2013-11-25 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / rtlanal.c
blob0cd0c7e1a74be6d16d676d3496343d008270b092
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "df.h"
37 #include "tree.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx, const_rtx, void *);
43 static bool covers_regno_p (const_rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50 const_rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 const_rtx, enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
76 DESTINATION. */
78 static unsigned int
79 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 /* Return 1 if the value of X is unstable
82 (would be different at a different point in the program).
83 The frame pointer, arg pointer, etc. are considered stable
84 (within one function) and so is anything marked `unchanging'. */
86 int
87 rtx_unstable_p (const_rtx x)
89 const RTX_CODE code = GET_CODE (x);
90 int i;
91 const char *fmt;
93 switch (code)
95 case MEM:
96 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98 case CONST:
99 CASE_CONST_ANY:
100 case SYMBOL_REF:
101 case LABEL_REF:
102 return 0;
104 case REG:
105 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
106 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
107 /* The arg pointer varies if it is not a fixed register. */
108 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
109 return 0;
110 /* ??? When call-clobbered, the value is stable modulo the restore
111 that must happen after a call. This currently screws up local-alloc
112 into believing that the restore is not needed. */
113 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
114 return 0;
115 return 1;
117 case ASM_OPERANDS:
118 if (MEM_VOLATILE_P (x))
119 return 1;
121 /* Fall through. */
123 default:
124 break;
127 fmt = GET_RTX_FORMAT (code);
128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
129 if (fmt[i] == 'e')
131 if (rtx_unstable_p (XEXP (x, i)))
132 return 1;
134 else if (fmt[i] == 'E')
136 int j;
137 for (j = 0; j < XVECLEN (x, i); j++)
138 if (rtx_unstable_p (XVECEXP (x, i, j)))
139 return 1;
142 return 0;
145 /* Return 1 if X has a value that can vary even between two
146 executions of the program. 0 means X can be compared reliably
147 against certain constants or near-constants.
148 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
149 zero, we are slightly more conservative.
150 The frame pointer and the arg pointer are considered constant. */
152 bool
153 rtx_varies_p (const_rtx x, bool for_alias)
155 RTX_CODE code;
156 int i;
157 const char *fmt;
159 if (!x)
160 return 0;
162 code = GET_CODE (x);
163 switch (code)
165 case MEM:
166 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
168 case CONST:
169 CASE_CONST_ANY:
170 case SYMBOL_REF:
171 case LABEL_REF:
172 return 0;
174 case REG:
175 /* Note that we have to test for the actual rtx used for the frame
176 and arg pointers and not just the register number in case we have
177 eliminated the frame and/or arg pointer and are using it
178 for pseudos. */
179 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
180 /* The arg pointer varies if it is not a fixed register. */
181 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
182 return 0;
183 if (x == pic_offset_table_rtx
184 /* ??? When call-clobbered, the value is stable modulo the restore
185 that must happen after a call. This currently screws up
186 local-alloc into believing that the restore is not needed, so we
187 must return 0 only if we are called from alias analysis. */
188 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
189 return 0;
190 return 1;
192 case LO_SUM:
193 /* The operand 0 of a LO_SUM is considered constant
194 (in fact it is related specifically to operand 1)
195 during alias analysis. */
196 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
197 || rtx_varies_p (XEXP (x, 1), for_alias);
199 case ASM_OPERANDS:
200 if (MEM_VOLATILE_P (x))
201 return 1;
203 /* Fall through. */
205 default:
206 break;
209 fmt = GET_RTX_FORMAT (code);
210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
211 if (fmt[i] == 'e')
213 if (rtx_varies_p (XEXP (x, i), for_alias))
214 return 1;
216 else if (fmt[i] == 'E')
218 int j;
219 for (j = 0; j < XVECLEN (x, i); j++)
220 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
221 return 1;
224 return 0;
227 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
228 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
229 whether nonzero is returned for unaligned memory accesses on strict
230 alignment machines. */
232 static int
233 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
234 enum machine_mode mode, bool unaligned_mems)
236 enum rtx_code code = GET_CODE (x);
238 if (STRICT_ALIGNMENT
239 && unaligned_mems
240 && GET_MODE_SIZE (mode) != 0)
242 HOST_WIDE_INT actual_offset = offset;
243 #ifdef SPARC_STACK_BOUNDARY_HACK
244 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
245 the real alignment of %sp. However, when it does this, the
246 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
247 if (SPARC_STACK_BOUNDARY_HACK
248 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
249 actual_offset -= STACK_POINTER_OFFSET;
250 #endif
252 if (actual_offset % GET_MODE_SIZE (mode) != 0)
253 return 1;
256 switch (code)
258 case SYMBOL_REF:
259 if (SYMBOL_REF_WEAK (x))
260 return 1;
261 if (!CONSTANT_POOL_ADDRESS_P (x))
263 tree decl;
264 HOST_WIDE_INT decl_size;
266 if (offset < 0)
267 return 1;
268 if (size == 0)
269 size = GET_MODE_SIZE (mode);
270 if (size == 0)
271 return offset != 0;
273 /* If the size of the access or of the symbol is unknown,
274 assume the worst. */
275 decl = SYMBOL_REF_DECL (x);
277 /* Else check that the access is in bounds. TODO: restructure
278 expr_size/tree_expr_size/int_expr_size and just use the latter. */
279 if (!decl)
280 decl_size = -1;
281 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
282 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
283 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
284 : -1);
285 else if (TREE_CODE (decl) == STRING_CST)
286 decl_size = TREE_STRING_LENGTH (decl);
287 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
288 decl_size = int_size_in_bytes (TREE_TYPE (decl));
289 else
290 decl_size = -1;
292 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
295 return 0;
297 case LABEL_REF:
298 return 0;
300 case REG:
301 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
302 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
303 || x == stack_pointer_rtx
304 /* The arg pointer varies if it is not a fixed register. */
305 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
306 return 0;
307 /* All of the virtual frame registers are stack references. */
308 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
309 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
310 return 0;
311 return 1;
313 case CONST:
314 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
315 mode, unaligned_mems);
317 case PLUS:
318 /* An address is assumed not to trap if:
319 - it is the pic register plus a constant. */
320 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
321 return 0;
323 /* - or it is an address that can't trap plus a constant integer,
324 with the proper remainder modulo the mode size if we are
325 considering unaligned memory references. */
326 if (CONST_INT_P (XEXP (x, 1))
327 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
328 size, mode, unaligned_mems))
329 return 0;
331 return 1;
333 case LO_SUM:
334 case PRE_MODIFY:
335 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
336 mode, unaligned_mems);
338 case PRE_DEC:
339 case PRE_INC:
340 case POST_DEC:
341 case POST_INC:
342 case POST_MODIFY:
343 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
344 mode, unaligned_mems);
346 default:
347 break;
350 /* If it isn't one of the case above, it can cause a trap. */
351 return 1;
354 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
357 rtx_addr_can_trap_p (const_rtx x)
359 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
362 /* Return true if X is an address that is known to not be zero. */
364 bool
365 nonzero_address_p (const_rtx x)
367 const enum rtx_code code = GET_CODE (x);
369 switch (code)
371 case SYMBOL_REF:
372 return !SYMBOL_REF_WEAK (x);
374 case LABEL_REF:
375 return true;
377 case REG:
378 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
379 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
380 || x == stack_pointer_rtx
381 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
382 return true;
383 /* All of the virtual frame registers are stack references. */
384 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
385 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
386 return true;
387 return false;
389 case CONST:
390 return nonzero_address_p (XEXP (x, 0));
392 case PLUS:
393 /* Handle PIC references. */
394 if (XEXP (x, 0) == pic_offset_table_rtx
395 && CONSTANT_P (XEXP (x, 1)))
396 return true;
397 return false;
399 case PRE_MODIFY:
400 /* Similar to the above; allow positive offsets. Further, since
401 auto-inc is only allowed in memories, the register must be a
402 pointer. */
403 if (CONST_INT_P (XEXP (x, 1))
404 && INTVAL (XEXP (x, 1)) > 0)
405 return true;
406 return nonzero_address_p (XEXP (x, 0));
408 case PRE_INC:
409 /* Similarly. Further, the offset is always positive. */
410 return true;
412 case PRE_DEC:
413 case POST_DEC:
414 case POST_INC:
415 case POST_MODIFY:
416 return nonzero_address_p (XEXP (x, 0));
418 case LO_SUM:
419 return nonzero_address_p (XEXP (x, 1));
421 default:
422 break;
425 /* If it isn't one of the case above, might be zero. */
426 return false;
429 /* Return 1 if X refers to a memory location whose address
430 cannot be compared reliably with constant addresses,
431 or if X refers to a BLKmode memory object.
432 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
433 zero, we are slightly more conservative. */
435 bool
436 rtx_addr_varies_p (const_rtx x, bool for_alias)
438 enum rtx_code code;
439 int i;
440 const char *fmt;
442 if (x == 0)
443 return 0;
445 code = GET_CODE (x);
446 if (code == MEM)
447 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
449 fmt = GET_RTX_FORMAT (code);
450 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
451 if (fmt[i] == 'e')
453 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
454 return 1;
456 else if (fmt[i] == 'E')
458 int j;
459 for (j = 0; j < XVECLEN (x, i); j++)
460 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
461 return 1;
463 return 0;
466 /* Return the CALL in X if there is one. */
469 get_call_rtx_from (rtx x)
471 if (INSN_P (x))
472 x = PATTERN (x);
473 if (GET_CODE (x) == PARALLEL)
474 x = XVECEXP (x, 0, 0);
475 if (GET_CODE (x) == SET)
476 x = SET_SRC (x);
477 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
478 return x;
479 return NULL_RTX;
482 /* Return the value of the integer term in X, if one is apparent;
483 otherwise return 0.
484 Only obvious integer terms are detected.
485 This is used in cse.c with the `related_value' field. */
487 HOST_WIDE_INT
488 get_integer_term (const_rtx x)
490 if (GET_CODE (x) == CONST)
491 x = XEXP (x, 0);
493 if (GET_CODE (x) == MINUS
494 && CONST_INT_P (XEXP (x, 1)))
495 return - INTVAL (XEXP (x, 1));
496 if (GET_CODE (x) == PLUS
497 && CONST_INT_P (XEXP (x, 1)))
498 return INTVAL (XEXP (x, 1));
499 return 0;
502 /* If X is a constant, return the value sans apparent integer term;
503 otherwise return 0.
504 Only obvious integer terms are detected. */
507 get_related_value (const_rtx x)
509 if (GET_CODE (x) != CONST)
510 return 0;
511 x = XEXP (x, 0);
512 if (GET_CODE (x) == PLUS
513 && CONST_INT_P (XEXP (x, 1)))
514 return XEXP (x, 0);
515 else if (GET_CODE (x) == MINUS
516 && CONST_INT_P (XEXP (x, 1)))
517 return XEXP (x, 0);
518 return 0;
521 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
522 to somewhere in the same object or object_block as SYMBOL. */
524 bool
525 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
527 tree decl;
529 if (GET_CODE (symbol) != SYMBOL_REF)
530 return false;
532 if (offset == 0)
533 return true;
535 if (offset > 0)
537 if (CONSTANT_POOL_ADDRESS_P (symbol)
538 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
539 return true;
541 decl = SYMBOL_REF_DECL (symbol);
542 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
543 return true;
546 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
547 && SYMBOL_REF_BLOCK (symbol)
548 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
549 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
550 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
551 return true;
553 return false;
556 /* Split X into a base and a constant offset, storing them in *BASE_OUT
557 and *OFFSET_OUT respectively. */
559 void
560 split_const (rtx x, rtx *base_out, rtx *offset_out)
562 if (GET_CODE (x) == CONST)
564 x = XEXP (x, 0);
565 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
567 *base_out = XEXP (x, 0);
568 *offset_out = XEXP (x, 1);
569 return;
572 *base_out = x;
573 *offset_out = const0_rtx;
576 /* Return the number of places FIND appears within X. If COUNT_DEST is
577 zero, we do not count occurrences inside the destination of a SET. */
580 count_occurrences (const_rtx x, const_rtx find, int count_dest)
582 int i, j;
583 enum rtx_code code;
584 const char *format_ptr;
585 int count;
587 if (x == find)
588 return 1;
590 code = GET_CODE (x);
592 switch (code)
594 case REG:
595 CASE_CONST_ANY:
596 case SYMBOL_REF:
597 case CODE_LABEL:
598 case PC:
599 case CC0:
600 return 0;
602 case EXPR_LIST:
603 count = count_occurrences (XEXP (x, 0), find, count_dest);
604 if (XEXP (x, 1))
605 count += count_occurrences (XEXP (x, 1), find, count_dest);
606 return count;
608 case MEM:
609 if (MEM_P (find) && rtx_equal_p (x, find))
610 return 1;
611 break;
613 case SET:
614 if (SET_DEST (x) == find && ! count_dest)
615 return count_occurrences (SET_SRC (x), find, count_dest);
616 break;
618 default:
619 break;
622 format_ptr = GET_RTX_FORMAT (code);
623 count = 0;
625 for (i = 0; i < GET_RTX_LENGTH (code); i++)
627 switch (*format_ptr++)
629 case 'e':
630 count += count_occurrences (XEXP (x, i), find, count_dest);
631 break;
633 case 'E':
634 for (j = 0; j < XVECLEN (x, i); j++)
635 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
636 break;
639 return count;
643 /* Return TRUE if OP is a register or subreg of a register that
644 holds an unsigned quantity. Otherwise, return FALSE. */
646 bool
647 unsigned_reg_p (rtx op)
649 if (REG_P (op)
650 && REG_EXPR (op)
651 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
652 return true;
654 if (GET_CODE (op) == SUBREG
655 && SUBREG_PROMOTED_UNSIGNED_P (op))
656 return true;
658 return false;
662 /* Nonzero if register REG appears somewhere within IN.
663 Also works if REG is not a register; in this case it checks
664 for a subexpression of IN that is Lisp "equal" to REG. */
667 reg_mentioned_p (const_rtx reg, const_rtx in)
669 const char *fmt;
670 int i;
671 enum rtx_code code;
673 if (in == 0)
674 return 0;
676 if (reg == in)
677 return 1;
679 if (GET_CODE (in) == LABEL_REF)
680 return reg == XEXP (in, 0);
682 code = GET_CODE (in);
684 switch (code)
686 /* Compare registers by number. */
687 case REG:
688 return REG_P (reg) && REGNO (in) == REGNO (reg);
690 /* These codes have no constituent expressions
691 and are unique. */
692 case SCRATCH:
693 case CC0:
694 case PC:
695 return 0;
697 CASE_CONST_ANY:
698 /* These are kept unique for a given value. */
699 return 0;
701 default:
702 break;
705 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
706 return 1;
708 fmt = GET_RTX_FORMAT (code);
710 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
712 if (fmt[i] == 'E')
714 int j;
715 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
716 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
717 return 1;
719 else if (fmt[i] == 'e'
720 && reg_mentioned_p (reg, XEXP (in, i)))
721 return 1;
723 return 0;
726 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
727 no CODE_LABEL insn. */
730 no_labels_between_p (const_rtx beg, const_rtx end)
732 rtx p;
733 if (beg == end)
734 return 0;
735 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
736 if (LABEL_P (p))
737 return 0;
738 return 1;
741 /* Nonzero if register REG is used in an insn between
742 FROM_INSN and TO_INSN (exclusive of those two). */
745 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
747 rtx insn;
749 if (from_insn == to_insn)
750 return 0;
752 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
753 if (NONDEBUG_INSN_P (insn)
754 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
755 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
756 return 1;
757 return 0;
760 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
761 is entirely replaced by a new value and the only use is as a SET_DEST,
762 we do not consider it a reference. */
765 reg_referenced_p (const_rtx x, const_rtx body)
767 int i;
769 switch (GET_CODE (body))
771 case SET:
772 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
773 return 1;
775 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
776 of a REG that occupies all of the REG, the insn references X if
777 it is mentioned in the destination. */
778 if (GET_CODE (SET_DEST (body)) != CC0
779 && GET_CODE (SET_DEST (body)) != PC
780 && !REG_P (SET_DEST (body))
781 && ! (GET_CODE (SET_DEST (body)) == SUBREG
782 && REG_P (SUBREG_REG (SET_DEST (body)))
783 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
784 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
785 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
786 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
787 && reg_overlap_mentioned_p (x, SET_DEST (body)))
788 return 1;
789 return 0;
791 case ASM_OPERANDS:
792 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
793 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
794 return 1;
795 return 0;
797 case CALL:
798 case USE:
799 case IF_THEN_ELSE:
800 return reg_overlap_mentioned_p (x, body);
802 case TRAP_IF:
803 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
805 case PREFETCH:
806 return reg_overlap_mentioned_p (x, XEXP (body, 0));
808 case UNSPEC:
809 case UNSPEC_VOLATILE:
810 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
811 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
812 return 1;
813 return 0;
815 case PARALLEL:
816 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
817 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
818 return 1;
819 return 0;
821 case CLOBBER:
822 if (MEM_P (XEXP (body, 0)))
823 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
824 return 1;
825 return 0;
827 case COND_EXEC:
828 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
829 return 1;
830 return reg_referenced_p (x, COND_EXEC_CODE (body));
832 default:
833 return 0;
837 /* Nonzero if register REG is set or clobbered in an insn between
838 FROM_INSN and TO_INSN (exclusive of those two). */
841 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
843 const_rtx insn;
845 if (from_insn == to_insn)
846 return 0;
848 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
849 if (INSN_P (insn) && reg_set_p (reg, insn))
850 return 1;
851 return 0;
854 /* Internals of reg_set_between_p. */
856 reg_set_p (const_rtx reg, const_rtx insn)
858 /* We can be passed an insn or part of one. If we are passed an insn,
859 check if a side-effect of the insn clobbers REG. */
860 if (INSN_P (insn)
861 && (FIND_REG_INC_NOTE (insn, reg)
862 || (CALL_P (insn)
863 && ((REG_P (reg)
864 && REGNO (reg) < FIRST_PSEUDO_REGISTER
865 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
866 GET_MODE (reg), REGNO (reg)))
867 || MEM_P (reg)
868 || find_reg_fusage (insn, CLOBBER, reg)))))
869 return 1;
871 return set_of (reg, insn) != NULL_RTX;
874 /* Similar to reg_set_between_p, but check all registers in X. Return 0
875 only if none of them are modified between START and END. Return 1 if
876 X contains a MEM; this routine does use memory aliasing. */
879 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
881 const enum rtx_code code = GET_CODE (x);
882 const char *fmt;
883 int i, j;
884 rtx insn;
886 if (start == end)
887 return 0;
889 switch (code)
891 CASE_CONST_ANY:
892 case CONST:
893 case SYMBOL_REF:
894 case LABEL_REF:
895 return 0;
897 case PC:
898 case CC0:
899 return 1;
901 case MEM:
902 if (modified_between_p (XEXP (x, 0), start, end))
903 return 1;
904 if (MEM_READONLY_P (x))
905 return 0;
906 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
907 if (memory_modified_in_insn_p (x, insn))
908 return 1;
909 return 0;
910 break;
912 case REG:
913 return reg_set_between_p (x, start, end);
915 default:
916 break;
919 fmt = GET_RTX_FORMAT (code);
920 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
922 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
923 return 1;
925 else if (fmt[i] == 'E')
926 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
927 if (modified_between_p (XVECEXP (x, i, j), start, end))
928 return 1;
931 return 0;
934 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
935 of them are modified in INSN. Return 1 if X contains a MEM; this routine
936 does use memory aliasing. */
939 modified_in_p (const_rtx x, const_rtx insn)
941 const enum rtx_code code = GET_CODE (x);
942 const char *fmt;
943 int i, j;
945 switch (code)
947 CASE_CONST_ANY:
948 case CONST:
949 case SYMBOL_REF:
950 case LABEL_REF:
951 return 0;
953 case PC:
954 case CC0:
955 return 1;
957 case MEM:
958 if (modified_in_p (XEXP (x, 0), insn))
959 return 1;
960 if (MEM_READONLY_P (x))
961 return 0;
962 if (memory_modified_in_insn_p (x, insn))
963 return 1;
964 return 0;
965 break;
967 case REG:
968 return reg_set_p (x, insn);
970 default:
971 break;
974 fmt = GET_RTX_FORMAT (code);
975 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
977 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
978 return 1;
980 else if (fmt[i] == 'E')
981 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
982 if (modified_in_p (XVECEXP (x, i, j), insn))
983 return 1;
986 return 0;
989 /* Helper function for set_of. */
990 struct set_of_data
992 const_rtx found;
993 const_rtx pat;
996 static void
997 set_of_1 (rtx x, const_rtx pat, void *data1)
999 struct set_of_data *const data = (struct set_of_data *) (data1);
1000 if (rtx_equal_p (x, data->pat)
1001 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1002 data->found = pat;
1005 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1006 (either directly or via STRICT_LOW_PART and similar modifiers). */
1007 const_rtx
1008 set_of (const_rtx pat, const_rtx insn)
1010 struct set_of_data data;
1011 data.found = NULL_RTX;
1012 data.pat = pat;
1013 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1014 return data.found;
1017 /* This function, called through note_stores, collects sets and
1018 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1019 by DATA. */
1020 void
1021 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1023 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1024 if (REG_P (x) && HARD_REGISTER_P (x))
1025 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1028 /* Examine INSN, and compute the set of hard registers written by it.
1029 Store it in *PSET. Should only be called after reload. */
1030 void
1031 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1033 rtx link;
1035 CLEAR_HARD_REG_SET (*pset);
1036 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1037 if (CALL_P (insn))
1038 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1039 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1040 if (REG_NOTE_KIND (link) == REG_INC)
1041 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1044 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1045 static int
1046 record_hard_reg_uses_1 (rtx *px, void *data)
1048 rtx x = *px;
1049 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1051 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1053 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1054 while (nregs-- > 0)
1055 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1057 return 0;
1060 /* Like record_hard_reg_sets, but called through note_uses. */
1061 void
1062 record_hard_reg_uses (rtx *px, void *data)
1064 for_each_rtx (px, record_hard_reg_uses_1, data);
1067 /* Given an INSN, return a SET expression if this insn has only a single SET.
1068 It may also have CLOBBERs, USEs, or SET whose output
1069 will not be used, which we ignore. */
1072 single_set_2 (const_rtx insn, const_rtx pat)
1074 rtx set = NULL;
1075 int set_verified = 1;
1076 int i;
1078 if (GET_CODE (pat) == PARALLEL)
1080 for (i = 0; i < XVECLEN (pat, 0); i++)
1082 rtx sub = XVECEXP (pat, 0, i);
1083 switch (GET_CODE (sub))
1085 case USE:
1086 case CLOBBER:
1087 break;
1089 case SET:
1090 /* We can consider insns having multiple sets, where all
1091 but one are dead as single set insns. In common case
1092 only single set is present in the pattern so we want
1093 to avoid checking for REG_UNUSED notes unless necessary.
1095 When we reach set first time, we just expect this is
1096 the single set we are looking for and only when more
1097 sets are found in the insn, we check them. */
1098 if (!set_verified)
1100 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1101 && !side_effects_p (set))
1102 set = NULL;
1103 else
1104 set_verified = 1;
1106 if (!set)
1107 set = sub, set_verified = 0;
1108 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1109 || side_effects_p (sub))
1110 return NULL_RTX;
1111 break;
1113 default:
1114 return NULL_RTX;
1118 return set;
1121 /* Given an INSN, return nonzero if it has more than one SET, else return
1122 zero. */
1125 multiple_sets (const_rtx insn)
1127 int found;
1128 int i;
1130 /* INSN must be an insn. */
1131 if (! INSN_P (insn))
1132 return 0;
1134 /* Only a PARALLEL can have multiple SETs. */
1135 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1137 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1138 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1140 /* If we have already found a SET, then return now. */
1141 if (found)
1142 return 1;
1143 else
1144 found = 1;
1148 /* Either zero or one SET. */
1149 return 0;
1152 /* Return nonzero if the destination of SET equals the source
1153 and there are no side effects. */
1156 set_noop_p (const_rtx set)
1158 rtx src = SET_SRC (set);
1159 rtx dst = SET_DEST (set);
1161 if (dst == pc_rtx && src == pc_rtx)
1162 return 1;
1164 if (MEM_P (dst) && MEM_P (src))
1165 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1167 if (GET_CODE (dst) == ZERO_EXTRACT)
1168 return rtx_equal_p (XEXP (dst, 0), src)
1169 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1170 && !side_effects_p (src);
1172 if (GET_CODE (dst) == STRICT_LOW_PART)
1173 dst = XEXP (dst, 0);
1175 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1177 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1178 return 0;
1179 src = SUBREG_REG (src);
1180 dst = SUBREG_REG (dst);
1183 return (REG_P (src) && REG_P (dst)
1184 && REGNO (src) == REGNO (dst));
1187 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1188 value to itself. */
1191 noop_move_p (const_rtx insn)
1193 rtx pat = PATTERN (insn);
1195 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1196 return 1;
1198 /* Insns carrying these notes are useful later on. */
1199 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1200 return 0;
1202 /* Check the code to be executed for COND_EXEC. */
1203 if (GET_CODE (pat) == COND_EXEC)
1204 pat = COND_EXEC_CODE (pat);
1206 if (GET_CODE (pat) == SET && set_noop_p (pat))
1207 return 1;
1209 if (GET_CODE (pat) == PARALLEL)
1211 int i;
1212 /* If nothing but SETs of registers to themselves,
1213 this insn can also be deleted. */
1214 for (i = 0; i < XVECLEN (pat, 0); i++)
1216 rtx tem = XVECEXP (pat, 0, i);
1218 if (GET_CODE (tem) == USE
1219 || GET_CODE (tem) == CLOBBER)
1220 continue;
1222 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1223 return 0;
1226 return 1;
1228 return 0;
1232 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1233 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1234 If the object was modified, if we hit a partial assignment to X, or hit a
1235 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1236 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1237 be the src. */
1240 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1242 rtx p;
1244 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1245 p = PREV_INSN (p))
1246 if (INSN_P (p))
1248 rtx set = single_set (p);
1249 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1251 if (set && rtx_equal_p (x, SET_DEST (set)))
1253 rtx src = SET_SRC (set);
1255 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1256 src = XEXP (note, 0);
1258 if ((valid_to == NULL_RTX
1259 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1260 /* Reject hard registers because we don't usually want
1261 to use them; we'd rather use a pseudo. */
1262 && (! (REG_P (src)
1263 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1265 *pinsn = p;
1266 return src;
1270 /* If set in non-simple way, we don't have a value. */
1271 if (reg_set_p (x, p))
1272 break;
1275 return x;
1278 /* Return nonzero if register in range [REGNO, ENDREGNO)
1279 appears either explicitly or implicitly in X
1280 other than being stored into.
1282 References contained within the substructure at LOC do not count.
1283 LOC may be zero, meaning don't ignore anything. */
1286 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1287 rtx *loc)
1289 int i;
1290 unsigned int x_regno;
1291 RTX_CODE code;
1292 const char *fmt;
1294 repeat:
1295 /* The contents of a REG_NONNEG note is always zero, so we must come here
1296 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1297 if (x == 0)
1298 return 0;
1300 code = GET_CODE (x);
1302 switch (code)
1304 case REG:
1305 x_regno = REGNO (x);
1307 /* If we modifying the stack, frame, or argument pointer, it will
1308 clobber a virtual register. In fact, we could be more precise,
1309 but it isn't worth it. */
1310 if ((x_regno == STACK_POINTER_REGNUM
1311 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1312 || x_regno == ARG_POINTER_REGNUM
1313 #endif
1314 || x_regno == FRAME_POINTER_REGNUM)
1315 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1316 return 1;
1318 return endregno > x_regno && regno < END_REGNO (x);
1320 case SUBREG:
1321 /* If this is a SUBREG of a hard reg, we can see exactly which
1322 registers are being modified. Otherwise, handle normally. */
1323 if (REG_P (SUBREG_REG (x))
1324 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1326 unsigned int inner_regno = subreg_regno (x);
1327 unsigned int inner_endregno
1328 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1329 ? subreg_nregs (x) : 1);
1331 return endregno > inner_regno && regno < inner_endregno;
1333 break;
1335 case CLOBBER:
1336 case SET:
1337 if (&SET_DEST (x) != loc
1338 /* Note setting a SUBREG counts as referring to the REG it is in for
1339 a pseudo but not for hard registers since we can
1340 treat each word individually. */
1341 && ((GET_CODE (SET_DEST (x)) == SUBREG
1342 && loc != &SUBREG_REG (SET_DEST (x))
1343 && REG_P (SUBREG_REG (SET_DEST (x)))
1344 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1345 && refers_to_regno_p (regno, endregno,
1346 SUBREG_REG (SET_DEST (x)), loc))
1347 || (!REG_P (SET_DEST (x))
1348 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1349 return 1;
1351 if (code == CLOBBER || loc == &SET_SRC (x))
1352 return 0;
1353 x = SET_SRC (x);
1354 goto repeat;
1356 default:
1357 break;
1360 /* X does not match, so try its subexpressions. */
1362 fmt = GET_RTX_FORMAT (code);
1363 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1365 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1367 if (i == 0)
1369 x = XEXP (x, 0);
1370 goto repeat;
1372 else
1373 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1374 return 1;
1376 else if (fmt[i] == 'E')
1378 int j;
1379 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1380 if (loc != &XVECEXP (x, i, j)
1381 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1382 return 1;
1385 return 0;
1388 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1389 we check if any register number in X conflicts with the relevant register
1390 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1391 contains a MEM (we don't bother checking for memory addresses that can't
1392 conflict because we expect this to be a rare case. */
1395 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1397 unsigned int regno, endregno;
1399 /* If either argument is a constant, then modifying X can not
1400 affect IN. Here we look at IN, we can profitably combine
1401 CONSTANT_P (x) with the switch statement below. */
1402 if (CONSTANT_P (in))
1403 return 0;
1405 recurse:
1406 switch (GET_CODE (x))
1408 case STRICT_LOW_PART:
1409 case ZERO_EXTRACT:
1410 case SIGN_EXTRACT:
1411 /* Overly conservative. */
1412 x = XEXP (x, 0);
1413 goto recurse;
1415 case SUBREG:
1416 regno = REGNO (SUBREG_REG (x));
1417 if (regno < FIRST_PSEUDO_REGISTER)
1418 regno = subreg_regno (x);
1419 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1420 ? subreg_nregs (x) : 1);
1421 goto do_reg;
1423 case REG:
1424 regno = REGNO (x);
1425 endregno = END_REGNO (x);
1426 do_reg:
1427 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1429 case MEM:
1431 const char *fmt;
1432 int i;
1434 if (MEM_P (in))
1435 return 1;
1437 fmt = GET_RTX_FORMAT (GET_CODE (in));
1438 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1439 if (fmt[i] == 'e')
1441 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1442 return 1;
1444 else if (fmt[i] == 'E')
1446 int j;
1447 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1448 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1449 return 1;
1452 return 0;
1455 case SCRATCH:
1456 case PC:
1457 case CC0:
1458 return reg_mentioned_p (x, in);
1460 case PARALLEL:
1462 int i;
1464 /* If any register in here refers to it we return true. */
1465 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1466 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1467 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1468 return 1;
1469 return 0;
1472 default:
1473 gcc_assert (CONSTANT_P (x));
1474 return 0;
1478 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1479 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1480 ignored by note_stores, but passed to FUN.
1482 FUN receives three arguments:
1483 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1484 2. the SET or CLOBBER rtx that does the store,
1485 3. the pointer DATA provided to note_stores.
1487 If the item being stored in or clobbered is a SUBREG of a hard register,
1488 the SUBREG will be passed. */
1490 void
1491 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1493 int i;
1495 if (GET_CODE (x) == COND_EXEC)
1496 x = COND_EXEC_CODE (x);
1498 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1500 rtx dest = SET_DEST (x);
1502 while ((GET_CODE (dest) == SUBREG
1503 && (!REG_P (SUBREG_REG (dest))
1504 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1505 || GET_CODE (dest) == ZERO_EXTRACT
1506 || GET_CODE (dest) == STRICT_LOW_PART)
1507 dest = XEXP (dest, 0);
1509 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1510 each of whose first operand is a register. */
1511 if (GET_CODE (dest) == PARALLEL)
1513 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1514 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1515 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1517 else
1518 (*fun) (dest, x, data);
1521 else if (GET_CODE (x) == PARALLEL)
1522 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1523 note_stores (XVECEXP (x, 0, i), fun, data);
1526 /* Like notes_stores, but call FUN for each expression that is being
1527 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1528 FUN for each expression, not any interior subexpressions. FUN receives a
1529 pointer to the expression and the DATA passed to this function.
1531 Note that this is not quite the same test as that done in reg_referenced_p
1532 since that considers something as being referenced if it is being
1533 partially set, while we do not. */
1535 void
1536 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1538 rtx body = *pbody;
1539 int i;
1541 switch (GET_CODE (body))
1543 case COND_EXEC:
1544 (*fun) (&COND_EXEC_TEST (body), data);
1545 note_uses (&COND_EXEC_CODE (body), fun, data);
1546 return;
1548 case PARALLEL:
1549 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1550 note_uses (&XVECEXP (body, 0, i), fun, data);
1551 return;
1553 case SEQUENCE:
1554 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1555 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1556 return;
1558 case USE:
1559 (*fun) (&XEXP (body, 0), data);
1560 return;
1562 case ASM_OPERANDS:
1563 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1564 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1565 return;
1567 case TRAP_IF:
1568 (*fun) (&TRAP_CONDITION (body), data);
1569 return;
1571 case PREFETCH:
1572 (*fun) (&XEXP (body, 0), data);
1573 return;
1575 case UNSPEC:
1576 case UNSPEC_VOLATILE:
1577 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1578 (*fun) (&XVECEXP (body, 0, i), data);
1579 return;
1581 case CLOBBER:
1582 if (MEM_P (XEXP (body, 0)))
1583 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1584 return;
1586 case SET:
1588 rtx dest = SET_DEST (body);
1590 /* For sets we replace everything in source plus registers in memory
1591 expression in store and operands of a ZERO_EXTRACT. */
1592 (*fun) (&SET_SRC (body), data);
1594 if (GET_CODE (dest) == ZERO_EXTRACT)
1596 (*fun) (&XEXP (dest, 1), data);
1597 (*fun) (&XEXP (dest, 2), data);
1600 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1601 dest = XEXP (dest, 0);
1603 if (MEM_P (dest))
1604 (*fun) (&XEXP (dest, 0), data);
1606 return;
1608 default:
1609 /* All the other possibilities never store. */
1610 (*fun) (pbody, data);
1611 return;
1615 /* Return nonzero if X's old contents don't survive after INSN.
1616 This will be true if X is (cc0) or if X is a register and
1617 X dies in INSN or because INSN entirely sets X.
1619 "Entirely set" means set directly and not through a SUBREG, or
1620 ZERO_EXTRACT, so no trace of the old contents remains.
1621 Likewise, REG_INC does not count.
1623 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1624 but for this use that makes no difference, since regs don't overlap
1625 during their lifetimes. Therefore, this function may be used
1626 at any time after deaths have been computed.
1628 If REG is a hard reg that occupies multiple machine registers, this
1629 function will only return 1 if each of those registers will be replaced
1630 by INSN. */
1633 dead_or_set_p (const_rtx insn, const_rtx x)
1635 unsigned int regno, end_regno;
1636 unsigned int i;
1638 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1639 if (GET_CODE (x) == CC0)
1640 return 1;
1642 gcc_assert (REG_P (x));
1644 regno = REGNO (x);
1645 end_regno = END_REGNO (x);
1646 for (i = regno; i < end_regno; i++)
1647 if (! dead_or_set_regno_p (insn, i))
1648 return 0;
1650 return 1;
1653 /* Return TRUE iff DEST is a register or subreg of a register and
1654 doesn't change the number of words of the inner register, and any
1655 part of the register is TEST_REGNO. */
1657 static bool
1658 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1660 unsigned int regno, endregno;
1662 if (GET_CODE (dest) == SUBREG
1663 && (((GET_MODE_SIZE (GET_MODE (dest))
1664 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1665 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1666 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1667 dest = SUBREG_REG (dest);
1669 if (!REG_P (dest))
1670 return false;
1672 regno = REGNO (dest);
1673 endregno = END_REGNO (dest);
1674 return (test_regno >= regno && test_regno < endregno);
1677 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1678 any member matches the covers_regno_no_parallel_p criteria. */
1680 static bool
1681 covers_regno_p (const_rtx dest, unsigned int test_regno)
1683 if (GET_CODE (dest) == PARALLEL)
1685 /* Some targets place small structures in registers for return
1686 values of functions, and those registers are wrapped in
1687 PARALLELs that we may see as the destination of a SET. */
1688 int i;
1690 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1692 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1693 if (inner != NULL_RTX
1694 && covers_regno_no_parallel_p (inner, test_regno))
1695 return true;
1698 return false;
1700 else
1701 return covers_regno_no_parallel_p (dest, test_regno);
1704 /* Utility function for dead_or_set_p to check an individual register. */
1707 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1709 const_rtx pattern;
1711 /* See if there is a death note for something that includes TEST_REGNO. */
1712 if (find_regno_note (insn, REG_DEAD, test_regno))
1713 return 1;
1715 if (CALL_P (insn)
1716 && find_regno_fusage (insn, CLOBBER, test_regno))
1717 return 1;
1719 pattern = PATTERN (insn);
1721 /* If a COND_EXEC is not executed, the value survives. */
1722 if (GET_CODE (pattern) == COND_EXEC)
1723 return 0;
1725 if (GET_CODE (pattern) == SET)
1726 return covers_regno_p (SET_DEST (pattern), test_regno);
1727 else if (GET_CODE (pattern) == PARALLEL)
1729 int i;
1731 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1733 rtx body = XVECEXP (pattern, 0, i);
1735 if (GET_CODE (body) == COND_EXEC)
1736 body = COND_EXEC_CODE (body);
1738 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1739 && covers_regno_p (SET_DEST (body), test_regno))
1740 return 1;
1744 return 0;
1747 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1748 If DATUM is nonzero, look for one whose datum is DATUM. */
1751 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1753 rtx link;
1755 gcc_checking_assert (insn);
1757 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1758 if (! INSN_P (insn))
1759 return 0;
1760 if (datum == 0)
1762 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1763 if (REG_NOTE_KIND (link) == kind)
1764 return link;
1765 return 0;
1768 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1769 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1770 return link;
1771 return 0;
1774 /* Return the reg-note of kind KIND in insn INSN which applies to register
1775 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1776 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1777 it might be the case that the note overlaps REGNO. */
1780 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1782 rtx link;
1784 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1785 if (! INSN_P (insn))
1786 return 0;
1788 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1789 if (REG_NOTE_KIND (link) == kind
1790 /* Verify that it is a register, so that scratch and MEM won't cause a
1791 problem here. */
1792 && REG_P (XEXP (link, 0))
1793 && REGNO (XEXP (link, 0)) <= regno
1794 && END_REGNO (XEXP (link, 0)) > regno)
1795 return link;
1796 return 0;
1799 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1800 has such a note. */
1803 find_reg_equal_equiv_note (const_rtx insn)
1805 rtx link;
1807 if (!INSN_P (insn))
1808 return 0;
1810 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1811 if (REG_NOTE_KIND (link) == REG_EQUAL
1812 || REG_NOTE_KIND (link) == REG_EQUIV)
1814 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1815 insns that have multiple sets. Checking single_set to
1816 make sure of this is not the proper check, as explained
1817 in the comment in set_unique_reg_note.
1819 This should be changed into an assert. */
1820 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1821 return 0;
1822 return link;
1824 return NULL;
1827 /* Check whether INSN is a single_set whose source is known to be
1828 equivalent to a constant. Return that constant if so, otherwise
1829 return null. */
1832 find_constant_src (const_rtx insn)
1834 rtx note, set, x;
1836 set = single_set (insn);
1837 if (set)
1839 x = avoid_constant_pool_reference (SET_SRC (set));
1840 if (CONSTANT_P (x))
1841 return x;
1844 note = find_reg_equal_equiv_note (insn);
1845 if (note && CONSTANT_P (XEXP (note, 0)))
1846 return XEXP (note, 0);
1848 return NULL_RTX;
1851 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1852 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1855 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1857 /* If it's not a CALL_INSN, it can't possibly have a
1858 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1859 if (!CALL_P (insn))
1860 return 0;
1862 gcc_assert (datum);
1864 if (!REG_P (datum))
1866 rtx link;
1868 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1869 link;
1870 link = XEXP (link, 1))
1871 if (GET_CODE (XEXP (link, 0)) == code
1872 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1873 return 1;
1875 else
1877 unsigned int regno = REGNO (datum);
1879 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1880 to pseudo registers, so don't bother checking. */
1882 if (regno < FIRST_PSEUDO_REGISTER)
1884 unsigned int end_regno = END_HARD_REGNO (datum);
1885 unsigned int i;
1887 for (i = regno; i < end_regno; i++)
1888 if (find_regno_fusage (insn, code, i))
1889 return 1;
1893 return 0;
1896 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1897 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1900 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1902 rtx link;
1904 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1905 to pseudo registers, so don't bother checking. */
1907 if (regno >= FIRST_PSEUDO_REGISTER
1908 || !CALL_P (insn) )
1909 return 0;
1911 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1913 rtx op, reg;
1915 if (GET_CODE (op = XEXP (link, 0)) == code
1916 && REG_P (reg = XEXP (op, 0))
1917 && REGNO (reg) <= regno
1918 && END_HARD_REGNO (reg) > regno)
1919 return 1;
1922 return 0;
1926 /* Return true if KIND is an integer REG_NOTE. */
1928 static bool
1929 int_reg_note_p (enum reg_note kind)
1931 return kind == REG_BR_PROB;
1934 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1935 stored as the pointer to the next register note. */
1938 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1940 rtx note;
1942 gcc_checking_assert (!int_reg_note_p (kind));
1943 switch (kind)
1945 case REG_CC_SETTER:
1946 case REG_CC_USER:
1947 case REG_LABEL_TARGET:
1948 case REG_LABEL_OPERAND:
1949 case REG_TM:
1950 /* These types of register notes use an INSN_LIST rather than an
1951 EXPR_LIST, so that copying is done right and dumps look
1952 better. */
1953 note = alloc_INSN_LIST (datum, list);
1954 PUT_REG_NOTE_KIND (note, kind);
1955 break;
1957 default:
1958 note = alloc_EXPR_LIST (kind, datum, list);
1959 break;
1962 return note;
1965 /* Add register note with kind KIND and datum DATUM to INSN. */
1967 void
1968 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1970 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1973 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
1975 void
1976 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
1978 gcc_checking_assert (int_reg_note_p (kind));
1979 REG_NOTES (insn) = gen_rtx_INT_LIST ((enum machine_mode) kind,
1980 datum, REG_NOTES (insn));
1983 /* Add a register note like NOTE to INSN. */
1985 void
1986 add_shallow_copy_of_reg_note (rtx insn, rtx note)
1988 if (GET_CODE (note) == INT_LIST)
1989 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
1990 else
1991 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
1994 /* Remove register note NOTE from the REG_NOTES of INSN. */
1996 void
1997 remove_note (rtx insn, const_rtx note)
1999 rtx link;
2001 if (note == NULL_RTX)
2002 return;
2004 if (REG_NOTES (insn) == note)
2005 REG_NOTES (insn) = XEXP (note, 1);
2006 else
2007 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2008 if (XEXP (link, 1) == note)
2010 XEXP (link, 1) = XEXP (note, 1);
2011 break;
2014 switch (REG_NOTE_KIND (note))
2016 case REG_EQUAL:
2017 case REG_EQUIV:
2018 df_notes_rescan (insn);
2019 break;
2020 default:
2021 break;
2025 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2027 void
2028 remove_reg_equal_equiv_notes (rtx insn)
2030 rtx *loc;
2032 loc = &REG_NOTES (insn);
2033 while (*loc)
2035 enum reg_note kind = REG_NOTE_KIND (*loc);
2036 if (kind == REG_EQUAL || kind == REG_EQUIV)
2037 *loc = XEXP (*loc, 1);
2038 else
2039 loc = &XEXP (*loc, 1);
2043 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2045 void
2046 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2048 df_ref eq_use;
2050 if (!df)
2051 return;
2053 /* This loop is a little tricky. We cannot just go down the chain because
2054 it is being modified by some actions in the loop. So we just iterate
2055 over the head. We plan to drain the list anyway. */
2056 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2058 rtx insn = DF_REF_INSN (eq_use);
2059 rtx note = find_reg_equal_equiv_note (insn);
2061 /* This assert is generally triggered when someone deletes a REG_EQUAL
2062 or REG_EQUIV note by hacking the list manually rather than calling
2063 remove_note. */
2064 gcc_assert (note);
2066 remove_note (insn, note);
2070 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2071 return 1 if it is found. A simple equality test is used to determine if
2072 NODE matches. */
2075 in_expr_list_p (const_rtx listp, const_rtx node)
2077 const_rtx x;
2079 for (x = listp; x; x = XEXP (x, 1))
2080 if (node == XEXP (x, 0))
2081 return 1;
2083 return 0;
2086 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2087 remove that entry from the list if it is found.
2089 A simple equality test is used to determine if NODE matches. */
2091 void
2092 remove_node_from_expr_list (const_rtx node, rtx *listp)
2094 rtx temp = *listp;
2095 rtx prev = NULL_RTX;
2097 while (temp)
2099 if (node == XEXP (temp, 0))
2101 /* Splice the node out of the list. */
2102 if (prev)
2103 XEXP (prev, 1) = XEXP (temp, 1);
2104 else
2105 *listp = XEXP (temp, 1);
2107 return;
2110 prev = temp;
2111 temp = XEXP (temp, 1);
2115 /* Nonzero if X contains any volatile instructions. These are instructions
2116 which may cause unpredictable machine state instructions, and thus no
2117 instructions or register uses should be moved or combined across them.
2118 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2121 volatile_insn_p (const_rtx x)
2123 const RTX_CODE code = GET_CODE (x);
2124 switch (code)
2126 case LABEL_REF:
2127 case SYMBOL_REF:
2128 case CONST:
2129 CASE_CONST_ANY:
2130 case CC0:
2131 case PC:
2132 case REG:
2133 case SCRATCH:
2134 case CLOBBER:
2135 case ADDR_VEC:
2136 case ADDR_DIFF_VEC:
2137 case CALL:
2138 case MEM:
2139 return 0;
2141 case UNSPEC_VOLATILE:
2142 return 1;
2144 case ASM_INPUT:
2145 case ASM_OPERANDS:
2146 if (MEM_VOLATILE_P (x))
2147 return 1;
2149 default:
2150 break;
2153 /* Recursively scan the operands of this expression. */
2156 const char *const fmt = GET_RTX_FORMAT (code);
2157 int i;
2159 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2161 if (fmt[i] == 'e')
2163 if (volatile_insn_p (XEXP (x, i)))
2164 return 1;
2166 else if (fmt[i] == 'E')
2168 int j;
2169 for (j = 0; j < XVECLEN (x, i); j++)
2170 if (volatile_insn_p (XVECEXP (x, i, j)))
2171 return 1;
2175 return 0;
2178 /* Nonzero if X contains any volatile memory references
2179 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2182 volatile_refs_p (const_rtx x)
2184 const RTX_CODE code = GET_CODE (x);
2185 switch (code)
2187 case LABEL_REF:
2188 case SYMBOL_REF:
2189 case CONST:
2190 CASE_CONST_ANY:
2191 case CC0:
2192 case PC:
2193 case REG:
2194 case SCRATCH:
2195 case CLOBBER:
2196 case ADDR_VEC:
2197 case ADDR_DIFF_VEC:
2198 return 0;
2200 case UNSPEC_VOLATILE:
2201 return 1;
2203 case MEM:
2204 case ASM_INPUT:
2205 case ASM_OPERANDS:
2206 if (MEM_VOLATILE_P (x))
2207 return 1;
2209 default:
2210 break;
2213 /* Recursively scan the operands of this expression. */
2216 const char *const fmt = GET_RTX_FORMAT (code);
2217 int i;
2219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2221 if (fmt[i] == 'e')
2223 if (volatile_refs_p (XEXP (x, i)))
2224 return 1;
2226 else if (fmt[i] == 'E')
2228 int j;
2229 for (j = 0; j < XVECLEN (x, i); j++)
2230 if (volatile_refs_p (XVECEXP (x, i, j)))
2231 return 1;
2235 return 0;
2238 /* Similar to above, except that it also rejects register pre- and post-
2239 incrementing. */
2242 side_effects_p (const_rtx x)
2244 const RTX_CODE code = GET_CODE (x);
2245 switch (code)
2247 case LABEL_REF:
2248 case SYMBOL_REF:
2249 case CONST:
2250 CASE_CONST_ANY:
2251 case CC0:
2252 case PC:
2253 case REG:
2254 case SCRATCH:
2255 case ADDR_VEC:
2256 case ADDR_DIFF_VEC:
2257 case VAR_LOCATION:
2258 return 0;
2260 case CLOBBER:
2261 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2262 when some combination can't be done. If we see one, don't think
2263 that we can simplify the expression. */
2264 return (GET_MODE (x) != VOIDmode);
2266 case PRE_INC:
2267 case PRE_DEC:
2268 case POST_INC:
2269 case POST_DEC:
2270 case PRE_MODIFY:
2271 case POST_MODIFY:
2272 case CALL:
2273 case UNSPEC_VOLATILE:
2274 return 1;
2276 case MEM:
2277 case ASM_INPUT:
2278 case ASM_OPERANDS:
2279 if (MEM_VOLATILE_P (x))
2280 return 1;
2282 default:
2283 break;
2286 /* Recursively scan the operands of this expression. */
2289 const char *fmt = GET_RTX_FORMAT (code);
2290 int i;
2292 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2294 if (fmt[i] == 'e')
2296 if (side_effects_p (XEXP (x, i)))
2297 return 1;
2299 else if (fmt[i] == 'E')
2301 int j;
2302 for (j = 0; j < XVECLEN (x, i); j++)
2303 if (side_effects_p (XVECEXP (x, i, j)))
2304 return 1;
2308 return 0;
2311 /* Return nonzero if evaluating rtx X might cause a trap.
2312 FLAGS controls how to consider MEMs. A nonzero means the context
2313 of the access may have changed from the original, such that the
2314 address may have become invalid. */
2317 may_trap_p_1 (const_rtx x, unsigned flags)
2319 int i;
2320 enum rtx_code code;
2321 const char *fmt;
2323 /* We make no distinction currently, but this function is part of
2324 the internal target-hooks ABI so we keep the parameter as
2325 "unsigned flags". */
2326 bool code_changed = flags != 0;
2328 if (x == 0)
2329 return 0;
2330 code = GET_CODE (x);
2331 switch (code)
2333 /* Handle these cases quickly. */
2334 CASE_CONST_ANY:
2335 case SYMBOL_REF:
2336 case LABEL_REF:
2337 case CONST:
2338 case PC:
2339 case CC0:
2340 case REG:
2341 case SCRATCH:
2342 return 0;
2344 case UNSPEC:
2345 return targetm.unspec_may_trap_p (x, flags);
2347 case UNSPEC_VOLATILE:
2348 case ASM_INPUT:
2349 case TRAP_IF:
2350 return 1;
2352 case ASM_OPERANDS:
2353 return MEM_VOLATILE_P (x);
2355 /* Memory ref can trap unless it's a static var or a stack slot. */
2356 case MEM:
2357 /* Recognize specific pattern of stack checking probes. */
2358 if (flag_stack_check
2359 && MEM_VOLATILE_P (x)
2360 && XEXP (x, 0) == stack_pointer_rtx)
2361 return 1;
2362 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2363 reference; moving it out of context such as when moving code
2364 when optimizing, might cause its address to become invalid. */
2365 code_changed
2366 || !MEM_NOTRAP_P (x))
2368 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2369 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2370 GET_MODE (x), code_changed);
2373 return 0;
2375 /* Division by a non-constant might trap. */
2376 case DIV:
2377 case MOD:
2378 case UDIV:
2379 case UMOD:
2380 if (HONOR_SNANS (GET_MODE (x)))
2381 return 1;
2382 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2383 return flag_trapping_math;
2384 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2385 return 1;
2386 break;
2388 case EXPR_LIST:
2389 /* An EXPR_LIST is used to represent a function call. This
2390 certainly may trap. */
2391 return 1;
2393 case GE:
2394 case GT:
2395 case LE:
2396 case LT:
2397 case LTGT:
2398 case COMPARE:
2399 /* Some floating point comparisons may trap. */
2400 if (!flag_trapping_math)
2401 break;
2402 /* ??? There is no machine independent way to check for tests that trap
2403 when COMPARE is used, though many targets do make this distinction.
2404 For instance, sparc uses CCFPE for compares which generate exceptions
2405 and CCFP for compares which do not generate exceptions. */
2406 if (HONOR_NANS (GET_MODE (x)))
2407 return 1;
2408 /* But often the compare has some CC mode, so check operand
2409 modes as well. */
2410 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2411 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2412 return 1;
2413 break;
2415 case EQ:
2416 case NE:
2417 if (HONOR_SNANS (GET_MODE (x)))
2418 return 1;
2419 /* Often comparison is CC mode, so check operand modes. */
2420 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2421 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2422 return 1;
2423 break;
2425 case FIX:
2426 /* Conversion of floating point might trap. */
2427 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2428 return 1;
2429 break;
2431 case NEG:
2432 case ABS:
2433 case SUBREG:
2434 /* These operations don't trap even with floating point. */
2435 break;
2437 default:
2438 /* Any floating arithmetic may trap. */
2439 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2440 return 1;
2443 fmt = GET_RTX_FORMAT (code);
2444 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2446 if (fmt[i] == 'e')
2448 if (may_trap_p_1 (XEXP (x, i), flags))
2449 return 1;
2451 else if (fmt[i] == 'E')
2453 int j;
2454 for (j = 0; j < XVECLEN (x, i); j++)
2455 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2456 return 1;
2459 return 0;
2462 /* Return nonzero if evaluating rtx X might cause a trap. */
2465 may_trap_p (const_rtx x)
2467 return may_trap_p_1 (x, 0);
2470 /* Same as above, but additionally return nonzero if evaluating rtx X might
2471 cause a fault. We define a fault for the purpose of this function as a
2472 erroneous execution condition that cannot be encountered during the normal
2473 execution of a valid program; the typical example is an unaligned memory
2474 access on a strict alignment machine. The compiler guarantees that it
2475 doesn't generate code that will fault from a valid program, but this
2476 guarantee doesn't mean anything for individual instructions. Consider
2477 the following example:
2479 struct S { int d; union { char *cp; int *ip; }; };
2481 int foo(struct S *s)
2483 if (s->d == 1)
2484 return *s->ip;
2485 else
2486 return *s->cp;
2489 on a strict alignment machine. In a valid program, foo will never be
2490 invoked on a structure for which d is equal to 1 and the underlying
2491 unique field of the union not aligned on a 4-byte boundary, but the
2492 expression *s->ip might cause a fault if considered individually.
2494 At the RTL level, potentially problematic expressions will almost always
2495 verify may_trap_p; for example, the above dereference can be emitted as
2496 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2497 However, suppose that foo is inlined in a caller that causes s->cp to
2498 point to a local character variable and guarantees that s->d is not set
2499 to 1; foo may have been effectively translated into pseudo-RTL as:
2501 if ((reg:SI) == 1)
2502 (set (reg:SI) (mem:SI (%fp - 7)))
2503 else
2504 (set (reg:QI) (mem:QI (%fp - 7)))
2506 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2507 memory reference to a stack slot, but it will certainly cause a fault
2508 on a strict alignment machine. */
2511 may_trap_or_fault_p (const_rtx x)
2513 return may_trap_p_1 (x, 1);
2516 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2517 i.e., an inequality. */
2520 inequality_comparisons_p (const_rtx x)
2522 const char *fmt;
2523 int len, i;
2524 const enum rtx_code code = GET_CODE (x);
2526 switch (code)
2528 case REG:
2529 case SCRATCH:
2530 case PC:
2531 case CC0:
2532 CASE_CONST_ANY:
2533 case CONST:
2534 case LABEL_REF:
2535 case SYMBOL_REF:
2536 return 0;
2538 case LT:
2539 case LTU:
2540 case GT:
2541 case GTU:
2542 case LE:
2543 case LEU:
2544 case GE:
2545 case GEU:
2546 return 1;
2548 default:
2549 break;
2552 len = GET_RTX_LENGTH (code);
2553 fmt = GET_RTX_FORMAT (code);
2555 for (i = 0; i < len; i++)
2557 if (fmt[i] == 'e')
2559 if (inequality_comparisons_p (XEXP (x, i)))
2560 return 1;
2562 else if (fmt[i] == 'E')
2564 int j;
2565 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2566 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2567 return 1;
2571 return 0;
2574 /* Replace any occurrence of FROM in X with TO. The function does
2575 not enter into CONST_DOUBLE for the replace.
2577 Note that copying is not done so X must not be shared unless all copies
2578 are to be modified. */
2581 replace_rtx (rtx x, rtx from, rtx to)
2583 int i, j;
2584 const char *fmt;
2586 if (x == from)
2587 return to;
2589 /* Allow this function to make replacements in EXPR_LISTs. */
2590 if (x == 0)
2591 return 0;
2593 if (GET_CODE (x) == SUBREG)
2595 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2597 if (CONST_INT_P (new_rtx))
2599 x = simplify_subreg (GET_MODE (x), new_rtx,
2600 GET_MODE (SUBREG_REG (x)),
2601 SUBREG_BYTE (x));
2602 gcc_assert (x);
2604 else
2605 SUBREG_REG (x) = new_rtx;
2607 return x;
2609 else if (GET_CODE (x) == ZERO_EXTEND)
2611 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2613 if (CONST_INT_P (new_rtx))
2615 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2616 new_rtx, GET_MODE (XEXP (x, 0)));
2617 gcc_assert (x);
2619 else
2620 XEXP (x, 0) = new_rtx;
2622 return x;
2625 fmt = GET_RTX_FORMAT (GET_CODE (x));
2626 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2628 if (fmt[i] == 'e')
2629 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2630 else if (fmt[i] == 'E')
2631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2632 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2635 return x;
2638 /* Replace occurrences of the old label in *X with the new one.
2639 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2642 replace_label (rtx *x, void *data)
2644 rtx l = *x;
2645 rtx old_label = ((replace_label_data *) data)->r1;
2646 rtx new_label = ((replace_label_data *) data)->r2;
2647 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2649 if (l == NULL_RTX)
2650 return 0;
2652 if (GET_CODE (l) == SYMBOL_REF
2653 && CONSTANT_POOL_ADDRESS_P (l))
2655 rtx c = get_pool_constant (l);
2656 if (rtx_referenced_p (old_label, c))
2658 rtx new_c, new_l;
2659 replace_label_data *d = (replace_label_data *) data;
2661 /* Create a copy of constant C; replace the label inside
2662 but do not update LABEL_NUSES because uses in constant pool
2663 are not counted. */
2664 new_c = copy_rtx (c);
2665 d->update_label_nuses = false;
2666 for_each_rtx (&new_c, replace_label, data);
2667 d->update_label_nuses = update_label_nuses;
2669 /* Add the new constant NEW_C to constant pool and replace
2670 the old reference to constant by new reference. */
2671 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2672 *x = replace_rtx (l, l, new_l);
2674 return 0;
2677 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2678 field. This is not handled by for_each_rtx because it doesn't
2679 handle unprinted ('0') fields. */
2680 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2681 JUMP_LABEL (l) = new_label;
2683 if ((GET_CODE (l) == LABEL_REF
2684 || GET_CODE (l) == INSN_LIST)
2685 && XEXP (l, 0) == old_label)
2687 XEXP (l, 0) = new_label;
2688 if (update_label_nuses)
2690 ++LABEL_NUSES (new_label);
2691 --LABEL_NUSES (old_label);
2693 return 0;
2696 return 0;
2699 /* When *BODY is equal to X or X is directly referenced by *BODY
2700 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2701 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2703 static int
2704 rtx_referenced_p_1 (rtx *body, void *x)
2706 rtx y = (rtx) x;
2708 if (*body == NULL_RTX)
2709 return y == NULL_RTX;
2711 /* Return true if a label_ref *BODY refers to label Y. */
2712 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2713 return XEXP (*body, 0) == y;
2715 /* If *BODY is a reference to pool constant traverse the constant. */
2716 if (GET_CODE (*body) == SYMBOL_REF
2717 && CONSTANT_POOL_ADDRESS_P (*body))
2718 return rtx_referenced_p (y, get_pool_constant (*body));
2720 /* By default, compare the RTL expressions. */
2721 return rtx_equal_p (*body, y);
2724 /* Return true if X is referenced in BODY. */
2727 rtx_referenced_p (rtx x, rtx body)
2729 return for_each_rtx (&body, rtx_referenced_p_1, x);
2732 /* If INSN is a tablejump return true and store the label (before jump table) to
2733 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2735 bool
2736 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2738 rtx label, table;
2740 if (!JUMP_P (insn))
2741 return false;
2743 label = JUMP_LABEL (insn);
2744 if (label != NULL_RTX && !ANY_RETURN_P (label)
2745 && (table = NEXT_INSN (label)) != NULL_RTX
2746 && JUMP_TABLE_DATA_P (table))
2748 if (labelp)
2749 *labelp = label;
2750 if (tablep)
2751 *tablep = table;
2752 return true;
2754 return false;
2757 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2758 constant that is not in the constant pool and not in the condition
2759 of an IF_THEN_ELSE. */
2761 static int
2762 computed_jump_p_1 (const_rtx x)
2764 const enum rtx_code code = GET_CODE (x);
2765 int i, j;
2766 const char *fmt;
2768 switch (code)
2770 case LABEL_REF:
2771 case PC:
2772 return 0;
2774 case CONST:
2775 CASE_CONST_ANY:
2776 case SYMBOL_REF:
2777 case REG:
2778 return 1;
2780 case MEM:
2781 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2782 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2784 case IF_THEN_ELSE:
2785 return (computed_jump_p_1 (XEXP (x, 1))
2786 || computed_jump_p_1 (XEXP (x, 2)));
2788 default:
2789 break;
2792 fmt = GET_RTX_FORMAT (code);
2793 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2795 if (fmt[i] == 'e'
2796 && computed_jump_p_1 (XEXP (x, i)))
2797 return 1;
2799 else if (fmt[i] == 'E')
2800 for (j = 0; j < XVECLEN (x, i); j++)
2801 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2802 return 1;
2805 return 0;
2808 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2810 Tablejumps and casesi insns are not considered indirect jumps;
2811 we can recognize them by a (use (label_ref)). */
2814 computed_jump_p (const_rtx insn)
2816 int i;
2817 if (JUMP_P (insn))
2819 rtx pat = PATTERN (insn);
2821 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2822 if (JUMP_LABEL (insn) != NULL)
2823 return 0;
2825 if (GET_CODE (pat) == PARALLEL)
2827 int len = XVECLEN (pat, 0);
2828 int has_use_labelref = 0;
2830 for (i = len - 1; i >= 0; i--)
2831 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2832 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2833 == LABEL_REF))
2835 has_use_labelref = 1;
2836 break;
2839 if (! has_use_labelref)
2840 for (i = len - 1; i >= 0; i--)
2841 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2842 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2843 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2844 return 1;
2846 else if (GET_CODE (pat) == SET
2847 && SET_DEST (pat) == pc_rtx
2848 && computed_jump_p_1 (SET_SRC (pat)))
2849 return 1;
2851 return 0;
2854 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2855 calls. Processes the subexpressions of EXP and passes them to F. */
2856 static int
2857 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2859 int result, i, j;
2860 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2861 rtx *x;
2863 for (; format[n] != '\0'; n++)
2865 switch (format[n])
2867 case 'e':
2868 /* Call F on X. */
2869 x = &XEXP (exp, n);
2870 result = (*f) (x, data);
2871 if (result == -1)
2872 /* Do not traverse sub-expressions. */
2873 continue;
2874 else if (result != 0)
2875 /* Stop the traversal. */
2876 return result;
2878 if (*x == NULL_RTX)
2879 /* There are no sub-expressions. */
2880 continue;
2882 i = non_rtx_starting_operands[GET_CODE (*x)];
2883 if (i >= 0)
2885 result = for_each_rtx_1 (*x, i, f, data);
2886 if (result != 0)
2887 return result;
2889 break;
2891 case 'V':
2892 case 'E':
2893 if (XVEC (exp, n) == 0)
2894 continue;
2895 for (j = 0; j < XVECLEN (exp, n); ++j)
2897 /* Call F on X. */
2898 x = &XVECEXP (exp, n, j);
2899 result = (*f) (x, data);
2900 if (result == -1)
2901 /* Do not traverse sub-expressions. */
2902 continue;
2903 else if (result != 0)
2904 /* Stop the traversal. */
2905 return result;
2907 if (*x == NULL_RTX)
2908 /* There are no sub-expressions. */
2909 continue;
2911 i = non_rtx_starting_operands[GET_CODE (*x)];
2912 if (i >= 0)
2914 result = for_each_rtx_1 (*x, i, f, data);
2915 if (result != 0)
2916 return result;
2919 break;
2921 default:
2922 /* Nothing to do. */
2923 break;
2927 return 0;
2930 /* Traverse X via depth-first search, calling F for each
2931 sub-expression (including X itself). F is also passed the DATA.
2932 If F returns -1, do not traverse sub-expressions, but continue
2933 traversing the rest of the tree. If F ever returns any other
2934 nonzero value, stop the traversal, and return the value returned
2935 by F. Otherwise, return 0. This function does not traverse inside
2936 tree structure that contains RTX_EXPRs, or into sub-expressions
2937 whose format code is `0' since it is not known whether or not those
2938 codes are actually RTL.
2940 This routine is very general, and could (should?) be used to
2941 implement many of the other routines in this file. */
2944 for_each_rtx (rtx *x, rtx_function f, void *data)
2946 int result;
2947 int i;
2949 /* Call F on X. */
2950 result = (*f) (x, data);
2951 if (result == -1)
2952 /* Do not traverse sub-expressions. */
2953 return 0;
2954 else if (result != 0)
2955 /* Stop the traversal. */
2956 return result;
2958 if (*x == NULL_RTX)
2959 /* There are no sub-expressions. */
2960 return 0;
2962 i = non_rtx_starting_operands[GET_CODE (*x)];
2963 if (i < 0)
2964 return 0;
2966 return for_each_rtx_1 (*x, i, f, data);
2971 /* Data structure that holds the internal state communicated between
2972 for_each_inc_dec, for_each_inc_dec_find_mem and
2973 for_each_inc_dec_find_inc_dec. */
2975 struct for_each_inc_dec_ops {
2976 /* The function to be called for each autoinc operation found. */
2977 for_each_inc_dec_fn fn;
2978 /* The opaque argument to be passed to it. */
2979 void *arg;
2980 /* The MEM we're visiting, if any. */
2981 rtx mem;
2984 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2986 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2987 operands of the equivalent add insn and pass the result to the
2988 operator specified by *D. */
2990 static int
2991 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2993 rtx x = *r;
2994 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2996 switch (GET_CODE (x))
2998 case PRE_INC:
2999 case POST_INC:
3001 int size = GET_MODE_SIZE (GET_MODE (data->mem));
3002 rtx r1 = XEXP (x, 0);
3003 rtx c = gen_int_mode (size, GET_MODE (r1));
3004 return data->fn (data->mem, x, r1, r1, c, data->arg);
3007 case PRE_DEC:
3008 case POST_DEC:
3010 int size = GET_MODE_SIZE (GET_MODE (data->mem));
3011 rtx r1 = XEXP (x, 0);
3012 rtx c = gen_int_mode (-size, GET_MODE (r1));
3013 return data->fn (data->mem, x, r1, r1, c, data->arg);
3016 case PRE_MODIFY:
3017 case POST_MODIFY:
3019 rtx r1 = XEXP (x, 0);
3020 rtx add = XEXP (x, 1);
3021 return data->fn (data->mem, x, r1, add, NULL, data->arg);
3024 case MEM:
3026 rtx save = data->mem;
3027 int ret = for_each_inc_dec_find_mem (r, d);
3028 data->mem = save;
3029 return ret;
3032 default:
3033 return 0;
3037 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3038 address, extract the operands of the equivalent add insn and pass
3039 the result to the operator specified by *D. */
3041 static int
3042 for_each_inc_dec_find_mem (rtx *r, void *d)
3044 rtx x = *r;
3045 if (x != NULL_RTX && MEM_P (x))
3047 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3048 int result;
3050 data->mem = x;
3052 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3053 data);
3054 if (result)
3055 return result;
3057 return -1;
3059 return 0;
3062 /* Traverse *X looking for MEMs, and for autoinc operations within
3063 them. For each such autoinc operation found, call FN, passing it
3064 the innermost enclosing MEM, the operation itself, the RTX modified
3065 by the operation, two RTXs (the second may be NULL) that, once
3066 added, represent the value to be held by the modified RTX
3067 afterwards, and ARG. FN is to return -1 to skip looking for other
3068 autoinc operations within the visited operation, 0 to continue the
3069 traversal, or any other value to have it returned to the caller of
3070 for_each_inc_dec. */
3073 for_each_inc_dec (rtx *x,
3074 for_each_inc_dec_fn fn,
3075 void *arg)
3077 struct for_each_inc_dec_ops data;
3079 data.fn = fn;
3080 data.arg = arg;
3081 data.mem = NULL;
3083 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3087 /* Searches X for any reference to REGNO, returning the rtx of the
3088 reference found if any. Otherwise, returns NULL_RTX. */
3091 regno_use_in (unsigned int regno, rtx x)
3093 const char *fmt;
3094 int i, j;
3095 rtx tem;
3097 if (REG_P (x) && REGNO (x) == regno)
3098 return x;
3100 fmt = GET_RTX_FORMAT (GET_CODE (x));
3101 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3103 if (fmt[i] == 'e')
3105 if ((tem = regno_use_in (regno, XEXP (x, i))))
3106 return tem;
3108 else if (fmt[i] == 'E')
3109 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3110 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3111 return tem;
3114 return NULL_RTX;
3117 /* Return a value indicating whether OP, an operand of a commutative
3118 operation, is preferred as the first or second operand. The higher
3119 the value, the stronger the preference for being the first operand.
3120 We use negative values to indicate a preference for the first operand
3121 and positive values for the second operand. */
3124 commutative_operand_precedence (rtx op)
3126 enum rtx_code code = GET_CODE (op);
3128 /* Constants always come the second operand. Prefer "nice" constants. */
3129 if (code == CONST_INT)
3130 return -8;
3131 if (code == CONST_DOUBLE)
3132 return -7;
3133 if (code == CONST_FIXED)
3134 return -7;
3135 op = avoid_constant_pool_reference (op);
3136 code = GET_CODE (op);
3138 switch (GET_RTX_CLASS (code))
3140 case RTX_CONST_OBJ:
3141 if (code == CONST_INT)
3142 return -6;
3143 if (code == CONST_DOUBLE)
3144 return -5;
3145 if (code == CONST_FIXED)
3146 return -5;
3147 return -4;
3149 case RTX_EXTRA:
3150 /* SUBREGs of objects should come second. */
3151 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3152 return -3;
3153 return 0;
3155 case RTX_OBJ:
3156 /* Complex expressions should be the first, so decrease priority
3157 of objects. Prefer pointer objects over non pointer objects. */
3158 if ((REG_P (op) && REG_POINTER (op))
3159 || (MEM_P (op) && MEM_POINTER (op)))
3160 return -1;
3161 return -2;
3163 case RTX_COMM_ARITH:
3164 /* Prefer operands that are themselves commutative to be first.
3165 This helps to make things linear. In particular,
3166 (and (and (reg) (reg)) (not (reg))) is canonical. */
3167 return 4;
3169 case RTX_BIN_ARITH:
3170 /* If only one operand is a binary expression, it will be the first
3171 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3172 is canonical, although it will usually be further simplified. */
3173 return 2;
3175 case RTX_UNARY:
3176 /* Then prefer NEG and NOT. */
3177 if (code == NEG || code == NOT)
3178 return 1;
3180 default:
3181 return 0;
3185 /* Return 1 iff it is necessary to swap operands of commutative operation
3186 in order to canonicalize expression. */
3188 bool
3189 swap_commutative_operands_p (rtx x, rtx y)
3191 return (commutative_operand_precedence (x)
3192 < commutative_operand_precedence (y));
3195 /* Return 1 if X is an autoincrement side effect and the register is
3196 not the stack pointer. */
3198 auto_inc_p (const_rtx x)
3200 switch (GET_CODE (x))
3202 case PRE_INC:
3203 case POST_INC:
3204 case PRE_DEC:
3205 case POST_DEC:
3206 case PRE_MODIFY:
3207 case POST_MODIFY:
3208 /* There are no REG_INC notes for SP. */
3209 if (XEXP (x, 0) != stack_pointer_rtx)
3210 return 1;
3211 default:
3212 break;
3214 return 0;
3217 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3219 loc_mentioned_in_p (rtx *loc, const_rtx in)
3221 enum rtx_code code;
3222 const char *fmt;
3223 int i, j;
3225 if (!in)
3226 return 0;
3228 code = GET_CODE (in);
3229 fmt = GET_RTX_FORMAT (code);
3230 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3232 if (fmt[i] == 'e')
3234 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3235 return 1;
3237 else if (fmt[i] == 'E')
3238 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3239 if (loc == &XVECEXP (in, i, j)
3240 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3241 return 1;
3243 return 0;
3246 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3247 and SUBREG_BYTE, return the bit offset where the subreg begins
3248 (counting from the least significant bit of the operand). */
3250 unsigned int
3251 subreg_lsb_1 (enum machine_mode outer_mode,
3252 enum machine_mode inner_mode,
3253 unsigned int subreg_byte)
3255 unsigned int bitpos;
3256 unsigned int byte;
3257 unsigned int word;
3259 /* A paradoxical subreg begins at bit position 0. */
3260 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3261 return 0;
3263 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3264 /* If the subreg crosses a word boundary ensure that
3265 it also begins and ends on a word boundary. */
3266 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3267 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3268 && (subreg_byte % UNITS_PER_WORD
3269 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3271 if (WORDS_BIG_ENDIAN)
3272 word = (GET_MODE_SIZE (inner_mode)
3273 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3274 else
3275 word = subreg_byte / UNITS_PER_WORD;
3276 bitpos = word * BITS_PER_WORD;
3278 if (BYTES_BIG_ENDIAN)
3279 byte = (GET_MODE_SIZE (inner_mode)
3280 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3281 else
3282 byte = subreg_byte % UNITS_PER_WORD;
3283 bitpos += byte * BITS_PER_UNIT;
3285 return bitpos;
3288 /* Given a subreg X, return the bit offset where the subreg begins
3289 (counting from the least significant bit of the reg). */
3291 unsigned int
3292 subreg_lsb (const_rtx x)
3294 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3295 SUBREG_BYTE (x));
3298 /* Fill in information about a subreg of a hard register.
3299 xregno - A regno of an inner hard subreg_reg (or what will become one).
3300 xmode - The mode of xregno.
3301 offset - The byte offset.
3302 ymode - The mode of a top level SUBREG (or what may become one).
3303 info - Pointer to structure to fill in. */
3304 void
3305 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3306 unsigned int offset, enum machine_mode ymode,
3307 struct subreg_info *info)
3309 int nregs_xmode, nregs_ymode;
3310 int mode_multiple, nregs_multiple;
3311 int offset_adj, y_offset, y_offset_adj;
3312 int regsize_xmode, regsize_ymode;
3313 bool rknown;
3315 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3317 rknown = false;
3319 /* If there are holes in a non-scalar mode in registers, we expect
3320 that it is made up of its units concatenated together. */
3321 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3323 enum machine_mode xmode_unit;
3325 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3326 if (GET_MODE_INNER (xmode) == VOIDmode)
3327 xmode_unit = xmode;
3328 else
3329 xmode_unit = GET_MODE_INNER (xmode);
3330 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3331 gcc_assert (nregs_xmode
3332 == (GET_MODE_NUNITS (xmode)
3333 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3334 gcc_assert (hard_regno_nregs[xregno][xmode]
3335 == (hard_regno_nregs[xregno][xmode_unit]
3336 * GET_MODE_NUNITS (xmode)));
3338 /* You can only ask for a SUBREG of a value with holes in the middle
3339 if you don't cross the holes. (Such a SUBREG should be done by
3340 picking a different register class, or doing it in memory if
3341 necessary.) An example of a value with holes is XCmode on 32-bit
3342 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3343 3 for each part, but in memory it's two 128-bit parts.
3344 Padding is assumed to be at the end (not necessarily the 'high part')
3345 of each unit. */
3346 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3347 < GET_MODE_NUNITS (xmode))
3348 && (offset / GET_MODE_SIZE (xmode_unit)
3349 != ((offset + GET_MODE_SIZE (ymode) - 1)
3350 / GET_MODE_SIZE (xmode_unit))))
3352 info->representable_p = false;
3353 rknown = true;
3356 else
3357 nregs_xmode = hard_regno_nregs[xregno][xmode];
3359 nregs_ymode = hard_regno_nregs[xregno][ymode];
3361 /* Paradoxical subregs are otherwise valid. */
3362 if (!rknown
3363 && offset == 0
3364 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3366 info->representable_p = true;
3367 /* If this is a big endian paradoxical subreg, which uses more
3368 actual hard registers than the original register, we must
3369 return a negative offset so that we find the proper highpart
3370 of the register. */
3371 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3372 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3373 info->offset = nregs_xmode - nregs_ymode;
3374 else
3375 info->offset = 0;
3376 info->nregs = nregs_ymode;
3377 return;
3380 /* If registers store different numbers of bits in the different
3381 modes, we cannot generally form this subreg. */
3382 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3383 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3384 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3385 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3387 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3388 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3389 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3391 info->representable_p = false;
3392 info->nregs
3393 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3394 info->offset = offset / regsize_xmode;
3395 return;
3397 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3399 info->representable_p = false;
3400 info->nregs
3401 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3402 info->offset = offset / regsize_xmode;
3403 return;
3407 /* Lowpart subregs are otherwise valid. */
3408 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3410 info->representable_p = true;
3411 rknown = true;
3413 if (offset == 0 || nregs_xmode == nregs_ymode)
3415 info->offset = 0;
3416 info->nregs = nregs_ymode;
3417 return;
3421 /* This should always pass, otherwise we don't know how to verify
3422 the constraint. These conditions may be relaxed but
3423 subreg_regno_offset would need to be redesigned. */
3424 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3425 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3427 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3428 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3430 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3431 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3432 HOST_WIDE_INT off_low = offset & (ysize - 1);
3433 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3434 offset = (xsize - ysize - off_high) | off_low;
3436 /* The XMODE value can be seen as a vector of NREGS_XMODE
3437 values. The subreg must represent a lowpart of given field.
3438 Compute what field it is. */
3439 offset_adj = offset;
3440 offset_adj -= subreg_lowpart_offset (ymode,
3441 mode_for_size (GET_MODE_BITSIZE (xmode)
3442 / nregs_xmode,
3443 MODE_INT, 0));
3445 /* Size of ymode must not be greater than the size of xmode. */
3446 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3447 gcc_assert (mode_multiple != 0);
3449 y_offset = offset / GET_MODE_SIZE (ymode);
3450 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3451 nregs_multiple = nregs_xmode / nregs_ymode;
3453 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3454 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3456 if (!rknown)
3458 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3459 rknown = true;
3461 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3462 info->nregs = nregs_ymode;
3465 /* This function returns the regno offset of a subreg expression.
3466 xregno - A regno of an inner hard subreg_reg (or what will become one).
3467 xmode - The mode of xregno.
3468 offset - The byte offset.
3469 ymode - The mode of a top level SUBREG (or what may become one).
3470 RETURN - The regno offset which would be used. */
3471 unsigned int
3472 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3473 unsigned int offset, enum machine_mode ymode)
3475 struct subreg_info info;
3476 subreg_get_info (xregno, xmode, offset, ymode, &info);
3477 return info.offset;
3480 /* This function returns true when the offset is representable via
3481 subreg_offset in the given regno.
3482 xregno - A regno of an inner hard subreg_reg (or what will become one).
3483 xmode - The mode of xregno.
3484 offset - The byte offset.
3485 ymode - The mode of a top level SUBREG (or what may become one).
3486 RETURN - Whether the offset is representable. */
3487 bool
3488 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3489 unsigned int offset, enum machine_mode ymode)
3491 struct subreg_info info;
3492 subreg_get_info (xregno, xmode, offset, ymode, &info);
3493 return info.representable_p;
3496 /* Return the number of a YMODE register to which
3498 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3500 can be simplified. Return -1 if the subreg can't be simplified.
3502 XREGNO is a hard register number. */
3505 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3506 unsigned int offset, enum machine_mode ymode)
3508 struct subreg_info info;
3509 unsigned int yregno;
3511 #ifdef CANNOT_CHANGE_MODE_CLASS
3512 /* Give the backend a chance to disallow the mode change. */
3513 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3514 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3515 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3516 /* We can use mode change in LRA for some transformations. */
3517 && ! lra_in_progress)
3518 return -1;
3519 #endif
3521 /* We shouldn't simplify stack-related registers. */
3522 if ((!reload_completed || frame_pointer_needed)
3523 && xregno == FRAME_POINTER_REGNUM)
3524 return -1;
3526 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3527 && xregno == ARG_POINTER_REGNUM)
3528 return -1;
3530 if (xregno == STACK_POINTER_REGNUM
3531 /* We should convert hard stack register in LRA if it is
3532 possible. */
3533 && ! lra_in_progress)
3534 return -1;
3536 /* Try to get the register offset. */
3537 subreg_get_info (xregno, xmode, offset, ymode, &info);
3538 if (!info.representable_p)
3539 return -1;
3541 /* Make sure that the offsetted register value is in range. */
3542 yregno = xregno + info.offset;
3543 if (!HARD_REGISTER_NUM_P (yregno))
3544 return -1;
3546 /* See whether (reg:YMODE YREGNO) is valid.
3548 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3549 This is a kludge to work around how complex FP arguments are passed
3550 on IA-64 and should be fixed. See PR target/49226. */
3551 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3552 && HARD_REGNO_MODE_OK (xregno, xmode))
3553 return -1;
3555 return (int) yregno;
3558 /* Return the final regno that a subreg expression refers to. */
3559 unsigned int
3560 subreg_regno (const_rtx x)
3562 unsigned int ret;
3563 rtx subreg = SUBREG_REG (x);
3564 int regno = REGNO (subreg);
3566 ret = regno + subreg_regno_offset (regno,
3567 GET_MODE (subreg),
3568 SUBREG_BYTE (x),
3569 GET_MODE (x));
3570 return ret;
3574 /* Return the number of registers that a subreg expression refers
3575 to. */
3576 unsigned int
3577 subreg_nregs (const_rtx x)
3579 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3582 /* Return the number of registers that a subreg REG with REGNO
3583 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3584 changed so that the regno can be passed in. */
3586 unsigned int
3587 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3589 struct subreg_info info;
3590 rtx subreg = SUBREG_REG (x);
3592 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3593 &info);
3594 return info.nregs;
3598 struct parms_set_data
3600 int nregs;
3601 HARD_REG_SET regs;
3604 /* Helper function for noticing stores to parameter registers. */
3605 static void
3606 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3608 struct parms_set_data *const d = (struct parms_set_data *) data;
3609 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3610 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3612 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3613 d->nregs--;
3617 /* Look backward for first parameter to be loaded.
3618 Note that loads of all parameters will not necessarily be
3619 found if CSE has eliminated some of them (e.g., an argument
3620 to the outer function is passed down as a parameter).
3621 Do not skip BOUNDARY. */
3623 find_first_parameter_load (rtx call_insn, rtx boundary)
3625 struct parms_set_data parm;
3626 rtx p, before, first_set;
3628 /* Since different machines initialize their parameter registers
3629 in different orders, assume nothing. Collect the set of all
3630 parameter registers. */
3631 CLEAR_HARD_REG_SET (parm.regs);
3632 parm.nregs = 0;
3633 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3634 if (GET_CODE (XEXP (p, 0)) == USE
3635 && REG_P (XEXP (XEXP (p, 0), 0)))
3637 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3639 /* We only care about registers which can hold function
3640 arguments. */
3641 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3642 continue;
3644 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3645 parm.nregs++;
3647 before = call_insn;
3648 first_set = call_insn;
3650 /* Search backward for the first set of a register in this set. */
3651 while (parm.nregs && before != boundary)
3653 before = PREV_INSN (before);
3655 /* It is possible that some loads got CSEed from one call to
3656 another. Stop in that case. */
3657 if (CALL_P (before))
3658 break;
3660 /* Our caller needs either ensure that we will find all sets
3661 (in case code has not been optimized yet), or take care
3662 for possible labels in a way by setting boundary to preceding
3663 CODE_LABEL. */
3664 if (LABEL_P (before))
3666 gcc_assert (before == boundary);
3667 break;
3670 if (INSN_P (before))
3672 int nregs_old = parm.nregs;
3673 note_stores (PATTERN (before), parms_set, &parm);
3674 /* If we found something that did not set a parameter reg,
3675 we're done. Do not keep going, as that might result
3676 in hoisting an insn before the setting of a pseudo
3677 that is used by the hoisted insn. */
3678 if (nregs_old != parm.nregs)
3679 first_set = before;
3680 else
3681 break;
3684 return first_set;
3687 /* Return true if we should avoid inserting code between INSN and preceding
3688 call instruction. */
3690 bool
3691 keep_with_call_p (const_rtx insn)
3693 rtx set;
3695 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3697 if (REG_P (SET_DEST (set))
3698 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3699 && fixed_regs[REGNO (SET_DEST (set))]
3700 && general_operand (SET_SRC (set), VOIDmode))
3701 return true;
3702 if (REG_P (SET_SRC (set))
3703 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3704 && REG_P (SET_DEST (set))
3705 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3706 return true;
3707 /* There may be a stack pop just after the call and before the store
3708 of the return register. Search for the actual store when deciding
3709 if we can break or not. */
3710 if (SET_DEST (set) == stack_pointer_rtx)
3712 /* This CONST_CAST is okay because next_nonnote_insn just
3713 returns its argument and we assign it to a const_rtx
3714 variable. */
3715 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX (insn));
3716 if (i2 && keep_with_call_p (i2))
3717 return true;
3720 return false;
3723 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3724 to non-complex jumps. That is, direct unconditional, conditional,
3725 and tablejumps, but not computed jumps or returns. It also does
3726 not apply to the fallthru case of a conditional jump. */
3728 bool
3729 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3731 rtx tmp = JUMP_LABEL (jump_insn);
3733 if (label == tmp)
3734 return true;
3736 if (tablejump_p (jump_insn, NULL, &tmp))
3738 rtvec vec = XVEC (PATTERN (tmp),
3739 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3740 int i, veclen = GET_NUM_ELEM (vec);
3742 for (i = 0; i < veclen; ++i)
3743 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3744 return true;
3747 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3748 return true;
3750 return false;
3754 /* Return an estimate of the cost of computing rtx X.
3755 One use is in cse, to decide which expression to keep in the hash table.
3756 Another is in rtl generation, to pick the cheapest way to multiply.
3757 Other uses like the latter are expected in the future.
3759 X appears as operand OPNO in an expression with code OUTER_CODE.
3760 SPEED specifies whether costs optimized for speed or size should
3761 be returned. */
3764 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3766 int i, j;
3767 enum rtx_code code;
3768 const char *fmt;
3769 int total;
3770 int factor;
3772 if (x == 0)
3773 return 0;
3775 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3776 many insns, taking N times as long. */
3777 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3778 if (factor == 0)
3779 factor = 1;
3781 /* Compute the default costs of certain things.
3782 Note that targetm.rtx_costs can override the defaults. */
3784 code = GET_CODE (x);
3785 switch (code)
3787 case MULT:
3788 /* Multiplication has time-complexity O(N*N), where N is the
3789 number of units (translated from digits) when using
3790 schoolbook long multiplication. */
3791 total = factor * factor * COSTS_N_INSNS (5);
3792 break;
3793 case DIV:
3794 case UDIV:
3795 case MOD:
3796 case UMOD:
3797 /* Similarly, complexity for schoolbook long division. */
3798 total = factor * factor * COSTS_N_INSNS (7);
3799 break;
3800 case USE:
3801 /* Used in combine.c as a marker. */
3802 total = 0;
3803 break;
3804 case SET:
3805 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3806 the mode for the factor. */
3807 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3808 if (factor == 0)
3809 factor = 1;
3810 /* Pass through. */
3811 default:
3812 total = factor * COSTS_N_INSNS (1);
3815 switch (code)
3817 case REG:
3818 return 0;
3820 case SUBREG:
3821 total = 0;
3822 /* If we can't tie these modes, make this expensive. The larger
3823 the mode, the more expensive it is. */
3824 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3825 return COSTS_N_INSNS (2 + factor);
3826 break;
3828 default:
3829 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3830 return total;
3831 break;
3834 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3835 which is already in total. */
3837 fmt = GET_RTX_FORMAT (code);
3838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3839 if (fmt[i] == 'e')
3840 total += rtx_cost (XEXP (x, i), code, i, speed);
3841 else if (fmt[i] == 'E')
3842 for (j = 0; j < XVECLEN (x, i); j++)
3843 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3845 return total;
3848 /* Fill in the structure C with information about both speed and size rtx
3849 costs for X, which is operand OPNO in an expression with code OUTER. */
3851 void
3852 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3853 struct full_rtx_costs *c)
3855 c->speed = rtx_cost (x, outer, opno, true);
3856 c->size = rtx_cost (x, outer, opno, false);
3860 /* Return cost of address expression X.
3861 Expect that X is properly formed address reference.
3863 SPEED parameter specify whether costs optimized for speed or size should
3864 be returned. */
3867 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3869 /* We may be asked for cost of various unusual addresses, such as operands
3870 of push instruction. It is not worthwhile to complicate writing
3871 of the target hook by such cases. */
3873 if (!memory_address_addr_space_p (mode, x, as))
3874 return 1000;
3876 return targetm.address_cost (x, mode, as, speed);
3879 /* If the target doesn't override, compute the cost as with arithmetic. */
3882 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
3884 return rtx_cost (x, MEM, 0, speed);
3888 unsigned HOST_WIDE_INT
3889 nonzero_bits (const_rtx x, enum machine_mode mode)
3891 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3894 unsigned int
3895 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3897 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3900 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3901 It avoids exponential behavior in nonzero_bits1 when X has
3902 identical subexpressions on the first or the second level. */
3904 static unsigned HOST_WIDE_INT
3905 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3906 enum machine_mode known_mode,
3907 unsigned HOST_WIDE_INT known_ret)
3909 if (x == known_x && mode == known_mode)
3910 return known_ret;
3912 /* Try to find identical subexpressions. If found call
3913 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3914 precomputed value for the subexpression as KNOWN_RET. */
3916 if (ARITHMETIC_P (x))
3918 rtx x0 = XEXP (x, 0);
3919 rtx x1 = XEXP (x, 1);
3921 /* Check the first level. */
3922 if (x0 == x1)
3923 return nonzero_bits1 (x, mode, x0, mode,
3924 cached_nonzero_bits (x0, mode, known_x,
3925 known_mode, known_ret));
3927 /* Check the second level. */
3928 if (ARITHMETIC_P (x0)
3929 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3930 return nonzero_bits1 (x, mode, x1, mode,
3931 cached_nonzero_bits (x1, mode, known_x,
3932 known_mode, known_ret));
3934 if (ARITHMETIC_P (x1)
3935 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3936 return nonzero_bits1 (x, mode, x0, mode,
3937 cached_nonzero_bits (x0, mode, known_x,
3938 known_mode, known_ret));
3941 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3944 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3945 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3946 is less useful. We can't allow both, because that results in exponential
3947 run time recursion. There is a nullstone testcase that triggered
3948 this. This macro avoids accidental uses of num_sign_bit_copies. */
3949 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3951 /* Given an expression, X, compute which bits in X can be nonzero.
3952 We don't care about bits outside of those defined in MODE.
3954 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3955 an arithmetic operation, we can do better. */
3957 static unsigned HOST_WIDE_INT
3958 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3959 enum machine_mode known_mode,
3960 unsigned HOST_WIDE_INT known_ret)
3962 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3963 unsigned HOST_WIDE_INT inner_nz;
3964 enum rtx_code code;
3965 enum machine_mode inner_mode;
3966 unsigned int mode_width = GET_MODE_PRECISION (mode);
3968 /* For floating-point and vector values, assume all bits are needed. */
3969 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3970 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3971 return nonzero;
3973 /* If X is wider than MODE, use its mode instead. */
3974 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3976 mode = GET_MODE (x);
3977 nonzero = GET_MODE_MASK (mode);
3978 mode_width = GET_MODE_PRECISION (mode);
3981 if (mode_width > HOST_BITS_PER_WIDE_INT)
3982 /* Our only callers in this case look for single bit values. So
3983 just return the mode mask. Those tests will then be false. */
3984 return nonzero;
3986 #ifndef WORD_REGISTER_OPERATIONS
3987 /* If MODE is wider than X, but both are a single word for both the host
3988 and target machines, we can compute this from which bits of the
3989 object might be nonzero in its own mode, taking into account the fact
3990 that on many CISC machines, accessing an object in a wider mode
3991 causes the high-order bits to become undefined. So they are
3992 not known to be zero. */
3994 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3995 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3996 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3997 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3999 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4000 known_x, known_mode, known_ret);
4001 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4002 return nonzero;
4004 #endif
4006 code = GET_CODE (x);
4007 switch (code)
4009 case REG:
4010 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4011 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4012 all the bits above ptr_mode are known to be zero. */
4013 /* As we do not know which address space the pointer is referring to,
4014 we can do this only if the target does not support different pointer
4015 or address modes depending on the address space. */
4016 if (target_default_pointer_address_modes_p ()
4017 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4018 && REG_POINTER (x))
4019 nonzero &= GET_MODE_MASK (ptr_mode);
4020 #endif
4022 /* Include declared information about alignment of pointers. */
4023 /* ??? We don't properly preserve REG_POINTER changes across
4024 pointer-to-integer casts, so we can't trust it except for
4025 things that we know must be pointers. See execute/960116-1.c. */
4026 if ((x == stack_pointer_rtx
4027 || x == frame_pointer_rtx
4028 || x == arg_pointer_rtx)
4029 && REGNO_POINTER_ALIGN (REGNO (x)))
4031 unsigned HOST_WIDE_INT alignment
4032 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4034 #ifdef PUSH_ROUNDING
4035 /* If PUSH_ROUNDING is defined, it is possible for the
4036 stack to be momentarily aligned only to that amount,
4037 so we pick the least alignment. */
4038 if (x == stack_pointer_rtx && PUSH_ARGS)
4039 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4040 alignment);
4041 #endif
4043 nonzero &= ~(alignment - 1);
4047 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4048 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4049 known_mode, known_ret,
4050 &nonzero_for_hook);
4052 if (new_rtx)
4053 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4054 known_mode, known_ret);
4056 return nonzero_for_hook;
4059 case CONST_INT:
4060 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4061 /* If X is negative in MODE, sign-extend the value. */
4062 if (INTVAL (x) > 0
4063 && mode_width < BITS_PER_WORD
4064 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4065 != 0)
4066 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4067 #endif
4069 return UINTVAL (x);
4071 case MEM:
4072 #ifdef LOAD_EXTEND_OP
4073 /* In many, if not most, RISC machines, reading a byte from memory
4074 zeros the rest of the register. Noticing that fact saves a lot
4075 of extra zero-extends. */
4076 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4077 nonzero &= GET_MODE_MASK (GET_MODE (x));
4078 #endif
4079 break;
4081 case EQ: case NE:
4082 case UNEQ: case LTGT:
4083 case GT: case GTU: case UNGT:
4084 case LT: case LTU: case UNLT:
4085 case GE: case GEU: case UNGE:
4086 case LE: case LEU: case UNLE:
4087 case UNORDERED: case ORDERED:
4088 /* If this produces an integer result, we know which bits are set.
4089 Code here used to clear bits outside the mode of X, but that is
4090 now done above. */
4091 /* Mind that MODE is the mode the caller wants to look at this
4092 operation in, and not the actual operation mode. We can wind
4093 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4094 that describes the results of a vector compare. */
4095 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4096 && mode_width <= HOST_BITS_PER_WIDE_INT)
4097 nonzero = STORE_FLAG_VALUE;
4098 break;
4100 case NEG:
4101 #if 0
4102 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4103 and num_sign_bit_copies. */
4104 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4105 == GET_MODE_PRECISION (GET_MODE (x)))
4106 nonzero = 1;
4107 #endif
4109 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4110 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4111 break;
4113 case ABS:
4114 #if 0
4115 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4116 and num_sign_bit_copies. */
4117 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4118 == GET_MODE_PRECISION (GET_MODE (x)))
4119 nonzero = 1;
4120 #endif
4121 break;
4123 case TRUNCATE:
4124 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4125 known_x, known_mode, known_ret)
4126 & GET_MODE_MASK (mode));
4127 break;
4129 case ZERO_EXTEND:
4130 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4131 known_x, known_mode, known_ret);
4132 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4133 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4134 break;
4136 case SIGN_EXTEND:
4137 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4138 Otherwise, show all the bits in the outer mode but not the inner
4139 may be nonzero. */
4140 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4141 known_x, known_mode, known_ret);
4142 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4144 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4145 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4146 inner_nz |= (GET_MODE_MASK (mode)
4147 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4150 nonzero &= inner_nz;
4151 break;
4153 case AND:
4154 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4155 known_x, known_mode, known_ret)
4156 & cached_nonzero_bits (XEXP (x, 1), mode,
4157 known_x, known_mode, known_ret);
4158 break;
4160 case XOR: case IOR:
4161 case UMIN: case UMAX: case SMIN: case SMAX:
4163 unsigned HOST_WIDE_INT nonzero0
4164 = cached_nonzero_bits (XEXP (x, 0), mode,
4165 known_x, known_mode, known_ret);
4167 /* Don't call nonzero_bits for the second time if it cannot change
4168 anything. */
4169 if ((nonzero & nonzero0) != nonzero)
4170 nonzero &= nonzero0
4171 | cached_nonzero_bits (XEXP (x, 1), mode,
4172 known_x, known_mode, known_ret);
4174 break;
4176 case PLUS: case MINUS:
4177 case MULT:
4178 case DIV: case UDIV:
4179 case MOD: case UMOD:
4180 /* We can apply the rules of arithmetic to compute the number of
4181 high- and low-order zero bits of these operations. We start by
4182 computing the width (position of the highest-order nonzero bit)
4183 and the number of low-order zero bits for each value. */
4185 unsigned HOST_WIDE_INT nz0
4186 = cached_nonzero_bits (XEXP (x, 0), mode,
4187 known_x, known_mode, known_ret);
4188 unsigned HOST_WIDE_INT nz1
4189 = cached_nonzero_bits (XEXP (x, 1), mode,
4190 known_x, known_mode, known_ret);
4191 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4192 int width0 = floor_log2 (nz0) + 1;
4193 int width1 = floor_log2 (nz1) + 1;
4194 int low0 = floor_log2 (nz0 & -nz0);
4195 int low1 = floor_log2 (nz1 & -nz1);
4196 unsigned HOST_WIDE_INT op0_maybe_minusp
4197 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4198 unsigned HOST_WIDE_INT op1_maybe_minusp
4199 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4200 unsigned int result_width = mode_width;
4201 int result_low = 0;
4203 switch (code)
4205 case PLUS:
4206 result_width = MAX (width0, width1) + 1;
4207 result_low = MIN (low0, low1);
4208 break;
4209 case MINUS:
4210 result_low = MIN (low0, low1);
4211 break;
4212 case MULT:
4213 result_width = width0 + width1;
4214 result_low = low0 + low1;
4215 break;
4216 case DIV:
4217 if (width1 == 0)
4218 break;
4219 if (!op0_maybe_minusp && !op1_maybe_minusp)
4220 result_width = width0;
4221 break;
4222 case UDIV:
4223 if (width1 == 0)
4224 break;
4225 result_width = width0;
4226 break;
4227 case MOD:
4228 if (width1 == 0)
4229 break;
4230 if (!op0_maybe_minusp && !op1_maybe_minusp)
4231 result_width = MIN (width0, width1);
4232 result_low = MIN (low0, low1);
4233 break;
4234 case UMOD:
4235 if (width1 == 0)
4236 break;
4237 result_width = MIN (width0, width1);
4238 result_low = MIN (low0, low1);
4239 break;
4240 default:
4241 gcc_unreachable ();
4244 if (result_width < mode_width)
4245 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4247 if (result_low > 0)
4248 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4250 break;
4252 case ZERO_EXTRACT:
4253 if (CONST_INT_P (XEXP (x, 1))
4254 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4255 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4256 break;
4258 case SUBREG:
4259 /* If this is a SUBREG formed for a promoted variable that has
4260 been zero-extended, we know that at least the high-order bits
4261 are zero, though others might be too. */
4263 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4264 nonzero = GET_MODE_MASK (GET_MODE (x))
4265 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4266 known_x, known_mode, known_ret);
4268 inner_mode = GET_MODE (SUBREG_REG (x));
4269 /* If the inner mode is a single word for both the host and target
4270 machines, we can compute this from which bits of the inner
4271 object might be nonzero. */
4272 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4273 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4275 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4276 known_x, known_mode, known_ret);
4278 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4279 /* If this is a typical RISC machine, we only have to worry
4280 about the way loads are extended. */
4281 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4282 ? val_signbit_known_set_p (inner_mode, nonzero)
4283 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4284 || !MEM_P (SUBREG_REG (x)))
4285 #endif
4287 /* On many CISC machines, accessing an object in a wider mode
4288 causes the high-order bits to become undefined. So they are
4289 not known to be zero. */
4290 if (GET_MODE_PRECISION (GET_MODE (x))
4291 > GET_MODE_PRECISION (inner_mode))
4292 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4293 & ~GET_MODE_MASK (inner_mode));
4296 break;
4298 case ASHIFTRT:
4299 case LSHIFTRT:
4300 case ASHIFT:
4301 case ROTATE:
4302 /* The nonzero bits are in two classes: any bits within MODE
4303 that aren't in GET_MODE (x) are always significant. The rest of the
4304 nonzero bits are those that are significant in the operand of
4305 the shift when shifted the appropriate number of bits. This
4306 shows that high-order bits are cleared by the right shift and
4307 low-order bits by left shifts. */
4308 if (CONST_INT_P (XEXP (x, 1))
4309 && INTVAL (XEXP (x, 1)) >= 0
4310 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4311 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4313 enum machine_mode inner_mode = GET_MODE (x);
4314 unsigned int width = GET_MODE_PRECISION (inner_mode);
4315 int count = INTVAL (XEXP (x, 1));
4316 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4317 unsigned HOST_WIDE_INT op_nonzero
4318 = cached_nonzero_bits (XEXP (x, 0), mode,
4319 known_x, known_mode, known_ret);
4320 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4321 unsigned HOST_WIDE_INT outer = 0;
4323 if (mode_width > width)
4324 outer = (op_nonzero & nonzero & ~mode_mask);
4326 if (code == LSHIFTRT)
4327 inner >>= count;
4328 else if (code == ASHIFTRT)
4330 inner >>= count;
4332 /* If the sign bit may have been nonzero before the shift, we
4333 need to mark all the places it could have been copied to
4334 by the shift as possibly nonzero. */
4335 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4336 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4337 << (width - count);
4339 else if (code == ASHIFT)
4340 inner <<= count;
4341 else
4342 inner = ((inner << (count % width)
4343 | (inner >> (width - (count % width)))) & mode_mask);
4345 nonzero &= (outer | inner);
4347 break;
4349 case FFS:
4350 case POPCOUNT:
4351 /* This is at most the number of bits in the mode. */
4352 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4353 break;
4355 case CLZ:
4356 /* If CLZ has a known value at zero, then the nonzero bits are
4357 that value, plus the number of bits in the mode minus one. */
4358 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4359 nonzero
4360 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4361 else
4362 nonzero = -1;
4363 break;
4365 case CTZ:
4366 /* If CTZ has a known value at zero, then the nonzero bits are
4367 that value, plus the number of bits in the mode minus one. */
4368 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4369 nonzero
4370 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4371 else
4372 nonzero = -1;
4373 break;
4375 case CLRSB:
4376 /* This is at most the number of bits in the mode minus 1. */
4377 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4378 break;
4380 case PARITY:
4381 nonzero = 1;
4382 break;
4384 case IF_THEN_ELSE:
4386 unsigned HOST_WIDE_INT nonzero_true
4387 = cached_nonzero_bits (XEXP (x, 1), mode,
4388 known_x, known_mode, known_ret);
4390 /* Don't call nonzero_bits for the second time if it cannot change
4391 anything. */
4392 if ((nonzero & nonzero_true) != nonzero)
4393 nonzero &= nonzero_true
4394 | cached_nonzero_bits (XEXP (x, 2), mode,
4395 known_x, known_mode, known_ret);
4397 break;
4399 default:
4400 break;
4403 return nonzero;
4406 /* See the macro definition above. */
4407 #undef cached_num_sign_bit_copies
4410 /* The function cached_num_sign_bit_copies is a wrapper around
4411 num_sign_bit_copies1. It avoids exponential behavior in
4412 num_sign_bit_copies1 when X has identical subexpressions on the
4413 first or the second level. */
4415 static unsigned int
4416 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4417 enum machine_mode known_mode,
4418 unsigned int known_ret)
4420 if (x == known_x && mode == known_mode)
4421 return known_ret;
4423 /* Try to find identical subexpressions. If found call
4424 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4425 the precomputed value for the subexpression as KNOWN_RET. */
4427 if (ARITHMETIC_P (x))
4429 rtx x0 = XEXP (x, 0);
4430 rtx x1 = XEXP (x, 1);
4432 /* Check the first level. */
4433 if (x0 == x1)
4434 return
4435 num_sign_bit_copies1 (x, mode, x0, mode,
4436 cached_num_sign_bit_copies (x0, mode, known_x,
4437 known_mode,
4438 known_ret));
4440 /* Check the second level. */
4441 if (ARITHMETIC_P (x0)
4442 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4443 return
4444 num_sign_bit_copies1 (x, mode, x1, mode,
4445 cached_num_sign_bit_copies (x1, mode, known_x,
4446 known_mode,
4447 known_ret));
4449 if (ARITHMETIC_P (x1)
4450 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4451 return
4452 num_sign_bit_copies1 (x, mode, x0, mode,
4453 cached_num_sign_bit_copies (x0, mode, known_x,
4454 known_mode,
4455 known_ret));
4458 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4461 /* Return the number of bits at the high-order end of X that are known to
4462 be equal to the sign bit. X will be used in mode MODE; if MODE is
4463 VOIDmode, X will be used in its own mode. The returned value will always
4464 be between 1 and the number of bits in MODE. */
4466 static unsigned int
4467 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4468 enum machine_mode known_mode,
4469 unsigned int known_ret)
4471 enum rtx_code code = GET_CODE (x);
4472 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4473 int num0, num1, result;
4474 unsigned HOST_WIDE_INT nonzero;
4476 /* If we weren't given a mode, use the mode of X. If the mode is still
4477 VOIDmode, we don't know anything. Likewise if one of the modes is
4478 floating-point. */
4480 if (mode == VOIDmode)
4481 mode = GET_MODE (x);
4483 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4484 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4485 return 1;
4487 /* For a smaller object, just ignore the high bits. */
4488 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4490 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4491 known_x, known_mode, known_ret);
4492 return MAX (1,
4493 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4496 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4498 #ifndef WORD_REGISTER_OPERATIONS
4499 /* If this machine does not do all register operations on the entire
4500 register and MODE is wider than the mode of X, we can say nothing
4501 at all about the high-order bits. */
4502 return 1;
4503 #else
4504 /* Likewise on machines that do, if the mode of the object is smaller
4505 than a word and loads of that size don't sign extend, we can say
4506 nothing about the high order bits. */
4507 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4508 #ifdef LOAD_EXTEND_OP
4509 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4510 #endif
4512 return 1;
4513 #endif
4516 switch (code)
4518 case REG:
4520 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4521 /* If pointers extend signed and this is a pointer in Pmode, say that
4522 all the bits above ptr_mode are known to be sign bit copies. */
4523 /* As we do not know which address space the pointer is referring to,
4524 we can do this only if the target does not support different pointer
4525 or address modes depending on the address space. */
4526 if (target_default_pointer_address_modes_p ()
4527 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4528 && mode == Pmode && REG_POINTER (x))
4529 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4530 #endif
4533 unsigned int copies_for_hook = 1, copies = 1;
4534 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4535 known_mode, known_ret,
4536 &copies_for_hook);
4538 if (new_rtx)
4539 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4540 known_mode, known_ret);
4542 if (copies > 1 || copies_for_hook > 1)
4543 return MAX (copies, copies_for_hook);
4545 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4547 break;
4549 case MEM:
4550 #ifdef LOAD_EXTEND_OP
4551 /* Some RISC machines sign-extend all loads of smaller than a word. */
4552 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4553 return MAX (1, ((int) bitwidth
4554 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4555 #endif
4556 break;
4558 case CONST_INT:
4559 /* If the constant is negative, take its 1's complement and remask.
4560 Then see how many zero bits we have. */
4561 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4562 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4563 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4564 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4566 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4568 case SUBREG:
4569 /* If this is a SUBREG for a promoted object that is sign-extended
4570 and we are looking at it in a wider mode, we know that at least the
4571 high-order bits are known to be sign bit copies. */
4573 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4575 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4576 known_x, known_mode, known_ret);
4577 return MAX ((int) bitwidth
4578 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4579 num0);
4582 /* For a smaller object, just ignore the high bits. */
4583 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4585 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4586 known_x, known_mode, known_ret);
4587 return MAX (1, (num0
4588 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4589 - bitwidth)));
4592 #ifdef WORD_REGISTER_OPERATIONS
4593 #ifdef LOAD_EXTEND_OP
4594 /* For paradoxical SUBREGs on machines where all register operations
4595 affect the entire register, just look inside. Note that we are
4596 passing MODE to the recursive call, so the number of sign bit copies
4597 will remain relative to that mode, not the inner mode. */
4599 /* This works only if loads sign extend. Otherwise, if we get a
4600 reload for the inner part, it may be loaded from the stack, and
4601 then we lose all sign bit copies that existed before the store
4602 to the stack. */
4604 if (paradoxical_subreg_p (x)
4605 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4606 && MEM_P (SUBREG_REG (x)))
4607 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4608 known_x, known_mode, known_ret);
4609 #endif
4610 #endif
4611 break;
4613 case SIGN_EXTRACT:
4614 if (CONST_INT_P (XEXP (x, 1)))
4615 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4616 break;
4618 case SIGN_EXTEND:
4619 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4620 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4621 known_x, known_mode, known_ret));
4623 case TRUNCATE:
4624 /* For a smaller object, just ignore the high bits. */
4625 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4626 known_x, known_mode, known_ret);
4627 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4628 - bitwidth)));
4630 case NOT:
4631 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4632 known_x, known_mode, known_ret);
4634 case ROTATE: case ROTATERT:
4635 /* If we are rotating left by a number of bits less than the number
4636 of sign bit copies, we can just subtract that amount from the
4637 number. */
4638 if (CONST_INT_P (XEXP (x, 1))
4639 && INTVAL (XEXP (x, 1)) >= 0
4640 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4642 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4643 known_x, known_mode, known_ret);
4644 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4645 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4647 break;
4649 case NEG:
4650 /* In general, this subtracts one sign bit copy. But if the value
4651 is known to be positive, the number of sign bit copies is the
4652 same as that of the input. Finally, if the input has just one bit
4653 that might be nonzero, all the bits are copies of the sign bit. */
4654 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4655 known_x, known_mode, known_ret);
4656 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4657 return num0 > 1 ? num0 - 1 : 1;
4659 nonzero = nonzero_bits (XEXP (x, 0), mode);
4660 if (nonzero == 1)
4661 return bitwidth;
4663 if (num0 > 1
4664 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4665 num0--;
4667 return num0;
4669 case IOR: case AND: case XOR:
4670 case SMIN: case SMAX: case UMIN: case UMAX:
4671 /* Logical operations will preserve the number of sign-bit copies.
4672 MIN and MAX operations always return one of the operands. */
4673 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4674 known_x, known_mode, known_ret);
4675 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4676 known_x, known_mode, known_ret);
4678 /* If num1 is clearing some of the top bits then regardless of
4679 the other term, we are guaranteed to have at least that many
4680 high-order zero bits. */
4681 if (code == AND
4682 && num1 > 1
4683 && bitwidth <= HOST_BITS_PER_WIDE_INT
4684 && CONST_INT_P (XEXP (x, 1))
4685 && (UINTVAL (XEXP (x, 1))
4686 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4687 return num1;
4689 /* Similarly for IOR when setting high-order bits. */
4690 if (code == IOR
4691 && num1 > 1
4692 && bitwidth <= HOST_BITS_PER_WIDE_INT
4693 && CONST_INT_P (XEXP (x, 1))
4694 && (UINTVAL (XEXP (x, 1))
4695 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4696 return num1;
4698 return MIN (num0, num1);
4700 case PLUS: case MINUS:
4701 /* For addition and subtraction, we can have a 1-bit carry. However,
4702 if we are subtracting 1 from a positive number, there will not
4703 be such a carry. Furthermore, if the positive number is known to
4704 be 0 or 1, we know the result is either -1 or 0. */
4706 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4707 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4709 nonzero = nonzero_bits (XEXP (x, 0), mode);
4710 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4711 return (nonzero == 1 || nonzero == 0 ? bitwidth
4712 : bitwidth - floor_log2 (nonzero) - 1);
4715 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4716 known_x, known_mode, known_ret);
4717 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4718 known_x, known_mode, known_ret);
4719 result = MAX (1, MIN (num0, num1) - 1);
4721 return result;
4723 case MULT:
4724 /* The number of bits of the product is the sum of the number of
4725 bits of both terms. However, unless one of the terms if known
4726 to be positive, we must allow for an additional bit since negating
4727 a negative number can remove one sign bit copy. */
4729 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4730 known_x, known_mode, known_ret);
4731 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4732 known_x, known_mode, known_ret);
4734 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4735 if (result > 0
4736 && (bitwidth > HOST_BITS_PER_WIDE_INT
4737 || (((nonzero_bits (XEXP (x, 0), mode)
4738 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4739 && ((nonzero_bits (XEXP (x, 1), mode)
4740 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4741 != 0))))
4742 result--;
4744 return MAX (1, result);
4746 case UDIV:
4747 /* The result must be <= the first operand. If the first operand
4748 has the high bit set, we know nothing about the number of sign
4749 bit copies. */
4750 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4751 return 1;
4752 else if ((nonzero_bits (XEXP (x, 0), mode)
4753 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4754 return 1;
4755 else
4756 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4757 known_x, known_mode, known_ret);
4759 case UMOD:
4760 /* The result must be <= the second operand. If the second operand
4761 has (or just might have) the high bit set, we know nothing about
4762 the number of sign bit copies. */
4763 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4764 return 1;
4765 else if ((nonzero_bits (XEXP (x, 1), mode)
4766 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4767 return 1;
4768 else
4769 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4770 known_x, known_mode, known_ret);
4772 case DIV:
4773 /* Similar to unsigned division, except that we have to worry about
4774 the case where the divisor is negative, in which case we have
4775 to add 1. */
4776 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4777 known_x, known_mode, known_ret);
4778 if (result > 1
4779 && (bitwidth > HOST_BITS_PER_WIDE_INT
4780 || (nonzero_bits (XEXP (x, 1), mode)
4781 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4782 result--;
4784 return result;
4786 case MOD:
4787 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4788 known_x, known_mode, known_ret);
4789 if (result > 1
4790 && (bitwidth > HOST_BITS_PER_WIDE_INT
4791 || (nonzero_bits (XEXP (x, 1), mode)
4792 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4793 result--;
4795 return result;
4797 case ASHIFTRT:
4798 /* Shifts by a constant add to the number of bits equal to the
4799 sign bit. */
4800 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4801 known_x, known_mode, known_ret);
4802 if (CONST_INT_P (XEXP (x, 1))
4803 && INTVAL (XEXP (x, 1)) > 0
4804 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4805 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4807 return num0;
4809 case ASHIFT:
4810 /* Left shifts destroy copies. */
4811 if (!CONST_INT_P (XEXP (x, 1))
4812 || INTVAL (XEXP (x, 1)) < 0
4813 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4814 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4815 return 1;
4817 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4818 known_x, known_mode, known_ret);
4819 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4821 case IF_THEN_ELSE:
4822 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4823 known_x, known_mode, known_ret);
4824 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4825 known_x, known_mode, known_ret);
4826 return MIN (num0, num1);
4828 case EQ: case NE: case GE: case GT: case LE: case LT:
4829 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4830 case GEU: case GTU: case LEU: case LTU:
4831 case UNORDERED: case ORDERED:
4832 /* If the constant is negative, take its 1's complement and remask.
4833 Then see how many zero bits we have. */
4834 nonzero = STORE_FLAG_VALUE;
4835 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4836 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4837 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4839 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4841 default:
4842 break;
4845 /* If we haven't been able to figure it out by one of the above rules,
4846 see if some of the high-order bits are known to be zero. If so,
4847 count those bits and return one less than that amount. If we can't
4848 safely compute the mask for this mode, always return BITWIDTH. */
4850 bitwidth = GET_MODE_PRECISION (mode);
4851 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4852 return 1;
4854 nonzero = nonzero_bits (x, mode);
4855 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4856 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4859 /* Calculate the rtx_cost of a single instruction. A return value of
4860 zero indicates an instruction pattern without a known cost. */
4863 insn_rtx_cost (rtx pat, bool speed)
4865 int i, cost;
4866 rtx set;
4868 /* Extract the single set rtx from the instruction pattern.
4869 We can't use single_set since we only have the pattern. */
4870 if (GET_CODE (pat) == SET)
4871 set = pat;
4872 else if (GET_CODE (pat) == PARALLEL)
4874 set = NULL_RTX;
4875 for (i = 0; i < XVECLEN (pat, 0); i++)
4877 rtx x = XVECEXP (pat, 0, i);
4878 if (GET_CODE (x) == SET)
4880 if (set)
4881 return 0;
4882 set = x;
4885 if (!set)
4886 return 0;
4888 else
4889 return 0;
4891 cost = set_src_cost (SET_SRC (set), speed);
4892 return cost > 0 ? cost : COSTS_N_INSNS (1);
4895 /* Given an insn INSN and condition COND, return the condition in a
4896 canonical form to simplify testing by callers. Specifically:
4898 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4899 (2) Both operands will be machine operands; (cc0) will have been replaced.
4900 (3) If an operand is a constant, it will be the second operand.
4901 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4902 for GE, GEU, and LEU.
4904 If the condition cannot be understood, or is an inequality floating-point
4905 comparison which needs to be reversed, 0 will be returned.
4907 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4909 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4910 insn used in locating the condition was found. If a replacement test
4911 of the condition is desired, it should be placed in front of that
4912 insn and we will be sure that the inputs are still valid.
4914 If WANT_REG is nonzero, we wish the condition to be relative to that
4915 register, if possible. Therefore, do not canonicalize the condition
4916 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4917 to be a compare to a CC mode register.
4919 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4920 and at INSN. */
4923 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4924 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4926 enum rtx_code code;
4927 rtx prev = insn;
4928 const_rtx set;
4929 rtx tem;
4930 rtx op0, op1;
4931 int reverse_code = 0;
4932 enum machine_mode mode;
4933 basic_block bb = BLOCK_FOR_INSN (insn);
4935 code = GET_CODE (cond);
4936 mode = GET_MODE (cond);
4937 op0 = XEXP (cond, 0);
4938 op1 = XEXP (cond, 1);
4940 if (reverse)
4941 code = reversed_comparison_code (cond, insn);
4942 if (code == UNKNOWN)
4943 return 0;
4945 if (earliest)
4946 *earliest = insn;
4948 /* If we are comparing a register with zero, see if the register is set
4949 in the previous insn to a COMPARE or a comparison operation. Perform
4950 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4951 in cse.c */
4953 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4954 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4955 && op1 == CONST0_RTX (GET_MODE (op0))
4956 && op0 != want_reg)
4958 /* Set nonzero when we find something of interest. */
4959 rtx x = 0;
4961 #ifdef HAVE_cc0
4962 /* If comparison with cc0, import actual comparison from compare
4963 insn. */
4964 if (op0 == cc0_rtx)
4966 if ((prev = prev_nonnote_insn (prev)) == 0
4967 || !NONJUMP_INSN_P (prev)
4968 || (set = single_set (prev)) == 0
4969 || SET_DEST (set) != cc0_rtx)
4970 return 0;
4972 op0 = SET_SRC (set);
4973 op1 = CONST0_RTX (GET_MODE (op0));
4974 if (earliest)
4975 *earliest = prev;
4977 #endif
4979 /* If this is a COMPARE, pick up the two things being compared. */
4980 if (GET_CODE (op0) == COMPARE)
4982 op1 = XEXP (op0, 1);
4983 op0 = XEXP (op0, 0);
4984 continue;
4986 else if (!REG_P (op0))
4987 break;
4989 /* Go back to the previous insn. Stop if it is not an INSN. We also
4990 stop if it isn't a single set or if it has a REG_INC note because
4991 we don't want to bother dealing with it. */
4993 prev = prev_nonnote_nondebug_insn (prev);
4995 if (prev == 0
4996 || !NONJUMP_INSN_P (prev)
4997 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4998 /* In cfglayout mode, there do not have to be labels at the
4999 beginning of a block, or jumps at the end, so the previous
5000 conditions would not stop us when we reach bb boundary. */
5001 || BLOCK_FOR_INSN (prev) != bb)
5002 break;
5004 set = set_of (op0, prev);
5006 if (set
5007 && (GET_CODE (set) != SET
5008 || !rtx_equal_p (SET_DEST (set), op0)))
5009 break;
5011 /* If this is setting OP0, get what it sets it to if it looks
5012 relevant. */
5013 if (set)
5015 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5016 #ifdef FLOAT_STORE_FLAG_VALUE
5017 REAL_VALUE_TYPE fsfv;
5018 #endif
5020 /* ??? We may not combine comparisons done in a CCmode with
5021 comparisons not done in a CCmode. This is to aid targets
5022 like Alpha that have an IEEE compliant EQ instruction, and
5023 a non-IEEE compliant BEQ instruction. The use of CCmode is
5024 actually artificial, simply to prevent the combination, but
5025 should not affect other platforms.
5027 However, we must allow VOIDmode comparisons to match either
5028 CCmode or non-CCmode comparison, because some ports have
5029 modeless comparisons inside branch patterns.
5031 ??? This mode check should perhaps look more like the mode check
5032 in simplify_comparison in combine. */
5034 if ((GET_CODE (SET_SRC (set)) == COMPARE
5035 || (((code == NE
5036 || (code == LT
5037 && val_signbit_known_set_p (inner_mode,
5038 STORE_FLAG_VALUE))
5039 #ifdef FLOAT_STORE_FLAG_VALUE
5040 || (code == LT
5041 && SCALAR_FLOAT_MODE_P (inner_mode)
5042 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5043 REAL_VALUE_NEGATIVE (fsfv)))
5044 #endif
5046 && COMPARISON_P (SET_SRC (set))))
5047 && (((GET_MODE_CLASS (mode) == MODE_CC)
5048 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5049 || mode == VOIDmode || inner_mode == VOIDmode))
5050 x = SET_SRC (set);
5051 else if (((code == EQ
5052 || (code == GE
5053 && val_signbit_known_set_p (inner_mode,
5054 STORE_FLAG_VALUE))
5055 #ifdef FLOAT_STORE_FLAG_VALUE
5056 || (code == GE
5057 && SCALAR_FLOAT_MODE_P (inner_mode)
5058 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5059 REAL_VALUE_NEGATIVE (fsfv)))
5060 #endif
5062 && COMPARISON_P (SET_SRC (set))
5063 && (((GET_MODE_CLASS (mode) == MODE_CC)
5064 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5065 || mode == VOIDmode || inner_mode == VOIDmode))
5068 reverse_code = 1;
5069 x = SET_SRC (set);
5071 else
5072 break;
5075 else if (reg_set_p (op0, prev))
5076 /* If this sets OP0, but not directly, we have to give up. */
5077 break;
5079 if (x)
5081 /* If the caller is expecting the condition to be valid at INSN,
5082 make sure X doesn't change before INSN. */
5083 if (valid_at_insn_p)
5084 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5085 break;
5086 if (COMPARISON_P (x))
5087 code = GET_CODE (x);
5088 if (reverse_code)
5090 code = reversed_comparison_code (x, prev);
5091 if (code == UNKNOWN)
5092 return 0;
5093 reverse_code = 0;
5096 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5097 if (earliest)
5098 *earliest = prev;
5102 /* If constant is first, put it last. */
5103 if (CONSTANT_P (op0))
5104 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5106 /* If OP0 is the result of a comparison, we weren't able to find what
5107 was really being compared, so fail. */
5108 if (!allow_cc_mode
5109 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5110 return 0;
5112 /* Canonicalize any ordered comparison with integers involving equality
5113 if we can do computations in the relevant mode and we do not
5114 overflow. */
5116 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5117 && CONST_INT_P (op1)
5118 && GET_MODE (op0) != VOIDmode
5119 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5121 HOST_WIDE_INT const_val = INTVAL (op1);
5122 unsigned HOST_WIDE_INT uconst_val = const_val;
5123 unsigned HOST_WIDE_INT max_val
5124 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5126 switch (code)
5128 case LE:
5129 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5130 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5131 break;
5133 /* When cross-compiling, const_val might be sign-extended from
5134 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5135 case GE:
5136 if ((const_val & max_val)
5137 != ((unsigned HOST_WIDE_INT) 1
5138 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5139 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5140 break;
5142 case LEU:
5143 if (uconst_val < max_val)
5144 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5145 break;
5147 case GEU:
5148 if (uconst_val != 0)
5149 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5150 break;
5152 default:
5153 break;
5157 /* Never return CC0; return zero instead. */
5158 if (CC0_P (op0))
5159 return 0;
5161 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5164 /* Given a jump insn JUMP, return the condition that will cause it to branch
5165 to its JUMP_LABEL. If the condition cannot be understood, or is an
5166 inequality floating-point comparison which needs to be reversed, 0 will
5167 be returned.
5169 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5170 insn used in locating the condition was found. If a replacement test
5171 of the condition is desired, it should be placed in front of that
5172 insn and we will be sure that the inputs are still valid. If EARLIEST
5173 is null, the returned condition will be valid at INSN.
5175 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5176 compare CC mode register.
5178 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5181 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5183 rtx cond;
5184 int reverse;
5185 rtx set;
5187 /* If this is not a standard conditional jump, we can't parse it. */
5188 if (!JUMP_P (jump)
5189 || ! any_condjump_p (jump))
5190 return 0;
5191 set = pc_set (jump);
5193 cond = XEXP (SET_SRC (set), 0);
5195 /* If this branches to JUMP_LABEL when the condition is false, reverse
5196 the condition. */
5197 reverse
5198 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5199 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5201 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5202 allow_cc_mode, valid_at_insn_p);
5205 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5206 TARGET_MODE_REP_EXTENDED.
5208 Note that we assume that the property of
5209 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5210 narrower than mode B. I.e., if A is a mode narrower than B then in
5211 order to be able to operate on it in mode B, mode A needs to
5212 satisfy the requirements set by the representation of mode B. */
5214 static void
5215 init_num_sign_bit_copies_in_rep (void)
5217 enum machine_mode mode, in_mode;
5219 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5220 in_mode = GET_MODE_WIDER_MODE (mode))
5221 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5222 mode = GET_MODE_WIDER_MODE (mode))
5224 enum machine_mode i;
5226 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5227 extends to the next widest mode. */
5228 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5229 || GET_MODE_WIDER_MODE (mode) == in_mode);
5231 /* We are in in_mode. Count how many bits outside of mode
5232 have to be copies of the sign-bit. */
5233 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5235 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5237 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5238 /* We can only check sign-bit copies starting from the
5239 top-bit. In order to be able to check the bits we
5240 have already seen we pretend that subsequent bits
5241 have to be sign-bit copies too. */
5242 || num_sign_bit_copies_in_rep [in_mode][mode])
5243 num_sign_bit_copies_in_rep [in_mode][mode]
5244 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5249 /* Suppose that truncation from the machine mode of X to MODE is not a
5250 no-op. See if there is anything special about X so that we can
5251 assume it already contains a truncated value of MODE. */
5253 bool
5254 truncated_to_mode (enum machine_mode mode, const_rtx x)
5256 /* This register has already been used in MODE without explicit
5257 truncation. */
5258 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5259 return true;
5261 /* See if we already satisfy the requirements of MODE. If yes we
5262 can just switch to MODE. */
5263 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5264 && (num_sign_bit_copies (x, GET_MODE (x))
5265 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5266 return true;
5268 return false;
5271 /* Initialize non_rtx_starting_operands, which is used to speed up
5272 for_each_rtx. */
5273 void
5274 init_rtlanal (void)
5276 int i;
5277 for (i = 0; i < NUM_RTX_CODE; i++)
5279 const char *format = GET_RTX_FORMAT (i);
5280 const char *first = strpbrk (format, "eEV");
5281 non_rtx_starting_operands[i] = first ? first - format : -1;
5284 init_num_sign_bit_copies_in_rep ();
5287 /* Check whether this is a constant pool constant. */
5288 bool
5289 constant_pool_constant_p (rtx x)
5291 x = avoid_constant_pool_reference (x);
5292 return CONST_DOUBLE_P (x);
5295 /* If M is a bitmask that selects a field of low-order bits within an item but
5296 not the entire word, return the length of the field. Return -1 otherwise.
5297 M is used in machine mode MODE. */
5300 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5302 if (mode != VOIDmode)
5304 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5305 return -1;
5306 m &= GET_MODE_MASK (mode);
5309 return exact_log2 (m + 1);
5312 /* Return the mode of MEM's address. */
5314 enum machine_mode
5315 get_address_mode (rtx mem)
5317 enum machine_mode mode;
5319 gcc_assert (MEM_P (mem));
5320 mode = GET_MODE (XEXP (mem, 0));
5321 if (mode != VOIDmode)
5322 return mode;
5323 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5326 /* Split up a CONST_DOUBLE or integer constant rtx
5327 into two rtx's for single words,
5328 storing in *FIRST the word that comes first in memory in the target
5329 and in *SECOND the other. */
5331 void
5332 split_double (rtx value, rtx *first, rtx *second)
5334 if (CONST_INT_P (value))
5336 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5338 /* In this case the CONST_INT holds both target words.
5339 Extract the bits from it into two word-sized pieces.
5340 Sign extend each half to HOST_WIDE_INT. */
5341 unsigned HOST_WIDE_INT low, high;
5342 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5343 unsigned bits_per_word = BITS_PER_WORD;
5345 /* Set sign_bit to the most significant bit of a word. */
5346 sign_bit = 1;
5347 sign_bit <<= bits_per_word - 1;
5349 /* Set mask so that all bits of the word are set. We could
5350 have used 1 << BITS_PER_WORD instead of basing the
5351 calculation on sign_bit. However, on machines where
5352 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5353 compiler warning, even though the code would never be
5354 executed. */
5355 mask = sign_bit << 1;
5356 mask--;
5358 /* Set sign_extend as any remaining bits. */
5359 sign_extend = ~mask;
5361 /* Pick the lower word and sign-extend it. */
5362 low = INTVAL (value);
5363 low &= mask;
5364 if (low & sign_bit)
5365 low |= sign_extend;
5367 /* Pick the higher word, shifted to the least significant
5368 bits, and sign-extend it. */
5369 high = INTVAL (value);
5370 high >>= bits_per_word - 1;
5371 high >>= 1;
5372 high &= mask;
5373 if (high & sign_bit)
5374 high |= sign_extend;
5376 /* Store the words in the target machine order. */
5377 if (WORDS_BIG_ENDIAN)
5379 *first = GEN_INT (high);
5380 *second = GEN_INT (low);
5382 else
5384 *first = GEN_INT (low);
5385 *second = GEN_INT (high);
5388 else
5390 /* The rule for using CONST_INT for a wider mode
5391 is that we regard the value as signed.
5392 So sign-extend it. */
5393 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5394 if (WORDS_BIG_ENDIAN)
5396 *first = high;
5397 *second = value;
5399 else
5401 *first = value;
5402 *second = high;
5406 else if (!CONST_DOUBLE_P (value))
5408 if (WORDS_BIG_ENDIAN)
5410 *first = const0_rtx;
5411 *second = value;
5413 else
5415 *first = value;
5416 *second = const0_rtx;
5419 else if (GET_MODE (value) == VOIDmode
5420 /* This is the old way we did CONST_DOUBLE integers. */
5421 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5423 /* In an integer, the words are defined as most and least significant.
5424 So order them by the target's convention. */
5425 if (WORDS_BIG_ENDIAN)
5427 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5428 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5430 else
5432 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5433 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5436 else
5438 REAL_VALUE_TYPE r;
5439 long l[2];
5440 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5442 /* Note, this converts the REAL_VALUE_TYPE to the target's
5443 format, splits up the floating point double and outputs
5444 exactly 32 bits of it into each of l[0] and l[1] --
5445 not necessarily BITS_PER_WORD bits. */
5446 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5448 /* If 32 bits is an entire word for the target, but not for the host,
5449 then sign-extend on the host so that the number will look the same
5450 way on the host that it would on the target. See for instance
5451 simplify_unary_operation. The #if is needed to avoid compiler
5452 warnings. */
5454 #if HOST_BITS_PER_LONG > 32
5455 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5457 if (l[0] & ((long) 1 << 31))
5458 l[0] |= ((long) (-1) << 32);
5459 if (l[1] & ((long) 1 << 31))
5460 l[1] |= ((long) (-1) << 32);
5462 #endif
5464 *first = GEN_INT (l[0]);
5465 *second = GEN_INT (l[1]);
5469 /* Return true if X is a sign_extract or zero_extract from the least
5470 significant bit. */
5472 static bool
5473 lsb_bitfield_op_p (rtx x)
5475 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5477 enum machine_mode mode = GET_MODE (XEXP (x, 0));
5478 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5479 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5481 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5483 return false;
5486 /* Strip outer address "mutations" from LOC and return a pointer to the
5487 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5488 stripped expression there.
5490 "Mutations" either convert between modes or apply some kind of
5491 extension, truncation or alignment. */
5493 rtx *
5494 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5496 for (;;)
5498 enum rtx_code code = GET_CODE (*loc);
5499 if (GET_RTX_CLASS (code) == RTX_UNARY)
5500 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5501 used to convert between pointer sizes. */
5502 loc = &XEXP (*loc, 0);
5503 else if (lsb_bitfield_op_p (*loc))
5504 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5505 acts as a combined truncation and extension. */
5506 loc = &XEXP (*loc, 0);
5507 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5508 /* (and ... (const_int -X)) is used to align to X bytes. */
5509 loc = &XEXP (*loc, 0);
5510 else if (code == SUBREG
5511 && !OBJECT_P (SUBREG_REG (*loc))
5512 && subreg_lowpart_p (*loc))
5513 /* (subreg (operator ...) ...) inside and is used for mode
5514 conversion too. */
5515 loc = &SUBREG_REG (*loc);
5516 else
5517 return loc;
5518 if (outer_code)
5519 *outer_code = code;
5523 /* Return true if CODE applies some kind of scale. The scaled value is
5524 is the first operand and the scale is the second. */
5526 static bool
5527 binary_scale_code_p (enum rtx_code code)
5529 return (code == MULT
5530 || code == ASHIFT
5531 /* Needed by ARM targets. */
5532 || code == ASHIFTRT
5533 || code == LSHIFTRT
5534 || code == ROTATE
5535 || code == ROTATERT);
5538 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5539 (see address_info). Return null otherwise. */
5541 static rtx *
5542 get_base_term (rtx *inner)
5544 if (GET_CODE (*inner) == LO_SUM)
5545 inner = strip_address_mutations (&XEXP (*inner, 0));
5546 if (REG_P (*inner)
5547 || MEM_P (*inner)
5548 || GET_CODE (*inner) == SUBREG)
5549 return inner;
5550 return 0;
5553 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5554 (see address_info). Return null otherwise. */
5556 static rtx *
5557 get_index_term (rtx *inner)
5559 /* At present, only constant scales are allowed. */
5560 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5561 inner = strip_address_mutations (&XEXP (*inner, 0));
5562 if (REG_P (*inner)
5563 || MEM_P (*inner)
5564 || GET_CODE (*inner) == SUBREG)
5565 return inner;
5566 return 0;
5569 /* Set the segment part of address INFO to LOC, given that INNER is the
5570 unmutated value. */
5572 static void
5573 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5575 gcc_assert (!info->segment);
5576 info->segment = loc;
5577 info->segment_term = inner;
5580 /* Set the base part of address INFO to LOC, given that INNER is the
5581 unmutated value. */
5583 static void
5584 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5586 gcc_assert (!info->base);
5587 info->base = loc;
5588 info->base_term = inner;
5591 /* Set the index part of address INFO to LOC, given that INNER is the
5592 unmutated value. */
5594 static void
5595 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5597 gcc_assert (!info->index);
5598 info->index = loc;
5599 info->index_term = inner;
5602 /* Set the displacement part of address INFO to LOC, given that INNER
5603 is the constant term. */
5605 static void
5606 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5608 gcc_assert (!info->disp);
5609 info->disp = loc;
5610 info->disp_term = inner;
5613 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5614 rest of INFO accordingly. */
5616 static void
5617 decompose_incdec_address (struct address_info *info)
5619 info->autoinc_p = true;
5621 rtx *base = &XEXP (*info->inner, 0);
5622 set_address_base (info, base, base);
5623 gcc_checking_assert (info->base == info->base_term);
5625 /* These addresses are only valid when the size of the addressed
5626 value is known. */
5627 gcc_checking_assert (info->mode != VOIDmode);
5630 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5631 of INFO accordingly. */
5633 static void
5634 decompose_automod_address (struct address_info *info)
5636 info->autoinc_p = true;
5638 rtx *base = &XEXP (*info->inner, 0);
5639 set_address_base (info, base, base);
5640 gcc_checking_assert (info->base == info->base_term);
5642 rtx plus = XEXP (*info->inner, 1);
5643 gcc_assert (GET_CODE (plus) == PLUS);
5645 info->base_term2 = &XEXP (plus, 0);
5646 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5648 rtx *step = &XEXP (plus, 1);
5649 rtx *inner_step = strip_address_mutations (step);
5650 if (CONSTANT_P (*inner_step))
5651 set_address_disp (info, step, inner_step);
5652 else
5653 set_address_index (info, step, inner_step);
5656 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5657 values in [PTR, END). Return a pointer to the end of the used array. */
5659 static rtx **
5660 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5662 rtx x = *loc;
5663 if (GET_CODE (x) == PLUS)
5665 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5666 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5668 else
5670 gcc_assert (ptr != end);
5671 *ptr++ = loc;
5673 return ptr;
5676 /* Evaluate the likelihood of X being a base or index value, returning
5677 positive if it is likely to be a base, negative if it is likely to be
5678 an index, and 0 if we can't tell. Make the magnitude of the return
5679 value reflect the amount of confidence we have in the answer.
5681 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5683 static int
5684 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5685 enum rtx_code outer_code, enum rtx_code index_code)
5687 /* Believe *_POINTER unless the address shape requires otherwise. */
5688 if (REG_P (x) && REG_POINTER (x))
5689 return 2;
5690 if (MEM_P (x) && MEM_POINTER (x))
5691 return 2;
5693 if (REG_P (x) && HARD_REGISTER_P (x))
5695 /* X is a hard register. If it only fits one of the base
5696 or index classes, choose that interpretation. */
5697 int regno = REGNO (x);
5698 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5699 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5700 if (base_p != index_p)
5701 return base_p ? 1 : -1;
5703 return 0;
5706 /* INFO->INNER describes a normal, non-automodified address.
5707 Fill in the rest of INFO accordingly. */
5709 static void
5710 decompose_normal_address (struct address_info *info)
5712 /* Treat the address as the sum of up to four values. */
5713 rtx *ops[4];
5714 size_t n_ops = extract_plus_operands (info->inner, ops,
5715 ops + ARRAY_SIZE (ops)) - ops;
5717 /* If there is more than one component, any base component is in a PLUS. */
5718 if (n_ops > 1)
5719 info->base_outer_code = PLUS;
5721 /* Try to classify each sum operand now. Leave those that could be
5722 either a base or an index in OPS. */
5723 rtx *inner_ops[4];
5724 size_t out = 0;
5725 for (size_t in = 0; in < n_ops; ++in)
5727 rtx *loc = ops[in];
5728 rtx *inner = strip_address_mutations (loc);
5729 if (CONSTANT_P (*inner))
5730 set_address_disp (info, loc, inner);
5731 else if (GET_CODE (*inner) == UNSPEC)
5732 set_address_segment (info, loc, inner);
5733 else
5735 /* The only other possibilities are a base or an index. */
5736 rtx *base_term = get_base_term (inner);
5737 rtx *index_term = get_index_term (inner);
5738 gcc_assert (base_term || index_term);
5739 if (!base_term)
5740 set_address_index (info, loc, index_term);
5741 else if (!index_term)
5742 set_address_base (info, loc, base_term);
5743 else
5745 gcc_assert (base_term == index_term);
5746 ops[out] = loc;
5747 inner_ops[out] = base_term;
5748 ++out;
5753 /* Classify the remaining OPS members as bases and indexes. */
5754 if (out == 1)
5756 /* If we haven't seen a base or an index yet, assume that this is
5757 the base. If we were confident that another term was the base
5758 or index, treat the remaining operand as the other kind. */
5759 if (!info->base)
5760 set_address_base (info, ops[0], inner_ops[0]);
5761 else
5762 set_address_index (info, ops[0], inner_ops[0]);
5764 else if (out == 2)
5766 /* In the event of a tie, assume the base comes first. */
5767 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5768 GET_CODE (*ops[1]))
5769 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5770 GET_CODE (*ops[0])))
5772 set_address_base (info, ops[0], inner_ops[0]);
5773 set_address_index (info, ops[1], inner_ops[1]);
5775 else
5777 set_address_base (info, ops[1], inner_ops[1]);
5778 set_address_index (info, ops[0], inner_ops[0]);
5781 else
5782 gcc_assert (out == 0);
5785 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5786 or VOIDmode if not known. AS is the address space associated with LOC.
5787 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5789 void
5790 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
5791 addr_space_t as, enum rtx_code outer_code)
5793 memset (info, 0, sizeof (*info));
5794 info->mode = mode;
5795 info->as = as;
5796 info->addr_outer_code = outer_code;
5797 info->outer = loc;
5798 info->inner = strip_address_mutations (loc, &outer_code);
5799 info->base_outer_code = outer_code;
5800 switch (GET_CODE (*info->inner))
5802 case PRE_DEC:
5803 case PRE_INC:
5804 case POST_DEC:
5805 case POST_INC:
5806 decompose_incdec_address (info);
5807 break;
5809 case PRE_MODIFY:
5810 case POST_MODIFY:
5811 decompose_automod_address (info);
5812 break;
5814 default:
5815 decompose_normal_address (info);
5816 break;
5820 /* Describe address operand LOC in INFO. */
5822 void
5823 decompose_lea_address (struct address_info *info, rtx *loc)
5825 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5828 /* Describe the address of MEM X in INFO. */
5830 void
5831 decompose_mem_address (struct address_info *info, rtx x)
5833 gcc_assert (MEM_P (x));
5834 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5835 MEM_ADDR_SPACE (x), MEM);
5838 /* Update INFO after a change to the address it describes. */
5840 void
5841 update_address (struct address_info *info)
5843 decompose_address (info, info->outer, info->mode, info->as,
5844 info->addr_outer_code);
5847 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5848 more complicated than that. */
5850 HOST_WIDE_INT
5851 get_index_scale (const struct address_info *info)
5853 rtx index = *info->index;
5854 if (GET_CODE (index) == MULT
5855 && CONST_INT_P (XEXP (index, 1))
5856 && info->index_term == &XEXP (index, 0))
5857 return INTVAL (XEXP (index, 1));
5859 if (GET_CODE (index) == ASHIFT
5860 && CONST_INT_P (XEXP (index, 1))
5861 && info->index_term == &XEXP (index, 0))
5862 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
5864 if (info->index == info->index_term)
5865 return 1;
5867 return 0;
5870 /* Return the "index code" of INFO, in the form required by
5871 ok_for_base_p_1. */
5873 enum rtx_code
5874 get_index_code (const struct address_info *info)
5876 if (info->index)
5877 return GET_CODE (*info->index);
5879 if (info->disp)
5880 return GET_CODE (*info->disp);
5882 return SCRATCH;