2013-11-25 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / stor-layout.c
blobe5eae0840cf72c1f0c15405c0bca99c99c3b89d5
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "diagnostic-core.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimplify.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal = 0;
58 static tree self_referential_size (tree);
59 static void finalize_record_size (record_layout_info);
60 static void finalize_type_size (tree);
61 static void place_union_field (record_layout_info, tree);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
65 #endif
66 extern void debug_rli (record_layout_info);
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
71 void
72 internal_reference_types (void)
74 reference_types_internal = 1;
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
80 tree
81 variable_size (tree size)
83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
96 return size;
98 return save_expr (size);
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) vec<tree, va_gc> *size_functions;
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
111 enum tree_code code = TREE_CODE (*tp);
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
118 *walk_subtrees = 0;
119 return NULL_TREE;
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
126 *walk_subtrees = 0;
127 return NULL_TREE;
130 /* Default case: the component reference. */
131 else if (code == COMPONENT_REF)
133 tree inner;
134 for (inner = TREE_OPERAND (*tp, 0);
135 REFERENCE_CLASS_P (inner);
136 inner = TREE_OPERAND (inner, 0))
139 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
141 *walk_subtrees = 0;
142 return NULL_TREE;
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code == SAVE_EXPR)
152 return error_mark_node;
154 else if (code == STATEMENT_LIST)
155 gcc_unreachable ();
157 return copy_tree_r (tp, walk_subtrees, data);
160 /* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
163 static tree
164 self_referential_size (tree size)
166 static unsigned HOST_WIDE_INT fnno = 0;
167 vec<tree> self_refs = vNULL;
168 tree param_type_list = NULL, param_decl_list = NULL;
169 tree t, ref, return_type, fntype, fnname, fndecl;
170 unsigned int i;
171 char buf[128];
172 vec<tree, va_gc> *args = NULL;
174 /* Do not factor out simple operations. */
175 t = skip_simple_constant_arithmetic (size);
176 if (TREE_CODE (t) == CALL_EXPR)
177 return size;
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size, &self_refs);
181 gcc_assert (self_refs.length () > 0);
183 /* Obtain a private copy of the expression. */
184 t = size;
185 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
186 return size;
187 size = t;
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
191 vec_alloc (args, self_refs.length ());
192 FOR_EACH_VEC_ELT (self_refs, i, ref)
194 tree subst, param_name, param_type, param_decl;
196 if (DECL_P (ref))
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref));
200 subst = ref;
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref) == ADDR_EXPR)
204 subst = ref;
205 /* Default case: the component reference. */
206 else
207 subst = TREE_OPERAND (ref, 1);
209 sprintf (buf, "p%d", i);
210 param_name = get_identifier (buf);
211 param_type = TREE_TYPE (ref);
212 param_decl
213 = build_decl (input_location, PARM_DECL, param_name, param_type);
214 if (targetm.calls.promote_prototypes (NULL_TREE)
215 && INTEGRAL_TYPE_P (param_type)
216 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
217 DECL_ARG_TYPE (param_decl) = integer_type_node;
218 else
219 DECL_ARG_TYPE (param_decl) = param_type;
220 DECL_ARTIFICIAL (param_decl) = 1;
221 TREE_READONLY (param_decl) = 1;
223 size = substitute_in_expr (size, subst, param_decl);
225 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
226 param_decl_list = chainon (param_decl, param_decl_list);
227 args->quick_push (ref);
230 self_refs.release ();
232 /* Append 'void' to indicate that the number of parameters is fixed. */
233 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
235 /* The 3 lists have been created in reverse order. */
236 param_type_list = nreverse (param_type_list);
237 param_decl_list = nreverse (param_decl_list);
239 /* Build the function type. */
240 return_type = TREE_TYPE (size);
241 fntype = build_function_type (return_type, param_type_list);
243 /* Build the function declaration. */
244 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
245 fnname = get_file_function_name (buf);
246 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
247 for (t = param_decl_list; t; t = DECL_CHAIN (t))
248 DECL_CONTEXT (t) = fndecl;
249 DECL_ARGUMENTS (fndecl) = param_decl_list;
250 DECL_RESULT (fndecl)
251 = build_decl (input_location, RESULT_DECL, 0, return_type);
252 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
254 /* The function has been created by the compiler and we don't
255 want to emit debug info for it. */
256 DECL_ARTIFICIAL (fndecl) = 1;
257 DECL_IGNORED_P (fndecl) = 1;
259 /* It is supposed to be "const" and never throw. */
260 TREE_READONLY (fndecl) = 1;
261 TREE_NOTHROW (fndecl) = 1;
263 /* We want it to be inlined when this is deemed profitable, as
264 well as discarded if every call has been integrated. */
265 DECL_DECLARED_INLINE_P (fndecl) = 1;
267 /* It is made up of a unique return statement. */
268 DECL_INITIAL (fndecl) = make_node (BLOCK);
269 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
270 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
271 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
272 TREE_STATIC (fndecl) = 1;
274 /* Put it onto the list of size functions. */
275 vec_safe_push (size_functions, fndecl);
277 /* Replace the original expression with a call to the size function. */
278 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
281 /* Take, queue and compile all the size functions. It is essential that
282 the size functions be gimplified at the very end of the compilation
283 in order to guarantee transparent handling of self-referential sizes.
284 Otherwise the GENERIC inliner would not be able to inline them back
285 at each of their call sites, thus creating artificial non-constant
286 size expressions which would trigger nasty problems later on. */
288 void
289 finalize_size_functions (void)
291 unsigned int i;
292 tree fndecl;
294 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
296 allocate_struct_function (fndecl, false);
297 set_cfun (NULL);
298 dump_function (TDI_original, fndecl);
299 gimplify_function_tree (fndecl);
300 dump_function (TDI_generic, fndecl);
301 cgraph_finalize_function (fndecl, false);
304 vec_free (size_functions);
307 /* Return the machine mode to use for a nonscalar of SIZE bits. The
308 mode must be in class MCLASS, and have exactly that many value bits;
309 it may have padding as well. If LIMIT is nonzero, modes of wider
310 than MAX_FIXED_MODE_SIZE will not be used. */
312 enum machine_mode
313 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
315 enum machine_mode mode;
317 if (limit && size > MAX_FIXED_MODE_SIZE)
318 return BLKmode;
320 /* Get the first mode which has this size, in the specified class. */
321 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
323 if (GET_MODE_PRECISION (mode) == size)
324 return mode;
326 return BLKmode;
329 /* Similar, except passed a tree node. */
331 enum machine_mode
332 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
334 unsigned HOST_WIDE_INT uhwi;
335 unsigned int ui;
337 if (!tree_fits_uhwi_p (size))
338 return BLKmode;
339 uhwi = tree_to_uhwi (size);
340 ui = uhwi;
341 if (uhwi != ui)
342 return BLKmode;
343 return mode_for_size (ui, mclass, limit);
346 /* Similar, but never return BLKmode; return the narrowest mode that
347 contains at least the requested number of value bits. */
349 enum machine_mode
350 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
352 enum machine_mode mode;
354 /* Get the first mode which has at least this size, in the
355 specified class. */
356 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
357 mode = GET_MODE_WIDER_MODE (mode))
358 if (GET_MODE_PRECISION (mode) >= size)
359 return mode;
361 gcc_unreachable ();
364 /* Find an integer mode of the exact same size, or BLKmode on failure. */
366 enum machine_mode
367 int_mode_for_mode (enum machine_mode mode)
369 switch (GET_MODE_CLASS (mode))
371 case MODE_INT:
372 case MODE_PARTIAL_INT:
373 break;
375 case MODE_COMPLEX_INT:
376 case MODE_COMPLEX_FLOAT:
377 case MODE_FLOAT:
378 case MODE_DECIMAL_FLOAT:
379 case MODE_VECTOR_INT:
380 case MODE_VECTOR_FLOAT:
381 case MODE_FRACT:
382 case MODE_ACCUM:
383 case MODE_UFRACT:
384 case MODE_UACCUM:
385 case MODE_VECTOR_FRACT:
386 case MODE_VECTOR_ACCUM:
387 case MODE_VECTOR_UFRACT:
388 case MODE_VECTOR_UACCUM:
389 case MODE_POINTER_BOUNDS:
390 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
391 break;
393 case MODE_RANDOM:
394 if (mode == BLKmode)
395 break;
397 /* ... fall through ... */
399 case MODE_CC:
400 default:
401 gcc_unreachable ();
404 return mode;
407 /* Find a mode that is suitable for representing a vector with
408 NUNITS elements of mode INNERMODE. Returns BLKmode if there
409 is no suitable mode. */
411 enum machine_mode
412 mode_for_vector (enum machine_mode innermode, unsigned nunits)
414 enum machine_mode mode;
416 /* First, look for a supported vector type. */
417 if (SCALAR_FLOAT_MODE_P (innermode))
418 mode = MIN_MODE_VECTOR_FLOAT;
419 else if (SCALAR_FRACT_MODE_P (innermode))
420 mode = MIN_MODE_VECTOR_FRACT;
421 else if (SCALAR_UFRACT_MODE_P (innermode))
422 mode = MIN_MODE_VECTOR_UFRACT;
423 else if (SCALAR_ACCUM_MODE_P (innermode))
424 mode = MIN_MODE_VECTOR_ACCUM;
425 else if (SCALAR_UACCUM_MODE_P (innermode))
426 mode = MIN_MODE_VECTOR_UACCUM;
427 else
428 mode = MIN_MODE_VECTOR_INT;
430 /* Do not check vector_mode_supported_p here. We'll do that
431 later in vector_type_mode. */
432 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
433 if (GET_MODE_NUNITS (mode) == nunits
434 && GET_MODE_INNER (mode) == innermode)
435 break;
437 /* For integers, try mapping it to a same-sized scalar mode. */
438 if (mode == VOIDmode
439 && GET_MODE_CLASS (innermode) == MODE_INT)
440 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
441 MODE_INT, 0);
443 if (mode == VOIDmode
444 || (GET_MODE_CLASS (mode) == MODE_INT
445 && !have_regs_of_mode[mode]))
446 return BLKmode;
448 return mode;
451 /* Return the alignment of MODE. This will be bounded by 1 and
452 BIGGEST_ALIGNMENT. */
454 unsigned int
455 get_mode_alignment (enum machine_mode mode)
457 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
460 /* Return the precision of the mode, or for a complex or vector mode the
461 precision of the mode of its elements. */
463 unsigned int
464 element_precision (enum machine_mode mode)
466 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
467 mode = GET_MODE_INNER (mode);
469 return GET_MODE_PRECISION (mode);
472 /* Return the natural mode of an array, given that it is SIZE bytes in
473 total and has elements of type ELEM_TYPE. */
475 static enum machine_mode
476 mode_for_array (tree elem_type, tree size)
478 tree elem_size;
479 unsigned HOST_WIDE_INT int_size, int_elem_size;
480 bool limit_p;
482 /* One-element arrays get the component type's mode. */
483 elem_size = TYPE_SIZE (elem_type);
484 if (simple_cst_equal (size, elem_size))
485 return TYPE_MODE (elem_type);
487 limit_p = true;
488 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
490 int_size = tree_to_uhwi (size);
491 int_elem_size = tree_to_uhwi (elem_size);
492 if (int_elem_size > 0
493 && int_size % int_elem_size == 0
494 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
495 int_size / int_elem_size))
496 limit_p = false;
498 return mode_for_size_tree (size, MODE_INT, limit_p);
501 /* Subroutine of layout_decl: Force alignment required for the data type.
502 But if the decl itself wants greater alignment, don't override that. */
504 static inline void
505 do_type_align (tree type, tree decl)
507 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
509 DECL_ALIGN (decl) = TYPE_ALIGN (type);
510 if (TREE_CODE (decl) == FIELD_DECL)
511 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
515 /* Set the size, mode and alignment of a ..._DECL node.
516 TYPE_DECL does need this for C++.
517 Note that LABEL_DECL and CONST_DECL nodes do not need this,
518 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
519 Don't call layout_decl for them.
521 KNOWN_ALIGN is the amount of alignment we can assume this
522 decl has with no special effort. It is relevant only for FIELD_DECLs
523 and depends on the previous fields.
524 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
525 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
526 the record will be aligned to suit. */
528 void
529 layout_decl (tree decl, unsigned int known_align)
531 tree type = TREE_TYPE (decl);
532 enum tree_code code = TREE_CODE (decl);
533 rtx rtl = NULL_RTX;
534 location_t loc = DECL_SOURCE_LOCATION (decl);
536 if (code == CONST_DECL)
537 return;
539 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
540 || code == TYPE_DECL ||code == FIELD_DECL);
542 rtl = DECL_RTL_IF_SET (decl);
544 if (type == error_mark_node)
545 type = void_type_node;
547 /* Usually the size and mode come from the data type without change,
548 however, the front-end may set the explicit width of the field, so its
549 size may not be the same as the size of its type. This happens with
550 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
551 also happens with other fields. For example, the C++ front-end creates
552 zero-sized fields corresponding to empty base classes, and depends on
553 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
554 size in bytes from the size in bits. If we have already set the mode,
555 don't set it again since we can be called twice for FIELD_DECLs. */
557 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
558 if (DECL_MODE (decl) == VOIDmode)
559 DECL_MODE (decl) = TYPE_MODE (type);
561 if (DECL_SIZE (decl) == 0)
563 DECL_SIZE (decl) = TYPE_SIZE (type);
564 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
566 else if (DECL_SIZE_UNIT (decl) == 0)
567 DECL_SIZE_UNIT (decl)
568 = fold_convert_loc (loc, sizetype,
569 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
570 bitsize_unit_node));
572 if (code != FIELD_DECL)
573 /* For non-fields, update the alignment from the type. */
574 do_type_align (type, decl);
575 else
576 /* For fields, it's a bit more complicated... */
578 bool old_user_align = DECL_USER_ALIGN (decl);
579 bool zero_bitfield = false;
580 bool packed_p = DECL_PACKED (decl);
581 unsigned int mfa;
583 if (DECL_BIT_FIELD (decl))
585 DECL_BIT_FIELD_TYPE (decl) = type;
587 /* A zero-length bit-field affects the alignment of the next
588 field. In essence such bit-fields are not influenced by
589 any packing due to #pragma pack or attribute packed. */
590 if (integer_zerop (DECL_SIZE (decl))
591 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
593 zero_bitfield = true;
594 packed_p = false;
595 #ifdef PCC_BITFIELD_TYPE_MATTERS
596 if (PCC_BITFIELD_TYPE_MATTERS)
597 do_type_align (type, decl);
598 else
599 #endif
601 #ifdef EMPTY_FIELD_BOUNDARY
602 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
604 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
605 DECL_USER_ALIGN (decl) = 0;
607 #endif
611 /* See if we can use an ordinary integer mode for a bit-field.
612 Conditions are: a fixed size that is correct for another mode,
613 occupying a complete byte or bytes on proper boundary. */
614 if (TYPE_SIZE (type) != 0
615 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
616 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
618 enum machine_mode xmode
619 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
620 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
622 if (xmode != BLKmode
623 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
624 && (known_align == 0 || known_align >= xalign))
626 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
627 DECL_MODE (decl) = xmode;
628 DECL_BIT_FIELD (decl) = 0;
632 /* Turn off DECL_BIT_FIELD if we won't need it set. */
633 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
634 && known_align >= TYPE_ALIGN (type)
635 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
636 DECL_BIT_FIELD (decl) = 0;
638 else if (packed_p && DECL_USER_ALIGN (decl))
639 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
640 round up; we'll reduce it again below. We want packing to
641 supersede USER_ALIGN inherited from the type, but defer to
642 alignment explicitly specified on the field decl. */;
643 else
644 do_type_align (type, decl);
646 /* If the field is packed and not explicitly aligned, give it the
647 minimum alignment. Note that do_type_align may set
648 DECL_USER_ALIGN, so we need to check old_user_align instead. */
649 if (packed_p
650 && !old_user_align)
651 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
653 if (! packed_p && ! DECL_USER_ALIGN (decl))
655 /* Some targets (i.e. i386, VMS) limit struct field alignment
656 to a lower boundary than alignment of variables unless
657 it was overridden by attribute aligned. */
658 #ifdef BIGGEST_FIELD_ALIGNMENT
659 DECL_ALIGN (decl)
660 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
661 #endif
662 #ifdef ADJUST_FIELD_ALIGN
663 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
664 #endif
667 if (zero_bitfield)
668 mfa = initial_max_fld_align * BITS_PER_UNIT;
669 else
670 mfa = maximum_field_alignment;
671 /* Should this be controlled by DECL_USER_ALIGN, too? */
672 if (mfa != 0)
673 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
676 /* Evaluate nonconstant size only once, either now or as soon as safe. */
677 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
678 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
679 if (DECL_SIZE_UNIT (decl) != 0
680 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
681 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
683 /* If requested, warn about definitions of large data objects. */
684 if (warn_larger_than
685 && (code == VAR_DECL || code == PARM_DECL)
686 && ! DECL_EXTERNAL (decl))
688 tree size = DECL_SIZE_UNIT (decl);
690 if (size != 0 && TREE_CODE (size) == INTEGER_CST
691 && compare_tree_int (size, larger_than_size) > 0)
693 int size_as_int = TREE_INT_CST_LOW (size);
695 if (compare_tree_int (size, size_as_int) == 0)
696 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
697 else
698 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
699 decl, larger_than_size);
703 /* If the RTL was already set, update its mode and mem attributes. */
704 if (rtl)
706 PUT_MODE (rtl, DECL_MODE (decl));
707 SET_DECL_RTL (decl, 0);
708 set_mem_attributes (rtl, decl, 1);
709 SET_DECL_RTL (decl, rtl);
713 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
714 a previous call to layout_decl and calls it again. */
716 void
717 relayout_decl (tree decl)
719 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
720 DECL_MODE (decl) = VOIDmode;
721 if (!DECL_USER_ALIGN (decl))
722 DECL_ALIGN (decl) = 0;
723 SET_DECL_RTL (decl, 0);
725 layout_decl (decl, 0);
728 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
729 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
730 is to be passed to all other layout functions for this record. It is the
731 responsibility of the caller to call `free' for the storage returned.
732 Note that garbage collection is not permitted until we finish laying
733 out the record. */
735 record_layout_info
736 start_record_layout (tree t)
738 record_layout_info rli = XNEW (struct record_layout_info_s);
740 rli->t = t;
742 /* If the type has a minimum specified alignment (via an attribute
743 declaration, for example) use it -- otherwise, start with a
744 one-byte alignment. */
745 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
746 rli->unpacked_align = rli->record_align;
747 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
749 #ifdef STRUCTURE_SIZE_BOUNDARY
750 /* Packed structures don't need to have minimum size. */
751 if (! TYPE_PACKED (t))
753 unsigned tmp;
755 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
756 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
757 if (maximum_field_alignment != 0)
758 tmp = MIN (tmp, maximum_field_alignment);
759 rli->record_align = MAX (rli->record_align, tmp);
761 #endif
763 rli->offset = size_zero_node;
764 rli->bitpos = bitsize_zero_node;
765 rli->prev_field = 0;
766 rli->pending_statics = 0;
767 rli->packed_maybe_necessary = 0;
768 rli->remaining_in_alignment = 0;
770 return rli;
773 /* Return the combined bit position for the byte offset OFFSET and the
774 bit position BITPOS.
776 These functions operate on byte and bit positions present in FIELD_DECLs
777 and assume that these expressions result in no (intermediate) overflow.
778 This assumption is necessary to fold the expressions as much as possible,
779 so as to avoid creating artificially variable-sized types in languages
780 supporting variable-sized types like Ada. */
782 tree
783 bit_from_pos (tree offset, tree bitpos)
785 if (TREE_CODE (offset) == PLUS_EXPR)
786 offset = size_binop (PLUS_EXPR,
787 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
788 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
789 else
790 offset = fold_convert (bitsizetype, offset);
791 return size_binop (PLUS_EXPR, bitpos,
792 size_binop (MULT_EXPR, offset, bitsize_unit_node));
795 /* Return the combined truncated byte position for the byte offset OFFSET and
796 the bit position BITPOS. */
798 tree
799 byte_from_pos (tree offset, tree bitpos)
801 tree bytepos;
802 if (TREE_CODE (bitpos) == MULT_EXPR
803 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
804 bytepos = TREE_OPERAND (bitpos, 0);
805 else
806 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
807 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
810 /* Split the bit position POS into a byte offset *POFFSET and a bit
811 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
813 void
814 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
815 tree pos)
817 tree toff_align = bitsize_int (off_align);
818 if (TREE_CODE (pos) == MULT_EXPR
819 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
821 *poffset = size_binop (MULT_EXPR,
822 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
823 size_int (off_align / BITS_PER_UNIT));
824 *pbitpos = bitsize_zero_node;
826 else
828 *poffset = size_binop (MULT_EXPR,
829 fold_convert (sizetype,
830 size_binop (FLOOR_DIV_EXPR, pos,
831 toff_align)),
832 size_int (off_align / BITS_PER_UNIT));
833 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
837 /* Given a pointer to bit and byte offsets and an offset alignment,
838 normalize the offsets so they are within the alignment. */
840 void
841 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
843 /* If the bit position is now larger than it should be, adjust it
844 downwards. */
845 if (compare_tree_int (*pbitpos, off_align) >= 0)
847 tree offset, bitpos;
848 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
849 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
850 *pbitpos = bitpos;
854 /* Print debugging information about the information in RLI. */
856 DEBUG_FUNCTION void
857 debug_rli (record_layout_info rli)
859 print_node_brief (stderr, "type", rli->t, 0);
860 print_node_brief (stderr, "\noffset", rli->offset, 0);
861 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
863 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
864 rli->record_align, rli->unpacked_align,
865 rli->offset_align);
867 /* The ms_struct code is the only that uses this. */
868 if (targetm.ms_bitfield_layout_p (rli->t))
869 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
871 if (rli->packed_maybe_necessary)
872 fprintf (stderr, "packed may be necessary\n");
874 if (!vec_safe_is_empty (rli->pending_statics))
876 fprintf (stderr, "pending statics:\n");
877 debug_vec_tree (rli->pending_statics);
881 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
882 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
884 void
885 normalize_rli (record_layout_info rli)
887 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
890 /* Returns the size in bytes allocated so far. */
892 tree
893 rli_size_unit_so_far (record_layout_info rli)
895 return byte_from_pos (rli->offset, rli->bitpos);
898 /* Returns the size in bits allocated so far. */
900 tree
901 rli_size_so_far (record_layout_info rli)
903 return bit_from_pos (rli->offset, rli->bitpos);
906 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
907 the next available location within the record is given by KNOWN_ALIGN.
908 Update the variable alignment fields in RLI, and return the alignment
909 to give the FIELD. */
911 unsigned int
912 update_alignment_for_field (record_layout_info rli, tree field,
913 unsigned int known_align)
915 /* The alignment required for FIELD. */
916 unsigned int desired_align;
917 /* The type of this field. */
918 tree type = TREE_TYPE (field);
919 /* True if the field was explicitly aligned by the user. */
920 bool user_align;
921 bool is_bitfield;
923 /* Do not attempt to align an ERROR_MARK node */
924 if (TREE_CODE (type) == ERROR_MARK)
925 return 0;
927 /* Lay out the field so we know what alignment it needs. */
928 layout_decl (field, known_align);
929 desired_align = DECL_ALIGN (field);
930 user_align = DECL_USER_ALIGN (field);
932 is_bitfield = (type != error_mark_node
933 && DECL_BIT_FIELD_TYPE (field)
934 && ! integer_zerop (TYPE_SIZE (type)));
936 /* Record must have at least as much alignment as any field.
937 Otherwise, the alignment of the field within the record is
938 meaningless. */
939 if (targetm.ms_bitfield_layout_p (rli->t))
941 /* Here, the alignment of the underlying type of a bitfield can
942 affect the alignment of a record; even a zero-sized field
943 can do this. The alignment should be to the alignment of
944 the type, except that for zero-size bitfields this only
945 applies if there was an immediately prior, nonzero-size
946 bitfield. (That's the way it is, experimentally.) */
947 if ((!is_bitfield && !DECL_PACKED (field))
948 || ((DECL_SIZE (field) == NULL_TREE
949 || !integer_zerop (DECL_SIZE (field)))
950 ? !DECL_PACKED (field)
951 : (rli->prev_field
952 && DECL_BIT_FIELD_TYPE (rli->prev_field)
953 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
955 unsigned int type_align = TYPE_ALIGN (type);
956 type_align = MAX (type_align, desired_align);
957 if (maximum_field_alignment != 0)
958 type_align = MIN (type_align, maximum_field_alignment);
959 rli->record_align = MAX (rli->record_align, type_align);
960 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
963 #ifdef PCC_BITFIELD_TYPE_MATTERS
964 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
966 /* Named bit-fields cause the entire structure to have the
967 alignment implied by their type. Some targets also apply the same
968 rules to unnamed bitfields. */
969 if (DECL_NAME (field) != 0
970 || targetm.align_anon_bitfield ())
972 unsigned int type_align = TYPE_ALIGN (type);
974 #ifdef ADJUST_FIELD_ALIGN
975 if (! TYPE_USER_ALIGN (type))
976 type_align = ADJUST_FIELD_ALIGN (field, type_align);
977 #endif
979 /* Targets might chose to handle unnamed and hence possibly
980 zero-width bitfield. Those are not influenced by #pragmas
981 or packed attributes. */
982 if (integer_zerop (DECL_SIZE (field)))
984 if (initial_max_fld_align)
985 type_align = MIN (type_align,
986 initial_max_fld_align * BITS_PER_UNIT);
988 else if (maximum_field_alignment != 0)
989 type_align = MIN (type_align, maximum_field_alignment);
990 else if (DECL_PACKED (field))
991 type_align = MIN (type_align, BITS_PER_UNIT);
993 /* The alignment of the record is increased to the maximum
994 of the current alignment, the alignment indicated on the
995 field (i.e., the alignment specified by an __aligned__
996 attribute), and the alignment indicated by the type of
997 the field. */
998 rli->record_align = MAX (rli->record_align, desired_align);
999 rli->record_align = MAX (rli->record_align, type_align);
1001 if (warn_packed)
1002 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1003 user_align |= TYPE_USER_ALIGN (type);
1006 #endif
1007 else
1009 rli->record_align = MAX (rli->record_align, desired_align);
1010 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1013 TYPE_USER_ALIGN (rli->t) |= user_align;
1015 return desired_align;
1018 /* Called from place_field to handle unions. */
1020 static void
1021 place_union_field (record_layout_info rli, tree field)
1023 update_alignment_for_field (rli, field, /*known_align=*/0);
1025 DECL_FIELD_OFFSET (field) = size_zero_node;
1026 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1027 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1029 /* If this is an ERROR_MARK return *after* having set the
1030 field at the start of the union. This helps when parsing
1031 invalid fields. */
1032 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1033 return;
1035 /* We assume the union's size will be a multiple of a byte so we don't
1036 bother with BITPOS. */
1037 if (TREE_CODE (rli->t) == UNION_TYPE)
1038 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1039 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1040 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1041 DECL_SIZE_UNIT (field), rli->offset);
1044 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1045 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1046 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1047 units of alignment than the underlying TYPE. */
1048 static int
1049 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1050 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1052 /* Note that the calculation of OFFSET might overflow; we calculate it so
1053 that we still get the right result as long as ALIGN is a power of two. */
1054 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1056 offset = offset % align;
1057 return ((offset + size + align - 1) / align
1058 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1060 #endif
1062 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1063 is a FIELD_DECL to be added after those fields already present in
1064 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1065 callers that desire that behavior must manually perform that step.) */
1067 void
1068 place_field (record_layout_info rli, tree field)
1070 /* The alignment required for FIELD. */
1071 unsigned int desired_align;
1072 /* The alignment FIELD would have if we just dropped it into the
1073 record as it presently stands. */
1074 unsigned int known_align;
1075 unsigned int actual_align;
1076 /* The type of this field. */
1077 tree type = TREE_TYPE (field);
1079 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1081 /* If FIELD is static, then treat it like a separate variable, not
1082 really like a structure field. If it is a FUNCTION_DECL, it's a
1083 method. In both cases, all we do is lay out the decl, and we do
1084 it *after* the record is laid out. */
1085 if (TREE_CODE (field) == VAR_DECL)
1087 vec_safe_push (rli->pending_statics, field);
1088 return;
1091 /* Enumerators and enum types which are local to this class need not
1092 be laid out. Likewise for initialized constant fields. */
1093 else if (TREE_CODE (field) != FIELD_DECL)
1094 return;
1096 /* Unions are laid out very differently than records, so split
1097 that code off to another function. */
1098 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1100 place_union_field (rli, field);
1101 return;
1104 else if (TREE_CODE (type) == ERROR_MARK)
1106 /* Place this field at the current allocation position, so we
1107 maintain monotonicity. */
1108 DECL_FIELD_OFFSET (field) = rli->offset;
1109 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1110 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1111 return;
1114 /* Work out the known alignment so far. Note that A & (-A) is the
1115 value of the least-significant bit in A that is one. */
1116 if (! integer_zerop (rli->bitpos))
1117 known_align = (tree_to_uhwi (rli->bitpos)
1118 & - tree_to_uhwi (rli->bitpos));
1119 else if (integer_zerop (rli->offset))
1120 known_align = 0;
1121 else if (tree_fits_uhwi_p (rli->offset))
1122 known_align = (BITS_PER_UNIT
1123 * (tree_to_uhwi (rli->offset)
1124 & - tree_to_uhwi (rli->offset)));
1125 else
1126 known_align = rli->offset_align;
1128 desired_align = update_alignment_for_field (rli, field, known_align);
1129 if (known_align == 0)
1130 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1132 if (warn_packed && DECL_PACKED (field))
1134 if (known_align >= TYPE_ALIGN (type))
1136 if (TYPE_ALIGN (type) > desired_align)
1138 if (STRICT_ALIGNMENT)
1139 warning (OPT_Wattributes, "packed attribute causes "
1140 "inefficient alignment for %q+D", field);
1141 /* Don't warn if DECL_PACKED was set by the type. */
1142 else if (!TYPE_PACKED (rli->t))
1143 warning (OPT_Wattributes, "packed attribute is "
1144 "unnecessary for %q+D", field);
1147 else
1148 rli->packed_maybe_necessary = 1;
1151 /* Does this field automatically have alignment it needs by virtue
1152 of the fields that precede it and the record's own alignment? */
1153 if (known_align < desired_align)
1155 /* No, we need to skip space before this field.
1156 Bump the cumulative size to multiple of field alignment. */
1158 if (!targetm.ms_bitfield_layout_p (rli->t)
1159 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1160 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1162 /* If the alignment is still within offset_align, just align
1163 the bit position. */
1164 if (desired_align < rli->offset_align)
1165 rli->bitpos = round_up (rli->bitpos, desired_align);
1166 else
1168 /* First adjust OFFSET by the partial bits, then align. */
1169 rli->offset
1170 = size_binop (PLUS_EXPR, rli->offset,
1171 fold_convert (sizetype,
1172 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1173 bitsize_unit_node)));
1174 rli->bitpos = bitsize_zero_node;
1176 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1179 if (! TREE_CONSTANT (rli->offset))
1180 rli->offset_align = desired_align;
1181 if (targetm.ms_bitfield_layout_p (rli->t))
1182 rli->prev_field = NULL;
1185 /* Handle compatibility with PCC. Note that if the record has any
1186 variable-sized fields, we need not worry about compatibility. */
1187 #ifdef PCC_BITFIELD_TYPE_MATTERS
1188 if (PCC_BITFIELD_TYPE_MATTERS
1189 && ! targetm.ms_bitfield_layout_p (rli->t)
1190 && TREE_CODE (field) == FIELD_DECL
1191 && type != error_mark_node
1192 && DECL_BIT_FIELD (field)
1193 && (! DECL_PACKED (field)
1194 /* Enter for these packed fields only to issue a warning. */
1195 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1196 && maximum_field_alignment == 0
1197 && ! integer_zerop (DECL_SIZE (field))
1198 && tree_fits_uhwi_p (DECL_SIZE (field))
1199 && tree_fits_uhwi_p (rli->offset)
1200 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1202 unsigned int type_align = TYPE_ALIGN (type);
1203 tree dsize = DECL_SIZE (field);
1204 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1205 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1206 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1208 #ifdef ADJUST_FIELD_ALIGN
1209 if (! TYPE_USER_ALIGN (type))
1210 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1211 #endif
1213 /* A bit field may not span more units of alignment of its type
1214 than its type itself. Advance to next boundary if necessary. */
1215 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1217 if (DECL_PACKED (field))
1219 if (warn_packed_bitfield_compat == 1)
1220 inform
1221 (input_location,
1222 "offset of packed bit-field %qD has changed in GCC 4.4",
1223 field);
1225 else
1226 rli->bitpos = round_up (rli->bitpos, type_align);
1229 if (! DECL_PACKED (field))
1230 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1232 #endif
1234 #ifdef BITFIELD_NBYTES_LIMITED
1235 if (BITFIELD_NBYTES_LIMITED
1236 && ! targetm.ms_bitfield_layout_p (rli->t)
1237 && TREE_CODE (field) == FIELD_DECL
1238 && type != error_mark_node
1239 && DECL_BIT_FIELD_TYPE (field)
1240 && ! DECL_PACKED (field)
1241 && ! integer_zerop (DECL_SIZE (field))
1242 && tree_fits_uhwi_p (DECL_SIZE (field))
1243 && tree_fits_uhwi_p (rli->offset)
1244 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1246 unsigned int type_align = TYPE_ALIGN (type);
1247 tree dsize = DECL_SIZE (field);
1248 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1249 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1250 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1252 #ifdef ADJUST_FIELD_ALIGN
1253 if (! TYPE_USER_ALIGN (type))
1254 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1255 #endif
1257 if (maximum_field_alignment != 0)
1258 type_align = MIN (type_align, maximum_field_alignment);
1259 /* ??? This test is opposite the test in the containing if
1260 statement, so this code is unreachable currently. */
1261 else if (DECL_PACKED (field))
1262 type_align = MIN (type_align, BITS_PER_UNIT);
1264 /* A bit field may not span the unit of alignment of its type.
1265 Advance to next boundary if necessary. */
1266 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1267 rli->bitpos = round_up (rli->bitpos, type_align);
1269 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1271 #endif
1273 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1274 A subtlety:
1275 When a bit field is inserted into a packed record, the whole
1276 size of the underlying type is used by one or more same-size
1277 adjacent bitfields. (That is, if its long:3, 32 bits is
1278 used in the record, and any additional adjacent long bitfields are
1279 packed into the same chunk of 32 bits. However, if the size
1280 changes, a new field of that size is allocated.) In an unpacked
1281 record, this is the same as using alignment, but not equivalent
1282 when packing.
1284 Note: for compatibility, we use the type size, not the type alignment
1285 to determine alignment, since that matches the documentation */
1287 if (targetm.ms_bitfield_layout_p (rli->t))
1289 tree prev_saved = rli->prev_field;
1290 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1292 /* This is a bitfield if it exists. */
1293 if (rli->prev_field)
1295 /* If both are bitfields, nonzero, and the same size, this is
1296 the middle of a run. Zero declared size fields are special
1297 and handled as "end of run". (Note: it's nonzero declared
1298 size, but equal type sizes!) (Since we know that both
1299 the current and previous fields are bitfields by the
1300 time we check it, DECL_SIZE must be present for both.) */
1301 if (DECL_BIT_FIELD_TYPE (field)
1302 && !integer_zerop (DECL_SIZE (field))
1303 && !integer_zerop (DECL_SIZE (rli->prev_field))
1304 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1305 && tree_fits_uhwi_p (TYPE_SIZE (type))
1306 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1308 /* We're in the middle of a run of equal type size fields; make
1309 sure we realign if we run out of bits. (Not decl size,
1310 type size!) */
1311 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1313 if (rli->remaining_in_alignment < bitsize)
1315 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1317 /* out of bits; bump up to next 'word'. */
1318 rli->bitpos
1319 = size_binop (PLUS_EXPR, rli->bitpos,
1320 bitsize_int (rli->remaining_in_alignment));
1321 rli->prev_field = field;
1322 if (typesize < bitsize)
1323 rli->remaining_in_alignment = 0;
1324 else
1325 rli->remaining_in_alignment = typesize - bitsize;
1327 else
1328 rli->remaining_in_alignment -= bitsize;
1330 else
1332 /* End of a run: if leaving a run of bitfields of the same type
1333 size, we have to "use up" the rest of the bits of the type
1334 size.
1336 Compute the new position as the sum of the size for the prior
1337 type and where we first started working on that type.
1338 Note: since the beginning of the field was aligned then
1339 of course the end will be too. No round needed. */
1341 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1343 rli->bitpos
1344 = size_binop (PLUS_EXPR, rli->bitpos,
1345 bitsize_int (rli->remaining_in_alignment));
1347 else
1348 /* We "use up" size zero fields; the code below should behave
1349 as if the prior field was not a bitfield. */
1350 prev_saved = NULL;
1352 /* Cause a new bitfield to be captured, either this time (if
1353 currently a bitfield) or next time we see one. */
1354 if (!DECL_BIT_FIELD_TYPE (field)
1355 || integer_zerop (DECL_SIZE (field)))
1356 rli->prev_field = NULL;
1359 normalize_rli (rli);
1362 /* If we're starting a new run of same type size bitfields
1363 (or a run of non-bitfields), set up the "first of the run"
1364 fields.
1366 That is, if the current field is not a bitfield, or if there
1367 was a prior bitfield the type sizes differ, or if there wasn't
1368 a prior bitfield the size of the current field is nonzero.
1370 Note: we must be sure to test ONLY the type size if there was
1371 a prior bitfield and ONLY for the current field being zero if
1372 there wasn't. */
1374 if (!DECL_BIT_FIELD_TYPE (field)
1375 || (prev_saved != NULL
1376 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1377 : !integer_zerop (DECL_SIZE (field)) ))
1379 /* Never smaller than a byte for compatibility. */
1380 unsigned int type_align = BITS_PER_UNIT;
1382 /* (When not a bitfield), we could be seeing a flex array (with
1383 no DECL_SIZE). Since we won't be using remaining_in_alignment
1384 until we see a bitfield (and come by here again) we just skip
1385 calculating it. */
1386 if (DECL_SIZE (field) != NULL
1387 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1388 && tree_fits_uhwi_p (DECL_SIZE (field)))
1390 unsigned HOST_WIDE_INT bitsize
1391 = tree_to_uhwi (DECL_SIZE (field));
1392 unsigned HOST_WIDE_INT typesize
1393 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1395 if (typesize < bitsize)
1396 rli->remaining_in_alignment = 0;
1397 else
1398 rli->remaining_in_alignment = typesize - bitsize;
1401 /* Now align (conventionally) for the new type. */
1402 type_align = TYPE_ALIGN (TREE_TYPE (field));
1404 if (maximum_field_alignment != 0)
1405 type_align = MIN (type_align, maximum_field_alignment);
1407 rli->bitpos = round_up (rli->bitpos, type_align);
1409 /* If we really aligned, don't allow subsequent bitfields
1410 to undo that. */
1411 rli->prev_field = NULL;
1415 /* Offset so far becomes the position of this field after normalizing. */
1416 normalize_rli (rli);
1417 DECL_FIELD_OFFSET (field) = rli->offset;
1418 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1419 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1421 /* If this field ended up more aligned than we thought it would be (we
1422 approximate this by seeing if its position changed), lay out the field
1423 again; perhaps we can use an integral mode for it now. */
1424 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1425 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1426 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1427 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1428 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1429 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1430 actual_align = (BITS_PER_UNIT
1431 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1432 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1433 else
1434 actual_align = DECL_OFFSET_ALIGN (field);
1435 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1436 store / extract bit field operations will check the alignment of the
1437 record against the mode of bit fields. */
1439 if (known_align != actual_align)
1440 layout_decl (field, actual_align);
1442 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1443 rli->prev_field = field;
1445 /* Now add size of this field to the size of the record. If the size is
1446 not constant, treat the field as being a multiple of bytes and just
1447 adjust the offset, resetting the bit position. Otherwise, apportion the
1448 size amongst the bit position and offset. First handle the case of an
1449 unspecified size, which can happen when we have an invalid nested struct
1450 definition, such as struct j { struct j { int i; } }. The error message
1451 is printed in finish_struct. */
1452 if (DECL_SIZE (field) == 0)
1453 /* Do nothing. */;
1454 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1455 || TREE_OVERFLOW (DECL_SIZE (field)))
1457 rli->offset
1458 = size_binop (PLUS_EXPR, rli->offset,
1459 fold_convert (sizetype,
1460 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1461 bitsize_unit_node)));
1462 rli->offset
1463 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1464 rli->bitpos = bitsize_zero_node;
1465 rli->offset_align = MIN (rli->offset_align, desired_align);
1467 else if (targetm.ms_bitfield_layout_p (rli->t))
1469 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1471 /* If we ended a bitfield before the full length of the type then
1472 pad the struct out to the full length of the last type. */
1473 if ((DECL_CHAIN (field) == NULL
1474 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1475 && DECL_BIT_FIELD_TYPE (field)
1476 && !integer_zerop (DECL_SIZE (field)))
1477 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1478 bitsize_int (rli->remaining_in_alignment));
1480 normalize_rli (rli);
1482 else
1484 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1485 normalize_rli (rli);
1489 /* Assuming that all the fields have been laid out, this function uses
1490 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1491 indicated by RLI. */
1493 static void
1494 finalize_record_size (record_layout_info rli)
1496 tree unpadded_size, unpadded_size_unit;
1498 /* Now we want just byte and bit offsets, so set the offset alignment
1499 to be a byte and then normalize. */
1500 rli->offset_align = BITS_PER_UNIT;
1501 normalize_rli (rli);
1503 /* Determine the desired alignment. */
1504 #ifdef ROUND_TYPE_ALIGN
1505 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1506 rli->record_align);
1507 #else
1508 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1509 #endif
1511 /* Compute the size so far. Be sure to allow for extra bits in the
1512 size in bytes. We have guaranteed above that it will be no more
1513 than a single byte. */
1514 unpadded_size = rli_size_so_far (rli);
1515 unpadded_size_unit = rli_size_unit_so_far (rli);
1516 if (! integer_zerop (rli->bitpos))
1517 unpadded_size_unit
1518 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1520 /* Round the size up to be a multiple of the required alignment. */
1521 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1522 TYPE_SIZE_UNIT (rli->t)
1523 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1525 if (TREE_CONSTANT (unpadded_size)
1526 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1527 && input_location != BUILTINS_LOCATION)
1528 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1530 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1531 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1532 && TREE_CONSTANT (unpadded_size))
1534 tree unpacked_size;
1536 #ifdef ROUND_TYPE_ALIGN
1537 rli->unpacked_align
1538 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1539 #else
1540 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1541 #endif
1543 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1544 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1546 if (TYPE_NAME (rli->t))
1548 tree name;
1550 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1551 name = TYPE_NAME (rli->t);
1552 else
1553 name = DECL_NAME (TYPE_NAME (rli->t));
1555 if (STRICT_ALIGNMENT)
1556 warning (OPT_Wpacked, "packed attribute causes inefficient "
1557 "alignment for %qE", name);
1558 else
1559 warning (OPT_Wpacked,
1560 "packed attribute is unnecessary for %qE", name);
1562 else
1564 if (STRICT_ALIGNMENT)
1565 warning (OPT_Wpacked,
1566 "packed attribute causes inefficient alignment");
1567 else
1568 warning (OPT_Wpacked, "packed attribute is unnecessary");
1574 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1576 void
1577 compute_record_mode (tree type)
1579 tree field;
1580 enum machine_mode mode = VOIDmode;
1582 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1583 However, if possible, we use a mode that fits in a register
1584 instead, in order to allow for better optimization down the
1585 line. */
1586 SET_TYPE_MODE (type, BLKmode);
1588 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1589 return;
1591 /* A record which has any BLKmode members must itself be
1592 BLKmode; it can't go in a register. Unless the member is
1593 BLKmode only because it isn't aligned. */
1594 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1596 if (TREE_CODE (field) != FIELD_DECL)
1597 continue;
1599 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1600 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1601 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1602 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1603 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1604 || ! tree_fits_uhwi_p (bit_position (field))
1605 || DECL_SIZE (field) == 0
1606 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1607 return;
1609 /* If this field is the whole struct, remember its mode so
1610 that, say, we can put a double in a class into a DF
1611 register instead of forcing it to live in the stack. */
1612 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1613 mode = DECL_MODE (field);
1615 /* With some targets, it is sub-optimal to access an aligned
1616 BLKmode structure as a scalar. */
1617 if (targetm.member_type_forces_blk (field, mode))
1618 return;
1621 /* If we only have one real field; use its mode if that mode's size
1622 matches the type's size. This only applies to RECORD_TYPE. This
1623 does not apply to unions. */
1624 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1625 && tree_fits_uhwi_p (TYPE_SIZE (type))
1626 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1627 SET_TYPE_MODE (type, mode);
1628 else
1629 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1631 /* If structure's known alignment is less than what the scalar
1632 mode would need, and it matters, then stick with BLKmode. */
1633 if (TYPE_MODE (type) != BLKmode
1634 && STRICT_ALIGNMENT
1635 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1636 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1638 /* If this is the only reason this type is BLKmode, then
1639 don't force containing types to be BLKmode. */
1640 TYPE_NO_FORCE_BLK (type) = 1;
1641 SET_TYPE_MODE (type, BLKmode);
1645 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1646 out. */
1648 static void
1649 finalize_type_size (tree type)
1651 /* Normally, use the alignment corresponding to the mode chosen.
1652 However, where strict alignment is not required, avoid
1653 over-aligning structures, since most compilers do not do this
1654 alignment. */
1656 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1657 && (STRICT_ALIGNMENT
1658 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1659 && TREE_CODE (type) != QUAL_UNION_TYPE
1660 && TREE_CODE (type) != ARRAY_TYPE)))
1662 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1664 /* Don't override a larger alignment requirement coming from a user
1665 alignment of one of the fields. */
1666 if (mode_align >= TYPE_ALIGN (type))
1668 TYPE_ALIGN (type) = mode_align;
1669 TYPE_USER_ALIGN (type) = 0;
1673 /* Do machine-dependent extra alignment. */
1674 #ifdef ROUND_TYPE_ALIGN
1675 TYPE_ALIGN (type)
1676 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1677 #endif
1679 /* If we failed to find a simple way to calculate the unit size
1680 of the type, find it by division. */
1681 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1682 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1683 result will fit in sizetype. We will get more efficient code using
1684 sizetype, so we force a conversion. */
1685 TYPE_SIZE_UNIT (type)
1686 = fold_convert (sizetype,
1687 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1688 bitsize_unit_node));
1690 if (TYPE_SIZE (type) != 0)
1692 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1693 TYPE_SIZE_UNIT (type)
1694 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1697 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1698 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1699 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1700 if (TYPE_SIZE_UNIT (type) != 0
1701 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1702 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1704 /* Also layout any other variants of the type. */
1705 if (TYPE_NEXT_VARIANT (type)
1706 || type != TYPE_MAIN_VARIANT (type))
1708 tree variant;
1709 /* Record layout info of this variant. */
1710 tree size = TYPE_SIZE (type);
1711 tree size_unit = TYPE_SIZE_UNIT (type);
1712 unsigned int align = TYPE_ALIGN (type);
1713 unsigned int user_align = TYPE_USER_ALIGN (type);
1714 enum machine_mode mode = TYPE_MODE (type);
1716 /* Copy it into all variants. */
1717 for (variant = TYPE_MAIN_VARIANT (type);
1718 variant != 0;
1719 variant = TYPE_NEXT_VARIANT (variant))
1721 TYPE_SIZE (variant) = size;
1722 TYPE_SIZE_UNIT (variant) = size_unit;
1723 TYPE_ALIGN (variant) = align;
1724 TYPE_USER_ALIGN (variant) = user_align;
1725 SET_TYPE_MODE (variant, mode);
1730 /* Return a new underlying object for a bitfield started with FIELD. */
1732 static tree
1733 start_bitfield_representative (tree field)
1735 tree repr = make_node (FIELD_DECL);
1736 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1737 /* Force the representative to begin at a BITS_PER_UNIT aligned
1738 boundary - C++ may use tail-padding of a base object to
1739 continue packing bits so the bitfield region does not start
1740 at bit zero (see g++.dg/abi/bitfield5.C for example).
1741 Unallocated bits may happen for other reasons as well,
1742 for example Ada which allows explicit bit-granular structure layout. */
1743 DECL_FIELD_BIT_OFFSET (repr)
1744 = size_binop (BIT_AND_EXPR,
1745 DECL_FIELD_BIT_OFFSET (field),
1746 bitsize_int (~(BITS_PER_UNIT - 1)));
1747 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1748 DECL_SIZE (repr) = DECL_SIZE (field);
1749 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1750 DECL_PACKED (repr) = DECL_PACKED (field);
1751 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1752 return repr;
1755 /* Finish up a bitfield group that was started by creating the underlying
1756 object REPR with the last field in the bitfield group FIELD. */
1758 static void
1759 finish_bitfield_representative (tree repr, tree field)
1761 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1762 enum machine_mode mode;
1763 tree nextf, size;
1765 size = size_diffop (DECL_FIELD_OFFSET (field),
1766 DECL_FIELD_OFFSET (repr));
1767 gcc_assert (tree_fits_uhwi_p (size));
1768 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1769 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1770 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1771 + tree_to_uhwi (DECL_SIZE (field)));
1773 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1774 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1776 /* Now nothing tells us how to pad out bitsize ... */
1777 nextf = DECL_CHAIN (field);
1778 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1779 nextf = DECL_CHAIN (nextf);
1780 if (nextf)
1782 tree maxsize;
1783 /* If there was an error, the field may be not laid out
1784 correctly. Don't bother to do anything. */
1785 if (TREE_TYPE (nextf) == error_mark_node)
1786 return;
1787 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1788 DECL_FIELD_OFFSET (repr));
1789 if (tree_fits_uhwi_p (maxsize))
1791 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1792 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1793 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1794 /* If the group ends within a bitfield nextf does not need to be
1795 aligned to BITS_PER_UNIT. Thus round up. */
1796 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1798 else
1799 maxbitsize = bitsize;
1801 else
1803 /* ??? If you consider that tail-padding of this struct might be
1804 re-used when deriving from it we cannot really do the following
1805 and thus need to set maxsize to bitsize? Also we cannot
1806 generally rely on maxsize to fold to an integer constant, so
1807 use bitsize as fallback for this case. */
1808 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1809 DECL_FIELD_OFFSET (repr));
1810 if (tree_fits_uhwi_p (maxsize))
1811 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1812 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1813 else
1814 maxbitsize = bitsize;
1817 /* Only if we don't artificially break up the representative in
1818 the middle of a large bitfield with different possibly
1819 overlapping representatives. And all representatives start
1820 at byte offset. */
1821 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1823 /* Find the smallest nice mode to use. */
1824 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1825 mode = GET_MODE_WIDER_MODE (mode))
1826 if (GET_MODE_BITSIZE (mode) >= bitsize)
1827 break;
1828 if (mode != VOIDmode
1829 && (GET_MODE_BITSIZE (mode) > maxbitsize
1830 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1831 mode = VOIDmode;
1833 if (mode == VOIDmode)
1835 /* We really want a BLKmode representative only as a last resort,
1836 considering the member b in
1837 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1838 Otherwise we simply want to split the representative up
1839 allowing for overlaps within the bitfield region as required for
1840 struct { int a : 7; int b : 7;
1841 int c : 10; int d; } __attribute__((packed));
1842 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1843 DECL_SIZE (repr) = bitsize_int (bitsize);
1844 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1845 DECL_MODE (repr) = BLKmode;
1846 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1847 bitsize / BITS_PER_UNIT);
1849 else
1851 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1852 DECL_SIZE (repr) = bitsize_int (modesize);
1853 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1854 DECL_MODE (repr) = mode;
1855 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1858 /* Remember whether the bitfield group is at the end of the
1859 structure or not. */
1860 DECL_CHAIN (repr) = nextf;
1863 /* Compute and set FIELD_DECLs for the underlying objects we should
1864 use for bitfield access for the structure laid out with RLI. */
1866 static void
1867 finish_bitfield_layout (record_layout_info rli)
1869 tree field, prev;
1870 tree repr = NULL_TREE;
1872 /* Unions would be special, for the ease of type-punning optimizations
1873 we could use the underlying type as hint for the representative
1874 if the bitfield would fit and the representative would not exceed
1875 the union in size. */
1876 if (TREE_CODE (rli->t) != RECORD_TYPE)
1877 return;
1879 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1880 field; field = DECL_CHAIN (field))
1882 if (TREE_CODE (field) != FIELD_DECL)
1883 continue;
1885 /* In the C++ memory model, consecutive bit fields in a structure are
1886 considered one memory location and updating a memory location
1887 may not store into adjacent memory locations. */
1888 if (!repr
1889 && DECL_BIT_FIELD_TYPE (field))
1891 /* Start new representative. */
1892 repr = start_bitfield_representative (field);
1894 else if (repr
1895 && ! DECL_BIT_FIELD_TYPE (field))
1897 /* Finish off new representative. */
1898 finish_bitfield_representative (repr, prev);
1899 repr = NULL_TREE;
1901 else if (DECL_BIT_FIELD_TYPE (field))
1903 gcc_assert (repr != NULL_TREE);
1905 /* Zero-size bitfields finish off a representative and
1906 do not have a representative themselves. This is
1907 required by the C++ memory model. */
1908 if (integer_zerop (DECL_SIZE (field)))
1910 finish_bitfield_representative (repr, prev);
1911 repr = NULL_TREE;
1914 /* We assume that either DECL_FIELD_OFFSET of the representative
1915 and each bitfield member is a constant or they are equal.
1916 This is because we need to be able to compute the bit-offset
1917 of each field relative to the representative in get_bit_range
1918 during RTL expansion.
1919 If these constraints are not met, simply force a new
1920 representative to be generated. That will at most
1921 generate worse code but still maintain correctness with
1922 respect to the C++ memory model. */
1923 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1924 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1925 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1926 DECL_FIELD_OFFSET (field), 0)))
1928 finish_bitfield_representative (repr, prev);
1929 repr = start_bitfield_representative (field);
1932 else
1933 continue;
1935 if (repr)
1936 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1938 prev = field;
1941 if (repr)
1942 finish_bitfield_representative (repr, prev);
1945 /* Do all of the work required to layout the type indicated by RLI,
1946 once the fields have been laid out. This function will call `free'
1947 for RLI, unless FREE_P is false. Passing a value other than false
1948 for FREE_P is bad practice; this option only exists to support the
1949 G++ 3.2 ABI. */
1951 void
1952 finish_record_layout (record_layout_info rli, int free_p)
1954 tree variant;
1956 /* Compute the final size. */
1957 finalize_record_size (rli);
1959 /* Compute the TYPE_MODE for the record. */
1960 compute_record_mode (rli->t);
1962 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1963 finalize_type_size (rli->t);
1965 /* Compute bitfield representatives. */
1966 finish_bitfield_layout (rli);
1968 /* Propagate TYPE_PACKED to variants. With C++ templates,
1969 handle_packed_attribute is too early to do this. */
1970 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1971 variant = TYPE_NEXT_VARIANT (variant))
1972 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1974 /* Lay out any static members. This is done now because their type
1975 may use the record's type. */
1976 while (!vec_safe_is_empty (rli->pending_statics))
1977 layout_decl (rli->pending_statics->pop (), 0);
1979 /* Clean up. */
1980 if (free_p)
1982 vec_free (rli->pending_statics);
1983 free (rli);
1988 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1989 NAME, its fields are chained in reverse on FIELDS.
1991 If ALIGN_TYPE is non-null, it is given the same alignment as
1992 ALIGN_TYPE. */
1994 void
1995 finish_builtin_struct (tree type, const char *name, tree fields,
1996 tree align_type)
1998 tree tail, next;
2000 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2002 DECL_FIELD_CONTEXT (fields) = type;
2003 next = DECL_CHAIN (fields);
2004 DECL_CHAIN (fields) = tail;
2006 TYPE_FIELDS (type) = tail;
2008 if (align_type)
2010 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2011 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2014 layout_type (type);
2015 #if 0 /* not yet, should get fixed properly later */
2016 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2017 #else
2018 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2019 TYPE_DECL, get_identifier (name), type);
2020 #endif
2021 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2022 layout_decl (TYPE_NAME (type), 0);
2025 /* Calculate the mode, size, and alignment for TYPE.
2026 For an array type, calculate the element separation as well.
2027 Record TYPE on the chain of permanent or temporary types
2028 so that dbxout will find out about it.
2030 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2031 layout_type does nothing on such a type.
2033 If the type is incomplete, its TYPE_SIZE remains zero. */
2035 void
2036 layout_type (tree type)
2038 gcc_assert (type);
2040 if (type == error_mark_node)
2041 return;
2043 /* Do nothing if type has been laid out before. */
2044 if (TYPE_SIZE (type))
2045 return;
2047 switch (TREE_CODE (type))
2049 case LANG_TYPE:
2050 /* This kind of type is the responsibility
2051 of the language-specific code. */
2052 gcc_unreachable ();
2054 case BOOLEAN_TYPE:
2055 case INTEGER_TYPE:
2056 case ENUMERAL_TYPE:
2057 SET_TYPE_MODE (type,
2058 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2059 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2060 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2061 break;
2063 case REAL_TYPE:
2064 SET_TYPE_MODE (type,
2065 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2066 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2067 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2068 break;
2070 case FIXED_POINT_TYPE:
2071 /* TYPE_MODE (type) has been set already. */
2072 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2073 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2074 break;
2076 case COMPLEX_TYPE:
2077 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2078 SET_TYPE_MODE (type,
2079 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2080 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2081 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2082 0));
2083 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2084 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2085 break;
2087 case VECTOR_TYPE:
2089 int nunits = TYPE_VECTOR_SUBPARTS (type);
2090 tree innertype = TREE_TYPE (type);
2092 gcc_assert (!(nunits & (nunits - 1)));
2094 /* Find an appropriate mode for the vector type. */
2095 if (TYPE_MODE (type) == VOIDmode)
2096 SET_TYPE_MODE (type,
2097 mode_for_vector (TYPE_MODE (innertype), nunits));
2099 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2100 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2101 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2102 TYPE_SIZE_UNIT (innertype),
2103 size_int (nunits));
2104 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2105 bitsize_int (nunits));
2107 /* For vector types, we do not default to the mode's alignment.
2108 Instead, query a target hook, defaulting to natural alignment.
2109 This prevents ABI changes depending on whether or not native
2110 vector modes are supported. */
2111 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2113 /* However, if the underlying mode requires a bigger alignment than
2114 what the target hook provides, we cannot use the mode. For now,
2115 simply reject that case. */
2116 gcc_assert (TYPE_ALIGN (type)
2117 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2118 break;
2121 case VOID_TYPE:
2122 /* This is an incomplete type and so doesn't have a size. */
2123 TYPE_ALIGN (type) = 1;
2124 TYPE_USER_ALIGN (type) = 0;
2125 SET_TYPE_MODE (type, VOIDmode);
2126 break;
2128 case POINTER_BOUNDS_TYPE:
2129 SET_TYPE_MODE (type,
2130 mode_for_size (TYPE_PRECISION (type),
2131 MODE_POINTER_BOUNDS, 0));
2132 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2133 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2134 break;
2136 case OFFSET_TYPE:
2137 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2138 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2139 /* A pointer might be MODE_PARTIAL_INT,
2140 but ptrdiff_t must be integral. */
2141 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2142 TYPE_PRECISION (type) = POINTER_SIZE;
2143 break;
2145 case FUNCTION_TYPE:
2146 case METHOD_TYPE:
2147 /* It's hard to see what the mode and size of a function ought to
2148 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2149 make it consistent with that. */
2150 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2151 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2152 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2153 break;
2155 case POINTER_TYPE:
2156 case REFERENCE_TYPE:
2158 enum machine_mode mode = TYPE_MODE (type);
2159 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2161 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2162 mode = targetm.addr_space.address_mode (as);
2165 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2166 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2167 TYPE_UNSIGNED (type) = 1;
2168 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2170 break;
2172 case ARRAY_TYPE:
2174 tree index = TYPE_DOMAIN (type);
2175 tree element = TREE_TYPE (type);
2177 build_pointer_type (element);
2179 /* We need to know both bounds in order to compute the size. */
2180 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2181 && TYPE_SIZE (element))
2183 tree ub = TYPE_MAX_VALUE (index);
2184 tree lb = TYPE_MIN_VALUE (index);
2185 tree element_size = TYPE_SIZE (element);
2186 tree length;
2188 /* Make sure that an array of zero-sized element is zero-sized
2189 regardless of its extent. */
2190 if (integer_zerop (element_size))
2191 length = size_zero_node;
2193 /* The computation should happen in the original signedness so
2194 that (possible) negative values are handled appropriately
2195 when determining overflow. */
2196 else
2198 /* ??? When it is obvious that the range is signed
2199 represent it using ssizetype. */
2200 if (TREE_CODE (lb) == INTEGER_CST
2201 && TREE_CODE (ub) == INTEGER_CST
2202 && TYPE_UNSIGNED (TREE_TYPE (lb))
2203 && tree_int_cst_lt (ub, lb))
2205 unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
2206 lb = double_int_to_tree
2207 (ssizetype,
2208 tree_to_double_int (lb).sext (prec));
2209 ub = double_int_to_tree
2210 (ssizetype,
2211 tree_to_double_int (ub).sext (prec));
2213 length
2214 = fold_convert (sizetype,
2215 size_binop (PLUS_EXPR,
2216 build_int_cst (TREE_TYPE (lb), 1),
2217 size_binop (MINUS_EXPR, ub, lb)));
2220 /* ??? We have no way to distinguish a null-sized array from an
2221 array spanning the whole sizetype range, so we arbitrarily
2222 decide that [0, -1] is the only valid representation. */
2223 if (integer_zerop (length)
2224 && TREE_OVERFLOW (length)
2225 && integer_zerop (lb))
2226 length = size_zero_node;
2228 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2229 fold_convert (bitsizetype,
2230 length));
2232 /* If we know the size of the element, calculate the total size
2233 directly, rather than do some division thing below. This
2234 optimization helps Fortran assumed-size arrays (where the
2235 size of the array is determined at runtime) substantially. */
2236 if (TYPE_SIZE_UNIT (element))
2237 TYPE_SIZE_UNIT (type)
2238 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2241 /* Now round the alignment and size,
2242 using machine-dependent criteria if any. */
2244 #ifdef ROUND_TYPE_ALIGN
2245 TYPE_ALIGN (type)
2246 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2247 #else
2248 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2249 #endif
2250 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2251 SET_TYPE_MODE (type, BLKmode);
2252 if (TYPE_SIZE (type) != 0
2253 && ! targetm.member_type_forces_blk (type, VOIDmode)
2254 /* BLKmode elements force BLKmode aggregate;
2255 else extract/store fields may lose. */
2256 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2257 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2259 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2260 TYPE_SIZE (type)));
2261 if (TYPE_MODE (type) != BLKmode
2262 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2263 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2265 TYPE_NO_FORCE_BLK (type) = 1;
2266 SET_TYPE_MODE (type, BLKmode);
2269 /* When the element size is constant, check that it is at least as
2270 large as the element alignment. */
2271 if (TYPE_SIZE_UNIT (element)
2272 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2273 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2274 TYPE_ALIGN_UNIT. */
2275 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2276 && !integer_zerop (TYPE_SIZE_UNIT (element))
2277 && compare_tree_int (TYPE_SIZE_UNIT (element),
2278 TYPE_ALIGN_UNIT (element)) < 0)
2279 error ("alignment of array elements is greater than element size");
2280 break;
2283 case RECORD_TYPE:
2284 case UNION_TYPE:
2285 case QUAL_UNION_TYPE:
2287 tree field;
2288 record_layout_info rli;
2290 /* Initialize the layout information. */
2291 rli = start_record_layout (type);
2293 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2294 in the reverse order in building the COND_EXPR that denotes
2295 its size. We reverse them again later. */
2296 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2297 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2299 /* Place all the fields. */
2300 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2301 place_field (rli, field);
2303 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2304 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2306 /* Finish laying out the record. */
2307 finish_record_layout (rli, /*free_p=*/true);
2309 break;
2311 default:
2312 gcc_unreachable ();
2315 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2316 records and unions, finish_record_layout already called this
2317 function. */
2318 if (TREE_CODE (type) != RECORD_TYPE
2319 && TREE_CODE (type) != UNION_TYPE
2320 && TREE_CODE (type) != QUAL_UNION_TYPE)
2321 finalize_type_size (type);
2323 /* We should never see alias sets on incomplete aggregates. And we
2324 should not call layout_type on not incomplete aggregates. */
2325 if (AGGREGATE_TYPE_P (type))
2326 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2329 /* Vector types need to re-check the target flags each time we report
2330 the machine mode. We need to do this because attribute target can
2331 change the result of vector_mode_supported_p and have_regs_of_mode
2332 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2333 change on a per-function basis. */
2334 /* ??? Possibly a better solution is to run through all the types
2335 referenced by a function and re-compute the TYPE_MODE once, rather
2336 than make the TYPE_MODE macro call a function. */
2338 enum machine_mode
2339 vector_type_mode (const_tree t)
2341 enum machine_mode mode;
2343 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2345 mode = t->type_common.mode;
2346 if (VECTOR_MODE_P (mode)
2347 && (!targetm.vector_mode_supported_p (mode)
2348 || !have_regs_of_mode[mode]))
2350 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2352 /* For integers, try mapping it to a same-sized scalar mode. */
2353 if (GET_MODE_CLASS (innermode) == MODE_INT)
2355 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2356 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2358 if (mode != VOIDmode && have_regs_of_mode[mode])
2359 return mode;
2362 return BLKmode;
2365 return mode;
2368 /* Create and return a type for signed integers of PRECISION bits. */
2370 tree
2371 make_signed_type (int precision)
2373 tree type = make_node (INTEGER_TYPE);
2375 TYPE_PRECISION (type) = precision;
2377 fixup_signed_type (type);
2378 return type;
2381 /* Create and return a type for unsigned integers of PRECISION bits. */
2383 tree
2384 make_unsigned_type (int precision)
2386 tree type = make_node (INTEGER_TYPE);
2388 TYPE_PRECISION (type) = precision;
2390 fixup_unsigned_type (type);
2391 return type;
2394 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2395 and SATP. */
2397 tree
2398 make_fract_type (int precision, int unsignedp, int satp)
2400 tree type = make_node (FIXED_POINT_TYPE);
2402 TYPE_PRECISION (type) = precision;
2404 if (satp)
2405 TYPE_SATURATING (type) = 1;
2407 /* Lay out the type: set its alignment, size, etc. */
2408 if (unsignedp)
2410 TYPE_UNSIGNED (type) = 1;
2411 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2413 else
2414 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2415 layout_type (type);
2417 return type;
2420 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2421 and SATP. */
2423 tree
2424 make_accum_type (int precision, int unsignedp, int satp)
2426 tree type = make_node (FIXED_POINT_TYPE);
2428 TYPE_PRECISION (type) = precision;
2430 if (satp)
2431 TYPE_SATURATING (type) = 1;
2433 /* Lay out the type: set its alignment, size, etc. */
2434 if (unsignedp)
2436 TYPE_UNSIGNED (type) = 1;
2437 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2439 else
2440 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2441 layout_type (type);
2443 return type;
2446 /* Initialize sizetypes so layout_type can use them. */
2448 void
2449 initialize_sizetypes (void)
2451 int precision, bprecision;
2453 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2454 if (strcmp (SIZETYPE, "unsigned int") == 0)
2455 precision = INT_TYPE_SIZE;
2456 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2457 precision = LONG_TYPE_SIZE;
2458 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2459 precision = LONG_LONG_TYPE_SIZE;
2460 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2461 precision = SHORT_TYPE_SIZE;
2462 else
2463 gcc_unreachable ();
2465 bprecision
2466 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2467 bprecision
2468 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2469 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2470 bprecision = HOST_BITS_PER_DOUBLE_INT;
2472 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2473 sizetype = make_node (INTEGER_TYPE);
2474 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2475 TYPE_PRECISION (sizetype) = precision;
2476 TYPE_UNSIGNED (sizetype) = 1;
2477 bitsizetype = make_node (INTEGER_TYPE);
2478 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2479 TYPE_PRECISION (bitsizetype) = bprecision;
2480 TYPE_UNSIGNED (bitsizetype) = 1;
2482 /* Now layout both types manually. */
2483 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2484 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2485 TYPE_SIZE (sizetype) = bitsize_int (precision);
2486 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2487 set_min_and_max_values_for_integral_type (sizetype, precision,
2488 /*is_unsigned=*/true);
2490 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2491 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2492 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2493 TYPE_SIZE_UNIT (bitsizetype)
2494 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2495 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2496 /*is_unsigned=*/true);
2498 /* Create the signed variants of *sizetype. */
2499 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2500 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2501 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2502 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2505 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2506 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2507 for TYPE, based on the PRECISION and whether or not the TYPE
2508 IS_UNSIGNED. PRECISION need not correspond to a width supported
2509 natively by the hardware; for example, on a machine with 8-bit,
2510 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2511 61. */
2513 void
2514 set_min_and_max_values_for_integral_type (tree type,
2515 int precision,
2516 bool is_unsigned)
2518 tree min_value;
2519 tree max_value;
2521 /* For bitfields with zero width we end up creating integer types
2522 with zero precision. Don't assign any minimum/maximum values
2523 to those types, they don't have any valid value. */
2524 if (precision < 1)
2525 return;
2527 if (is_unsigned)
2529 min_value = build_int_cst (type, 0);
2530 max_value
2531 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2532 ? -1
2533 : ((HOST_WIDE_INT) 1 << precision) - 1,
2534 precision - HOST_BITS_PER_WIDE_INT > 0
2535 ? ((unsigned HOST_WIDE_INT) ~0
2536 >> (HOST_BITS_PER_WIDE_INT
2537 - (precision - HOST_BITS_PER_WIDE_INT)))
2538 : 0);
2540 else
2542 min_value
2543 = build_int_cst_wide (type,
2544 (precision - HOST_BITS_PER_WIDE_INT > 0
2546 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2547 (((HOST_WIDE_INT) (-1)
2548 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2549 ? precision - HOST_BITS_PER_WIDE_INT - 1
2550 : 0))));
2551 max_value
2552 = build_int_cst_wide (type,
2553 (precision - HOST_BITS_PER_WIDE_INT > 0
2554 ? -1
2555 : (HOST_WIDE_INT)
2556 (((unsigned HOST_WIDE_INT) 1
2557 << (precision - 1)) - 1)),
2558 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2559 ? (HOST_WIDE_INT)
2560 ((((unsigned HOST_WIDE_INT) 1
2561 << (precision - HOST_BITS_PER_WIDE_INT
2562 - 1))) - 1)
2563 : 0));
2566 TYPE_MIN_VALUE (type) = min_value;
2567 TYPE_MAX_VALUE (type) = max_value;
2570 /* Set the extreme values of TYPE based on its precision in bits,
2571 then lay it out. Used when make_signed_type won't do
2572 because the tree code is not INTEGER_TYPE.
2573 E.g. for Pascal, when the -fsigned-char option is given. */
2575 void
2576 fixup_signed_type (tree type)
2578 int precision = TYPE_PRECISION (type);
2580 /* We can not represent properly constants greater then
2581 HOST_BITS_PER_DOUBLE_INT, still we need the types
2582 as they are used by i386 vector extensions and friends. */
2583 if (precision > HOST_BITS_PER_DOUBLE_INT)
2584 precision = HOST_BITS_PER_DOUBLE_INT;
2586 set_min_and_max_values_for_integral_type (type, precision,
2587 /*is_unsigned=*/false);
2589 /* Lay out the type: set its alignment, size, etc. */
2590 layout_type (type);
2593 /* Set the extreme values of TYPE based on its precision in bits,
2594 then lay it out. This is used both in `make_unsigned_type'
2595 and for enumeral types. */
2597 void
2598 fixup_unsigned_type (tree type)
2600 int precision = TYPE_PRECISION (type);
2602 /* We can not represent properly constants greater then
2603 HOST_BITS_PER_DOUBLE_INT, still we need the types
2604 as they are used by i386 vector extensions and friends. */
2605 if (precision > HOST_BITS_PER_DOUBLE_INT)
2606 precision = HOST_BITS_PER_DOUBLE_INT;
2608 TYPE_UNSIGNED (type) = 1;
2610 set_min_and_max_values_for_integral_type (type, precision,
2611 /*is_unsigned=*/true);
2613 /* Lay out the type: set its alignment, size, etc. */
2614 layout_type (type);
2617 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2618 starting at BITPOS.
2620 BITREGION_START is the bit position of the first bit in this
2621 sequence of bit fields. BITREGION_END is the last bit in this
2622 sequence. If these two fields are non-zero, we should restrict the
2623 memory access to that range. Otherwise, we are allowed to touch
2624 any adjacent non bit-fields.
2626 ALIGN is the alignment of the underlying object in bits.
2627 VOLATILEP says whether the bitfield is volatile. */
2629 bit_field_mode_iterator
2630 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2631 HOST_WIDE_INT bitregion_start,
2632 HOST_WIDE_INT bitregion_end,
2633 unsigned int align, bool volatilep)
2634 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2635 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2636 m_bitregion_end (bitregion_end), m_align (align),
2637 m_volatilep (volatilep), m_count (0)
2639 if (!m_bitregion_end)
2641 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2642 the bitfield is mapped and won't trap, provided that ALIGN isn't
2643 too large. The cap is the biggest required alignment for data,
2644 or at least the word size. And force one such chunk at least. */
2645 unsigned HOST_WIDE_INT units
2646 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2647 if (bitsize <= 0)
2648 bitsize = 1;
2649 m_bitregion_end = bitpos + bitsize + units - 1;
2650 m_bitregion_end -= m_bitregion_end % units + 1;
2654 /* Calls to this function return successively larger modes that can be used
2655 to represent the bitfield. Return true if another bitfield mode is
2656 available, storing it in *OUT_MODE if so. */
2658 bool
2659 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2661 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2663 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2665 /* Skip modes that don't have full precision. */
2666 if (unit != GET_MODE_PRECISION (m_mode))
2667 continue;
2669 /* Stop if the mode is too wide to handle efficiently. */
2670 if (unit > MAX_FIXED_MODE_SIZE)
2671 break;
2673 /* Don't deliver more than one multiword mode; the smallest one
2674 should be used. */
2675 if (m_count > 0 && unit > BITS_PER_WORD)
2676 break;
2678 /* Skip modes that are too small. */
2679 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2680 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2681 if (subend > unit)
2682 continue;
2684 /* Stop if the mode goes outside the bitregion. */
2685 HOST_WIDE_INT start = m_bitpos - substart;
2686 if (m_bitregion_start && start < m_bitregion_start)
2687 break;
2688 HOST_WIDE_INT end = start + unit;
2689 if (end > m_bitregion_end + 1)
2690 break;
2692 /* Stop if the mode requires too much alignment. */
2693 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2694 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2695 break;
2697 *out_mode = m_mode;
2698 m_mode = GET_MODE_WIDER_MODE (m_mode);
2699 m_count++;
2700 return true;
2702 return false;
2705 /* Return true if smaller modes are generally preferred for this kind
2706 of bitfield. */
2708 bool
2709 bit_field_mode_iterator::prefer_smaller_modes ()
2711 return (m_volatilep
2712 ? targetm.narrow_volatile_bitfield ()
2713 : !SLOW_BYTE_ACCESS);
2716 /* Find the best machine mode to use when referencing a bit field of length
2717 BITSIZE bits starting at BITPOS.
2719 BITREGION_START is the bit position of the first bit in this
2720 sequence of bit fields. BITREGION_END is the last bit in this
2721 sequence. If these two fields are non-zero, we should restrict the
2722 memory access to that range. Otherwise, we are allowed to touch
2723 any adjacent non bit-fields.
2725 The underlying object is known to be aligned to a boundary of ALIGN bits.
2726 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2727 larger than LARGEST_MODE (usually SImode).
2729 If no mode meets all these conditions, we return VOIDmode.
2731 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2732 smallest mode meeting these conditions.
2734 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2735 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2736 all the conditions.
2738 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2739 decide which of the above modes should be used. */
2741 enum machine_mode
2742 get_best_mode (int bitsize, int bitpos,
2743 unsigned HOST_WIDE_INT bitregion_start,
2744 unsigned HOST_WIDE_INT bitregion_end,
2745 unsigned int align,
2746 enum machine_mode largest_mode, bool volatilep)
2748 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2749 bitregion_end, align, volatilep);
2750 enum machine_mode widest_mode = VOIDmode;
2751 enum machine_mode mode;
2752 while (iter.next_mode (&mode)
2753 /* ??? For historical reasons, reject modes that would normally
2754 receive greater alignment, even if unaligned accesses are
2755 acceptable. This has both advantages and disadvantages.
2756 Removing this check means that something like:
2758 struct s { unsigned int x; unsigned int y; };
2759 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2761 can be implemented using a single load and compare on
2762 64-bit machines that have no alignment restrictions.
2763 For example, on powerpc64-linux-gnu, we would generate:
2765 ld 3,0(3)
2766 cntlzd 3,3
2767 srdi 3,3,6
2770 rather than:
2772 lwz 9,0(3)
2773 cmpwi 7,9,0
2774 bne 7,.L3
2775 lwz 3,4(3)
2776 cntlzw 3,3
2777 srwi 3,3,5
2778 extsw 3,3
2780 .p2align 4,,15
2781 .L3:
2782 li 3,0
2785 However, accessing more than one field can make life harder
2786 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2787 has a series of unsigned short copies followed by a series of
2788 unsigned short comparisons. With this check, both the copies
2789 and comparisons remain 16-bit accesses and FRE is able
2790 to eliminate the latter. Without the check, the comparisons
2791 can be done using 2 64-bit operations, which FRE isn't able
2792 to handle in the same way.
2794 Either way, it would probably be worth disabling this check
2795 during expand. One particular example where removing the
2796 check would help is the get_best_mode call in store_bit_field.
2797 If we are given a memory bitregion of 128 bits that is aligned
2798 to a 64-bit boundary, and the bitfield we want to modify is
2799 in the second half of the bitregion, this check causes
2800 store_bitfield to turn the memory into a 64-bit reference
2801 to the _first_ half of the region. We later use
2802 adjust_bitfield_address to get a reference to the correct half,
2803 but doing so looks to adjust_bitfield_address as though we are
2804 moving past the end of the original object, so it drops the
2805 associated MEM_EXPR and MEM_OFFSET. Removing the check
2806 causes store_bit_field to keep a 128-bit memory reference,
2807 so that the final bitfield reference still has a MEM_EXPR
2808 and MEM_OFFSET. */
2809 && GET_MODE_ALIGNMENT (mode) <= align
2810 && (largest_mode == VOIDmode
2811 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2813 widest_mode = mode;
2814 if (iter.prefer_smaller_modes ())
2815 break;
2817 return widest_mode;
2820 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2821 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2823 void
2824 get_mode_bounds (enum machine_mode mode, int sign,
2825 enum machine_mode target_mode,
2826 rtx *mmin, rtx *mmax)
2828 unsigned size = GET_MODE_BITSIZE (mode);
2829 unsigned HOST_WIDE_INT min_val, max_val;
2831 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2833 if (sign)
2835 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2836 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2838 else
2840 min_val = 0;
2841 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2844 *mmin = gen_int_mode (min_val, target_mode);
2845 *mmax = gen_int_mode (max_val, target_mode);
2848 #include "gt-stor-layout.h"