1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Nlists
; use Nlists
;
32 with Errout
; use Errout
;
34 with Namet
; use Namet
;
36 with Output
; use Output
;
38 with Sem_Aux
; use Sem_Aux
;
39 with Sem_Ch6
; use Sem_Ch6
;
40 with Sem_Ch8
; use Sem_Ch8
;
41 with Sem_Ch12
; use Sem_Ch12
;
42 with Sem_Disp
; use Sem_Disp
;
43 with Sem_Dist
; use Sem_Dist
;
44 with Sem_Util
; use Sem_Util
;
45 with Stand
; use Stand
;
46 with Sinfo
; use Sinfo
;
47 with Snames
; use Snames
;
49 with Treepr
; use Treepr
;
50 with Uintp
; use Uintp
;
52 package body Sem_Type
is
58 -- The following data structures establish a mapping between nodes and
59 -- their interpretations. An overloaded node has an entry in Interp_Map,
60 -- which in turn contains a pointer into the All_Interp array. The
61 -- interpretations of a given node are contiguous in All_Interp. Each set
62 -- of interpretations is terminated with the marker No_Interp. In order to
63 -- speed up the retrieval of the interpretations of an overloaded node, the
64 -- Interp_Map table is accessed by means of a simple hashing scheme, and
65 -- the entries in Interp_Map are chained. The heads of clash lists are
66 -- stored in array Headers.
68 -- Headers Interp_Map All_Interp
70 -- _ +-----+ +--------+
71 -- |_| |_____| --->|interp1 |
72 -- |_|---------->|node | | |interp2 |
73 -- |_| |index|---------| |nointerp|
78 -- This scheme does not currently reclaim interpretations. In principle,
79 -- after a unit is compiled, all overloadings have been resolved, and the
80 -- candidate interpretations should be deleted. This should be easier
81 -- now than with the previous scheme???
83 package All_Interp
is new Table
.Table
(
84 Table_Component_Type
=> Interp
,
85 Table_Index_Type
=> Interp_Index
,
87 Table_Initial
=> Alloc
.All_Interp_Initial
,
88 Table_Increment
=> Alloc
.All_Interp_Increment
,
89 Table_Name
=> "All_Interp");
91 type Interp_Ref
is record
97 Header_Size
: constant Int
:= 2 ** 12;
98 No_Entry
: constant Int
:= -1;
99 Headers
: array (0 .. Header_Size
) of Int
:= (others => No_Entry
);
101 package Interp_Map
is new Table
.Table
(
102 Table_Component_Type
=> Interp_Ref
,
103 Table_Index_Type
=> Int
,
104 Table_Low_Bound
=> 0,
105 Table_Initial
=> Alloc
.Interp_Map_Initial
,
106 Table_Increment
=> Alloc
.Interp_Map_Increment
,
107 Table_Name
=> "Interp_Map");
109 function Hash
(N
: Node_Id
) return Int
;
110 -- A trivial hashing function for nodes, used to insert an overloaded
111 -- node into the Interp_Map table.
113 -------------------------------------
114 -- Handling of Overload Resolution --
115 -------------------------------------
117 -- Overload resolution uses two passes over the syntax tree of a complete
118 -- context. In the first, bottom-up pass, the types of actuals in calls
119 -- are used to resolve possibly overloaded subprogram and operator names.
120 -- In the second top-down pass, the type of the context (for example the
121 -- condition in a while statement) is used to resolve a possibly ambiguous
122 -- call, and the unique subprogram name in turn imposes a specific context
123 -- on each of its actuals.
125 -- Most expressions are in fact unambiguous, and the bottom-up pass is
126 -- sufficient to resolve most everything. To simplify the common case,
127 -- names and expressions carry a flag Is_Overloaded to indicate whether
128 -- they have more than one interpretation. If the flag is off, then each
129 -- name has already a unique meaning and type, and the bottom-up pass is
130 -- sufficient (and much simpler).
132 --------------------------
133 -- Operator Overloading --
134 --------------------------
136 -- The visibility of operators is handled differently from that of other
137 -- entities. We do not introduce explicit versions of primitive operators
138 -- for each type definition. As a result, there is only one entity
139 -- corresponding to predefined addition on all numeric types, etc. The
140 -- back-end resolves predefined operators according to their type. The
141 -- visibility of primitive operations then reduces to the visibility of the
142 -- resulting type: (a + b) is a legal interpretation of some primitive
143 -- operator + if the type of the result (which must also be the type of a
144 -- and b) is directly visible (either immediately visible or use-visible).
146 -- User-defined operators are treated like other functions, but the
147 -- visibility of these user-defined operations must be special-cased
148 -- to determine whether they hide or are hidden by predefined operators.
149 -- The form P."+" (x, y) requires additional handling.
151 -- Concatenation is treated more conventionally: for every one-dimensional
152 -- array type we introduce a explicit concatenation operator. This is
153 -- necessary to handle the case of (element & element => array) which
154 -- cannot be handled conveniently if there is no explicit instance of
155 -- resulting type of the operation.
157 -----------------------
158 -- Local Subprograms --
159 -----------------------
161 procedure All_Overloads
;
162 pragma Warnings
(Off
, All_Overloads
);
163 -- Debugging procedure: list full contents of Overloads table
165 function Binary_Op_Interp_Has_Abstract_Op
167 E
: Entity_Id
) return Entity_Id
;
168 -- Given the node and entity of a binary operator, determine whether the
169 -- actuals of E contain an abstract interpretation with regards to the
170 -- types of their corresponding formals. Return the abstract operation or
173 function Function_Interp_Has_Abstract_Op
175 E
: Entity_Id
) return Entity_Id
;
176 -- Given the node and entity of a function call, determine whether the
177 -- actuals of E contain an abstract interpretation with regards to the
178 -- types of their corresponding formals. Return the abstract operation or
181 function Has_Abstract_Op
183 Typ
: Entity_Id
) return Entity_Id
;
184 -- Subsidiary routine to Binary_Op_Interp_Has_Abstract_Op and Function_
185 -- Interp_Has_Abstract_Op. Determine whether an overloaded node has an
186 -- abstract interpretation which yields type Typ.
188 procedure New_Interps
(N
: Node_Id
);
189 -- Initialize collection of interpretations for the given node, which is
190 -- either an overloaded entity, or an operation whose arguments have
191 -- multiple interpretations. Interpretations can be added to only one
194 function Specific_Type
(Typ_1
, Typ_2
: Entity_Id
) return Entity_Id
;
195 -- If Typ_1 and Typ_2 are compatible, return the one that is not universal
196 -- or is not a "class" type (any_character, etc).
202 procedure Add_One_Interp
206 Opnd_Type
: Entity_Id
:= Empty
)
208 Vis_Type
: Entity_Id
;
210 procedure Add_Entry
(Name
: Entity_Id
; Typ
: Entity_Id
);
211 -- Add one interpretation to an overloaded node. Add a new entry if
212 -- not hidden by previous one, and remove previous one if hidden by
215 function Is_Universal_Operation
(Op
: Entity_Id
) return Boolean;
216 -- True if the entity is a predefined operator and the operands have
217 -- a universal Interpretation.
223 procedure Add_Entry
(Name
: Entity_Id
; Typ
: Entity_Id
) is
224 Abstr_Op
: Entity_Id
:= Empty
;
228 -- Start of processing for Add_Entry
231 -- Find out whether the new entry references interpretations that
232 -- are abstract or disabled by abstract operators.
234 if Ada_Version
>= Ada_2005
then
235 if Nkind
(N
) in N_Binary_Op
then
236 Abstr_Op
:= Binary_Op_Interp_Has_Abstract_Op
(N
, Name
);
237 elsif Nkind
(N
) = N_Function_Call
then
238 Abstr_Op
:= Function_Interp_Has_Abstract_Op
(N
, Name
);
242 Get_First_Interp
(N
, I
, It
);
243 while Present
(It
.Nam
) loop
245 -- A user-defined subprogram hides another declared at an outer
246 -- level, or one that is use-visible. So return if previous
247 -- definition hides new one (which is either in an outer
248 -- scope, or use-visible). Note that for functions use-visible
249 -- is the same as potentially use-visible. If new one hides
250 -- previous one, replace entry in table of interpretations.
251 -- If this is a universal operation, retain the operator in case
252 -- preference rule applies.
254 if (((Ekind
(Name
) = E_Function
or else Ekind
(Name
) = E_Procedure
)
255 and then Ekind
(Name
) = Ekind
(It
.Nam
))
256 or else (Ekind
(Name
) = E_Operator
257 and then Ekind
(It
.Nam
) = E_Function
))
259 and then Is_Immediately_Visible
(It
.Nam
)
260 and then Type_Conformant
(Name
, It
.Nam
)
261 and then Base_Type
(It
.Typ
) = Base_Type
(T
)
263 if Is_Universal_Operation
(Name
) then
266 -- If node is an operator symbol, we have no actuals with
267 -- which to check hiding, and this is done in full in the
268 -- caller (Analyze_Subprogram_Renaming) so we include the
269 -- predefined operator in any case.
271 elsif Nkind
(N
) = N_Operator_Symbol
272 or else (Nkind
(N
) = N_Expanded_Name
274 Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
)
278 elsif not In_Open_Scopes
(Scope
(Name
))
279 or else Scope_Depth
(Scope
(Name
)) <=
280 Scope_Depth
(Scope
(It
.Nam
))
282 -- If ambiguity within instance, and entity is not an
283 -- implicit operation, save for later disambiguation.
285 if Scope
(Name
) = Scope
(It
.Nam
)
286 and then not Is_Inherited_Operation
(Name
)
295 All_Interp
.Table
(I
).Nam
:= Name
;
299 -- Avoid making duplicate entries in overloads
302 and then Base_Type
(It
.Typ
) = Base_Type
(T
)
306 -- Otherwise keep going
309 Get_Next_Interp
(I
, It
);
314 All_Interp
.Table
(All_Interp
.Last
) := (Name
, Typ
, Abstr_Op
);
315 All_Interp
.Append
(No_Interp
);
318 ----------------------------
319 -- Is_Universal_Operation --
320 ----------------------------
322 function Is_Universal_Operation
(Op
: Entity_Id
) return Boolean is
326 if Ekind
(Op
) /= E_Operator
then
329 elsif Nkind
(N
) in N_Binary_Op
then
330 return Present
(Universal_Interpretation
(Left_Opnd
(N
)))
331 and then Present
(Universal_Interpretation
(Right_Opnd
(N
)));
333 elsif Nkind
(N
) in N_Unary_Op
then
334 return Present
(Universal_Interpretation
(Right_Opnd
(N
)));
336 elsif Nkind
(N
) = N_Function_Call
then
337 Arg
:= First_Actual
(N
);
338 while Present
(Arg
) loop
339 if No
(Universal_Interpretation
(Arg
)) then
351 end Is_Universal_Operation
;
353 -- Start of processing for Add_One_Interp
356 -- If the interpretation is a predefined operator, verify that the
357 -- result type is visible, or that the entity has already been
358 -- resolved (case of an instantiation node that refers to a predefined
359 -- operation, or an internally generated operator node, or an operator
360 -- given as an expanded name). If the operator is a comparison or
361 -- equality, it is the type of the operand that matters to determine
362 -- whether the operator is visible. In an instance, the check is not
363 -- performed, given that the operator was visible in the generic.
365 if Ekind
(E
) = E_Operator
then
366 if Present
(Opnd_Type
) then
367 Vis_Type
:= Opnd_Type
;
369 Vis_Type
:= Base_Type
(T
);
372 if In_Open_Scopes
(Scope
(Vis_Type
))
373 or else Is_Potentially_Use_Visible
(Vis_Type
)
374 or else In_Use
(Vis_Type
)
375 or else (In_Use
(Scope
(Vis_Type
))
376 and then not Is_Hidden
(Vis_Type
))
377 or else Nkind
(N
) = N_Expanded_Name
378 or else (Nkind
(N
) in N_Op
and then E
= Entity
(N
))
380 or else Ekind
(Vis_Type
) = E_Anonymous_Access_Type
384 -- If the node is given in functional notation and the prefix
385 -- is an expanded name, then the operator is visible if the
386 -- prefix is the scope of the result type as well. If the
387 -- operator is (implicitly) defined in an extension of system,
388 -- it is know to be valid (see Defined_In_Scope, sem_ch4.adb).
390 elsif Nkind
(N
) = N_Function_Call
391 and then Nkind
(Name
(N
)) = N_Expanded_Name
392 and then (Entity
(Prefix
(Name
(N
))) = Scope
(Base_Type
(T
))
393 or else Entity
(Prefix
(Name
(N
))) = Scope
(Vis_Type
)
394 or else Scope
(Vis_Type
) = System_Aux_Id
)
398 -- Save type for subsequent error message, in case no other
399 -- interpretation is found.
402 Candidate_Type
:= Vis_Type
;
406 -- In an instance, an abstract non-dispatching operation cannot be a
407 -- candidate interpretation, because it could not have been one in the
408 -- generic (it may be a spurious overloading in the instance).
411 and then Is_Overloadable
(E
)
412 and then Is_Abstract_Subprogram
(E
)
413 and then not Is_Dispatching_Operation
(E
)
417 -- An inherited interface operation that is implemented by some derived
418 -- type does not participate in overload resolution, only the
419 -- implementation operation does.
422 and then Is_Subprogram
(E
)
423 and then Present
(Interface_Alias
(E
))
425 -- Ada 2005 (AI-251): If this primitive operation corresponds with
426 -- an immediate ancestor interface there is no need to add it to the
427 -- list of interpretations. The corresponding aliased primitive is
428 -- also in this list of primitive operations and will be used instead
429 -- because otherwise we have a dummy ambiguity between the two
430 -- subprograms which are in fact the same.
433 (Find_Dispatching_Type
(Interface_Alias
(E
)),
434 Find_Dispatching_Type
(E
))
436 Add_One_Interp
(N
, Interface_Alias
(E
), T
);
441 -- Calling stubs for an RACW operation never participate in resolution,
442 -- they are executed only through dispatching calls.
444 elsif Is_RACW_Stub_Type_Operation
(E
) then
448 -- If this is the first interpretation of N, N has type Any_Type.
449 -- In that case place the new type on the node. If one interpretation
450 -- already exists, indicate that the node is overloaded, and store
451 -- both the previous and the new interpretation in All_Interp. If
452 -- this is a later interpretation, just add it to the set.
454 if Etype
(N
) = Any_Type
then
459 -- Record both the operator or subprogram name, and its type
461 if Nkind
(N
) in N_Op
or else Is_Entity_Name
(N
) then
468 -- Either there is no current interpretation in the table for any
469 -- node or the interpretation that is present is for a different
470 -- node. In both cases add a new interpretation to the table.
472 elsif Interp_Map
.Last
< 0
474 (Interp_Map
.Table
(Interp_Map
.Last
).Node
/= N
475 and then not Is_Overloaded
(N
))
479 if (Nkind
(N
) in N_Op
or else Is_Entity_Name
(N
))
480 and then Present
(Entity
(N
))
482 Add_Entry
(Entity
(N
), Etype
(N
));
484 elsif Nkind
(N
) in N_Subprogram_Call
485 and then Is_Entity_Name
(Name
(N
))
487 Add_Entry
(Entity
(Name
(N
)), Etype
(N
));
489 -- If this is an indirect call there will be no name associated
490 -- with the previous entry. To make diagnostics clearer, save
491 -- Subprogram_Type of first interpretation, so that the error will
492 -- point to the anonymous access to subprogram, not to the result
493 -- type of the call itself.
495 elsif (Nkind
(N
)) = N_Function_Call
496 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
497 and then Is_Overloaded
(Name
(N
))
503 pragma Warnings
(Off
, Itn
);
506 Get_First_Interp
(Name
(N
), Itn
, It
);
507 Add_Entry
(It
.Nam
, Etype
(N
));
511 -- Overloaded prefix in indexed or selected component, or call
512 -- whose name is an expression or another call.
514 Add_Entry
(Etype
(N
), Etype
(N
));
528 procedure All_Overloads
is
530 for J
in All_Interp
.First
.. All_Interp
.Last
loop
532 if Present
(All_Interp
.Table
(J
).Nam
) then
533 Write_Entity_Info
(All_Interp
.Table
(J
). Nam
, " ");
535 Write_Str
("No Interp");
539 Write_Str
("=================");
544 --------------------------------------
545 -- Binary_Op_Interp_Has_Abstract_Op --
546 --------------------------------------
548 function Binary_Op_Interp_Has_Abstract_Op
550 E
: Entity_Id
) return Entity_Id
552 Abstr_Op
: Entity_Id
;
553 E_Left
: constant Node_Id
:= First_Formal
(E
);
554 E_Right
: constant Node_Id
:= Next_Formal
(E_Left
);
557 Abstr_Op
:= Has_Abstract_Op
(Left_Opnd
(N
), Etype
(E_Left
));
558 if Present
(Abstr_Op
) then
562 return Has_Abstract_Op
(Right_Opnd
(N
), Etype
(E_Right
));
563 end Binary_Op_Interp_Has_Abstract_Op
;
565 ---------------------
566 -- Collect_Interps --
567 ---------------------
569 procedure Collect_Interps
(N
: Node_Id
) is
570 Ent
: constant Entity_Id
:= Entity
(N
);
572 First_Interp
: Interp_Index
;
574 function Within_Instance
(E
: Entity_Id
) return Boolean;
575 -- Within an instance there can be spurious ambiguities between a local
576 -- entity and one declared outside of the instance. This can only happen
577 -- for subprograms, because otherwise the local entity hides the outer
578 -- one. For an overloadable entity, this predicate determines whether it
579 -- is a candidate within the instance, or must be ignored.
581 ---------------------
582 -- Within_Instance --
583 ---------------------
585 function Within_Instance
(E
: Entity_Id
) return Boolean is
590 if not In_Instance
then
594 Inst
:= Current_Scope
;
595 while Present
(Inst
) and then not Is_Generic_Instance
(Inst
) loop
596 Inst
:= Scope
(Inst
);
600 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
604 Scop
:= Scope
(Scop
);
610 -- Start of processing for Collect_Interps
615 -- Unconditionally add the entity that was initially matched
617 First_Interp
:= All_Interp
.Last
;
618 Add_One_Interp
(N
, Ent
, Etype
(N
));
620 -- For expanded name, pick up all additional entities from the
621 -- same scope, since these are obviously also visible. Note that
622 -- these are not necessarily contiguous on the homonym chain.
624 if Nkind
(N
) = N_Expanded_Name
then
626 while Present
(H
) loop
627 if Scope
(H
) = Scope
(Entity
(N
)) then
628 Add_One_Interp
(N
, H
, Etype
(H
));
634 -- Case of direct name
637 -- First, search the homonym chain for directly visible entities
639 H
:= Current_Entity
(Ent
);
640 while Present
(H
) loop
641 exit when (not Is_Overloadable
(H
))
642 and then Is_Immediately_Visible
(H
);
644 if Is_Immediately_Visible
(H
)
647 -- Only add interpretation if not hidden by an inner
648 -- immediately visible one.
650 for J
in First_Interp
.. All_Interp
.Last
- 1 loop
652 -- Current homograph is not hidden. Add to overloads
654 if not Is_Immediately_Visible
(All_Interp
.Table
(J
).Nam
) then
657 -- Homograph is hidden, unless it is a predefined operator
659 elsif Type_Conformant
(H
, All_Interp
.Table
(J
).Nam
) then
661 -- A homograph in the same scope can occur within an
662 -- instantiation, the resulting ambiguity has to be
663 -- resolved later. The homographs may both be local
664 -- functions or actuals, or may be declared at different
665 -- levels within the instance. The renaming of an actual
666 -- within the instance must not be included.
668 if Within_Instance
(H
)
669 and then H
/= Renamed_Entity
(Ent
)
670 and then not Is_Inherited_Operation
(H
)
672 All_Interp
.Table
(All_Interp
.Last
) :=
673 (H
, Etype
(H
), Empty
);
674 All_Interp
.Append
(No_Interp
);
677 elsif Scope
(H
) /= Standard_Standard
then
683 -- On exit, we know that current homograph is not hidden
685 Add_One_Interp
(N
, H
, Etype
(H
));
688 Write_Str
("Add overloaded interpretation ");
698 -- Scan list of homographs for use-visible entities only
700 H
:= Current_Entity
(Ent
);
702 while Present
(H
) loop
703 if Is_Potentially_Use_Visible
(H
)
705 and then Is_Overloadable
(H
)
707 for J
in First_Interp
.. All_Interp
.Last
- 1 loop
709 if not Is_Immediately_Visible
(All_Interp
.Table
(J
).Nam
) then
712 elsif Type_Conformant
(H
, All_Interp
.Table
(J
).Nam
) then
713 goto Next_Use_Homograph
;
717 Add_One_Interp
(N
, H
, Etype
(H
));
720 <<Next_Use_Homograph
>>
725 if All_Interp
.Last
= First_Interp
+ 1 then
727 -- The final interpretation is in fact not overloaded. Note that the
728 -- unique legal interpretation may or may not be the original one,
729 -- so we need to update N's entity and etype now, because once N
730 -- is marked as not overloaded it is also expected to carry the
731 -- proper interpretation.
733 Set_Is_Overloaded
(N
, False);
734 Set_Entity
(N
, All_Interp
.Table
(First_Interp
).Nam
);
735 Set_Etype
(N
, All_Interp
.Table
(First_Interp
).Typ
);
743 function Covers
(T1
, T2
: Entity_Id
) return Boolean is
747 function Full_View_Covers
(Typ1
, Typ2
: Entity_Id
) return Boolean;
748 -- In an instance the proper view may not always be correct for
749 -- private types, but private and full view are compatible. This
750 -- removes spurious errors from nested instantiations that involve,
751 -- among other things, types derived from private types.
753 function Real_Actual
(T
: Entity_Id
) return Entity_Id
;
754 -- If an actual in an inner instance is the formal of an enclosing
755 -- generic, the actual in the enclosing instance is the one that can
756 -- create an accidental ambiguity, and the check on compatibily of
757 -- generic actual types must use this enclosing actual.
759 ----------------------
760 -- Full_View_Covers --
761 ----------------------
763 function Full_View_Covers
(Typ1
, Typ2
: Entity_Id
) return Boolean is
766 Is_Private_Type
(Typ1
)
768 ((Present
(Full_View
(Typ1
))
769 and then Covers
(Full_View
(Typ1
), Typ2
))
770 or else Base_Type
(Typ1
) = Typ2
771 or else Base_Type
(Typ2
) = Typ1
);
772 end Full_View_Covers
;
778 function Real_Actual
(T
: Entity_Id
) return Entity_Id
is
779 Par
: constant Node_Id
:= Parent
(T
);
783 -- Retrieve parent subtype from subtype declaration for actual
785 if Nkind
(Par
) = N_Subtype_Declaration
786 and then not Comes_From_Source
(Par
)
787 and then Is_Entity_Name
(Subtype_Indication
(Par
))
789 RA
:= Entity
(Subtype_Indication
(Par
));
791 if Is_Generic_Actual_Type
(RA
) then
796 -- Otherwise actual is not the actual of an enclosing instance
801 -- Start of processing for Covers
804 -- If either operand missing, then this is an error, but ignore it (and
805 -- pretend we have a cover) if errors already detected, since this may
806 -- simply mean we have malformed trees or a semantic error upstream.
808 if No
(T1
) or else No
(T2
) then
809 if Total_Errors_Detected
/= 0 then
816 -- Trivial case: same types are always compatible
822 -- First check for Standard_Void_Type, which is special. Subsequent
823 -- processing in this routine assumes T1 and T2 are bona fide types;
824 -- Standard_Void_Type is a special entity that has some, but not all,
825 -- properties of types.
827 if (T1
= Standard_Void_Type
) /= (T2
= Standard_Void_Type
) then
831 BT1
:= Base_Type
(T1
);
832 BT2
:= Base_Type
(T2
);
834 -- Handle underlying view of records with unknown discriminants
835 -- using the original entity that motivated the construction of
836 -- this underlying record view (see Build_Derived_Private_Type).
838 if Is_Underlying_Record_View
(BT1
) then
839 BT1
:= Underlying_Record_View
(BT1
);
842 if Is_Underlying_Record_View
(BT2
) then
843 BT2
:= Underlying_Record_View
(BT2
);
846 -- Simplest case: types that have the same base type and are not generic
847 -- actuals are compatible. Generic actuals belong to their class but are
848 -- not compatible with other types of their class, and in particular
849 -- with other generic actuals. They are however compatible with their
850 -- own subtypes, and itypes with the same base are compatible as well.
851 -- Similarly, constrained subtypes obtained from expressions of an
852 -- unconstrained nominal type are compatible with the base type (may
853 -- lead to spurious ambiguities in obscure cases ???)
855 -- Generic actuals require special treatment to avoid spurious ambi-
856 -- guities in an instance, when two formal types are instantiated with
857 -- the same actual, so that different subprograms end up with the same
858 -- signature in the instance. If a generic actual is the actual of an
859 -- enclosing instance, it is that actual that we must compare: generic
860 -- actuals are only incompatible if they appear in the same instance.
866 if not Is_Generic_Actual_Type
(T1
)
868 not Is_Generic_Actual_Type
(T2
)
872 -- Both T1 and T2 are generic actual types
876 RT1
: constant Entity_Id
:= Real_Actual
(T1
);
877 RT2
: constant Entity_Id
:= Real_Actual
(T2
);
880 or else Is_Itype
(T1
)
881 or else Is_Itype
(T2
)
882 or else Is_Constr_Subt_For_U_Nominal
(T1
)
883 or else Is_Constr_Subt_For_U_Nominal
(T2
)
884 or else Scope
(RT1
) /= Scope
(RT2
);
888 -- Literals are compatible with types in a given "class"
890 elsif (T2
= Universal_Integer
and then Is_Integer_Type
(T1
))
891 or else (T2
= Universal_Real
and then Is_Real_Type
(T1
))
892 or else (T2
= Universal_Fixed
and then Is_Fixed_Point_Type
(T1
))
893 or else (T2
= Any_Fixed
and then Is_Fixed_Point_Type
(T1
))
894 or else (T2
= Any_String
and then Is_String_Type
(T1
))
895 or else (T2
= Any_Character
and then Is_Character_Type
(T1
))
896 or else (T2
= Any_Access
and then Is_Access_Type
(T1
))
900 -- The context may be class wide, and a class-wide type is compatible
901 -- with any member of the class.
903 elsif Is_Class_Wide_Type
(T1
)
904 and then Is_Ancestor
(Root_Type
(T1
), T2
)
908 elsif Is_Class_Wide_Type
(T1
)
909 and then Is_Class_Wide_Type
(T2
)
910 and then Base_Type
(Etype
(T1
)) = Base_Type
(Etype
(T2
))
914 -- Ada 2005 (AI-345): A class-wide abstract interface type covers a
915 -- task_type or protected_type that implements the interface.
917 elsif Ada_Version
>= Ada_2005
918 and then Is_Class_Wide_Type
(T1
)
919 and then Is_Interface
(Etype
(T1
))
920 and then Is_Concurrent_Type
(T2
)
921 and then Interface_Present_In_Ancestor
922 (Typ
=> BT2
, Iface
=> Etype
(T1
))
926 -- Ada 2005 (AI-251): A class-wide abstract interface type T1 covers an
927 -- object T2 implementing T1.
929 elsif Ada_Version
>= Ada_2005
930 and then Is_Class_Wide_Type
(T1
)
931 and then Is_Interface
(Etype
(T1
))
932 and then Is_Tagged_Type
(T2
)
934 if Interface_Present_In_Ancestor
(Typ
=> T2
,
945 if Is_Concurrent_Type
(BT2
) then
946 E
:= Corresponding_Record_Type
(BT2
);
951 -- Ada 2005 (AI-251): A class-wide abstract interface type T1
952 -- covers an object T2 that implements a direct derivation of T1.
953 -- Note: test for presence of E is defense against previous error.
956 Check_Error_Detected
;
958 elsif Present
(Interfaces
(E
)) then
959 Elmt
:= First_Elmt
(Interfaces
(E
));
960 while Present
(Elmt
) loop
961 if Is_Ancestor
(Etype
(T1
), Node
(Elmt
)) then
969 -- We should also check the case in which T1 is an ancestor of
970 -- some implemented interface???
975 -- In a dispatching call, the formal is of some specific type, and the
976 -- actual is of the corresponding class-wide type, including a subtype
977 -- of the class-wide type.
979 elsif Is_Class_Wide_Type
(T2
)
981 (Class_Wide_Type
(T1
) = Class_Wide_Type
(T2
)
982 or else Base_Type
(Root_Type
(T2
)) = BT1
)
986 -- Some contexts require a class of types rather than a specific type.
987 -- For example, conditions require any boolean type, fixed point
988 -- attributes require some real type, etc. The built-in types Any_XXX
989 -- represent these classes.
991 elsif (T1
= Any_Integer
and then Is_Integer_Type
(T2
))
992 or else (T1
= Any_Boolean
and then Is_Boolean_Type
(T2
))
993 or else (T1
= Any_Real
and then Is_Real_Type
(T2
))
994 or else (T1
= Any_Fixed
and then Is_Fixed_Point_Type
(T2
))
995 or else (T1
= Any_Discrete
and then Is_Discrete_Type
(T2
))
999 -- An aggregate is compatible with an array or record type
1001 elsif T2
= Any_Composite
1002 and then Is_Aggregate_Type
(T1
)
1006 -- If the expected type is an anonymous access, the designated type must
1007 -- cover that of the expression. Use the base type for this check: even
1008 -- though access subtypes are rare in sources, they are generated for
1009 -- actuals in instantiations.
1011 elsif Ekind
(BT1
) = E_Anonymous_Access_Type
1012 and then Is_Access_Type
(T2
)
1013 and then Covers
(Designated_Type
(T1
), Designated_Type
(T2
))
1017 -- Ada 2012 (AI05-0149): Allow an anonymous access type in the context
1018 -- of a named general access type. An implicit conversion will be
1019 -- applied. For the resolution, one designated type must cover the
1022 elsif Ada_Version
>= Ada_2012
1023 and then Ekind
(BT1
) = E_General_Access_Type
1024 and then Ekind
(BT2
) = E_Anonymous_Access_Type
1025 and then (Covers
(Designated_Type
(T1
), Designated_Type
(T2
))
1026 or else Covers
(Designated_Type
(T2
), Designated_Type
(T1
)))
1030 -- An Access_To_Subprogram is compatible with itself, or with an
1031 -- anonymous type created for an attribute reference Access.
1033 elsif (Ekind
(BT1
) = E_Access_Subprogram_Type
1035 Ekind
(BT1
) = E_Access_Protected_Subprogram_Type
)
1036 and then Is_Access_Type
(T2
)
1037 and then (not Comes_From_Source
(T1
)
1038 or else not Comes_From_Source
(T2
))
1039 and then (Is_Overloadable
(Designated_Type
(T2
))
1041 Ekind
(Designated_Type
(T2
)) = E_Subprogram_Type
)
1043 Type_Conformant
(Designated_Type
(T1
), Designated_Type
(T2
))
1045 Mode_Conformant
(Designated_Type
(T1
), Designated_Type
(T2
))
1049 -- Ada 2005 (AI-254): An Anonymous_Access_To_Subprogram is compatible
1050 -- with itself, or with an anonymous type created for an attribute
1051 -- reference Access.
1053 elsif (Ekind
(BT1
) = E_Anonymous_Access_Subprogram_Type
1056 = E_Anonymous_Access_Protected_Subprogram_Type
)
1057 and then Is_Access_Type
(T2
)
1058 and then (not Comes_From_Source
(T1
)
1059 or else not Comes_From_Source
(T2
))
1060 and then (Is_Overloadable
(Designated_Type
(T2
))
1062 Ekind
(Designated_Type
(T2
)) = E_Subprogram_Type
)
1064 Type_Conformant
(Designated_Type
(T1
), Designated_Type
(T2
))
1066 Mode_Conformant
(Designated_Type
(T1
), Designated_Type
(T2
))
1070 -- The context can be a remote access type, and the expression the
1071 -- corresponding source type declared in a categorized package, or
1074 elsif Is_Record_Type
(T1
)
1075 and then (Is_Remote_Call_Interface
(T1
)
1076 or else Is_Remote_Types
(T1
))
1077 and then Present
(Corresponding_Remote_Type
(T1
))
1079 return Covers
(Corresponding_Remote_Type
(T1
), T2
);
1083 elsif Is_Record_Type
(T2
)
1084 and then (Is_Remote_Call_Interface
(T2
)
1085 or else Is_Remote_Types
(T2
))
1086 and then Present
(Corresponding_Remote_Type
(T2
))
1088 return Covers
(Corresponding_Remote_Type
(T2
), T1
);
1090 -- Synchronized types are represented at run time by their corresponding
1091 -- record type. During expansion one is replaced with the other, but
1092 -- they are compatible views of the same type.
1094 elsif Is_Record_Type
(T1
)
1095 and then Is_Concurrent_Type
(T2
)
1096 and then Present
(Corresponding_Record_Type
(T2
))
1098 return Covers
(T1
, Corresponding_Record_Type
(T2
));
1100 elsif Is_Concurrent_Type
(T1
)
1101 and then Present
(Corresponding_Record_Type
(T1
))
1102 and then Is_Record_Type
(T2
)
1104 return Covers
(Corresponding_Record_Type
(T1
), T2
);
1106 -- During analysis, an attribute reference 'Access has a special type
1107 -- kind: Access_Attribute_Type, to be replaced eventually with the type
1108 -- imposed by context.
1110 elsif Ekind
(T2
) = E_Access_Attribute_Type
1111 and then Ekind_In
(BT1
, E_General_Access_Type
, E_Access_Type
)
1112 and then Covers
(Designated_Type
(T1
), Designated_Type
(T2
))
1114 -- If the target type is a RACW type while the source is an access
1115 -- attribute type, we are building a RACW that may be exported.
1117 if Is_Remote_Access_To_Class_Wide_Type
(BT1
) then
1118 Set_Has_RACW
(Current_Sem_Unit
);
1123 -- Ditto for allocators, which eventually resolve to the context type
1125 elsif Ekind
(T2
) = E_Allocator_Type
1126 and then Is_Access_Type
(T1
)
1128 return Covers
(Designated_Type
(T1
), Designated_Type
(T2
))
1130 (From_Limited_With
(Designated_Type
(T1
))
1131 and then Covers
(Designated_Type
(T2
), Designated_Type
(T1
)));
1133 -- A boolean operation on integer literals is compatible with modular
1136 elsif T2
= Any_Modular
1137 and then Is_Modular_Integer_Type
(T1
)
1141 -- The actual type may be the result of a previous error
1143 elsif BT2
= Any_Type
then
1146 -- A packed array type covers its corresponding non-packed type. This is
1147 -- not legitimate Ada, but allows the omission of a number of otherwise
1148 -- useless unchecked conversions, and since this can only arise in
1149 -- (known correct) expanded code, no harm is done.
1151 elsif Is_Array_Type
(T2
)
1152 and then Is_Packed
(T2
)
1153 and then T1
= Packed_Array_Type
(T2
)
1157 -- Similarly an array type covers its corresponding packed array type
1159 elsif Is_Array_Type
(T1
)
1160 and then Is_Packed
(T1
)
1161 and then T2
= Packed_Array_Type
(T1
)
1165 -- In instances, or with types exported from instantiations, check
1166 -- whether a partial and a full view match. Verify that types are
1167 -- legal, to prevent cascaded errors.
1171 (Full_View_Covers
(T1
, T2
)
1172 or else Full_View_Covers
(T2
, T1
))
1177 and then Is_Generic_Actual_Type
(T2
)
1178 and then Full_View_Covers
(T1
, T2
)
1183 and then Is_Generic_Actual_Type
(T1
)
1184 and then Full_View_Covers
(T2
, T1
)
1188 -- In the expansion of inlined bodies, types are compatible if they
1189 -- are structurally equivalent.
1191 elsif In_Inlined_Body
1192 and then (Underlying_Type
(T1
) = Underlying_Type
(T2
)
1193 or else (Is_Access_Type
(T1
)
1194 and then Is_Access_Type
(T2
)
1196 Designated_Type
(T1
) = Designated_Type
(T2
))
1197 or else (T1
= Any_Access
1198 and then Is_Access_Type
(Underlying_Type
(T2
)))
1199 or else (T2
= Any_Composite
1201 Is_Composite_Type
(Underlying_Type
(T1
))))
1205 -- Ada 2005 (AI-50217): Additional branches to make the shadow entity
1206 -- obtained through a limited_with compatible with its real entity.
1208 elsif From_Limited_With
(T1
) then
1210 -- If the expected type is the non-limited view of a type, the
1211 -- expression may have the limited view. If that one in turn is
1212 -- incomplete, get full view if available.
1214 if Is_Incomplete_Type
(T1
) then
1215 return Covers
(Get_Full_View
(Non_Limited_View
(T1
)), T2
);
1217 elsif Ekind
(T1
) = E_Class_Wide_Type
then
1219 Covers
(Class_Wide_Type
(Non_Limited_View
(Etype
(T1
))), T2
);
1224 elsif From_Limited_With
(T2
) then
1226 -- If units in the context have Limited_With clauses on each other,
1227 -- either type might have a limited view. Checks performed elsewhere
1228 -- verify that the context type is the nonlimited view.
1230 if Is_Incomplete_Type
(T2
) then
1231 return Covers
(T1
, Get_Full_View
(Non_Limited_View
(T2
)));
1233 elsif Ekind
(T2
) = E_Class_Wide_Type
then
1235 Present
(Non_Limited_View
(Etype
(T2
)))
1237 Covers
(T1
, Class_Wide_Type
(Non_Limited_View
(Etype
(T2
))));
1242 -- Ada 2005 (AI-412): Coverage for regular incomplete subtypes
1244 elsif Ekind
(T1
) = E_Incomplete_Subtype
then
1245 return Covers
(Full_View
(Etype
(T1
)), T2
);
1247 elsif Ekind
(T2
) = E_Incomplete_Subtype
then
1248 return Covers
(T1
, Full_View
(Etype
(T2
)));
1250 -- Ada 2005 (AI-423): Coverage of formal anonymous access types
1251 -- and actual anonymous access types in the context of generic
1252 -- instantiations. We have the following situation:
1255 -- type Formal is private;
1256 -- Formal_Obj : access Formal; -- T1
1260 -- type Actual is ...
1261 -- Actual_Obj : access Actual; -- T2
1262 -- package Instance is new G (Formal => Actual,
1263 -- Formal_Obj => Actual_Obj);
1265 elsif Ada_Version
>= Ada_2005
1266 and then Ekind
(T1
) = E_Anonymous_Access_Type
1267 and then Ekind
(T2
) = E_Anonymous_Access_Type
1268 and then Is_Generic_Type
(Directly_Designated_Type
(T1
))
1269 and then Get_Instance_Of
(Directly_Designated_Type
(T1
)) =
1270 Directly_Designated_Type
(T2
)
1274 -- Otherwise, types are not compatible!
1285 function Disambiguate
1287 I1
, I2
: Interp_Index
;
1288 Typ
: Entity_Id
) return Interp
1293 Nam1
, Nam2
: Entity_Id
;
1294 Predef_Subp
: Entity_Id
;
1295 User_Subp
: Entity_Id
;
1297 function Inherited_From_Actual
(S
: Entity_Id
) return Boolean;
1298 -- Determine whether one of the candidates is an operation inherited by
1299 -- a type that is derived from an actual in an instantiation.
1301 function In_Same_Declaration_List
1303 Op_Decl
: Entity_Id
) return Boolean;
1304 -- AI05-0020: a spurious ambiguity may arise when equality on anonymous
1305 -- access types is declared on the partial view of a designated type, so
1306 -- that the type declaration and equality are not in the same list of
1307 -- declarations. This AI gives a preference rule for the user-defined
1308 -- operation. Same rule applies for arithmetic operations on private
1309 -- types completed with fixed-point types: the predefined operation is
1310 -- hidden; this is already handled properly in GNAT.
1312 function Is_Actual_Subprogram
(S
: Entity_Id
) return Boolean;
1313 -- Determine whether a subprogram is an actual in an enclosing instance.
1314 -- An overloading between such a subprogram and one declared outside the
1315 -- instance is resolved in favor of the first, because it resolved in
1316 -- the generic. Within the instance the actual is represented by a
1317 -- constructed subprogram renaming.
1319 function Matches
(Actual
, Formal
: Node_Id
) return Boolean;
1320 -- Look for exact type match in an instance, to remove spurious
1321 -- ambiguities when two formal types have the same actual.
1323 function Operand_Type
return Entity_Id
;
1324 -- Determine type of operand for an equality operation, to apply
1325 -- Ada 2005 rules to equality on anonymous access types.
1327 function Standard_Operator
return Boolean;
1328 -- Check whether subprogram is predefined operator declared in Standard.
1329 -- It may given by an operator name, or by an expanded name whose prefix
1332 function Remove_Conversions
return Interp
;
1333 -- Last chance for pathological cases involving comparisons on literals,
1334 -- and user overloadings of the same operator. Such pathologies have
1335 -- been removed from the ACVC, but still appear in two DEC tests, with
1336 -- the following notable quote from Ben Brosgol:
1338 -- [Note: I disclaim all credit/responsibility/blame for coming up with
1339 -- this example; Robert Dewar brought it to our attention, since it is
1340 -- apparently found in the ACVC 1.5. I did not attempt to find the
1341 -- reason in the Reference Manual that makes the example legal, since I
1342 -- was too nauseated by it to want to pursue it further.]
1344 -- Accordingly, this is not a fully recursive solution, but it handles
1345 -- DEC tests c460vsa, c460vsb. It also handles ai00136a, which pushes
1346 -- pathology in the other direction with calls whose multiple overloaded
1347 -- actuals make them truly unresolvable.
1349 -- The new rules concerning abstract operations create additional need
1350 -- for special handling of expressions with universal operands, see
1351 -- comments to Has_Abstract_Interpretation below.
1353 ---------------------------
1354 -- Inherited_From_Actual --
1355 ---------------------------
1357 function Inherited_From_Actual
(S
: Entity_Id
) return Boolean is
1358 Par
: constant Node_Id
:= Parent
(S
);
1360 if Nkind
(Par
) /= N_Full_Type_Declaration
1361 or else Nkind
(Type_Definition
(Par
)) /= N_Derived_Type_Definition
1365 return Is_Entity_Name
(Subtype_Indication
(Type_Definition
(Par
)))
1367 Is_Generic_Actual_Type
(
1368 Entity
(Subtype_Indication
(Type_Definition
(Par
))));
1370 end Inherited_From_Actual
;
1372 ------------------------------
1373 -- In_Same_Declaration_List --
1374 ------------------------------
1376 function In_Same_Declaration_List
1378 Op_Decl
: Entity_Id
) return Boolean
1380 Scop
: constant Entity_Id
:= Scope
(Typ
);
1383 return In_Same_List
(Parent
(Typ
), Op_Decl
)
1385 (Ekind_In
(Scop
, E_Package
, E_Generic_Package
)
1386 and then List_Containing
(Op_Decl
) =
1387 Visible_Declarations
(Parent
(Scop
))
1388 and then List_Containing
(Parent
(Typ
)) =
1389 Private_Declarations
(Parent
(Scop
)));
1390 end In_Same_Declaration_List
;
1392 --------------------------
1393 -- Is_Actual_Subprogram --
1394 --------------------------
1396 function Is_Actual_Subprogram
(S
: Entity_Id
) return Boolean is
1398 return In_Open_Scopes
(Scope
(S
))
1400 Nkind
(Unit_Declaration_Node
(S
)) =
1401 N_Subprogram_Renaming_Declaration
1403 -- Why the Comes_From_Source test here???
1405 and then not Comes_From_Source
(Unit_Declaration_Node
(S
))
1408 (Is_Generic_Instance
(Scope
(S
))
1409 or else Is_Wrapper_Package
(Scope
(S
)));
1410 end Is_Actual_Subprogram
;
1416 function Matches
(Actual
, Formal
: Node_Id
) return Boolean is
1417 T1
: constant Entity_Id
:= Etype
(Actual
);
1418 T2
: constant Entity_Id
:= Etype
(Formal
);
1422 (Is_Numeric_Type
(T2
)
1423 and then (T1
= Universal_Real
or else T1
= Universal_Integer
));
1430 function Operand_Type
return Entity_Id
is
1434 if Nkind
(N
) = N_Function_Call
then
1435 Opnd
:= First_Actual
(N
);
1437 Opnd
:= Left_Opnd
(N
);
1440 return Etype
(Opnd
);
1443 ------------------------
1444 -- Remove_Conversions --
1445 ------------------------
1447 function Remove_Conversions
return Interp
is
1455 function Has_Abstract_Interpretation
(N
: Node_Id
) return Boolean;
1456 -- If an operation has universal operands the universal operation
1457 -- is present among its interpretations. If there is an abstract
1458 -- interpretation for the operator, with a numeric result, this
1459 -- interpretation was already removed in sem_ch4, but the universal
1460 -- one is still visible. We must rescan the list of operators and
1461 -- remove the universal interpretation to resolve the ambiguity.
1463 ---------------------------------
1464 -- Has_Abstract_Interpretation --
1465 ---------------------------------
1467 function Has_Abstract_Interpretation
(N
: Node_Id
) return Boolean is
1471 if Nkind
(N
) not in N_Op
1472 or else Ada_Version
< Ada_2005
1473 or else not Is_Overloaded
(N
)
1474 or else No
(Universal_Interpretation
(N
))
1479 E
:= Get_Name_Entity_Id
(Chars
(N
));
1480 while Present
(E
) loop
1481 if Is_Overloadable
(E
)
1482 and then Is_Abstract_Subprogram
(E
)
1483 and then Is_Numeric_Type
(Etype
(E
))
1491 -- Finally, if an operand of the binary operator is itself
1492 -- an operator, recurse to see whether its own abstract
1493 -- interpretation is responsible for the spurious ambiguity.
1495 if Nkind
(N
) in N_Binary_Op
then
1496 return Has_Abstract_Interpretation
(Left_Opnd
(N
))
1497 or else Has_Abstract_Interpretation
(Right_Opnd
(N
));
1499 elsif Nkind
(N
) in N_Unary_Op
then
1500 return Has_Abstract_Interpretation
(Right_Opnd
(N
));
1506 end Has_Abstract_Interpretation
;
1508 -- Start of processing for Remove_Conversions
1513 Get_First_Interp
(N
, I
, It
);
1514 while Present
(It
.Typ
) loop
1515 if not Is_Overloadable
(It
.Nam
) then
1519 F1
:= First_Formal
(It
.Nam
);
1525 if Nkind
(N
) in N_Subprogram_Call
then
1526 Act1
:= First_Actual
(N
);
1528 if Present
(Act1
) then
1529 Act2
:= Next_Actual
(Act1
);
1534 elsif Nkind
(N
) in N_Unary_Op
then
1535 Act1
:= Right_Opnd
(N
);
1538 elsif Nkind
(N
) in N_Binary_Op
then
1539 Act1
:= Left_Opnd
(N
);
1540 Act2
:= Right_Opnd
(N
);
1542 -- Use type of second formal, so as to include
1543 -- exponentiation, where the exponent may be
1544 -- ambiguous and the result non-universal.
1552 if Nkind
(Act1
) in N_Op
1553 and then Is_Overloaded
(Act1
)
1554 and then (Nkind
(Right_Opnd
(Act1
)) = N_Integer_Literal
1555 or else Nkind
(Right_Opnd
(Act1
)) = N_Real_Literal
)
1556 and then Has_Compatible_Type
(Act1
, Standard_Boolean
)
1557 and then Etype
(F1
) = Standard_Boolean
1559 -- If the two candidates are the original ones, the
1560 -- ambiguity is real. Otherwise keep the original, further
1561 -- calls to Disambiguate will take care of others in the
1562 -- list of candidates.
1564 if It1
/= No_Interp
then
1565 if It
= Disambiguate
.It1
1566 or else It
= Disambiguate
.It2
1568 if It1
= Disambiguate
.It1
1569 or else It1
= Disambiguate
.It2
1577 elsif Present
(Act2
)
1578 and then Nkind
(Act2
) in N_Op
1579 and then Is_Overloaded
(Act2
)
1580 and then Nkind_In
(Right_Opnd
(Act2
), N_Integer_Literal
,
1582 and then Has_Compatible_Type
(Act2
, Standard_Boolean
)
1584 -- The preference rule on the first actual is not
1585 -- sufficient to disambiguate.
1593 elsif Is_Numeric_Type
(Etype
(F1
))
1594 and then Has_Abstract_Interpretation
(Act1
)
1596 -- Current interpretation is not the right one because it
1597 -- expects a numeric operand. Examine all the other ones.
1604 Get_First_Interp
(N
, I
, It
);
1605 while Present
(It
.Typ
) loop
1607 not Is_Numeric_Type
(Etype
(First_Formal
(It
.Nam
)))
1610 or else not Has_Abstract_Interpretation
(Act2
)
1613 (Etype
(Next_Formal
(First_Formal
(It
.Nam
))))
1619 Get_Next_Interp
(I
, It
);
1628 Get_Next_Interp
(I
, It
);
1631 -- After some error, a formal may have Any_Type and yield a spurious
1632 -- match. To avoid cascaded errors if possible, check for such a
1633 -- formal in either candidate.
1635 if Serious_Errors_Detected
> 0 then
1640 Formal
:= First_Formal
(Nam1
);
1641 while Present
(Formal
) loop
1642 if Etype
(Formal
) = Any_Type
then
1643 return Disambiguate
.It2
;
1646 Next_Formal
(Formal
);
1649 Formal
:= First_Formal
(Nam2
);
1650 while Present
(Formal
) loop
1651 if Etype
(Formal
) = Any_Type
then
1652 return Disambiguate
.It1
;
1655 Next_Formal
(Formal
);
1661 end Remove_Conversions
;
1663 -----------------------
1664 -- Standard_Operator --
1665 -----------------------
1667 function Standard_Operator
return Boolean is
1671 if Nkind
(N
) in N_Op
then
1674 elsif Nkind
(N
) = N_Function_Call
then
1677 if Nkind
(Nam
) /= N_Expanded_Name
then
1680 return Entity
(Prefix
(Nam
)) = Standard_Standard
;
1685 end Standard_Operator
;
1687 -- Start of processing for Disambiguate
1690 -- Recover the two legal interpretations
1692 Get_First_Interp
(N
, I
, It
);
1694 Get_Next_Interp
(I
, It
);
1700 Get_Next_Interp
(I
, It
);
1706 -- Check whether one of the entities is an Ada 2005/2012 and we are
1707 -- operating in an earlier mode, in which case we discard the Ada
1708 -- 2005/2012 entity, so that we get proper Ada 95 overload resolution.
1710 if Ada_Version
< Ada_2005
then
1711 if Is_Ada_2005_Only
(Nam1
) or else Is_Ada_2012_Only
(Nam1
) then
1713 elsif Is_Ada_2005_Only
(Nam2
) or else Is_Ada_2012_Only
(Nam1
) then
1718 -- Check whether one of the entities is an Ada 2012 entity and we are
1719 -- operating in Ada 2005 mode, in which case we discard the Ada 2012
1720 -- entity, so that we get proper Ada 2005 overload resolution.
1722 if Ada_Version
= Ada_2005
then
1723 if Is_Ada_2012_Only
(Nam1
) then
1725 elsif Is_Ada_2012_Only
(Nam2
) then
1730 -- Check for overloaded CIL convention stuff because the CIL libraries
1731 -- do sick things like Console.Write_Line where it matches two different
1732 -- overloads, so just pick the first ???
1734 if Convention
(Nam1
) = Convention_CIL
1735 and then Convention
(Nam2
) = Convention_CIL
1736 and then Ekind
(Nam1
) = Ekind
(Nam2
)
1737 and then (Ekind
(Nam1
) = E_Procedure
1738 or else Ekind
(Nam1
) = E_Function
)
1743 -- If the context is universal, the predefined operator is preferred.
1744 -- This includes bounds in numeric type declarations, and expressions
1745 -- in type conversions. If no interpretation yields a universal type,
1746 -- then we must check whether the user-defined entity hides the prede-
1749 if Chars
(Nam1
) in Any_Operator_Name
1750 and then Standard_Operator
1752 if Typ
= Universal_Integer
1753 or else Typ
= Universal_Real
1754 or else Typ
= Any_Integer
1755 or else Typ
= Any_Discrete
1756 or else Typ
= Any_Real
1757 or else Typ
= Any_Type
1759 -- Find an interpretation that yields the universal type, or else
1760 -- a predefined operator that yields a predefined numeric type.
1763 Candidate
: Interp
:= No_Interp
;
1766 Get_First_Interp
(N
, I
, It
);
1767 while Present
(It
.Typ
) loop
1768 if (Covers
(Typ
, It
.Typ
)
1769 or else Typ
= Any_Type
)
1771 (It
.Typ
= Universal_Integer
1772 or else It
.Typ
= Universal_Real
)
1776 elsif Covers
(Typ
, It
.Typ
)
1777 and then Scope
(It
.Typ
) = Standard_Standard
1778 and then Scope
(It
.Nam
) = Standard_Standard
1779 and then Is_Numeric_Type
(It
.Typ
)
1784 Get_Next_Interp
(I
, It
);
1787 if Candidate
/= No_Interp
then
1792 elsif Chars
(Nam1
) /= Name_Op_Not
1793 and then (Typ
= Standard_Boolean
or else Typ
= Any_Boolean
)
1795 -- Equality or comparison operation. Choose predefined operator if
1796 -- arguments are universal. The node may be an operator, name, or
1797 -- a function call, so unpack arguments accordingly.
1800 Arg1
, Arg2
: Node_Id
;
1803 if Nkind
(N
) in N_Op
then
1804 Arg1
:= Left_Opnd
(N
);
1805 Arg2
:= Right_Opnd
(N
);
1807 elsif Is_Entity_Name
(N
) then
1808 Arg1
:= First_Entity
(Entity
(N
));
1809 Arg2
:= Next_Entity
(Arg1
);
1812 Arg1
:= First_Actual
(N
);
1813 Arg2
:= Next_Actual
(Arg1
);
1817 and then Present
(Universal_Interpretation
(Arg1
))
1818 and then Universal_Interpretation
(Arg2
) =
1819 Universal_Interpretation
(Arg1
)
1821 Get_First_Interp
(N
, I
, It
);
1822 while Scope
(It
.Nam
) /= Standard_Standard
loop
1823 Get_Next_Interp
(I
, It
);
1832 -- If no universal interpretation, check whether user-defined operator
1833 -- hides predefined one, as well as other special cases. If the node
1834 -- is a range, then one or both bounds are ambiguous. Each will have
1835 -- to be disambiguated w.r.t. the context type. The type of the range
1836 -- itself is imposed by the context, so we can return either legal
1839 if Ekind
(Nam1
) = E_Operator
then
1840 Predef_Subp
:= Nam1
;
1843 elsif Ekind
(Nam2
) = E_Operator
then
1844 Predef_Subp
:= Nam2
;
1847 elsif Nkind
(N
) = N_Range
then
1850 -- Implement AI05-105: A renaming declaration with an access
1851 -- definition must resolve to an anonymous access type. This
1852 -- is a resolution rule and can be used to disambiguate.
1854 elsif Nkind
(Parent
(N
)) = N_Object_Renaming_Declaration
1855 and then Present
(Access_Definition
(Parent
(N
)))
1857 if Ekind_In
(It1
.Typ
, E_Anonymous_Access_Type
,
1858 E_Anonymous_Access_Subprogram_Type
)
1860 if Ekind
(It2
.Typ
) = Ekind
(It1
.Typ
) then
1870 elsif Ekind_In
(It2
.Typ
, E_Anonymous_Access_Type
,
1871 E_Anonymous_Access_Subprogram_Type
)
1875 -- No legal interpretation
1881 -- If two user defined-subprograms are visible, it is a true ambiguity,
1882 -- unless one of them is an entry and the context is a conditional or
1883 -- timed entry call, or unless we are within an instance and this is
1884 -- results from two formals types with the same actual.
1887 if Nkind
(N
) = N_Procedure_Call_Statement
1888 and then Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
1889 and then N
= Entry_Call_Statement
(Parent
(N
))
1891 if Ekind
(Nam2
) = E_Entry
then
1893 elsif Ekind
(Nam1
) = E_Entry
then
1899 -- If the ambiguity occurs within an instance, it is due to several
1900 -- formal types with the same actual. Look for an exact match between
1901 -- the types of the formals of the overloadable entities, and the
1902 -- actuals in the call, to recover the unambiguous match in the
1903 -- original generic.
1905 -- The ambiguity can also be due to an overloading between a formal
1906 -- subprogram and a subprogram declared outside the generic. If the
1907 -- node is overloaded, it did not resolve to the global entity in
1908 -- the generic, and we choose the formal subprogram.
1910 -- Finally, the ambiguity can be between an explicit subprogram and
1911 -- one inherited (with different defaults) from an actual. In this
1912 -- case the resolution was to the explicit declaration in the
1913 -- generic, and remains so in the instance.
1915 -- The same sort of disambiguation needed for calls is also required
1916 -- for the name given in a subprogram renaming, and that case is
1917 -- handled here as well. We test Comes_From_Source to exclude this
1918 -- treatment for implicit renamings created for formal subprograms.
1921 and then not In_Generic_Actual
(N
)
1923 if Nkind
(N
) in N_Subprogram_Call
1925 (Nkind
(N
) in N_Has_Entity
1927 Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
1928 and then Comes_From_Source
(Parent
(N
)))
1933 Renam
: Entity_Id
:= Empty
;
1934 Is_Act1
: constant Boolean := Is_Actual_Subprogram
(Nam1
);
1935 Is_Act2
: constant Boolean := Is_Actual_Subprogram
(Nam2
);
1938 if Is_Act1
and then not Is_Act2
then
1941 elsif Is_Act2
and then not Is_Act1
then
1944 elsif Inherited_From_Actual
(Nam1
)
1945 and then Comes_From_Source
(Nam2
)
1949 elsif Inherited_From_Actual
(Nam2
)
1950 and then Comes_From_Source
(Nam1
)
1955 -- In the case of a renamed subprogram, pick up the entity
1956 -- of the renaming declaration so we can traverse its
1957 -- formal parameters.
1959 if Nkind
(N
) in N_Has_Entity
then
1960 Renam
:= Defining_Unit_Name
(Specification
(Parent
(N
)));
1963 if Present
(Renam
) then
1964 Actual
:= First_Formal
(Renam
);
1966 Actual
:= First_Actual
(N
);
1969 Formal
:= First_Formal
(Nam1
);
1970 while Present
(Actual
) loop
1971 if Etype
(Actual
) /= Etype
(Formal
) then
1975 if Present
(Renam
) then
1976 Next_Formal
(Actual
);
1978 Next_Actual
(Actual
);
1981 Next_Formal
(Formal
);
1987 elsif Nkind
(N
) in N_Binary_Op
then
1988 if Matches
(Left_Opnd
(N
), First_Formal
(Nam1
))
1990 Matches
(Right_Opnd
(N
), Next_Formal
(First_Formal
(Nam1
)))
1997 elsif Nkind
(N
) in N_Unary_Op
then
1998 if Etype
(Right_Opnd
(N
)) = Etype
(First_Formal
(Nam1
)) then
2005 return Remove_Conversions
;
2008 return Remove_Conversions
;
2012 -- An implicit concatenation operator on a string type cannot be
2013 -- disambiguated from the predefined concatenation. This can only
2014 -- happen with concatenation of string literals.
2016 if Chars
(User_Subp
) = Name_Op_Concat
2017 and then Ekind
(User_Subp
) = E_Operator
2018 and then Is_String_Type
(Etype
(First_Formal
(User_Subp
)))
2022 -- If the user-defined operator is in an open scope, or in the scope
2023 -- of the resulting type, or given by an expanded name that names its
2024 -- scope, it hides the predefined operator for the type. Exponentiation
2025 -- has to be special-cased because the implicit operator does not have
2026 -- a symmetric signature, and may not be hidden by the explicit one.
2028 elsif (Nkind
(N
) = N_Function_Call
2029 and then Nkind
(Name
(N
)) = N_Expanded_Name
2030 and then (Chars
(Predef_Subp
) /= Name_Op_Expon
2031 or else Hides_Op
(User_Subp
, Predef_Subp
))
2032 and then Scope
(User_Subp
) = Entity
(Prefix
(Name
(N
))))
2033 or else Hides_Op
(User_Subp
, Predef_Subp
)
2035 if It1
.Nam
= User_Subp
then
2041 -- Otherwise, the predefined operator has precedence, or if the user-
2042 -- defined operation is directly visible we have a true ambiguity.
2044 -- If this is a fixed-point multiplication and division in Ada 83 mode,
2045 -- exclude the universal_fixed operator, which often causes ambiguities
2048 -- Ditto in Ada 2012, where an ambiguity may arise for an operation
2049 -- on a partial view that is completed with a fixed point type. See
2050 -- AI05-0020 and AI05-0209. The ambiguity is resolved in favor of the
2051 -- user-defined type and subprogram, so that a client of the package
2052 -- has the same resolution as the body of the package.
2055 if (In_Open_Scopes
(Scope
(User_Subp
))
2056 or else Is_Potentially_Use_Visible
(User_Subp
))
2057 and then not In_Instance
2059 if Is_Fixed_Point_Type
(Typ
)
2060 and then Nam_In
(Chars
(Nam1
), Name_Op_Multiply
, Name_Op_Divide
)
2062 (Ada_Version
= Ada_83
2063 or else (Ada_Version
>= Ada_2012
2064 and then In_Same_Declaration_List
2065 (First_Subtype
(Typ
),
2066 Unit_Declaration_Node
(User_Subp
))))
2068 if It2
.Nam
= Predef_Subp
then
2074 -- Ada 2005, AI-420: preference rule for "=" on Universal_Access
2075 -- states that the operator defined in Standard is not available
2076 -- if there is a user-defined equality with the proper signature,
2077 -- declared in the same declarative list as the type. The node
2078 -- may be an operator or a function call.
2080 elsif Nam_In
(Chars
(Nam1
), Name_Op_Eq
, Name_Op_Ne
)
2081 and then Ada_Version
>= Ada_2005
2082 and then Etype
(User_Subp
) = Standard_Boolean
2083 and then Ekind
(Operand_Type
) = E_Anonymous_Access_Type
2085 In_Same_Declaration_List
2086 (Designated_Type
(Operand_Type
),
2087 Unit_Declaration_Node
(User_Subp
))
2089 if It2
.Nam
= Predef_Subp
then
2095 -- An immediately visible operator hides a use-visible user-
2096 -- defined operation. This disambiguation cannot take place
2097 -- earlier because the visibility of the predefined operator
2098 -- can only be established when operand types are known.
2100 elsif Ekind
(User_Subp
) = E_Function
2101 and then Ekind
(Predef_Subp
) = E_Operator
2102 and then Nkind
(N
) in N_Op
2103 and then not Is_Overloaded
(Right_Opnd
(N
))
2105 Is_Immediately_Visible
(Base_Type
(Etype
(Right_Opnd
(N
))))
2106 and then Is_Potentially_Use_Visible
(User_Subp
)
2108 if It2
.Nam
= Predef_Subp
then
2118 elsif It1
.Nam
= Predef_Subp
then
2127 ---------------------
2128 -- End_Interp_List --
2129 ---------------------
2131 procedure End_Interp_List
is
2133 All_Interp
.Table
(All_Interp
.Last
) := No_Interp
;
2134 All_Interp
.Increment_Last
;
2135 end End_Interp_List
;
2137 -------------------------
2138 -- Entity_Matches_Spec --
2139 -------------------------
2141 function Entity_Matches_Spec
(Old_S
, New_S
: Entity_Id
) return Boolean is
2143 -- Simple case: same entity kinds, type conformance is required. A
2144 -- parameterless function can also rename a literal.
2146 if Ekind
(Old_S
) = Ekind
(New_S
)
2147 or else (Ekind
(New_S
) = E_Function
2148 and then Ekind
(Old_S
) = E_Enumeration_Literal
)
2150 return Type_Conformant
(New_S
, Old_S
);
2152 elsif Ekind
(New_S
) = E_Function
2153 and then Ekind
(Old_S
) = E_Operator
2155 return Operator_Matches_Spec
(Old_S
, New_S
);
2157 elsif Ekind
(New_S
) = E_Procedure
2158 and then Is_Entry
(Old_S
)
2160 return Type_Conformant
(New_S
, Old_S
);
2165 end Entity_Matches_Spec
;
2167 ----------------------
2168 -- Find_Unique_Type --
2169 ----------------------
2171 function Find_Unique_Type
(L
: Node_Id
; R
: Node_Id
) return Entity_Id
is
2172 T
: constant Entity_Id
:= Etype
(L
);
2175 TR
: Entity_Id
:= Any_Type
;
2178 if Is_Overloaded
(R
) then
2179 Get_First_Interp
(R
, I
, It
);
2180 while Present
(It
.Typ
) loop
2181 if Covers
(T
, It
.Typ
) or else Covers
(It
.Typ
, T
) then
2183 -- If several interpretations are possible and L is universal,
2184 -- apply preference rule.
2186 if TR
/= Any_Type
then
2188 if (T
= Universal_Integer
or else T
= Universal_Real
)
2199 Get_Next_Interp
(I
, It
);
2204 -- In the non-overloaded case, the Etype of R is already set correctly
2210 -- If one of the operands is Universal_Fixed, the type of the other
2211 -- operand provides the context.
2213 if Etype
(R
) = Universal_Fixed
then
2216 elsif T
= Universal_Fixed
then
2219 -- Ada 2005 (AI-230): Support the following operators:
2221 -- function "=" (L, R : universal_access) return Boolean;
2222 -- function "/=" (L, R : universal_access) return Boolean;
2224 -- Pool specific access types (E_Access_Type) are not covered by these
2225 -- operators because of the legality rule of 4.5.2(9.2): "The operands
2226 -- of the equality operators for universal_access shall be convertible
2227 -- to one another (see 4.6)". For example, considering the type decla-
2228 -- ration "type P is access Integer" and an anonymous access to Integer,
2229 -- P is convertible to "access Integer" by 4.6 (24.11-24.15), but there
2230 -- is no rule in 4.6 that allows "access Integer" to be converted to P.
2232 elsif Ada_Version
>= Ada_2005
2234 (Ekind
(Etype
(L
)) = E_Anonymous_Access_Type
2236 Ekind
(Etype
(L
)) = E_Anonymous_Access_Subprogram_Type
)
2237 and then Is_Access_Type
(Etype
(R
))
2238 and then Ekind
(Etype
(R
)) /= E_Access_Type
2242 elsif Ada_Version
>= Ada_2005
2244 (Ekind
(Etype
(R
)) = E_Anonymous_Access_Type
2245 or else Ekind
(Etype
(R
)) = E_Anonymous_Access_Subprogram_Type
)
2246 and then Is_Access_Type
(Etype
(L
))
2247 and then Ekind
(Etype
(L
)) /= E_Access_Type
2252 return Specific_Type
(T
, Etype
(R
));
2254 end Find_Unique_Type
;
2256 -------------------------------------
2257 -- Function_Interp_Has_Abstract_Op --
2258 -------------------------------------
2260 function Function_Interp_Has_Abstract_Op
2262 E
: Entity_Id
) return Entity_Id
2264 Abstr_Op
: Entity_Id
;
2267 Form_Parm
: Node_Id
;
2270 -- Why is check on E needed below ???
2271 -- In any case this para needs comments ???
2273 if Is_Overloaded
(N
) and then Is_Overloadable
(E
) then
2274 Act_Parm
:= First_Actual
(N
);
2275 Form_Parm
:= First_Formal
(E
);
2276 while Present
(Act_Parm
)
2277 and then Present
(Form_Parm
)
2281 if Nkind
(Act
) = N_Parameter_Association
then
2282 Act
:= Explicit_Actual_Parameter
(Act
);
2285 Abstr_Op
:= Has_Abstract_Op
(Act
, Etype
(Form_Parm
));
2287 if Present
(Abstr_Op
) then
2291 Next_Actual
(Act_Parm
);
2292 Next_Formal
(Form_Parm
);
2297 end Function_Interp_Has_Abstract_Op
;
2299 ----------------------
2300 -- Get_First_Interp --
2301 ----------------------
2303 procedure Get_First_Interp
2305 I
: out Interp_Index
;
2308 Int_Ind
: Interp_Index
;
2313 -- If a selected component is overloaded because the selector has
2314 -- multiple interpretations, the node is a call to a protected
2315 -- operation or an indirect call. Retrieve the interpretation from
2316 -- the selector name. The selected component may be overloaded as well
2317 -- if the prefix is overloaded. That case is unchanged.
2319 if Nkind
(N
) = N_Selected_Component
2320 and then Is_Overloaded
(Selector_Name
(N
))
2322 O_N
:= Selector_Name
(N
);
2327 Map_Ptr
:= Headers
(Hash
(O_N
));
2328 while Map_Ptr
/= No_Entry
loop
2329 if Interp_Map
.Table
(Map_Ptr
).Node
= O_N
then
2330 Int_Ind
:= Interp_Map
.Table
(Map_Ptr
).Index
;
2331 It
:= All_Interp
.Table
(Int_Ind
);
2335 Map_Ptr
:= Interp_Map
.Table
(Map_Ptr
).Next
;
2339 -- Procedure should never be called if the node has no interpretations
2341 raise Program_Error
;
2342 end Get_First_Interp
;
2344 ---------------------
2345 -- Get_Next_Interp --
2346 ---------------------
2348 procedure Get_Next_Interp
(I
: in out Interp_Index
; It
: out Interp
) is
2351 It
:= All_Interp
.Table
(I
);
2352 end Get_Next_Interp
;
2354 -------------------------
2355 -- Has_Compatible_Type --
2356 -------------------------
2358 function Has_Compatible_Type
2360 Typ
: Entity_Id
) return Boolean
2370 if Nkind
(N
) = N_Subtype_Indication
2371 or else not Is_Overloaded
(N
)
2374 Covers
(Typ
, Etype
(N
))
2376 -- Ada 2005 (AI-345): The context may be a synchronized interface.
2377 -- If the type is already frozen use the corresponding_record
2378 -- to check whether it is a proper descendant.
2381 (Is_Record_Type
(Typ
)
2382 and then Is_Concurrent_Type
(Etype
(N
))
2383 and then Present
(Corresponding_Record_Type
(Etype
(N
)))
2384 and then Covers
(Typ
, Corresponding_Record_Type
(Etype
(N
))))
2387 (Is_Concurrent_Type
(Typ
)
2388 and then Is_Record_Type
(Etype
(N
))
2389 and then Present
(Corresponding_Record_Type
(Typ
))
2390 and then Covers
(Corresponding_Record_Type
(Typ
), Etype
(N
)))
2393 (not Is_Tagged_Type
(Typ
)
2394 and then Ekind
(Typ
) /= E_Anonymous_Access_Type
2395 and then Covers
(Etype
(N
), Typ
));
2398 Get_First_Interp
(N
, I
, It
);
2399 while Present
(It
.Typ
) loop
2400 if (Covers
(Typ
, It
.Typ
)
2402 (Scope
(It
.Nam
) /= Standard_Standard
2403 or else not Is_Invisible_Operator
(N
, Base_Type
(Typ
))))
2405 -- Ada 2005 (AI-345)
2408 (Is_Concurrent_Type
(It
.Typ
)
2409 and then Present
(Corresponding_Record_Type
2411 and then Covers
(Typ
, Corresponding_Record_Type
2414 or else (not Is_Tagged_Type
(Typ
)
2415 and then Ekind
(Typ
) /= E_Anonymous_Access_Type
2416 and then Covers
(It
.Typ
, Typ
))
2421 Get_Next_Interp
(I
, It
);
2426 end Has_Compatible_Type
;
2428 ---------------------
2429 -- Has_Abstract_Op --
2430 ---------------------
2432 function Has_Abstract_Op
2434 Typ
: Entity_Id
) return Entity_Id
2440 if Is_Overloaded
(N
) then
2441 Get_First_Interp
(N
, I
, It
);
2442 while Present
(It
.Nam
) loop
2443 if Present
(It
.Abstract_Op
)
2444 and then Etype
(It
.Abstract_Op
) = Typ
2446 return It
.Abstract_Op
;
2449 Get_Next_Interp
(I
, It
);
2454 end Has_Abstract_Op
;
2460 function Hash
(N
: Node_Id
) return Int
is
2462 -- Nodes have a size that is power of two, so to select significant
2463 -- bits only we remove the low-order bits.
2465 return ((Int
(N
) / 2 ** 5) mod Header_Size
);
2472 function Hides_Op
(F
: Entity_Id
; Op
: Entity_Id
) return Boolean is
2473 Btyp
: constant Entity_Id
:= Base_Type
(Etype
(First_Formal
(F
)));
2475 return Operator_Matches_Spec
(Op
, F
)
2476 and then (In_Open_Scopes
(Scope
(F
))
2477 or else Scope
(F
) = Scope
(Btyp
)
2478 or else (not In_Open_Scopes
(Scope
(Btyp
))
2479 and then not In_Use
(Btyp
)
2480 and then not In_Use
(Scope
(Btyp
))));
2483 ------------------------
2484 -- Init_Interp_Tables --
2485 ------------------------
2487 procedure Init_Interp_Tables
is
2491 Headers
:= (others => No_Entry
);
2492 end Init_Interp_Tables
;
2494 -----------------------------------
2495 -- Interface_Present_In_Ancestor --
2496 -----------------------------------
2498 function Interface_Present_In_Ancestor
2500 Iface
: Entity_Id
) return Boolean
2502 Target_Typ
: Entity_Id
;
2503 Iface_Typ
: Entity_Id
;
2505 function Iface_Present_In_Ancestor
(Typ
: Entity_Id
) return Boolean;
2506 -- Returns True if Typ or some ancestor of Typ implements Iface
2508 -------------------------------
2509 -- Iface_Present_In_Ancestor --
2510 -------------------------------
2512 function Iface_Present_In_Ancestor
(Typ
: Entity_Id
) return Boolean is
2518 if Typ
= Iface_Typ
then
2522 -- Handle private types
2524 if Present
(Full_View
(Typ
))
2525 and then not Is_Concurrent_Type
(Full_View
(Typ
))
2527 E
:= Full_View
(Typ
);
2533 if Present
(Interfaces
(E
))
2534 and then Present
(Interfaces
(E
))
2535 and then not Is_Empty_Elmt_List
(Interfaces
(E
))
2537 Elmt
:= First_Elmt
(Interfaces
(E
));
2538 while Present
(Elmt
) loop
2541 if AI
= Iface_Typ
or else Is_Ancestor
(Iface_Typ
, AI
) then
2549 exit when Etype
(E
) = E
2551 -- Handle private types
2553 or else (Present
(Full_View
(Etype
(E
)))
2554 and then Full_View
(Etype
(E
)) = E
);
2556 -- Check if the current type is a direct derivation of the
2559 if Etype
(E
) = Iface_Typ
then
2563 -- Climb to the immediate ancestor handling private types
2565 if Present
(Full_View
(Etype
(E
))) then
2566 E
:= Full_View
(Etype
(E
));
2573 end Iface_Present_In_Ancestor
;
2575 -- Start of processing for Interface_Present_In_Ancestor
2578 -- Iface might be a class-wide subtype, so we have to apply Base_Type
2580 if Is_Class_Wide_Type
(Iface
) then
2581 Iface_Typ
:= Etype
(Base_Type
(Iface
));
2588 Iface_Typ
:= Base_Type
(Iface_Typ
);
2590 if Is_Access_Type
(Typ
) then
2591 Target_Typ
:= Etype
(Directly_Designated_Type
(Typ
));
2596 if Is_Concurrent_Record_Type
(Target_Typ
) then
2597 Target_Typ
:= Corresponding_Concurrent_Type
(Target_Typ
);
2600 Target_Typ
:= Base_Type
(Target_Typ
);
2602 -- In case of concurrent types we can't use the Corresponding Record_Typ
2603 -- to look for the interface because it is built by the expander (and
2604 -- hence it is not always available). For this reason we traverse the
2605 -- list of interfaces (available in the parent of the concurrent type)
2607 if Is_Concurrent_Type
(Target_Typ
) then
2608 if Present
(Interface_List
(Parent
(Target_Typ
))) then
2613 AI
:= First
(Interface_List
(Parent
(Target_Typ
)));
2615 -- The progenitor itself may be a subtype of an interface type.
2617 while Present
(AI
) loop
2618 if Etype
(AI
) = Iface_Typ
2619 or else Base_Type
(Etype
(AI
)) = Iface_Typ
2623 elsif Present
(Interfaces
(Etype
(AI
)))
2624 and then Iface_Present_In_Ancestor
(Etype
(AI
))
2637 if Is_Class_Wide_Type
(Target_Typ
) then
2638 Target_Typ
:= Etype
(Target_Typ
);
2641 if Ekind
(Target_Typ
) = E_Incomplete_Type
then
2642 pragma Assert
(Present
(Non_Limited_View
(Target_Typ
)));
2643 Target_Typ
:= Non_Limited_View
(Target_Typ
);
2645 -- Protect the frontend against previously detected errors
2647 if Ekind
(Target_Typ
) = E_Incomplete_Type
then
2652 return Iface_Present_In_Ancestor
(Target_Typ
);
2653 end Interface_Present_In_Ancestor
;
2655 ---------------------
2656 -- Intersect_Types --
2657 ---------------------
2659 function Intersect_Types
(L
, R
: Node_Id
) return Entity_Id
is
2660 Index
: Interp_Index
;
2664 function Check_Right_Argument
(T
: Entity_Id
) return Entity_Id
;
2665 -- Find interpretation of right arg that has type compatible with T
2667 --------------------------
2668 -- Check_Right_Argument --
2669 --------------------------
2671 function Check_Right_Argument
(T
: Entity_Id
) return Entity_Id
is
2672 Index
: Interp_Index
;
2677 if not Is_Overloaded
(R
) then
2678 return Specific_Type
(T
, Etype
(R
));
2681 Get_First_Interp
(R
, Index
, It
);
2683 T2
:= Specific_Type
(T
, It
.Typ
);
2685 if T2
/= Any_Type
then
2689 Get_Next_Interp
(Index
, It
);
2690 exit when No
(It
.Typ
);
2695 end Check_Right_Argument
;
2697 -- Start of processing for Intersect_Types
2700 if Etype
(L
) = Any_Type
or else Etype
(R
) = Any_Type
then
2704 if not Is_Overloaded
(L
) then
2705 Typ
:= Check_Right_Argument
(Etype
(L
));
2709 Get_First_Interp
(L
, Index
, It
);
2710 while Present
(It
.Typ
) loop
2711 Typ
:= Check_Right_Argument
(It
.Typ
);
2712 exit when Typ
/= Any_Type
;
2713 Get_Next_Interp
(Index
, It
);
2718 -- If Typ is Any_Type, it means no compatible pair of types was found
2720 if Typ
= Any_Type
then
2721 if Nkind
(Parent
(L
)) in N_Op
then
2722 Error_Msg_N
("incompatible types for operator", Parent
(L
));
2724 elsif Nkind
(Parent
(L
)) = N_Range
then
2725 Error_Msg_N
("incompatible types given in constraint", Parent
(L
));
2727 -- Ada 2005 (AI-251): Complete the error notification
2729 elsif Is_Class_Wide_Type
(Etype
(R
))
2730 and then Is_Interface
(Etype
(Class_Wide_Type
(Etype
(R
))))
2732 Error_Msg_NE
("(Ada 2005) does not implement interface }",
2733 L
, Etype
(Class_Wide_Type
(Etype
(R
))));
2736 Error_Msg_N
("incompatible types", Parent
(L
));
2741 end Intersect_Types
;
2743 -----------------------
2744 -- In_Generic_Actual --
2745 -----------------------
2747 function In_Generic_Actual
(Exp
: Node_Id
) return Boolean is
2748 Par
: constant Node_Id
:= Parent
(Exp
);
2754 elsif Nkind
(Par
) in N_Declaration
then
2755 if Nkind
(Par
) = N_Object_Declaration
then
2756 return Present
(Corresponding_Generic_Association
(Par
));
2761 elsif Nkind
(Par
) = N_Object_Renaming_Declaration
then
2762 return Present
(Corresponding_Generic_Association
(Par
));
2764 elsif Nkind
(Par
) in N_Statement_Other_Than_Procedure_Call
then
2768 return In_Generic_Actual
(Parent
(Par
));
2770 end In_Generic_Actual
;
2776 function Is_Ancestor
2779 Use_Full_View
: Boolean := False) return Boolean
2786 BT1
:= Base_Type
(T1
);
2787 BT2
:= Base_Type
(T2
);
2789 -- Handle underlying view of records with unknown discriminants using
2790 -- the original entity that motivated the construction of this
2791 -- underlying record view (see Build_Derived_Private_Type).
2793 if Is_Underlying_Record_View
(BT1
) then
2794 BT1
:= Underlying_Record_View
(BT1
);
2797 if Is_Underlying_Record_View
(BT2
) then
2798 BT2
:= Underlying_Record_View
(BT2
);
2804 -- The predicate must look past privacy
2806 elsif Is_Private_Type
(T1
)
2807 and then Present
(Full_View
(T1
))
2808 and then BT2
= Base_Type
(Full_View
(T1
))
2812 elsif Is_Private_Type
(T2
)
2813 and then Present
(Full_View
(T2
))
2814 and then BT1
= Base_Type
(Full_View
(T2
))
2819 -- Obtain the parent of the base type of T2 (use the full view if
2823 and then Is_Private_Type
(BT2
)
2824 and then Present
(Full_View
(BT2
))
2826 -- No climbing needed if its full view is the root type
2828 if Full_View
(BT2
) = Root_Type
(Full_View
(BT2
)) then
2832 Par
:= Etype
(Full_View
(BT2
));
2839 -- If there was a error on the type declaration, do not recurse
2841 if Error_Posted
(Par
) then
2844 elsif BT1
= Base_Type
(Par
)
2845 or else (Is_Private_Type
(T1
)
2846 and then Present
(Full_View
(T1
))
2847 and then Base_Type
(Par
) = Base_Type
(Full_View
(T1
)))
2851 elsif Is_Private_Type
(Par
)
2852 and then Present
(Full_View
(Par
))
2853 and then Full_View
(Par
) = BT1
2859 elsif Par
= Root_Type
(Par
) then
2862 -- Continue climbing
2865 -- Use the full-view of private types (if allowed)
2868 and then Is_Private_Type
(Par
)
2869 and then Present
(Full_View
(Par
))
2871 Par
:= Etype
(Full_View
(Par
));
2880 ---------------------------
2881 -- Is_Invisible_Operator --
2882 ---------------------------
2884 function Is_Invisible_Operator
2886 T
: Entity_Id
) return Boolean
2888 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
2891 if Nkind
(N
) not in N_Op
then
2894 elsif not Comes_From_Source
(N
) then
2897 elsif No
(Universal_Interpretation
(Right_Opnd
(N
))) then
2900 elsif Nkind
(N
) in N_Binary_Op
2901 and then No
(Universal_Interpretation
(Left_Opnd
(N
)))
2906 return Is_Numeric_Type
(T
)
2907 and then not In_Open_Scopes
(Scope
(T
))
2908 and then not Is_Potentially_Use_Visible
(T
)
2909 and then not In_Use
(T
)
2910 and then not In_Use
(Scope
(T
))
2912 (Nkind
(Orig_Node
) /= N_Function_Call
2913 or else Nkind
(Name
(Orig_Node
)) /= N_Expanded_Name
2914 or else Entity
(Prefix
(Name
(Orig_Node
))) /= Scope
(T
))
2915 and then not In_Instance
;
2917 end Is_Invisible_Operator
;
2919 --------------------
2921 --------------------
2923 function Is_Progenitor
2925 Typ
: Entity_Id
) return Boolean
2928 return Implements_Interface
(Typ
, Iface
, Exclude_Parents
=> True);
2935 function Is_Subtype_Of
(T1
: Entity_Id
; T2
: Entity_Id
) return Boolean is
2939 S
:= Ancestor_Subtype
(T1
);
2940 while Present
(S
) loop
2944 S
:= Ancestor_Subtype
(S
);
2955 procedure List_Interps
(Nam
: Node_Id
; Err
: Node_Id
) is
2956 Index
: Interp_Index
;
2960 Get_First_Interp
(Nam
, Index
, It
);
2961 while Present
(It
.Nam
) loop
2962 if Scope
(It
.Nam
) = Standard_Standard
2963 and then Scope
(It
.Typ
) /= Standard_Standard
2965 Error_Msg_Sloc
:= Sloc
(Parent
(It
.Typ
));
2966 Error_Msg_NE
("\\& (inherited) declared#!", Err
, It
.Nam
);
2969 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2970 Error_Msg_NE
("\\& declared#!", Err
, It
.Nam
);
2973 Get_Next_Interp
(Index
, It
);
2981 procedure New_Interps
(N
: Node_Id
) is
2985 All_Interp
.Append
(No_Interp
);
2987 Map_Ptr
:= Headers
(Hash
(N
));
2989 if Map_Ptr
= No_Entry
then
2991 -- Place new node at end of table
2993 Interp_Map
.Increment_Last
;
2994 Headers
(Hash
(N
)) := Interp_Map
.Last
;
2997 -- Place node at end of chain, or locate its previous entry
3000 if Interp_Map
.Table
(Map_Ptr
).Node
= N
then
3002 -- Node is already in the table, and is being rewritten.
3003 -- Start a new interp section, retain hash link.
3005 Interp_Map
.Table
(Map_Ptr
).Node
:= N
;
3006 Interp_Map
.Table
(Map_Ptr
).Index
:= All_Interp
.Last
;
3007 Set_Is_Overloaded
(N
, True);
3011 exit when Interp_Map
.Table
(Map_Ptr
).Next
= No_Entry
;
3012 Map_Ptr
:= Interp_Map
.Table
(Map_Ptr
).Next
;
3016 -- Chain the new node
3018 Interp_Map
.Increment_Last
;
3019 Interp_Map
.Table
(Map_Ptr
).Next
:= Interp_Map
.Last
;
3022 Interp_Map
.Table
(Interp_Map
.Last
) := (N
, All_Interp
.Last
, No_Entry
);
3023 Set_Is_Overloaded
(N
, True);
3026 ---------------------------
3027 -- Operator_Matches_Spec --
3028 ---------------------------
3030 function Operator_Matches_Spec
(Op
, New_S
: Entity_Id
) return Boolean is
3031 Op_Name
: constant Name_Id
:= Chars
(Op
);
3032 T
: constant Entity_Id
:= Etype
(New_S
);
3040 -- To verify that a predefined operator matches a given signature,
3041 -- do a case analysis of the operator classes. Function can have one
3042 -- or two formals and must have the proper result type.
3044 New_F
:= First_Formal
(New_S
);
3045 Old_F
:= First_Formal
(Op
);
3047 while Present
(New_F
) and then Present
(Old_F
) loop
3049 Next_Formal
(New_F
);
3050 Next_Formal
(Old_F
);
3053 -- Definite mismatch if different number of parameters
3055 if Present
(Old_F
) or else Present
(New_F
) then
3061 T1
:= Etype
(First_Formal
(New_S
));
3063 if Nam_In
(Op_Name
, Name_Op_Subtract
, Name_Op_Add
, Name_Op_Abs
) then
3064 return Base_Type
(T1
) = Base_Type
(T
)
3065 and then Is_Numeric_Type
(T
);
3067 elsif Op_Name
= Name_Op_Not
then
3068 return Base_Type
(T1
) = Base_Type
(T
)
3069 and then Valid_Boolean_Arg
(Base_Type
(T
));
3078 T1
:= Etype
(First_Formal
(New_S
));
3079 T2
:= Etype
(Next_Formal
(First_Formal
(New_S
)));
3081 if Nam_In
(Op_Name
, Name_Op_And
, Name_Op_Or
, Name_Op_Xor
) then
3082 return Base_Type
(T1
) = Base_Type
(T2
)
3083 and then Base_Type
(T1
) = Base_Type
(T
)
3084 and then Valid_Boolean_Arg
(Base_Type
(T
));
3086 elsif Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
) then
3087 return Base_Type
(T1
) = Base_Type
(T2
)
3088 and then not Is_Limited_Type
(T1
)
3089 and then Is_Boolean_Type
(T
);
3091 elsif Nam_In
(Op_Name
, Name_Op_Lt
, Name_Op_Le
,
3092 Name_Op_Gt
, Name_Op_Ge
)
3094 return Base_Type
(T1
) = Base_Type
(T2
)
3095 and then Valid_Comparison_Arg
(T1
)
3096 and then Is_Boolean_Type
(T
);
3098 elsif Nam_In
(Op_Name
, Name_Op_Add
, Name_Op_Subtract
) then
3099 return Base_Type
(T1
) = Base_Type
(T2
)
3100 and then Base_Type
(T1
) = Base_Type
(T
)
3101 and then Is_Numeric_Type
(T
);
3103 -- For division and multiplication, a user-defined function does not
3104 -- match the predefined universal_fixed operation, except in Ada 83.
3106 elsif Op_Name
= Name_Op_Divide
then
3107 return (Base_Type
(T1
) = Base_Type
(T2
)
3108 and then Base_Type
(T1
) = Base_Type
(T
)
3109 and then Is_Numeric_Type
(T
)
3110 and then (not Is_Fixed_Point_Type
(T
)
3111 or else Ada_Version
= Ada_83
))
3113 -- Mixed_Mode operations on fixed-point types
3115 or else (Base_Type
(T1
) = Base_Type
(T
)
3116 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
3117 and then Is_Fixed_Point_Type
(T
))
3119 -- A user defined operator can also match (and hide) a mixed
3120 -- operation on universal literals.
3122 or else (Is_Integer_Type
(T2
)
3123 and then Is_Floating_Point_Type
(T1
)
3124 and then Base_Type
(T1
) = Base_Type
(T
));
3126 elsif Op_Name
= Name_Op_Multiply
then
3127 return (Base_Type
(T1
) = Base_Type
(T2
)
3128 and then Base_Type
(T1
) = Base_Type
(T
)
3129 and then Is_Numeric_Type
(T
)
3130 and then (not Is_Fixed_Point_Type
(T
)
3131 or else Ada_Version
= Ada_83
))
3133 -- Mixed_Mode operations on fixed-point types
3135 or else (Base_Type
(T1
) = Base_Type
(T
)
3136 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
3137 and then Is_Fixed_Point_Type
(T
))
3139 or else (Base_Type
(T2
) = Base_Type
(T
)
3140 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
3141 and then Is_Fixed_Point_Type
(T
))
3143 or else (Is_Integer_Type
(T2
)
3144 and then Is_Floating_Point_Type
(T1
)
3145 and then Base_Type
(T1
) = Base_Type
(T
))
3147 or else (Is_Integer_Type
(T1
)
3148 and then Is_Floating_Point_Type
(T2
)
3149 and then Base_Type
(T2
) = Base_Type
(T
));
3151 elsif Nam_In
(Op_Name
, Name_Op_Mod
, Name_Op_Rem
) then
3152 return Base_Type
(T1
) = Base_Type
(T2
)
3153 and then Base_Type
(T1
) = Base_Type
(T
)
3154 and then Is_Integer_Type
(T
);
3156 elsif Op_Name
= Name_Op_Expon
then
3157 return Base_Type
(T1
) = Base_Type
(T
)
3158 and then Is_Numeric_Type
(T
)
3159 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
);
3161 elsif Op_Name
= Name_Op_Concat
then
3162 return Is_Array_Type
(T
)
3163 and then (Base_Type
(T
) = Base_Type
(Etype
(Op
)))
3164 and then (Base_Type
(T1
) = Base_Type
(T
)
3166 Base_Type
(T1
) = Base_Type
(Component_Type
(T
)))
3167 and then (Base_Type
(T2
) = Base_Type
(T
)
3169 Base_Type
(T2
) = Base_Type
(Component_Type
(T
)));
3175 end Operator_Matches_Spec
;
3181 procedure Remove_Interp
(I
: in out Interp_Index
) is
3185 -- Find end of interp list and copy downward to erase the discarded one
3188 while Present
(All_Interp
.Table
(II
).Typ
) loop
3192 for J
in I
+ 1 .. II
loop
3193 All_Interp
.Table
(J
- 1) := All_Interp
.Table
(J
);
3196 -- Back up interp index to insure that iterator will pick up next
3197 -- available interpretation.
3206 procedure Save_Interps
(Old_N
: Node_Id
; New_N
: Node_Id
) is
3208 O_N
: Node_Id
:= Old_N
;
3211 if Is_Overloaded
(Old_N
) then
3212 Set_Is_Overloaded
(New_N
);
3214 if Nkind
(Old_N
) = N_Selected_Component
3215 and then Is_Overloaded
(Selector_Name
(Old_N
))
3217 O_N
:= Selector_Name
(Old_N
);
3220 Map_Ptr
:= Headers
(Hash
(O_N
));
3222 while Interp_Map
.Table
(Map_Ptr
).Node
/= O_N
loop
3223 Map_Ptr
:= Interp_Map
.Table
(Map_Ptr
).Next
;
3224 pragma Assert
(Map_Ptr
/= No_Entry
);
3227 New_Interps
(New_N
);
3228 Interp_Map
.Table
(Interp_Map
.Last
).Index
:=
3229 Interp_Map
.Table
(Map_Ptr
).Index
;
3237 function Specific_Type
(Typ_1
, Typ_2
: Entity_Id
) return Entity_Id
is
3238 T1
: constant Entity_Id
:= Available_View
(Typ_1
);
3239 T2
: constant Entity_Id
:= Available_View
(Typ_2
);
3240 B1
: constant Entity_Id
:= Base_Type
(T1
);
3241 B2
: constant Entity_Id
:= Base_Type
(T2
);
3243 function Is_Remote_Access
(T
: Entity_Id
) return Boolean;
3244 -- Check whether T is the equivalent type of a remote access type.
3245 -- If distribution is enabled, T is a legal context for Null.
3247 ----------------------
3248 -- Is_Remote_Access --
3249 ----------------------
3251 function Is_Remote_Access
(T
: Entity_Id
) return Boolean is
3253 return Is_Record_Type
(T
)
3254 and then (Is_Remote_Call_Interface
(T
)
3255 or else Is_Remote_Types
(T
))
3256 and then Present
(Corresponding_Remote_Type
(T
))
3257 and then Is_Access_Type
(Corresponding_Remote_Type
(T
));
3258 end Is_Remote_Access
;
3260 -- Start of processing for Specific_Type
3263 if T1
= Any_Type
or else T2
= Any_Type
then
3270 elsif (T1
= Universal_Integer
and then Is_Integer_Type
(T2
))
3271 or else (T1
= Universal_Real
and then Is_Real_Type
(T2
))
3272 or else (T1
= Universal_Fixed
and then Is_Fixed_Point_Type
(T2
))
3273 or else (T1
= Any_Fixed
and then Is_Fixed_Point_Type
(T2
))
3277 elsif (T2
= Universal_Integer
and then Is_Integer_Type
(T1
))
3278 or else (T2
= Universal_Real
and then Is_Real_Type
(T1
))
3279 or else (T2
= Universal_Fixed
and then Is_Fixed_Point_Type
(T1
))
3280 or else (T2
= Any_Fixed
and then Is_Fixed_Point_Type
(T1
))
3284 elsif T2
= Any_String
and then Is_String_Type
(T1
) then
3287 elsif T1
= Any_String
and then Is_String_Type
(T2
) then
3290 elsif T2
= Any_Character
and then Is_Character_Type
(T1
) then
3293 elsif T1
= Any_Character
and then Is_Character_Type
(T2
) then
3296 elsif T1
= Any_Access
3297 and then (Is_Access_Type
(T2
) or else Is_Remote_Access
(T2
))
3301 elsif T2
= Any_Access
3302 and then (Is_Access_Type
(T1
) or else Is_Remote_Access
(T1
))
3306 -- In an instance, the specific type may have a private view. Use full
3307 -- view to check legality.
3309 elsif T2
= Any_Access
3310 and then Is_Private_Type
(T1
)
3311 and then Present
(Full_View
(T1
))
3312 and then Is_Access_Type
(Full_View
(T1
))
3313 and then In_Instance
3317 elsif T2
= Any_Composite
3318 and then Is_Aggregate_Type
(T1
)
3322 elsif T1
= Any_Composite
3323 and then Is_Aggregate_Type
(T2
)
3327 elsif T1
= Any_Modular
and then Is_Modular_Integer_Type
(T2
) then
3330 elsif T2
= Any_Modular
and then Is_Modular_Integer_Type
(T1
) then
3333 -- ----------------------------------------------------------
3334 -- Special cases for equality operators (all other predefined
3335 -- operators can never apply to tagged types)
3336 -- ----------------------------------------------------------
3338 -- Ada 2005 (AI-251): T1 and T2 are class-wide types, and T2 is an
3341 elsif Is_Class_Wide_Type
(T1
)
3342 and then Is_Class_Wide_Type
(T2
)
3343 and then Is_Interface
(Etype
(T2
))
3347 -- Ada 2005 (AI-251): T1 is a concrete type that implements the
3348 -- class-wide interface T2
3350 elsif Is_Class_Wide_Type
(T2
)
3351 and then Is_Interface
(Etype
(T2
))
3352 and then Interface_Present_In_Ancestor
(Typ
=> T1
,
3353 Iface
=> Etype
(T2
))
3357 elsif Is_Class_Wide_Type
(T1
)
3358 and then Is_Ancestor
(Root_Type
(T1
), T2
)
3362 elsif Is_Class_Wide_Type
(T2
)
3363 and then Is_Ancestor
(Root_Type
(T2
), T1
)
3367 elsif (Ekind
(B1
) = E_Access_Subprogram_Type
3369 Ekind
(B1
) = E_Access_Protected_Subprogram_Type
)
3370 and then Ekind
(Designated_Type
(B1
)) /= E_Subprogram_Type
3371 and then Is_Access_Type
(T2
)
3375 elsif (Ekind
(B2
) = E_Access_Subprogram_Type
3377 Ekind
(B2
) = E_Access_Protected_Subprogram_Type
)
3378 and then Ekind
(Designated_Type
(B2
)) /= E_Subprogram_Type
3379 and then Is_Access_Type
(T1
)
3383 elsif (Ekind
(T1
) = E_Allocator_Type
3384 or else Ekind
(T1
) = E_Access_Attribute_Type
3385 or else Ekind
(T1
) = E_Anonymous_Access_Type
)
3386 and then Is_Access_Type
(T2
)
3390 elsif (Ekind
(T2
) = E_Allocator_Type
3391 or else Ekind
(T2
) = E_Access_Attribute_Type
3392 or else Ekind
(T2
) = E_Anonymous_Access_Type
)
3393 and then Is_Access_Type
(T1
)
3397 -- If none of the above cases applies, types are not compatible
3404 ---------------------
3405 -- Set_Abstract_Op --
3406 ---------------------
3408 procedure Set_Abstract_Op
(I
: Interp_Index
; V
: Entity_Id
) is
3410 All_Interp
.Table
(I
).Abstract_Op
:= V
;
3411 end Set_Abstract_Op
;
3413 -----------------------
3414 -- Valid_Boolean_Arg --
3415 -----------------------
3417 -- In addition to booleans and arrays of booleans, we must include
3418 -- aggregates as valid boolean arguments, because in the first pass of
3419 -- resolution their components are not examined. If it turns out not to be
3420 -- an aggregate of booleans, this will be diagnosed in Resolve.
3421 -- Any_Composite must be checked for prior to the array type checks because
3422 -- Any_Composite does not have any associated indexes.
3424 function Valid_Boolean_Arg
(T
: Entity_Id
) return Boolean is
3426 if Is_Boolean_Type
(T
)
3427 or else Is_Modular_Integer_Type
(T
)
3428 or else T
= Universal_Integer
3429 or else T
= Any_Composite
3433 elsif Is_Array_Type
(T
)
3434 and then T
/= Any_String
3435 and then Number_Dimensions
(T
) = 1
3436 and then Is_Boolean_Type
(Component_Type
(T
))
3438 ((not Is_Private_Composite
(T
)
3439 and then not Is_Limited_Composite
(T
))
3441 or else Available_Full_View_Of_Component
(T
))
3448 end Valid_Boolean_Arg
;
3450 --------------------------
3451 -- Valid_Comparison_Arg --
3452 --------------------------
3454 function Valid_Comparison_Arg
(T
: Entity_Id
) return Boolean is
3457 if T
= Any_Composite
then
3460 elsif Is_Discrete_Type
(T
)
3461 or else Is_Real_Type
(T
)
3465 elsif Is_Array_Type
(T
)
3466 and then Number_Dimensions
(T
) = 1
3467 and then Is_Discrete_Type
(Component_Type
(T
))
3468 and then (not Is_Private_Composite
(T
)
3469 or else In_Instance
)
3470 and then (not Is_Limited_Composite
(T
)
3471 or else In_Instance
)
3475 elsif Is_Array_Type
(T
)
3476 and then Number_Dimensions
(T
) = 1
3477 and then Is_Discrete_Type
(Component_Type
(T
))
3478 and then Available_Full_View_Of_Component
(T
)
3482 elsif Is_String_Type
(T
) then
3487 end Valid_Comparison_Arg
;
3493 procedure Write_Interp
(It
: Interp
) is
3495 Write_Str
("Nam: ");
3496 Print_Tree_Node
(It
.Nam
);
3497 Write_Str
("Typ: ");
3498 Print_Tree_Node
(It
.Typ
);
3499 Write_Str
("Abstract_Op: ");
3500 Print_Tree_Node
(It
.Abstract_Op
);
3503 ----------------------
3504 -- Write_Interp_Ref --
3505 ----------------------
3507 procedure Write_Interp_Ref
(Map_Ptr
: Int
) is
3509 Write_Str
(" Node: ");
3510 Write_Int
(Int
(Interp_Map
.Table
(Map_Ptr
).Node
));
3511 Write_Str
(" Index: ");
3512 Write_Int
(Int
(Interp_Map
.Table
(Map_Ptr
).Index
));
3513 Write_Str
(" Next: ");
3514 Write_Int
(Interp_Map
.Table
(Map_Ptr
).Next
);
3516 end Write_Interp_Ref
;
3518 ---------------------
3519 -- Write_Overloads --
3520 ---------------------
3522 procedure Write_Overloads
(N
: Node_Id
) is
3528 Write_Str
("Overloads: ");
3529 Print_Node_Briefly
(N
);
3531 if Nkind
(N
) not in N_Has_Entity
then
3535 if not Is_Overloaded
(N
) then
3536 Write_Str
("Non-overloaded entity ");
3538 Write_Entity_Info
(Entity
(N
), " ");
3541 Get_First_Interp
(N
, I
, It
);
3542 Write_Str
("Overloaded entity ");
3544 Write_Str
(" Name Type Abstract Op");
3546 Write_Str
("===============================================");
3550 while Present
(Nam
) loop
3551 Write_Int
(Int
(Nam
));
3553 Write_Name
(Chars
(Nam
));
3555 Write_Int
(Int
(It
.Typ
));
3557 Write_Name
(Chars
(It
.Typ
));
3559 if Present
(It
.Abstract_Op
) then
3561 Write_Int
(Int
(It
.Abstract_Op
));
3563 Write_Name
(Chars
(It
.Abstract_Op
));
3567 Get_Next_Interp
(I
, It
);
3571 end Write_Overloads
;