 1 + added_sets_1 + added_sets_2;
2010 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2011 XVECEXP (newpat, 0, 0) = old;
2014 if (added_sets_1)
2015 XVECEXP (newpat, 0, --total_sets)
2016 = (GET_CODE (PATTERN (i1)) == PARALLEL
2017 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2019 if (added_sets_2)
2021 /* If there is no I1, use I2's body as is. We used to also not do
2022 the subst call below if I2 was substituted into I3,
2023 but that could lose a simplification. */
2024 if (i1 == 0)
2025 XVECEXP (newpat, 0, --total_sets) = i2pat;
2026 else
2027 /* See comment where i2pat is assigned. */
2028 XVECEXP (newpat, 0, --total_sets)
2029 = subst (i2pat, i1dest, i1src, 0, 0);
2033 /* We come here when we are replacing a destination in I2 with the
2034 destination of I3. */
2035 validate_replacement:
2037 /* Note which hard regs this insn has as inputs. */
2038 mark_used_regs_combine (newpat);
2040 /* Is the result of combination a valid instruction? */
2041 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2043 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2044 the second SET's destination is a register that is unused. In that case,
2045 we just need the first SET. This can occur when simplifying a divmod
2046 insn. We *must* test for this case here because the code below that
2047 splits two independent SETs doesn't handle this case correctly when it
2048 updates the register status. Also check the case where the first
2049 SET's destination is unused. That would not cause incorrect code, but
2050 does cause an unneeded insn to remain. */
2052 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2053 && XVECLEN (newpat, 0) == 2
2054 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2055 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2056 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2057 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2058 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2059 && asm_noperands (newpat) < 0)
2061 newpat = XVECEXP (newpat, 0, 0);
2062 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2065 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2066 && XVECLEN (newpat, 0) == 2
2067 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2068 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2069 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2070 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2071 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2072 && asm_noperands (newpat) < 0)
2074 newpat = XVECEXP (newpat, 0, 1);
2075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2078 /* If we were combining three insns and the result is a simple SET
2079 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2080 insns. There are two ways to do this. It can be split using a
2081 machine-specific method (like when you have an addition of a large
2082 constant) or by combine in the function find_split_point. */
2084 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2085 && asm_noperands (newpat) < 0)
2087 rtx m_split, *split;
2088 rtx ni2dest = i2dest;
2090 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2091 use I2DEST as a scratch register will help. In the latter case,
2092 convert I2DEST to the mode of the source of NEWPAT if we can. */
2094 m_split = split_insns (newpat, i3);
2096 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2097 inputs of NEWPAT. */
2099 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2100 possible to try that as a scratch reg. This would require adding
2101 more code to make it work though. */
2103 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2105 /* If I2DEST is a hard register or the only use of a pseudo,
2106 we can change its mode. */
2107 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2108 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2109 && GET_CODE (i2dest) == REG
2110 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2111 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2112 && ! REG_USERVAR_P (i2dest))))
2113 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2114 REGNO (i2dest));
2116 m_split = split_insns (gen_rtx_PARALLEL
2117 (VOIDmode,
2118 gen_rtvec (2, newpat,
2119 gen_rtx_CLOBBER (VOIDmode,
2120 ni2dest))),
2121 i3);
2122 /* If the split with the mode-changed register didn't work, try
2123 the original register. */
2124 if (! m_split && ni2dest != i2dest)
2126 ni2dest = i2dest;
2127 m_split = split_insns (gen_rtx_PARALLEL
2128 (VOIDmode,
2129 gen_rtvec (2, newpat,
2130 gen_rtx_CLOBBER (VOIDmode,
2131 i2dest))),
2132 i3);
2136 /* If we've split a jump pattern, we'll wind up with a sequence even
2137 with one instruction. We can handle that below, so extract it. */
2138 if (m_split && GET_CODE (m_split) == SEQUENCE
2139 && XVECLEN (m_split, 0) == 1)
2140 m_split = PATTERN (XVECEXP (m_split, 0, 0));
2142 if (m_split && GET_CODE (m_split) != SEQUENCE)
2144 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2145 if (insn_code_number >= 0)
2146 newpat = m_split;
2148 else if (m_split && GET_CODE (m_split) == SEQUENCE
2149 && XVECLEN (m_split, 0) == 2
2150 && (next_real_insn (i2) == i3
2151 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2152 INSN_CUID (i2))))
2154 rtx i2set, i3set;
2155 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2156 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2158 i3set = single_set (XVECEXP (m_split, 0, 1));
2159 i2set = single_set (XVECEXP (m_split, 0, 0));
2161 /* In case we changed the mode of I2DEST, replace it in the
2162 pseudo-register table here. We can't do it above in case this
2163 code doesn't get executed and we do a split the other way. */
2165 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2166 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2168 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2170 /* If I2 or I3 has multiple SETs, we won't know how to track
2171 register status, so don't use these insns. If I2's destination
2172 is used between I2 and I3, we also can't use these insns. */
2174 if (i2_code_number >= 0 && i2set && i3set
2175 && (next_real_insn (i2) == i3
2176 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2177 insn_code_number = recog_for_combine (&newi3pat, i3,
2178 &new_i3_notes);
2179 if (insn_code_number >= 0)
2180 newpat = newi3pat;
2182 /* It is possible that both insns now set the destination of I3.
2183 If so, we must show an extra use of it. */
2185 if (insn_code_number >= 0)
2187 rtx new_i3_dest = SET_DEST (i3set);
2188 rtx new_i2_dest = SET_DEST (i2set);
2190 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2191 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2192 || GET_CODE (new_i3_dest) == SUBREG)
2193 new_i3_dest = XEXP (new_i3_dest, 0);
2195 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2196 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2197 || GET_CODE (new_i2_dest) == SUBREG)
2198 new_i2_dest = XEXP (new_i2_dest, 0);
2200 if (GET_CODE (new_i3_dest) == REG
2201 && GET_CODE (new_i2_dest) == REG
2202 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2203 REG_N_SETS (REGNO (new_i2_dest))++;
2207 /* If we can split it and use I2DEST, go ahead and see if that
2208 helps things be recognized. Verify that none of the registers
2209 are set between I2 and I3. */
2210 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2211 #ifdef HAVE_cc0
2212 && GET_CODE (i2dest) == REG
2213 #endif
2214 /* We need I2DEST in the proper mode. If it is a hard register
2215 or the only use of a pseudo, we can change its mode. */
2216 && (GET_MODE (*split) == GET_MODE (i2dest)
2217 || GET_MODE (*split) == VOIDmode
2218 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2219 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2220 && ! REG_USERVAR_P (i2dest)))
2221 && (next_real_insn (i2) == i3
2222 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2223 /* We can't overwrite I2DEST if its value is still used by
2224 NEWPAT. */
2225 && ! reg_referenced_p (i2dest, newpat))
2227 rtx newdest = i2dest;
2228 enum rtx_code split_code = GET_CODE (*split);
2229 enum machine_mode split_mode = GET_MODE (*split);
2231 /* Get NEWDEST as a register in the proper mode. We have already
2232 validated that we can do this. */
2233 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2235 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2237 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2238 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2241 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2242 an ASHIFT. This can occur if it was inside a PLUS and hence
2243 appeared to be a memory address. This is a kludge. */
2244 if (split_code == MULT
2245 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2246 && INTVAL (XEXP (*split, 1)) > 0
2247 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2249 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2250 XEXP (*split, 0), GEN_INT (i)));
2251 /* Update split_code because we may not have a multiply
2252 anymore. */
2253 split_code = GET_CODE (*split);
2256 #ifdef INSN_SCHEDULING
2257 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2258 be written as a ZERO_EXTEND. */
2259 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2260 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2261 SUBREG_REG (*split)));
2262 #endif
2264 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2265 SUBST (*split, newdest);
2266 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2268 /* If the split point was a MULT and we didn't have one before,
2269 don't use one now. */
2270 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2271 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2275 /* Check for a case where we loaded from memory in a narrow mode and
2276 then sign extended it, but we need both registers. In that case,
2277 we have a PARALLEL with both loads from the same memory location.
2278 We can split this into a load from memory followed by a register-register
2279 copy. This saves at least one insn, more if register allocation can
2280 eliminate the copy.
2282 We cannot do this if the destination of the second assignment is
2283 a register that we have already assumed is zero-extended. Similarly
2284 for a SUBREG of such a register. */
2286 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2287 && GET_CODE (newpat) == PARALLEL
2288 && XVECLEN (newpat, 0) == 2
2289 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2290 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2291 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2292 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2293 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2294 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2295 INSN_CUID (i2))
2296 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2297 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2298 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2299 (GET_CODE (temp) == REG
2300 && reg_nonzero_bits[REGNO (temp)] != 0
2301 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2302 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2303 && (reg_nonzero_bits[REGNO (temp)]
2304 != GET_MODE_MASK (word_mode))))
2305 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2306 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2307 (GET_CODE (temp) == REG
2308 && reg_nonzero_bits[REGNO (temp)] != 0
2309 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2310 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2311 && (reg_nonzero_bits[REGNO (temp)]
2312 != GET_MODE_MASK (word_mode)))))
2313 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2314 SET_SRC (XVECEXP (newpat, 0, 1)))
2315 && ! find_reg_note (i3, REG_UNUSED,
2316 SET_DEST (XVECEXP (newpat, 0, 0))))
2318 rtx ni2dest;
2320 newi2pat = XVECEXP (newpat, 0, 0);
2321 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2322 newpat = XVECEXP (newpat, 0, 1);
2323 SUBST (SET_SRC (newpat),
2324 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2325 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2327 if (i2_code_number >= 0)
2328 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2330 if (insn_code_number >= 0)
2332 rtx insn;
2333 rtx link;
2335 /* If we will be able to accept this, we have made a change to the
2336 destination of I3. This can invalidate a LOG_LINKS pointing
2337 to I3. No other part of combine.c makes such a transformation.
2339 The new I3 will have a destination that was previously the
2340 destination of I1 or I2 and which was used in i2 or I3. Call
2341 distribute_links to make a LOG_LINK from the next use of
2342 that destination. */
2344 PATTERN (i3) = newpat;
2345 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2347 /* I3 now uses what used to be its destination and which is
2348 now I2's destination. That means we need a LOG_LINK from
2349 I3 to I2. But we used to have one, so we still will.
2351 However, some later insn might be using I2's dest and have
2352 a LOG_LINK pointing at I3. We must remove this link.
2353 The simplest way to remove the link is to point it at I1,
2354 which we know will be a NOTE. */
2356 for (insn = NEXT_INSN (i3);
2357 insn && (this_basic_block == n_basic_blocks - 1
2358 || insn != BLOCK_HEAD (this_basic_block + 1));
2359 insn = NEXT_INSN (insn))
2361 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2363 for (link = LOG_LINKS (insn); link;
2364 link = XEXP (link, 1))
2365 if (XEXP (link, 0) == i3)
2366 XEXP (link, 0) = i1;
2368 break;
2374 /* Similarly, check for a case where we have a PARALLEL of two independent
2375 SETs but we started with three insns. In this case, we can do the sets
2376 as two separate insns. This case occurs when some SET allows two
2377 other insns to combine, but the destination of that SET is still live. */
2379 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2380 && GET_CODE (newpat) == PARALLEL
2381 && XVECLEN (newpat, 0) == 2
2382 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2383 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2384 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2385 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2387 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2388 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2389 INSN_CUID (i2))
2390 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2391 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2392 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2393 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2394 XVECEXP (newpat, 0, 0))
2395 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2396 XVECEXP (newpat, 0, 1))
2397 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2398 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2400 /* Normally, it doesn't matter which of the two is done first,
2401 but it does if one references cc0. In that case, it has to
2402 be first. */
2403 #ifdef HAVE_cc0
2404 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2406 newi2pat = XVECEXP (newpat, 0, 0);
2407 newpat = XVECEXP (newpat, 0, 1);
2409 else
2410 #endif
2412 newi2pat = XVECEXP (newpat, 0, 1);
2413 newpat = XVECEXP (newpat, 0, 0);
2416 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2418 if (i2_code_number >= 0)
2419 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2422 /* If it still isn't recognized, fail and change things back the way they
2423 were. */
2424 if ((insn_code_number < 0
2425 /* Is the result a reasonable ASM_OPERANDS? */
2426 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2428 undo_all ();
2429 return 0;
2432 /* If we had to change another insn, make sure it is valid also. */
2433 if (undobuf.other_insn)
2435 rtx other_pat = PATTERN (undobuf.other_insn);
2436 rtx new_other_notes;
2437 rtx note, next;
2439 CLEAR_HARD_REG_SET (newpat_used_regs);
2441 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2442 &new_other_notes);
2444 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2446 undo_all ();
2447 return 0;
2450 PATTERN (undobuf.other_insn) = other_pat;
2452 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2453 are still valid. Then add any non-duplicate notes added by
2454 recog_for_combine. */
2455 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2457 next = XEXP (note, 1);
2459 if (REG_NOTE_KIND (note) == REG_UNUSED
2460 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2462 if (GET_CODE (XEXP (note, 0)) == REG)
2463 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2465 remove_note (undobuf.other_insn, note);
2469 for (note = new_other_notes; note; note = XEXP (note, 1))
2470 if (GET_CODE (XEXP (note, 0)) == REG)
2471 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2473 distribute_notes (new_other_notes, undobuf.other_insn,
2474 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2476 #ifdef HAVE_cc0
2477 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2478 they are adjacent to each other or not. */
2480 rtx p = prev_nonnote_insn (i3);
2481 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2482 && sets_cc0_p (newi2pat))
2484 undo_all ();
2485 return 0;
2488 #endif
2490 /* We now know that we can do this combination. Merge the insns and
2491 update the status of registers and LOG_LINKS. */
2494 rtx i3notes, i2notes, i1notes = 0;
2495 rtx i3links, i2links, i1links = 0;
2496 rtx midnotes = 0;
2497 unsigned int regno;
2498 /* Compute which registers we expect to eliminate. newi2pat may be setting
2499 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2500 same as i3dest, in which case newi2pat may be setting i1dest. */
2501 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2502 || i2dest_in_i2src || i2dest_in_i1src
2503 ? 0 : i2dest);
2504 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2505 || (newi2pat && reg_set_p (i1dest, newi2pat))
2506 ? 0 : i1dest);
2508 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2509 clear them. */
2510 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2511 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2512 if (i1)
2513 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2515 /* Ensure that we do not have something that should not be shared but
2516 occurs multiple times in the new insns. Check this by first
2517 resetting all the `used' flags and then copying anything is shared. */
2519 reset_used_flags (i3notes);
2520 reset_used_flags (i2notes);
2521 reset_used_flags (i1notes);
2522 reset_used_flags (newpat);
2523 reset_used_flags (newi2pat);
2524 if (undobuf.other_insn)
2525 reset_used_flags (PATTERN (undobuf.other_insn));
2527 i3notes = copy_rtx_if_shared (i3notes);
2528 i2notes = copy_rtx_if_shared (i2notes);
2529 i1notes = copy_rtx_if_shared (i1notes);
2530 newpat = copy_rtx_if_shared (newpat);
2531 newi2pat = copy_rtx_if_shared (newi2pat);
2532 if (undobuf.other_insn)
2533 reset_used_flags (PATTERN (undobuf.other_insn));
2535 INSN_CODE (i3) = insn_code_number;
2536 PATTERN (i3) = newpat;
2537 if (undobuf.other_insn)
2538 INSN_CODE (undobuf.other_insn) = other_code_number;
2540 /* We had one special case above where I2 had more than one set and
2541 we replaced a destination of one of those sets with the destination
2542 of I3. In that case, we have to update LOG_LINKS of insns later
2543 in this basic block. Note that this (expensive) case is rare.
2545 Also, in this case, we must pretend that all REG_NOTEs for I2
2546 actually came from I3, so that REG_UNUSED notes from I2 will be
2547 properly handled. */
2549 if (i3_subst_into_i2)
2551 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2552 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2553 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2554 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2555 && ! find_reg_note (i2, REG_UNUSED,
2556 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2557 for (temp = NEXT_INSN (i2);
2558 temp && (this_basic_block == n_basic_blocks - 1
2559 || BLOCK_HEAD (this_basic_block) != temp);
2560 temp = NEXT_INSN (temp))
2561 if (temp != i3 && INSN_P (temp))
2562 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2563 if (XEXP (link, 0) == i2)
2564 XEXP (link, 0) = i3;
2566 if (i3notes)
2568 rtx link = i3notes;
2569 while (XEXP (link, 1))
2570 link = XEXP (link, 1);
2571 XEXP (link, 1) = i2notes;
2573 else
2574 i3notes = i2notes;
2575 i2notes = 0;
2578 LOG_LINKS (i3) = 0;
2579 REG_NOTES (i3) = 0;
2580 LOG_LINKS (i2) = 0;
2581 REG_NOTES (i2) = 0;
2583 if (newi2pat)
2585 INSN_CODE (i2) = i2_code_number;
2586 PATTERN (i2) = newi2pat;
2588 else
2590 PUT_CODE (i2, NOTE);
2591 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2592 NOTE_SOURCE_FILE (i2) = 0;
2595 if (i1)
2597 LOG_LINKS (i1) = 0;
2598 REG_NOTES (i1) = 0;
2599 PUT_CODE (i1, NOTE);
2600 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2601 NOTE_SOURCE_FILE (i1) = 0;
2604 /* Get death notes for everything that is now used in either I3 or
2605 I2 and used to die in a previous insn. If we built two new
2606 patterns, move from I1 to I2 then I2 to I3 so that we get the
2607 proper movement on registers that I2 modifies. */
2609 if (newi2pat)
2611 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2612 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2614 else
2615 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2616 i3, &midnotes);
2618 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2619 if (i3notes)
2620 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2621 elim_i2, elim_i1);
2622 if (i2notes)
2623 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2624 elim_i2, elim_i1);
2625 if (i1notes)
2626 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2627 elim_i2, elim_i1);
2628 if (midnotes)
2629 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2630 elim_i2, elim_i1);
2632 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2633 know these are REG_UNUSED and want them to go to the desired insn,
2634 so we always pass it as i3. We have not counted the notes in
2635 reg_n_deaths yet, so we need to do so now. */
2637 if (newi2pat && new_i2_notes)
2639 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2640 if (GET_CODE (XEXP (temp, 0)) == REG)
2641 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2643 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2646 if (new_i3_notes)
2648 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2649 if (GET_CODE (XEXP (temp, 0)) == REG)
2650 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2652 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2655 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2656 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2657 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2658 in that case, it might delete I2. Similarly for I2 and I1.
2659 Show an additional death due to the REG_DEAD note we make here. If
2660 we discard it in distribute_notes, we will decrement it again. */
2662 if (i3dest_killed)
2664 if (GET_CODE (i3dest_killed) == REG)
2665 REG_N_DEATHS (REGNO (i3dest_killed))++;
2667 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2668 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2669 NULL_RTX),
2670 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2671 else
2672 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2673 NULL_RTX),
2674 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2675 elim_i2, elim_i1);
2678 if (i2dest_in_i2src)
2680 if (GET_CODE (i2dest) == REG)
2681 REG_N_DEATHS (REGNO (i2dest))++;
2683 if (newi2pat && reg_set_p (i2dest, newi2pat))
2684 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2685 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2686 else
2687 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2688 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2689 NULL_RTX, NULL_RTX);
2692 if (i1dest_in_i1src)
2694 if (GET_CODE (i1dest) == REG)
2695 REG_N_DEATHS (REGNO (i1dest))++;
2697 if (newi2pat && reg_set_p (i1dest, newi2pat))
2698 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2699 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2700 else
2701 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2702 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2703 NULL_RTX, NULL_RTX);
2706 distribute_links (i3links);
2707 distribute_links (i2links);
2708 distribute_links (i1links);
2710 if (GET_CODE (i2dest) == REG)
2712 rtx link;
2713 rtx i2_insn = 0, i2_val = 0, set;
2715 /* The insn that used to set this register doesn't exist, and
2716 this life of the register may not exist either. See if one of
2717 I3's links points to an insn that sets I2DEST. If it does,
2718 that is now the last known value for I2DEST. If we don't update
2719 this and I2 set the register to a value that depended on its old
2720 contents, we will get confused. If this insn is used, thing
2721 will be set correctly in combine_instructions. */
2723 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2724 if ((set = single_set (XEXP (link, 0))) != 0
2725 && rtx_equal_p (i2dest, SET_DEST (set)))
2726 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2728 record_value_for_reg (i2dest, i2_insn, i2_val);
2730 /* If the reg formerly set in I2 died only once and that was in I3,
2731 zero its use count so it won't make `reload' do any work. */
2732 if (! added_sets_2
2733 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2734 && ! i2dest_in_i2src)
2736 regno = REGNO (i2dest);
2737 REG_N_SETS (regno)--;
2741 if (i1 && GET_CODE (i1dest) == REG)
2743 rtx link;
2744 rtx i1_insn = 0, i1_val = 0, set;
2746 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2747 if ((set = single_set (XEXP (link, 0))) != 0
2748 && rtx_equal_p (i1dest, SET_DEST (set)))
2749 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2751 record_value_for_reg (i1dest, i1_insn, i1_val);
2753 regno = REGNO (i1dest);
2754 if (! added_sets_1 && ! i1dest_in_i1src)
2755 REG_N_SETS (regno)--;
2758 /* Update reg_nonzero_bits et al for any changes that may have been made
2759 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2760 important. Because newi2pat can affect nonzero_bits of newpat */
2761 if (newi2pat)
2762 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2763 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2765 /* Set new_direct_jump_p if a new return or simple jump instruction
2766 has been created.
2768 If I3 is now an unconditional jump, ensure that it has a
2769 BARRIER following it since it may have initially been a
2770 conditional jump. It may also be the last nonnote insn. */
2772 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2774 *new_direct_jump_p = 1;
2776 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2777 || GET_CODE (temp) != BARRIER)
2778 emit_barrier_after (i3);
2780 /* An NOOP jump does not need barrier, but it does need cleaning up
2781 of CFG. */
2782 if (GET_CODE (newpat) == SET
2783 && SET_SRC (newpat) == pc_rtx
2784 && SET_DEST (newpat) == pc_rtx)
2785 *new_direct_jump_p = 1;
2788 combine_successes++;
2789 undo_commit ();
2791 /* Clear this here, so that subsequent get_last_value calls are not
2792 affected. */
2793 subst_prev_insn = NULL_RTX;
2795 if (added_links_insn
2796 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2797 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2798 return added_links_insn;
2799 else
2800 return newi2pat ? i2 : i3;
2803 /* Undo all the modifications recorded in undobuf. */
2805 static void
2806 undo_all ()
2808 struct undo *undo, *next;
2810 for (undo = undobuf.undos; undo; undo = next)
2812 next = undo->next;
2813 if (undo->is_int)
2814 *undo->where.i = undo->old_contents.i;
2815 else
2816 *undo->where.r = undo->old_contents.r;
2818 undo->next = undobuf.frees;
2819 undobuf.frees = undo;
2822 undobuf.undos = 0;
2824 /* Clear this here, so that subsequent get_last_value calls are not
2825 affected. */
2826 subst_prev_insn = NULL_RTX;
2829 /* We've committed to accepting the changes we made. Move all
2830 of the undos to the free list. */
2832 static void
2833 undo_commit ()
2835 struct undo *undo, *next;
2837 for (undo = undobuf.undos; undo; undo = next)
2839 next = undo->next;
2840 undo->next = undobuf.frees;
2841 undobuf.frees = undo;
2843 undobuf.undos = 0;
2847 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2848 where we have an arithmetic expression and return that point. LOC will
2849 be inside INSN.
2851 try_combine will call this function to see if an insn can be split into
2852 two insns. */
2854 static rtx *
2855 find_split_point (loc, insn)
2856 rtx *loc;
2857 rtx insn;
2859 rtx x = *loc;
2860 enum rtx_code code = GET_CODE (x);
2861 rtx *split;
2862 unsigned HOST_WIDE_INT len = 0;
2863 HOST_WIDE_INT pos = 0;
2864 int unsignedp = 0;
2865 rtx inner = NULL_RTX;
2867 /* First special-case some codes. */
2868 switch (code)
2870 case SUBREG:
2871 #ifdef INSN_SCHEDULING
2872 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2873 point. */
2874 if (GET_CODE (SUBREG_REG (x)) == MEM)
2875 return loc;
2876 #endif
2877 return find_split_point (&SUBREG_REG (x), insn);
2879 case MEM:
2880 #ifdef HAVE_lo_sum
2881 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2882 using LO_SUM and HIGH. */
2883 if (GET_CODE (XEXP (x, 0)) == CONST
2884 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2886 SUBST (XEXP (x, 0),
2887 gen_rtx_LO_SUM (Pmode,
2888 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2889 XEXP (x, 0)));
2890 return &XEXP (XEXP (x, 0), 0);
2892 #endif
2894 /* If we have a PLUS whose second operand is a constant and the
2895 address is not valid, perhaps will can split it up using
2896 the machine-specific way to split large constants. We use
2897 the first pseudo-reg (one of the virtual regs) as a placeholder;
2898 it will not remain in the result. */
2899 if (GET_CODE (XEXP (x, 0)) == PLUS
2900 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2901 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2903 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2904 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2905 subst_insn);
2907 /* This should have produced two insns, each of which sets our
2908 placeholder. If the source of the second is a valid address,
2909 we can make put both sources together and make a split point
2910 in the middle. */
2912 if (seq && XVECLEN (seq, 0) == 2
2913 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2914 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2915 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2916 && ! reg_mentioned_p (reg,
2917 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2918 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2919 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2920 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2921 && memory_address_p (GET_MODE (x),
2922 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2924 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2925 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2927 /* Replace the placeholder in SRC2 with SRC1. If we can
2928 find where in SRC2 it was placed, that can become our
2929 split point and we can replace this address with SRC2.
2930 Just try two obvious places. */
2932 src2 = replace_rtx (src2, reg, src1);
2933 split = 0;
2934 if (XEXP (src2, 0) == src1)
2935 split = &XEXP (src2, 0);
2936 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2937 && XEXP (XEXP (src2, 0), 0) == src1)
2938 split = &XEXP (XEXP (src2, 0), 0);
2940 if (split)
2942 SUBST (XEXP (x, 0), src2);
2943 return split;
2947 /* If that didn't work, perhaps the first operand is complex and
2948 needs to be computed separately, so make a split point there.
2949 This will occur on machines that just support REG + CONST
2950 and have a constant moved through some previous computation. */
2952 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2953 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2954 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2955 == 'o')))
2956 return &XEXP (XEXP (x, 0), 0);
2958 break;
2960 case SET:
2961 #ifdef HAVE_cc0
2962 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2963 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2964 we need to put the operand into a register. So split at that
2965 point. */
2967 if (SET_DEST (x) == cc0_rtx
2968 && GET_CODE (SET_SRC (x)) != COMPARE
2969 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2970 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2971 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2972 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2973 return &SET_SRC (x);
2974 #endif
2976 /* See if we can split SET_SRC as it stands. */
2977 split = find_split_point (&SET_SRC (x), insn);
2978 if (split && split != &SET_SRC (x))
2979 return split;
2981 /* See if we can split SET_DEST as it stands. */
2982 split = find_split_point (&SET_DEST (x), insn);
2983 if (split && split != &SET_DEST (x))
2984 return split;
2986 /* See if this is a bitfield assignment with everything constant. If
2987 so, this is an IOR of an AND, so split it into that. */
2988 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2989 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2990 <= HOST_BITS_PER_WIDE_INT)
2991 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2992 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2993 && GET_CODE (SET_SRC (x)) == CONST_INT
2994 && ((INTVAL (XEXP (SET_DEST (x), 1))
2995 + INTVAL (XEXP (SET_DEST (x), 2)))
2996 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2997 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2999 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3000 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3001 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3002 rtx dest = XEXP (SET_DEST (x), 0);
3003 enum machine_mode mode = GET_MODE (dest);
3004 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3006 if (BITS_BIG_ENDIAN)
3007 pos = GET_MODE_BITSIZE (mode) - len - pos;
3009 if (src == mask)
3010 SUBST (SET_SRC (x),
3011 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3012 else
3013 SUBST (SET_SRC (x),
3014 gen_binary (IOR, mode,
3015 gen_binary (AND, mode, dest,
3016 GEN_INT (~(mask << pos)
3017 & GET_MODE_MASK (mode))),
3018 GEN_INT (src << pos)));
3020 SUBST (SET_DEST (x), dest);
3022 split = find_split_point (&SET_SRC (x), insn);
3023 if (split && split != &SET_SRC (x))
3024 return split;
3027 /* Otherwise, see if this is an operation that we can split into two.
3028 If so, try to split that. */
3029 code = GET_CODE (SET_SRC (x));
3031 switch (code)
3033 case AND:
3034 /* If we are AND'ing with a large constant that is only a single
3035 bit and the result is only being used in a context where we
3036 need to know if it is zero or non-zero, replace it with a bit
3037 extraction. This will avoid the large constant, which might
3038 have taken more than one insn to make. If the constant were
3039 not a valid argument to the AND but took only one insn to make,
3040 this is no worse, but if it took more than one insn, it will
3041 be better. */
3043 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3044 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3045 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3046 && GET_CODE (SET_DEST (x)) == REG
3047 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3048 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3049 && XEXP (*split, 0) == SET_DEST (x)
3050 && XEXP (*split, 1) == const0_rtx)
3052 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3053 XEXP (SET_SRC (x), 0),
3054 pos, NULL_RTX, 1, 1, 0, 0);
3055 if (extraction != 0)
3057 SUBST (SET_SRC (x), extraction);
3058 return find_split_point (loc, insn);
3061 break;
3063 case NE:
3064 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3065 is known to be on, this can be converted into a NEG of a shift. */
3066 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3067 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3068 && 1 <= (pos = exact_log2
3069 (nonzero_bits (XEXP (SET_SRC (x), 0),
3070 GET_MODE (XEXP (SET_SRC (x), 0))))))
3072 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3074 SUBST (SET_SRC (x),
3075 gen_rtx_NEG (mode,
3076 gen_rtx_LSHIFTRT (mode,
3077 XEXP (SET_SRC (x), 0),
3078 GEN_INT (pos))));
3080 split = find_split_point (&SET_SRC (x), insn);
3081 if (split && split != &SET_SRC (x))
3082 return split;
3084 break;
3086 case SIGN_EXTEND:
3087 inner = XEXP (SET_SRC (x), 0);
3089 /* We can't optimize if either mode is a partial integer
3090 mode as we don't know how many bits are significant
3091 in those modes. */
3092 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3093 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3094 break;
3096 pos = 0;
3097 len = GET_MODE_BITSIZE (GET_MODE (inner));
3098 unsignedp = 0;
3099 break;
3101 case SIGN_EXTRACT:
3102 case ZERO_EXTRACT:
3103 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3104 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3106 inner = XEXP (SET_SRC (x), 0);
3107 len = INTVAL (XEXP (SET_SRC (x), 1));
3108 pos = INTVAL (XEXP (SET_SRC (x), 2));
3110 if (BITS_BIG_ENDIAN)
3111 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3112 unsignedp = (code == ZERO_EXTRACT);
3114 break;
3116 default:
3117 break;
3120 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3122 enum machine_mode mode = GET_MODE (SET_SRC (x));
3124 /* For unsigned, we have a choice of a shift followed by an
3125 AND or two shifts. Use two shifts for field sizes where the
3126 constant might be too large. We assume here that we can
3127 always at least get 8-bit constants in an AND insn, which is
3128 true for every current RISC. */
3130 if (unsignedp && len <= 8)
3132 SUBST (SET_SRC (x),
3133 gen_rtx_AND (mode,
3134 gen_rtx_LSHIFTRT
3135 (mode, gen_lowpart_for_combine (mode, inner),
3136 GEN_INT (pos)),
3137 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3139 split = find_split_point (&SET_SRC (x), insn);
3140 if (split && split != &SET_SRC (x))
3141 return split;
3143 else
3145 SUBST (SET_SRC (x),
3146 gen_rtx_fmt_ee
3147 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3148 gen_rtx_ASHIFT (mode,
3149 gen_lowpart_for_combine (mode, inner),
3150 GEN_INT (GET_MODE_BITSIZE (mode)
3151 - len - pos)),
3152 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3154 split = find_split_point (&SET_SRC (x), insn);
3155 if (split && split != &SET_SRC (x))
3156 return split;
3160 /* See if this is a simple operation with a constant as the second
3161 operand. It might be that this constant is out of range and hence
3162 could be used as a split point. */
3163 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3164 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3165 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3166 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3167 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3168 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3169 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3170 == 'o'))))
3171 return &XEXP (SET_SRC (x), 1);
3173 /* Finally, see if this is a simple operation with its first operand
3174 not in a register. The operation might require this operand in a
3175 register, so return it as a split point. We can always do this
3176 because if the first operand were another operation, we would have
3177 already found it as a split point. */
3178 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3179 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3180 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3181 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3182 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3183 return &XEXP (SET_SRC (x), 0);
3185 return 0;
3187 case AND:
3188 case IOR:
3189 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3190 it is better to write this as (not (ior A B)) so we can split it.
3191 Similarly for IOR. */
3192 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3194 SUBST (*loc,
3195 gen_rtx_NOT (GET_MODE (x),
3196 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3197 GET_MODE (x),
3198 XEXP (XEXP (x, 0), 0),
3199 XEXP (XEXP (x, 1), 0))));
3200 return find_split_point (loc, insn);
3203 /* Many RISC machines have a large set of logical insns. If the
3204 second operand is a NOT, put it first so we will try to split the
3205 other operand first. */
3206 if (GET_CODE (XEXP (x, 1)) == NOT)
3208 rtx tem = XEXP (x, 0);
3209 SUBST (XEXP (x, 0), XEXP (x, 1));
3210 SUBST (XEXP (x, 1), tem);
3212 break;
3214 default:
3215 break;
3218 /* Otherwise, select our actions depending on our rtx class. */
3219 switch (GET_RTX_CLASS (code))
3221 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3222 case '3':
3223 split = find_split_point (&XEXP (x, 2), insn);
3224 if (split)
3225 return split;
3226 /* ... fall through ... */
3227 case '2':
3228 case 'c':
3229 case '<':
3230 split = find_split_point (&XEXP (x, 1), insn);
3231 if (split)
3232 return split;
3233 /* ... fall through ... */
3234 case '1':
3235 /* Some machines have (and (shift ...) ...) insns. If X is not
3236 an AND, but XEXP (X, 0) is, use it as our split point. */
3237 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3238 return &XEXP (x, 0);
3240 split = find_split_point (&XEXP (x, 0), insn);
3241 if (split)
3242 return split;
3243 return loc;
3246 /* Otherwise, we don't have a split point. */
3247 return 0;
3250 /* Throughout X, replace FROM with TO, and return the result.
3251 The result is TO if X is FROM;
3252 otherwise the result is X, but its contents may have been modified.
3253 If they were modified, a record was made in undobuf so that
3254 undo_all will (among other things) return X to its original state.
3256 If the number of changes necessary is too much to record to undo,
3257 the excess changes are not made, so the result is invalid.
3258 The changes already made can still be undone.
3259 undobuf.num_undo is incremented for such changes, so by testing that
3260 the caller can tell whether the result is valid.
3262 `n_occurrences' is incremented each time FROM is replaced.
3264 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3266 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3267 by copying if `n_occurrences' is non-zero. */
3269 static rtx
3270 subst (x, from, to, in_dest, unique_copy)
3271 rtx x, from, to;
3272 int in_dest;
3273 int unique_copy;
3275 enum rtx_code code = GET_CODE (x);
3276 enum machine_mode op0_mode = VOIDmode;
3277 const char *fmt;
3278 int len, i;
3279 rtx new;
3281 /* Two expressions are equal if they are identical copies of a shared
3282 RTX or if they are both registers with the same register number
3283 and mode. */
3285 #define COMBINE_RTX_EQUAL_P(X,Y) \
3286 ((X) == (Y) \
3287 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3288 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3290 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3292 n_occurrences++;
3293 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3296 /* If X and FROM are the same register but different modes, they will
3297 not have been seen as equal above. However, flow.c will make a
3298 LOG_LINKS entry for that case. If we do nothing, we will try to
3299 rerecognize our original insn and, when it succeeds, we will
3300 delete the feeding insn, which is incorrect.
3302 So force this insn not to match in this (rare) case. */
3303 if (! in_dest && code == REG && GET_CODE (from) == REG
3304 && REGNO (x) == REGNO (from))
3305 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3307 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3308 of which may contain things that can be combined. */
3309 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3310 return x;
3312 /* It is possible to have a subexpression appear twice in the insn.
3313 Suppose that FROM is a register that appears within TO.
3314 Then, after that subexpression has been scanned once by `subst',
3315 the second time it is scanned, TO may be found. If we were
3316 to scan TO here, we would find FROM within it and create a
3317 self-referent rtl structure which is completely wrong. */
3318 if (COMBINE_RTX_EQUAL_P (x, to))
3319 return to;
3321 /* Parallel asm_operands need special attention because all of the
3322 inputs are shared across the arms. Furthermore, unsharing the
3323 rtl results in recognition failures. Failure to handle this case
3324 specially can result in circular rtl.
3326 Solve this by doing a normal pass across the first entry of the
3327 parallel, and only processing the SET_DESTs of the subsequent
3328 entries. Ug. */
3330 if (code == PARALLEL
3331 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3332 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3334 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3336 /* If this substitution failed, this whole thing fails. */
3337 if (GET_CODE (new) == CLOBBER
3338 && XEXP (new, 0) == const0_rtx)
3339 return new;
3341 SUBST (XVECEXP (x, 0, 0), new);
3343 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3345 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3347 if (GET_CODE (dest) != REG
3348 && GET_CODE (dest) != CC0
3349 && GET_CODE (dest) != PC)
3351 new = subst (dest, from, to, 0, unique_copy);
3353 /* If this substitution failed, this whole thing fails. */
3354 if (GET_CODE (new) == CLOBBER
3355 && XEXP (new, 0) == const0_rtx)
3356 return new;
3358 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3362 else
3364 len = GET_RTX_LENGTH (code);
3365 fmt = GET_RTX_FORMAT (code);
3367 /* We don't need to process a SET_DEST that is a register, CC0,
3368 or PC, so set up to skip this common case. All other cases
3369 where we want to suppress replacing something inside a
3370 SET_SRC are handled via the IN_DEST operand. */
3371 if (code == SET
3372 && (GET_CODE (SET_DEST (x)) == REG
3373 || GET_CODE (SET_DEST (x)) == CC0
3374 || GET_CODE (SET_DEST (x)) == PC))
3375 fmt = "ie";
3377 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3378 constant. */
3379 if (fmt[0] == 'e')
3380 op0_mode = GET_MODE (XEXP (x, 0));
3382 for (i = 0; i < len; i++)
3384 if (fmt[i] == 'E')
3386 int j;
3387 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3389 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3391 new = (unique_copy && n_occurrences
3392 ? copy_rtx (to) : to);
3393 n_occurrences++;
3395 else
3397 new = subst (XVECEXP (x, i, j), from, to, 0,
3398 unique_copy);
3400 /* If this substitution failed, this whole thing
3401 fails. */
3402 if (GET_CODE (new) == CLOBBER
3403 && XEXP (new, 0) == const0_rtx)
3404 return new;
3407 SUBST (XVECEXP (x, i, j), new);
3410 else if (fmt[i] == 'e')
3412 /* If this is a register being set, ignore it. */
3413 new = XEXP (x, i);
3414 if (in_dest
3415 && (code == SUBREG || code == STRICT_LOW_PART
3416 || code == ZERO_EXTRACT)
3417 && i == 0
3418 && GET_CODE (new) == REG)
3421 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3423 /* In general, don't install a subreg involving two
3424 modes not tieable. It can worsen register
3425 allocation, and can even make invalid reload
3426 insns, since the reg inside may need to be copied
3427 from in the outside mode, and that may be invalid
3428 if it is an fp reg copied in integer mode.
3430 We allow two exceptions to this: It is valid if
3431 it is inside another SUBREG and the mode of that
3432 SUBREG and the mode of the inside of TO is
3433 tieable and it is valid if X is a SET that copies
3434 FROM to CC0. */
3436 if (GET_CODE (to) == SUBREG
3437 && ! MODES_TIEABLE_P (GET_MODE (to),
3438 GET_MODE (SUBREG_REG (to)))
3439 && ! (code == SUBREG
3440 && MODES_TIEABLE_P (GET_MODE (x),
3441 GET_MODE (SUBREG_REG (to))))
3442 #ifdef HAVE_cc0
3443 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3444 #endif
3446 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3448 #ifdef CLASS_CANNOT_CHANGE_MODE
3449 if (code == SUBREG
3450 && GET_CODE (to) == REG
3451 && REGNO (to) < FIRST_PSEUDO_REGISTER
3452 && (TEST_HARD_REG_BIT
3453 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3454 REGNO (to)))
3455 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3456 GET_MODE (x)))
3457 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3458 #endif
3460 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3461 n_occurrences++;
3463 else
3464 /* If we are in a SET_DEST, suppress most cases unless we
3465 have gone inside a MEM, in which case we want to
3466 simplify the address. We assume here that things that
3467 are actually part of the destination have their inner
3468 parts in the first expression. This is true for SUBREG,
3469 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3470 things aside from REG and MEM that should appear in a
3471 SET_DEST. */
3472 new = subst (XEXP (x, i), from, to,
3473 (((in_dest
3474 && (code == SUBREG || code == STRICT_LOW_PART
3475 || code == ZERO_EXTRACT))
3476 || code == SET)
3477 && i == 0), unique_copy);
3479 /* If we found that we will have to reject this combination,
3480 indicate that by returning the CLOBBER ourselves, rather than
3481 an expression containing it. This will speed things up as
3482 well as prevent accidents where two CLOBBERs are considered
3483 to be equal, thus producing an incorrect simplification. */
3485 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3486 return new;
3488 SUBST (XEXP (x, i), new);
3493 /* Try to simplify X. If the simplification changed the code, it is likely
3494 that further simplification will help, so loop, but limit the number
3495 of repetitions that will be performed. */
3497 for (i = 0; i < 4; i++)
3499 /* If X is sufficiently simple, don't bother trying to do anything
3500 with it. */
3501 if (code != CONST_INT && code != REG && code != CLOBBER)
3502 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3504 if (GET_CODE (x) == code)
3505 break;
3507 code = GET_CODE (x);
3509 /* We no longer know the original mode of operand 0 since we
3510 have changed the form of X) */
3511 op0_mode = VOIDmode;
3514 return x;
3517 /* Simplify X, a piece of RTL. We just operate on the expression at the
3518 outer level; call `subst' to simplify recursively. Return the new
3519 expression.
3521 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3522 will be the iteration even if an expression with a code different from
3523 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3525 static rtx
3526 combine_simplify_rtx (x, op0_mode, last, in_dest)
3527 rtx x;
3528 enum machine_mode op0_mode;
3529 int last;
3530 int in_dest;
3532 enum rtx_code code = GET_CODE (x);
3533 enum machine_mode mode = GET_MODE (x);
3534 rtx temp;
3535 rtx reversed;
3536 int i;
3538 /* If this is a commutative operation, put a constant last and a complex
3539 expression first. We don't need to do this for comparisons here. */
3540 if (GET_RTX_CLASS (code) == 'c'
3541 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3543 temp = XEXP (x, 0);
3544 SUBST (XEXP (x, 0), XEXP (x, 1));
3545 SUBST (XEXP (x, 1), temp);
3548 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3549 sign extension of a PLUS with a constant, reverse the order of the sign
3550 extension and the addition. Note that this not the same as the original
3551 code, but overflow is undefined for signed values. Also note that the
3552 PLUS will have been partially moved "inside" the sign-extension, so that
3553 the first operand of X will really look like:
3554 (ashiftrt (plus (ashift A C4) C5) C4).
3555 We convert this to
3556 (plus (ashiftrt (ashift A C4) C2) C4)
3557 and replace the first operand of X with that expression. Later parts
3558 of this function may simplify the expression further.
3560 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3561 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3562 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3564 We do this to simplify address expressions. */
3566 if ((code == PLUS || code == MINUS || code == MULT)
3567 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3568 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3569 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3570 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3571 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3572 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3573 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3574 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3575 XEXP (XEXP (XEXP (x, 0), 0), 1),
3576 XEXP (XEXP (x, 0), 1))) != 0)
3578 rtx new
3579 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3580 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3581 INTVAL (XEXP (XEXP (x, 0), 1)));
3583 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3584 INTVAL (XEXP (XEXP (x, 0), 1)));
3586 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3589 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3590 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3591 things. Check for cases where both arms are testing the same
3592 condition.
3594 Don't do anything if all operands are very simple. */
3596 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3597 || GET_RTX_CLASS (code) == '<')
3598 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3599 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3600 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3601 == 'o')))
3602 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3603 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3604 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3605 == 'o')))))
3606 || (GET_RTX_CLASS (code) == '1'
3607 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3608 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3609 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3610 == 'o'))))))
3612 rtx cond, true_rtx, false_rtx;
3614 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3615 if (cond != 0
3616 /* If everything is a comparison, what we have is highly unlikely
3617 to be simpler, so don't use it. */
3618 && ! (GET_RTX_CLASS (code) == '<'
3619 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3620 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3622 rtx cop1 = const0_rtx;
3623 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3625 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3626 return x;
3628 /* Simplify the alternative arms; this may collapse the true and
3629 false arms to store-flag values. */
3630 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3631 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3633 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3634 is unlikely to be simpler. */
3635 if (general_operand (true_rtx, VOIDmode)
3636 && general_operand (false_rtx, VOIDmode))
3638 /* Restarting if we generate a store-flag expression will cause
3639 us to loop. Just drop through in this case. */
3641 /* If the result values are STORE_FLAG_VALUE and zero, we can
3642 just make the comparison operation. */
3643 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3644 x = gen_binary (cond_code, mode, cond, cop1);
3645 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3646 && reverse_condition (cond_code) != UNKNOWN)
3647 x = gen_binary (reverse_condition (cond_code),
3648 mode, cond, cop1);
3650 /* Likewise, we can make the negate of a comparison operation
3651 if the result values are - STORE_FLAG_VALUE and zero. */
3652 else if (GET_CODE (true_rtx) == CONST_INT
3653 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3654 && false_rtx == const0_rtx)
3655 x = simplify_gen_unary (NEG, mode,
3656 gen_binary (cond_code, mode, cond,
3657 cop1),
3658 mode);
3659 else if (GET_CODE (false_rtx) == CONST_INT
3660 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3661 && true_rtx == const0_rtx)
3662 x = simplify_gen_unary (NEG, mode,
3663 gen_binary (reverse_condition
3664 (cond_code),
3665 mode, cond, cop1),
3666 mode);
3667 else
3668 return gen_rtx_IF_THEN_ELSE (mode,
3669 gen_binary (cond_code, VOIDmode,
3670 cond, cop1),
3671 true_rtx, false_rtx);
3673 code = GET_CODE (x);
3674 op0_mode = VOIDmode;
3679 /* Try to fold this expression in case we have constants that weren't
3680 present before. */
3681 temp = 0;
3682 switch (GET_RTX_CLASS (code))
3684 case '1':
3685 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3686 break;
3687 case '<':
3689 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3690 if (cmp_mode == VOIDmode)
3692 cmp_mode = GET_MODE (XEXP (x, 1));
3693 if (cmp_mode == VOIDmode)
3694 cmp_mode = op0_mode;
3696 temp = simplify_relational_operation (code, cmp_mode,
3697 XEXP (x, 0), XEXP (x, 1));
3699 #ifdef FLOAT_STORE_FLAG_VALUE
3700 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3702 if (temp == const0_rtx)
3703 temp = CONST0_RTX (mode);
3704 else
3705 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3707 #endif
3708 break;
3709 case 'c':
3710 case '2':
3711 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3712 break;
3713 case 'b':
3714 case '3':
3715 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3716 XEXP (x, 1), XEXP (x, 2));
3717 break;
3720 if (temp)
3722 x = temp;
3723 code = GET_CODE (temp);
3724 op0_mode = VOIDmode;
3725 mode = GET_MODE (temp);
3728 /* First see if we can apply the inverse distributive law. */
3729 if (code == PLUS || code == MINUS
3730 || code == AND || code == IOR || code == XOR)
3732 x = apply_distributive_law (x);
3733 code = GET_CODE (x);
3734 op0_mode = VOIDmode;
3737 /* If CODE is an associative operation not otherwise handled, see if we
3738 can associate some operands. This can win if they are constants or
3739 if they are logically related (i.e. (a & b) & a). */
3740 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3741 || code == AND || code == IOR || code == XOR
3742 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3743 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3744 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3746 if (GET_CODE (XEXP (x, 0)) == code)
3748 rtx other = XEXP (XEXP (x, 0), 0);
3749 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3750 rtx inner_op1 = XEXP (x, 1);
3751 rtx inner;
3753 /* Make sure we pass the constant operand if any as the second
3754 one if this is a commutative operation. */
3755 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3757 rtx tem = inner_op0;
3758 inner_op0 = inner_op1;
3759 inner_op1 = tem;
3761 inner = simplify_binary_operation (code == MINUS ? PLUS
3762 : code == DIV ? MULT
3763 : code,
3764 mode, inner_op0, inner_op1);
3766 /* For commutative operations, try the other pair if that one
3767 didn't simplify. */
3768 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3770 other = XEXP (XEXP (x, 0), 1);
3771 inner = simplify_binary_operation (code, mode,
3772 XEXP (XEXP (x, 0), 0),
3773 XEXP (x, 1));
3776 if (inner)
3777 return gen_binary (code, mode, other, inner);
3781 /* A little bit of algebraic simplification here. */
3782 switch (code)
3784 case MEM:
3785 /* Ensure that our address has any ASHIFTs converted to MULT in case
3786 address-recognizing predicates are called later. */
3787 temp = make_compound_operation (XEXP (x, 0), MEM);
3788 SUBST (XEXP (x, 0), temp);
3789 break;
3791 case SUBREG:
3792 if (op0_mode == VOIDmode)
3793 op0_mode = GET_MODE (SUBREG_REG (x));
3795 /* simplify_subreg can't use gen_lowpart_for_combine. */
3796 if (CONSTANT_P (SUBREG_REG (x))
3797 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3798 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3800 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3801 break;
3803 rtx temp;
3804 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3805 SUBREG_BYTE (x));
3806 if (temp)
3807 return temp;
3810 /* Note that we cannot do any narrowing for non-constants since
3811 we might have been counting on using the fact that some bits were
3812 zero. We now do this in the SET. */
3814 break;
3816 case NOT:
3817 /* (not (plus X -1)) can become (neg X). */
3818 if (GET_CODE (XEXP (x, 0)) == PLUS
3819 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3820 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3822 /* Similarly, (not (neg X)) is (plus X -1). */
3823 if (GET_CODE (XEXP (x, 0)) == NEG)
3824 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3826 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3827 if (GET_CODE (XEXP (x, 0)) == XOR
3828 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3829 && (temp = simplify_unary_operation (NOT, mode,
3830 XEXP (XEXP (x, 0), 1),
3831 mode)) != 0)
3832 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3834 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3835 other than 1, but that is not valid. We could do a similar
3836 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3837 but this doesn't seem common enough to bother with. */
3838 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3839 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3840 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3841 const1_rtx, mode),
3842 XEXP (XEXP (x, 0), 1));
3844 if (GET_CODE (XEXP (x, 0)) == SUBREG
3845 && subreg_lowpart_p (XEXP (x, 0))
3846 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3847 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3848 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3849 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3851 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3853 x = gen_rtx_ROTATE (inner_mode,
3854 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3855 inner_mode),
3856 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3857 return gen_lowpart_for_combine (mode, x);
3860 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3861 reversing the comparison code if valid. */
3862 if (STORE_FLAG_VALUE == -1
3863 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3864 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3865 XEXP (XEXP (x, 0), 1))))
3866 return reversed;
3868 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3869 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3870 perform the above simplification. */
3872 if (STORE_FLAG_VALUE == -1
3873 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3874 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3875 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3876 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3878 /* Apply De Morgan's laws to reduce number of patterns for machines
3879 with negating logical insns (and-not, nand, etc.). If result has
3880 only one NOT, put it first, since that is how the patterns are
3881 coded. */
3883 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3885 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3886 enum machine_mode op_mode;
3888 op_mode = GET_MODE (in1);
3889 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3891 op_mode = GET_MODE (in2);
3892 if (op_mode == VOIDmode)
3893 op_mode = mode;
3894 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3896 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3898 rtx tem = in2;
3899 in2 = in1; in1 = tem;
3902 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3903 mode, in1, in2);
3905 break;
3907 case NEG:
3908 /* (neg (plus X 1)) can become (not X). */
3909 if (GET_CODE (XEXP (x, 0)) == PLUS
3910 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3911 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3913 /* Similarly, (neg (not X)) is (plus X 1). */
3914 if (GET_CODE (XEXP (x, 0)) == NOT)
3915 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3917 /* (neg (minus X Y)) can become (minus Y X). */
3918 if (GET_CODE (XEXP (x, 0)) == MINUS
3919 && (! FLOAT_MODE_P (mode)
3920 /* x-y != -(y-x) with IEEE floating point. */
3921 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3922 || flag_unsafe_math_optimizations))
3923 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3924 XEXP (XEXP (x, 0), 0));
3926 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3927 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3928 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3929 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3931 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3932 if we can then eliminate the NEG (e.g.,
3933 if the operand is a constant). */
3935 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3937 temp = simplify_unary_operation (NEG, mode,
3938 XEXP (XEXP (x, 0), 0), mode);
3939 if (temp)
3940 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3943 temp = expand_compound_operation (XEXP (x, 0));
3945 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3946 replaced by (lshiftrt X C). This will convert
3947 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3949 if (GET_CODE (temp) == ASHIFTRT
3950 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3951 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3952 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3953 INTVAL (XEXP (temp, 1)));
3955 /* If X has only a single bit that might be nonzero, say, bit I, convert
3956 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3957 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3958 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3959 or a SUBREG of one since we'd be making the expression more
3960 complex if it was just a register. */
3962 if (GET_CODE (temp) != REG
3963 && ! (GET_CODE (temp) == SUBREG
3964 && GET_CODE (SUBREG_REG (temp)) == REG)
3965 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3967 rtx temp1 = simplify_shift_const
3968 (NULL_RTX, ASHIFTRT, mode,
3969 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3970 GET_MODE_BITSIZE (mode) - 1 - i),
3971 GET_MODE_BITSIZE (mode) - 1 - i);
3973 /* If all we did was surround TEMP with the two shifts, we
3974 haven't improved anything, so don't use it. Otherwise,
3975 we are better off with TEMP1. */
3976 if (GET_CODE (temp1) != ASHIFTRT
3977 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3978 || XEXP (XEXP (temp1, 0), 0) != temp)
3979 return temp1;
3981 break;
3983 case TRUNCATE:
3984 /* We can't handle truncation to a partial integer mode here
3985 because we don't know the real bitsize of the partial
3986 integer mode. */
3987 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3988 break;
3990 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3991 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3992 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3993 SUBST (XEXP (x, 0),
3994 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3995 GET_MODE_MASK (mode), NULL_RTX, 0));
3997 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3998 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3999 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4000 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4001 return XEXP (XEXP (x, 0), 0);
4003 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4004 (OP:SI foo:SI) if OP is NEG or ABS. */
4005 if ((GET_CODE (XEXP (x, 0)) == ABS
4006 || GET_CODE (XEXP (x, 0)) == NEG)
4007 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4008 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4009 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4010 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4011 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4013 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4014 (truncate:SI x). */
4015 if (GET_CODE (XEXP (x, 0)) == SUBREG
4016 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4017 && subreg_lowpart_p (XEXP (x, 0)))
4018 return SUBREG_REG (XEXP (x, 0));
4020 /* If we know that the value is already truncated, we can
4021 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4022 is nonzero for the corresponding modes. But don't do this
4023 for an (LSHIFTRT (MULT ...)) since this will cause problems
4024 with the umulXi3_highpart patterns. */
4025 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4026 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4027 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4028 >= GET_MODE_BITSIZE (mode) + 1
4029 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4030 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4031 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4033 /* A truncate of a comparison can be replaced with a subreg if
4034 STORE_FLAG_VALUE permits. This is like the previous test,
4035 but it works even if the comparison is done in a mode larger
4036 than HOST_BITS_PER_WIDE_INT. */
4037 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4038 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4039 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4040 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4042 /* Similarly, a truncate of a register whose value is a
4043 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4044 permits. */
4045 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4046 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4047 && (temp = get_last_value (XEXP (x, 0)))
4048 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4049 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4051 break;
4053 case FLOAT_TRUNCATE:
4054 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4055 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4056 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4057 return XEXP (XEXP (x, 0), 0);
4059 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4060 (OP:SF foo:SF) if OP is NEG or ABS. */
4061 if ((GET_CODE (XEXP (x, 0)) == ABS
4062 || GET_CODE (XEXP (x, 0)) == NEG)
4063 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4064 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4065 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4066 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4068 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4069 is (float_truncate:SF x). */
4070 if (GET_CODE (XEXP (x, 0)) == SUBREG
4071 && subreg_lowpart_p (XEXP (x, 0))
4072 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4073 return SUBREG_REG (XEXP (x, 0));
4074 break;
4076 #ifdef HAVE_cc0
4077 case COMPARE:
4078 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4079 using cc0, in which case we want to leave it as a COMPARE
4080 so we can distinguish it from a register-register-copy. */
4081 if (XEXP (x, 1) == const0_rtx)
4082 return XEXP (x, 0);
4084 /* In IEEE floating point, x-0 is not the same as x. */
4085 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4086 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4087 || flag_unsafe_math_optimizations)
4088 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4089 return XEXP (x, 0);
4090 break;
4091 #endif
4093 case CONST:
4094 /* (const (const X)) can become (const X). Do it this way rather than
4095 returning the inner CONST since CONST can be shared with a
4096 REG_EQUAL note. */
4097 if (GET_CODE (XEXP (x, 0)) == CONST)
4098 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4099 break;
4101 #ifdef HAVE_lo_sum
4102 case LO_SUM:
4103 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4104 can add in an offset. find_split_point will split this address up
4105 again if it doesn't match. */
4106 if (GET_CODE (XEXP (x, 0)) == HIGH
4107 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4108 return XEXP (x, 1);
4109 break;
4110 #endif
4112 case PLUS:
4113 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4114 outermost. That's because that's the way indexed addresses are
4115 supposed to appear. This code used to check many more cases, but
4116 they are now checked elsewhere. */
4117 if (GET_CODE (XEXP (x, 0)) == PLUS
4118 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4119 return gen_binary (PLUS, mode,
4120 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4121 XEXP (x, 1)),
4122 XEXP (XEXP (x, 0), 1));
4124 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4125 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4126 bit-field and can be replaced by either a sign_extend or a
4127 sign_extract. The `and' may be a zero_extend and the two
4128 <c>, -<c> constants may be reversed. */
4129 if (GET_CODE (XEXP (x, 0)) == XOR
4130 && GET_CODE (XEXP (x, 1)) == CONST_INT
4131 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4132 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4133 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4134 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4135 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4136 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4137 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4138 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4139 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4140 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4141 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4142 == (unsigned int) i + 1))))
4143 return simplify_shift_const
4144 (NULL_RTX, ASHIFTRT, mode,
4145 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4146 XEXP (XEXP (XEXP (x, 0), 0), 0),
4147 GET_MODE_BITSIZE (mode) - (i + 1)),
4148 GET_MODE_BITSIZE (mode) - (i + 1));
4150 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4151 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4152 is 1. This produces better code than the alternative immediately
4153 below. */
4154 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4155 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4156 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4157 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4158 XEXP (XEXP (x, 0), 0),
4159 XEXP (XEXP (x, 0), 1))))
4160 return
4161 simplify_gen_unary (NEG, mode, reversed, mode);
4163 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4164 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4165 the bitsize of the mode - 1. This allows simplification of
4166 "a = (b & 8) == 0;" */
4167 if (XEXP (x, 1) == constm1_rtx
4168 && GET_CODE (XEXP (x, 0)) != REG
4169 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4170 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4171 && nonzero_bits (XEXP (x, 0), mode) == 1)
4172 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4173 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4174 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4175 GET_MODE_BITSIZE (mode) - 1),
4176 GET_MODE_BITSIZE (mode) - 1);
4178 /* If we are adding two things that have no bits in common, convert
4179 the addition into an IOR. This will often be further simplified,
4180 for example in cases like ((a & 1) + (a & 2)), which can
4181 become a & 3. */
4183 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4184 && (nonzero_bits (XEXP (x, 0), mode)
4185 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4187 /* Try to simplify the expression further. */
4188 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4189 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4191 /* If we could, great. If not, do not go ahead with the IOR
4192 replacement, since PLUS appears in many special purpose
4193 address arithmetic instructions. */
4194 if (GET_CODE (temp) != CLOBBER && temp != tor)
4195 return temp;
4197 break;
4199 case MINUS:
4200 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4201 by reversing the comparison code if valid. */
4202 if (STORE_FLAG_VALUE == 1
4203 && XEXP (x, 0) == const1_rtx
4204 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4205 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4206 XEXP (XEXP (x, 1), 0),
4207 XEXP (XEXP (x, 1), 1))))
4208 return reversed;
4210 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4211 (and <foo> (const_int pow2-1)) */
4212 if (GET_CODE (XEXP (x, 1)) == AND
4213 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4214 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4215 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4216 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4217 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4219 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4220 integers. */
4221 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4222 return gen_binary (MINUS, mode,
4223 gen_binary (MINUS, mode, XEXP (x, 0),
4224 XEXP (XEXP (x, 1), 0)),
4225 XEXP (XEXP (x, 1), 1));
4226 break;
4228 case MULT:
4229 /* If we have (mult (plus A B) C), apply the distributive law and then
4230 the inverse distributive law to see if things simplify. This
4231 occurs mostly in addresses, often when unrolling loops. */
4233 if (GET_CODE (XEXP (x, 0)) == PLUS)
4235 x = apply_distributive_law
4236 (gen_binary (PLUS, mode,
4237 gen_binary (MULT, mode,
4238 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4239 gen_binary (MULT, mode,
4240 XEXP (XEXP (x, 0), 1),
4241 copy_rtx (XEXP (x, 1)))));
4243 if (GET_CODE (x) != MULT)
4244 return x;
4246 /* Try simplify a*(b/c) as (a*b)/c. */
4247 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4248 && GET_CODE (XEXP (x, 0)) == DIV)
4250 rtx tem = simplify_binary_operation (MULT, mode,
4251 XEXP (XEXP (x, 0), 0),
4252 XEXP (x, 1));
4253 if (tem)
4254 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4256 break;
4258 case UDIV:
4259 /* If this is a divide by a power of two, treat it as a shift if
4260 its first operand is a shift. */
4261 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4262 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4263 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4264 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4265 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4266 || GET_CODE (XEXP (x, 0)) == ROTATE
4267 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4268 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4269 break;
4271 case EQ: case NE:
4272 case GT: case GTU: case GE: case GEU:
4273 case LT: case LTU: case LE: case LEU:
4274 case UNEQ: case LTGT:
4275 case UNGT: case UNGE:
4276 case UNLT: case UNLE:
4277 case UNORDERED: case ORDERED:
4278 /* If the first operand is a condition code, we can't do anything
4279 with it. */
4280 if (GET_CODE (XEXP (x, 0)) == COMPARE
4281 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4282 #ifdef HAVE_cc0
4283 && XEXP (x, 0) != cc0_rtx
4284 #endif
4287 rtx op0 = XEXP (x, 0);
4288 rtx op1 = XEXP (x, 1);
4289 enum rtx_code new_code;
4291 if (GET_CODE (op0) == COMPARE)
4292 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4294 /* Simplify our comparison, if possible. */
4295 new_code = simplify_comparison (code, &op0, &op1);
4297 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4298 if only the low-order bit is possibly nonzero in X (such as when
4299 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4300 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4301 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4302 (plus X 1).
4304 Remove any ZERO_EXTRACT we made when thinking this was a
4305 comparison. It may now be simpler to use, e.g., an AND. If a
4306 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4307 the call to make_compound_operation in the SET case. */
4309 if (STORE_FLAG_VALUE == 1
4310 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4311 && op1 == const0_rtx
4312 && mode == GET_MODE (op0)
4313 && nonzero_bits (op0, mode) == 1)
4314 return gen_lowpart_for_combine (mode,
4315 expand_compound_operation (op0));
4317 else if (STORE_FLAG_VALUE == 1
4318 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4319 && op1 == const0_rtx
4320 && mode == GET_MODE (op0)
4321 && (num_sign_bit_copies (op0, mode)
4322 == GET_MODE_BITSIZE (mode)))
4324 op0 = expand_compound_operation (op0);
4325 return simplify_gen_unary (NEG, mode,
4326 gen_lowpart_for_combine (mode, op0),
4327 mode);
4330 else if (STORE_FLAG_VALUE == 1
4331 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4332 && op1 == const0_rtx
4333 && mode == GET_MODE (op0)
4334 && nonzero_bits (op0, mode) == 1)
4336 op0 = expand_compound_operation (op0);
4337 return gen_binary (XOR, mode,
4338 gen_lowpart_for_combine (mode, op0),
4339 const1_rtx);
4342 else if (STORE_FLAG_VALUE == 1
4343 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4344 && op1 == const0_rtx
4345 && mode == GET_MODE (op0)
4346 && (num_sign_bit_copies (op0, mode)
4347 == GET_MODE_BITSIZE (mode)))
4349 op0 = expand_compound_operation (op0);
4350 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4353 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4354 those above. */
4355 if (STORE_FLAG_VALUE == -1
4356 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4357 && op1 == const0_rtx
4358 && (num_sign_bit_copies (op0, mode)
4359 == GET_MODE_BITSIZE (mode)))
4360 return gen_lowpart_for_combine (mode,
4361 expand_compound_operation (op0));
4363 else if (STORE_FLAG_VALUE == -1
4364 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4365 && op1 == const0_rtx
4366 && mode == GET_MODE (op0)
4367 && nonzero_bits (op0, mode) == 1)
4369 op0 = expand_compound_operation (op0);
4370 return simplify_gen_unary (NEG, mode,
4371 gen_lowpart_for_combine (mode, op0),
4372 mode);
4375 else if (STORE_FLAG_VALUE == -1
4376 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4377 && op1 == const0_rtx
4378 && mode == GET_MODE (op0)
4379 && (num_sign_bit_copies (op0, mode)
4380 == GET_MODE_BITSIZE (mode)))
4382 op0 = expand_compound_operation (op0);
4383 return simplify_gen_unary (NOT, mode,
4384 gen_lowpart_for_combine (mode, op0),
4385 mode);
4388 /* If X is 0/1, (eq X 0) is X-1. */
4389 else if (STORE_FLAG_VALUE == -1
4390 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4391 && op1 == const0_rtx
4392 && mode == GET_MODE (op0)
4393 && nonzero_bits (op0, mode) == 1)
4395 op0 = expand_compound_operation (op0);
4396 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4399 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4400 one bit that might be nonzero, we can convert (ne x 0) to
4401 (ashift x c) where C puts the bit in the sign bit. Remove any
4402 AND with STORE_FLAG_VALUE when we are done, since we are only
4403 going to test the sign bit. */
4404 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4405 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4406 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4407 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4408 && op1 == const0_rtx
4409 && mode == GET_MODE (op0)
4410 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4412 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4413 expand_compound_operation (op0),
4414 GET_MODE_BITSIZE (mode) - 1 - i);
4415 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4416 return XEXP (x, 0);
4417 else
4418 return x;
4421 /* If the code changed, return a whole new comparison. */
4422 if (new_code != code)
4423 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4425 /* Otherwise, keep this operation, but maybe change its operands.
4426 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4427 SUBST (XEXP (x, 0), op0);
4428 SUBST (XEXP (x, 1), op1);
4430 break;
4432 case IF_THEN_ELSE:
4433 return simplify_if_then_else (x);
4435 case ZERO_EXTRACT:
4436 case SIGN_EXTRACT:
4437 case ZERO_EXTEND:
4438 case SIGN_EXTEND:
4439 /* If we are processing SET_DEST, we are done. */
4440 if (in_dest)
4441 return x;
4443 return expand_compound_operation (x);
4445 case SET:
4446 return simplify_set (x);
4448 case AND:
4449 case IOR:
4450 case XOR:
4451 return simplify_logical (x, last);
4453 case ABS:
4454 /* (abs (neg <foo>)) -> (abs <foo>) */
4455 if (GET_CODE (XEXP (x, 0)) == NEG)
4456 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4458 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4459 do nothing. */
4460 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4461 break;
4463 /* If operand is something known to be positive, ignore the ABS. */
4464 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4465 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4466 <= HOST_BITS_PER_WIDE_INT)
4467 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4468 & ((HOST_WIDE_INT) 1
4469 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4470 == 0)))
4471 return XEXP (x, 0);
4473 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4474 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4475 return gen_rtx_NEG (mode, XEXP (x, 0));
4477 break;
4479 case FFS:
4480 /* (ffs (*_extend <X>)) = (ffs <X>) */
4481 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4482 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4483 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4484 break;
4486 case FLOAT:
4487 /* (float (sign_extend <X>)) = (float <X>). */
4488 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4489 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4490 break;
4492 case ASHIFT:
4493 case LSHIFTRT:
4494 case ASHIFTRT:
4495 case ROTATE:
4496 case ROTATERT:
4497 /* If this is a shift by a constant amount, simplify it. */
4498 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4499 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4500 INTVAL (XEXP (x, 1)));
4502 #ifdef SHIFT_COUNT_TRUNCATED
4503 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4504 SUBST (XEXP (x, 1),
4505 force_to_mode (XEXP (x, 1), GET_MODE (x),
4506 ((HOST_WIDE_INT) 1
4507 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4508 - 1,
4509 NULL_RTX, 0));
4510 #endif
4512 break;
4514 case VEC_SELECT:
4516 rtx op0 = XEXP (x, 0);
4517 rtx op1 = XEXP (x, 1);
4518 int len;
4520 if (GET_CODE (op1) != PARALLEL)
4521 abort ();
4522 len = XVECLEN (op1, 0);
4523 if (len == 1
4524 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4525 && GET_CODE (op0) == VEC_CONCAT)
4527 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4529 /* Try to find the element in the VEC_CONCAT. */
4530 for (;;)
4532 if (GET_MODE (op0) == GET_MODE (x))
4533 return op0;
4534 if (GET_CODE (op0) == VEC_CONCAT)
4536 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4537 if (op0_size < offset)
4538 op0 = XEXP (op0, 0);
4539 else
4541 offset -= op0_size;
4542 op0 = XEXP (op0, 1);
4545 else
4546 break;
4551 break;
4553 default:
4554 break;
4557 return x;
4560 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4562 static rtx
4563 simplify_if_then_else (x)
4564 rtx x;
4566 enum machine_mode mode = GET_MODE (x);
4567 rtx cond = XEXP (x, 0);
4568 rtx true_rtx = XEXP (x, 1);
4569 rtx false_rtx = XEXP (x, 2);
4570 enum rtx_code true_code = GET_CODE (cond);
4571 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4572 rtx temp;
4573 int i;
4574 enum rtx_code false_code;
4575 rtx reversed;
4577 /* Simplify storing of the truth value. */
4578 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4579 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4581 /* Also when the truth value has to be reversed. */
4582 if (comparison_p
4583 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4584 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4585 XEXP (cond, 1))))
4586 return reversed;
4588 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4589 in it is being compared against certain values. Get the true and false
4590 comparisons and see if that says anything about the value of each arm. */
4592 if (comparison_p
4593 && ((false_code = combine_reversed_comparison_code (cond))
4594 != UNKNOWN)
4595 && GET_CODE (XEXP (cond, 0)) == REG)
4597 HOST_WIDE_INT nzb;
4598 rtx from = XEXP (cond, 0);
4599 rtx true_val = XEXP (cond, 1);
4600 rtx false_val = true_val;
4601 int swapped = 0;
4603 /* If FALSE_CODE is EQ, swap the codes and arms. */
4605 if (false_code == EQ)
4607 swapped = 1, true_code = EQ, false_code = NE;
4608 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4611 /* If we are comparing against zero and the expression being tested has
4612 only a single bit that might be nonzero, that is its value when it is
4613 not equal to zero. Similarly if it is known to be -1 or 0. */
4615 if (true_code == EQ && true_val == const0_rtx
4616 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4617 false_code = EQ, false_val = GEN_INT (nzb);
4618 else if (true_code == EQ && true_val == const0_rtx
4619 && (num_sign_bit_copies (from, GET_MODE (from))
4620 == GET_MODE_BITSIZE (GET_MODE (from))))
4621 false_code = EQ, false_val = constm1_rtx;
4623 /* Now simplify an arm if we know the value of the register in the
4624 branch and it is used in the arm. Be careful due to the potential
4625 of locally-shared RTL. */
4627 if (reg_mentioned_p (from, true_rtx))
4628 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4629 from, true_val),
4630 pc_rtx, pc_rtx, 0, 0);
4631 if (reg_mentioned_p (from, false_rtx))
4632 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4633 from, false_val),
4634 pc_rtx, pc_rtx, 0, 0);
4636 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4637 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4639 true_rtx = XEXP (x, 1);
4640 false_rtx = XEXP (x, 2);
4641 true_code = GET_CODE (cond);
4644 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4645 reversed, do so to avoid needing two sets of patterns for
4646 subtract-and-branch insns. Similarly if we have a constant in the true
4647 arm, the false arm is the same as the first operand of the comparison, or
4648 the false arm is more complicated than the true arm. */
4650 if (comparison_p
4651 && combine_reversed_comparison_code (cond) != UNKNOWN
4652 && (true_rtx == pc_rtx
4653 || (CONSTANT_P (true_rtx)
4654 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4655 || true_rtx == const0_rtx
4656 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4657 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4658 || (GET_CODE (true_rtx) == SUBREG
4659 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4660 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4661 || reg_mentioned_p (true_rtx, false_rtx)
4662 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4664 true_code = reversed_comparison_code (cond, NULL);
4665 SUBST (XEXP (x, 0),
4666 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4667 XEXP (cond, 1)));
4669 SUBST (XEXP (x, 1), false_rtx);
4670 SUBST (XEXP (x, 2), true_rtx);
4672 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4673 cond = XEXP (x, 0);
4675 /* It is possible that the conditional has been simplified out. */
4676 true_code = GET_CODE (cond);
4677 comparison_p = GET_RTX_CLASS (true_code) == '<';
4680 /* If the two arms are identical, we don't need the comparison. */
4682 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4683 return true_rtx;
4685 /* Convert a == b ? b : a to "a". */
4686 if (true_code == EQ && ! side_effects_p (cond)
4687 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4688 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4689 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4690 return false_rtx;
4691 else if (true_code == NE && ! side_effects_p (cond)
4692 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4693 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4694 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4695 return true_rtx;
4697 /* Look for cases where we have (abs x) or (neg (abs X)). */
4699 if (GET_MODE_CLASS (mode) == MODE_INT
4700 && GET_CODE (false_rtx) == NEG
4701 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4702 && comparison_p
4703 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4704 && ! side_effects_p (true_rtx))
4705 switch (true_code)
4707 case GT:
4708 case GE:
4709 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4710 case LT:
4711 case LE:
4712 return
4713 simplify_gen_unary (NEG, mode,
4714 simplify_gen_unary (ABS, mode, true_rtx, mode),
4715 mode);
4716 default:
4717 break;
4720 /* Look for MIN or MAX. */
4722 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4723 && comparison_p
4724 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4725 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4726 && ! side_effects_p (cond))
4727 switch (true_code)
4729 case GE:
4730 case GT:
4731 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4732 case LE:
4733 case LT:
4734 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4735 case GEU:
4736 case GTU:
4737 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4738 case LEU:
4739 case LTU:
4740 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4741 default:
4742 break;
4745 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4746 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4747 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4748 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4749 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4750 neither 1 or -1, but it isn't worth checking for. */
4752 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4753 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4755 rtx t = make_compound_operation (true_rtx, SET);
4756 rtx f = make_compound_operation (false_rtx, SET);
4757 rtx cond_op0 = XEXP (cond, 0);
4758 rtx cond_op1 = XEXP (cond, 1);
4759 enum rtx_code op = NIL, extend_op = NIL;
4760 enum machine_mode m = mode;
4761 rtx z = 0, c1 = NULL_RTX;
4763 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4764 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4765 || GET_CODE (t) == ASHIFT
4766 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4767 && rtx_equal_p (XEXP (t, 0), f))
4768 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4770 /* If an identity-zero op is commutative, check whether there
4771 would be a match if we swapped the operands. */
4772 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4773 || GET_CODE (t) == XOR)
4774 && rtx_equal_p (XEXP (t, 1), f))
4775 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4776 else if (GET_CODE (t) == SIGN_EXTEND
4777 && (GET_CODE (XEXP (t, 0)) == PLUS
4778 || GET_CODE (XEXP (t, 0)) == MINUS
4779 || GET_CODE (XEXP (t, 0)) == IOR
4780 || GET_CODE (XEXP (t, 0)) == XOR
4781 || GET_CODE (XEXP (t, 0)) == ASHIFT
4782 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4783 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4784 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4785 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4786 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4787 && (num_sign_bit_copies (f, GET_MODE (f))
4788 > (GET_MODE_BITSIZE (mode)
4789 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4791 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4792 extend_op = SIGN_EXTEND;
4793 m = GET_MODE (XEXP (t, 0));
4795 else if (GET_CODE (t) == SIGN_EXTEND
4796 && (GET_CODE (XEXP (t, 0)) == PLUS
4797 || GET_CODE (XEXP (t, 0)) == IOR
4798 || GET_CODE (XEXP (t, 0)) == XOR)
4799 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4800 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4801 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4802 && (num_sign_bit_copies (f, GET_MODE (f))
4803 > (GET_MODE_BITSIZE (mode)
4804 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4806 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4807 extend_op = SIGN_EXTEND;
4808 m = GET_MODE (XEXP (t, 0));
4810 else if (GET_CODE (t) == ZERO_EXTEND
4811 && (GET_CODE (XEXP (t, 0)) == PLUS
4812 || GET_CODE (XEXP (t, 0)) == MINUS
4813 || GET_CODE (XEXP (t, 0)) == IOR
4814 || GET_CODE (XEXP (t, 0)) == XOR
4815 || GET_CODE (XEXP (t, 0)) == ASHIFT
4816 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4817 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4818 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4819 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4820 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4821 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4822 && ((nonzero_bits (f, GET_MODE (f))
4823 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4824 == 0))
4826 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4827 extend_op = ZERO_EXTEND;
4828 m = GET_MODE (XEXP (t, 0));
4830 else if (GET_CODE (t) == ZERO_EXTEND
4831 && (GET_CODE (XEXP (t, 0)) == PLUS
4832 || GET_CODE (XEXP (t, 0)) == IOR
4833 || GET_CODE (XEXP (t, 0)) == XOR)
4834 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4835 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4836 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4837 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4838 && ((nonzero_bits (f, GET_MODE (f))
4839 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4840 == 0))
4842 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4843 extend_op = ZERO_EXTEND;
4844 m = GET_MODE (XEXP (t, 0));
4847 if (z)
4849 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4850 pc_rtx, pc_rtx, 0, 0);
4851 temp = gen_binary (MULT, m, temp,
4852 gen_binary (MULT, m, c1, const_true_rtx));
4853 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4854 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4856 if (extend_op != NIL)
4857 temp = simplify_gen_unary (extend_op, mode, temp, m);
4859 return temp;
4863 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4864 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4865 negation of a single bit, we can convert this operation to a shift. We
4866 can actually do this more generally, but it doesn't seem worth it. */
4868 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4869 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4870 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4871 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4872 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4873 == GET_MODE_BITSIZE (mode))
4874 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4875 return
4876 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4877 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4879 return x;
4882 /* Simplify X, a SET expression. Return the new expression. */
4884 static rtx
4885 simplify_set (x)
4886 rtx x;
4888 rtx src = SET_SRC (x);
4889 rtx dest = SET_DEST (x);
4890 enum machine_mode mode
4891 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4892 rtx other_insn;
4893 rtx *cc_use;
4895 /* (set (pc) (return)) gets written as (return). */
4896 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4897 return src;
4899 /* Now that we know for sure which bits of SRC we are using, see if we can
4900 simplify the expression for the object knowing that we only need the
4901 low-order bits. */
4903 if (GET_MODE_CLASS (mode) == MODE_INT)
4905 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4906 SUBST (SET_SRC (x), src);
4909 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4910 the comparison result and try to simplify it unless we already have used
4911 undobuf.other_insn. */
4912 if ((GET_CODE (src) == COMPARE
4913 #ifdef HAVE_cc0
4914 || dest == cc0_rtx
4915 #endif
4917 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4918 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4919 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4920 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4922 enum rtx_code old_code = GET_CODE (*cc_use);
4923 enum rtx_code new_code;
4924 rtx op0, op1;
4925 int other_changed = 0;
4926 enum machine_mode compare_mode = GET_MODE (dest);
4928 if (GET_CODE (src) == COMPARE)
4929 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4930 else
4931 op0 = src, op1 = const0_rtx;
4933 /* Simplify our comparison, if possible. */
4934 new_code = simplify_comparison (old_code, &op0, &op1);
4936 #ifdef EXTRA_CC_MODES
4937 /* If this machine has CC modes other than CCmode, check to see if we
4938 need to use a different CC mode here. */
4939 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4940 #endif /* EXTRA_CC_MODES */
4942 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4943 /* If the mode changed, we have to change SET_DEST, the mode in the
4944 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4945 a hard register, just build new versions with the proper mode. If it
4946 is a pseudo, we lose unless it is only time we set the pseudo, in
4947 which case we can safely change its mode. */
4948 if (compare_mode != GET_MODE (dest))
4950 unsigned int regno = REGNO (dest);
4951 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4953 if (regno < FIRST_PSEUDO_REGISTER
4954 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4956 if (regno >= FIRST_PSEUDO_REGISTER)
4957 SUBST (regno_reg_rtx[regno], new_dest);
4959 SUBST (SET_DEST (x), new_dest);
4960 SUBST (XEXP (*cc_use, 0), new_dest);
4961 other_changed = 1;
4963 dest = new_dest;
4966 #endif
4968 /* If the code changed, we have to build a new comparison in
4969 undobuf.other_insn. */
4970 if (new_code != old_code)
4972 unsigned HOST_WIDE_INT mask;
4974 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
4975 dest, const0_rtx));
4977 /* If the only change we made was to change an EQ into an NE or
4978 vice versa, OP0 has only one bit that might be nonzero, and OP1
4979 is zero, check if changing the user of the condition code will
4980 produce a valid insn. If it won't, we can keep the original code
4981 in that insn by surrounding our operation with an XOR. */
4983 if (((old_code == NE && new_code == EQ)
4984 || (old_code == EQ && new_code == NE))
4985 && ! other_changed && op1 == const0_rtx
4986 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4987 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4989 rtx pat = PATTERN (other_insn), note = 0;
4991 if ((recog_for_combine (&pat, other_insn, &note) < 0
4992 && ! check_asm_operands (pat)))
4994 PUT_CODE (*cc_use, old_code);
4995 other_insn = 0;
4997 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5001 other_changed = 1;
5004 if (other_changed)
5005 undobuf.other_insn = other_insn;
5007 #ifdef HAVE_cc0
5008 /* If we are now comparing against zero, change our source if
5009 needed. If we do not use cc0, we always have a COMPARE. */
5010 if (op1 == const0_rtx && dest == cc0_rtx)
5012 SUBST (SET_SRC (x), op0);
5013 src = op0;
5015 else
5016 #endif
5018 /* Otherwise, if we didn't previously have a COMPARE in the
5019 correct mode, we need one. */
5020 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5022 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5023 src = SET_SRC (x);
5025 else
5027 /* Otherwise, update the COMPARE if needed. */
5028 SUBST (XEXP (src, 0), op0);
5029 SUBST (XEXP (src, 1), op1);
5032 else
5034 /* Get SET_SRC in a form where we have placed back any
5035 compound expressions. Then do the checks below. */
5036 src = make_compound_operation (src, SET);
5037 SUBST (SET_SRC (x), src);
5040 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5041 and X being a REG or (subreg (reg)), we may be able to convert this to
5042 (set (subreg:m2 x) (op)).
5044 We can always do this if M1 is narrower than M2 because that means that
5045 we only care about the low bits of the result.
5047 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5048 perform a narrower operation than requested since the high-order bits will
5049 be undefined. On machine where it is defined, this transformation is safe
5050 as long as M1 and M2 have the same number of words. */
5052 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5053 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5054 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5055 / UNITS_PER_WORD)
5056 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5057 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5058 #ifndef WORD_REGISTER_OPERATIONS
5059 && (GET_MODE_SIZE (GET_MODE (src))
5060 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5061 #endif
5062 #ifdef CLASS_CANNOT_CHANGE_MODE
5063 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5064 && (TEST_HARD_REG_BIT
5065 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5066 REGNO (dest)))
5067 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5068 GET_MODE (SUBREG_REG (src))))
5069 #endif
5070 && (GET_CODE (dest) == REG
5071 || (GET_CODE (dest) == SUBREG
5072 && GET_CODE (SUBREG_REG (dest)) == REG)))
5074 SUBST (SET_DEST (x),
5075 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5076 dest));
5077 SUBST (SET_SRC (x), SUBREG_REG (src));
5079 src = SET_SRC (x), dest = SET_DEST (x);
5082 #ifdef LOAD_EXTEND_OP
5083 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5084 would require a paradoxical subreg. Replace the subreg with a
5085 zero_extend to avoid the reload that would otherwise be required. */
5087 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5088 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5089 && SUBREG_BYTE (src) == 0
5090 && (GET_MODE_SIZE (GET_MODE (src))
5091 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5092 && GET_CODE (SUBREG_REG (src)) == MEM)
5094 SUBST (SET_SRC (x),
5095 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5096 GET_MODE (src), SUBREG_REG (src)));
5098 src = SET_SRC (x);
5100 #endif
5102 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5103 are comparing an item known to be 0 or -1 against 0, use a logical
5104 operation instead. Check for one of the arms being an IOR of the other
5105 arm with some value. We compute three terms to be IOR'ed together. In
5106 practice, at most two will be nonzero. Then we do the IOR's. */
5108 if (GET_CODE (dest) != PC
5109 && GET_CODE (src) == IF_THEN_ELSE
5110 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5111 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5112 && XEXP (XEXP (src, 0), 1) == const0_rtx
5113 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5114 #ifdef HAVE_conditional_move
5115 && ! can_conditionally_move_p (GET_MODE (src))
5116 #endif
5117 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5118 GET_MODE (XEXP (XEXP (src, 0), 0)))
5119 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5120 && ! side_effects_p (src))
5122 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5123 ? XEXP (src, 1) : XEXP (src, 2));
5124 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5125 ? XEXP (src, 2) : XEXP (src, 1));
5126 rtx term1 = const0_rtx, term2, term3;
5128 if (GET_CODE (true_rtx) == IOR
5129 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5130 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5131 else if (GET_CODE (true_rtx) == IOR
5132 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5133 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5134 else if (GET_CODE (false_rtx) == IOR
5135 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5136 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5137 else if (GET_CODE (false_rtx) == IOR
5138 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5139 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5141 term2 = gen_binary (AND, GET_MODE (src),
5142 XEXP (XEXP (src, 0), 0), true_rtx);
5143 term3 = gen_binary (AND, GET_MODE (src),
5144 simplify_gen_unary (NOT, GET_MODE (src),
5145 XEXP (XEXP (src, 0), 0),
5146 GET_MODE (src)),
5147 false_rtx);
5149 SUBST (SET_SRC (x),
5150 gen_binary (IOR, GET_MODE (src),
5151 gen_binary (IOR, GET_MODE (src), term1, term2),
5152 term3));
5154 src = SET_SRC (x);
5157 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5158 whole thing fail. */
5159 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5160 return src;
5161 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5162 return dest;
5163 else
5164 /* Convert this into a field assignment operation, if possible. */
5165 return make_field_assignment (x);
5168 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5169 result. LAST is nonzero if this is the last retry. */
5171 static rtx
5172 simplify_logical (x, last)
5173 rtx x;
5174 int last;
5176 enum machine_mode mode = GET_MODE (x);
5177 rtx op0 = XEXP (x, 0);
5178 rtx op1 = XEXP (x, 1);
5179 rtx reversed;
5181 switch (GET_CODE (x))
5183 case AND:
5184 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5185 insn (and may simplify more). */
5186 if (GET_CODE (op0) == XOR
5187 && rtx_equal_p (XEXP (op0, 0), op1)
5188 && ! side_effects_p (op1))
5189 x = gen_binary (AND, mode,
5190 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5191 op1);
5193 if (GET_CODE (op0) == XOR
5194 && rtx_equal_p (XEXP (op0, 1), op1)
5195 && ! side_effects_p (op1))
5196 x = gen_binary (AND, mode,
5197 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5198 op1);
5200 /* Similarly for (~(A ^ B)) & A. */
5201 if (GET_CODE (op0) == NOT
5202 && GET_CODE (XEXP (op0, 0)) == XOR
5203 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5204 && ! side_effects_p (op1))
5205 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5207 if (GET_CODE (op0) == NOT
5208 && GET_CODE (XEXP (op0, 0)) == XOR
5209 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5210 && ! side_effects_p (op1))
5211 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5213 /* We can call simplify_and_const_int only if we don't lose
5214 any (sign) bits when converting INTVAL (op1) to
5215 "unsigned HOST_WIDE_INT". */
5216 if (GET_CODE (op1) == CONST_INT
5217 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5218 || INTVAL (op1) > 0))
5220 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5222 /* If we have (ior (and (X C1) C2)) and the next restart would be
5223 the last, simplify this by making C1 as small as possible
5224 and then exit. */
5225 if (last
5226 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5227 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5228 && GET_CODE (op1) == CONST_INT)
5229 return gen_binary (IOR, mode,
5230 gen_binary (AND, mode, XEXP (op0, 0),
5231 GEN_INT (INTVAL (XEXP (op0, 1))
5232 & ~INTVAL (op1))), op1);
5234 if (GET_CODE (x) != AND)
5235 return x;
5237 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5238 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5239 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5242 /* Convert (A | B) & A to A. */
5243 if (GET_CODE (op0) == IOR
5244 && (rtx_equal_p (XEXP (op0, 0), op1)
5245 || rtx_equal_p (XEXP (op0, 1), op1))
5246 && ! side_effects_p (XEXP (op0, 0))
5247 && ! side_effects_p (XEXP (op0, 1)))
5248 return op1;
5250 /* In the following group of tests (and those in case IOR below),
5251 we start with some combination of logical operations and apply
5252 the distributive law followed by the inverse distributive law.
5253 Most of the time, this results in no change. However, if some of
5254 the operands are the same or inverses of each other, simplifications
5255 will result.
5257 For example, (and (ior A B) (not B)) can occur as the result of
5258 expanding a bit field assignment. When we apply the distributive
5259 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5260 which then simplifies to (and (A (not B))).
5262 If we have (and (ior A B) C), apply the distributive law and then
5263 the inverse distributive law to see if things simplify. */
5265 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5267 x = apply_distributive_law
5268 (gen_binary (GET_CODE (op0), mode,
5269 gen_binary (AND, mode, XEXP (op0, 0), op1),
5270 gen_binary (AND, mode, XEXP (op0, 1),
5271 copy_rtx (op1))));
5272 if (GET_CODE (x) != AND)
5273 return x;
5276 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5277 return apply_distributive_law
5278 (gen_binary (GET_CODE (op1), mode,
5279 gen_binary (AND, mode, XEXP (op1, 0), op0),
5280 gen_binary (AND, mode, XEXP (op1, 1),
5281 copy_rtx (op0))));
5283 /* Similarly, taking advantage of the fact that
5284 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5286 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5287 return apply_distributive_law
5288 (gen_binary (XOR, mode,
5289 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5290 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5291 XEXP (op1, 1))));
5293 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5294 return apply_distributive_law
5295 (gen_binary (XOR, mode,
5296 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5297 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5298 break;
5300 case IOR:
5301 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5302 if (GET_CODE (op1) == CONST_INT
5303 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5304 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5305 return op1;
5307 /* Convert (A & B) | A to A. */
5308 if (GET_CODE (op0) == AND
5309 && (rtx_equal_p (XEXP (op0, 0), op1)
5310 || rtx_equal_p (XEXP (op0, 1), op1))
5311 && ! side_effects_p (XEXP (op0, 0))
5312 && ! side_effects_p (XEXP (op0, 1)))
5313 return op1;
5315 /* If we have (ior (and A B) C), apply the distributive law and then
5316 the inverse distributive law to see if things simplify. */
5318 if (GET_CODE (op0) == AND)
5320 x = apply_distributive_law
5321 (gen_binary (AND, mode,
5322 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5323 gen_binary (IOR, mode, XEXP (op0, 1),
5324 copy_rtx (op1))));
5326 if (GET_CODE (x) != IOR)
5327 return x;
5330 if (GET_CODE (op1) == AND)
5332 x = apply_distributive_law
5333 (gen_binary (AND, mode,
5334 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5335 gen_binary (IOR, mode, XEXP (op1, 1),
5336 copy_rtx (op0))));
5338 if (GET_CODE (x) != IOR)
5339 return x;
5342 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5343 mode size to (rotate A CX). */
5345 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5346 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5347 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5348 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5349 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5350 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5351 == GET_MODE_BITSIZE (mode)))
5352 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5353 (GET_CODE (op0) == ASHIFT
5354 ? XEXP (op0, 1) : XEXP (op1, 1)));
5356 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5357 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5358 does not affect any of the bits in OP1, it can really be done
5359 as a PLUS and we can associate. We do this by seeing if OP1
5360 can be safely shifted left C bits. */
5361 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5362 && GET_CODE (XEXP (op0, 0)) == PLUS
5363 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5364 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5365 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5367 int count = INTVAL (XEXP (op0, 1));
5368 HOST_WIDE_INT mask = INTVAL (op1) << count;
5370 if (mask >> count == INTVAL (op1)
5371 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5373 SUBST (XEXP (XEXP (op0, 0), 1),
5374 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5375 return op0;
5378 break;
5380 case XOR:
5381 /* If we are XORing two things that have no bits in common,
5382 convert them into an IOR. This helps to detect rotation encoded
5383 using those methods and possibly other simplifications. */
5385 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5386 && (nonzero_bits (op0, mode)
5387 & nonzero_bits (op1, mode)) == 0)
5388 return (gen_binary (IOR, mode, op0, op1));
5390 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5391 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5392 (NOT y). */
5394 int num_negated = 0;
5396 if (GET_CODE (op0) == NOT)
5397 num_negated++, op0 = XEXP (op0, 0);
5398 if (GET_CODE (op1) == NOT)
5399 num_negated++, op1 = XEXP (op1, 0);
5401 if (num_negated == 2)
5403 SUBST (XEXP (x, 0), op0);
5404 SUBST (XEXP (x, 1), op1);
5406 else if (num_negated == 1)
5407 return
5408 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5409 mode);
5412 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5413 correspond to a machine insn or result in further simplifications
5414 if B is a constant. */
5416 if (GET_CODE (op0) == AND
5417 && rtx_equal_p (XEXP (op0, 1), op1)
5418 && ! side_effects_p (op1))
5419 return gen_binary (AND, mode,
5420 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5421 op1);
5423 else if (GET_CODE (op0) == AND
5424 && rtx_equal_p (XEXP (op0, 0), op1)
5425 && ! side_effects_p (op1))
5426 return gen_binary (AND, mode,
5427 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5428 op1);
5430 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5431 comparison if STORE_FLAG_VALUE is 1. */
5432 if (STORE_FLAG_VALUE == 1
5433 && op1 == const1_rtx
5434 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5435 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5436 XEXP (op0, 1))))
5437 return reversed;
5439 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5440 is (lt foo (const_int 0)), so we can perform the above
5441 simplification if STORE_FLAG_VALUE is 1. */
5443 if (STORE_FLAG_VALUE == 1
5444 && op1 == const1_rtx
5445 && GET_CODE (op0) == LSHIFTRT
5446 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5447 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5448 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5450 /* (xor (comparison foo bar) (const_int sign-bit))
5451 when STORE_FLAG_VALUE is the sign bit. */
5452 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5453 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5454 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5455 && op1 == const_true_rtx
5456 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5457 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5458 XEXP (op0, 1))))
5459 return reversed;
5461 break;
5463 default:
5464 abort ();
5467 return x;
5470 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5471 operations" because they can be replaced with two more basic operations.
5472 ZERO_EXTEND is also considered "compound" because it can be replaced with
5473 an AND operation, which is simpler, though only one operation.
5475 The function expand_compound_operation is called with an rtx expression
5476 and will convert it to the appropriate shifts and AND operations,
5477 simplifying at each stage.
5479 The function make_compound_operation is called to convert an expression
5480 consisting of shifts and ANDs into the equivalent compound expression.
5481 It is the inverse of this function, loosely speaking. */
5483 static rtx
5484 expand_compound_operation (x)
5485 rtx x;
5487 unsigned HOST_WIDE_INT pos = 0, len;
5488 int unsignedp = 0;
5489 unsigned int modewidth;
5490 rtx tem;
5492 switch (GET_CODE (x))
5494 case ZERO_EXTEND:
5495 unsignedp = 1;
5496 case SIGN_EXTEND:
5497 /* We can't necessarily use a const_int for a multiword mode;
5498 it depends on implicitly extending the value.
5499 Since we don't know the right way to extend it,
5500 we can't tell whether the implicit way is right.
5502 Even for a mode that is no wider than a const_int,
5503 we can't win, because we need to sign extend one of its bits through
5504 the rest of it, and we don't know which bit. */
5505 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5506 return x;
5508 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5509 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5510 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5511 reloaded. If not for that, MEM's would very rarely be safe.
5513 Reject MODEs bigger than a word, because we might not be able
5514 to reference a two-register group starting with an arbitrary register
5515 (and currently gen_lowpart might crash for a SUBREG). */
5517 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5518 return x;
5520 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5521 /* If the inner object has VOIDmode (the only way this can happen
5522 is if it is a ASM_OPERANDS), we can't do anything since we don't
5523 know how much masking to do. */
5524 if (len == 0)
5525 return x;
5527 break;
5529 case ZERO_EXTRACT:
5530 unsignedp = 1;
5531 case SIGN_EXTRACT:
5532 /* If the operand is a CLOBBER, just return it. */
5533 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5534 return XEXP (x, 0);
5536 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5537 || GET_CODE (XEXP (x, 2)) != CONST_INT
5538 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5539 return x;
5541 len = INTVAL (XEXP (x, 1));
5542 pos = INTVAL (XEXP (x, 2));
5544 /* If this goes outside the object being extracted, replace the object
5545 with a (use (mem ...)) construct that only combine understands
5546 and is used only for this purpose. */
5547 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5548 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5550 if (BITS_BIG_ENDIAN)
5551 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5553 break;
5555 default:
5556 return x;
5558 /* Convert sign extension to zero extension, if we know that the high
5559 bit is not set, as this is easier to optimize. It will be converted
5560 back to cheaper alternative in make_extraction. */
5561 if (GET_CODE (x) == SIGN_EXTEND
5562 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5563 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5564 & ~(((unsigned HOST_WIDE_INT)
5565 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5566 >> 1))
5567 == 0)))
5569 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5570 return expand_compound_operation (temp);
5573 /* We can optimize some special cases of ZERO_EXTEND. */
5574 if (GET_CODE (x) == ZERO_EXTEND)
5576 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5577 know that the last value didn't have any inappropriate bits
5578 set. */
5579 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5580 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5581 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5582 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5583 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5584 return XEXP (XEXP (x, 0), 0);
5586 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5587 if (GET_CODE (XEXP (x, 0)) == SUBREG
5588 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5589 && subreg_lowpart_p (XEXP (x, 0))
5590 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5591 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5592 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5593 return SUBREG_REG (XEXP (x, 0));
5595 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5596 is a comparison and STORE_FLAG_VALUE permits. This is like
5597 the first case, but it works even when GET_MODE (x) is larger
5598 than HOST_WIDE_INT. */
5599 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5600 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5601 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5602 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5603 <= HOST_BITS_PER_WIDE_INT)
5604 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5605 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5606 return XEXP (XEXP (x, 0), 0);
5608 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5609 if (GET_CODE (XEXP (x, 0)) == SUBREG
5610 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5611 && subreg_lowpart_p (XEXP (x, 0))
5612 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5613 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5614 <= HOST_BITS_PER_WIDE_INT)
5615 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5616 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5617 return SUBREG_REG (XEXP (x, 0));
5621 /* If we reach here, we want to return a pair of shifts. The inner
5622 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5623 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5624 logical depending on the value of UNSIGNEDP.
5626 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5627 converted into an AND of a shift.
5629 We must check for the case where the left shift would have a negative
5630 count. This can happen in a case like (x >> 31) & 255 on machines
5631 that can't shift by a constant. On those machines, we would first
5632 combine the shift with the AND to produce a variable-position
5633 extraction. Then the constant of 31 would be substituted in to produce
5634 a such a position. */
5636 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5637 if (modewidth + len >= pos)
5638 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5639 GET_MODE (x),
5640 simplify_shift_const (NULL_RTX, ASHIFT,
5641 GET_MODE (x),
5642 XEXP (x, 0),
5643 modewidth - pos - len),
5644 modewidth - len);
5646 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5647 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5648 simplify_shift_const (NULL_RTX, LSHIFTRT,
5649 GET_MODE (x),
5650 XEXP (x, 0), pos),
5651 ((HOST_WIDE_INT) 1 << len) - 1);
5652 else
5653 /* Any other cases we can't handle. */
5654 return x;
5656 /* If we couldn't do this for some reason, return the original
5657 expression. */
5658 if (GET_CODE (tem) == CLOBBER)
5659 return x;
5661 return tem;
5664 /* X is a SET which contains an assignment of one object into
5665 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5666 or certain SUBREGS). If possible, convert it into a series of
5667 logical operations.
5669 We half-heartedly support variable positions, but do not at all
5670 support variable lengths. */
5672 static rtx
5673 expand_field_assignment (x)
5674 rtx x;
5676 rtx inner;
5677 rtx pos; /* Always counts from low bit. */
5678 int len;
5679 rtx mask;
5680 enum machine_mode compute_mode;
5682 /* Loop until we find something we can't simplify. */
5683 while (1)
5685 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5686 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5688 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5689 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5690 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5692 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5693 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5695 inner = XEXP (SET_DEST (x), 0);
5696 len = INTVAL (XEXP (SET_DEST (x), 1));
5697 pos = XEXP (SET_DEST (x), 2);
5699 /* If the position is constant and spans the width of INNER,
5700 surround INNER with a USE to indicate this. */
5701 if (GET_CODE (pos) == CONST_INT
5702 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5703 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5705 if (BITS_BIG_ENDIAN)
5707 if (GET_CODE (pos) == CONST_INT)
5708 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5709 - INTVAL (pos));
5710 else if (GET_CODE (pos) == MINUS
5711 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5712 && (INTVAL (XEXP (pos, 1))
5713 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5714 /* If position is ADJUST - X, new position is X. */
5715 pos = XEXP (pos, 0);
5716 else
5717 pos = gen_binary (MINUS, GET_MODE (pos),
5718 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5719 - len),
5720 pos);
5724 /* A SUBREG between two modes that occupy the same numbers of words
5725 can be done by moving the SUBREG to the source. */
5726 else if (GET_CODE (SET_DEST (x)) == SUBREG
5727 /* We need SUBREGs to compute nonzero_bits properly. */
5728 && nonzero_sign_valid
5729 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5730 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5731 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5732 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5734 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5735 gen_lowpart_for_combine
5736 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5737 SET_SRC (x)));
5738 continue;
5740 else
5741 break;
5743 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5744 inner = SUBREG_REG (inner);
5746 compute_mode = GET_MODE (inner);
5748 /* Don't attempt bitwise arithmetic on non-integral modes. */
5749 if (! INTEGRAL_MODE_P (compute_mode))
5751 enum machine_mode imode;
5753 /* Something is probably seriously wrong if this matches. */
5754 if (! FLOAT_MODE_P (compute_mode))
5755 break;
5757 /* Try to find an integral mode to pun with. */
5758 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5759 if (imode == BLKmode)
5760 break;
5762 compute_mode = imode;
5763 inner = gen_lowpart_for_combine (imode, inner);
5766 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5767 if (len < HOST_BITS_PER_WIDE_INT)
5768 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5769 else
5770 break;
5772 /* Now compute the equivalent expression. Make a copy of INNER
5773 for the SET_DEST in case it is a MEM into which we will substitute;
5774 we don't want shared RTL in that case. */
5775 x = gen_rtx_SET
5776 (VOIDmode, copy_rtx (inner),
5777 gen_binary (IOR, compute_mode,
5778 gen_binary (AND, compute_mode,
5779 simplify_gen_unary (NOT, compute_mode,
5780 gen_binary (ASHIFT,
5781 compute_mode,
5782 mask, pos),
5783 compute_mode),
5784 inner),
5785 gen_binary (ASHIFT, compute_mode,
5786 gen_binary (AND, compute_mode,
5787 gen_lowpart_for_combine
5788 (compute_mode, SET_SRC (x)),
5789 mask),
5790 pos)));
5793 return x;
5796 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5797 it is an RTX that represents a variable starting position; otherwise,
5798 POS is the (constant) starting bit position (counted from the LSB).
5800 INNER may be a USE. This will occur when we started with a bitfield
5801 that went outside the boundary of the object in memory, which is
5802 allowed on most machines. To isolate this case, we produce a USE
5803 whose mode is wide enough and surround the MEM with it. The only
5804 code that understands the USE is this routine. If it is not removed,
5805 it will cause the resulting insn not to match.
5807 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5808 signed reference.
5810 IN_DEST is non-zero if this is a reference in the destination of a
5811 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5812 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5813 be used.
5815 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5816 ZERO_EXTRACT should be built even for bits starting at bit 0.
5818 MODE is the desired mode of the result (if IN_DEST == 0).
5820 The result is an RTX for the extraction or NULL_RTX if the target
5821 can't handle it. */
5823 static rtx
5824 make_extraction (mode, inner, pos, pos_rtx, len,
5825 unsignedp, in_dest, in_compare)
5826 enum machine_mode mode;
5827 rtx inner;
5828 HOST_WIDE_INT pos;
5829 rtx pos_rtx;
5830 unsigned HOST_WIDE_INT len;
5831 int unsignedp;
5832 int in_dest, in_compare;
5834 /* This mode describes the size of the storage area
5835 to fetch the overall value from. Within that, we
5836 ignore the POS lowest bits, etc. */
5837 enum machine_mode is_mode = GET_MODE (inner);
5838 enum machine_mode inner_mode;
5839 enum machine_mode wanted_inner_mode = byte_mode;
5840 enum machine_mode wanted_inner_reg_mode = word_mode;
5841 enum machine_mode pos_mode = word_mode;
5842 enum machine_mode extraction_mode = word_mode;
5843 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5844 int spans_byte = 0;
5845 rtx new = 0;
5846 rtx orig_pos_rtx = pos_rtx;
5847 HOST_WIDE_INT orig_pos;
5849 /* Get some information about INNER and get the innermost object. */
5850 if (GET_CODE (inner) == USE)
5851 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5852 /* We don't need to adjust the position because we set up the USE
5853 to pretend that it was a full-word object. */
5854 spans_byte = 1, inner = XEXP (inner, 0);
5855 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5857 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5858 consider just the QI as the memory to extract from.
5859 The subreg adds or removes high bits; its mode is
5860 irrelevant to the meaning of this extraction,
5861 since POS and LEN count from the lsb. */
5862 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5863 is_mode = GET_MODE (SUBREG_REG (inner));
5864 inner = SUBREG_REG (inner);
5867 inner_mode = GET_MODE (inner);
5869 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5870 pos = INTVAL (pos_rtx), pos_rtx = 0;
5872 /* See if this can be done without an extraction. We never can if the
5873 width of the field is not the same as that of some integer mode. For
5874 registers, we can only avoid the extraction if the position is at the
5875 low-order bit and this is either not in the destination or we have the
5876 appropriate STRICT_LOW_PART operation available.
5878 For MEM, we can avoid an extract if the field starts on an appropriate
5879 boundary and we can change the mode of the memory reference. However,
5880 we cannot directly access the MEM if we have a USE and the underlying
5881 MEM is not TMODE. This combination means that MEM was being used in a
5882 context where bits outside its mode were being referenced; that is only
5883 valid in bit-field insns. */
5885 if (tmode != BLKmode
5886 && ! (spans_byte && inner_mode != tmode)
5887 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5888 && GET_CODE (inner) != MEM
5889 && (! in_dest
5890 || (GET_CODE (inner) == REG
5891 && have_insn_for (STRICT_LOW_PART, tmode))))
5892 || (GET_CODE (inner) == MEM && pos_rtx == 0
5893 && (pos
5894 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5895 : BITS_PER_UNIT)) == 0
5896 /* We can't do this if we are widening INNER_MODE (it
5897 may not be aligned, for one thing). */
5898 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5899 && (inner_mode == tmode
5900 || (! mode_dependent_address_p (XEXP (inner, 0))
5901 && ! MEM_VOLATILE_P (inner))))))
5903 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5904 field. If the original and current mode are the same, we need not
5905 adjust the offset. Otherwise, we do if bytes big endian.
5907 If INNER is not a MEM, get a piece consisting of just the field
5908 of interest (in this case POS % BITS_PER_WORD must be 0). */
5910 if (GET_CODE (inner) == MEM)
5912 HOST_WIDE_INT offset;
5914 /* POS counts from lsb, but make OFFSET count in memory order. */
5915 if (BYTES_BIG_ENDIAN)
5916 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5917 else
5918 offset = pos / BITS_PER_UNIT;
5920 new = adjust_address_nv (inner, tmode, offset);
5922 else if (GET_CODE (inner) == REG)
5924 /* We can't call gen_lowpart_for_combine here since we always want
5925 a SUBREG and it would sometimes return a new hard register. */
5926 if (tmode != inner_mode)
5928 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
5930 if (WORDS_BIG_ENDIAN
5931 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
5932 final_word = ((GET_MODE_SIZE (inner_mode)
5933 - GET_MODE_SIZE (tmode))
5934 / UNITS_PER_WORD) - final_word;
5936 final_word *= UNITS_PER_WORD;
5937 if (BYTES_BIG_ENDIAN &&
5938 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
5939 final_word += (GET_MODE_SIZE (inner_mode)
5940 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
5942 new = gen_rtx_SUBREG (tmode, inner, final_word);
5944 else
5945 new = inner;
5947 else
5948 new = force_to_mode (inner, tmode,
5949 len >= HOST_BITS_PER_WIDE_INT
5950 ? ~(unsigned HOST_WIDE_INT) 0
5951 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5952 NULL_RTX, 0);
5954 /* If this extraction is going into the destination of a SET,
5955 make a STRICT_LOW_PART unless we made a MEM. */
5957 if (in_dest)
5958 return (GET_CODE (new) == MEM ? new
5959 : (GET_CODE (new) != SUBREG
5960 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5961 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
5963 if (mode == tmode)
5964 return new;
5966 /* If we know that no extraneous bits are set, and that the high
5967 bit is not set, convert the extraction to the cheaper of
5968 sign and zero extension, that are equivalent in these cases. */
5969 if (flag_expensive_optimizations
5970 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5971 && ((nonzero_bits (new, tmode)
5972 & ~(((unsigned HOST_WIDE_INT)
5973 GET_MODE_MASK (tmode))
5974 >> 1))
5975 == 0)))
5977 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
5978 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
5980 /* Prefer ZERO_EXTENSION, since it gives more information to
5981 backends. */
5982 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
5983 return temp;
5984 return temp1;
5987 /* Otherwise, sign- or zero-extend unless we already are in the
5988 proper mode. */
5990 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5991 mode, new));
5994 /* Unless this is a COMPARE or we have a funny memory reference,
5995 don't do anything with zero-extending field extracts starting at
5996 the low-order bit since they are simple AND operations. */
5997 if (pos_rtx == 0 && pos == 0 && ! in_dest
5998 && ! in_compare && ! spans_byte && unsignedp)
5999 return 0;
6001 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6002 we would be spanning bytes or if the position is not a constant and the
6003 length is not 1. In all other cases, we would only be going outside
6004 our object in cases when an original shift would have been
6005 undefined. */
6006 if (! spans_byte && GET_CODE (inner) == MEM
6007 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6008 || (pos_rtx != 0 && len != 1)))
6009 return 0;
6011 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6012 and the mode for the result. */
6013 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6015 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6016 pos_mode = mode_for_extraction (EP_insv, 2);
6017 extraction_mode = mode_for_extraction (EP_insv, 3);
6020 if (! in_dest && unsignedp
6021 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6023 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6024 pos_mode = mode_for_extraction (EP_extzv, 3);
6025 extraction_mode = mode_for_extraction (EP_extzv, 0);
6028 if (! in_dest && ! unsignedp
6029 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6031 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6032 pos_mode = mode_for_extraction (EP_extv, 3);
6033 extraction_mode = mode_for_extraction (EP_extv, 0);
6036 /* Never narrow an object, since that might not be safe. */
6038 if (mode != VOIDmode
6039 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6040 extraction_mode = mode;
6042 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6043 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6044 pos_mode = GET_MODE (pos_rtx);
6046 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6047 if we have to change the mode of memory and cannot, the desired mode is
6048 EXTRACTION_MODE. */
6049 if (GET_CODE (inner) != MEM)
6050 wanted_inner_mode = wanted_inner_reg_mode;
6051 else if (inner_mode != wanted_inner_mode
6052 && (mode_dependent_address_p (XEXP (inner, 0))
6053 || MEM_VOLATILE_P (inner)))
6054 wanted_inner_mode = extraction_mode;
6056 orig_pos = pos;
6058 if (BITS_BIG_ENDIAN)
6060 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6061 BITS_BIG_ENDIAN style. If position is constant, compute new
6062 position. Otherwise, build subtraction.
6063 Note that POS is relative to the mode of the original argument.
6064 If it's a MEM we need to recompute POS relative to that.
6065 However, if we're extracting from (or inserting into) a register,
6066 we want to recompute POS relative to wanted_inner_mode. */
6067 int width = (GET_CODE (inner) == MEM
6068 ? GET_MODE_BITSIZE (is_mode)
6069 : GET_MODE_BITSIZE (wanted_inner_mode));
6071 if (pos_rtx == 0)
6072 pos = width - len - pos;
6073 else
6074 pos_rtx
6075 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6076 /* POS may be less than 0 now, but we check for that below.
6077 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6080 /* If INNER has a wider mode, make it smaller. If this is a constant
6081 extract, try to adjust the byte to point to the byte containing
6082 the value. */
6083 if (wanted_inner_mode != VOIDmode
6084 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6085 && ((GET_CODE (inner) == MEM
6086 && (inner_mode == wanted_inner_mode
6087 || (! mode_dependent_address_p (XEXP (inner, 0))
6088 && ! MEM_VOLATILE_P (inner))))))
6090 int offset = 0;
6092 /* The computations below will be correct if the machine is big
6093 endian in both bits and bytes or little endian in bits and bytes.
6094 If it is mixed, we must adjust. */
6096 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6097 adjust OFFSET to compensate. */
6098 if (BYTES_BIG_ENDIAN
6099 && ! spans_byte
6100 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6101 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6103 /* If this is a constant position, we can move to the desired byte. */
6104 if (pos_rtx == 0)
6106 offset += pos / BITS_PER_UNIT;
6107 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6110 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6111 && ! spans_byte
6112 && is_mode != wanted_inner_mode)
6113 offset = (GET_MODE_SIZE (is_mode)
6114 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6116 if (offset != 0 || inner_mode != wanted_inner_mode)
6117 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6120 /* If INNER is not memory, we can always get it into the proper mode. If we
6121 are changing its mode, POS must be a constant and smaller than the size
6122 of the new mode. */
6123 else if (GET_CODE (inner) != MEM)
6125 if (GET_MODE (inner) != wanted_inner_mode
6126 && (pos_rtx != 0
6127 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6128 return 0;
6130 inner = force_to_mode (inner, wanted_inner_mode,
6131 pos_rtx
6132 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6133 ? ~(unsigned HOST_WIDE_INT) 0
6134 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6135 << orig_pos),
6136 NULL_RTX, 0);
6139 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6140 have to zero extend. Otherwise, we can just use a SUBREG. */
6141 if (pos_rtx != 0
6142 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6144 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6146 /* If we know that no extraneous bits are set, and that the high
6147 bit is not set, convert extraction to cheaper one - either
6148 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6149 cases. */
6150 if (flag_expensive_optimizations
6151 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6152 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6153 & ~(((unsigned HOST_WIDE_INT)
6154 GET_MODE_MASK (GET_MODE (pos_rtx)))
6155 >> 1))
6156 == 0)))
6158 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6160 /* Prefer ZERO_EXTENSION, since it gives more information to
6161 backends. */
6162 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6163 temp = temp1;
6165 pos_rtx = temp;
6167 else if (pos_rtx != 0
6168 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6169 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6171 /* Make POS_RTX unless we already have it and it is correct. If we don't
6172 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6173 be a CONST_INT. */
6174 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6175 pos_rtx = orig_pos_rtx;
6177 else if (pos_rtx == 0)
6178 pos_rtx = GEN_INT (pos);
6180 /* Make the required operation. See if we can use existing rtx. */
6181 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6182 extraction_mode, inner, GEN_INT (len), pos_rtx);
6183 if (! in_dest)
6184 new = gen_lowpart_for_combine (mode, new);
6186 return new;
6189 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6190 with any other operations in X. Return X without that shift if so. */
6192 static rtx
6193 extract_left_shift (x, count)
6194 rtx x;
6195 int count;
6197 enum rtx_code code = GET_CODE (x);
6198 enum machine_mode mode = GET_MODE (x);
6199 rtx tem;
6201 switch (code)
6203 case ASHIFT:
6204 /* This is the shift itself. If it is wide enough, we will return
6205 either the value being shifted if the shift count is equal to
6206 COUNT or a shift for the difference. */
6207 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6208 && INTVAL (XEXP (x, 1)) >= count)
6209 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6210 INTVAL (XEXP (x, 1)) - count);
6211 break;
6213 case NEG: case NOT:
6214 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6215 return simplify_gen_unary (code, mode, tem, mode);
6217 break;
6219 case PLUS: case IOR: case XOR: case AND:
6220 /* If we can safely shift this constant and we find the inner shift,
6221 make a new operation. */
6222 if (GET_CODE (XEXP (x,1)) == CONST_INT
6223 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6224 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6225 return gen_binary (code, mode, tem,
6226 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6228 break;
6230 default:
6231 break;
6234 return 0;
6237 /* Look at the expression rooted at X. Look for expressions
6238 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6239 Form these expressions.
6241 Return the new rtx, usually just X.
6243 Also, for machines like the VAX that don't have logical shift insns,
6244 try to convert logical to arithmetic shift operations in cases where
6245 they are equivalent. This undoes the canonicalizations to logical
6246 shifts done elsewhere.
6248 We try, as much as possible, to re-use rtl expressions to save memory.
6250 IN_CODE says what kind of expression we are processing. Normally, it is
6251 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6252 being kludges), it is MEM. When processing the arguments of a comparison
6253 or a COMPARE against zero, it is COMPARE. */
6255 static rtx
6256 make_compound_operation (x, in_code)
6257 rtx x;
6258 enum rtx_code in_code;
6260 enum rtx_code code = GET_CODE (x);
6261 enum machine_mode mode = GET_MODE (x);
6262 int mode_width = GET_MODE_BITSIZE (mode);
6263 rtx rhs, lhs;
6264 enum rtx_code next_code;
6265 int i;
6266 rtx new = 0;
6267 rtx tem;
6268 const char *fmt;
6270 /* Select the code to be used in recursive calls. Once we are inside an
6271 address, we stay there. If we have a comparison, set to COMPARE,
6272 but once inside, go back to our default of SET. */
6274 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6275 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6276 && XEXP (x, 1) == const0_rtx) ? COMPARE
6277 : in_code == COMPARE ? SET : in_code);
6279 /* Process depending on the code of this operation. If NEW is set
6280 non-zero, it will be returned. */
6282 switch (code)
6284 case ASHIFT:
6285 /* Convert shifts by constants into multiplications if inside
6286 an address. */
6287 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6288 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6289 && INTVAL (XEXP (x, 1)) >= 0)
6291 new = make_compound_operation (XEXP (x, 0), next_code);
6292 new = gen_rtx_MULT (mode, new,
6293 GEN_INT ((HOST_WIDE_INT) 1
6294 << INTVAL (XEXP (x, 1))));
6296 break;
6298 case AND:
6299 /* If the second operand is not a constant, we can't do anything
6300 with it. */
6301 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6302 break;
6304 /* If the constant is a power of two minus one and the first operand
6305 is a logical right shift, make an extraction. */
6306 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6307 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6309 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6310 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6311 0, in_code == COMPARE);
6314 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6315 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6316 && subreg_lowpart_p (XEXP (x, 0))
6317 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6318 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6320 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6321 next_code);
6322 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6323 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6324 0, in_code == COMPARE);
6326 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6327 else if ((GET_CODE (XEXP (x, 0)) == XOR
6328 || GET_CODE (XEXP (x, 0)) == IOR)
6329 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6330 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6331 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6333 /* Apply the distributive law, and then try to make extractions. */
6334 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6335 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6336 XEXP (x, 1)),
6337 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6338 XEXP (x, 1)));
6339 new = make_compound_operation (new, in_code);
6342 /* If we are have (and (rotate X C) M) and C is larger than the number
6343 of bits in M, this is an extraction. */
6345 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6346 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6347 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6348 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6350 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6351 new = make_extraction (mode, new,
6352 (GET_MODE_BITSIZE (mode)
6353 - INTVAL (XEXP (XEXP (x, 0), 1))),
6354 NULL_RTX, i, 1, 0, in_code == COMPARE);
6357 /* On machines without logical shifts, if the operand of the AND is
6358 a logical shift and our mask turns off all the propagated sign
6359 bits, we can replace the logical shift with an arithmetic shift. */
6360 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6361 && !have_insn_for (LSHIFTRT, mode)
6362 && have_insn_for (ASHIFTRT, mode)
6363 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6364 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6365 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6366 && mode_width <= HOST_BITS_PER_WIDE_INT)
6368 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6370 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6371 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6372 SUBST (XEXP (x, 0),
6373 gen_rtx_ASHIFTRT (mode,
6374 make_compound_operation
6375 (XEXP (XEXP (x, 0), 0), next_code),
6376 XEXP (XEXP (x, 0), 1)));
6379 /* If the constant is one less than a power of two, this might be
6380 representable by an extraction even if no shift is present.
6381 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6382 we are in a COMPARE. */
6383 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6384 new = make_extraction (mode,
6385 make_compound_operation (XEXP (x, 0),
6386 next_code),
6387 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6389 /* If we are in a comparison and this is an AND with a power of two,
6390 convert this into the appropriate bit extract. */
6391 else if (in_code == COMPARE
6392 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6393 new = make_extraction (mode,
6394 make_compound_operation (XEXP (x, 0),
6395 next_code),
6396 i, NULL_RTX, 1, 1, 0, 1);
6398 break;
6400 case LSHIFTRT:
6401 /* If the sign bit is known to be zero, replace this with an
6402 arithmetic shift. */
6403 if (have_insn_for (ASHIFTRT, mode)
6404 && ! have_insn_for (LSHIFTRT, mode)
6405 && mode_width <= HOST_BITS_PER_WIDE_INT
6406 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6408 new = gen_rtx_ASHIFTRT (mode,
6409 make_compound_operation (XEXP (x, 0),
6410 next_code),
6411 XEXP (x, 1));
6412 break;
6415 /* ... fall through ... */
6417 case ASHIFTRT:
6418 lhs = XEXP (x, 0);
6419 rhs = XEXP (x, 1);
6421 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6422 this is a SIGN_EXTRACT. */
6423 if (GET_CODE (rhs) == CONST_INT
6424 && GET_CODE (lhs) == ASHIFT
6425 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6426 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6428 new = make_compound_operation (XEXP (lhs, 0), next_code);
6429 new = make_extraction (mode, new,
6430 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6431 NULL_RTX, mode_width - INTVAL (rhs),
6432 code == LSHIFTRT, 0, in_code == COMPARE);
6433 break;
6436 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6437 If so, try to merge the shifts into a SIGN_EXTEND. We could
6438 also do this for some cases of SIGN_EXTRACT, but it doesn't
6439 seem worth the effort; the case checked for occurs on Alpha. */
6441 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6442 && ! (GET_CODE (lhs) == SUBREG
6443 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6444 && GET_CODE (rhs) == CONST_INT
6445 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6446 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6447 new = make_extraction (mode, make_compound_operation (new, next_code),
6448 0, NULL_RTX, mode_width - INTVAL (rhs),
6449 code == LSHIFTRT, 0, in_code == COMPARE);
6451 break;
6453 case SUBREG:
6454 /* Call ourselves recursively on the inner expression. If we are
6455 narrowing the object and it has a different RTL code from
6456 what it originally did, do this SUBREG as a force_to_mode. */
6458 tem = make_compound_operation (SUBREG_REG (x), in_code);
6459 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6460 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6461 && subreg_lowpart_p (x))
6463 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6464 NULL_RTX, 0);
6466 /* If we have something other than a SUBREG, we might have
6467 done an expansion, so rerun ourselves. */
6468 if (GET_CODE (newer) != SUBREG)
6469 newer = make_compound_operation (newer, in_code);
6471 return newer;
6474 /* If this is a paradoxical subreg, and the new code is a sign or
6475 zero extension, omit the subreg and widen the extension. If it
6476 is a regular subreg, we can still get rid of the subreg by not
6477 widening so much, or in fact removing the extension entirely. */
6478 if ((GET_CODE (tem) == SIGN_EXTEND
6479 || GET_CODE (tem) == ZERO_EXTEND)
6480 && subreg_lowpart_p (x))
6482 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6483 || (GET_MODE_SIZE (mode) >
6484 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6485 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6486 else
6487 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6488 return tem;
6490 break;
6492 default:
6493 break;
6496 if (new)
6498 x = gen_lowpart_for_combine (mode, new);
6499 code = GET_CODE (x);
6502 /* Now recursively process each operand of this operation. */
6503 fmt = GET_RTX_FORMAT (code);
6504 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6505 if (fmt[i] == 'e')
6507 new = make_compound_operation (XEXP (x, i), next_code);
6508 SUBST (XEXP (x, i), new);
6511 return x;
6514 /* Given M see if it is a value that would select a field of bits
6515 within an item, but not the entire word. Return -1 if not.
6516 Otherwise, return the starting position of the field, where 0 is the
6517 low-order bit.
6519 *PLEN is set to the length of the field. */
6521 static int
6522 get_pos_from_mask (m, plen)
6523 unsigned HOST_WIDE_INT m;
6524 unsigned HOST_WIDE_INT *plen;
6526 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6527 int pos = exact_log2 (m & -m);
6528 int len;
6530 if (pos < 0)
6531 return -1;
6533 /* Now shift off the low-order zero bits and see if we have a power of
6534 two minus 1. */
6535 len = exact_log2 ((m >> pos) + 1);
6537 if (len <= 0)
6538 return -1;
6540 *plen = len;
6541 return pos;
6544 /* See if X can be simplified knowing that we will only refer to it in
6545 MODE and will only refer to those bits that are nonzero in MASK.
6546 If other bits are being computed or if masking operations are done
6547 that select a superset of the bits in MASK, they can sometimes be
6548 ignored.
6550 Return a possibly simplified expression, but always convert X to
6551 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6553 Also, if REG is non-zero and X is a register equal in value to REG,
6554 replace X with REG.
6556 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6557 are all off in X. This is used when X will be complemented, by either
6558 NOT, NEG, or XOR. */
6560 static rtx
6561 force_to_mode (x, mode, mask, reg, just_select)
6562 rtx x;
6563 enum machine_mode mode;
6564 unsigned HOST_WIDE_INT mask;
6565 rtx reg;
6566 int just_select;
6568 enum rtx_code code = GET_CODE (x);
6569 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6570 enum machine_mode op_mode;
6571 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6572 rtx op0, op1, temp;
6574 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6575 code below will do the wrong thing since the mode of such an
6576 expression is VOIDmode.
6578 Also do nothing if X is a CLOBBER; this can happen if X was
6579 the return value from a call to gen_lowpart_for_combine. */
6580 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6581 return x;
6583 /* We want to perform the operation is its present mode unless we know
6584 that the operation is valid in MODE, in which case we do the operation
6585 in MODE. */
6586 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6587 && have_insn_for (code, mode))
6588 ? mode : GET_MODE (x));
6590 /* It is not valid to do a right-shift in a narrower mode
6591 than the one it came in with. */
6592 if ((code == LSHIFTRT || code == ASHIFTRT)
6593 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6594 op_mode = GET_MODE (x);
6596 /* Truncate MASK to fit OP_MODE. */
6597 if (op_mode)
6598 mask &= GET_MODE_MASK (op_mode);
6600 /* When we have an arithmetic operation, or a shift whose count we
6601 do not know, we need to assume that all bit the up to the highest-order
6602 bit in MASK will be needed. This is how we form such a mask. */
6603 if (op_mode)
6604 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6605 ? GET_MODE_MASK (op_mode)
6606 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6607 - 1));
6608 else
6609 fuller_mask = ~(HOST_WIDE_INT) 0;
6611 /* Determine what bits of X are guaranteed to be (non)zero. */
6612 nonzero = nonzero_bits (x, mode);
6614 /* If none of the bits in X are needed, return a zero. */
6615 if (! just_select && (nonzero & mask) == 0)
6616 return const0_rtx;
6618 /* If X is a CONST_INT, return a new one. Do this here since the
6619 test below will fail. */
6620 if (GET_CODE (x) == CONST_INT)
6622 HOST_WIDE_INT cval = INTVAL (x) & mask;
6623 int width = GET_MODE_BITSIZE (mode);
6625 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6626 number, sign extend it. */
6627 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6628 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6629 cval |= (HOST_WIDE_INT) -1 << width;
6631 return GEN_INT (cval);
6634 /* If X is narrower than MODE and we want all the bits in X's mode, just
6635 get X in the proper mode. */
6636 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6637 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6638 return gen_lowpart_for_combine (mode, x);
6640 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6641 MASK are already known to be zero in X, we need not do anything. */
6642 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6643 return x;
6645 switch (code)
6647 case CLOBBER:
6648 /* If X is a (clobber (const_int)), return it since we know we are
6649 generating something that won't match. */
6650 return x;
6652 case USE:
6653 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6654 spanned the boundary of the MEM. If we are now masking so it is
6655 within that boundary, we don't need the USE any more. */
6656 if (! BITS_BIG_ENDIAN
6657 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6658 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6659 break;
6661 case SIGN_EXTEND:
6662 case ZERO_EXTEND:
6663 case ZERO_EXTRACT:
6664 case SIGN_EXTRACT:
6665 x = expand_compound_operation (x);
6666 if (GET_CODE (x) != code)
6667 return force_to_mode (x, mode, mask, reg, next_select);
6668 break;
6670 case REG:
6671 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6672 || rtx_equal_p (reg, get_last_value (x))))
6673 x = reg;
6674 break;
6676 case SUBREG:
6677 if (subreg_lowpart_p (x)
6678 /* We can ignore the effect of this SUBREG if it narrows the mode or
6679 if the constant masks to zero all the bits the mode doesn't
6680 have. */
6681 && ((GET_MODE_SIZE (GET_MODE (x))
6682 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6683 || (0 == (mask
6684 & GET_MODE_MASK (GET_MODE (x))
6685 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6686 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6687 break;
6689 case AND:
6690 /* If this is an AND with a constant, convert it into an AND
6691 whose constant is the AND of that constant with MASK. If it
6692 remains an AND of MASK, delete it since it is redundant. */
6694 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6696 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6697 mask & INTVAL (XEXP (x, 1)));
6699 /* If X is still an AND, see if it is an AND with a mask that
6700 is just some low-order bits. If so, and it is MASK, we don't
6701 need it. */
6703 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6704 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6705 x = XEXP (x, 0);
6707 /* If it remains an AND, try making another AND with the bits
6708 in the mode mask that aren't in MASK turned on. If the
6709 constant in the AND is wide enough, this might make a
6710 cheaper constant. */
6712 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6713 && GET_MODE_MASK (GET_MODE (x)) != mask
6714 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6716 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6717 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6718 int width = GET_MODE_BITSIZE (GET_MODE (x));
6719 rtx y;
6721 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6722 number, sign extend it. */
6723 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6724 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6725 cval |= (HOST_WIDE_INT) -1 << width;
6727 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6728 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6729 x = y;
6732 break;
6735 goto binop;
6737 case PLUS:
6738 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6739 low-order bits (as in an alignment operation) and FOO is already
6740 aligned to that boundary, mask C1 to that boundary as well.
6741 This may eliminate that PLUS and, later, the AND. */
6744 unsigned int width = GET_MODE_BITSIZE (mode);
6745 unsigned HOST_WIDE_INT smask = mask;
6747 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6748 number, sign extend it. */
6750 if (width < HOST_BITS_PER_WIDE_INT
6751 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6752 smask |= (HOST_WIDE_INT) -1 << width;
6754 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6755 && exact_log2 (- smask) >= 0)
6757 #ifdef STACK_BIAS
6758 if (STACK_BIAS
6759 && (XEXP (x, 0) == stack_pointer_rtx
6760 || XEXP (x, 0) == frame_pointer_rtx))
6762 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6763 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6765 sp_mask &= ~(sp_alignment - 1);
6766 if ((sp_mask & ~smask) == 0
6767 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~smask) != 0)
6768 return force_to_mode (plus_constant (XEXP (x, 0),
6769 ((INTVAL (XEXP (x, 1)) -
6770 STACK_BIAS) & smask)
6771 + STACK_BIAS),
6772 mode, smask, reg, next_select);
6774 #endif
6775 if ((nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6776 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6777 return force_to_mode (plus_constant (XEXP (x, 0),
6778 (INTVAL (XEXP (x, 1))
6779 & smask)),
6780 mode, smask, reg, next_select);
6784 /* ... fall through ... */
6786 case MULT:
6787 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6788 most significant bit in MASK since carries from those bits will
6789 affect the bits we are interested in. */
6790 mask = fuller_mask;
6791 goto binop;
6793 case MINUS:
6794 /* If X is (minus C Y) where C's least set bit is larger than any bit
6795 in the mask, then we may replace with (neg Y). */
6796 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6797 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6798 & -INTVAL (XEXP (x, 0))))
6799 > mask))
6801 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6802 GET_MODE (x));
6803 return force_to_mode (x, mode, mask, reg, next_select);
6806 /* Similarly, if C contains every bit in the mask, then we may
6807 replace with (not Y). */
6808 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6809 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6810 == INTVAL (XEXP (x, 0))))
6812 x = simplify_gen_unary (NOT, GET_MODE (x),
6813 XEXP (x, 1), GET_MODE (x));
6814 return force_to_mode (x, mode, mask, reg, next_select);
6817 mask = fuller_mask;
6818 goto binop;
6820 case IOR:
6821 case XOR:
6822 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6823 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6824 operation which may be a bitfield extraction. Ensure that the
6825 constant we form is not wider than the mode of X. */
6827 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6828 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6829 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6830 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6831 && GET_CODE (XEXP (x, 1)) == CONST_INT
6832 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6833 + floor_log2 (INTVAL (XEXP (x, 1))))
6834 < GET_MODE_BITSIZE (GET_MODE (x)))
6835 && (INTVAL (XEXP (x, 1))
6836 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6838 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6839 << INTVAL (XEXP (XEXP (x, 0), 1)));
6840 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6841 XEXP (XEXP (x, 0), 0), temp);
6842 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6843 XEXP (XEXP (x, 0), 1));
6844 return force_to_mode (x, mode, mask, reg, next_select);
6847 binop:
6848 /* For most binary operations, just propagate into the operation and
6849 change the mode if we have an operation of that mode. */
6851 op0 = gen_lowpart_for_combine (op_mode,
6852 force_to_mode (XEXP (x, 0), mode, mask,
6853 reg, next_select));
6854 op1 = gen_lowpart_for_combine (op_mode,
6855 force_to_mode (XEXP (x, 1), mode, mask,
6856 reg, next_select));
6858 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6859 MASK since OP1 might have been sign-extended but we never want
6860 to turn on extra bits, since combine might have previously relied
6861 on them being off. */
6862 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6863 && (INTVAL (op1) & mask) != 0)
6864 op1 = GEN_INT (INTVAL (op1) & mask);
6866 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6867 x = gen_binary (code, op_mode, op0, op1);
6868 break;
6870 case ASHIFT:
6871 /* For left shifts, do the same, but just for the first operand.
6872 However, we cannot do anything with shifts where we cannot
6873 guarantee that the counts are smaller than the size of the mode
6874 because such a count will have a different meaning in a
6875 wider mode. */
6877 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6878 && INTVAL (XEXP (x, 1)) >= 0
6879 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6880 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6881 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6882 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6883 break;
6885 /* If the shift count is a constant and we can do arithmetic in
6886 the mode of the shift, refine which bits we need. Otherwise, use the
6887 conservative form of the mask. */
6888 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6889 && INTVAL (XEXP (x, 1)) >= 0
6890 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6891 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6892 mask >>= INTVAL (XEXP (x, 1));
6893 else
6894 mask = fuller_mask;
6896 op0 = gen_lowpart_for_combine (op_mode,
6897 force_to_mode (XEXP (x, 0), op_mode,
6898 mask, reg, next_select));
6900 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6901 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6902 break;
6904 case LSHIFTRT:
6905 /* Here we can only do something if the shift count is a constant,
6906 this shift constant is valid for the host, and we can do arithmetic
6907 in OP_MODE. */
6909 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6910 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6911 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6913 rtx inner = XEXP (x, 0);
6914 unsigned HOST_WIDE_INT inner_mask;
6916 /* Select the mask of the bits we need for the shift operand. */
6917 inner_mask = mask << INTVAL (XEXP (x, 1));
6919 /* We can only change the mode of the shift if we can do arithmetic
6920 in the mode of the shift and INNER_MASK is no wider than the
6921 width of OP_MODE. */
6922 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6923 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6924 op_mode = GET_MODE (x);
6926 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6928 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6929 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6932 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6933 shift and AND produces only copies of the sign bit (C2 is one less
6934 than a power of two), we can do this with just a shift. */
6936 if (GET_CODE (x) == LSHIFTRT
6937 && GET_CODE (XEXP (x, 1)) == CONST_INT
6938 /* The shift puts one of the sign bit copies in the least significant
6939 bit. */
6940 && ((INTVAL (XEXP (x, 1))
6941 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6942 >= GET_MODE_BITSIZE (GET_MODE (x)))
6943 && exact_log2 (mask + 1) >= 0
6944 /* Number of bits left after the shift must be more than the mask
6945 needs. */
6946 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
6947 <= GET_MODE_BITSIZE (GET_MODE (x)))
6948 /* Must be more sign bit copies than the mask needs. */
6949 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6950 >= exact_log2 (mask + 1)))
6951 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6952 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6953 - exact_log2 (mask + 1)));
6955 goto shiftrt;
6957 case ASHIFTRT:
6958 /* If we are just looking for the sign bit, we don't need this shift at
6959 all, even if it has a variable count. */
6960 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6961 && (mask == ((unsigned HOST_WIDE_INT) 1
6962 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6963 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6965 /* If this is a shift by a constant, get a mask that contains those bits
6966 that are not copies of the sign bit. We then have two cases: If
6967 MASK only includes those bits, this can be a logical shift, which may
6968 allow simplifications. If MASK is a single-bit field not within
6969 those bits, we are requesting a copy of the sign bit and hence can
6970 shift the sign bit to the appropriate location. */
6972 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6973 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6975 int i = -1;
6977 /* If the considered data is wider than HOST_WIDE_INT, we can't
6978 represent a mask for all its bits in a single scalar.
6979 But we only care about the lower bits, so calculate these. */
6981 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6983 nonzero = ~(HOST_WIDE_INT) 0;
6985 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6986 is the number of bits a full-width mask would have set.
6987 We need only shift if these are fewer than nonzero can
6988 hold. If not, we must keep all bits set in nonzero. */
6990 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6991 < HOST_BITS_PER_WIDE_INT)
6992 nonzero >>= INTVAL (XEXP (x, 1))
6993 + HOST_BITS_PER_WIDE_INT
6994 - GET_MODE_BITSIZE (GET_MODE (x)) ;
6996 else
6998 nonzero = GET_MODE_MASK (GET_MODE (x));
6999 nonzero >>= INTVAL (XEXP (x, 1));
7002 if ((mask & ~nonzero) == 0
7003 || (i = exact_log2 (mask)) >= 0)
7005 x = simplify_shift_const
7006 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7007 i < 0 ? INTVAL (XEXP (x, 1))
7008 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7010 if (GET_CODE (x) != ASHIFTRT)
7011 return force_to_mode (x, mode, mask, reg, next_select);
7015 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7016 even if the shift count isn't a constant. */
7017 if (mask == 1)
7018 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7020 shiftrt:
7022 /* If this is a zero- or sign-extension operation that just affects bits
7023 we don't care about, remove it. Be sure the call above returned
7024 something that is still a shift. */
7026 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7027 && GET_CODE (XEXP (x, 1)) == CONST_INT
7028 && INTVAL (XEXP (x, 1)) >= 0
7029 && (INTVAL (XEXP (x, 1))
7030 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7031 && GET_CODE (XEXP (x, 0)) == ASHIFT
7032 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7033 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7034 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7035 reg, next_select);
7037 break;
7039 case ROTATE:
7040 case ROTATERT:
7041 /* If the shift count is constant and we can do computations
7042 in the mode of X, compute where the bits we care about are.
7043 Otherwise, we can't do anything. Don't change the mode of
7044 the shift or propagate MODE into the shift, though. */
7045 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7046 && INTVAL (XEXP (x, 1)) >= 0)
7048 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7049 GET_MODE (x), GEN_INT (mask),
7050 XEXP (x, 1));
7051 if (temp && GET_CODE(temp) == CONST_INT)
7052 SUBST (XEXP (x, 0),
7053 force_to_mode (XEXP (x, 0), GET_MODE (x),
7054 INTVAL (temp), reg, next_select));
7056 break;
7058 case NEG:
7059 /* If we just want the low-order bit, the NEG isn't needed since it
7060 won't change the low-order bit. */
7061 if (mask == 1)
7062 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7064 /* We need any bits less significant than the most significant bit in
7065 MASK since carries from those bits will affect the bits we are
7066 interested in. */
7067 mask = fuller_mask;
7068 goto unop;
7070 case NOT:
7071 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7072 same as the XOR case above. Ensure that the constant we form is not
7073 wider than the mode of X. */
7075 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7076 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7077 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7078 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7079 < GET_MODE_BITSIZE (GET_MODE (x)))
7080 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7082 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7083 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7084 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7086 return force_to_mode (x, mode, mask, reg, next_select);
7089 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7090 use the full mask inside the NOT. */
7091 mask = fuller_mask;
7093 unop:
7094 op0 = gen_lowpart_for_combine (op_mode,
7095 force_to_mode (XEXP (x, 0), mode, mask,
7096 reg, next_select));
7097 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7098 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7099 break;
7101 case NE:
7102 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7103 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7104 which is equal to STORE_FLAG_VALUE. */
7105 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7106 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7107 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7108 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7110 break;
7112 case IF_THEN_ELSE:
7113 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7114 written in a narrower mode. We play it safe and do not do so. */
7116 SUBST (XEXP (x, 1),
7117 gen_lowpart_for_combine (GET_MODE (x),
7118 force_to_mode (XEXP (x, 1), mode,
7119 mask, reg, next_select)));
7120 SUBST (XEXP (x, 2),
7121 gen_lowpart_for_combine (GET_MODE (x),
7122 force_to_mode (XEXP (x, 2), mode,
7123 mask, reg,next_select)));
7124 break;
7126 default:
7127 break;
7130 /* Ensure we return a value of the proper mode. */
7131 return gen_lowpart_for_combine (mode, x);
7134 /* Return nonzero if X is an expression that has one of two values depending on
7135 whether some other value is zero or nonzero. In that case, we return the
7136 value that is being tested, *PTRUE is set to the value if the rtx being
7137 returned has a nonzero value, and *PFALSE is set to the other alternative.
7139 If we return zero, we set *PTRUE and *PFALSE to X. */
7141 static rtx
7142 if_then_else_cond (x, ptrue, pfalse)
7143 rtx x;
7144 rtx *ptrue, *pfalse;
7146 enum machine_mode mode = GET_MODE (x);
7147 enum rtx_code code = GET_CODE (x);
7148 rtx cond0, cond1, true0, true1, false0, false1;
7149 unsigned HOST_WIDE_INT nz;
7151 /* If we are comparing a value against zero, we are done. */
7152 if ((code == NE || code == EQ)
7153 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7155 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7156 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7157 return XEXP (x, 0);
7160 /* If this is a unary operation whose operand has one of two values, apply
7161 our opcode to compute those values. */
7162 else if (GET_RTX_CLASS (code) == '1'
7163 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7165 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7166 *pfalse = simplify_gen_unary (code, mode, false0,
7167 GET_MODE (XEXP (x, 0)));
7168 return cond0;
7171 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7172 make can't possibly match and would suppress other optimizations. */
7173 else if (code == COMPARE)
7176 /* If this is a binary operation, see if either side has only one of two
7177 values. If either one does or if both do and they are conditional on
7178 the same value, compute the new true and false values. */
7179 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7180 || GET_RTX_CLASS (code) == '<')
7182 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7183 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7185 if ((cond0 != 0 || cond1 != 0)
7186 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7188 /* If if_then_else_cond returned zero, then true/false are the
7189 same rtl. We must copy one of them to prevent invalid rtl
7190 sharing. */
7191 if (cond0 == 0)
7192 true0 = copy_rtx (true0);
7193 else if (cond1 == 0)
7194 true1 = copy_rtx (true1);
7196 *ptrue = gen_binary (code, mode, true0, true1);
7197 *pfalse = gen_binary (code, mode, false0, false1);
7198 return cond0 ? cond0 : cond1;
7201 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7202 operands is zero when the other is non-zero, and vice-versa,
7203 and STORE_FLAG_VALUE is 1 or -1. */
7205 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7206 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7207 || code == UMAX)
7208 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7210 rtx op0 = XEXP (XEXP (x, 0), 1);
7211 rtx op1 = XEXP (XEXP (x, 1), 1);
7213 cond0 = XEXP (XEXP (x, 0), 0);
7214 cond1 = XEXP (XEXP (x, 1), 0);
7216 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7217 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7218 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7219 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7220 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7221 || ((swap_condition (GET_CODE (cond0))
7222 == combine_reversed_comparison_code (cond1))
7223 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7224 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7225 && ! side_effects_p (x))
7227 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7228 *pfalse = gen_binary (MULT, mode,
7229 (code == MINUS
7230 ? simplify_gen_unary (NEG, mode, op1,
7231 mode)
7232 : op1),
7233 const_true_rtx);
7234 return cond0;
7238 /* Similarly for MULT, AND and UMIN, except that for these the result
7239 is always zero. */
7240 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7241 && (code == MULT || code == AND || code == UMIN)
7242 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7244 cond0 = XEXP (XEXP (x, 0), 0);
7245 cond1 = XEXP (XEXP (x, 1), 0);
7247 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7248 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7249 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7250 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7251 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7252 || ((swap_condition (GET_CODE (cond0))
7253 == combine_reversed_comparison_code (cond1))
7254 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7255 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7256 && ! side_effects_p (x))
7258 *ptrue = *pfalse = const0_rtx;
7259 return cond0;
7264 else if (code == IF_THEN_ELSE)
7266 /* If we have IF_THEN_ELSE already, extract the condition and
7267 canonicalize it if it is NE or EQ. */
7268 cond0 = XEXP (x, 0);
7269 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7270 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7271 return XEXP (cond0, 0);
7272 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7274 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7275 return XEXP (cond0, 0);
7277 else
7278 return cond0;
7281 /* If X is a SUBREG, we can narrow both the true and false values
7282 if the inner expression, if there is a condition. */
7283 else if (code == SUBREG
7284 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7285 &true0, &false0)))
7287 *ptrue = simplify_gen_subreg (mode, true0,
7288 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7289 *pfalse = simplify_gen_subreg (mode, false0,
7290 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7292 return cond0;
7295 /* If X is a constant, this isn't special and will cause confusions
7296 if we treat it as such. Likewise if it is equivalent to a constant. */
7297 else if (CONSTANT_P (x)
7298 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7301 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7302 will be least confusing to the rest of the compiler. */
7303 else if (mode == BImode)
7305 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7306 return x;
7309 /* If X is known to be either 0 or -1, those are the true and
7310 false values when testing X. */
7311 else if (x == constm1_rtx || x == const0_rtx
7312 || (mode != VOIDmode
7313 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7315 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7316 return x;
7319 /* Likewise for 0 or a single bit. */
7320 else if (mode != VOIDmode
7321 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7322 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7324 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7325 return x;
7328 /* Otherwise fail; show no condition with true and false values the same. */
7329 *ptrue = *pfalse = x;
7330 return 0;
7333 /* Return the value of expression X given the fact that condition COND
7334 is known to be true when applied to REG as its first operand and VAL
7335 as its second. X is known to not be shared and so can be modified in
7336 place.
7338 We only handle the simplest cases, and specifically those cases that
7339 arise with IF_THEN_ELSE expressions. */
7341 static rtx
7342 known_cond (x, cond, reg, val)
7343 rtx x;
7344 enum rtx_code cond;
7345 rtx reg, val;
7347 enum rtx_code code = GET_CODE (x);
7348 rtx temp;
7349 const char *fmt;
7350 int i, j;
7352 if (side_effects_p (x))
7353 return x;
7355 /* If either operand of the condition is a floating point value,
7356 then we have to avoid collapsing an EQ comparison. */
7357 if (cond == EQ
7358 && rtx_equal_p (x, reg)
7359 && ! FLOAT_MODE_P (GET_MODE (x))
7360 && ! FLOAT_MODE_P (GET_MODE (val)))
7361 return val;
7363 if (cond == UNEQ && rtx_equal_p (x, reg))
7364 return val;
7366 /* If X is (abs REG) and we know something about REG's relationship
7367 with zero, we may be able to simplify this. */
7369 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7370 switch (cond)
7372 case GE: case GT: case EQ:
7373 return XEXP (x, 0);
7374 case LT: case LE:
7375 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7376 XEXP (x, 0),
7377 GET_MODE (XEXP (x, 0)));
7378 default:
7379 break;
7382 /* The only other cases we handle are MIN, MAX, and comparisons if the
7383 operands are the same as REG and VAL. */
7385 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7387 if (rtx_equal_p (XEXP (x, 0), val))
7388 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7390 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7392 if (GET_RTX_CLASS (code) == '<')
7394 if (comparison_dominates_p (cond, code))
7395 return const_true_rtx;
7397 code = combine_reversed_comparison_code (x);
7398 if (code != UNKNOWN
7399 && comparison_dominates_p (cond, code))
7400 return const0_rtx;
7401 else
7402 return x;
7404 else if (code == SMAX || code == SMIN
7405 || code == UMIN || code == UMAX)
7407 int unsignedp = (code == UMIN || code == UMAX);
7409 /* Do not reverse the condition when it is NE or EQ.
7410 This is because we cannot conclude anything about
7411 the value of 'SMAX (x, y)' when x is not equal to y,
7412 but we can when x equals y. */
7413 if ((code == SMAX || code == UMAX)
7414 && ! (cond == EQ || cond == NE))
7415 cond = reverse_condition (cond);
7417 switch (cond)
7419 case GE: case GT:
7420 return unsignedp ? x : XEXP (x, 1);
7421 case LE: case LT:
7422 return unsignedp ? x : XEXP (x, 0);
7423 case GEU: case GTU:
7424 return unsignedp ? XEXP (x, 1) : x;
7425 case LEU: case LTU:
7426 return unsignedp ? XEXP (x, 0) : x;
7427 default:
7428 break;
7434 fmt = GET_RTX_FORMAT (code);
7435 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7437 if (fmt[i] == 'e')
7438 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7439 else if (fmt[i] == 'E')
7440 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7441 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7442 cond, reg, val));
7445 return x;
7448 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7449 assignment as a field assignment. */
7451 static int
7452 rtx_equal_for_field_assignment_p (x, y)
7453 rtx x;
7454 rtx y;
7456 if (x == y || rtx_equal_p (x, y))
7457 return 1;
7459 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7460 return 0;
7462 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7463 Note that all SUBREGs of MEM are paradoxical; otherwise they
7464 would have been rewritten. */
7465 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7466 && GET_CODE (SUBREG_REG (y)) == MEM
7467 && rtx_equal_p (SUBREG_REG (y),
7468 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7469 return 1;
7471 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7472 && GET_CODE (SUBREG_REG (x)) == MEM
7473 && rtx_equal_p (SUBREG_REG (x),
7474 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7475 return 1;
7477 /* We used to see if get_last_value of X and Y were the same but that's
7478 not correct. In one direction, we'll cause the assignment to have
7479 the wrong destination and in the case, we'll import a register into this
7480 insn that might have already have been dead. So fail if none of the
7481 above cases are true. */
7482 return 0;
7485 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7486 Return that assignment if so.
7488 We only handle the most common cases. */
7490 static rtx
7491 make_field_assignment (x)
7492 rtx x;
7494 rtx dest = SET_DEST (x);
7495 rtx src = SET_SRC (x);
7496 rtx assign;
7497 rtx rhs, lhs;
7498 HOST_WIDE_INT c1;
7499 HOST_WIDE_INT pos;
7500 unsigned HOST_WIDE_INT len;
7501 rtx other;
7502 enum machine_mode mode;
7504 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7505 a clear of a one-bit field. We will have changed it to
7506 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7507 for a SUBREG. */
7509 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7510 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7511 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7512 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7514 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7515 1, 1, 1, 0);
7516 if (assign != 0)
7517 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7518 return x;
7521 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7522 && subreg_lowpart_p (XEXP (src, 0))
7523 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7524 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7525 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7526 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7527 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7529 assign = make_extraction (VOIDmode, dest, 0,
7530 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7531 1, 1, 1, 0);
7532 if (assign != 0)
7533 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7534 return x;
7537 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7538 one-bit field. */
7539 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7540 && XEXP (XEXP (src, 0), 0) == const1_rtx
7541 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7543 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7544 1, 1, 1, 0);
7545 if (assign != 0)
7546 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7547 return x;
7550 /* The other case we handle is assignments into a constant-position
7551 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7552 a mask that has all one bits except for a group of zero bits and
7553 OTHER is known to have zeros where C1 has ones, this is such an
7554 assignment. Compute the position and length from C1. Shift OTHER
7555 to the appropriate position, force it to the required mode, and
7556 make the extraction. Check for the AND in both operands. */
7558 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7559 return x;
7561 rhs = expand_compound_operation (XEXP (src, 0));
7562 lhs = expand_compound_operation (XEXP (src, 1));
7564 if (GET_CODE (rhs) == AND
7565 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7566 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7567 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7568 else if (GET_CODE (lhs) == AND
7569 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7570 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7571 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7572 else
7573 return x;
7575 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7576 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7577 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7578 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7579 return x;
7581 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7582 if (assign == 0)
7583 return x;
7585 /* The mode to use for the source is the mode of the assignment, or of
7586 what is inside a possible STRICT_LOW_PART. */
7587 mode = (GET_CODE (assign) == STRICT_LOW_PART
7588 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7590 /* Shift OTHER right POS places and make it the source, restricting it
7591 to the proper length and mode. */
7593 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7594 GET_MODE (src), other, pos),
7595 mode,
7596 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7597 ? ~(unsigned HOST_WIDE_INT) 0
7598 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7599 dest, 0);
7601 return gen_rtx_SET (VOIDmode, assign, src);
7604 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7605 if so. */
7607 static rtx
7608 apply_distributive_law (x)
7609 rtx x;
7611 enum rtx_code code = GET_CODE (x);
7612 rtx lhs, rhs, other;
7613 rtx tem;
7614 enum rtx_code inner_code;
7616 /* Distributivity is not true for floating point.
7617 It can change the value. So don't do it.
7618 -- rms and moshier@world.std.com. */
7619 if (FLOAT_MODE_P (GET_MODE (x)))
7620 return x;
7622 /* The outer operation can only be one of the following: */
7623 if (code != IOR && code != AND && code != XOR
7624 && code != PLUS && code != MINUS)
7625 return x;
7627 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7629 /* If either operand is a primitive we can't do anything, so get out
7630 fast. */
7631 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7632 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7633 return x;
7635 lhs = expand_compound_operation (lhs);
7636 rhs = expand_compound_operation (rhs);
7637 inner_code = GET_CODE (lhs);
7638 if (inner_code != GET_CODE (rhs))
7639 return x;
7641 /* See if the inner and outer operations distribute. */
7642 switch (inner_code)
7644 case LSHIFTRT:
7645 case ASHIFTRT:
7646 case AND:
7647 case IOR:
7648 /* These all distribute except over PLUS. */
7649 if (code == PLUS || code == MINUS)
7650 return x;
7651 break;
7653 case MULT:
7654 if (code != PLUS && code != MINUS)
7655 return x;
7656 break;
7658 case ASHIFT:
7659 /* This is also a multiply, so it distributes over everything. */
7660 break;
7662 case SUBREG:
7663 /* Non-paradoxical SUBREGs distributes over all operations, provided
7664 the inner modes and byte offsets are the same, this is an extraction
7665 of a low-order part, we don't convert an fp operation to int or
7666 vice versa, and we would not be converting a single-word
7667 operation into a multi-word operation. The latter test is not
7668 required, but it prevents generating unneeded multi-word operations.
7669 Some of the previous tests are redundant given the latter test, but
7670 are retained because they are required for correctness.
7672 We produce the result slightly differently in this case. */
7674 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7675 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7676 || ! subreg_lowpart_p (lhs)
7677 || (GET_MODE_CLASS (GET_MODE (lhs))
7678 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7679 || (GET_MODE_SIZE (GET_MODE (lhs))
7680 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7681 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7682 return x;
7684 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7685 SUBREG_REG (lhs), SUBREG_REG (rhs));
7686 return gen_lowpart_for_combine (GET_MODE (x), tem);
7688 default:
7689 return x;
7692 /* Set LHS and RHS to the inner operands (A and B in the example
7693 above) and set OTHER to the common operand (C in the example).
7694 These is only one way to do this unless the inner operation is
7695 commutative. */
7696 if (GET_RTX_CLASS (inner_code) == 'c'
7697 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7698 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7699 else if (GET_RTX_CLASS (inner_code) == 'c'
7700 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7701 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7702 else if (GET_RTX_CLASS (inner_code) == 'c'
7703 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7704 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7705 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7706 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7707 else
7708 return x;
7710 /* Form the new inner operation, seeing if it simplifies first. */
7711 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7713 /* There is one exception to the general way of distributing:
7714 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7715 if (code == XOR && inner_code == IOR)
7717 inner_code = AND;
7718 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7721 /* We may be able to continuing distributing the result, so call
7722 ourselves recursively on the inner operation before forming the
7723 outer operation, which we return. */
7724 return gen_binary (inner_code, GET_MODE (x),
7725 apply_distributive_law (tem), other);
7728 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7729 in MODE.
7731 Return an equivalent form, if different from X. Otherwise, return X. If
7732 X is zero, we are to always construct the equivalent form. */
7734 static rtx
7735 simplify_and_const_int (x, mode, varop, constop)
7736 rtx x;
7737 enum machine_mode mode;
7738 rtx varop;
7739 unsigned HOST_WIDE_INT constop;
7741 unsigned HOST_WIDE_INT nonzero;
7742 int i;
7744 /* Simplify VAROP knowing that we will be only looking at some of the
7745 bits in it. */
7746 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7748 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7749 CONST_INT, we are done. */
7750 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7751 return varop;
7753 /* See what bits may be nonzero in VAROP. Unlike the general case of
7754 a call to nonzero_bits, here we don't care about bits outside
7755 MODE. */
7757 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7758 nonzero = trunc_int_for_mode (nonzero, mode);
7760 /* Turn off all bits in the constant that are known to already be zero.
7761 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7762 which is tested below. */
7764 constop &= nonzero;
7766 /* If we don't have any bits left, return zero. */
7767 if (constop == 0)
7768 return const0_rtx;
7770 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7771 a power of two, we can replace this with a ASHIFT. */
7772 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7773 && (i = exact_log2 (constop)) >= 0)
7774 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7776 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7777 or XOR, then try to apply the distributive law. This may eliminate
7778 operations if either branch can be simplified because of the AND.
7779 It may also make some cases more complex, but those cases probably
7780 won't match a pattern either with or without this. */
7782 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7783 return
7784 gen_lowpart_for_combine
7785 (mode,
7786 apply_distributive_law
7787 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7788 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7789 XEXP (varop, 0), constop),
7790 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7791 XEXP (varop, 1), constop))));
7793 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7794 the AND and see if one of the operands simplifies to zero. If so, we
7795 may eliminate it. */
7797 if (GET_CODE (varop) == PLUS
7798 && exact_log2 (constop + 1) >= 0)
7800 rtx o0, o1;
7802 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7803 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7804 if (o0 == const0_rtx)
7805 return o1;
7806 if (o1 == const0_rtx)
7807 return o0;
7810 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7811 if we already had one (just check for the simplest cases). */
7812 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7813 && GET_MODE (XEXP (x, 0)) == mode
7814 && SUBREG_REG (XEXP (x, 0)) == varop)
7815 varop = XEXP (x, 0);
7816 else
7817 varop = gen_lowpart_for_combine (mode, varop);
7819 /* If we can't make the SUBREG, try to return what we were given. */
7820 if (GET_CODE (varop) == CLOBBER)
7821 return x ? x : varop;
7823 /* If we are only masking insignificant bits, return VAROP. */
7824 if (constop == nonzero)
7825 x = varop;
7827 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7828 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7829 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7831 else
7833 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7834 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7835 SUBST (XEXP (x, 1), GEN_INT (constop));
7837 SUBST (XEXP (x, 0), varop);
7840 return x;
7843 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7844 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7845 is less useful. We can't allow both, because that results in exponential
7846 run time recursion. There is a nullstone testcase that triggered
7847 this. This macro avoids accidental uses of num_sign_bit_copies. */
7848 #define num_sign_bit_copies()
7850 /* Given an expression, X, compute which bits in X can be non-zero.
7851 We don't care about bits outside of those defined in MODE.
7853 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7854 a shift, AND, or zero_extract, we can do better. */
7856 static unsigned HOST_WIDE_INT
7857 nonzero_bits (x, mode)
7858 rtx x;
7859 enum machine_mode mode;
7861 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7862 unsigned HOST_WIDE_INT inner_nz;
7863 enum rtx_code code;
7864 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7865 rtx tem;
7867 /* For floating-point values, assume all bits are needed. */
7868 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7869 return nonzero;
7871 /* If X is wider than MODE, use its mode instead. */
7872 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7874 mode = GET_MODE (x);
7875 nonzero = GET_MODE_MASK (mode);
7876 mode_width = GET_MODE_BITSIZE (mode);
7879 if (mode_width > HOST_BITS_PER_WIDE_INT)
7880 /* Our only callers in this case look for single bit values. So
7881 just return the mode mask. Those tests will then be false. */
7882 return nonzero;
7884 #ifndef WORD_REGISTER_OPERATIONS
7885 /* If MODE is wider than X, but both are a single word for both the host
7886 and target machines, we can compute this from which bits of the
7887 object might be nonzero in its own mode, taking into account the fact
7888 that on many CISC machines, accessing an object in a wider mode
7889 causes the high-order bits to become undefined. So they are
7890 not known to be zero. */
7892 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7893 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7894 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7895 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7897 nonzero &= nonzero_bits (x, GET_MODE (x));
7898 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
7899 return nonzero;
7901 #endif
7903 code = GET_CODE (x);
7904 switch (code)
7906 case REG:
7907 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
7908 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7909 all the bits above ptr_mode are known to be zero. */
7910 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7911 && REG_POINTER (x))
7912 nonzero &= GET_MODE_MASK (ptr_mode);
7913 #endif
7915 #ifdef STACK_BOUNDARY
7916 /* If this is the stack pointer, we may know something about its
7917 alignment. If PUSH_ROUNDING is defined, it is possible for the
7918 stack to be momentarily aligned only to that amount, so we pick
7919 the least alignment. */
7921 /* We can't check for arg_pointer_rtx here, because it is not
7922 guaranteed to have as much alignment as the stack pointer.
7923 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7924 alignment but the argument pointer has only 64 bit alignment. */
7926 if ((x == frame_pointer_rtx
7927 || x == stack_pointer_rtx
7928 || x == hard_frame_pointer_rtx
7929 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7930 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7931 #ifdef STACK_BIAS
7932 && !STACK_BIAS
7933 #endif
7936 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7938 #ifdef PUSH_ROUNDING
7939 if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
7940 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7941 #endif
7943 /* We must return here, otherwise we may get a worse result from
7944 one of the choices below. There is nothing useful below as
7945 far as the stack pointer is concerned. */
7946 return nonzero &= ~(sp_alignment - 1);
7948 #endif
7950 /* If X is a register whose nonzero bits value is current, use it.
7951 Otherwise, if X is a register whose value we can find, use that
7952 value. Otherwise, use the previously-computed global nonzero bits
7953 for this register. */
7955 if (reg_last_set_value[REGNO (x)] != 0
7956 && reg_last_set_mode[REGNO (x)] == mode
7957 && (reg_last_set_label[REGNO (x)] == label_tick
7958 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
7959 && REG_N_SETS (REGNO (x)) == 1
7960 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
7961 REGNO (x))))
7962 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7963 return reg_last_set_nonzero_bits[REGNO (x)];
7965 tem = get_last_value (x);
7967 if (tem)
7969 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7970 /* If X is narrower than MODE and TEM is a non-negative
7971 constant that would appear negative in the mode of X,
7972 sign-extend it for use in reg_nonzero_bits because some
7973 machines (maybe most) will actually do the sign-extension
7974 and this is the conservative approach.
7976 ??? For 2.5, try to tighten up the MD files in this regard
7977 instead of this kludge. */
7979 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7980 && GET_CODE (tem) == CONST_INT
7981 && INTVAL (tem) > 0
7982 && 0 != (INTVAL (tem)
7983 & ((HOST_WIDE_INT) 1
7984 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7985 tem = GEN_INT (INTVAL (tem)
7986 | ((HOST_WIDE_INT) (-1)
7987 << GET_MODE_BITSIZE (GET_MODE (x))));
7988 #endif
7989 return nonzero_bits (tem, mode);
7991 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7993 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
7995 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
7996 /* We don't know anything about the upper bits. */
7997 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
7998 return nonzero & mask;
8000 else
8001 return nonzero;
8003 case CONST_INT:
8004 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8005 /* If X is negative in MODE, sign-extend the value. */
8006 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8007 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8008 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8009 #endif
8011 return INTVAL (x);
8013 case MEM:
8014 #ifdef LOAD_EXTEND_OP
8015 /* In many, if not most, RISC machines, reading a byte from memory
8016 zeros the rest of the register. Noticing that fact saves a lot
8017 of extra zero-extends. */
8018 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8019 nonzero &= GET_MODE_MASK (GET_MODE (x));
8020 #endif
8021 break;
8023 case EQ: case NE:
8024 case UNEQ: case LTGT:
8025 case GT: case GTU: case UNGT:
8026 case LT: case LTU: case UNLT:
8027 case GE: case GEU: case UNGE:
8028 case LE: case LEU: case UNLE:
8029 case UNORDERED: case ORDERED:
8031 /* If this produces an integer result, we know which bits are set.
8032 Code here used to clear bits outside the mode of X, but that is
8033 now done above. */
8035 if (GET_MODE_CLASS (mode) == MODE_INT
8036 && mode_width <= HOST_BITS_PER_WIDE_INT)
8037 nonzero = STORE_FLAG_VALUE;
8038 break;
8040 case NEG:
8041 #if 0
8042 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8043 and num_sign_bit_copies. */
8044 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8045 == GET_MODE_BITSIZE (GET_MODE (x)))
8046 nonzero = 1;
8047 #endif
8049 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8050 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8051 break;
8053 case ABS:
8054 #if 0
8055 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8056 and num_sign_bit_copies. */
8057 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8058 == GET_MODE_BITSIZE (GET_MODE (x)))
8059 nonzero = 1;
8060 #endif
8061 break;
8063 case TRUNCATE:
8064 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8065 break;
8067 case ZERO_EXTEND:
8068 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8069 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8070 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8071 break;
8073 case SIGN_EXTEND:
8074 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8075 Otherwise, show all the bits in the outer mode but not the inner
8076 may be non-zero. */
8077 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8078 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8080 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8081 if (inner_nz
8082 & (((HOST_WIDE_INT) 1
8083 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8084 inner_nz |= (GET_MODE_MASK (mode)
8085 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8088 nonzero &= inner_nz;
8089 break;
8091 case AND:
8092 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8093 & nonzero_bits (XEXP (x, 1), mode));
8094 break;
8096 case XOR: case IOR:
8097 case UMIN: case UMAX: case SMIN: case SMAX:
8098 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8099 | nonzero_bits (XEXP (x, 1), mode));
8100 break;
8102 case PLUS: case MINUS:
8103 case MULT:
8104 case DIV: case UDIV:
8105 case MOD: case UMOD:
8106 /* We can apply the rules of arithmetic to compute the number of
8107 high- and low-order zero bits of these operations. We start by
8108 computing the width (position of the highest-order non-zero bit)
8109 and the number of low-order zero bits for each value. */
8111 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8112 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8113 int width0 = floor_log2 (nz0) + 1;
8114 int width1 = floor_log2 (nz1) + 1;
8115 int low0 = floor_log2 (nz0 & -nz0);
8116 int low1 = floor_log2 (nz1 & -nz1);
8117 HOST_WIDE_INT op0_maybe_minusp
8118 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8119 HOST_WIDE_INT op1_maybe_minusp
8120 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8121 unsigned int result_width = mode_width;
8122 int result_low = 0;
8124 switch (code)
8126 case PLUS:
8127 #ifdef STACK_BIAS
8128 if (STACK_BIAS
8129 && (XEXP (x, 0) == stack_pointer_rtx
8130 || XEXP (x, 0) == frame_pointer_rtx)
8131 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8133 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8135 nz0 = (GET_MODE_MASK (mode) & ~(sp_alignment - 1));
8136 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8137 width0 = floor_log2 (nz0) + 1;
8138 width1 = floor_log2 (nz1) + 1;
8139 low0 = floor_log2 (nz0 & -nz0);
8140 low1 = floor_log2 (nz1 & -nz1);
8142 #endif
8143 result_width = MAX (width0, width1) + 1;
8144 result_low = MIN (low0, low1);
8145 break;
8146 case MINUS:
8147 result_low = MIN (low0, low1);
8148 break;
8149 case MULT:
8150 result_width = width0 + width1;
8151 result_low = low0 + low1;
8152 break;
8153 case DIV:
8154 if (width1 == 0)
8155 break;
8156 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8157 result_width = width0;
8158 break;
8159 case UDIV:
8160 if (width1 == 0)
8161 break;
8162 result_width = width0;
8163 break;
8164 case MOD:
8165 if (width1 == 0)
8166 break;
8167 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8168 result_width = MIN (width0, width1);
8169 result_low = MIN (low0, low1);
8170 break;
8171 case UMOD:
8172 if (width1 == 0)
8173 break;
8174 result_width = MIN (width0, width1);
8175 result_low = MIN (low0, low1);
8176 break;
8177 default:
8178 abort ();
8181 if (result_width < mode_width)
8182 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8184 if (result_low > 0)
8185 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8187 #ifdef POINTERS_EXTEND_UNSIGNED
8188 /* If pointers extend unsigned and this is an addition or subtraction
8189 to a pointer in Pmode, all the bits above ptr_mode are known to be
8190 zero. */
8191 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8192 && (code == PLUS || code == MINUS)
8193 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8194 nonzero &= GET_MODE_MASK (ptr_mode);
8195 #endif
8197 break;
8199 case ZERO_EXTRACT:
8200 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8201 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8202 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8203 break;
8205 case SUBREG:
8206 /* If this is a SUBREG formed for a promoted variable that has
8207 been zero-extended, we know that at least the high-order bits
8208 are zero, though others might be too. */
8210 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8211 nonzero = (GET_MODE_MASK (GET_MODE (x))
8212 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8214 /* If the inner mode is a single word for both the host and target
8215 machines, we can compute this from which bits of the inner
8216 object might be nonzero. */
8217 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8218 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8219 <= HOST_BITS_PER_WIDE_INT))
8221 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8223 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8224 /* If this is a typical RISC machine, we only have to worry
8225 about the way loads are extended. */
8226 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8227 ? (((nonzero
8228 & (((unsigned HOST_WIDE_INT) 1
8229 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8230 != 0))
8231 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8232 #endif
8234 /* On many CISC machines, accessing an object in a wider mode
8235 causes the high-order bits to become undefined. So they are
8236 not known to be zero. */
8237 if (GET_MODE_SIZE (GET_MODE (x))
8238 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8239 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8240 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8243 break;
8245 case ASHIFTRT:
8246 case LSHIFTRT:
8247 case ASHIFT:
8248 case ROTATE:
8249 /* The nonzero bits are in two classes: any bits within MODE
8250 that aren't in GET_MODE (x) are always significant. The rest of the
8251 nonzero bits are those that are significant in the operand of
8252 the shift when shifted the appropriate number of bits. This
8253 shows that high-order bits are cleared by the right shift and
8254 low-order bits by left shifts. */
8255 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8256 && INTVAL (XEXP (x, 1)) >= 0
8257 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8259 enum machine_mode inner_mode = GET_MODE (x);
8260 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8261 int count = INTVAL (XEXP (x, 1));
8262 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8263 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8264 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8265 unsigned HOST_WIDE_INT outer = 0;
8267 if (mode_width > width)
8268 outer = (op_nonzero & nonzero & ~mode_mask);
8270 if (code == LSHIFTRT)
8271 inner >>= count;
8272 else if (code == ASHIFTRT)
8274 inner >>= count;
8276 /* If the sign bit may have been nonzero before the shift, we
8277 need to mark all the places it could have been copied to
8278 by the shift as possibly nonzero. */
8279 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8280 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8282 else if (code == ASHIFT)
8283 inner <<= count;
8284 else
8285 inner = ((inner << (count % width)
8286 | (inner >> (width - (count % width)))) & mode_mask);
8288 nonzero &= (outer | inner);
8290 break;
8292 case FFS:
8293 /* This is at most the number of bits in the mode. */
8294 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8295 break;
8297 case IF_THEN_ELSE:
8298 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8299 | nonzero_bits (XEXP (x, 2), mode));
8300 break;
8302 default:
8303 break;
8306 return nonzero;
8309 /* See the macro definition above. */
8310 #undef num_sign_bit_copies
8312 /* Return the number of bits at the high-order end of X that are known to
8313 be equal to the sign bit. X will be used in mode MODE; if MODE is
8314 VOIDmode, X will be used in its own mode. The returned value will always
8315 be between 1 and the number of bits in MODE. */
8317 static unsigned int
8318 num_sign_bit_copies (x, mode)
8319 rtx x;
8320 enum machine_mode mode;
8322 enum rtx_code code = GET_CODE (x);
8323 unsigned int bitwidth;
8324 int num0, num1, result;
8325 unsigned HOST_WIDE_INT nonzero;
8326 rtx tem;
8328 /* If we weren't given a mode, use the mode of X. If the mode is still
8329 VOIDmode, we don't know anything. Likewise if one of the modes is
8330 floating-point. */
8332 if (mode == VOIDmode)
8333 mode = GET_MODE (x);
8335 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8336 return 1;
8338 bitwidth = GET_MODE_BITSIZE (mode);
8340 /* For a smaller object, just ignore the high bits. */
8341 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8343 num0 = num_sign_bit_copies (x, GET_MODE (x));
8344 return MAX (1,
8345 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8348 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8350 #ifndef WORD_REGISTER_OPERATIONS
8351 /* If this machine does not do all register operations on the entire
8352 register and MODE is wider than the mode of X, we can say nothing
8353 at all about the high-order bits. */
8354 return 1;
8355 #else
8356 /* Likewise on machines that do, if the mode of the object is smaller
8357 than a word and loads of that size don't sign extend, we can say
8358 nothing about the high order bits. */
8359 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8360 #ifdef LOAD_EXTEND_OP
8361 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8362 #endif
8364 return 1;
8365 #endif
8368 switch (code)
8370 case REG:
8372 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8373 /* If pointers extend signed and this is a pointer in Pmode, say that
8374 all the bits above ptr_mode are known to be sign bit copies. */
8375 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8376 && REG_POINTER (x))
8377 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8378 #endif
8380 if (reg_last_set_value[REGNO (x)] != 0
8381 && reg_last_set_mode[REGNO (x)] == mode
8382 && (reg_last_set_label[REGNO (x)] == label_tick
8383 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8384 && REG_N_SETS (REGNO (x)) == 1
8385 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8386 REGNO (x))))
8387 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8388 return reg_last_set_sign_bit_copies[REGNO (x)];
8390 tem = get_last_value (x);
8391 if (tem != 0)
8392 return num_sign_bit_copies (tem, mode);
8394 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8395 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8396 return reg_sign_bit_copies[REGNO (x)];
8397 break;
8399 case MEM:
8400 #ifdef LOAD_EXTEND_OP
8401 /* Some RISC machines sign-extend all loads of smaller than a word. */
8402 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8403 return MAX (1, ((int) bitwidth
8404 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8405 #endif
8406 break;
8408 case CONST_INT:
8409 /* If the constant is negative, take its 1's complement and remask.
8410 Then see how many zero bits we have. */
8411 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8412 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8413 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8414 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8416 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8418 case SUBREG:
8419 /* If this is a SUBREG for a promoted object that is sign-extended
8420 and we are looking at it in a wider mode, we know that at least the
8421 high-order bits are known to be sign bit copies. */
8423 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8425 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8426 return MAX ((int) bitwidth
8427 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8428 num0);
8431 /* For a smaller object, just ignore the high bits. */
8432 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8434 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8435 return MAX (1, (num0
8436 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8437 - bitwidth)));
8440 #ifdef WORD_REGISTER_OPERATIONS
8441 #ifdef LOAD_EXTEND_OP
8442 /* For paradoxical SUBREGs on machines where all register operations
8443 affect the entire register, just look inside. Note that we are
8444 passing MODE to the recursive call, so the number of sign bit copies
8445 will remain relative to that mode, not the inner mode. */
8447 /* This works only if loads sign extend. Otherwise, if we get a
8448 reload for the inner part, it may be loaded from the stack, and
8449 then we lose all sign bit copies that existed before the store
8450 to the stack. */
8452 if ((GET_MODE_SIZE (GET_MODE (x))
8453 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8454 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8455 return num_sign_bit_copies (SUBREG_REG (x), mode);
8456 #endif
8457 #endif
8458 break;
8460 case SIGN_EXTRACT:
8461 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8462 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8463 break;
8465 case SIGN_EXTEND:
8466 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8467 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8469 case TRUNCATE:
8470 /* For a smaller object, just ignore the high bits. */
8471 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8472 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8473 - bitwidth)));
8475 case NOT:
8476 return num_sign_bit_copies (XEXP (x, 0), mode);
8478 case ROTATE: case ROTATERT:
8479 /* If we are rotating left by a number of bits less than the number
8480 of sign bit copies, we can just subtract that amount from the
8481 number. */
8482 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8483 && INTVAL (XEXP (x, 1)) >= 0
8484 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8486 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8487 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8488 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8490 break;
8492 case NEG:
8493 /* In general, this subtracts one sign bit copy. But if the value
8494 is known to be positive, the number of sign bit copies is the
8495 same as that of the input. Finally, if the input has just one bit
8496 that might be nonzero, all the bits are copies of the sign bit. */
8497 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8498 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8499 return num0 > 1 ? num0 - 1 : 1;
8501 nonzero = nonzero_bits (XEXP (x, 0), mode);
8502 if (nonzero == 1)
8503 return bitwidth;
8505 if (num0 > 1
8506 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8507 num0--;
8509 return num0;
8511 case IOR: case AND: case XOR:
8512 case SMIN: case SMAX: case UMIN: case UMAX:
8513 /* Logical operations will preserve the number of sign-bit copies.
8514 MIN and MAX operations always return one of the operands. */
8515 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8516 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8517 return MIN (num0, num1);
8519 case PLUS: case MINUS:
8520 /* For addition and subtraction, we can have a 1-bit carry. However,
8521 if we are subtracting 1 from a positive number, there will not
8522 be such a carry. Furthermore, if the positive number is known to
8523 be 0 or 1, we know the result is either -1 or 0. */
8525 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8526 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8528 nonzero = nonzero_bits (XEXP (x, 0), mode);
8529 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8530 return (nonzero == 1 || nonzero == 0 ? bitwidth
8531 : bitwidth - floor_log2 (nonzero) - 1);
8534 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8535 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8536 result = MAX (1, MIN (num0, num1) - 1);
8538 #ifdef POINTERS_EXTEND_UNSIGNED
8539 /* If pointers extend signed and this is an addition or subtraction
8540 to a pointer in Pmode, all the bits above ptr_mode are known to be
8541 sign bit copies. */
8542 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8543 && (code == PLUS || code == MINUS)
8544 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8545 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8546 - GET_MODE_BITSIZE (ptr_mode) + 1),
8547 result);
8548 #endif
8549 return result;
8551 case MULT:
8552 /* The number of bits of the product is the sum of the number of
8553 bits of both terms. However, unless one of the terms if known
8554 to be positive, we must allow for an additional bit since negating
8555 a negative number can remove one sign bit copy. */
8557 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8558 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8560 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8561 if (result > 0
8562 && (bitwidth > HOST_BITS_PER_WIDE_INT
8563 || (((nonzero_bits (XEXP (x, 0), mode)
8564 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8565 && ((nonzero_bits (XEXP (x, 1), mode)
8566 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8567 result--;
8569 return MAX (1, result);
8571 case UDIV:
8572 /* The result must be <= the first operand. If the first operand
8573 has the high bit set, we know nothing about the number of sign
8574 bit copies. */
8575 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8576 return 1;
8577 else if ((nonzero_bits (XEXP (x, 0), mode)
8578 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8579 return 1;
8580 else
8581 return num_sign_bit_copies (XEXP (x, 0), mode);
8583 case UMOD:
8584 /* The result must be <= the second operand. */
8585 return num_sign_bit_copies (XEXP (x, 1), mode);
8587 case DIV:
8588 /* Similar to unsigned division, except that we have to worry about
8589 the case where the divisor is negative, in which case we have
8590 to add 1. */
8591 result = num_sign_bit_copies (XEXP (x, 0), mode);
8592 if (result > 1
8593 && (bitwidth > HOST_BITS_PER_WIDE_INT
8594 || (nonzero_bits (XEXP (x, 1), mode)
8595 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8596 result--;
8598 return result;
8600 case MOD:
8601 result = num_sign_bit_copies (XEXP (x, 1), mode);
8602 if (result > 1
8603 && (bitwidth > HOST_BITS_PER_WIDE_INT
8604 || (nonzero_bits (XEXP (x, 1), mode)
8605 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8606 result--;
8608 return result;
8610 case ASHIFTRT:
8611 /* Shifts by a constant add to the number of bits equal to the
8612 sign bit. */
8613 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8614 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8615 && INTVAL (XEXP (x, 1)) > 0)
8616 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8618 return num0;
8620 case ASHIFT:
8621 /* Left shifts destroy copies. */
8622 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8623 || INTVAL (XEXP (x, 1)) < 0
8624 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8625 return 1;
8627 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8628 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8630 case IF_THEN_ELSE:
8631 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8632 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8633 return MIN (num0, num1);
8635 case EQ: case NE: case GE: case GT: case LE: case LT:
8636 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8637 case GEU: case GTU: case LEU: case LTU:
8638 case UNORDERED: case ORDERED:
8639 /* If the constant is negative, take its 1's complement and remask.
8640 Then see how many zero bits we have. */
8641 nonzero = STORE_FLAG_VALUE;
8642 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8643 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8644 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8646 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8647 break;
8649 default:
8650 break;
8653 /* If we haven't been able to figure it out by one of the above rules,
8654 see if some of the high-order bits are known to be zero. If so,
8655 count those bits and return one less than that amount. If we can't
8656 safely compute the mask for this mode, always return BITWIDTH. */
8658 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8659 return 1;
8661 nonzero = nonzero_bits (x, mode);
8662 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8663 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8666 /* Return the number of "extended" bits there are in X, when interpreted
8667 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8668 unsigned quantities, this is the number of high-order zero bits.
8669 For signed quantities, this is the number of copies of the sign bit
8670 minus 1. In both case, this function returns the number of "spare"
8671 bits. For example, if two quantities for which this function returns
8672 at least 1 are added, the addition is known not to overflow.
8674 This function will always return 0 unless called during combine, which
8675 implies that it must be called from a define_split. */
8677 unsigned int
8678 extended_count (x, mode, unsignedp)
8679 rtx x;
8680 enum machine_mode mode;
8681 int unsignedp;
8683 if (nonzero_sign_valid == 0)
8684 return 0;
8686 return (unsignedp
8687 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8688 ? (GET_MODE_BITSIZE (mode) - 1
8689 - floor_log2 (nonzero_bits (x, mode)))
8690 : 0)
8691 : num_sign_bit_copies (x, mode) - 1);
8694 /* This function is called from `simplify_shift_const' to merge two
8695 outer operations. Specifically, we have already found that we need
8696 to perform operation *POP0 with constant *PCONST0 at the outermost
8697 position. We would now like to also perform OP1 with constant CONST1
8698 (with *POP0 being done last).
8700 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8701 the resulting operation. *PCOMP_P is set to 1 if we would need to
8702 complement the innermost operand, otherwise it is unchanged.
8704 MODE is the mode in which the operation will be done. No bits outside
8705 the width of this mode matter. It is assumed that the width of this mode
8706 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8708 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8709 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8710 result is simply *PCONST0.
8712 If the resulting operation cannot be expressed as one operation, we
8713 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8715 static int
8716 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8717 enum rtx_code *pop0;
8718 HOST_WIDE_INT *pconst0;
8719 enum rtx_code op1;
8720 HOST_WIDE_INT const1;
8721 enum machine_mode mode;
8722 int *pcomp_p;
8724 enum rtx_code op0 = *pop0;
8725 HOST_WIDE_INT const0 = *pconst0;
8727 const0 &= GET_MODE_MASK (mode);
8728 const1 &= GET_MODE_MASK (mode);
8730 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8731 if (op0 == AND)
8732 const1 &= const0;
8734 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8735 if OP0 is SET. */
8737 if (op1 == NIL || op0 == SET)
8738 return 1;
8740 else if (op0 == NIL)
8741 op0 = op1, const0 = const1;
8743 else if (op0 == op1)
8745 switch (op0)
8747 case AND:
8748 const0 &= const1;
8749 break;
8750 case IOR:
8751 const0 |= const1;
8752 break;
8753 case XOR:
8754 const0 ^= const1;
8755 break;
8756 case PLUS:
8757 const0 += const1;
8758 break;
8759 case NEG:
8760 op0 = NIL;
8761 break;
8762 default:
8763 break;
8767 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8768 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8769 return 0;
8771 /* If the two constants aren't the same, we can't do anything. The
8772 remaining six cases can all be done. */
8773 else if (const0 != const1)
8774 return 0;
8776 else
8777 switch (op0)
8779 case IOR:
8780 if (op1 == AND)
8781 /* (a & b) | b == b */
8782 op0 = SET;
8783 else /* op1 == XOR */
8784 /* (a ^ b) | b == a | b */
8786 break;
8788 case XOR:
8789 if (op1 == AND)
8790 /* (a & b) ^ b == (~a) & b */
8791 op0 = AND, *pcomp_p = 1;
8792 else /* op1 == IOR */
8793 /* (a | b) ^ b == a & ~b */
8794 op0 = AND, *pconst0 = ~const0;
8795 break;
8797 case AND:
8798 if (op1 == IOR)
8799 /* (a | b) & b == b */
8800 op0 = SET;
8801 else /* op1 == XOR */
8802 /* (a ^ b) & b) == (~a) & b */
8803 *pcomp_p = 1;
8804 break;
8805 default:
8806 break;
8809 /* Check for NO-OP cases. */
8810 const0 &= GET_MODE_MASK (mode);
8811 if (const0 == 0
8812 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8813 op0 = NIL;
8814 else if (const0 == 0 && op0 == AND)
8815 op0 = SET;
8816 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8817 && op0 == AND)
8818 op0 = NIL;
8820 /* ??? Slightly redundant with the above mask, but not entirely.
8821 Moving this above means we'd have to sign-extend the mode mask
8822 for the final test. */
8823 const0 = trunc_int_for_mode (const0, mode);
8825 *pop0 = op0;
8826 *pconst0 = const0;
8828 return 1;
8831 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8832 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8833 that we started with.
8835 The shift is normally computed in the widest mode we find in VAROP, as
8836 long as it isn't a different number of words than RESULT_MODE. Exceptions
8837 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8839 static rtx
8840 simplify_shift_const (x, code, result_mode, varop, orig_count)
8841 rtx x;
8842 enum rtx_code code;
8843 enum machine_mode result_mode;
8844 rtx varop;
8845 int orig_count;
8847 enum rtx_code orig_code = code;
8848 unsigned int count;
8849 int signed_count;
8850 enum machine_mode mode = result_mode;
8851 enum machine_mode shift_mode, tmode;
8852 unsigned int mode_words
8853 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8854 /* We form (outer_op (code varop count) (outer_const)). */
8855 enum rtx_code outer_op = NIL;
8856 HOST_WIDE_INT outer_const = 0;
8857 rtx const_rtx;
8858 int complement_p = 0;
8859 rtx new;
8861 /* Make sure and truncate the "natural" shift on the way in. We don't
8862 want to do this inside the loop as it makes it more difficult to
8863 combine shifts. */
8864 #ifdef SHIFT_COUNT_TRUNCATED
8865 if (SHIFT_COUNT_TRUNCATED)
8866 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8867 #endif
8869 /* If we were given an invalid count, don't do anything except exactly
8870 what was requested. */
8872 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8874 if (x)
8875 return x;
8877 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8880 count = orig_count;
8882 /* Unless one of the branches of the `if' in this loop does a `continue',
8883 we will `break' the loop after the `if'. */
8885 while (count != 0)
8887 /* If we have an operand of (clobber (const_int 0)), just return that
8888 value. */
8889 if (GET_CODE (varop) == CLOBBER)
8890 return varop;
8892 /* If we discovered we had to complement VAROP, leave. Making a NOT
8893 here would cause an infinite loop. */
8894 if (complement_p)
8895 break;
8897 /* Convert ROTATERT to ROTATE. */
8898 if (code == ROTATERT)
8899 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8901 /* We need to determine what mode we will do the shift in. If the
8902 shift is a right shift or a ROTATE, we must always do it in the mode
8903 it was originally done in. Otherwise, we can do it in MODE, the
8904 widest mode encountered. */
8905 shift_mode
8906 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8907 ? result_mode : mode);
8909 /* Handle cases where the count is greater than the size of the mode
8910 minus 1. For ASHIFT, use the size minus one as the count (this can
8911 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8912 take the count modulo the size. For other shifts, the result is
8913 zero.
8915 Since these shifts are being produced by the compiler by combining
8916 multiple operations, each of which are defined, we know what the
8917 result is supposed to be. */
8919 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8921 if (code == ASHIFTRT)
8922 count = GET_MODE_BITSIZE (shift_mode) - 1;
8923 else if (code == ROTATE || code == ROTATERT)
8924 count %= GET_MODE_BITSIZE (shift_mode);
8925 else
8927 /* We can't simply return zero because there may be an
8928 outer op. */
8929 varop = const0_rtx;
8930 count = 0;
8931 break;
8935 /* An arithmetic right shift of a quantity known to be -1 or 0
8936 is a no-op. */
8937 if (code == ASHIFTRT
8938 && (num_sign_bit_copies (varop, shift_mode)
8939 == GET_MODE_BITSIZE (shift_mode)))
8941 count = 0;
8942 break;
8945 /* If we are doing an arithmetic right shift and discarding all but
8946 the sign bit copies, this is equivalent to doing a shift by the
8947 bitsize minus one. Convert it into that shift because it will often
8948 allow other simplifications. */
8950 if (code == ASHIFTRT
8951 && (count + num_sign_bit_copies (varop, shift_mode)
8952 >= GET_MODE_BITSIZE (shift_mode)))
8953 count = GET_MODE_BITSIZE (shift_mode) - 1;
8955 /* We simplify the tests below and elsewhere by converting
8956 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8957 `make_compound_operation' will convert it to a ASHIFTRT for
8958 those machines (such as VAX) that don't have a LSHIFTRT. */
8959 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8960 && code == ASHIFTRT
8961 && ((nonzero_bits (varop, shift_mode)
8962 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8963 == 0))
8964 code = LSHIFTRT;
8966 switch (GET_CODE (varop))
8968 case SIGN_EXTEND:
8969 case ZERO_EXTEND:
8970 case SIGN_EXTRACT:
8971 case ZERO_EXTRACT:
8972 new = expand_compound_operation (varop);
8973 if (new != varop)
8975 varop = new;
8976 continue;
8978 break;
8980 case MEM:
8981 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8982 minus the width of a smaller mode, we can do this with a
8983 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8984 if ((code == ASHIFTRT || code == LSHIFTRT)
8985 && ! mode_dependent_address_p (XEXP (varop, 0))
8986 && ! MEM_VOLATILE_P (varop)
8987 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8988 MODE_INT, 1)) != BLKmode)
8990 new = adjust_address_nv (varop, tmode,
8991 BYTES_BIG_ENDIAN ? 0
8992 : count / BITS_PER_UNIT);
8994 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8995 : ZERO_EXTEND, mode, new);
8996 count = 0;
8997 continue;
8999 break;
9001 case USE:
9002 /* Similar to the case above, except that we can only do this if
9003 the resulting mode is the same as that of the underlying
9004 MEM and adjust the address depending on the *bits* endianness
9005 because of the way that bit-field extract insns are defined. */
9006 if ((code == ASHIFTRT || code == LSHIFTRT)
9007 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9008 MODE_INT, 1)) != BLKmode
9009 && tmode == GET_MODE (XEXP (varop, 0)))
9011 if (BITS_BIG_ENDIAN)
9012 new = XEXP (varop, 0);
9013 else
9015 new = copy_rtx (XEXP (varop, 0));
9016 SUBST (XEXP (new, 0),
9017 plus_constant (XEXP (new, 0),
9018 count / BITS_PER_UNIT));
9021 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9022 : ZERO_EXTEND, mode, new);
9023 count = 0;
9024 continue;
9026 break;
9028 case SUBREG:
9029 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9030 the same number of words as what we've seen so far. Then store
9031 the widest mode in MODE. */
9032 if (subreg_lowpart_p (varop)
9033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9034 > GET_MODE_SIZE (GET_MODE (varop)))
9035 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9036 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9037 == mode_words))
9039 varop = SUBREG_REG (varop);
9040 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9041 mode = GET_MODE (varop);
9042 continue;
9044 break;
9046 case MULT:
9047 /* Some machines use MULT instead of ASHIFT because MULT
9048 is cheaper. But it is still better on those machines to
9049 merge two shifts into one. */
9050 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9051 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9053 varop
9054 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9055 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9056 continue;
9058 break;
9060 case UDIV:
9061 /* Similar, for when divides are cheaper. */
9062 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9063 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9065 varop
9066 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9067 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9068 continue;
9070 break;
9072 case ASHIFTRT:
9073 /* If we are extracting just the sign bit of an arithmetic
9074 right shift, that shift is not needed. However, the sign
9075 bit of a wider mode may be different from what would be
9076 interpreted as the sign bit in a narrower mode, so, if
9077 the result is narrower, don't discard the shift. */
9078 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9079 && (GET_MODE_BITSIZE (result_mode)
9080 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9082 varop = XEXP (varop, 0);
9083 continue;
9086 /* ... fall through ... */
9088 case LSHIFTRT:
9089 case ASHIFT:
9090 case ROTATE:
9091 /* Here we have two nested shifts. The result is usually the
9092 AND of a new shift with a mask. We compute the result below. */
9093 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9094 && INTVAL (XEXP (varop, 1)) >= 0
9095 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9096 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9097 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9099 enum rtx_code first_code = GET_CODE (varop);
9100 unsigned int first_count = INTVAL (XEXP (varop, 1));
9101 unsigned HOST_WIDE_INT mask;
9102 rtx mask_rtx;
9104 /* We have one common special case. We can't do any merging if
9105 the inner code is an ASHIFTRT of a smaller mode. However, if
9106 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9107 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9108 we can convert it to
9109 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9110 This simplifies certain SIGN_EXTEND operations. */
9111 if (code == ASHIFT && first_code == ASHIFTRT
9112 && (GET_MODE_BITSIZE (result_mode)
9113 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9115 /* C3 has the low-order C1 bits zero. */
9117 mask = (GET_MODE_MASK (mode)
9118 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9120 varop = simplify_and_const_int (NULL_RTX, result_mode,
9121 XEXP (varop, 0), mask);
9122 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9123 varop, count);
9124 count = first_count;
9125 code = ASHIFTRT;
9126 continue;
9129 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9130 than C1 high-order bits equal to the sign bit, we can convert
9131 this to either an ASHIFT or a ASHIFTRT depending on the
9132 two counts.
9134 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9136 if (code == ASHIFTRT && first_code == ASHIFT
9137 && GET_MODE (varop) == shift_mode
9138 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9139 > first_count))
9141 varop = XEXP (varop, 0);
9143 signed_count = count - first_count;
9144 if (signed_count < 0)
9145 count = -signed_count, code = ASHIFT;
9146 else
9147 count = signed_count;
9149 continue;
9152 /* There are some cases we can't do. If CODE is ASHIFTRT,
9153 we can only do this if FIRST_CODE is also ASHIFTRT.
9155 We can't do the case when CODE is ROTATE and FIRST_CODE is
9156 ASHIFTRT.
9158 If the mode of this shift is not the mode of the outer shift,
9159 we can't do this if either shift is a right shift or ROTATE.
9161 Finally, we can't do any of these if the mode is too wide
9162 unless the codes are the same.
9164 Handle the case where the shift codes are the same
9165 first. */
9167 if (code == first_code)
9169 if (GET_MODE (varop) != result_mode
9170 && (code == ASHIFTRT || code == LSHIFTRT
9171 || code == ROTATE))
9172 break;
9174 count += first_count;
9175 varop = XEXP (varop, 0);
9176 continue;
9179 if (code == ASHIFTRT
9180 || (code == ROTATE && first_code == ASHIFTRT)
9181 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9182 || (GET_MODE (varop) != result_mode
9183 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9184 || first_code == ROTATE
9185 || code == ROTATE)))
9186 break;
9188 /* To compute the mask to apply after the shift, shift the
9189 nonzero bits of the inner shift the same way the
9190 outer shift will. */
9192 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9194 mask_rtx
9195 = simplify_binary_operation (code, result_mode, mask_rtx,
9196 GEN_INT (count));
9198 /* Give up if we can't compute an outer operation to use. */
9199 if (mask_rtx == 0
9200 || GET_CODE (mask_rtx) != CONST_INT
9201 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9202 INTVAL (mask_rtx),
9203 result_mode, &complement_p))
9204 break;
9206 /* If the shifts are in the same direction, we add the
9207 counts. Otherwise, we subtract them. */
9208 signed_count = count;
9209 if ((code == ASHIFTRT || code == LSHIFTRT)
9210 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9211 signed_count += first_count;
9212 else
9213 signed_count -= first_count;
9215 /* If COUNT is positive, the new shift is usually CODE,
9216 except for the two exceptions below, in which case it is
9217 FIRST_CODE. If the count is negative, FIRST_CODE should
9218 always be used */
9219 if (signed_count > 0
9220 && ((first_code == ROTATE && code == ASHIFT)
9221 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9222 code = first_code, count = signed_count;
9223 else if (signed_count < 0)
9224 code = first_code, count = -signed_count;
9225 else
9226 count = signed_count;
9228 varop = XEXP (varop, 0);
9229 continue;
9232 /* If we have (A << B << C) for any shift, we can convert this to
9233 (A << C << B). This wins if A is a constant. Only try this if
9234 B is not a constant. */
9236 else if (GET_CODE (varop) == code
9237 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9238 && 0 != (new
9239 = simplify_binary_operation (code, mode,
9240 XEXP (varop, 0),
9241 GEN_INT (count))))
9243 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9244 count = 0;
9245 continue;
9247 break;
9249 case NOT:
9250 /* Make this fit the case below. */
9251 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9252 GEN_INT (GET_MODE_MASK (mode)));
9253 continue;
9255 case IOR:
9256 case AND:
9257 case XOR:
9258 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9259 with C the size of VAROP - 1 and the shift is logical if
9260 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9261 we have an (le X 0) operation. If we have an arithmetic shift
9262 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9263 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9265 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9266 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9267 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9268 && (code == LSHIFTRT || code == ASHIFTRT)
9269 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9270 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9272 count = 0;
9273 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9274 const0_rtx);
9276 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9277 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9279 continue;
9282 /* If we have (shift (logical)), move the logical to the outside
9283 to allow it to possibly combine with another logical and the
9284 shift to combine with another shift. This also canonicalizes to
9285 what a ZERO_EXTRACT looks like. Also, some machines have
9286 (and (shift)) insns. */
9288 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9289 && (new = simplify_binary_operation (code, result_mode,
9290 XEXP (varop, 1),
9291 GEN_INT (count))) != 0
9292 && GET_CODE (new) == CONST_INT
9293 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9294 INTVAL (new), result_mode, &complement_p))
9296 varop = XEXP (varop, 0);
9297 continue;
9300 /* If we can't do that, try to simplify the shift in each arm of the
9301 logical expression, make a new logical expression, and apply
9302 the inverse distributive law. */
9304 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9305 XEXP (varop, 0), count);
9306 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9307 XEXP (varop, 1), count);
9309 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9310 varop = apply_distributive_law (varop);
9312 count = 0;
9314 break;
9316 case EQ:
9317 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9318 says that the sign bit can be tested, FOO has mode MODE, C is
9319 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9320 that may be nonzero. */
9321 if (code == LSHIFTRT
9322 && XEXP (varop, 1) == const0_rtx
9323 && GET_MODE (XEXP (varop, 0)) == result_mode
9324 && count == GET_MODE_BITSIZE (result_mode) - 1
9325 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9326 && ((STORE_FLAG_VALUE
9327 & ((HOST_WIDE_INT) 1
9328 < (GET_MODE_BITSIZE (result_mode) - 1))))
9329 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9330 && merge_outer_ops (&outer_op, &outer_const, XOR,
9331 (HOST_WIDE_INT) 1, result_mode,
9332 &complement_p))
9334 varop = XEXP (varop, 0);
9335 count = 0;
9336 continue;
9338 break;
9340 case NEG:
9341 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9342 than the number of bits in the mode is equivalent to A. */
9343 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9344 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9346 varop = XEXP (varop, 0);
9347 count = 0;
9348 continue;
9351 /* NEG commutes with ASHIFT since it is multiplication. Move the
9352 NEG outside to allow shifts to combine. */
9353 if (code == ASHIFT
9354 && merge_outer_ops (&outer_op, &outer_const, NEG,
9355 (HOST_WIDE_INT) 0, result_mode,
9356 &complement_p))
9358 varop = XEXP (varop, 0);
9359 continue;
9361 break;
9363 case PLUS:
9364 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9365 is one less than the number of bits in the mode is
9366 equivalent to (xor A 1). */
9367 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9368 && XEXP (varop, 1) == constm1_rtx
9369 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9370 && merge_outer_ops (&outer_op, &outer_const, XOR,
9371 (HOST_WIDE_INT) 1, result_mode,
9372 &complement_p))
9374 count = 0;
9375 varop = XEXP (varop, 0);
9376 continue;
9379 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9380 that might be nonzero in BAR are those being shifted out and those
9381 bits are known zero in FOO, we can replace the PLUS with FOO.
9382 Similarly in the other operand order. This code occurs when
9383 we are computing the size of a variable-size array. */
9385 if ((code == ASHIFTRT || code == LSHIFTRT)
9386 && count < HOST_BITS_PER_WIDE_INT
9387 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9388 && (nonzero_bits (XEXP (varop, 1), result_mode)
9389 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9391 varop = XEXP (varop, 0);
9392 continue;
9394 else if ((code == ASHIFTRT || code == LSHIFTRT)
9395 && count < HOST_BITS_PER_WIDE_INT
9396 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9397 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9398 >> count)
9399 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9400 & nonzero_bits (XEXP (varop, 1),
9401 result_mode)))
9403 varop = XEXP (varop, 1);
9404 continue;
9407 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9408 if (code == ASHIFT
9409 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9410 && (new = simplify_binary_operation (ASHIFT, result_mode,
9411 XEXP (varop, 1),
9412 GEN_INT (count))) != 0
9413 && GET_CODE (new) == CONST_INT
9414 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9415 INTVAL (new), result_mode, &complement_p))
9417 varop = XEXP (varop, 0);
9418 continue;
9420 break;
9422 case MINUS:
9423 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9424 with C the size of VAROP - 1 and the shift is logical if
9425 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9426 we have a (gt X 0) operation. If the shift is arithmetic with
9427 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9428 we have a (neg (gt X 0)) operation. */
9430 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9431 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9432 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9433 && (code == LSHIFTRT || code == ASHIFTRT)
9434 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9435 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9436 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9438 count = 0;
9439 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9440 const0_rtx);
9442 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9443 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9445 continue;
9447 break;
9449 case TRUNCATE:
9450 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9451 if the truncate does not affect the value. */
9452 if (code == LSHIFTRT
9453 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9454 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9455 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9456 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9457 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9459 rtx varop_inner = XEXP (varop, 0);
9461 varop_inner
9462 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9463 XEXP (varop_inner, 0),
9464 GEN_INT
9465 (count + INTVAL (XEXP (varop_inner, 1))));
9466 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9467 count = 0;
9468 continue;
9470 break;
9472 default:
9473 break;
9476 break;
9479 /* We need to determine what mode to do the shift in. If the shift is
9480 a right shift or ROTATE, we must always do it in the mode it was
9481 originally done in. Otherwise, we can do it in MODE, the widest mode
9482 encountered. The code we care about is that of the shift that will
9483 actually be done, not the shift that was originally requested. */
9484 shift_mode
9485 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9486 ? result_mode : mode);
9488 /* We have now finished analyzing the shift. The result should be
9489 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9490 OUTER_OP is non-NIL, it is an operation that needs to be applied
9491 to the result of the shift. OUTER_CONST is the relevant constant,
9492 but we must turn off all bits turned off in the shift.
9494 If we were passed a value for X, see if we can use any pieces of
9495 it. If not, make new rtx. */
9497 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9498 && GET_CODE (XEXP (x, 1)) == CONST_INT
9499 && INTVAL (XEXP (x, 1)) == count)
9500 const_rtx = XEXP (x, 1);
9501 else
9502 const_rtx = GEN_INT (count);
9504 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9505 && GET_MODE (XEXP (x, 0)) == shift_mode
9506 && SUBREG_REG (XEXP (x, 0)) == varop)
9507 varop = XEXP (x, 0);
9508 else if (GET_MODE (varop) != shift_mode)
9509 varop = gen_lowpart_for_combine (shift_mode, varop);
9511 /* If we can't make the SUBREG, try to return what we were given. */
9512 if (GET_CODE (varop) == CLOBBER)
9513 return x ? x : varop;
9515 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9516 if (new != 0)
9517 x = new;
9518 else
9520 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9521 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9523 SUBST (XEXP (x, 0), varop);
9524 SUBST (XEXP (x, 1), const_rtx);
9527 /* If we have an outer operation and we just made a shift, it is
9528 possible that we could have simplified the shift were it not
9529 for the outer operation. So try to do the simplification
9530 recursively. */
9532 if (outer_op != NIL && GET_CODE (x) == code
9533 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9534 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9535 INTVAL (XEXP (x, 1)));
9537 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9538 turn off all the bits that the shift would have turned off. */
9539 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9540 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9541 GET_MODE_MASK (result_mode) >> orig_count);
9543 /* Do the remainder of the processing in RESULT_MODE. */
9544 x = gen_lowpart_for_combine (result_mode, x);
9546 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9547 operation. */
9548 if (complement_p)
9549 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9551 if (outer_op != NIL)
9553 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9554 outer_const = trunc_int_for_mode (outer_const, result_mode);
9556 if (outer_op == AND)
9557 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9558 else if (outer_op == SET)
9559 /* This means that we have determined that the result is
9560 equivalent to a constant. This should be rare. */
9561 x = GEN_INT (outer_const);
9562 else if (GET_RTX_CLASS (outer_op) == '1')
9563 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9564 else
9565 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9568 return x;
9571 /* Like recog, but we receive the address of a pointer to a new pattern.
9572 We try to match the rtx that the pointer points to.
9573 If that fails, we may try to modify or replace the pattern,
9574 storing the replacement into the same pointer object.
9576 Modifications include deletion or addition of CLOBBERs.
9578 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9579 the CLOBBERs are placed.
9581 The value is the final insn code from the pattern ultimately matched,
9582 or -1. */
9584 static int
9585 recog_for_combine (pnewpat, insn, pnotes)
9586 rtx *pnewpat;
9587 rtx insn;
9588 rtx *pnotes;
9590 rtx pat = *pnewpat;
9591 int insn_code_number;
9592 int num_clobbers_to_add = 0;
9593 int i;
9594 rtx notes = 0;
9595 rtx old_notes;
9597 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9598 we use to indicate that something didn't match. If we find such a
9599 thing, force rejection. */
9600 if (GET_CODE (pat) == PARALLEL)
9601 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9602 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9603 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9604 return -1;
9606 /* Remove the old notes prior to trying to recognize the new pattern. */
9607 old_notes = REG_NOTES (insn);
9608 REG_NOTES (insn) = 0;
9610 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9612 /* If it isn't, there is the possibility that we previously had an insn
9613 that clobbered some register as a side effect, but the combined
9614 insn doesn't need to do that. So try once more without the clobbers
9615 unless this represents an ASM insn. */
9617 if (insn_code_number < 0 && ! check_asm_operands (pat)
9618 && GET_CODE (pat) == PARALLEL)
9620 int pos;
9622 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9623 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9625 if (i != pos)
9626 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9627 pos++;
9630 SUBST_INT (XVECLEN (pat, 0), pos);
9632 if (pos == 1)
9633 pat = XVECEXP (pat, 0, 0);
9635 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9638 /* Recognize all noop sets, these will be killed by followup pass. */
9639 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9640 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9642 REG_NOTES (insn) = old_notes;
9644 /* If we had any clobbers to add, make a new pattern than contains
9645 them. Then check to make sure that all of them are dead. */
9646 if (num_clobbers_to_add)
9648 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9649 rtvec_alloc (GET_CODE (pat) == PARALLEL
9650 ? (XVECLEN (pat, 0)
9651 + num_clobbers_to_add)
9652 : num_clobbers_to_add + 1));
9654 if (GET_CODE (pat) == PARALLEL)
9655 for (i = 0; i < XVECLEN (pat, 0); i++)
9656 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9657 else
9658 XVECEXP (newpat, 0, 0) = pat;
9660 add_clobbers (newpat, insn_code_number);
9662 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9663 i < XVECLEN (newpat, 0); i++)
9665 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9666 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9667 return -1;
9668 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9669 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9671 pat = newpat;
9674 *pnewpat = pat;
9675 *pnotes = notes;
9677 return insn_code_number;
9680 /* Like gen_lowpart but for use by combine. In combine it is not possible
9681 to create any new pseudoregs. However, it is safe to create
9682 invalid memory addresses, because combine will try to recognize
9683 them and all they will do is make the combine attempt fail.
9685 If for some reason this cannot do its job, an rtx
9686 (clobber (const_int 0)) is returned.
9687 An insn containing that will not be recognized. */
9689 #undef gen_lowpart
9691 static rtx
9692 gen_lowpart_for_combine (mode, x)
9693 enum machine_mode mode;
9694 rtx x;
9696 rtx result;
9698 if (GET_MODE (x) == mode)
9699 return x;
9701 /* We can only support MODE being wider than a word if X is a
9702 constant integer or has a mode the same size. */
9704 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9705 && ! ((GET_MODE (x) == VOIDmode
9706 && (GET_CODE (x) == CONST_INT
9707 || GET_CODE (x) == CONST_DOUBLE))
9708 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9709 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9711 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9712 won't know what to do. So we will strip off the SUBREG here and
9713 process normally. */
9714 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9716 x = SUBREG_REG (x);
9717 if (GET_MODE (x) == mode)
9718 return x;
9721 result = gen_lowpart_common (mode, x);
9722 #ifdef CLASS_CANNOT_CHANGE_MODE
9723 if (result != 0
9724 && GET_CODE (result) == SUBREG
9725 && GET_CODE (SUBREG_REG (result)) == REG
9726 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9727 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9728 GET_MODE (SUBREG_REG (result))))
9729 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9730 #endif
9732 if (result)
9733 return result;
9735 if (GET_CODE (x) == MEM)
9737 int offset = 0;
9739 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9740 address. */
9741 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9742 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9744 /* If we want to refer to something bigger than the original memref,
9745 generate a perverse subreg instead. That will force a reload
9746 of the original memref X. */
9747 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9748 return gen_rtx_SUBREG (mode, x, 0);
9750 if (WORDS_BIG_ENDIAN)
9751 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9752 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9754 if (BYTES_BIG_ENDIAN)
9756 /* Adjust the address so that the address-after-the-data is
9757 unchanged. */
9758 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9759 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9762 return adjust_address_nv (x, mode, offset);
9765 /* If X is a comparison operator, rewrite it in a new mode. This
9766 probably won't match, but may allow further simplifications. */
9767 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9768 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9770 /* If we couldn't simplify X any other way, just enclose it in a
9771 SUBREG. Normally, this SUBREG won't match, but some patterns may
9772 include an explicit SUBREG or we may simplify it further in combine. */
9773 else
9775 int offset = 0;
9776 rtx res;
9778 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9779 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9780 if (res)
9781 return res;
9782 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9786 /* These routines make binary and unary operations by first seeing if they
9787 fold; if not, a new expression is allocated. */
9789 static rtx
9790 gen_binary (code, mode, op0, op1)
9791 enum rtx_code code;
9792 enum machine_mode mode;
9793 rtx op0, op1;
9795 rtx result;
9796 rtx tem;
9798 if (GET_RTX_CLASS (code) == 'c'
9799 && swap_commutative_operands_p (op0, op1))
9800 tem = op0, op0 = op1, op1 = tem;
9802 if (GET_RTX_CLASS (code) == '<')
9804 enum machine_mode op_mode = GET_MODE (op0);
9806 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9807 just (REL_OP X Y). */
9808 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9810 op1 = XEXP (op0, 1);
9811 op0 = XEXP (op0, 0);
9812 op_mode = GET_MODE (op0);
9815 if (op_mode == VOIDmode)
9816 op_mode = GET_MODE (op1);
9817 result = simplify_relational_operation (code, op_mode, op0, op1);
9819 else
9820 result = simplify_binary_operation (code, mode, op0, op1);
9822 if (result)
9823 return result;
9825 /* Put complex operands first and constants second. */
9826 if (GET_RTX_CLASS (code) == 'c'
9827 && swap_commutative_operands_p (op0, op1))
9828 return gen_rtx_fmt_ee (code, mode, op1, op0);
9830 /* If we are turning off bits already known off in OP0, we need not do
9831 an AND. */
9832 else if (code == AND && GET_CODE (op1) == CONST_INT
9833 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9834 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9835 return op0;
9837 return gen_rtx_fmt_ee (code, mode, op0, op1);
9840 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9841 comparison code that will be tested.
9843 The result is a possibly different comparison code to use. *POP0 and
9844 *POP1 may be updated.
9846 It is possible that we might detect that a comparison is either always
9847 true or always false. However, we do not perform general constant
9848 folding in combine, so this knowledge isn't useful. Such tautologies
9849 should have been detected earlier. Hence we ignore all such cases. */
9851 static enum rtx_code
9852 simplify_comparison (code, pop0, pop1)
9853 enum rtx_code code;
9854 rtx *pop0;
9855 rtx *pop1;
9857 rtx op0 = *pop0;
9858 rtx op1 = *pop1;
9859 rtx tem, tem1;
9860 int i;
9861 enum machine_mode mode, tmode;
9863 /* Try a few ways of applying the same transformation to both operands. */
9864 while (1)
9866 #ifndef WORD_REGISTER_OPERATIONS
9867 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9868 so check specially. */
9869 if (code != GTU && code != GEU && code != LTU && code != LEU
9870 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9871 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9872 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9873 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9874 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9875 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9876 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9877 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9878 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9879 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9880 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9881 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9882 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9883 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9884 && (INTVAL (XEXP (op0, 1))
9885 == (GET_MODE_BITSIZE (GET_MODE (op0))
9886 - (GET_MODE_BITSIZE
9887 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9889 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9890 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9892 #endif
9894 /* If both operands are the same constant shift, see if we can ignore the
9895 shift. We can if the shift is a rotate or if the bits shifted out of
9896 this shift are known to be zero for both inputs and if the type of
9897 comparison is compatible with the shift. */
9898 if (GET_CODE (op0) == GET_CODE (op1)
9899 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9900 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9901 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9902 && (code != GT && code != LT && code != GE && code != LE))
9903 || (GET_CODE (op0) == ASHIFTRT
9904 && (code != GTU && code != LTU
9905 && code != GEU && code != LEU)))
9906 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9907 && INTVAL (XEXP (op0, 1)) >= 0
9908 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9909 && XEXP (op0, 1) == XEXP (op1, 1))
9911 enum machine_mode mode = GET_MODE (op0);
9912 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9913 int shift_count = INTVAL (XEXP (op0, 1));
9915 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9916 mask &= (mask >> shift_count) << shift_count;
9917 else if (GET_CODE (op0) == ASHIFT)
9918 mask = (mask & (mask << shift_count)) >> shift_count;
9920 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9921 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9922 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9923 else
9924 break;
9927 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9928 SUBREGs are of the same mode, and, in both cases, the AND would
9929 be redundant if the comparison was done in the narrower mode,
9930 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9931 and the operand's possibly nonzero bits are 0xffffff01; in that case
9932 if we only care about QImode, we don't need the AND). This case
9933 occurs if the output mode of an scc insn is not SImode and
9934 STORE_FLAG_VALUE == 1 (e.g., the 386).
9936 Similarly, check for a case where the AND's are ZERO_EXTEND
9937 operations from some narrower mode even though a SUBREG is not
9938 present. */
9940 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9941 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9942 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9944 rtx inner_op0 = XEXP (op0, 0);
9945 rtx inner_op1 = XEXP (op1, 0);
9946 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9947 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9948 int changed = 0;
9950 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9951 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9952 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9953 && (GET_MODE (SUBREG_REG (inner_op0))
9954 == GET_MODE (SUBREG_REG (inner_op1)))
9955 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9956 <= HOST_BITS_PER_WIDE_INT)
9957 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9958 GET_MODE (SUBREG_REG (inner_op0)))))
9959 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9960 GET_MODE (SUBREG_REG (inner_op1))))))
9962 op0 = SUBREG_REG (inner_op0);
9963 op1 = SUBREG_REG (inner_op1);
9965 /* The resulting comparison is always unsigned since we masked
9966 off the original sign bit. */
9967 code = unsigned_condition (code);
9969 changed = 1;
9972 else if (c0 == c1)
9973 for (tmode = GET_CLASS_NARROWEST_MODE
9974 (GET_MODE_CLASS (GET_MODE (op0)));
9975 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9976 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9978 op0 = gen_lowpart_for_combine (tmode, inner_op0);
9979 op1 = gen_lowpart_for_combine (tmode, inner_op1);
9980 code = unsigned_condition (code);
9981 changed = 1;
9982 break;
9985 if (! changed)
9986 break;
9989 /* If both operands are NOT, we can strip off the outer operation
9990 and adjust the comparison code for swapped operands; similarly for
9991 NEG, except that this must be an equality comparison. */
9992 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9993 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9994 && (code == EQ || code == NE)))
9995 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9997 else
9998 break;
10001 /* If the first operand is a constant, swap the operands and adjust the
10002 comparison code appropriately, but don't do this if the second operand
10003 is already a constant integer. */
10004 if (swap_commutative_operands_p (op0, op1))
10006 tem = op0, op0 = op1, op1 = tem;
10007 code = swap_condition (code);
10010 /* We now enter a loop during which we will try to simplify the comparison.
10011 For the most part, we only are concerned with comparisons with zero,
10012 but some things may really be comparisons with zero but not start
10013 out looking that way. */
10015 while (GET_CODE (op1) == CONST_INT)
10017 enum machine_mode mode = GET_MODE (op0);
10018 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10019 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10020 int equality_comparison_p;
10021 int sign_bit_comparison_p;
10022 int unsigned_comparison_p;
10023 HOST_WIDE_INT const_op;
10025 /* We only want to handle integral modes. This catches VOIDmode,
10026 CCmode, and the floating-point modes. An exception is that we
10027 can handle VOIDmode if OP0 is a COMPARE or a comparison
10028 operation. */
10030 if (GET_MODE_CLASS (mode) != MODE_INT
10031 && ! (mode == VOIDmode
10032 && (GET_CODE (op0) == COMPARE
10033 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10034 break;
10036 /* Get the constant we are comparing against and turn off all bits
10037 not on in our mode. */
10038 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10039 op1 = GEN_INT (const_op);
10041 /* If we are comparing against a constant power of two and the value
10042 being compared can only have that single bit nonzero (e.g., it was
10043 `and'ed with that bit), we can replace this with a comparison
10044 with zero. */
10045 if (const_op
10046 && (code == EQ || code == NE || code == GE || code == GEU
10047 || code == LT || code == LTU)
10048 && mode_width <= HOST_BITS_PER_WIDE_INT
10049 && exact_log2 (const_op) >= 0
10050 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10052 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10053 op1 = const0_rtx, const_op = 0;
10056 /* Similarly, if we are comparing a value known to be either -1 or
10057 0 with -1, change it to the opposite comparison against zero. */
10059 if (const_op == -1
10060 && (code == EQ || code == NE || code == GT || code == LE
10061 || code == GEU || code == LTU)
10062 && num_sign_bit_copies (op0, mode) == mode_width)
10064 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10065 op1 = const0_rtx, const_op = 0;
10068 /* Do some canonicalizations based on the comparison code. We prefer
10069 comparisons against zero and then prefer equality comparisons.
10070 If we can reduce the size of a constant, we will do that too. */
10072 switch (code)
10074 case LT:
10075 /* < C is equivalent to <= (C - 1) */
10076 if (const_op > 0)
10078 const_op -= 1;
10079 op1 = GEN_INT (const_op);
10080 code = LE;
10081 /* ... fall through to LE case below. */
10083 else
10084 break;
10086 case LE:
10087 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10088 if (const_op < 0)
10090 const_op += 1;
10091 op1 = GEN_INT (const_op);
10092 code = LT;
10095 /* If we are doing a <= 0 comparison on a value known to have
10096 a zero sign bit, we can replace this with == 0. */
10097 else if (const_op == 0
10098 && mode_width <= HOST_BITS_PER_WIDE_INT
10099 && (nonzero_bits (op0, mode)
10100 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10101 code = EQ;
10102 break;
10104 case GE:
10105 /* >= C is equivalent to > (C - 1). */
10106 if (const_op > 0)
10108 const_op -= 1;
10109 op1 = GEN_INT (const_op);
10110 code = GT;
10111 /* ... fall through to GT below. */
10113 else
10114 break;
10116 case GT:
10117 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10118 if (const_op < 0)
10120 const_op += 1;
10121 op1 = GEN_INT (const_op);
10122 code = GE;
10125 /* If we are doing a > 0 comparison on a value known to have
10126 a zero sign bit, we can replace this with != 0. */
10127 else if (const_op == 0
10128 && mode_width <= HOST_BITS_PER_WIDE_INT
10129 && (nonzero_bits (op0, mode)
10130 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10131 code = NE;
10132 break;
10134 case LTU:
10135 /* < C is equivalent to <= (C - 1). */
10136 if (const_op > 0)
10138 const_op -= 1;
10139 op1 = GEN_INT (const_op);
10140 code = LEU;
10141 /* ... fall through ... */
10144 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10145 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10146 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10148 const_op = 0, op1 = const0_rtx;
10149 code = GE;
10150 break;
10152 else
10153 break;
10155 case LEU:
10156 /* unsigned <= 0 is equivalent to == 0 */
10157 if (const_op == 0)
10158 code = EQ;
10160 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10161 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10162 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10164 const_op = 0, op1 = const0_rtx;
10165 code = GE;
10167 break;
10169 case GEU:
10170 /* >= C is equivalent to < (C - 1). */
10171 if (const_op > 1)
10173 const_op -= 1;
10174 op1 = GEN_INT (const_op);
10175 code = GTU;
10176 /* ... fall through ... */
10179 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10180 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10181 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10183 const_op = 0, op1 = const0_rtx;
10184 code = LT;
10185 break;
10187 else
10188 break;
10190 case GTU:
10191 /* unsigned > 0 is equivalent to != 0 */
10192 if (const_op == 0)
10193 code = NE;
10195 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10196 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10197 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10199 const_op = 0, op1 = const0_rtx;
10200 code = LT;
10202 break;
10204 default:
10205 break;
10208 /* Compute some predicates to simplify code below. */
10210 equality_comparison_p = (code == EQ || code == NE);
10211 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10212 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10213 || code == GEU);
10215 /* If this is a sign bit comparison and we can do arithmetic in
10216 MODE, say that we will only be needing the sign bit of OP0. */
10217 if (sign_bit_comparison_p
10218 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10219 op0 = force_to_mode (op0, mode,
10220 ((HOST_WIDE_INT) 1
10221 << (GET_MODE_BITSIZE (mode) - 1)),
10222 NULL_RTX, 0);
10224 /* Now try cases based on the opcode of OP0. If none of the cases
10225 does a "continue", we exit this loop immediately after the
10226 switch. */
10228 switch (GET_CODE (op0))
10230 case ZERO_EXTRACT:
10231 /* If we are extracting a single bit from a variable position in
10232 a constant that has only a single bit set and are comparing it
10233 with zero, we can convert this into an equality comparison
10234 between the position and the location of the single bit. */
10236 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10237 && XEXP (op0, 1) == const1_rtx
10238 && equality_comparison_p && const_op == 0
10239 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10241 if (BITS_BIG_ENDIAN)
10243 enum machine_mode new_mode
10244 = mode_for_extraction (EP_extzv, 1);
10245 if (new_mode == MAX_MACHINE_MODE)
10246 i = BITS_PER_WORD - 1 - i;
10247 else
10249 mode = new_mode;
10250 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10254 op0 = XEXP (op0, 2);
10255 op1 = GEN_INT (i);
10256 const_op = i;
10258 /* Result is nonzero iff shift count is equal to I. */
10259 code = reverse_condition (code);
10260 continue;
10263 /* ... fall through ... */
10265 case SIGN_EXTRACT:
10266 tem = expand_compound_operation (op0);
10267 if (tem != op0)
10269 op0 = tem;
10270 continue;
10272 break;
10274 case NOT:
10275 /* If testing for equality, we can take the NOT of the constant. */
10276 if (equality_comparison_p
10277 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10279 op0 = XEXP (op0, 0);
10280 op1 = tem;
10281 continue;
10284 /* If just looking at the sign bit, reverse the sense of the
10285 comparison. */
10286 if (sign_bit_comparison_p)
10288 op0 = XEXP (op0, 0);
10289 code = (code == GE ? LT : GE);
10290 continue;
10292 break;
10294 case NEG:
10295 /* If testing for equality, we can take the NEG of the constant. */
10296 if (equality_comparison_p
10297 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10299 op0 = XEXP (op0, 0);
10300 op1 = tem;
10301 continue;
10304 /* The remaining cases only apply to comparisons with zero. */
10305 if (const_op != 0)
10306 break;
10308 /* When X is ABS or is known positive,
10309 (neg X) is < 0 if and only if X != 0. */
10311 if (sign_bit_comparison_p
10312 && (GET_CODE (XEXP (op0, 0)) == ABS
10313 || (mode_width <= HOST_BITS_PER_WIDE_INT
10314 && (nonzero_bits (XEXP (op0, 0), mode)
10315 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10317 op0 = XEXP (op0, 0);
10318 code = (code == LT ? NE : EQ);
10319 continue;
10322 /* If we have NEG of something whose two high-order bits are the
10323 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10324 if (num_sign_bit_copies (op0, mode) >= 2)
10326 op0 = XEXP (op0, 0);
10327 code = swap_condition (code);
10328 continue;
10330 break;
10332 case ROTATE:
10333 /* If we are testing equality and our count is a constant, we
10334 can perform the inverse operation on our RHS. */
10335 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10336 && (tem = simplify_binary_operation (ROTATERT, mode,
10337 op1, XEXP (op0, 1))) != 0)
10339 op0 = XEXP (op0, 0);
10340 op1 = tem;
10341 continue;
10344 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10345 a particular bit. Convert it to an AND of a constant of that
10346 bit. This will be converted into a ZERO_EXTRACT. */
10347 if (const_op == 0 && sign_bit_comparison_p
10348 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10349 && mode_width <= HOST_BITS_PER_WIDE_INT)
10351 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10352 ((HOST_WIDE_INT) 1
10353 << (mode_width - 1
10354 - INTVAL (XEXP (op0, 1)))));
10355 code = (code == LT ? NE : EQ);
10356 continue;
10359 /* Fall through. */
10361 case ABS:
10362 /* ABS is ignorable inside an equality comparison with zero. */
10363 if (const_op == 0 && equality_comparison_p)
10365 op0 = XEXP (op0, 0);
10366 continue;
10368 break;
10370 case SIGN_EXTEND:
10371 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10372 to (compare FOO CONST) if CONST fits in FOO's mode and we
10373 are either testing inequality or have an unsigned comparison
10374 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10375 if (! unsigned_comparison_p
10376 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10377 <= HOST_BITS_PER_WIDE_INT)
10378 && ((unsigned HOST_WIDE_INT) const_op
10379 < (((unsigned HOST_WIDE_INT) 1
10380 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10382 op0 = XEXP (op0, 0);
10383 continue;
10385 break;
10387 case SUBREG:
10388 /* Check for the case where we are comparing A - C1 with C2,
10389 both constants are smaller than 1/2 the maximum positive
10390 value in MODE, and the comparison is equality or unsigned.
10391 In that case, if A is either zero-extended to MODE or has
10392 sufficient sign bits so that the high-order bit in MODE
10393 is a copy of the sign in the inner mode, we can prove that it is
10394 safe to do the operation in the wider mode. This simplifies
10395 many range checks. */
10397 if (mode_width <= HOST_BITS_PER_WIDE_INT
10398 && subreg_lowpart_p (op0)
10399 && GET_CODE (SUBREG_REG (op0)) == PLUS
10400 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10401 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10402 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10403 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10404 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10405 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10406 GET_MODE (SUBREG_REG (op0)))
10407 & ~GET_MODE_MASK (mode))
10408 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10409 GET_MODE (SUBREG_REG (op0)))
10410 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10411 - GET_MODE_BITSIZE (mode)))))
10413 op0 = SUBREG_REG (op0);
10414 continue;
10417 /* If the inner mode is narrower and we are extracting the low part,
10418 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10419 if (subreg_lowpart_p (op0)
10420 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10421 /* Fall through */ ;
10422 else
10423 break;
10425 /* ... fall through ... */
10427 case ZERO_EXTEND:
10428 if ((unsigned_comparison_p || equality_comparison_p)
10429 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10430 <= HOST_BITS_PER_WIDE_INT)
10431 && ((unsigned HOST_WIDE_INT) const_op
10432 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10434 op0 = XEXP (op0, 0);
10435 continue;
10437 break;
10439 case PLUS:
10440 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10441 this for equality comparisons due to pathological cases involving
10442 overflows. */
10443 if (equality_comparison_p
10444 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10445 op1, XEXP (op0, 1))))
10447 op0 = XEXP (op0, 0);
10448 op1 = tem;
10449 continue;
10452 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10453 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10454 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10456 op0 = XEXP (XEXP (op0, 0), 0);
10457 code = (code == LT ? EQ : NE);
10458 continue;
10460 break;
10462 case MINUS:
10463 /* We used to optimize signed comparisons against zero, but that
10464 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10465 arrive here as equality comparisons, or (GEU, LTU) are
10466 optimized away. No need to special-case them. */
10468 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10469 (eq B (minus A C)), whichever simplifies. We can only do
10470 this for equality comparisons due to pathological cases involving
10471 overflows. */
10472 if (equality_comparison_p
10473 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10474 XEXP (op0, 1), op1)))
10476 op0 = XEXP (op0, 0);
10477 op1 = tem;
10478 continue;
10481 if (equality_comparison_p
10482 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10483 XEXP (op0, 0), op1)))
10485 op0 = XEXP (op0, 1);
10486 op1 = tem;
10487 continue;
10490 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10491 of bits in X minus 1, is one iff X > 0. */
10492 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10493 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10494 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10495 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10497 op0 = XEXP (op0, 1);
10498 code = (code == GE ? LE : GT);
10499 continue;
10501 break;
10503 case XOR:
10504 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10505 if C is zero or B is a constant. */
10506 if (equality_comparison_p
10507 && 0 != (tem = simplify_binary_operation (XOR, mode,
10508 XEXP (op0, 1), op1)))
10510 op0 = XEXP (op0, 0);
10511 op1 = tem;
10512 continue;
10514 break;
10516 case EQ: case NE:
10517 case UNEQ: case LTGT:
10518 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10519 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10520 case UNORDERED: case ORDERED:
10521 /* We can't do anything if OP0 is a condition code value, rather
10522 than an actual data value. */
10523 if (const_op != 0
10524 #ifdef HAVE_cc0
10525 || XEXP (op0, 0) == cc0_rtx
10526 #endif
10527 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10528 break;
10530 /* Get the two operands being compared. */
10531 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10532 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10533 else
10534 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10536 /* Check for the cases where we simply want the result of the
10537 earlier test or the opposite of that result. */
10538 if (code == NE || code == EQ
10539 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10540 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10541 && (STORE_FLAG_VALUE
10542 & (((HOST_WIDE_INT) 1
10543 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10544 && (code == LT || code == GE)))
10546 enum rtx_code new_code;
10547 if (code == LT || code == NE)
10548 new_code = GET_CODE (op0);
10549 else
10550 new_code = combine_reversed_comparison_code (op0);
10552 if (new_code != UNKNOWN)
10554 code = new_code;
10555 op0 = tem;
10556 op1 = tem1;
10557 continue;
10560 break;
10562 case IOR:
10563 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10564 iff X <= 0. */
10565 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10566 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10567 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10569 op0 = XEXP (op0, 1);
10570 code = (code == GE ? GT : LE);
10571 continue;
10573 break;
10575 case AND:
10576 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10577 will be converted to a ZERO_EXTRACT later. */
10578 if (const_op == 0 && equality_comparison_p
10579 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10580 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10582 op0 = simplify_and_const_int
10583 (op0, mode, gen_rtx_LSHIFTRT (mode,
10584 XEXP (op0, 1),
10585 XEXP (XEXP (op0, 0), 1)),
10586 (HOST_WIDE_INT) 1);
10587 continue;
10590 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10591 zero and X is a comparison and C1 and C2 describe only bits set
10592 in STORE_FLAG_VALUE, we can compare with X. */
10593 if (const_op == 0 && equality_comparison_p
10594 && mode_width <= HOST_BITS_PER_WIDE_INT
10595 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10596 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10597 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10598 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10599 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10601 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10602 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10603 if ((~STORE_FLAG_VALUE & mask) == 0
10604 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10605 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10606 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10608 op0 = XEXP (XEXP (op0, 0), 0);
10609 continue;
10613 /* If we are doing an equality comparison of an AND of a bit equal
10614 to the sign bit, replace this with a LT or GE comparison of
10615 the underlying value. */
10616 if (equality_comparison_p
10617 && const_op == 0
10618 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10619 && mode_width <= HOST_BITS_PER_WIDE_INT
10620 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10621 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10623 op0 = XEXP (op0, 0);
10624 code = (code == EQ ? GE : LT);
10625 continue;
10628 /* If this AND operation is really a ZERO_EXTEND from a narrower
10629 mode, the constant fits within that mode, and this is either an
10630 equality or unsigned comparison, try to do this comparison in
10631 the narrower mode. */
10632 if ((equality_comparison_p || unsigned_comparison_p)
10633 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10634 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10635 & GET_MODE_MASK (mode))
10636 + 1)) >= 0
10637 && const_op >> i == 0
10638 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10640 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10641 continue;
10644 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10645 in both M1 and M2 and the SUBREG is either paradoxical or
10646 represents the low part, permute the SUBREG and the AND and
10647 try again. */
10648 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10649 && (0
10650 #ifdef WORD_REGISTER_OPERATIONS
10651 || ((mode_width
10652 > (GET_MODE_BITSIZE
10653 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10654 && mode_width <= BITS_PER_WORD)
10655 #endif
10656 || ((mode_width
10657 <= (GET_MODE_BITSIZE
10658 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10659 && subreg_lowpart_p (XEXP (op0, 0))))
10660 #ifndef WORD_REGISTER_OPERATIONS
10661 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10662 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10663 As originally written the upper bits have a defined value
10664 due to the AND operation. However, if we commute the AND
10665 inside the SUBREG then they no longer have defined values
10666 and the meaning of the code has been changed. */
10667 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10668 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10669 #endif
10670 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10671 && mode_width <= HOST_BITS_PER_WIDE_INT
10672 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10673 <= HOST_BITS_PER_WIDE_INT)
10674 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10675 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10676 & INTVAL (XEXP (op0, 1)))
10677 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10678 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10679 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10683 = gen_lowpart_for_combine
10684 (mode,
10685 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10686 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10687 continue;
10690 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10691 (eq (and (lshiftrt X) 1) 0). */
10692 if (const_op == 0 && equality_comparison_p
10693 && XEXP (op0, 1) == const1_rtx
10694 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10695 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10697 op0 = simplify_and_const_int
10698 (op0, mode,
10699 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10700 XEXP (XEXP (op0, 0), 1)),
10701 (HOST_WIDE_INT) 1);
10702 code = (code == NE ? EQ : NE);
10703 continue;
10705 break;
10707 case ASHIFT:
10708 /* If we have (compare (ashift FOO N) (const_int C)) and
10709 the high order N bits of FOO (N+1 if an inequality comparison)
10710 are known to be zero, we can do this by comparing FOO with C
10711 shifted right N bits so long as the low-order N bits of C are
10712 zero. */
10713 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10714 && INTVAL (XEXP (op0, 1)) >= 0
10715 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10716 < HOST_BITS_PER_WIDE_INT)
10717 && ((const_op
10718 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10719 && mode_width <= HOST_BITS_PER_WIDE_INT
10720 && (nonzero_bits (XEXP (op0, 0), mode)
10721 & ~(mask >> (INTVAL (XEXP (op0, 1))
10722 + ! equality_comparison_p))) == 0)
10724 /* We must perform a logical shift, not an arithmetic one,
10725 as we want the top N bits of C to be zero. */
10726 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10728 temp >>= INTVAL (XEXP (op0, 1));
10729 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10730 op0 = XEXP (op0, 0);
10731 continue;
10734 /* If we are doing a sign bit comparison, it means we are testing
10735 a particular bit. Convert it to the appropriate AND. */
10736 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10737 && mode_width <= HOST_BITS_PER_WIDE_INT)
10739 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10740 ((HOST_WIDE_INT) 1
10741 << (mode_width - 1
10742 - INTVAL (XEXP (op0, 1)))));
10743 code = (code == LT ? NE : EQ);
10744 continue;
10747 /* If this an equality comparison with zero and we are shifting
10748 the low bit to the sign bit, we can convert this to an AND of the
10749 low-order bit. */
10750 if (const_op == 0 && equality_comparison_p
10751 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10752 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10754 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10755 (HOST_WIDE_INT) 1);
10756 continue;
10758 break;
10760 case ASHIFTRT:
10761 /* If this is an equality comparison with zero, we can do this
10762 as a logical shift, which might be much simpler. */
10763 if (equality_comparison_p && const_op == 0
10764 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10766 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10767 XEXP (op0, 0),
10768 INTVAL (XEXP (op0, 1)));
10769 continue;
10772 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10773 do the comparison in a narrower mode. */
10774 if (! unsigned_comparison_p
10775 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10776 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10777 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10778 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10779 MODE_INT, 1)) != BLKmode
10780 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10781 || ((unsigned HOST_WIDE_INT) -const_op
10782 <= GET_MODE_MASK (tmode))))
10784 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10785 continue;
10788 /* Likewise if OP0 is a PLUS of a sign extension with a
10789 constant, which is usually represented with the PLUS
10790 between the shifts. */
10791 if (! unsigned_comparison_p
10792 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10793 && GET_CODE (XEXP (op0, 0)) == PLUS
10794 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10795 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10796 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10797 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10798 MODE_INT, 1)) != BLKmode
10799 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10800 || ((unsigned HOST_WIDE_INT) -const_op
10801 <= GET_MODE_MASK (tmode))))
10803 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10804 rtx add_const = XEXP (XEXP (op0, 0), 1);
10805 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10806 XEXP (op0, 1));
10808 op0 = gen_binary (PLUS, tmode,
10809 gen_lowpart_for_combine (tmode, inner),
10810 new_const);
10811 continue;
10814 /* ... fall through ... */
10815 case LSHIFTRT:
10816 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10817 the low order N bits of FOO are known to be zero, we can do this
10818 by comparing FOO with C shifted left N bits so long as no
10819 overflow occurs. */
10820 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10821 && INTVAL (XEXP (op0, 1)) >= 0
10822 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10823 && mode_width <= HOST_BITS_PER_WIDE_INT
10824 && (nonzero_bits (XEXP (op0, 0), mode)
10825 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10826 && (const_op == 0
10827 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10828 < mode_width)))
10830 const_op <<= INTVAL (XEXP (op0, 1));
10831 op1 = GEN_INT (const_op);
10832 op0 = XEXP (op0, 0);
10833 continue;
10836 /* If we are using this shift to extract just the sign bit, we
10837 can replace this with an LT or GE comparison. */
10838 if (const_op == 0
10839 && (equality_comparison_p || sign_bit_comparison_p)
10840 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10841 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10843 op0 = XEXP (op0, 0);
10844 code = (code == NE || code == GT ? LT : GE);
10845 continue;
10847 break;
10849 default:
10850 break;
10853 break;
10856 /* Now make any compound operations involved in this comparison. Then,
10857 check for an outmost SUBREG on OP0 that is not doing anything or is
10858 paradoxical. The latter case can only occur when it is known that the
10859 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10860 We can never remove a SUBREG for a non-equality comparison because the
10861 sign bit is in a different place in the underlying object. */
10863 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10864 op1 = make_compound_operation (op1, SET);
10866 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10867 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10868 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10869 && (code == NE || code == EQ)
10870 && ((GET_MODE_SIZE (GET_MODE (op0))
10871 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10873 op0 = SUBREG_REG (op0);
10874 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10877 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10878 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10879 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10880 && (code == NE || code == EQ)
10881 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10882 <= HOST_BITS_PER_WIDE_INT)
10883 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10884 & ~GET_MODE_MASK (GET_MODE (op0))) == 0
10885 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10886 op1),
10887 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10888 & ~GET_MODE_MASK (GET_MODE (op0))) == 0))
10889 op0 = SUBREG_REG (op0), op1 = tem;
10891 /* We now do the opposite procedure: Some machines don't have compare
10892 insns in all modes. If OP0's mode is an integer mode smaller than a
10893 word and we can't do a compare in that mode, see if there is a larger
10894 mode for which we can do the compare. There are a number of cases in
10895 which we can use the wider mode. */
10897 mode = GET_MODE (op0);
10898 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10899 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10900 && ! have_insn_for (COMPARE, mode))
10901 for (tmode = GET_MODE_WIDER_MODE (mode);
10902 (tmode != VOIDmode
10903 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10904 tmode = GET_MODE_WIDER_MODE (tmode))
10905 if (have_insn_for (COMPARE, tmode))
10907 /* If the only nonzero bits in OP0 and OP1 are those in the
10908 narrower mode and this is an equality or unsigned comparison,
10909 we can use the wider mode. Similarly for sign-extended
10910 values, in which case it is true for all comparisons. */
10911 if (((code == EQ || code == NE
10912 || code == GEU || code == GTU || code == LEU || code == LTU)
10913 && (nonzero_bits (op0, tmode) & ~GET_MODE_MASK (mode)) == 0
10914 && (nonzero_bits (op1, tmode) & ~GET_MODE_MASK (mode)) == 0)
10915 || ((num_sign_bit_copies (op0, tmode)
10916 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10917 && (num_sign_bit_copies (op1, tmode)
10918 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10920 /* If OP0 is an AND and we don't have an AND in MODE either,
10921 make a new AND in the proper mode. */
10922 if (GET_CODE (op0) == AND
10923 && !have_insn_for (AND, mode))
10924 op0 = gen_binary (AND, tmode,
10925 gen_lowpart_for_combine (tmode,
10926 XEXP (op0, 0)),
10927 gen_lowpart_for_combine (tmode,
10928 XEXP (op0, 1)));
10930 op0 = gen_lowpart_for_combine (tmode, op0);
10931 op1 = gen_lowpart_for_combine (tmode, op1);
10932 break;
10935 /* If this is a test for negative, we can make an explicit
10936 test of the sign bit. */
10938 if (op1 == const0_rtx && (code == LT || code == GE)
10939 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10941 op0 = gen_binary (AND, tmode,
10942 gen_lowpart_for_combine (tmode, op0),
10943 GEN_INT ((HOST_WIDE_INT) 1
10944 << (GET_MODE_BITSIZE (mode) - 1)));
10945 code = (code == LT) ? NE : EQ;
10946 break;
10950 #ifdef CANONICALIZE_COMPARISON
10951 /* If this machine only supports a subset of valid comparisons, see if we
10952 can convert an unsupported one into a supported one. */
10953 CANONICALIZE_COMPARISON (code, op0, op1);
10954 #endif
10956 *pop0 = op0;
10957 *pop1 = op1;
10959 return code;
10962 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10963 searching backward. */
10964 static enum rtx_code
10965 combine_reversed_comparison_code (exp)
10966 rtx exp;
10968 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10969 rtx x;
10971 if (code1 != UNKNOWN
10972 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10973 return code1;
10974 /* Otherwise try and find where the condition codes were last set and
10975 use that. */
10976 x = get_last_value (XEXP (exp, 0));
10977 if (!x || GET_CODE (x) != COMPARE)
10978 return UNKNOWN;
10979 return reversed_comparison_code_parts (GET_CODE (exp),
10980 XEXP (x, 0), XEXP (x, 1), NULL);
10982 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10983 Return NULL_RTX in case we fail to do the reversal. */
10984 static rtx
10985 reversed_comparison (exp, mode, op0, op1)
10986 rtx exp, op0, op1;
10987 enum machine_mode mode;
10989 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10990 if (reversed_code == UNKNOWN)
10991 return NULL_RTX;
10992 else
10993 return gen_binary (reversed_code, mode, op0, op1);
10996 /* Utility function for following routine. Called when X is part of a value
10997 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10998 for each register mentioned. Similar to mention_regs in cse.c */
11000 static void
11001 update_table_tick (x)
11002 rtx x;
11004 enum rtx_code code = GET_CODE (x);
11005 const char *fmt = GET_RTX_FORMAT (code);
11006 int i;
11008 if (code == REG)
11010 unsigned int regno = REGNO (x);
11011 unsigned int endregno
11012 = regno + (regno < FIRST_PSEUDO_REGISTER
11013 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11014 unsigned int r;
11016 for (r = regno; r < endregno; r++)
11017 reg_last_set_table_tick[r] = label_tick;
11019 return;
11022 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11023 /* Note that we can't have an "E" in values stored; see
11024 get_last_value_validate. */
11025 if (fmt[i] == 'e')
11026 update_table_tick (XEXP (x, i));
11029 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11030 are saying that the register is clobbered and we no longer know its
11031 value. If INSN is zero, don't update reg_last_set; this is only permitted
11032 with VALUE also zero and is used to invalidate the register. */
11034 static void
11035 record_value_for_reg (reg, insn, value)
11036 rtx reg;
11037 rtx insn;
11038 rtx value;
11040 unsigned int regno = REGNO (reg);
11041 unsigned int endregno
11042 = regno + (regno < FIRST_PSEUDO_REGISTER
11043 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11044 unsigned int i;
11046 /* If VALUE contains REG and we have a previous value for REG, substitute
11047 the previous value. */
11048 if (value && insn && reg_overlap_mentioned_p (reg, value))
11050 rtx tem;
11052 /* Set things up so get_last_value is allowed to see anything set up to
11053 our insn. */
11054 subst_low_cuid = INSN_CUID (insn);
11055 tem = get_last_value (reg);
11057 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11058 it isn't going to be useful and will take a lot of time to process,
11059 so just use the CLOBBER. */
11061 if (tem)
11063 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11064 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11065 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11066 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11067 tem = XEXP (tem, 0);
11069 value = replace_rtx (copy_rtx (value), reg, tem);
11073 /* For each register modified, show we don't know its value, that
11074 we don't know about its bitwise content, that its value has been
11075 updated, and that we don't know the location of the death of the
11076 register. */
11077 for (i = regno; i < endregno; i++)
11079 if (insn)
11080 reg_last_set[i] = insn;
11082 reg_last_set_value[i] = 0;
11083 reg_last_set_mode[i] = 0;
11084 reg_last_set_nonzero_bits[i] = 0;
11085 reg_last_set_sign_bit_copies[i] = 0;
11086 reg_last_death[i] = 0;
11089 /* Mark registers that are being referenced in this value. */
11090 if (value)
11091 update_table_tick (value);
11093 /* Now update the status of each register being set.
11094 If someone is using this register in this block, set this register
11095 to invalid since we will get confused between the two lives in this
11096 basic block. This makes using this register always invalid. In cse, we
11097 scan the table to invalidate all entries using this register, but this
11098 is too much work for us. */
11100 for (i = regno; i < endregno; i++)
11102 reg_last_set_label[i] = label_tick;
11103 if (value && reg_last_set_table_tick[i] == label_tick)
11104 reg_last_set_invalid[i] = 1;
11105 else
11106 reg_last_set_invalid[i] = 0;
11109 /* The value being assigned might refer to X (like in "x++;"). In that
11110 case, we must replace it with (clobber (const_int 0)) to prevent
11111 infinite loops. */
11112 if (value && ! get_last_value_validate (&value, insn,
11113 reg_last_set_label[regno], 0))
11115 value = copy_rtx (value);
11116 if (! get_last_value_validate (&value, insn,
11117 reg_last_set_label[regno], 1))
11118 value = 0;
11121 /* For the main register being modified, update the value, the mode, the
11122 nonzero bits, and the number of sign bit copies. */
11124 reg_last_set_value[regno] = value;
11126 if (value)
11128 subst_low_cuid = INSN_CUID (insn);
11129 reg_last_set_mode[regno] = GET_MODE (reg);
11130 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11131 reg_last_set_sign_bit_copies[regno]
11132 = num_sign_bit_copies (value, GET_MODE (reg));
11136 /* Called via note_stores from record_dead_and_set_regs to handle one
11137 SET or CLOBBER in an insn. DATA is the instruction in which the
11138 set is occurring. */
11140 static void
11141 record_dead_and_set_regs_1 (dest, setter, data)
11142 rtx dest, setter;
11143 void *data;
11145 rtx record_dead_insn = (rtx) data;
11147 if (GET_CODE (dest) == SUBREG)
11148 dest = SUBREG_REG (dest);
11150 if (GET_CODE (dest) == REG)
11152 /* If we are setting the whole register, we know its value. Otherwise
11153 show that we don't know the value. We can handle SUBREG in
11154 some cases. */
11155 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11156 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11157 else if (GET_CODE (setter) == SET
11158 && GET_CODE (SET_DEST (setter)) == SUBREG
11159 && SUBREG_REG (SET_DEST (setter)) == dest
11160 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11161 && subreg_lowpart_p (SET_DEST (setter)))
11162 record_value_for_reg (dest, record_dead_insn,
11163 gen_lowpart_for_combine (GET_MODE (dest),
11164 SET_SRC (setter)));
11165 else
11166 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11168 else if (GET_CODE (dest) == MEM
11169 /* Ignore pushes, they clobber nothing. */
11170 && ! push_operand (dest, GET_MODE (dest)))
11171 mem_last_set = INSN_CUID (record_dead_insn);
11174 /* Update the records of when each REG was most recently set or killed
11175 for the things done by INSN. This is the last thing done in processing
11176 INSN in the combiner loop.
11178 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11179 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11180 and also the similar information mem_last_set (which insn most recently
11181 modified memory) and last_call_cuid (which insn was the most recent
11182 subroutine call). */
11184 static void
11185 record_dead_and_set_regs (insn)
11186 rtx insn;
11188 rtx link;
11189 unsigned int i;
11191 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11193 if (REG_NOTE_KIND (link) == REG_DEAD
11194 && GET_CODE (XEXP (link, 0)) == REG)
11196 unsigned int regno = REGNO (XEXP (link, 0));
11197 unsigned int endregno
11198 = regno + (regno < FIRST_PSEUDO_REGISTER
11199 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11200 : 1);
11202 for (i = regno; i < endregno; i++)
11203 reg_last_death[i] = insn;
11205 else if (REG_NOTE_KIND (link) == REG_INC)
11206 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11209 if (GET_CODE (insn) == CALL_INSN)
11211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11212 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11214 reg_last_set_value[i] = 0;
11215 reg_last_set_mode[i] = 0;
11216 reg_last_set_nonzero_bits[i] = 0;
11217 reg_last_set_sign_bit_copies[i] = 0;
11218 reg_last_death[i] = 0;
11221 last_call_cuid = mem_last_set = INSN_CUID (insn);
11223 /* Don't bother recording what this insn does. It might set the
11224 return value register, but we can't combine into a call
11225 pattern anyway, so there's no point trying (and it may cause
11226 a crash, if e.g. we wind up asking for last_set_value of a
11227 SUBREG of the return value register). */
11228 return;
11231 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11234 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11235 register present in the SUBREG, so for each such SUBREG go back and
11236 adjust nonzero and sign bit information of the registers that are
11237 known to have some zero/sign bits set.
11239 This is needed because when combine blows the SUBREGs away, the
11240 information on zero/sign bits is lost and further combines can be
11241 missed because of that. */
11243 static void
11244 record_promoted_value (insn, subreg)
11245 rtx insn;
11246 rtx subreg;
11248 rtx links, set;
11249 unsigned int regno = REGNO (SUBREG_REG (subreg));
11250 enum machine_mode mode = GET_MODE (subreg);
11252 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11253 return;
11255 for (links = LOG_LINKS (insn); links;)
11257 insn = XEXP (links, 0);
11258 set = single_set (insn);
11260 if (! set || GET_CODE (SET_DEST (set)) != REG
11261 || REGNO (SET_DEST (set)) != regno
11262 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11264 links = XEXP (links, 1);
11265 continue;
11268 if (reg_last_set[regno] == insn)
11270 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11271 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11274 if (GET_CODE (SET_SRC (set)) == REG)
11276 regno = REGNO (SET_SRC (set));
11277 links = LOG_LINKS (insn);
11279 else
11280 break;
11284 /* Scan X for promoted SUBREGs. For each one found,
11285 note what it implies to the registers used in it. */
11287 static void
11288 check_promoted_subreg (insn, x)
11289 rtx insn;
11290 rtx x;
11292 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11293 && GET_CODE (SUBREG_REG (x)) == REG)
11294 record_promoted_value (insn, x);
11295 else
11297 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11298 int i, j;
11300 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11301 switch (format[i])
11303 case 'e':
11304 check_promoted_subreg (insn, XEXP (x, i));
11305 break;
11306 case 'V':
11307 case 'E':
11308 if (XVEC (x, i) != 0)
11309 for (j = 0; j < XVECLEN (x, i); j++)
11310 check_promoted_subreg (insn, XVECEXP (x, i, j));
11311 break;
11316 /* Utility routine for the following function. Verify that all the registers
11317 mentioned in *LOC are valid when *LOC was part of a value set when
11318 label_tick == TICK. Return 0 if some are not.
11320 If REPLACE is non-zero, replace the invalid reference with
11321 (clobber (const_int 0)) and return 1. This replacement is useful because
11322 we often can get useful information about the form of a value (e.g., if
11323 it was produced by a shift that always produces -1 or 0) even though
11324 we don't know exactly what registers it was produced from. */
11326 static int
11327 get_last_value_validate (loc, insn, tick, replace)
11328 rtx *loc;
11329 rtx insn;
11330 int tick;
11331 int replace;
11333 rtx x = *loc;
11334 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11335 int len = GET_RTX_LENGTH (GET_CODE (x));
11336 int i;
11338 if (GET_CODE (x) == REG)
11340 unsigned int regno = REGNO (x);
11341 unsigned int endregno
11342 = regno + (regno < FIRST_PSEUDO_REGISTER
11343 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11344 unsigned int j;
11346 for (j = regno; j < endregno; j++)
11347 if (reg_last_set_invalid[j]
11348 /* If this is a pseudo-register that was only set once and not
11349 live at the beginning of the function, it is always valid. */
11350 || (! (regno >= FIRST_PSEUDO_REGISTER
11351 && REG_N_SETS (regno) == 1
11352 && (! REGNO_REG_SET_P
11353 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11354 && reg_last_set_label[j] > tick))
11356 if (replace)
11357 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11358 return replace;
11361 return 1;
11363 /* If this is a memory reference, make sure that there were
11364 no stores after it that might have clobbered the value. We don't
11365 have alias info, so we assume any store invalidates it. */
11366 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11367 && INSN_CUID (insn) <= mem_last_set)
11369 if (replace)
11370 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11371 return replace;
11374 for (i = 0; i < len; i++)
11375 if ((fmt[i] == 'e'
11376 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11377 /* Don't bother with these. They shouldn't occur anyway. */
11378 || fmt[i] == 'E')
11379 return 0;
11381 /* If we haven't found a reason for it to be invalid, it is valid. */
11382 return 1;
11385 /* Get the last value assigned to X, if known. Some registers
11386 in the value may be replaced with (clobber (const_int 0)) if their value
11387 is known longer known reliably. */
11389 static rtx
11390 get_last_value (x)
11391 rtx x;
11393 unsigned int regno;
11394 rtx value;
11396 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11397 then convert it to the desired mode. If this is a paradoxical SUBREG,
11398 we cannot predict what values the "extra" bits might have. */
11399 if (GET_CODE (x) == SUBREG
11400 && subreg_lowpart_p (x)
11401 && (GET_MODE_SIZE (GET_MODE (x))
11402 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11403 && (value = get_last_value (SUBREG_REG (x))) != 0)
11404 return gen_lowpart_for_combine (GET_MODE (x), value);
11406 if (GET_CODE (x) != REG)
11407 return 0;
11409 regno = REGNO (x);
11410 value = reg_last_set_value[regno];
11412 /* If we don't have a value, or if it isn't for this basic block and
11413 it's either a hard register, set more than once, or it's a live
11414 at the beginning of the function, return 0.
11416 Because if it's not live at the beginning of the function then the reg
11417 is always set before being used (is never used without being set).
11418 And, if it's set only once, and it's always set before use, then all
11419 uses must have the same last value, even if it's not from this basic
11420 block. */
11422 if (value == 0
11423 || (reg_last_set_label[regno] != label_tick
11424 && (regno < FIRST_PSEUDO_REGISTER
11425 || REG_N_SETS (regno) != 1
11426 || (REGNO_REG_SET_P
11427 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11428 return 0;
11430 /* If the value was set in a later insn than the ones we are processing,
11431 we can't use it even if the register was only set once. */
11432 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11433 return 0;
11435 /* If the value has all its registers valid, return it. */
11436 if (get_last_value_validate (&value, reg_last_set[regno],
11437 reg_last_set_label[regno], 0))
11438 return value;
11440 /* Otherwise, make a copy and replace any invalid register with
11441 (clobber (const_int 0)). If that fails for some reason, return 0. */
11443 value = copy_rtx (value);
11444 if (get_last_value_validate (&value, reg_last_set[regno],
11445 reg_last_set_label[regno], 1))
11446 return value;
11448 return 0;
11451 /* Return nonzero if expression X refers to a REG or to memory
11452 that is set in an instruction more recent than FROM_CUID. */
11454 static int
11455 use_crosses_set_p (x, from_cuid)
11456 rtx x;
11457 int from_cuid;
11459 const char *fmt;
11460 int i;
11461 enum rtx_code code = GET_CODE (x);
11463 if (code == REG)
11465 unsigned int regno = REGNO (x);
11466 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11467 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11469 #ifdef PUSH_ROUNDING
11470 /* Don't allow uses of the stack pointer to be moved,
11471 because we don't know whether the move crosses a push insn. */
11472 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11473 return 1;
11474 #endif
11475 for (; regno < endreg; regno++)
11476 if (reg_last_set[regno]
11477 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11478 return 1;
11479 return 0;
11482 if (code == MEM && mem_last_set > from_cuid)
11483 return 1;
11485 fmt = GET_RTX_FORMAT (code);
11487 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11489 if (fmt[i] == 'E')
11491 int j;
11492 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11493 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11494 return 1;
11496 else if (fmt[i] == 'e'
11497 && use_crosses_set_p (XEXP (x, i), from_cuid))
11498 return 1;
11500 return 0;
11503 /* Define three variables used for communication between the following
11504 routines. */
11506 static unsigned int reg_dead_regno, reg_dead_endregno;
11507 static int reg_dead_flag;
11509 /* Function called via note_stores from reg_dead_at_p.
11511 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11512 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11514 static void
11515 reg_dead_at_p_1 (dest, x, data)
11516 rtx dest;
11517 rtx x;
11518 void *data ATTRIBUTE_UNUSED;
11520 unsigned int regno, endregno;
11522 if (GET_CODE (dest) != REG)
11523 return;
11525 regno = REGNO (dest);
11526 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11527 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11529 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11530 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11533 /* Return non-zero if REG is known to be dead at INSN.
11535 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11536 referencing REG, it is dead. If we hit a SET referencing REG, it is
11537 live. Otherwise, see if it is live or dead at the start of the basic
11538 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11539 must be assumed to be always live. */
11541 static int
11542 reg_dead_at_p (reg, insn)
11543 rtx reg;
11544 rtx insn;
11546 int block;
11547 unsigned int i;
11549 /* Set variables for reg_dead_at_p_1. */
11550 reg_dead_regno = REGNO (reg);
11551 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11552 ? HARD_REGNO_NREGS (reg_dead_regno,
11553 GET_MODE (reg))
11554 : 1);
11556 reg_dead_flag = 0;
11558 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11559 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11561 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11562 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11563 return 0;
11566 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11567 beginning of function. */
11568 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11569 insn = prev_nonnote_insn (insn))
11571 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11572 if (reg_dead_flag)
11573 return reg_dead_flag == 1 ? 1 : 0;
11575 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11576 return 1;
11579 /* Get the basic block number that we were in. */
11580 if (insn == 0)
11581 block = 0;
11582 else
11584 for (block = 0; block < n_basic_blocks; block++)
11585 if (insn == BLOCK_HEAD (block))
11586 break;
11588 if (block == n_basic_blocks)
11589 return 0;
11592 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11593 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11594 return 0;
11596 return 1;
11599 /* Note hard registers in X that are used. This code is similar to
11600 that in flow.c, but much simpler since we don't care about pseudos. */
11602 static void
11603 mark_used_regs_combine (x)
11604 rtx x;
11606 RTX_CODE code = GET_CODE (x);
11607 unsigned int regno;
11608 int i;
11610 switch (code)
11612 case LABEL_REF:
11613 case SYMBOL_REF:
11614 case CONST_INT:
11615 case CONST:
11616 case CONST_DOUBLE:
11617 case PC:
11618 case ADDR_VEC:
11619 case ADDR_DIFF_VEC:
11620 case ASM_INPUT:
11621 #ifdef HAVE_cc0
11622 /* CC0 must die in the insn after it is set, so we don't need to take
11623 special note of it here. */
11624 case CC0:
11625 #endif
11626 return;
11628 case CLOBBER:
11629 /* If we are clobbering a MEM, mark any hard registers inside the
11630 address as used. */
11631 if (GET_CODE (XEXP (x, 0)) == MEM)
11632 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11633 return;
11635 case REG:
11636 regno = REGNO (x);
11637 /* A hard reg in a wide mode may really be multiple registers.
11638 If so, mark all of them just like the first. */
11639 if (regno < FIRST_PSEUDO_REGISTER)
11641 unsigned int endregno, r;
11643 /* None of this applies to the stack, frame or arg pointers */
11644 if (regno == STACK_POINTER_REGNUM
11645 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11646 || regno == HARD_FRAME_POINTER_REGNUM
11647 #endif
11648 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11649 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11650 #endif
11651 || regno == FRAME_POINTER_REGNUM)
11652 return;
11654 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11655 for (r = regno; r < endregno; r++)
11656 SET_HARD_REG_BIT (newpat_used_regs, r);
11658 return;
11660 case SET:
11662 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11663 the address. */
11664 rtx testreg = SET_DEST (x);
11666 while (GET_CODE (testreg) == SUBREG
11667 || GET_CODE (testreg) == ZERO_EXTRACT
11668 || GET_CODE (testreg) == SIGN_EXTRACT
11669 || GET_CODE (testreg) == STRICT_LOW_PART)
11670 testreg = XEXP (testreg, 0);
11672 if (GET_CODE (testreg) == MEM)
11673 mark_used_regs_combine (XEXP (testreg, 0));
11675 mark_used_regs_combine (SET_SRC (x));
11677 return;
11679 default:
11680 break;
11683 /* Recursively scan the operands of this expression. */
11686 const char *fmt = GET_RTX_FORMAT (code);
11688 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11690 if (fmt[i] == 'e')
11691 mark_used_regs_combine (XEXP (x, i));
11692 else if (fmt[i] == 'E')
11694 int j;
11696 for (j = 0; j < XVECLEN (x, i); j++)
11697 mark_used_regs_combine (XVECEXP (x, i, j));
11703 /* Remove register number REGNO from the dead registers list of INSN.
11705 Return the note used to record the death, if there was one. */
11708 remove_death (regno, insn)
11709 unsigned int regno;
11710 rtx insn;
11712 rtx note = find_regno_note (insn, REG_DEAD, regno);
11714 if (note)
11716 REG_N_DEATHS (regno)--;
11717 remove_note (insn, note);
11720 return note;
11723 /* For each register (hardware or pseudo) used within expression X, if its
11724 death is in an instruction with cuid between FROM_CUID (inclusive) and
11725 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11726 list headed by PNOTES.
11728 That said, don't move registers killed by maybe_kill_insn.
11730 This is done when X is being merged by combination into TO_INSN. These
11731 notes will then be distributed as needed. */
11733 static void
11734 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11735 rtx x;
11736 rtx maybe_kill_insn;
11737 int from_cuid;
11738 rtx to_insn;
11739 rtx *pnotes;
11741 const char *fmt;
11742 int len, i;
11743 enum rtx_code code = GET_CODE (x);
11745 if (code == REG)
11747 unsigned int regno = REGNO (x);
11748 rtx where_dead = reg_last_death[regno];
11749 rtx before_dead, after_dead;
11751 /* Don't move the register if it gets killed in between from and to */
11752 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11753 && ! reg_referenced_p (x, maybe_kill_insn))
11754 return;
11756 /* WHERE_DEAD could be a USE insn made by combine, so first we
11757 make sure that we have insns with valid INSN_CUID values. */
11758 before_dead = where_dead;
11759 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11760 before_dead = PREV_INSN (before_dead);
11762 after_dead = where_dead;
11763 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11764 after_dead = NEXT_INSN (after_dead);
11766 if (before_dead && after_dead
11767 && INSN_CUID (before_dead) >= from_cuid
11768 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11769 || (where_dead != after_dead
11770 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11772 rtx note = remove_death (regno, where_dead);
11774 /* It is possible for the call above to return 0. This can occur
11775 when reg_last_death points to I2 or I1 that we combined with.
11776 In that case make a new note.
11778 We must also check for the case where X is a hard register
11779 and NOTE is a death note for a range of hard registers
11780 including X. In that case, we must put REG_DEAD notes for
11781 the remaining registers in place of NOTE. */
11783 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11784 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11785 > GET_MODE_SIZE (GET_MODE (x))))
11787 unsigned int deadregno = REGNO (XEXP (note, 0));
11788 unsigned int deadend
11789 = (deadregno + HARD_REGNO_NREGS (deadregno,
11790 GET_MODE (XEXP (note, 0))));
11791 unsigned int ourend
11792 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11793 unsigned int i;
11795 for (i = deadregno; i < deadend; i++)
11796 if (i < regno || i >= ourend)
11797 REG_NOTES (where_dead)
11798 = gen_rtx_EXPR_LIST (REG_DEAD,
11799 gen_rtx_REG (reg_raw_mode[i], i),
11800 REG_NOTES (where_dead));
11803 /* If we didn't find any note, or if we found a REG_DEAD note that
11804 covers only part of the given reg, and we have a multi-reg hard
11805 register, then to be safe we must check for REG_DEAD notes
11806 for each register other than the first. They could have
11807 their own REG_DEAD notes lying around. */
11808 else if ((note == 0
11809 || (note != 0
11810 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11811 < GET_MODE_SIZE (GET_MODE (x)))))
11812 && regno < FIRST_PSEUDO_REGISTER
11813 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11815 unsigned int ourend
11816 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11817 unsigned int i, offset;
11818 rtx oldnotes = 0;
11820 if (note)
11821 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11822 else
11823 offset = 1;
11825 for (i = regno + offset; i < ourend; i++)
11826 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11827 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11830 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11832 XEXP (note, 1) = *pnotes;
11833 *pnotes = note;
11835 else
11836 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11838 REG_N_DEATHS (regno)++;
11841 return;
11844 else if (GET_CODE (x) == SET)
11846 rtx dest = SET_DEST (x);
11848 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11850 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11851 that accesses one word of a multi-word item, some
11852 piece of everything register in the expression is used by
11853 this insn, so remove any old death. */
11854 /* ??? So why do we test for equality of the sizes? */
11856 if (GET_CODE (dest) == ZERO_EXTRACT
11857 || GET_CODE (dest) == STRICT_LOW_PART
11858 || (GET_CODE (dest) == SUBREG
11859 && (((GET_MODE_SIZE (GET_MODE (dest))
11860 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11861 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11862 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11864 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11865 return;
11868 /* If this is some other SUBREG, we know it replaces the entire
11869 value, so use that as the destination. */
11870 if (GET_CODE (dest) == SUBREG)
11871 dest = SUBREG_REG (dest);
11873 /* If this is a MEM, adjust deaths of anything used in the address.
11874 For a REG (the only other possibility), the entire value is
11875 being replaced so the old value is not used in this insn. */
11877 if (GET_CODE (dest) == MEM)
11878 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11879 to_insn, pnotes);
11880 return;
11883 else if (GET_CODE (x) == CLOBBER)
11884 return;
11886 len = GET_RTX_LENGTH (code);
11887 fmt = GET_RTX_FORMAT (code);
11889 for (i = 0; i < len; i++)
11891 if (fmt[i] == 'E')
11893 int j;
11894 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11895 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11896 to_insn, pnotes);
11898 else if (fmt[i] == 'e')
11899 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11903 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11904 pattern of an insn. X must be a REG. */
11906 static int
11907 reg_bitfield_target_p (x, body)
11908 rtx x;
11909 rtx body;
11911 int i;
11913 if (GET_CODE (body) == SET)
11915 rtx dest = SET_DEST (body);
11916 rtx target;
11917 unsigned int regno, tregno, endregno, endtregno;
11919 if (GET_CODE (dest) == ZERO_EXTRACT)
11920 target = XEXP (dest, 0);
11921 else if (GET_CODE (dest) == STRICT_LOW_PART)
11922 target = SUBREG_REG (XEXP (dest, 0));
11923 else
11924 return 0;
11926 if (GET_CODE (target) == SUBREG)
11927 target = SUBREG_REG (target);
11929 if (GET_CODE (target) != REG)
11930 return 0;
11932 tregno = REGNO (target), regno = REGNO (x);
11933 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11934 return target == x;
11936 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11937 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11939 return endregno > tregno && regno < endtregno;
11942 else if (GET_CODE (body) == PARALLEL)
11943 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11944 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11945 return 1;
11947 return 0;
11950 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11951 as appropriate. I3 and I2 are the insns resulting from the combination
11952 insns including FROM (I2 may be zero).
11954 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11955 not need REG_DEAD notes because they are being substituted for. This
11956 saves searching in the most common cases.
11958 Each note in the list is either ignored or placed on some insns, depending
11959 on the type of note. */
11961 static void
11962 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11963 rtx notes;
11964 rtx from_insn;
11965 rtx i3, i2;
11966 rtx elim_i2, elim_i1;
11968 rtx note, next_note;
11969 rtx tem;
11971 for (note = notes; note; note = next_note)
11973 rtx place = 0, place2 = 0;
11975 /* If this NOTE references a pseudo register, ensure it references
11976 the latest copy of that register. */
11977 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11978 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11979 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11981 next_note = XEXP (note, 1);
11982 switch (REG_NOTE_KIND (note))
11984 case REG_BR_PROB:
11985 case REG_BR_PRED:
11986 case REG_EXEC_COUNT:
11987 /* Doesn't matter much where we put this, as long as it's somewhere.
11988 It is preferable to keep these notes on branches, which is most
11989 likely to be i3. */
11990 place = i3;
11991 break;
11993 case REG_VTABLE_REF:
11994 /* ??? Should remain with *a particular* memory load. Given the
11995 nature of vtable data, the last insn seems relatively safe. */
11996 place = i3;
11997 break;
11999 case REG_NON_LOCAL_GOTO:
12000 if (GET_CODE (i3) == JUMP_INSN)
12001 place = i3;
12002 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12003 place = i2;
12004 else
12005 abort ();
12006 break;
12008 case REG_EH_REGION:
12009 /* These notes must remain with the call or trapping instruction. */
12010 if (GET_CODE (i3) == CALL_INSN)
12011 place = i3;
12012 else if (i2 && GET_CODE (i2) == CALL_INSN)
12013 place = i2;
12014 else if (flag_non_call_exceptions)
12016 if (may_trap_p (i3))
12017 place = i3;
12018 else if (i2 && may_trap_p (i2))
12019 place = i2;
12020 /* ??? Otherwise assume we've combined things such that we
12021 can now prove that the instructions can't trap. Drop the
12022 note in this case. */
12024 else
12025 abort ();
12026 break;
12028 case REG_NORETURN:
12029 case REG_SETJMP:
12030 /* These notes must remain with the call. It should not be
12031 possible for both I2 and I3 to be a call. */
12032 if (GET_CODE (i3) == CALL_INSN)
12033 place = i3;
12034 else if (i2 && GET_CODE (i2) == CALL_INSN)
12035 place = i2;
12036 else
12037 abort ();
12038 break;
12040 case REG_UNUSED:
12041 /* Any clobbers for i3 may still exist, and so we must process
12042 REG_UNUSED notes from that insn.
12044 Any clobbers from i2 or i1 can only exist if they were added by
12045 recog_for_combine. In that case, recog_for_combine created the
12046 necessary REG_UNUSED notes. Trying to keep any original
12047 REG_UNUSED notes from these insns can cause incorrect output
12048 if it is for the same register as the original i3 dest.
12049 In that case, we will notice that the register is set in i3,
12050 and then add a REG_UNUSED note for the destination of i3, which
12051 is wrong. However, it is possible to have REG_UNUSED notes from
12052 i2 or i1 for register which were both used and clobbered, so
12053 we keep notes from i2 or i1 if they will turn into REG_DEAD
12054 notes. */
12056 /* If this register is set or clobbered in I3, put the note there
12057 unless there is one already. */
12058 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12060 if (from_insn != i3)
12061 break;
12063 if (! (GET_CODE (XEXP (note, 0)) == REG
12064 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12065 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12066 place = i3;
12068 /* Otherwise, if this register is used by I3, then this register
12069 now dies here, so we must put a REG_DEAD note here unless there
12070 is one already. */
12071 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12072 && ! (GET_CODE (XEXP (note, 0)) == REG
12073 ? find_regno_note (i3, REG_DEAD,
12074 REGNO (XEXP (note, 0)))
12075 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12077 PUT_REG_NOTE_KIND (note, REG_DEAD);
12078 place = i3;
12080 break;
12082 case REG_EQUAL:
12083 case REG_EQUIV:
12084 case REG_NOALIAS:
12085 /* These notes say something about results of an insn. We can
12086 only support them if they used to be on I3 in which case they
12087 remain on I3. Otherwise they are ignored.
12089 If the note refers to an expression that is not a constant, we
12090 must also ignore the note since we cannot tell whether the
12091 equivalence is still true. It might be possible to do
12092 slightly better than this (we only have a problem if I2DEST
12093 or I1DEST is present in the expression), but it doesn't
12094 seem worth the trouble. */
12096 if (from_insn == i3
12097 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12098 place = i3;
12099 break;
12101 case REG_INC:
12102 case REG_NO_CONFLICT:
12103 /* These notes say something about how a register is used. They must
12104 be present on any use of the register in I2 or I3. */
12105 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12106 place = i3;
12108 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12110 if (place)
12111 place2 = i2;
12112 else
12113 place = i2;
12115 break;
12117 case REG_LABEL:
12118 /* This can show up in several ways -- either directly in the
12119 pattern, or hidden off in the constant pool with (or without?)
12120 a REG_EQUAL note. */
12121 /* ??? Ignore the without-reg_equal-note problem for now. */
12122 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12123 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12124 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12125 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12126 place = i3;
12128 if (i2
12129 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12130 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12131 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12132 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12134 if (place)
12135 place2 = i2;
12136 else
12137 place = i2;
12140 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12141 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12142 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12144 if (JUMP_LABEL (place) != XEXP (note, 0))
12145 abort ();
12146 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12147 LABEL_NUSES (JUMP_LABEL (place))--;
12148 place = 0;
12150 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12152 if (JUMP_LABEL (place2) != XEXP (note, 0))
12153 abort ();
12154 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12155 LABEL_NUSES (JUMP_LABEL (place2))--;
12156 place2 = 0;
12158 break;
12160 case REG_NONNEG:
12161 case REG_WAS_0:
12162 /* These notes say something about the value of a register prior
12163 to the execution of an insn. It is too much trouble to see
12164 if the note is still correct in all situations. It is better
12165 to simply delete it. */
12166 break;
12168 case REG_RETVAL:
12169 /* If the insn previously containing this note still exists,
12170 put it back where it was. Otherwise move it to the previous
12171 insn. Adjust the corresponding REG_LIBCALL note. */
12172 if (GET_CODE (from_insn) != NOTE)
12173 place = from_insn;
12174 else
12176 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12177 place = prev_real_insn (from_insn);
12178 if (tem && place)
12179 XEXP (tem, 0) = place;
12180 /* If we're deleting the last remaining instruction of a
12181 libcall sequence, don't add the notes. */
12182 else if (XEXP (note, 0) == from_insn)
12183 tem = place = 0;
12185 break;
12187 case REG_LIBCALL:
12188 /* This is handled similarly to REG_RETVAL. */
12189 if (GET_CODE (from_insn) != NOTE)
12190 place = from_insn;
12191 else
12193 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12194 place = next_real_insn (from_insn);
12195 if (tem && place)
12196 XEXP (tem, 0) = place;
12197 /* If we're deleting the last remaining instruction of a
12198 libcall sequence, don't add the notes. */
12199 else if (XEXP (note, 0) == from_insn)
12200 tem = place = 0;
12202 break;
12204 case REG_DEAD:
12205 /* If the register is used as an input in I3, it dies there.
12206 Similarly for I2, if it is non-zero and adjacent to I3.
12208 If the register is not used as an input in either I3 or I2
12209 and it is not one of the registers we were supposed to eliminate,
12210 there are two possibilities. We might have a non-adjacent I2
12211 or we might have somehow eliminated an additional register
12212 from a computation. For example, we might have had A & B where
12213 we discover that B will always be zero. In this case we will
12214 eliminate the reference to A.
12216 In both cases, we must search to see if we can find a previous
12217 use of A and put the death note there. */
12219 if (from_insn
12220 && GET_CODE (from_insn) == CALL_INSN
12221 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12222 place = from_insn;
12223 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12224 place = i3;
12225 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12226 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12227 place = i2;
12229 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12230 || rtx_equal_p (XEXP (note, 0), elim_i1))
12231 break;
12233 if (place == 0)
12235 basic_block bb = BASIC_BLOCK (this_basic_block);
12237 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12239 if (! INSN_P (tem))
12241 if (tem == bb->head)
12242 break;
12243 continue;
12246 /* If the register is being set at TEM, see if that is all
12247 TEM is doing. If so, delete TEM. Otherwise, make this
12248 into a REG_UNUSED note instead. */
12249 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12251 rtx set = single_set (tem);
12252 rtx inner_dest = 0;
12253 #ifdef HAVE_cc0
12254 rtx cc0_setter = NULL_RTX;
12255 #endif
12257 if (set != 0)
12258 for (inner_dest = SET_DEST (set);
12259 (GET_CODE (inner_dest) == STRICT_LOW_PART
12260 || GET_CODE (inner_dest) == SUBREG
12261 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12262 inner_dest = XEXP (inner_dest, 0))
12265 /* Verify that it was the set, and not a clobber that
12266 modified the register.
12268 CC0 targets must be careful to maintain setter/user
12269 pairs. If we cannot delete the setter due to side
12270 effects, mark the user with an UNUSED note instead
12271 of deleting it. */
12273 if (set != 0 && ! side_effects_p (SET_SRC (set))
12274 && rtx_equal_p (XEXP (note, 0), inner_dest)
12275 #ifdef HAVE_cc0
12276 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12277 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12278 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12279 #endif
12282 /* Move the notes and links of TEM elsewhere.
12283 This might delete other dead insns recursively.
12284 First set the pattern to something that won't use
12285 any register. */
12287 PATTERN (tem) = pc_rtx;
12289 distribute_notes (REG_NOTES (tem), tem, tem,
12290 NULL_RTX, NULL_RTX, NULL_RTX);
12291 distribute_links (LOG_LINKS (tem));
12293 PUT_CODE (tem, NOTE);
12294 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12295 NOTE_SOURCE_FILE (tem) = 0;
12297 #ifdef HAVE_cc0
12298 /* Delete the setter too. */
12299 if (cc0_setter)
12301 PATTERN (cc0_setter) = pc_rtx;
12303 distribute_notes (REG_NOTES (cc0_setter),
12304 cc0_setter, cc0_setter,
12305 NULL_RTX, NULL_RTX, NULL_RTX);
12306 distribute_links (LOG_LINKS (cc0_setter));
12308 PUT_CODE (cc0_setter, NOTE);
12309 NOTE_LINE_NUMBER (cc0_setter)
12310 = NOTE_INSN_DELETED;
12311 NOTE_SOURCE_FILE (cc0_setter) = 0;
12313 #endif
12315 /* If the register is both set and used here, put the
12316 REG_DEAD note here, but place a REG_UNUSED note
12317 here too unless there already is one. */
12318 else if (reg_referenced_p (XEXP (note, 0),
12319 PATTERN (tem)))
12321 place = tem;
12323 if (! find_regno_note (tem, REG_UNUSED,
12324 REGNO (XEXP (note, 0))))
12325 REG_NOTES (tem)
12326 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12327 REG_NOTES (tem));
12329 else
12331 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12333 /* If there isn't already a REG_UNUSED note, put one
12334 here. */
12335 if (! find_regno_note (tem, REG_UNUSED,
12336 REGNO (XEXP (note, 0))))
12337 place = tem;
12338 break;
12341 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12342 || (GET_CODE (tem) == CALL_INSN
12343 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12345 place = tem;
12347 /* If we are doing a 3->2 combination, and we have a
12348 register which formerly died in i3 and was not used
12349 by i2, which now no longer dies in i3 and is used in
12350 i2 but does not die in i2, and place is between i2
12351 and i3, then we may need to move a link from place to
12352 i2. */
12353 if (i2 && INSN_UID (place) <= max_uid_cuid
12354 && INSN_CUID (place) > INSN_CUID (i2)
12355 && from_insn
12356 && INSN_CUID (from_insn) > INSN_CUID (i2)
12357 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12359 rtx links = LOG_LINKS (place);
12360 LOG_LINKS (place) = 0;
12361 distribute_links (links);
12363 break;
12366 if (tem == bb->head)
12367 break;
12370 /* We haven't found an insn for the death note and it
12371 is still a REG_DEAD note, but we have hit the beginning
12372 of the block. If the existing life info says the reg
12373 was dead, there's nothing left to do. Otherwise, we'll
12374 need to do a global life update after combine. */
12375 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12376 && REGNO_REG_SET_P (bb->global_live_at_start,
12377 REGNO (XEXP (note, 0))))
12379 SET_BIT (refresh_blocks, this_basic_block);
12380 need_refresh = 1;
12384 /* If the register is set or already dead at PLACE, we needn't do
12385 anything with this note if it is still a REG_DEAD note.
12386 We can here if it is set at all, not if is it totally replace,
12387 which is what `dead_or_set_p' checks, so also check for it being
12388 set partially. */
12390 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12392 unsigned int regno = REGNO (XEXP (note, 0));
12394 /* Similarly, if the instruction on which we want to place
12395 the note is a noop, we'll need do a global live update
12396 after we remove them in delete_noop_moves. */
12397 if (noop_move_p (place))
12399 SET_BIT (refresh_blocks, this_basic_block);
12400 need_refresh = 1;
12403 if (dead_or_set_p (place, XEXP (note, 0))
12404 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12406 /* Unless the register previously died in PLACE, clear
12407 reg_last_death. [I no longer understand why this is
12408 being done.] */
12409 if (reg_last_death[regno] != place)
12410 reg_last_death[regno] = 0;
12411 place = 0;
12413 else
12414 reg_last_death[regno] = place;
12416 /* If this is a death note for a hard reg that is occupying
12417 multiple registers, ensure that we are still using all
12418 parts of the object. If we find a piece of the object
12419 that is unused, we must arrange for an appropriate REG_DEAD
12420 note to be added for it. However, we can't just emit a USE
12421 and tag the note to it, since the register might actually
12422 be dead; so we recourse, and the recursive call then finds
12423 the previous insn that used this register. */
12425 if (place && regno < FIRST_PSEUDO_REGISTER
12426 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12428 unsigned int endregno
12429 = regno + HARD_REGNO_NREGS (regno,
12430 GET_MODE (XEXP (note, 0)));
12431 int all_used = 1;
12432 unsigned int i;
12434 for (i = regno; i < endregno; i++)
12435 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12436 && ! find_regno_fusage (place, USE, i))
12437 || dead_or_set_regno_p (place, i))
12438 all_used = 0;
12440 if (! all_used)
12442 /* Put only REG_DEAD notes for pieces that are
12443 not already dead or set. */
12445 for (i = regno; i < endregno;
12446 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12448 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12449 basic_block bb = BASIC_BLOCK (this_basic_block);
12451 if (! dead_or_set_p (place, piece)
12452 && ! reg_bitfield_target_p (piece,
12453 PATTERN (place)))
12455 rtx new_note
12456 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12458 distribute_notes (new_note, place, place,
12459 NULL_RTX, NULL_RTX, NULL_RTX);
12461 else if (! refers_to_regno_p (i, i + 1,
12462 PATTERN (place), 0)
12463 && ! find_regno_fusage (place, USE, i))
12464 for (tem = PREV_INSN (place); ;
12465 tem = PREV_INSN (tem))
12467 if (! INSN_P (tem))
12469 if (tem == bb->head)
12471 SET_BIT (refresh_blocks,
12472 this_basic_block);
12473 need_refresh = 1;
12474 break;
12476 continue;
12478 if (dead_or_set_p (tem, piece)
12479 || reg_bitfield_target_p (piece,
12480 PATTERN (tem)))
12482 REG_NOTES (tem)
12483 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12484 REG_NOTES (tem));
12485 break;
12491 place = 0;
12495 break;
12497 default:
12498 /* Any other notes should not be present at this point in the
12499 compilation. */
12500 abort ();
12503 if (place)
12505 XEXP (note, 1) = REG_NOTES (place);
12506 REG_NOTES (place) = note;
12508 else if ((REG_NOTE_KIND (note) == REG_DEAD
12509 || REG_NOTE_KIND (note) == REG_UNUSED)
12510 && GET_CODE (XEXP (note, 0)) == REG)
12511 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12513 if (place2)
12515 if ((REG_NOTE_KIND (note) == REG_DEAD
12516 || REG_NOTE_KIND (note) == REG_UNUSED)
12517 && GET_CODE (XEXP (note, 0)) == REG)
12518 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12520 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12521 REG_NOTE_KIND (note),
12522 XEXP (note, 0),
12523 REG_NOTES (place2));
12528 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12529 I3, I2, and I1 to new locations. This is also called in one case to
12530 add a link pointing at I3 when I3's destination is changed. */
12532 static void
12533 distribute_links (links)
12534 rtx links;
12536 rtx link, next_link;
12538 for (link = links; link; link = next_link)
12540 rtx place = 0;
12541 rtx insn;
12542 rtx set, reg;
12544 next_link = XEXP (link, 1);
12546 /* If the insn that this link points to is a NOTE or isn't a single
12547 set, ignore it. In the latter case, it isn't clear what we
12548 can do other than ignore the link, since we can't tell which
12549 register it was for. Such links wouldn't be used by combine
12550 anyway.
12552 It is not possible for the destination of the target of the link to
12553 have been changed by combine. The only potential of this is if we
12554 replace I3, I2, and I1 by I3 and I2. But in that case the
12555 destination of I2 also remains unchanged. */
12557 if (GET_CODE (XEXP (link, 0)) == NOTE
12558 || (set = single_set (XEXP (link, 0))) == 0)
12559 continue;
12561 reg = SET_DEST (set);
12562 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12563 || GET_CODE (reg) == SIGN_EXTRACT
12564 || GET_CODE (reg) == STRICT_LOW_PART)
12565 reg = XEXP (reg, 0);
12567 /* A LOG_LINK is defined as being placed on the first insn that uses
12568 a register and points to the insn that sets the register. Start
12569 searching at the next insn after the target of the link and stop
12570 when we reach a set of the register or the end of the basic block.
12572 Note that this correctly handles the link that used to point from
12573 I3 to I2. Also note that not much searching is typically done here
12574 since most links don't point very far away. */
12576 for (insn = NEXT_INSN (XEXP (link, 0));
12577 (insn && (this_basic_block == n_basic_blocks - 1
12578 || BLOCK_HEAD (this_basic_block + 1) != insn));
12579 insn = NEXT_INSN (insn))
12580 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12582 if (reg_referenced_p (reg, PATTERN (insn)))
12583 place = insn;
12584 break;
12586 else if (GET_CODE (insn) == CALL_INSN
12587 && find_reg_fusage (insn, USE, reg))
12589 place = insn;
12590 break;
12593 /* If we found a place to put the link, place it there unless there
12594 is already a link to the same insn as LINK at that point. */
12596 if (place)
12598 rtx link2;
12600 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12601 if (XEXP (link2, 0) == XEXP (link, 0))
12602 break;
12604 if (link2 == 0)
12606 XEXP (link, 1) = LOG_LINKS (place);
12607 LOG_LINKS (place) = link;
12609 /* Set added_links_insn to the earliest insn we added a
12610 link to. */
12611 if (added_links_insn == 0
12612 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12613 added_links_insn = place;
12619 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12621 static int
12622 insn_cuid (insn)
12623 rtx insn;
12625 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12626 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12627 insn = NEXT_INSN (insn);
12629 if (INSN_UID (insn) > max_uid_cuid)
12630 abort ();
12632 return INSN_CUID (insn);
12635 void
12636 dump_combine_stats (file)
12637 FILE *file;
12639 fnotice
12640 (file,
12641 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12642 combine_attempts, combine_merges, combine_extras, combine_successes);
12645 void
12646 dump_combine_total_stats (file)
12647 FILE *file;
12649 fnotice
12650 (file,
12651 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12652 total_attempts, total_merges, total_extras, total_successes);