1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Util
; use Exp_Util
;
33 with Fname
; use Fname
;
34 with Itypes
; use Itypes
;
36 with Lib
.Xref
; use Lib
.Xref
;
37 with Namet
; use Namet
;
38 with Namet
.Sp
; use Namet
.Sp
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Output
; use Output
;
43 with Restrict
; use Restrict
;
44 with Rident
; use Rident
;
46 with Sem_Aux
; use Sem_Aux
;
47 with Sem_Case
; use Sem_Case
;
48 with Sem_Cat
; use Sem_Cat
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Dim
; use Sem_Dim
;
53 with Sem_Disp
; use Sem_Disp
;
54 with Sem_Dist
; use Sem_Dist
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Type
; use Sem_Type
;
58 with Sem_Util
; use Sem_Util
;
59 with Sem_Warn
; use Sem_Warn
;
60 with Stand
; use Stand
;
61 with Sinfo
; use Sinfo
;
62 with Snames
; use Snames
;
63 with Tbuild
; use Tbuild
;
64 with Uintp
; use Uintp
;
66 package body Sem_Ch4
is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
76 procedure Analyze_Expression
(N
: Node_Id
);
77 -- For expressions that are not names, this is just a call to analyze.
78 -- If the expression is a name, it may be a call to a parameterless
79 -- function, and if so must be converted into an explicit call node
80 -- and analyzed as such. This deproceduring must be done during the first
81 -- pass of overload resolution, because otherwise a procedure call with
82 -- overloaded actuals may fail to resolve.
84 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
86 -- is an operator name or an expanded name whose selector is an operator
87 -- name, and one possible interpretation is as a predefined operator.
89 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
94 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
99 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
104 procedure Ambiguous_Operands
(N
: Node_Id
);
105 -- For equality, membership, and comparison operators with overloaded
106 -- arguments, list possible interpretations.
108 procedure Analyze_One_Call
112 Success
: out Boolean;
113 Skip_First
: Boolean := False);
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
132 procedure Check_Misspelled_Selector
135 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
140 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean;
141 -- Verify that type T is declared in scope S. Used to find interpretations
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
146 procedure Find_Arithmetic_Types
150 -- L and R are the operands of an arithmetic operator. Find
151 -- consistent pairs of interpretations for L and R that have a
152 -- numeric type consistent with the semantics of the operator.
154 procedure Find_Comparison_Types
158 -- L and R are operands of a comparison operator. Find consistent
159 -- pairs of interpretations for L and R.
161 procedure Find_Concatenation_Types
165 -- For the four varieties of concatenation
167 procedure Find_Equality_Types
171 -- Ditto for equality operators
173 procedure Find_Boolean_Types
177 -- Ditto for binary logical operations
179 procedure Find_Negation_Types
183 -- Find consistent interpretation for operand of negation operator
185 procedure Find_Non_Universal_Interpretations
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
199 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
203 procedure Find_Unary_Types
207 -- Unary arithmetic types: plus, minus, abs
209 procedure Check_Arithmetic_Pair
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214 -- types for left and right operand. Determine whether they constitute
215 -- a valid pair for the given operator, and record the corresponding
216 -- interpretation of the operator node. The node N may be an operator
217 -- node (the usual case) or a function call whose prefix is an operator
218 -- designator. In both cases Op_Id is the operator name itself.
220 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
225 function Junk_Operand
(N
: Node_Id
) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
230 procedure Operator_Check
(N
: Node_Id
);
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
238 function Process_Implicit_Dereference_Prefix
240 P
: Node_Id
) return Entity_Id
;
241 -- Called when P is the prefix of an implicit dereference, denoting an
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
245 -- If in semantics only mode (-gnatc or generic), the function also records
246 -- that the prefix is a reference to E, if any. Normally, such a reference
247 -- is generated only when the implicit dereference is expanded into an
248 -- explicit one, but for consistency we must generate the reference when
249 -- expansion is disabled as well.
251 procedure Remove_Abstract_Operations
(N
: Node_Id
);
252 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
253 -- operation is not a candidate interpretation.
255 function Try_Container_Indexing
258 Exprs
: List_Id
) return Boolean;
259 -- AI05-0139: Generalized indexing to support iterators over containers
261 function Try_Indexed_Call
265 Skip_First
: Boolean) return Boolean;
266 -- If a function has defaults for all its actuals, a call to it may in fact
267 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
268 -- interpretation as an indexing, prior to analysis as a call. If both are
269 -- possible, the node is overloaded with both interpretations (same symbol
270 -- but two different types). If the call is written in prefix form, the
271 -- prefix becomes the first parameter in the call, and only the remaining
272 -- actuals must be checked for the presence of defaults.
274 function Try_Indirect_Call
277 Typ
: Entity_Id
) return Boolean;
278 -- Similarly, a function F that needs no actuals can return an access to a
279 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
280 -- the call may be overloaded with both interpretations.
282 function Try_Object_Operation
284 CW_Test_Only
: Boolean := False) return Boolean;
285 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
286 -- is a call in this notation, it is transformed into a normal subprogram
287 -- call where the prefix is a parameter, and True is returned. If node
288 -- N is not of this form, it is unchanged, and False is returned. if
289 -- CW_Test_Only is true then N is an N_Selected_Component node which
290 -- is part of a call to an entry or procedure of a tagged concurrent
291 -- type and this routine is invoked to search for class-wide subprograms
292 -- conflicting with the target entity.
294 procedure wpo
(T
: Entity_Id
);
295 pragma Warnings
(Off
, wpo
);
296 -- Used for debugging: obtain list of primitive operations even if
297 -- type is not frozen and dispatch table is not built yet.
299 ------------------------
300 -- Ambiguous_Operands --
301 ------------------------
303 procedure Ambiguous_Operands
(N
: Node_Id
) is
304 procedure List_Operand_Interps
(Opnd
: Node_Id
);
306 --------------------------
307 -- List_Operand_Interps --
308 --------------------------
310 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
315 if Is_Overloaded
(Opnd
) then
316 if Nkind
(Opnd
) in N_Op
then
318 elsif Nkind
(Opnd
) = N_Function_Call
then
320 elsif Ada_Version
>= Ada_2012
then
326 Get_First_Interp
(Opnd
, I
, It
);
327 while Present
(It
.Nam
) loop
328 if Has_Implicit_Dereference
(It
.Typ
) then
330 ("can be interpreted as implicit dereference", Opnd
);
334 Get_Next_Interp
(I
, It
);
345 if Opnd
= Left_Opnd
(N
) then
346 Error_Msg_N
("\left operand has the following interpretations", N
);
349 ("\right operand has the following interpretations", N
);
353 List_Interps
(Nam
, Err
);
354 end List_Operand_Interps
;
356 -- Start of processing for Ambiguous_Operands
359 if Nkind
(N
) in N_Membership_Test
then
360 Error_Msg_N
("ambiguous operands for membership", N
);
362 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
) then
363 Error_Msg_N
("ambiguous operands for equality", N
);
366 Error_Msg_N
("ambiguous operands for comparison", N
);
369 if All_Errors_Mode
then
370 List_Operand_Interps
(Left_Opnd
(N
));
371 List_Operand_Interps
(Right_Opnd
(N
));
373 Error_Msg_N
("\use -gnatf switch for details", N
);
375 end Ambiguous_Operands
;
377 -----------------------
378 -- Analyze_Aggregate --
379 -----------------------
381 -- Most of the analysis of Aggregates requires that the type be known,
382 -- and is therefore put off until resolution.
384 procedure Analyze_Aggregate
(N
: Node_Id
) is
386 if No
(Etype
(N
)) then
387 Set_Etype
(N
, Any_Composite
);
389 end Analyze_Aggregate
;
391 -----------------------
392 -- Analyze_Allocator --
393 -----------------------
395 procedure Analyze_Allocator
(N
: Node_Id
) is
396 Loc
: constant Source_Ptr
:= Sloc
(N
);
397 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
398 E
: Node_Id
:= Expression
(N
);
399 Acc_Type
: Entity_Id
;
405 Check_SPARK_Restriction
("allocator is not allowed", N
);
407 -- Deal with allocator restrictions
409 -- In accordance with H.4(7), the No_Allocators restriction only applies
410 -- to user-written allocators. The same consideration applies to the
411 -- No_Allocators_Before_Elaboration restriction.
413 if Comes_From_Source
(N
) then
414 Check_Restriction
(No_Allocators
, N
);
416 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
417 -- look at enclosing context, checking task/main subprogram case.
421 while Present
(P
) loop
423 -- In both cases we need a handled sequence of statements, where
424 -- the occurrence of the allocator is within the statements.
426 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
427 and then Is_List_Member
(C
)
428 and then List_Containing
(C
) = Statements
(P
)
430 -- Check for allocator within task body, this is a definite
431 -- violation of No_Allocators_After_Elaboration we can detect.
433 if Nkind
(Original_Node
(Parent
(P
))) = N_Task_Body
then
435 (No_Standard_Allocators_After_Elaboration
, N
);
439 -- The other case is appearance in a subprogram body. This may
440 -- be a violation if this is a library level subprogram, and it
441 -- turns out to be used as the main program, but only the
442 -- binder knows that, so just record the occurrence.
444 if Nkind
(Original_Node
(Parent
(P
))) = N_Subprogram_Body
445 and then Nkind
(Parent
(Parent
(P
))) = N_Compilation_Unit
447 Set_Has_Allocator
(Current_Sem_Unit
);
456 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
457 -- any. The expected type for the name is any type. A non-overloading
458 -- rule then requires it to be of a type descended from
459 -- System.Storage_Pools.Subpools.Subpool_Handle.
461 -- This isn't exactly what the AI says, but it seems to be the right
462 -- rule. The AI should be fixed.???
465 Subpool
: constant Node_Id
:= Subpool_Handle_Name
(N
);
468 if Present
(Subpool
) then
471 if Is_Overloaded
(Subpool
) then
472 Error_Msg_N
("ambiguous subpool handle", Subpool
);
475 -- Check that Etype (Subpool) is descended from Subpool_Handle
481 -- Analyze the qualified expression or subtype indication
483 if Nkind
(E
) = N_Qualified_Expression
then
484 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
485 Set_Etype
(Acc_Type
, Acc_Type
);
486 Find_Type
(Subtype_Mark
(E
));
488 -- Analyze the qualified expression, and apply the name resolution
489 -- rule given in 4.7(3).
492 Type_Id
:= Etype
(E
);
493 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
495 Resolve
(Expression
(E
), Type_Id
);
497 -- Allocators generated by the build-in-place expansion mechanism
498 -- are explicitly marked as coming from source but do not need to be
499 -- checked for limited initialization. To exclude this case, ensure
500 -- that the parent of the allocator is a source node.
502 if Is_Limited_Type
(Type_Id
)
503 and then Comes_From_Source
(N
)
504 and then Comes_From_Source
(Parent
(N
))
505 and then not In_Instance_Body
507 if not OK_For_Limited_Init
(Type_Id
, Expression
(E
)) then
508 Error_Msg_N
("initialization not allowed for limited types", N
);
509 Explain_Limited_Type
(Type_Id
, N
);
513 -- A qualified expression requires an exact match of the type,
514 -- class-wide matching is not allowed.
516 -- if Is_Class_Wide_Type (Type_Id)
517 -- and then Base_Type
518 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
520 -- Wrong_Type (Expression (E), Type_Id);
523 Check_Non_Static_Context
(Expression
(E
));
525 -- We don't analyze the qualified expression itself because it's
526 -- part of the allocator
528 Set_Etype
(E
, Type_Id
);
530 -- Case where allocator has a subtype indication
535 Base_Typ
: Entity_Id
;
538 -- If the allocator includes a N_Subtype_Indication then a
539 -- constraint is present, otherwise the node is a subtype mark.
540 -- Introduce an explicit subtype declaration into the tree
541 -- defining some anonymous subtype and rewrite the allocator to
542 -- use this subtype rather than the subtype indication.
544 -- It is important to introduce the explicit subtype declaration
545 -- so that the bounds of the subtype indication are attached to
546 -- the tree in case the allocator is inside a generic unit.
548 if Nkind
(E
) = N_Subtype_Indication
then
550 -- A constraint is only allowed for a composite type in Ada
551 -- 95. In Ada 83, a constraint is also allowed for an
552 -- access-to-composite type, but the constraint is ignored.
554 Find_Type
(Subtype_Mark
(E
));
555 Base_Typ
:= Entity
(Subtype_Mark
(E
));
557 if Is_Elementary_Type
(Base_Typ
) then
558 if not (Ada_Version
= Ada_83
559 and then Is_Access_Type
(Base_Typ
))
561 Error_Msg_N
("constraint not allowed here", E
);
563 if Nkind
(Constraint
(E
)) =
564 N_Index_Or_Discriminant_Constraint
566 Error_Msg_N
-- CODEFIX
567 ("\if qualified expression was meant, " &
568 "use apostrophe", Constraint
(E
));
572 -- Get rid of the bogus constraint:
574 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
575 Analyze_Allocator
(N
);
579 if Expander_Active
then
580 Def_Id
:= Make_Temporary
(Loc
, 'S');
583 Make_Subtype_Declaration
(Loc
,
584 Defining_Identifier
=> Def_Id
,
585 Subtype_Indication
=> Relocate_Node
(E
)));
587 if Sav_Errs
/= Serious_Errors_Detected
588 and then Nkind
(Constraint
(E
)) =
589 N_Index_Or_Discriminant_Constraint
591 Error_Msg_N
-- CODEFIX
592 ("if qualified expression was meant, " &
593 "use apostrophe!", Constraint
(E
));
596 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
597 Rewrite
(Expression
(N
), E
);
601 Type_Id
:= Process_Subtype
(E
, N
);
602 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
603 Set_Etype
(Acc_Type
, Acc_Type
);
604 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
605 Check_Fully_Declared
(Type_Id
, N
);
607 -- Ada 2005 (AI-231): If the designated type is itself an access
608 -- type that excludes null, its default initialization will
609 -- be a null object, and we can insert an unconditional raise
610 -- before the allocator.
612 -- Ada 2012 (AI-104): A not null indication here is altogether
615 if Can_Never_Be_Null
(Type_Id
) then
617 Not_Null_Check
: constant Node_Id
:=
618 Make_Raise_Constraint_Error
(Sloc
(E
),
619 Reason
=> CE_Null_Not_Allowed
);
622 if Expander_Active
then
623 Insert_Action
(N
, Not_Null_Check
);
624 Analyze
(Not_Null_Check
);
626 elsif Warn_On_Ada_2012_Compatibility
then
628 ("null value not allowed here in Ada 2012?y?", E
);
633 -- Check restriction against dynamically allocated protected
634 -- objects. Note that when limited aggregates are supported,
635 -- a similar test should be applied to an allocator with a
636 -- qualified expression ???
638 if Is_Protected_Type
(Type_Id
) then
639 Check_Restriction
(No_Protected_Type_Allocators
, N
);
642 -- Check for missing initialization. Skip this check if we already
643 -- had errors on analyzing the allocator, since in that case these
644 -- are probably cascaded errors.
646 if Is_Indefinite_Subtype
(Type_Id
)
647 and then Serious_Errors_Detected
= Sav_Errs
649 -- The build-in-place machinery may produce an allocator when
650 -- the designated type is indefinite but the underlying type is
651 -- not. In this case the unknown discriminants are meaningless
652 -- and should not trigger error messages. Check the parent node
653 -- because the allocator is marked as coming from source.
655 if Present
(Underlying_Type
(Type_Id
))
656 and then not Is_Indefinite_Subtype
(Underlying_Type
(Type_Id
))
657 and then not Comes_From_Source
(Parent
(N
))
661 elsif Is_Class_Wide_Type
(Type_Id
) then
663 ("initialization required in class-wide allocation", N
);
666 if Ada_Version
< Ada_2005
667 and then Is_Limited_Type
(Type_Id
)
669 Error_Msg_N
("unconstrained allocation not allowed", N
);
671 if Is_Array_Type
(Type_Id
) then
673 ("\constraint with array bounds required", N
);
675 elsif Has_Unknown_Discriminants
(Type_Id
) then
678 else pragma Assert
(Has_Discriminants
(Type_Id
));
680 ("\constraint with discriminant values required", N
);
683 -- Limited Ada 2005 and general non-limited case
687 ("uninitialized unconstrained allocation not allowed",
690 if Is_Array_Type
(Type_Id
) then
692 ("\qualified expression or constraint with " &
693 "array bounds required", N
);
695 elsif Has_Unknown_Discriminants
(Type_Id
) then
696 Error_Msg_N
("\qualified expression required", N
);
698 else pragma Assert
(Has_Discriminants
(Type_Id
));
700 ("\qualified expression or constraint with " &
701 "discriminant values required", N
);
709 if Is_Abstract_Type
(Type_Id
) then
710 Error_Msg_N
("cannot allocate abstract object", E
);
713 if Has_Task
(Designated_Type
(Acc_Type
)) then
714 Check_Restriction
(No_Tasking
, N
);
715 Check_Restriction
(Max_Tasks
, N
);
716 Check_Restriction
(No_Task_Allocators
, N
);
719 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
720 -- type is nested, and the designated type needs finalization. The rule
721 -- is conservative in that class-wide types need finalization.
723 if Needs_Finalization
(Designated_Type
(Acc_Type
))
724 and then not Is_Library_Level_Entity
(Acc_Type
)
726 Check_Restriction
(No_Nested_Finalization
, N
);
729 -- Check that an allocator of a nested access type doesn't create a
730 -- protected object when restriction No_Local_Protected_Objects applies.
731 -- We don't have an equivalent to Has_Task for protected types, so only
732 -- cases where the designated type itself is a protected type are
733 -- currently checked. ???
735 if Is_Protected_Type
(Designated_Type
(Acc_Type
))
736 and then not Is_Library_Level_Entity
(Acc_Type
)
738 Check_Restriction
(No_Local_Protected_Objects
, N
);
741 -- If the No_Streams restriction is set, check that the type of the
742 -- object is not, and does not contain, any subtype derived from
743 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
744 -- Has_Stream just for efficiency reasons. There is no point in
745 -- spending time on a Has_Stream check if the restriction is not set.
747 if Restriction_Check_Required
(No_Streams
) then
748 if Has_Stream
(Designated_Type
(Acc_Type
)) then
749 Check_Restriction
(No_Streams
, N
);
753 Set_Etype
(N
, Acc_Type
);
755 if not Is_Library_Level_Entity
(Acc_Type
) then
756 Check_Restriction
(No_Local_Allocators
, N
);
759 if Serious_Errors_Detected
> Sav_Errs
then
760 Set_Error_Posted
(N
);
761 Set_Etype
(N
, Any_Type
);
763 end Analyze_Allocator
;
765 ---------------------------
766 -- Analyze_Arithmetic_Op --
767 ---------------------------
769 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
770 L
: constant Node_Id
:= Left_Opnd
(N
);
771 R
: constant Node_Id
:= Right_Opnd
(N
);
775 Candidate_Type
:= Empty
;
776 Analyze_Expression
(L
);
777 Analyze_Expression
(R
);
779 -- If the entity is already set, the node is the instantiation of a
780 -- generic node with a non-local reference, or was manufactured by a
781 -- call to Make_Op_xxx. In either case the entity is known to be valid,
782 -- and we do not need to collect interpretations, instead we just get
783 -- the single possible interpretation.
787 if Present
(Op_Id
) then
788 if Ekind
(Op_Id
) = E_Operator
then
790 if Nkind_In
(N
, N_Op_Divide
, N_Op_Mod
, N_Op_Multiply
, N_Op_Rem
)
791 and then Treat_Fixed_As_Integer
(N
)
795 Set_Etype
(N
, Any_Type
);
796 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
800 Set_Etype
(N
, Any_Type
);
801 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
804 -- Entity is not already set, so we do need to collect interpretations
807 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
808 Set_Etype
(N
, Any_Type
);
810 while Present
(Op_Id
) loop
811 if Ekind
(Op_Id
) = E_Operator
812 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
814 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
816 -- The following may seem superfluous, because an operator cannot
817 -- be generic, but this ignores the cleverness of the author of
820 elsif Is_Overloadable
(Op_Id
) then
821 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
824 Op_Id
:= Homonym
(Op_Id
);
829 end Analyze_Arithmetic_Op
;
835 -- Function, procedure, and entry calls are checked here. The Name in
836 -- the call may be overloaded. The actuals have been analyzed and may
837 -- themselves be overloaded. On exit from this procedure, the node N
838 -- may have zero, one or more interpretations. In the first case an
839 -- error message is produced. In the last case, the node is flagged
840 -- as overloaded and the interpretations are collected in All_Interp.
842 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
843 -- the type-checking is similar to that of other calls.
845 procedure Analyze_Call
(N
: Node_Id
) is
846 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
851 Success
: Boolean := False;
853 Deref
: Boolean := False;
854 -- Flag indicates whether an interpretation of the prefix is a
855 -- parameterless call that returns an access_to_subprogram.
857 procedure Check_Ghost_Subprogram_Call
;
858 -- Verify the legality of a call to a ghost subprogram. Such calls can
859 -- appear only in assertion expressions except subtype predicates or
860 -- from within another ghost subprogram.
862 procedure Check_Mixed_Parameter_And_Named_Associations
;
863 -- Check that parameter and named associations are not mixed. This is
864 -- a restriction in SPARK mode.
866 function Name_Denotes_Function
return Boolean;
867 -- If the type of the name is an access to subprogram, this may be the
868 -- type of a name, or the return type of the function being called. If
869 -- the name is not an entity then it can denote a protected function.
870 -- Until we distinguish Etype from Return_Type, we must use this routine
871 -- to resolve the meaning of the name in the call.
873 procedure No_Interpretation
;
874 -- Output error message when no valid interpretation exists
876 ---------------------------------
877 -- Check_Ghost_Subprogram_Call --
878 ---------------------------------
880 procedure Check_Ghost_Subprogram_Call
is
884 -- Do not perform the check while preanalyzing the enclosing context
885 -- because the call is not in its final place. Premature attempts to
886 -- verify the placement lead to bogus errors.
888 if In_Spec_Expression
then
891 -- The ghost subprogram appears inside an assertion expression
892 -- which is one of the allowed cases.
894 elsif In_Assertion_Expression
(N
) then
897 -- Otherwise see if it inside another ghost subprogram
900 -- Loop to climb scopes
903 while Present
(S
) and then S
/= Standard_Standard
loop
905 -- The call appears inside another ghost subprogram
907 if Is_Ghost_Subprogram
(S
) then
914 -- If we fall through the loop it was not within another
915 -- ghost subprogram, so we have bad placement.
918 ("call to ghost subprogram must appear in assertion expression "
919 & "or another ghost subprogram", N
);
921 end Check_Ghost_Subprogram_Call
;
923 --------------------------------------------------
924 -- Check_Mixed_Parameter_And_Named_Associations --
925 --------------------------------------------------
927 procedure Check_Mixed_Parameter_And_Named_Associations
is
929 Named_Seen
: Boolean;
934 Actual
:= First
(Actuals
);
935 while Present
(Actual
) loop
936 case Nkind
(Actual
) is
937 when N_Parameter_Association
=>
939 Check_SPARK_Restriction
940 ("named association cannot follow positional one",
950 end Check_Mixed_Parameter_And_Named_Associations
;
952 ---------------------------
953 -- Name_Denotes_Function --
954 ---------------------------
956 function Name_Denotes_Function
return Boolean is
958 if Is_Entity_Name
(Nam
) then
959 return Ekind
(Entity
(Nam
)) = E_Function
;
961 elsif Nkind
(Nam
) = N_Selected_Component
then
962 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
967 end Name_Denotes_Function
;
969 -----------------------
970 -- No_Interpretation --
971 -----------------------
973 procedure No_Interpretation
is
974 L
: constant Boolean := Is_List_Member
(N
);
975 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
978 -- If the node is in a list whose parent is not an expression then it
979 -- must be an attempted procedure call.
981 if L
and then K
not in N_Subexpr
then
982 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
984 ("must instantiate generic procedure& before call",
988 ("procedure or entry name expected", Nam
);
991 -- Check for tasking cases where only an entry call will do
994 and then Nkind_In
(K
, N_Entry_Call_Alternative
,
995 N_Triggering_Alternative
)
997 Error_Msg_N
("entry name expected", Nam
);
999 -- Otherwise give general error message
1002 Error_Msg_N
("invalid prefix in call", Nam
);
1004 end No_Interpretation
;
1006 -- Start of processing for Analyze_Call
1009 if Restriction_Check_Required
(SPARK_05
) then
1010 Check_Mixed_Parameter_And_Named_Associations
;
1013 -- Mark a function that appears inside an assertion expression
1015 if Nkind
(N
) = N_Function_Call
and then In_Assertion_Expr
> 0 then
1016 Set_In_Assertion_Expression
(N
);
1019 -- Initialize the type of the result of the call to the error type,
1020 -- which will be reset if the type is successfully resolved.
1022 Set_Etype
(N
, Any_Type
);
1026 if not Is_Overloaded
(Nam
) then
1028 -- Only one interpretation to check
1030 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
1031 Nam_Ent
:= Etype
(Nam
);
1033 -- If the prefix is an access_to_subprogram, this may be an indirect
1034 -- call. This is the case if the name in the call is not an entity
1035 -- name, or if it is a function name in the context of a procedure
1036 -- call. In this latter case, we have a call to a parameterless
1037 -- function that returns a pointer_to_procedure which is the entity
1038 -- being called. Finally, F (X) may be a call to a parameterless
1039 -- function that returns a pointer to a function with parameters.
1040 -- Note that if F returns an access-to-subprogram whose designated
1041 -- type is an array, F (X) cannot be interpreted as an indirect call
1042 -- through the result of the call to F.
1044 elsif Is_Access_Type
(Etype
(Nam
))
1045 and then Ekind
(Designated_Type
(Etype
(Nam
))) = E_Subprogram_Type
1047 (not Name_Denotes_Function
1048 or else Nkind
(N
) = N_Procedure_Call_Statement
1050 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1051 and then Is_Entity_Name
(Nam
)
1052 and then No
(First_Formal
(Entity
(Nam
)))
1054 Is_Array_Type
(Etype
(Designated_Type
(Etype
(Nam
))))
1055 and then Present
(Actuals
)))
1057 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
1058 Insert_Explicit_Dereference
(Nam
);
1060 -- Selected component case. Simple entry or protected operation,
1061 -- where the entry name is given by the selector name.
1063 elsif Nkind
(Nam
) = N_Selected_Component
then
1064 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
1066 if not Ekind_In
(Nam_Ent
, E_Entry
,
1071 Error_Msg_N
("name in call is not a callable entity", Nam
);
1072 Set_Etype
(N
, Any_Type
);
1076 -- If the name is an Indexed component, it can be a call to a member
1077 -- of an entry family. The prefix must be a selected component whose
1078 -- selector is the entry. Analyze_Procedure_Call normalizes several
1079 -- kinds of call into this form.
1081 elsif Nkind
(Nam
) = N_Indexed_Component
then
1082 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
1083 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
1085 Error_Msg_N
("name in call is not a callable entity", Nam
);
1086 Set_Etype
(N
, Any_Type
);
1090 elsif not Is_Entity_Name
(Nam
) then
1091 Error_Msg_N
("name in call is not a callable entity", Nam
);
1092 Set_Etype
(N
, Any_Type
);
1096 Nam_Ent
:= Entity
(Nam
);
1098 -- If no interpretations, give error message
1100 if not Is_Overloadable
(Nam_Ent
) then
1106 -- Operations generated for RACW stub types are called only through
1107 -- dispatching, and can never be the static interpretation of a call.
1109 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
1114 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
1116 -- If this is an indirect call, the return type of the access_to
1117 -- subprogram may be an incomplete type. At the point of the call,
1118 -- use the full type if available, and at the same time update the
1119 -- return type of the access_to_subprogram.
1122 and then Nkind
(Nam
) = N_Explicit_Dereference
1123 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
1124 and then Present
(Full_View
(Etype
(N
)))
1126 Set_Etype
(N
, Full_View
(Etype
(N
)));
1127 Set_Etype
(Nam_Ent
, Etype
(N
));
1133 -- An overloaded selected component must denote overloaded operations
1134 -- of a concurrent type. The interpretations are attached to the
1135 -- simple name of those operations.
1137 if Nkind
(Nam
) = N_Selected_Component
then
1138 Nam
:= Selector_Name
(Nam
);
1141 Get_First_Interp
(Nam
, X
, It
);
1143 while Present
(It
.Nam
) loop
1147 -- Name may be call that returns an access to subprogram, or more
1148 -- generally an overloaded expression one of whose interpretations
1149 -- yields an access to subprogram. If the name is an entity, we do
1150 -- not dereference, because the node is a call that returns the
1151 -- access type: note difference between f(x), where the call may
1152 -- return an access subprogram type, and f(x)(y), where the type
1153 -- returned by the call to f is implicitly dereferenced to analyze
1156 if Is_Access_Type
(Nam_Ent
) then
1157 Nam_Ent
:= Designated_Type
(Nam_Ent
);
1159 elsif Is_Access_Type
(Etype
(Nam_Ent
))
1161 (not Is_Entity_Name
(Nam
)
1162 or else Nkind
(N
) = N_Procedure_Call_Statement
)
1163 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
1166 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
1168 if Is_Entity_Name
(Nam
) then
1173 -- If the call has been rewritten from a prefixed call, the first
1174 -- parameter has been analyzed, but may need a subsequent
1175 -- dereference, so skip its analysis now.
1177 if N
/= Original_Node
(N
)
1178 and then Nkind
(Original_Node
(N
)) = Nkind
(N
)
1179 and then Nkind
(Name
(N
)) /= Nkind
(Name
(Original_Node
(N
)))
1180 and then Present
(Parameter_Associations
(N
))
1181 and then Present
(Etype
(First
(Parameter_Associations
(N
))))
1184 (N
, Nam_Ent
, False, Success
, Skip_First
=> True);
1186 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
1189 -- If the interpretation succeeds, mark the proper type of the
1190 -- prefix (any valid candidate will do). If not, remove the
1191 -- candidate interpretation. This only needs to be done for
1192 -- overloaded protected operations, for other entities disambi-
1193 -- guation is done directly in Resolve.
1197 and then Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1199 Set_Entity
(Nam
, It
.Nam
);
1200 Insert_Explicit_Dereference
(Nam
);
1201 Set_Etype
(Nam
, Nam_Ent
);
1204 Set_Etype
(Nam
, It
.Typ
);
1207 elsif Nkind_In
(Name
(N
), N_Selected_Component
,
1213 Get_Next_Interp
(X
, It
);
1216 -- If the name is the result of a function call, it can only be a
1217 -- call to a function returning an access to subprogram. Insert
1218 -- explicit dereference.
1220 if Nkind
(Nam
) = N_Function_Call
then
1221 Insert_Explicit_Dereference
(Nam
);
1224 if Etype
(N
) = Any_Type
then
1226 -- None of the interpretations is compatible with the actuals
1228 Diagnose_Call
(N
, Nam
);
1230 -- Special checks for uninstantiated put routines
1232 if Nkind
(N
) = N_Procedure_Call_Statement
1233 and then Is_Entity_Name
(Nam
)
1234 and then Chars
(Nam
) = Name_Put
1235 and then List_Length
(Actuals
) = 1
1238 Arg
: constant Node_Id
:= First
(Actuals
);
1242 if Nkind
(Arg
) = N_Parameter_Association
then
1243 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
1248 if Is_Signed_Integer_Type
(Typ
) then
1250 ("possible missing instantiation of " &
1251 "'Text_'I'O.'Integer_'I'O!", Nam
);
1253 elsif Is_Modular_Integer_Type
(Typ
) then
1255 ("possible missing instantiation of " &
1256 "'Text_'I'O.'Modular_'I'O!", Nam
);
1258 elsif Is_Floating_Point_Type
(Typ
) then
1260 ("possible missing instantiation of " &
1261 "'Text_'I'O.'Float_'I'O!", Nam
);
1263 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
1265 ("possible missing instantiation of " &
1266 "'Text_'I'O.'Fixed_'I'O!", Nam
);
1268 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
1270 ("possible missing instantiation of " &
1271 "'Text_'I'O.'Decimal_'I'O!", Nam
);
1273 elsif Is_Enumeration_Type
(Typ
) then
1275 ("possible missing instantiation of " &
1276 "'Text_'I'O.'Enumeration_'I'O!", Nam
);
1281 elsif not Is_Overloaded
(N
)
1282 and then Is_Entity_Name
(Nam
)
1284 -- Resolution yields a single interpretation. Verify that the
1285 -- reference has capitalization consistent with the declaration.
1287 Set_Entity_With_Style_Check
(Nam
, Entity
(Nam
));
1288 Generate_Reference
(Entity
(Nam
), Nam
);
1290 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
1292 Remove_Abstract_Operations
(N
);
1298 -- A call to a ghost subprogram is allowed only in assertion expressions
1299 -- excluding subtype predicates or from within another ghost subprogram.
1301 if Is_Ghost_Subprogram
(Get_Subprogram_Entity
(N
)) then
1302 Check_Ghost_Subprogram_Call
;
1306 -----------------------------
1307 -- Analyze_Case_Expression --
1308 -----------------------------
1310 procedure Analyze_Case_Expression
(N
: Node_Id
) is
1311 function Has_Static_Predicate
(Subtyp
: Entity_Id
) return Boolean;
1312 -- Determine whether subtype Subtyp has aspect Static_Predicate
1314 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1315 -- Error routine invoked by the generic instantiation below when
1316 -- the case expression has a non static choice.
1318 package Case_Choices_Analysis
is new
1319 Generic_Analyze_Choices
1320 (Process_Associated_Node
=> No_OP
);
1321 use Case_Choices_Analysis
;
1323 package Case_Choices_Checking
is new
1324 Generic_Check_Choices
1325 (Process_Empty_Choice
=> No_OP
,
1326 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1327 Process_Associated_Node
=> No_OP
);
1328 use Case_Choices_Checking
;
1330 --------------------------
1331 -- Has_Static_Predicate --
1332 --------------------------
1334 function Has_Static_Predicate
(Subtyp
: Entity_Id
) return Boolean is
1338 Item
:= First_Rep_Item
(Subtyp
);
1339 while Present
(Item
) loop
1340 if Nkind
(Item
) = N_Aspect_Specification
1341 and then Chars
(Identifier
(Item
)) = Name_Static_Predicate
1346 Next_Rep_Item
(Item
);
1350 end Has_Static_Predicate
;
1352 -----------------------------
1353 -- Non_Static_Choice_Error --
1354 -----------------------------
1356 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1358 Flag_Non_Static_Expr
1359 ("choice given in case expression is not static!", Choice
);
1360 end Non_Static_Choice_Error
;
1364 Expr
: constant Node_Id
:= Expression
(N
);
1365 FirstX
: constant Node_Id
:= Expression
(First
(Alternatives
(N
)));
1367 Exp_Type
: Entity_Id
;
1368 Exp_Btype
: Entity_Id
;
1370 Others_Present
: Boolean;
1371 -- Indicates if Others was present
1373 -- Start of processing for Analyze_Case_Expression
1376 if Comes_From_Source
(N
) then
1377 Check_Compiler_Unit
(N
);
1380 Analyze_And_Resolve
(Expr
, Any_Discrete
);
1381 Check_Unset_Reference
(Expr
);
1382 Exp_Type
:= Etype
(Expr
);
1383 Exp_Btype
:= Base_Type
(Exp_Type
);
1385 Alt
:= First
(Alternatives
(N
));
1386 while Present
(Alt
) loop
1387 Analyze
(Expression
(Alt
));
1391 if not Is_Overloaded
(FirstX
) then
1392 Set_Etype
(N
, Etype
(FirstX
));
1400 Set_Etype
(N
, Any_Type
);
1402 Get_First_Interp
(FirstX
, I
, It
);
1403 while Present
(It
.Nam
) loop
1405 -- For each interpretation of the first expression, we only
1406 -- add the interpretation if every other expression in the
1407 -- case expression alternatives has a compatible type.
1409 Alt
:= Next
(First
(Alternatives
(N
)));
1410 while Present
(Alt
) loop
1411 exit when not Has_Compatible_Type
(Expression
(Alt
), It
.Typ
);
1416 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1419 Get_Next_Interp
(I
, It
);
1424 Exp_Btype
:= Base_Type
(Exp_Type
);
1426 -- The expression must be of a discrete type which must be determinable
1427 -- independently of the context in which the expression occurs, but
1428 -- using the fact that the expression must be of a discrete type.
1429 -- Moreover, the type this expression must not be a character literal
1430 -- (which is always ambiguous).
1432 -- If error already reported by Resolve, nothing more to do
1434 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1437 elsif Exp_Btype
= Any_Character
then
1439 ("character literal as case expression is ambiguous", Expr
);
1443 -- If the case expression is a formal object of mode in out, then
1444 -- treat it as having a nonstatic subtype by forcing use of the base
1445 -- type (which has to get passed to Check_Case_Choices below). Also
1446 -- use base type when the case expression is parenthesized.
1448 if Paren_Count
(Expr
) > 0
1449 or else (Is_Entity_Name
(Expr
)
1450 and then Ekind
(Entity
(Expr
)) = E_Generic_In_Out_Parameter
)
1452 Exp_Type
:= Exp_Btype
;
1455 -- The case expression alternatives cover the range of a static subtype
1456 -- subject to aspect Static_Predicate. Do not check the choices when the
1457 -- case expression has not been fully analyzed yet because this may lead
1460 if Is_Static_Subtype
(Exp_Type
)
1461 and then Has_Static_Predicate
(Exp_Type
)
1462 and then In_Spec_Expression
1466 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1469 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1470 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1473 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1475 ("case on universal integer requires OTHERS choice", Expr
);
1477 end Analyze_Case_Expression
;
1479 ---------------------------
1480 -- Analyze_Comparison_Op --
1481 ---------------------------
1483 procedure Analyze_Comparison_Op
(N
: Node_Id
) is
1484 L
: constant Node_Id
:= Left_Opnd
(N
);
1485 R
: constant Node_Id
:= Right_Opnd
(N
);
1486 Op_Id
: Entity_Id
:= Entity
(N
);
1489 Set_Etype
(N
, Any_Type
);
1490 Candidate_Type
:= Empty
;
1492 Analyze_Expression
(L
);
1493 Analyze_Expression
(R
);
1495 if Present
(Op_Id
) then
1496 if Ekind
(Op_Id
) = E_Operator
then
1497 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1499 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1502 if Is_Overloaded
(L
) then
1503 Set_Etype
(L
, Intersect_Types
(L
, R
));
1507 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1508 while Present
(Op_Id
) loop
1509 if Ekind
(Op_Id
) = E_Operator
then
1510 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1512 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1515 Op_Id
:= Homonym
(Op_Id
);
1520 end Analyze_Comparison_Op
;
1522 ---------------------------
1523 -- Analyze_Concatenation --
1524 ---------------------------
1526 procedure Analyze_Concatenation
(N
: Node_Id
) is
1528 -- We wish to avoid deep recursion, because concatenations are often
1529 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1530 -- operands nonrecursively until we find something that is not a
1531 -- concatenation (A in this case), or has already been analyzed. We
1532 -- analyze that, and then walk back up the tree following Parent
1533 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1534 -- work at each level. The Parent pointers allow us to avoid recursion,
1535 -- and thus avoid running out of memory.
1541 Candidate_Type
:= Empty
;
1543 -- The following code is equivalent to:
1545 -- Set_Etype (N, Any_Type);
1546 -- Analyze_Expression (Left_Opnd (N));
1547 -- Analyze_Concatenation_Rest (N);
1549 -- where the Analyze_Expression call recurses back here if the left
1550 -- operand is a concatenation.
1552 -- Walk down left operands
1555 Set_Etype
(NN
, Any_Type
);
1556 L
:= Left_Opnd
(NN
);
1557 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1561 -- Now (given the above example) NN is A&B and L is A
1563 -- First analyze L ...
1565 Analyze_Expression
(L
);
1567 -- ... then walk NN back up until we reach N (where we started), calling
1568 -- Analyze_Concatenation_Rest along the way.
1571 Analyze_Concatenation_Rest
(NN
);
1575 end Analyze_Concatenation
;
1577 --------------------------------
1578 -- Analyze_Concatenation_Rest --
1579 --------------------------------
1581 -- If the only one-dimensional array type in scope is String,
1582 -- this is the resulting type of the operation. Otherwise there
1583 -- will be a concatenation operation defined for each user-defined
1584 -- one-dimensional array.
1586 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1587 L
: constant Node_Id
:= Left_Opnd
(N
);
1588 R
: constant Node_Id
:= Right_Opnd
(N
);
1589 Op_Id
: Entity_Id
:= Entity
(N
);
1594 Analyze_Expression
(R
);
1596 -- If the entity is present, the node appears in an instance, and
1597 -- denotes a predefined concatenation operation. The resulting type is
1598 -- obtained from the arguments when possible. If the arguments are
1599 -- aggregates, the array type and the concatenation type must be
1602 if Present
(Op_Id
) then
1603 if Ekind
(Op_Id
) = E_Operator
then
1604 LT
:= Base_Type
(Etype
(L
));
1605 RT
:= Base_Type
(Etype
(R
));
1607 if Is_Array_Type
(LT
)
1608 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1610 Add_One_Interp
(N
, Op_Id
, LT
);
1612 elsif Is_Array_Type
(RT
)
1613 and then LT
= Base_Type
(Component_Type
(RT
))
1615 Add_One_Interp
(N
, Op_Id
, RT
);
1617 -- If one operand is a string type or a user-defined array type,
1618 -- and the other is a literal, result is of the specific type.
1621 (Root_Type
(LT
) = Standard_String
1622 or else Scope
(LT
) /= Standard_Standard
)
1623 and then Etype
(R
) = Any_String
1625 Add_One_Interp
(N
, Op_Id
, LT
);
1628 (Root_Type
(RT
) = Standard_String
1629 or else Scope
(RT
) /= Standard_Standard
)
1630 and then Etype
(L
) = Any_String
1632 Add_One_Interp
(N
, Op_Id
, RT
);
1634 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1635 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1638 -- Type and its operations must be visible
1640 Set_Entity
(N
, Empty
);
1641 Analyze_Concatenation
(N
);
1645 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1649 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
1650 while Present
(Op_Id
) loop
1651 if Ekind
(Op_Id
) = E_Operator
then
1653 -- Do not consider operators declared in dead code, they can
1654 -- not be part of the resolution.
1656 if Is_Eliminated
(Op_Id
) then
1659 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
1663 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1666 Op_Id
:= Homonym
(Op_Id
);
1671 end Analyze_Concatenation_Rest
;
1673 -------------------------
1674 -- Analyze_Equality_Op --
1675 -------------------------
1677 procedure Analyze_Equality_Op
(N
: Node_Id
) is
1678 Loc
: constant Source_Ptr
:= Sloc
(N
);
1679 L
: constant Node_Id
:= Left_Opnd
(N
);
1680 R
: constant Node_Id
:= Right_Opnd
(N
);
1684 Set_Etype
(N
, Any_Type
);
1685 Candidate_Type
:= Empty
;
1687 Analyze_Expression
(L
);
1688 Analyze_Expression
(R
);
1690 -- If the entity is set, the node is a generic instance with a non-local
1691 -- reference to the predefined operator or to a user-defined function.
1692 -- It can also be an inequality that is expanded into the negation of a
1693 -- call to a user-defined equality operator.
1695 -- For the predefined case, the result is Boolean, regardless of the
1696 -- type of the operands. The operands may even be limited, if they are
1697 -- generic actuals. If they are overloaded, label the left argument with
1698 -- the common type that must be present, or with the type of the formal
1699 -- of the user-defined function.
1701 if Present
(Entity
(N
)) then
1702 Op_Id
:= Entity
(N
);
1704 if Ekind
(Op_Id
) = E_Operator
then
1705 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
1707 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1710 if Is_Overloaded
(L
) then
1711 if Ekind
(Op_Id
) = E_Operator
then
1712 Set_Etype
(L
, Intersect_Types
(L
, R
));
1714 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
1719 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1720 while Present
(Op_Id
) loop
1721 if Ekind
(Op_Id
) = E_Operator
then
1722 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1724 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1727 Op_Id
:= Homonym
(Op_Id
);
1731 -- If there was no match, and the operator is inequality, this may
1732 -- be a case where inequality has not been made explicit, as for
1733 -- tagged types. Analyze the node as the negation of an equality
1734 -- operation. This cannot be done earlier, because before analysis
1735 -- we cannot rule out the presence of an explicit inequality.
1737 if Etype
(N
) = Any_Type
1738 and then Nkind
(N
) = N_Op_Ne
1740 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
1741 while Present
(Op_Id
) loop
1742 if Ekind
(Op_Id
) = E_Operator
then
1743 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1745 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1748 Op_Id
:= Homonym
(Op_Id
);
1751 if Etype
(N
) /= Any_Type
then
1752 Op_Id
:= Entity
(N
);
1758 Left_Opnd
=> Left_Opnd
(N
),
1759 Right_Opnd
=> Right_Opnd
(N
))));
1761 Set_Entity
(Right_Opnd
(N
), Op_Id
);
1767 end Analyze_Equality_Op
;
1769 ----------------------------------
1770 -- Analyze_Explicit_Dereference --
1771 ----------------------------------
1773 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
1774 Loc
: constant Source_Ptr
:= Sloc
(N
);
1775 P
: constant Node_Id
:= Prefix
(N
);
1781 function Is_Function_Type
return Boolean;
1782 -- Check whether node may be interpreted as an implicit function call
1784 ----------------------
1785 -- Is_Function_Type --
1786 ----------------------
1788 function Is_Function_Type
return Boolean is
1793 if not Is_Overloaded
(N
) then
1794 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
1795 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
1798 Get_First_Interp
(N
, I
, It
);
1799 while Present
(It
.Nam
) loop
1800 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
1801 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
1806 Get_Next_Interp
(I
, It
);
1811 end Is_Function_Type
;
1813 -- Start of processing for Analyze_Explicit_Dereference
1816 -- If source node, check SPARK restriction. We guard this with the
1817 -- source node check, because ???
1819 if Comes_From_Source
(N
) then
1820 Check_SPARK_Restriction
("explicit dereference is not allowed", N
);
1823 -- In formal verification mode, keep track of all reads and writes
1824 -- through explicit dereferences.
1827 SPARK_Specific
.Generate_Dereference
(N
);
1831 Set_Etype
(N
, Any_Type
);
1833 -- Test for remote access to subprogram type, and if so return
1834 -- after rewriting the original tree.
1836 if Remote_AST_E_Dereference
(P
) then
1840 -- Normal processing for other than remote access to subprogram type
1842 if not Is_Overloaded
(P
) then
1843 if Is_Access_Type
(Etype
(P
)) then
1845 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1846 -- avoid other problems caused by the Private_Subtype and it is
1847 -- safe to go to the Base_Type because this is the same as
1848 -- converting the access value to its Base_Type.
1851 DT
: Entity_Id
:= Designated_Type
(Etype
(P
));
1854 if Ekind
(DT
) = E_Private_Subtype
1855 and then Is_For_Access_Subtype
(DT
)
1857 DT
:= Base_Type
(DT
);
1860 -- An explicit dereference is a legal occurrence of an
1861 -- incomplete type imported through a limited_with clause,
1862 -- if the full view is visible.
1864 if From_Limited_With
(DT
)
1865 and then not From_Limited_With
(Scope
(DT
))
1867 (Is_Immediately_Visible
(Scope
(DT
))
1869 (Is_Child_Unit
(Scope
(DT
))
1870 and then Is_Visible_Lib_Unit
(Scope
(DT
))))
1872 Set_Etype
(N
, Available_View
(DT
));
1879 elsif Etype
(P
) /= Any_Type
then
1880 Error_Msg_N
("prefix of dereference must be an access type", N
);
1885 Get_First_Interp
(P
, I
, It
);
1886 while Present
(It
.Nam
) loop
1889 if Is_Access_Type
(T
) then
1890 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
1893 Get_Next_Interp
(I
, It
);
1896 -- Error if no interpretation of the prefix has an access type
1898 if Etype
(N
) = Any_Type
then
1900 ("access type required in prefix of explicit dereference", P
);
1901 Set_Etype
(N
, Any_Type
);
1907 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
1909 and then (Nkind
(Parent
(N
)) /= N_Function_Call
1910 or else N
/= Name
(Parent
(N
)))
1912 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1913 or else N
/= Name
(Parent
(N
)))
1915 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
1916 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
1918 (Attribute_Name
(Parent
(N
)) /= Name_Address
1920 Attribute_Name
(Parent
(N
)) /= Name_Access
))
1922 -- Name is a function call with no actuals, in a context that
1923 -- requires deproceduring (including as an actual in an enclosing
1924 -- function or procedure call). There are some pathological cases
1925 -- where the prefix might include functions that return access to
1926 -- subprograms and others that return a regular type. Disambiguation
1927 -- of those has to take place in Resolve.
1930 Make_Function_Call
(Loc
,
1931 Name
=> Make_Explicit_Dereference
(Loc
, P
),
1932 Parameter_Associations
=> New_List
);
1934 -- If the prefix is overloaded, remove operations that have formals,
1935 -- we know that this is a parameterless call.
1937 if Is_Overloaded
(P
) then
1938 Get_First_Interp
(P
, I
, It
);
1939 while Present
(It
.Nam
) loop
1942 if No
(First_Formal
(Base_Type
(Designated_Type
(T
)))) then
1948 Get_Next_Interp
(I
, It
);
1955 elsif not Is_Function_Type
1956 and then Is_Overloaded
(N
)
1958 -- The prefix may include access to subprograms and other access
1959 -- types. If the context selects the interpretation that is a
1960 -- function call (not a procedure call) we cannot rewrite the node
1961 -- yet, but we include the result of the call interpretation.
1963 Get_First_Interp
(N
, I
, It
);
1964 while Present
(It
.Nam
) loop
1965 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
1966 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
1967 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1969 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
1972 Get_Next_Interp
(I
, It
);
1976 -- A value of remote access-to-class-wide must not be dereferenced
1979 Validate_Remote_Access_To_Class_Wide_Type
(N
);
1980 end Analyze_Explicit_Dereference
;
1982 ------------------------
1983 -- Analyze_Expression --
1984 ------------------------
1986 procedure Analyze_Expression
(N
: Node_Id
) is
1989 Check_Parameterless_Call
(N
);
1990 end Analyze_Expression
;
1992 -------------------------------------
1993 -- Analyze_Expression_With_Actions --
1994 -------------------------------------
1996 procedure Analyze_Expression_With_Actions
(N
: Node_Id
) is
2000 A
:= First
(Actions
(N
));
2001 while Present
(A
) loop
2006 -- We currently hijack Expression_With_Actions with a VOID type and
2007 -- a NULL statement in the Expression. This will ultimately be replaced
2008 -- by a proper separate N_Compound_Statement node, at which point the
2009 -- test below can go away???
2011 if Nkind
(Expression
(N
)) = N_Null_Statement
then
2012 Set_Etype
(N
, Standard_Void_Type
);
2014 Analyze_Expression
(Expression
(N
));
2015 Set_Etype
(N
, Etype
(Expression
(N
)));
2017 end Analyze_Expression_With_Actions
;
2019 ---------------------------
2020 -- Analyze_If_Expression --
2021 ---------------------------
2023 procedure Analyze_If_Expression
(N
: Node_Id
) is
2024 Condition
: constant Node_Id
:= First
(Expressions
(N
));
2025 Then_Expr
: constant Node_Id
:= Next
(Condition
);
2026 Else_Expr
: Node_Id
;
2029 -- Defend against error of missing expressions from previous error
2031 if No
(Then_Expr
) then
2032 Check_Error_Detected
;
2036 if Comes_From_Source
(N
) then
2037 Check_SPARK_Restriction
("if expression is not allowed", N
);
2040 Else_Expr
:= Next
(Then_Expr
);
2042 if Comes_From_Source
(N
) then
2043 Check_Compiler_Unit
(N
);
2046 Analyze_Expression
(Condition
);
2047 Analyze_Expression
(Then_Expr
);
2049 if Present
(Else_Expr
) then
2050 Analyze_Expression
(Else_Expr
);
2053 -- If then expression not overloaded, then that decides the type
2055 if not Is_Overloaded
(Then_Expr
) then
2056 Set_Etype
(N
, Etype
(Then_Expr
));
2058 -- Case where then expression is overloaded
2066 Set_Etype
(N
, Any_Type
);
2068 -- Shouldn't the following statement be down in the ELSE of the
2069 -- following loop? ???
2071 Get_First_Interp
(Then_Expr
, I
, It
);
2073 -- if no Else_Expression the conditional must be boolean
2075 if No
(Else_Expr
) then
2076 Set_Etype
(N
, Standard_Boolean
);
2078 -- Else_Expression Present. For each possible intepretation of
2079 -- the Then_Expression, add it only if the Else_Expression has
2080 -- a compatible type.
2083 while Present
(It
.Nam
) loop
2084 if Has_Compatible_Type
(Else_Expr
, It
.Typ
) then
2085 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
2088 Get_Next_Interp
(I
, It
);
2093 end Analyze_If_Expression
;
2095 ------------------------------------
2096 -- Analyze_Indexed_Component_Form --
2097 ------------------------------------
2099 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
2100 P
: constant Node_Id
:= Prefix
(N
);
2101 Exprs
: constant List_Id
:= Expressions
(N
);
2107 procedure Process_Function_Call
;
2108 -- Prefix in indexed component form is an overloadable entity,
2109 -- so the node is a function call. Reformat it as such.
2111 procedure Process_Indexed_Component
;
2112 -- Prefix in indexed component form is actually an indexed component.
2113 -- This routine processes it, knowing that the prefix is already
2116 procedure Process_Indexed_Component_Or_Slice
;
2117 -- An indexed component with a single index may designate a slice if
2118 -- the index is a subtype mark. This routine disambiguates these two
2119 -- cases by resolving the prefix to see if it is a subtype mark.
2121 procedure Process_Overloaded_Indexed_Component
;
2122 -- If the prefix of an indexed component is overloaded, the proper
2123 -- interpretation is selected by the index types and the context.
2125 ---------------------------
2126 -- Process_Function_Call --
2127 ---------------------------
2129 procedure Process_Function_Call
is
2133 Change_Node
(N
, N_Function_Call
);
2135 Set_Parameter_Associations
(N
, Exprs
);
2137 -- Analyze actuals prior to analyzing the call itself
2139 Actual
:= First
(Parameter_Associations
(N
));
2140 while Present
(Actual
) loop
2142 Check_Parameterless_Call
(Actual
);
2144 -- Move to next actual. Note that we use Next, not Next_Actual
2145 -- here. The reason for this is a bit subtle. If a function call
2146 -- includes named associations, the parser recognizes the node as
2147 -- a call, and it is analyzed as such. If all associations are
2148 -- positional, the parser builds an indexed_component node, and
2149 -- it is only after analysis of the prefix that the construct
2150 -- is recognized as a call, in which case Process_Function_Call
2151 -- rewrites the node and analyzes the actuals. If the list of
2152 -- actuals is malformed, the parser may leave the node as an
2153 -- indexed component (despite the presence of named associations).
2154 -- The iterator Next_Actual is equivalent to Next if the list is
2155 -- positional, but follows the normalized chain of actuals when
2156 -- named associations are present. In this case normalization has
2157 -- not taken place, and actuals remain unanalyzed, which leads to
2158 -- subsequent crashes or loops if there is an attempt to continue
2159 -- analysis of the program.
2165 end Process_Function_Call
;
2167 -------------------------------
2168 -- Process_Indexed_Component --
2169 -------------------------------
2171 procedure Process_Indexed_Component
is
2173 Array_Type
: Entity_Id
;
2175 Pent
: Entity_Id
:= Empty
;
2178 Exp
:= First
(Exprs
);
2180 if Is_Overloaded
(P
) then
2181 Process_Overloaded_Indexed_Component
;
2184 Array_Type
:= Etype
(P
);
2186 if Is_Entity_Name
(P
) then
2188 elsif Nkind
(P
) = N_Selected_Component
2189 and then Is_Entity_Name
(Selector_Name
(P
))
2191 Pent
:= Entity
(Selector_Name
(P
));
2194 -- Prefix must be appropriate for an array type, taking into
2195 -- account a possible implicit dereference.
2197 if Is_Access_Type
(Array_Type
) then
2199 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2200 Array_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, P
);
2203 if Is_Array_Type
(Array_Type
) then
2206 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
2208 Set_Etype
(N
, Any_Type
);
2210 if not Has_Compatible_Type
2211 (Exp
, Entry_Index_Type
(Pent
))
2213 Error_Msg_N
("invalid index type in entry name", N
);
2215 elsif Present
(Next
(Exp
)) then
2216 Error_Msg_N
("too many subscripts in entry reference", N
);
2219 Set_Etype
(N
, Etype
(P
));
2224 elsif Is_Record_Type
(Array_Type
)
2225 and then Remote_AST_I_Dereference
(P
)
2229 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2232 elsif Array_Type
= Any_Type
then
2233 Set_Etype
(N
, Any_Type
);
2235 -- In most cases the analysis of the prefix will have emitted
2236 -- an error already, but if the prefix may be interpreted as a
2237 -- call in prefixed notation, the report is left to the caller.
2238 -- To prevent cascaded errors, report only if no previous ones.
2240 if Serious_Errors_Detected
= 0 then
2241 Error_Msg_N
("invalid prefix in indexed component", P
);
2243 if Nkind
(P
) = N_Expanded_Name
then
2244 Error_Msg_NE
("\& is not visible", P
, Selector_Name
(P
));
2250 -- Here we definitely have a bad indexing
2253 if Nkind
(Parent
(N
)) = N_Requeue_Statement
2254 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
2257 ("REQUEUE does not permit parameters", First
(Exprs
));
2259 elsif Is_Entity_Name
(P
)
2260 and then Etype
(P
) = Standard_Void_Type
2262 Error_Msg_NE
("incorrect use of&", P
, Entity
(P
));
2265 Error_Msg_N
("array type required in indexed component", P
);
2268 Set_Etype
(N
, Any_Type
);
2272 Index
:= First_Index
(Array_Type
);
2273 while Present
(Index
) and then Present
(Exp
) loop
2274 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2275 Wrong_Type
(Exp
, Etype
(Index
));
2276 Set_Etype
(N
, Any_Type
);
2284 Set_Etype
(N
, Component_Type
(Array_Type
));
2285 Check_Implicit_Dereference
(N
, Etype
(N
));
2287 if Present
(Index
) then
2289 ("too few subscripts in array reference", First
(Exprs
));
2291 elsif Present
(Exp
) then
2292 Error_Msg_N
("too many subscripts in array reference", Exp
);
2295 end Process_Indexed_Component
;
2297 ----------------------------------------
2298 -- Process_Indexed_Component_Or_Slice --
2299 ----------------------------------------
2301 procedure Process_Indexed_Component_Or_Slice
is
2303 Exp
:= First
(Exprs
);
2304 while Present
(Exp
) loop
2305 Analyze_Expression
(Exp
);
2309 Exp
:= First
(Exprs
);
2311 -- If one index is present, and it is a subtype name, then the
2312 -- node denotes a slice (note that the case of an explicit range
2313 -- for a slice was already built as an N_Slice node in the first
2314 -- place, so that case is not handled here).
2316 -- We use a replace rather than a rewrite here because this is one
2317 -- of the cases in which the tree built by the parser is plain wrong.
2320 and then Is_Entity_Name
(Exp
)
2321 and then Is_Type
(Entity
(Exp
))
2324 Make_Slice
(Sloc
(N
),
2326 Discrete_Range
=> New_Copy
(Exp
)));
2329 -- Otherwise (more than one index present, or single index is not
2330 -- a subtype name), then we have the indexed component case.
2333 Process_Indexed_Component
;
2335 end Process_Indexed_Component_Or_Slice
;
2337 ------------------------------------------
2338 -- Process_Overloaded_Indexed_Component --
2339 ------------------------------------------
2341 procedure Process_Overloaded_Indexed_Component
is
2350 Set_Etype
(N
, Any_Type
);
2352 Get_First_Interp
(P
, I
, It
);
2353 while Present
(It
.Nam
) loop
2356 if Is_Access_Type
(Typ
) then
2357 Typ
:= Designated_Type
(Typ
);
2359 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2362 if Is_Array_Type
(Typ
) then
2364 -- Got a candidate: verify that index types are compatible
2366 Index
:= First_Index
(Typ
);
2368 Exp
:= First
(Exprs
);
2369 while Present
(Index
) and then Present
(Exp
) loop
2370 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2382 if Found
and then No
(Index
) and then No
(Exp
) then
2384 CT
: constant Entity_Id
:=
2385 Base_Type
(Component_Type
(Typ
));
2387 Add_One_Interp
(N
, CT
, CT
);
2388 Check_Implicit_Dereference
(N
, CT
);
2392 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2397 Get_Next_Interp
(I
, It
);
2400 if Etype
(N
) = Any_Type
then
2401 Error_Msg_N
("no legal interpretation for indexed component", N
);
2402 Set_Is_Overloaded
(N
, False);
2406 end Process_Overloaded_Indexed_Component
;
2408 -- Start of processing for Analyze_Indexed_Component_Form
2411 -- Get name of array, function or type
2415 -- If P is an explicit dereference whose prefix is of a remote access-
2416 -- to-subprogram type, then N has already been rewritten as a subprogram
2417 -- call and analyzed.
2419 if Nkind
(N
) in N_Subprogram_Call
then
2422 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2423 -- the indexed component denotes a loop name, the indexed form is turned
2424 -- into an attribute reference.
2426 elsif Nkind
(N
) = N_Attribute_Reference
2427 and then Attribute_Name
(N
) = Name_Loop_Entry
2432 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
2434 P_T
:= Base_Type
(Etype
(P
));
2436 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
2439 if Is_Type
(U_N
) then
2441 -- Reformat node as a type conversion
2443 E
:= Remove_Head
(Exprs
);
2445 if Present
(First
(Exprs
)) then
2447 ("argument of type conversion must be single expression", N
);
2450 Change_Node
(N
, N_Type_Conversion
);
2451 Set_Subtype_Mark
(N
, P
);
2453 Set_Expression
(N
, E
);
2455 -- After changing the node, call for the specific Analysis
2456 -- routine directly, to avoid a double call to the expander.
2458 Analyze_Type_Conversion
(N
);
2462 if Is_Overloadable
(U_N
) then
2463 Process_Function_Call
;
2465 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
2466 or else (Is_Access_Type
(Etype
(P
))
2468 Ekind
(Designated_Type
(Etype
(P
))) =
2471 -- Call to access_to-subprogram with possible implicit dereference
2473 Process_Function_Call
;
2475 elsif Is_Generic_Subprogram
(U_N
) then
2477 -- A common beginner's (or C++ templates fan) error
2479 Error_Msg_N
("generic subprogram cannot be called", N
);
2480 Set_Etype
(N
, Any_Type
);
2484 Process_Indexed_Component_Or_Slice
;
2487 -- If not an entity name, prefix is an expression that may denote
2488 -- an array or an access-to-subprogram.
2491 if Ekind
(P_T
) = E_Subprogram_Type
2492 or else (Is_Access_Type
(P_T
)
2494 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
2496 Process_Function_Call
;
2498 elsif Nkind
(P
) = N_Selected_Component
2499 and then Present
(Entity
(Selector_Name
(P
)))
2500 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
2502 Process_Function_Call
;
2504 -- In ASIS mode within a generic, a prefixed call is analyzed and
2505 -- partially rewritten but the original indexed component has not
2506 -- yet been rewritten as a call. Perform the replacement now.
2508 elsif Nkind
(P
) = N_Selected_Component
2509 and then Nkind
(Parent
(P
)) = N_Function_Call
2512 Rewrite
(N
, Parent
(P
));
2516 -- Indexed component, slice, or a call to a member of a family
2517 -- entry, which will be converted to an entry call later.
2519 Process_Indexed_Component_Or_Slice
;
2523 Analyze_Dimension
(N
);
2524 end Analyze_Indexed_Component_Form
;
2526 ------------------------
2527 -- Analyze_Logical_Op --
2528 ------------------------
2530 procedure Analyze_Logical_Op
(N
: Node_Id
) is
2531 L
: constant Node_Id
:= Left_Opnd
(N
);
2532 R
: constant Node_Id
:= Right_Opnd
(N
);
2533 Op_Id
: Entity_Id
:= Entity
(N
);
2536 Set_Etype
(N
, Any_Type
);
2537 Candidate_Type
:= Empty
;
2539 Analyze_Expression
(L
);
2540 Analyze_Expression
(R
);
2542 if Present
(Op_Id
) then
2544 if Ekind
(Op_Id
) = E_Operator
then
2545 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2547 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2551 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2552 while Present
(Op_Id
) loop
2553 if Ekind
(Op_Id
) = E_Operator
then
2554 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2556 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2559 Op_Id
:= Homonym
(Op_Id
);
2564 end Analyze_Logical_Op
;
2566 ---------------------------
2567 -- Analyze_Membership_Op --
2568 ---------------------------
2570 procedure Analyze_Membership_Op
(N
: Node_Id
) is
2571 Loc
: constant Source_Ptr
:= Sloc
(N
);
2572 L
: constant Node_Id
:= Left_Opnd
(N
);
2573 R
: constant Node_Id
:= Right_Opnd
(N
);
2575 Index
: Interp_Index
;
2577 Found
: Boolean := False;
2581 procedure Try_One_Interp
(T1
: Entity_Id
);
2582 -- Routine to try one proposed interpretation. Note that the context
2583 -- of the operation plays no role in resolving the arguments, so that
2584 -- if there is more than one interpretation of the operands that is
2585 -- compatible with a membership test, the operation is ambiguous.
2587 --------------------
2588 -- Try_One_Interp --
2589 --------------------
2591 procedure Try_One_Interp
(T1
: Entity_Id
) is
2593 if Has_Compatible_Type
(R
, T1
) then
2595 and then Base_Type
(T1
) /= Base_Type
(T_F
)
2597 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
2599 if It
= No_Interp
then
2600 Ambiguous_Operands
(N
);
2601 Set_Etype
(L
, Any_Type
);
2618 procedure Analyze_Set_Membership
;
2619 -- If a set of alternatives is present, analyze each and find the
2620 -- common type to which they must all resolve.
2622 ----------------------------
2623 -- Analyze_Set_Membership --
2624 ----------------------------
2626 procedure Analyze_Set_Membership
is
2628 Index
: Interp_Index
;
2630 Candidate_Interps
: Node_Id
;
2631 Common_Type
: Entity_Id
:= Empty
;
2635 Candidate_Interps
:= L
;
2637 if not Is_Overloaded
(L
) then
2638 Common_Type
:= Etype
(L
);
2640 Alt
:= First
(Alternatives
(N
));
2641 while Present
(Alt
) loop
2644 if not Has_Compatible_Type
(Alt
, Common_Type
) then
2645 Wrong_Type
(Alt
, Common_Type
);
2652 Alt
:= First
(Alternatives
(N
));
2653 while Present
(Alt
) loop
2655 if not Is_Overloaded
(Alt
) then
2656 Common_Type
:= Etype
(Alt
);
2659 Get_First_Interp
(Alt
, Index
, It
);
2660 while Present
(It
.Typ
) loop
2662 Has_Compatible_Type
(Candidate_Interps
, It
.Typ
)
2664 Remove_Interp
(Index
);
2667 Get_Next_Interp
(Index
, It
);
2670 Get_First_Interp
(Alt
, Index
, It
);
2673 Error_Msg_N
("alternative has no legal type", Alt
);
2677 -- If alternative is not overloaded, we have a unique type
2680 Set_Etype
(Alt
, It
.Typ
);
2681 Get_Next_Interp
(Index
, It
);
2684 Set_Is_Overloaded
(Alt
, False);
2685 Common_Type
:= Etype
(Alt
);
2688 Candidate_Interps
:= Alt
;
2695 Set_Etype
(N
, Standard_Boolean
);
2697 if Present
(Common_Type
) then
2698 Set_Etype
(L
, Common_Type
);
2699 Set_Is_Overloaded
(L
, False);
2702 Error_Msg_N
("cannot resolve membership operation", N
);
2704 end Analyze_Set_Membership
;
2706 -- Start of processing for Analyze_Membership_Op
2709 Analyze_Expression
(L
);
2712 and then Ada_Version
>= Ada_2012
2714 Analyze_Set_Membership
;
2718 if Nkind
(R
) = N_Range
2719 or else (Nkind
(R
) = N_Attribute_Reference
2720 and then Attribute_Name
(R
) = Name_Range
)
2724 if not Is_Overloaded
(L
) then
2725 Try_One_Interp
(Etype
(L
));
2728 Get_First_Interp
(L
, Index
, It
);
2729 while Present
(It
.Typ
) loop
2730 Try_One_Interp
(It
.Typ
);
2731 Get_Next_Interp
(Index
, It
);
2735 -- If not a range, it can be a subtype mark, or else it is a degenerate
2736 -- membership test with a singleton value, i.e. a test for equality,
2737 -- if the types are compatible.
2742 if Is_Entity_Name
(R
)
2743 and then Is_Type
(Entity
(R
))
2746 Check_Fully_Declared
(Entity
(R
), R
);
2748 elsif Ada_Version
>= Ada_2012
2749 and then Has_Compatible_Type
(R
, Etype
(L
))
2751 if Nkind
(N
) = N_In
then
2767 -- In all versions of the language, if we reach this point there
2768 -- is a previous error that will be diagnosed below.
2774 -- Compatibility between expression and subtype mark or range is
2775 -- checked during resolution. The result of the operation is Boolean
2778 Set_Etype
(N
, Standard_Boolean
);
2780 if Comes_From_Source
(N
)
2781 and then Present
(Right_Opnd
(N
))
2782 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
2784 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
2786 end Analyze_Membership_Op
;
2792 procedure Analyze_Mod
(N
: Node_Id
) is
2794 -- A special warning check, if we have an expression of the form:
2795 -- expr mod 2 * literal
2796 -- where literal is 64 or less, then probably what was meant was
2797 -- expr mod 2 ** literal
2798 -- so issue an appropriate warning.
2800 if Warn_On_Suspicious_Modulus_Value
2801 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
2802 and then Intval
(Right_Opnd
(N
)) = Uint_2
2803 and then Nkind
(Parent
(N
)) = N_Op_Multiply
2804 and then Nkind
(Right_Opnd
(Parent
(N
))) = N_Integer_Literal
2805 and then Intval
(Right_Opnd
(Parent
(N
))) <= Uint_64
2808 ("suspicious MOD value, was '*'* intended'??M?", Parent
(N
));
2811 -- Remaining processing is same as for other arithmetic operators
2813 Analyze_Arithmetic_Op
(N
);
2816 ----------------------
2817 -- Analyze_Negation --
2818 ----------------------
2820 procedure Analyze_Negation
(N
: Node_Id
) is
2821 R
: constant Node_Id
:= Right_Opnd
(N
);
2822 Op_Id
: Entity_Id
:= Entity
(N
);
2825 Set_Etype
(N
, Any_Type
);
2826 Candidate_Type
:= Empty
;
2828 Analyze_Expression
(R
);
2830 if Present
(Op_Id
) then
2831 if Ekind
(Op_Id
) = E_Operator
then
2832 Find_Negation_Types
(R
, Op_Id
, N
);
2834 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2838 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2839 while Present
(Op_Id
) loop
2840 if Ekind
(Op_Id
) = E_Operator
then
2841 Find_Negation_Types
(R
, Op_Id
, N
);
2843 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
2846 Op_Id
:= Homonym
(Op_Id
);
2851 end Analyze_Negation
;
2857 procedure Analyze_Null
(N
: Node_Id
) is
2859 Check_SPARK_Restriction
("null is not allowed", N
);
2861 Set_Etype
(N
, Any_Access
);
2864 ----------------------
2865 -- Analyze_One_Call --
2866 ----------------------
2868 procedure Analyze_One_Call
2872 Success
: out Boolean;
2873 Skip_First
: Boolean := False)
2875 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
2876 Prev_T
: constant Entity_Id
:= Etype
(N
);
2878 Must_Skip
: constant Boolean := Skip_First
2879 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
2881 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
2882 and then Nkind
(Prefix
(Original_Node
(N
)))
2883 = N_Selected_Component
);
2884 -- The first formal must be omitted from the match when trying to find
2885 -- a primitive operation that is a possible interpretation, and also
2886 -- after the call has been rewritten, because the corresponding actual
2887 -- is already known to be compatible, and because this may be an
2888 -- indexing of a call with default parameters.
2892 Is_Indexed
: Boolean := False;
2893 Is_Indirect
: Boolean := False;
2894 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
2897 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
2898 -- There may be a user-defined operator that hides the current
2899 -- interpretation. We must check for this independently of the
2900 -- analysis of the call with the user-defined operation, because
2901 -- the parameter names may be wrong and yet the hiding takes place.
2902 -- This fixes a problem with ACATS test B34014O.
2904 -- When the type Address is a visible integer type, and the DEC
2905 -- system extension is visible, the predefined operator may be
2906 -- hidden as well, by one of the address operations in auxdec.
2907 -- Finally, The abstract operations on address do not hide the
2908 -- predefined operator (this is the purpose of making them abstract).
2910 procedure Indicate_Name_And_Type
;
2911 -- If candidate interpretation matches, indicate name and type of
2912 -- result on call node.
2914 ----------------------------
2915 -- Indicate_Name_And_Type --
2916 ----------------------------
2918 procedure Indicate_Name_And_Type
is
2920 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
2921 Check_Implicit_Dereference
(N
, Etype
(Nam
));
2924 -- If the prefix of the call is a name, indicate the entity
2925 -- being called. If it is not a name, it is an expression that
2926 -- denotes an access to subprogram or else an entry or family. In
2927 -- the latter case, the name is a selected component, and the entity
2928 -- being called is noted on the selector.
2930 if not Is_Type
(Nam
) then
2931 if Is_Entity_Name
(Name
(N
)) then
2932 Set_Entity
(Name
(N
), Nam
);
2934 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2935 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
2939 if Debug_Flag_E
and not Report
then
2940 Write_Str
(" Overloaded call ");
2941 Write_Int
(Int
(N
));
2942 Write_Str
(" compatible with ");
2943 Write_Int
(Int
(Nam
));
2946 end Indicate_Name_And_Type
;
2948 ------------------------
2949 -- Operator_Hidden_By --
2950 ------------------------
2952 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
2953 Act1
: constant Node_Id
:= First_Actual
(N
);
2954 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2955 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
2956 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
2959 if Ekind
(Fun
) /= E_Function
2960 or else Is_Abstract_Subprogram
(Fun
)
2964 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
2967 elsif Present
(Form2
) then
2969 No
(Act2
) or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
2974 elsif Present
(Act2
) then
2978 -- Now we know that the arity of the operator matches the function,
2979 -- and the function call is a valid interpretation. The function
2980 -- hides the operator if it has the right signature, or if one of
2981 -- its operands is a non-abstract operation on Address when this is
2982 -- a visible integer type.
2984 return Hides_Op
(Fun
, Nam
)
2985 or else Is_Descendent_Of_Address
(Etype
(Form1
))
2988 and then Is_Descendent_Of_Address
(Etype
(Form2
)));
2989 end Operator_Hidden_By
;
2991 -- Start of processing for Analyze_One_Call
2996 -- If the subprogram has no formals or if all the formals have defaults,
2997 -- and the return type is an array type, the node may denote an indexing
2998 -- of the result of a parameterless call. In Ada 2005, the subprogram
2999 -- may have one non-defaulted formal, and the call may have been written
3000 -- in prefix notation, so that the rebuilt parameter list has more than
3003 if not Is_Overloadable
(Nam
)
3004 and then Ekind
(Nam
) /= E_Subprogram_Type
3005 and then Ekind
(Nam
) /= E_Entry_Family
3010 -- An indexing requires at least one actual. The name of the call cannot
3011 -- be an implicit indirect call, so it cannot be a generated explicit
3014 if not Is_Empty_List
(Actuals
)
3016 (Needs_No_Actuals
(Nam
)
3018 (Needs_One_Actual
(Nam
)
3019 and then Present
(Next_Actual
(First
(Actuals
)))))
3021 if Is_Array_Type
(Subp_Type
)
3023 (Nkind
(Name
(N
)) /= N_Explicit_Dereference
3024 or else Comes_From_Source
(Name
(N
)))
3026 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
3028 elsif Is_Access_Type
(Subp_Type
)
3029 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
3033 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
3035 -- The prefix can also be a parameterless function that returns an
3036 -- access to subprogram, in which case this is an indirect call.
3037 -- If this succeeds, an explicit dereference is added later on,
3038 -- in Analyze_Call or Resolve_Call.
3040 elsif Is_Access_Type
(Subp_Type
)
3041 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
3043 Is_Indirect
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
3048 -- If the call has been transformed into a slice, it is of the form
3049 -- F (Subtype) where F is parameterless. The node has been rewritten in
3050 -- Try_Indexed_Call and there is nothing else to do.
3053 and then Nkind
(N
) = N_Slice
3059 (N
, Nam
, (Report
and not Is_Indexed
and not Is_Indirect
), Norm_OK
);
3063 -- If an indirect call is a possible interpretation, indicate
3064 -- success to the caller. This may be an indexing of an explicit
3065 -- dereference of a call that returns an access type (see above).
3069 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
3070 and then Comes_From_Source
(Name
(N
)))
3075 -- Mismatch in number or names of parameters
3077 elsif Debug_Flag_E
then
3078 Write_Str
(" normalization fails in call ");
3079 Write_Int
(Int
(N
));
3080 Write_Str
(" with subprogram ");
3081 Write_Int
(Int
(Nam
));
3085 -- If the context expects a function call, discard any interpretation
3086 -- that is a procedure. If the node is not overloaded, leave as is for
3087 -- better error reporting when type mismatch is found.
3089 elsif Nkind
(N
) = N_Function_Call
3090 and then Is_Overloaded
(Name
(N
))
3091 and then Ekind
(Nam
) = E_Procedure
3095 -- Ditto for function calls in a procedure context
3097 elsif Nkind
(N
) = N_Procedure_Call_Statement
3098 and then Is_Overloaded
(Name
(N
))
3099 and then Etype
(Nam
) /= Standard_Void_Type
3103 elsif No
(Actuals
) then
3105 -- If Normalize succeeds, then there are default parameters for
3108 Indicate_Name_And_Type
;
3110 elsif Ekind
(Nam
) = E_Operator
then
3111 if Nkind
(N
) = N_Procedure_Call_Statement
then
3115 -- This can occur when the prefix of the call is an operator
3116 -- name or an expanded name whose selector is an operator name.
3118 Analyze_Operator_Call
(N
, Nam
);
3120 if Etype
(N
) /= Prev_T
then
3122 -- Check that operator is not hidden by a function interpretation
3124 if Is_Overloaded
(Name
(N
)) then
3130 Get_First_Interp
(Name
(N
), I
, It
);
3131 while Present
(It
.Nam
) loop
3132 if Operator_Hidden_By
(It
.Nam
) then
3133 Set_Etype
(N
, Prev_T
);
3137 Get_Next_Interp
(I
, It
);
3142 -- If operator matches formals, record its name on the call.
3143 -- If the operator is overloaded, Resolve will select the
3144 -- correct one from the list of interpretations. The call
3145 -- node itself carries the first candidate.
3147 Set_Entity
(Name
(N
), Nam
);
3150 elsif Report
and then Etype
(N
) = Any_Type
then
3151 Error_Msg_N
("incompatible arguments for operator", N
);
3155 -- Normalize_Actuals has chained the named associations in the
3156 -- correct order of the formals.
3158 Actual
:= First_Actual
(N
);
3159 Formal
:= First_Formal
(Nam
);
3161 -- If we are analyzing a call rewritten from object notation, skip
3162 -- first actual, which may be rewritten later as an explicit
3166 Next_Actual
(Actual
);
3167 Next_Formal
(Formal
);
3170 while Present
(Actual
) and then Present
(Formal
) loop
3171 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
3172 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
3174 -- The actual can be compatible with the formal, but we must
3175 -- also check that the context is not an address type that is
3176 -- visibly an integer type, as is the case in VMS_64. In this
3177 -- case the use of literals is illegal, except in the body of
3178 -- descendents of system, where arithmetic operations on
3179 -- address are of course used.
3181 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
3183 (Etype
(Actual
) /= Universal_Integer
3184 or else not Is_Descendent_Of_Address
(Etype
(Formal
))
3186 Is_Predefined_File_Name
3187 (Unit_File_Name
(Get_Source_Unit
(N
))))
3189 Next_Actual
(Actual
);
3190 Next_Formal
(Formal
);
3193 if Debug_Flag_E
then
3194 Write_Str
(" type checking fails in call ");
3195 Write_Int
(Int
(N
));
3196 Write_Str
(" with formal ");
3197 Write_Int
(Int
(Formal
));
3198 Write_Str
(" in subprogram ");
3199 Write_Int
(Int
(Nam
));
3203 if Report
and not Is_Indexed
and not Is_Indirect
then
3205 -- Ada 2005 (AI-251): Complete the error notification
3206 -- to help new Ada 2005 users.
3208 if Is_Class_Wide_Type
(Etype
(Formal
))
3209 and then Is_Interface
(Etype
(Etype
(Formal
)))
3210 and then not Interface_Present_In_Ancestor
3211 (Typ
=> Etype
(Actual
),
3212 Iface
=> Etype
(Etype
(Formal
)))
3215 ("(Ada 2005) does not implement interface }",
3216 Actual
, Etype
(Etype
(Formal
)));
3219 Wrong_Type
(Actual
, Etype
(Formal
));
3221 if Nkind
(Actual
) = N_Op_Eq
3222 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
3224 Formal
:= First_Formal
(Nam
);
3225 while Present
(Formal
) loop
3226 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
3227 Error_Msg_N
-- CODEFIX
3228 ("possible misspelling of `='>`!", Actual
);
3232 Next_Formal
(Formal
);
3236 if All_Errors_Mode
then
3237 Error_Msg_Sloc
:= Sloc
(Nam
);
3239 if Etype
(Formal
) = Any_Type
then
3241 ("there is no legal actual parameter", Actual
);
3244 if Is_Overloadable
(Nam
)
3245 and then Present
(Alias
(Nam
))
3246 and then not Comes_From_Source
(Nam
)
3249 ("\\ =='> in call to inherited operation & #!",
3252 elsif Ekind
(Nam
) = E_Subprogram_Type
then
3254 Access_To_Subprogram_Typ
:
3255 constant Entity_Id
:=
3257 (Associated_Node_For_Itype
(Nam
));
3260 "\\ =='> in call to dereference of &#!",
3261 Actual
, Access_To_Subprogram_Typ
);
3266 ("\\ =='> in call to &#!", Actual
, Nam
);
3276 -- Normalize_Actuals has verified that a default value exists
3277 -- for this formal. Current actual names a subsequent formal.
3279 Next_Formal
(Formal
);
3283 -- On exit, all actuals match
3285 Indicate_Name_And_Type
;
3287 end Analyze_One_Call
;
3289 ---------------------------
3290 -- Analyze_Operator_Call --
3291 ---------------------------
3293 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
3294 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
3295 Act1
: constant Node_Id
:= First_Actual
(N
);
3296 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
3299 -- Binary operator case
3301 if Present
(Act2
) then
3303 -- If more than two operands, then not binary operator after all
3305 if Present
(Next_Actual
(Act2
)) then
3309 -- Otherwise action depends on operator
3319 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
3324 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
3330 Find_Comparison_Types
(Act1
, Act2
, Op_Id
, N
);
3334 Find_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
3336 when Name_Op_Concat
=>
3337 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
3339 -- Is this when others, or should it be an abort???
3345 -- Unary operator case
3349 when Name_Op_Subtract |
3352 Find_Unary_Types
(Act1
, Op_Id
, N
);
3355 Find_Negation_Types
(Act1
, Op_Id
, N
);
3357 -- Is this when others correct, or should it be an abort???
3363 end Analyze_Operator_Call
;
3365 -------------------------------------------
3366 -- Analyze_Overloaded_Selected_Component --
3367 -------------------------------------------
3369 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
3370 Nam
: constant Node_Id
:= Prefix
(N
);
3371 Sel
: constant Node_Id
:= Selector_Name
(N
);
3378 Set_Etype
(Sel
, Any_Type
);
3380 Get_First_Interp
(Nam
, I
, It
);
3381 while Present
(It
.Typ
) loop
3382 if Is_Access_Type
(It
.Typ
) then
3383 T
:= Designated_Type
(It
.Typ
);
3384 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
3389 -- Locate the component. For a private prefix the selector can denote
3392 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
3394 -- If the prefix is a class-wide type, the visible components are
3395 -- those of the base type.
3397 if Is_Class_Wide_Type
(T
) then
3401 Comp
:= First_Entity
(T
);
3402 while Present
(Comp
) loop
3403 if Chars
(Comp
) = Chars
(Sel
)
3404 and then Is_Visible_Component
(Comp
)
3407 -- AI05-105: if the context is an object renaming with
3408 -- an anonymous access type, the expected type of the
3409 -- object must be anonymous. This is a name resolution rule.
3411 if Nkind
(Parent
(N
)) /= N_Object_Renaming_Declaration
3412 or else No
(Access_Definition
(Parent
(N
)))
3413 or else Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Type
3415 Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Subprogram_Type
3417 Set_Entity
(Sel
, Comp
);
3418 Set_Etype
(Sel
, Etype
(Comp
));
3419 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
3420 Check_Implicit_Dereference
(N
, Etype
(Comp
));
3422 -- This also specifies a candidate to resolve the name.
3423 -- Further overloading will be resolved from context.
3424 -- The selector name itself does not carry overloading
3427 Set_Etype
(Nam
, It
.Typ
);
3430 -- Named access type in the context of a renaming
3431 -- declaration with an access definition. Remove
3432 -- inapplicable candidate.
3441 elsif Is_Concurrent_Type
(T
) then
3442 Comp
:= First_Entity
(T
);
3443 while Present
(Comp
)
3444 and then Comp
/= First_Private_Entity
(T
)
3446 if Chars
(Comp
) = Chars
(Sel
) then
3447 if Is_Overloadable
(Comp
) then
3448 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
3450 Set_Entity_With_Style_Check
(Sel
, Comp
);
3451 Generate_Reference
(Comp
, Sel
);
3454 Set_Etype
(Sel
, Etype
(Comp
));
3455 Set_Etype
(N
, Etype
(Comp
));
3456 Set_Etype
(Nam
, It
.Typ
);
3458 -- For access type case, introduce explicit dereference for
3459 -- more uniform treatment of entry calls. Do this only once
3460 -- if several interpretations yield an access type.
3462 if Is_Access_Type
(Etype
(Nam
))
3463 and then Nkind
(Nam
) /= N_Explicit_Dereference
3465 Insert_Explicit_Dereference
(Nam
);
3467 (Warn_On_Dereference
, "?d?implicit dereference", N
);
3474 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
3477 Get_Next_Interp
(I
, It
);
3480 if Etype
(N
) = Any_Type
3481 and then not Try_Object_Operation
(N
)
3483 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
3484 Set_Entity
(Sel
, Any_Id
);
3485 Set_Etype
(Sel
, Any_Type
);
3487 end Analyze_Overloaded_Selected_Component
;
3489 ----------------------------------
3490 -- Analyze_Qualified_Expression --
3491 ----------------------------------
3493 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
3494 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
3495 Expr
: constant Node_Id
:= Expression
(N
);
3501 Analyze_Expression
(Expr
);
3503 Set_Etype
(N
, Any_Type
);
3508 if T
= Any_Type
then
3512 Check_Fully_Declared
(T
, N
);
3514 -- If expected type is class-wide, check for exact match before
3515 -- expansion, because if the expression is a dispatching call it
3516 -- may be rewritten as explicit dereference with class-wide result.
3517 -- If expression is overloaded, retain only interpretations that
3518 -- will yield exact matches.
3520 if Is_Class_Wide_Type
(T
) then
3521 if not Is_Overloaded
(Expr
) then
3522 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
) then
3523 if Nkind
(Expr
) = N_Aggregate
then
3524 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
3526 Wrong_Type
(Expr
, T
);
3531 Get_First_Interp
(Expr
, I
, It
);
3533 while Present
(It
.Nam
) loop
3534 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
3538 Get_Next_Interp
(I
, It
);
3544 end Analyze_Qualified_Expression
;
3546 -----------------------------------
3547 -- Analyze_Quantified_Expression --
3548 -----------------------------------
3550 procedure Analyze_Quantified_Expression
(N
: Node_Id
) is
3551 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean;
3552 -- If the iterator is part of a quantified expression, and the range is
3553 -- known to be statically empty, emit a warning and replace expression
3554 -- with its static value. Returns True if the replacement occurs.
3556 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean;
3557 -- Determine whether if expression If_Expr lacks an else part or if it
3558 -- has one, it evaluates to True.
3560 --------------------
3561 -- Is_Empty_Range --
3562 --------------------
3564 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean is
3565 Loc
: constant Source_Ptr
:= Sloc
(N
);
3568 if Is_Array_Type
(Typ
)
3569 and then Compile_Time_Known_Bounds
(Typ
)
3571 (Expr_Value
(Type_Low_Bound
(Etype
(First_Index
(Typ
)))) >
3572 Expr_Value
(Type_High_Bound
(Etype
(First_Index
(Typ
)))))
3574 Preanalyze_And_Resolve
(Condition
(N
), Standard_Boolean
);
3576 if All_Present
(N
) then
3578 ("??quantified expression with ALL "
3579 & "over a null range has value True", N
);
3580 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
3584 ("??quantified expression with SOME "
3585 & "over a null range has value False", N
);
3586 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
3597 -----------------------------
3598 -- No_Else_Or_Trivial_True --
3599 -----------------------------
3601 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean is
3602 Else_Expr
: constant Node_Id
:=
3603 Next
(Next
(First
(Expressions
(If_Expr
))));
3607 or else (Compile_Time_Known_Value
(Else_Expr
)
3608 and then Is_True
(Expr_Value
(Else_Expr
)));
3609 end No_Else_Or_Trivial_True
;
3613 Cond
: constant Node_Id
:= Condition
(N
);
3614 Loop_Id
: Entity_Id
;
3615 QE_Scop
: Entity_Id
;
3617 -- Start of processing for Analyze_Quantified_Expression
3620 Check_SPARK_Restriction
("quantified expression is not allowed", N
);
3622 -- Create a scope to emulate the loop-like behavior of the quantified
3623 -- expression. The scope is needed to provide proper visibility of the
3626 QE_Scop
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Sloc
(N
), 'L');
3627 Set_Etype
(QE_Scop
, Standard_Void_Type
);
3628 Set_Scope
(QE_Scop
, Current_Scope
);
3629 Set_Parent
(QE_Scop
, N
);
3631 Push_Scope
(QE_Scop
);
3633 -- All constituents are preanalyzed and resolved to avoid untimely
3634 -- generation of various temporaries and types. Full analysis and
3635 -- expansion is carried out when the quantified expression is
3636 -- transformed into an expression with actions.
3638 if Present
(Iterator_Specification
(N
)) then
3639 Preanalyze
(Iterator_Specification
(N
));
3641 -- Do not proceed with the analysis when the range of iteration is
3642 -- empty. The appropriate error is issued by Is_Empty_Range.
3644 if Is_Entity_Name
(Name
(Iterator_Specification
(N
)))
3645 and then Is_Empty_Range
(Etype
(Name
(Iterator_Specification
(N
))))
3650 else pragma Assert
(Present
(Loop_Parameter_Specification
(N
)));
3651 Preanalyze
(Loop_Parameter_Specification
(N
));
3654 Preanalyze_And_Resolve
(Cond
, Standard_Boolean
);
3657 Set_Etype
(N
, Standard_Boolean
);
3659 -- Verify that the loop variable is used within the condition of the
3660 -- quantified expression.
3662 if Present
(Iterator_Specification
(N
)) then
3663 Loop_Id
:= Defining_Identifier
(Iterator_Specification
(N
));
3665 Loop_Id
:= Defining_Identifier
(Loop_Parameter_Specification
(N
));
3668 if Warn_On_Suspicious_Contract
3669 and then not Referenced
(Loop_Id
, Cond
)
3671 Error_Msg_N
("?T?unused variable &", Loop_Id
);
3674 -- Diagnose a possible misuse of the "some" existential quantifier. When
3675 -- we have a quantified expression of the form:
3677 -- for some X => (if P then Q [else True])
3679 -- the if expression will not hold and render the quantified expression
3682 if Formal_Extensions
3683 and then not All_Present
(N
)
3684 and then Nkind
(Cond
) = N_If_Expression
3685 and then No_Else_Or_Trivial_True
(Cond
)
3687 Error_Msg_N
("?suspicious expression", N
);
3688 Error_Msg_N
("\\did you mean (for all X ='> (if P then Q))", N
);
3689 Error_Msg_N
("\\or (for some X ='> P and then Q) instead'?", N
);
3691 end Analyze_Quantified_Expression
;
3697 procedure Analyze_Range
(N
: Node_Id
) is
3698 L
: constant Node_Id
:= Low_Bound
(N
);
3699 H
: constant Node_Id
:= High_Bound
(N
);
3700 I1
, I2
: Interp_Index
;
3703 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
3704 -- Verify the compatibility of two types, and choose the
3705 -- non universal one if the other is universal.
3707 procedure Check_High_Bound
(T
: Entity_Id
);
3708 -- Test one interpretation of the low bound against all those
3709 -- of the high bound.
3711 procedure Check_Universal_Expression
(N
: Node_Id
);
3712 -- In Ada 83, reject bounds of a universal range that are not literals
3715 -----------------------
3716 -- Check_Common_Type --
3717 -----------------------
3719 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
3721 if Covers
(T1
=> T1
, T2
=> T2
)
3723 Covers
(T1
=> T2
, T2
=> T1
)
3725 if T1
= Universal_Integer
3726 or else T1
= Universal_Real
3727 or else T1
= Any_Character
3729 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
3732 Add_One_Interp
(N
, T1
, T1
);
3735 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
3738 end Check_Common_Type
;
3740 ----------------------
3741 -- Check_High_Bound --
3742 ----------------------
3744 procedure Check_High_Bound
(T
: Entity_Id
) is
3746 if not Is_Overloaded
(H
) then
3747 Check_Common_Type
(T
, Etype
(H
));
3749 Get_First_Interp
(H
, I2
, It2
);
3750 while Present
(It2
.Typ
) loop
3751 Check_Common_Type
(T
, It2
.Typ
);
3752 Get_Next_Interp
(I2
, It2
);
3755 end Check_High_Bound
;
3757 -----------------------------
3758 -- Is_Universal_Expression --
3759 -----------------------------
3761 procedure Check_Universal_Expression
(N
: Node_Id
) is
3763 if Etype
(N
) = Universal_Integer
3764 and then Nkind
(N
) /= N_Integer_Literal
3765 and then not Is_Entity_Name
(N
)
3766 and then Nkind
(N
) /= N_Attribute_Reference
3768 Error_Msg_N
("illegal bound in discrete range", N
);
3770 end Check_Universal_Expression
;
3772 -- Start of processing for Analyze_Range
3775 Set_Etype
(N
, Any_Type
);
3776 Analyze_Expression
(L
);
3777 Analyze_Expression
(H
);
3779 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
3783 if not Is_Overloaded
(L
) then
3784 Check_High_Bound
(Etype
(L
));
3786 Get_First_Interp
(L
, I1
, It1
);
3787 while Present
(It1
.Typ
) loop
3788 Check_High_Bound
(It1
.Typ
);
3789 Get_Next_Interp
(I1
, It1
);
3793 -- If result is Any_Type, then we did not find a compatible pair
3795 if Etype
(N
) = Any_Type
then
3796 Error_Msg_N
("incompatible types in range ", N
);
3800 if Ada_Version
= Ada_83
3802 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
3803 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
3805 Check_Universal_Expression
(L
);
3806 Check_Universal_Expression
(H
);
3809 Check_Function_Writable_Actuals
(N
);
3812 -----------------------
3813 -- Analyze_Reference --
3814 -----------------------
3816 procedure Analyze_Reference
(N
: Node_Id
) is
3817 P
: constant Node_Id
:= Prefix
(N
);
3820 Acc_Type
: Entity_Id
;
3825 -- An interesting error check, if we take the 'Reference of an object
3826 -- for which a pragma Atomic or Volatile has been given, and the type
3827 -- of the object is not Atomic or Volatile, then we are in trouble. The
3828 -- problem is that no trace of the atomic/volatile status will remain
3829 -- for the backend to respect when it deals with the resulting pointer,
3830 -- since the pointer type will not be marked atomic (it is a pointer to
3831 -- the base type of the object).
3833 -- It is not clear if that can ever occur, but in case it does, we will
3834 -- generate an error message. Not clear if this message can ever be
3835 -- generated, and pretty clear that it represents a bug if it is, still
3836 -- seems worth checking, except in CodePeer mode where we do not really
3837 -- care and don't want to bother the user.
3841 if Is_Entity_Name
(P
)
3842 and then Is_Object_Reference
(P
)
3843 and then not CodePeer_Mode
3848 if (Has_Atomic_Components
(E
)
3849 and then not Has_Atomic_Components
(T
))
3851 (Has_Volatile_Components
(E
)
3852 and then not Has_Volatile_Components
(T
))
3853 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
3854 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
3856 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
3860 -- Carry on with normal processing
3862 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
3863 Set_Etype
(Acc_Type
, Acc_Type
);
3864 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
3865 Set_Etype
(N
, Acc_Type
);
3866 end Analyze_Reference
;
3868 --------------------------------
3869 -- Analyze_Selected_Component --
3870 --------------------------------
3872 -- Prefix is a record type or a task or protected type. In the latter case,
3873 -- the selector must denote a visible entry.
3875 procedure Analyze_Selected_Component
(N
: Node_Id
) is
3876 Name
: constant Node_Id
:= Prefix
(N
);
3877 Sel
: constant Node_Id
:= Selector_Name
(N
);
3880 Has_Candidate
: Boolean := False;
3883 Pent
: Entity_Id
:= Empty
;
3884 Prefix_Type
: Entity_Id
;
3886 Type_To_Use
: Entity_Id
;
3887 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3888 -- a class-wide type, we use its root type, whose components are
3889 -- present in the class-wide type.
3891 Is_Single_Concurrent_Object
: Boolean;
3892 -- Set True if the prefix is a single task or a single protected object
3894 procedure Find_Component_In_Instance
(Rec
: Entity_Id
);
3895 -- In an instance, a component of a private extension may not be visible
3896 -- while it was visible in the generic. Search candidate scope for a
3897 -- component with the proper identifier. This is only done if all other
3898 -- searches have failed. When the match is found (it always will be),
3899 -- the Etype of both N and Sel are set from this component, and the
3900 -- entity of Sel is set to reference this component.
3902 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
3903 -- It is known that the parent of N denotes a subprogram call. Comp
3904 -- is an overloadable component of the concurrent type of the prefix.
3905 -- Determine whether all formals of the parent of N and Comp are mode
3906 -- conformant. If the parent node is not analyzed yet it may be an
3907 -- indexed component rather than a function call.
3909 --------------------------------
3910 -- Find_Component_In_Instance --
3911 --------------------------------
3913 procedure Find_Component_In_Instance
(Rec
: Entity_Id
) is
3917 Comp
:= First_Component
(Rec
);
3918 while Present
(Comp
) loop
3919 if Chars
(Comp
) = Chars
(Sel
) then
3920 Set_Entity_With_Style_Check
(Sel
, Comp
);
3921 Set_Etype
(Sel
, Etype
(Comp
));
3922 Set_Etype
(N
, Etype
(Comp
));
3926 Next_Component
(Comp
);
3929 -- This must succeed because code was legal in the generic
3931 raise Program_Error
;
3932 end Find_Component_In_Instance
;
3934 ------------------------------
3935 -- Has_Mode_Conformant_Spec --
3936 ------------------------------
3938 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
3939 Comp_Param
: Entity_Id
;
3941 Param_Typ
: Entity_Id
;
3944 Comp_Param
:= First_Formal
(Comp
);
3946 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
3947 Param
:= First
(Expressions
(Parent
(N
)));
3949 Param
:= First
(Parameter_Associations
(Parent
(N
)));
3952 while Present
(Comp_Param
)
3953 and then Present
(Param
)
3955 Param_Typ
:= Find_Parameter_Type
(Param
);
3957 if Present
(Param_Typ
)
3959 not Conforming_Types
3960 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
3965 Next_Formal
(Comp_Param
);
3969 -- One of the specs has additional formals; there is no match, unless
3970 -- this may be an indexing of a parameterless call.
3972 -- Note that when expansion is disabled, the corresponding record
3973 -- type of synchronized types is not constructed, so that there is
3974 -- no point is attempting an interpretation as a prefixed call, as
3975 -- this is bound to fail because the primitive operations will not
3976 -- be properly located.
3978 if Present
(Comp_Param
) or else Present
(Param
) then
3979 if Needs_No_Actuals
(Comp
)
3980 and then Is_Array_Type
(Etype
(Comp
))
3981 and then not Expander_Active
3990 end Has_Mode_Conformant_Spec
;
3992 -- Start of processing for Analyze_Selected_Component
3995 Set_Etype
(N
, Any_Type
);
3997 if Is_Overloaded
(Name
) then
3998 Analyze_Overloaded_Selected_Component
(N
);
4001 elsif Etype
(Name
) = Any_Type
then
4002 Set_Entity
(Sel
, Any_Id
);
4003 Set_Etype
(Sel
, Any_Type
);
4007 Prefix_Type
:= Etype
(Name
);
4010 if Is_Access_Type
(Prefix_Type
) then
4012 -- A RACW object can never be used as prefix of a selected component
4013 -- since that means it is dereferenced without being a controlling
4014 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4015 -- reporting an error, we must check whether this is actually a
4016 -- dispatching call in prefix form.
4018 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
4019 and then Comes_From_Source
(N
)
4021 if Try_Object_Operation
(N
) then
4025 ("invalid dereference of a remote access-to-class-wide value",
4029 -- Normal case of selected component applied to access type
4032 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4034 if Is_Entity_Name
(Name
) then
4035 Pent
:= Entity
(Name
);
4036 elsif Nkind
(Name
) = N_Selected_Component
4037 and then Is_Entity_Name
(Selector_Name
(Name
))
4039 Pent
:= Entity
(Selector_Name
(Name
));
4042 Prefix_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, Name
);
4045 -- If we have an explicit dereference of a remote access-to-class-wide
4046 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4047 -- have to check for the case of a prefix that is a controlling operand
4048 -- of a prefixed dispatching call, as the dereference is legal in that
4049 -- case. Normally this condition is checked in Validate_Remote_Access_
4050 -- To_Class_Wide_Type, but we have to defer the checking for selected
4051 -- component prefixes because of the prefixed dispatching call case.
4052 -- Note that implicit dereferences are checked for this just above.
4054 elsif Nkind
(Name
) = N_Explicit_Dereference
4055 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
4056 and then Comes_From_Source
(N
)
4058 if Try_Object_Operation
(N
) then
4062 ("invalid dereference of a remote access-to-class-wide value",
4067 -- (Ada 2005): if the prefix is the limited view of a type, and
4068 -- the context already includes the full view, use the full view
4069 -- in what follows, either to retrieve a component of to find
4070 -- a primitive operation. If the prefix is an explicit dereference,
4071 -- set the type of the prefix to reflect this transformation.
4072 -- If the non-limited view is itself an incomplete type, get the
4073 -- full view if available.
4075 if Is_Incomplete_Type
(Prefix_Type
)
4076 and then From_Limited_With
(Prefix_Type
)
4077 and then Present
(Non_Limited_View
(Prefix_Type
))
4079 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
4081 if Nkind
(N
) = N_Explicit_Dereference
then
4082 Set_Etype
(Prefix
(N
), Prefix_Type
);
4085 elsif Ekind
(Prefix_Type
) = E_Class_Wide_Type
4086 and then From_Limited_With
(Prefix_Type
)
4087 and then Present
(Non_Limited_View
(Etype
(Prefix_Type
)))
4090 Class_Wide_Type
(Non_Limited_View
(Etype
(Prefix_Type
)));
4092 if Nkind
(N
) = N_Explicit_Dereference
then
4093 Set_Etype
(Prefix
(N
), Prefix_Type
);
4097 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
4098 Prefix_Type
:= Base_Type
(Prefix_Type
);
4101 Type_To_Use
:= Prefix_Type
;
4103 -- For class-wide types, use the entity list of the root type. This
4104 -- indirection is specially important for private extensions because
4105 -- only the root type get switched (not the class-wide type).
4107 if Is_Class_Wide_Type
(Prefix_Type
) then
4108 Type_To_Use
:= Root_Type
(Prefix_Type
);
4111 -- If the prefix is a single concurrent object, use its name in error
4112 -- messages, rather than that of its anonymous type.
4114 Is_Single_Concurrent_Object
:=
4115 Is_Concurrent_Type
(Prefix_Type
)
4116 and then Is_Internal_Name
(Chars
(Prefix_Type
))
4117 and then not Is_Derived_Type
(Prefix_Type
)
4118 and then Is_Entity_Name
(Name
);
4120 Comp
:= First_Entity
(Type_To_Use
);
4122 -- If the selector has an original discriminant, the node appears in
4123 -- an instance. Replace the discriminant with the corresponding one
4124 -- in the current discriminated type. For nested generics, this must
4125 -- be done transitively, so note the new original discriminant.
4127 if Nkind
(Sel
) = N_Identifier
4128 and then In_Instance
4129 and then Present
(Original_Discriminant
(Sel
))
4131 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
4133 -- Mark entity before rewriting, for completeness and because
4134 -- subsequent semantic checks might examine the original node.
4136 Set_Entity
(Sel
, Comp
);
4137 Rewrite
(Selector_Name
(N
), New_Occurrence_Of
(Comp
, Sloc
(N
)));
4138 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
4139 Set_Etype
(N
, Etype
(Comp
));
4140 Check_Implicit_Dereference
(N
, Etype
(Comp
));
4142 if Is_Access_Type
(Etype
(Name
)) then
4143 Insert_Explicit_Dereference
(Name
);
4144 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4147 elsif Is_Record_Type
(Prefix_Type
) then
4149 -- Find component with given name. In an instance, if the node is
4150 -- known as a prefixed call, do not examine components whose
4151 -- visibility may be accidental.
4153 while Present
(Comp
) and then not Is_Prefixed_Call
(N
) loop
4154 if Chars
(Comp
) = Chars
(Sel
)
4155 and then Is_Visible_Component
(Comp
, N
)
4157 Set_Entity_With_Style_Check
(Sel
, Comp
);
4158 Set_Etype
(Sel
, Etype
(Comp
));
4160 if Ekind
(Comp
) = E_Discriminant
then
4161 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
4163 ("cannot reference discriminant of unchecked union",
4167 if Is_Generic_Type
(Prefix_Type
)
4169 Is_Generic_Type
(Root_Type
(Prefix_Type
))
4171 Set_Original_Discriminant
(Sel
, Comp
);
4175 -- Resolve the prefix early otherwise it is not possible to
4176 -- build the actual subtype of the component: it may need
4177 -- to duplicate this prefix and duplication is only allowed
4178 -- on fully resolved expressions.
4182 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4183 -- subtypes in a package specification.
4186 -- limited with Pkg;
4188 -- type Acc_Inc is access Pkg.T;
4190 -- N : Natural := X.all.Comp; -- ERROR, limited view
4191 -- end Pkg; -- Comp is not visible
4193 if Nkind
(Name
) = N_Explicit_Dereference
4194 and then From_Limited_With
(Etype
(Prefix
(Name
)))
4195 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
4196 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
4197 N_Package_Specification
4200 ("premature usage of incomplete}", Prefix
(Name
),
4201 Etype
(Prefix
(Name
)));
4204 -- We never need an actual subtype for the case of a selection
4205 -- for a indexed component of a non-packed array, since in
4206 -- this case gigi generates all the checks and can find the
4207 -- necessary bounds information.
4209 -- We also do not need an actual subtype for the case of a
4210 -- first, last, length, or range attribute applied to a
4211 -- non-packed array, since gigi can again get the bounds in
4212 -- these cases (gigi cannot handle the packed case, since it
4213 -- has the bounds of the packed array type, not the original
4214 -- bounds of the type). However, if the prefix is itself a
4215 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4216 -- as a dynamic-sized temporary, so we do generate an actual
4217 -- subtype for this case.
4219 Parent_N
:= Parent
(N
);
4221 if not Is_Packed
(Etype
(Comp
))
4223 ((Nkind
(Parent_N
) = N_Indexed_Component
4224 and then Nkind
(Name
) /= N_Selected_Component
)
4226 (Nkind
(Parent_N
) = N_Attribute_Reference
4228 Nam_In
(Attribute_Name
(Parent_N
), Name_First
,
4233 Set_Etype
(N
, Etype
(Comp
));
4235 -- If full analysis is not enabled, we do not generate an
4236 -- actual subtype, because in the absence of expansion
4237 -- reference to a formal of a protected type, for example,
4238 -- will not be properly transformed, and will lead to
4239 -- out-of-scope references in gigi.
4241 -- In all other cases, we currently build an actual subtype.
4242 -- It seems likely that many of these cases can be avoided,
4243 -- but right now, the front end makes direct references to the
4244 -- bounds (e.g. in generating a length check), and if we do
4245 -- not make an actual subtype, we end up getting a direct
4246 -- reference to a discriminant, which will not do.
4248 elsif Full_Analysis
then
4250 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
4251 Insert_Action
(N
, Act_Decl
);
4253 if No
(Act_Decl
) then
4254 Set_Etype
(N
, Etype
(Comp
));
4257 -- Component type depends on discriminants. Enter the
4258 -- main attributes of the subtype.
4261 Subt
: constant Entity_Id
:=
4262 Defining_Identifier
(Act_Decl
);
4265 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
4266 Set_Ekind
(Subt
, Ekind
(Etype
(Comp
)));
4267 Set_Etype
(N
, Subt
);
4271 -- If Full_Analysis not enabled, just set the Etype
4274 Set_Etype
(N
, Etype
(Comp
));
4277 Check_Implicit_Dereference
(N
, Etype
(N
));
4281 -- If the prefix is a private extension, check only the visible
4282 -- components of the partial view. This must include the tag,
4283 -- which can appear in expanded code in a tag check.
4285 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
4286 and then Chars
(Selector_Name
(N
)) /= Name_uTag
4288 exit when Comp
= Last_Entity
(Type_To_Use
);
4294 -- Ada 2005 (AI-252): The selected component can be interpreted as
4295 -- a prefixed view of a subprogram. Depending on the context, this is
4296 -- either a name that can appear in a renaming declaration, or part
4297 -- of an enclosing call given in prefix form.
4299 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4300 -- selected component should resolve to a name.
4302 if Ada_Version
>= Ada_2005
4303 and then Is_Tagged_Type
(Prefix_Type
)
4304 and then not Is_Concurrent_Type
(Prefix_Type
)
4306 if Nkind
(Parent
(N
)) = N_Generic_Association
4307 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
4308 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
4310 if Find_Primitive_Operation
(N
) then
4314 elsif Try_Object_Operation
(N
) then
4318 -- If the transformation fails, it will be necessary to redo the
4319 -- analysis with all errors enabled, to indicate candidate
4320 -- interpretations and reasons for each failure ???
4324 elsif Is_Private_Type
(Prefix_Type
) then
4326 -- Allow access only to discriminants of the type. If the type has
4327 -- no full view, gigi uses the parent type for the components, so we
4328 -- do the same here.
4330 if No
(Full_View
(Prefix_Type
)) then
4331 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
4332 Comp
:= First_Entity
(Type_To_Use
);
4335 while Present
(Comp
) loop
4336 if Chars
(Comp
) = Chars
(Sel
) then
4337 if Ekind
(Comp
) = E_Discriminant
then
4338 Set_Entity_With_Style_Check
(Sel
, Comp
);
4339 Generate_Reference
(Comp
, Sel
);
4341 Set_Etype
(Sel
, Etype
(Comp
));
4342 Set_Etype
(N
, Etype
(Comp
));
4343 Check_Implicit_Dereference
(N
, Etype
(N
));
4345 if Is_Generic_Type
(Prefix_Type
)
4346 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
4348 Set_Original_Discriminant
(Sel
, Comp
);
4351 -- Before declaring an error, check whether this is tagged
4352 -- private type and a call to a primitive operation.
4354 elsif Ada_Version
>= Ada_2005
4355 and then Is_Tagged_Type
(Prefix_Type
)
4356 and then Try_Object_Operation
(N
)
4361 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4362 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
4363 Set_Entity
(Sel
, Any_Id
);
4364 Set_Etype
(N
, Any_Type
);
4373 elsif Is_Concurrent_Type
(Prefix_Type
) then
4375 -- Find visible operation with given name. For a protected type,
4376 -- the possible candidates are discriminants, entries or protected
4377 -- procedures. For a task type, the set can only include entries or
4378 -- discriminants if the task type is not an enclosing scope. If it
4379 -- is an enclosing scope (e.g. in an inner task) then all entities
4380 -- are visible, but the prefix must denote the enclosing scope, i.e.
4381 -- can only be a direct name or an expanded name.
4383 Set_Etype
(Sel
, Any_Type
);
4384 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
4386 while Present
(Comp
) loop
4387 if Chars
(Comp
) = Chars
(Sel
) then
4388 if Is_Overloadable
(Comp
) then
4389 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
4391 -- If the prefix is tagged, the correct interpretation may
4392 -- lie in the primitive or class-wide operations of the
4393 -- type. Perform a simple conformance check to determine
4394 -- whether Try_Object_Operation should be invoked even if
4395 -- a visible entity is found.
4397 if Is_Tagged_Type
(Prefix_Type
)
4399 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
4401 N_Indexed_Component
)
4402 and then Has_Mode_Conformant_Spec
(Comp
)
4404 Has_Candidate
:= True;
4407 -- Note: a selected component may not denote a component of a
4408 -- protected type (4.1.3(7)).
4410 elsif Ekind_In
(Comp
, E_Discriminant
, E_Entry_Family
)
4412 and then not Is_Protected_Type
(Prefix_Type
)
4413 and then Is_Entity_Name
(Name
))
4415 Set_Entity_With_Style_Check
(Sel
, Comp
);
4416 Generate_Reference
(Comp
, Sel
);
4418 -- The selector is not overloadable, so we have a candidate
4421 Has_Candidate
:= True;
4427 Set_Etype
(Sel
, Etype
(Comp
));
4428 Set_Etype
(N
, Etype
(Comp
));
4430 if Ekind
(Comp
) = E_Discriminant
then
4431 Set_Original_Discriminant
(Sel
, Comp
);
4434 -- For access type case, introduce explicit dereference for
4435 -- more uniform treatment of entry calls.
4437 if Is_Access_Type
(Etype
(Name
)) then
4438 Insert_Explicit_Dereference
(Name
);
4440 (Warn_On_Dereference
, "?d?implicit dereference", N
);
4446 exit when not In_Scope
4448 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
4451 -- If there is no visible entity with the given name or none of the
4452 -- visible entities are plausible interpretations, check whether
4453 -- there is some other primitive operation with that name.
4455 if Ada_Version
>= Ada_2005
4456 and then Is_Tagged_Type
(Prefix_Type
)
4458 if (Etype
(N
) = Any_Type
4459 or else not Has_Candidate
)
4460 and then Try_Object_Operation
(N
)
4464 -- If the context is not syntactically a procedure call, it
4465 -- may be a call to a primitive function declared outside of
4466 -- the synchronized type.
4468 -- If the context is a procedure call, there might still be
4469 -- an overloading between an entry and a primitive procedure
4470 -- declared outside of the synchronized type, called in prefix
4471 -- notation. This is harder to disambiguate because in one case
4472 -- the controlling formal is implicit ???
4474 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
4475 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
4476 and then Try_Object_Operation
(N
)
4481 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4482 -- entry or procedure of a tagged concurrent type we must check
4483 -- if there are class-wide subprograms covering the primitive. If
4484 -- true then Try_Object_Operation reports the error.
4487 and then Is_Concurrent_Type
(Prefix_Type
)
4488 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
4490 -- Duplicate the call. This is required to avoid problems with
4491 -- the tree transformations performed by Try_Object_Operation.
4492 -- Set properly the parent of the copied call, because it is
4493 -- about to be reanalyzed.
4497 Par
: constant Node_Id
:= New_Copy_Tree
(Parent
(N
));
4500 Set_Parent
(Par
, Parent
(Parent
(N
)));
4502 if Try_Object_Operation
4503 (Sinfo
.Name
(Par
), CW_Test_Only
=> True)
4511 if Etype
(N
) = Any_Type
and then Is_Protected_Type
(Prefix_Type
) then
4513 -- Case of a prefix of a protected type: selector might denote
4514 -- an invisible private component.
4516 Comp
:= First_Private_Entity
(Base_Type
(Prefix_Type
));
4517 while Present
(Comp
) and then Chars
(Comp
) /= Chars
(Sel
) loop
4521 if Present
(Comp
) then
4522 if Is_Single_Concurrent_Object
then
4523 Error_Msg_Node_2
:= Entity
(Name
);
4524 Error_Msg_NE
("invisible selector& for &", N
, Sel
);
4527 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4528 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
4534 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
4539 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
4542 -- If N still has no type, the component is not defined in the prefix
4544 if Etype
(N
) = Any_Type
then
4546 if Is_Single_Concurrent_Object
then
4547 Error_Msg_Node_2
:= Entity
(Name
);
4548 Error_Msg_NE
("no selector& for&", N
, Sel
);
4550 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
4552 elsif Is_Generic_Type
(Prefix_Type
)
4553 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
4554 and then Prefix_Type
/= Etype
(Prefix_Type
)
4555 and then Is_Record_Type
(Etype
(Prefix_Type
))
4557 -- If this is a derived formal type, the parent may have
4558 -- different visibility at this point. Try for an inherited
4559 -- component before reporting an error.
4561 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
4562 Analyze_Selected_Component
(N
);
4565 -- Similarly, if this is the actual for a formal derived type, the
4566 -- component inherited from the generic parent may not be visible
4567 -- in the actual, but the selected component is legal.
4569 elsif Ekind
(Prefix_Type
) = E_Record_Subtype_With_Private
4570 and then Is_Generic_Actual_Type
(Prefix_Type
)
4571 and then Present
(Full_View
(Prefix_Type
))
4574 Find_Component_In_Instance
4575 (Generic_Parent_Type
(Parent
(Prefix_Type
)));
4578 -- Finally, the formal and the actual may be private extensions,
4579 -- but the generic is declared in a child unit of the parent, and
4580 -- an additional step is needed to retrieve the proper scope.
4583 and then Present
(Parent_Subtype
(Etype
(Base_Type
(Prefix_Type
))))
4585 Find_Component_In_Instance
4586 (Parent_Subtype
(Etype
(Base_Type
(Prefix_Type
))));
4589 -- Component not found, specialize error message when appropriate
4592 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
4594 -- Check whether this is a component of the base type which
4595 -- is absent from a statically constrained subtype. This will
4596 -- raise constraint error at run time, but is not a compile-
4597 -- time error. When the selector is illegal for base type as
4598 -- well fall through and generate a compilation error anyway.
4600 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
4601 while Present
(Comp
) loop
4602 if Chars
(Comp
) = Chars
(Sel
)
4603 and then Is_Visible_Component
(Comp
)
4605 Set_Entity_With_Style_Check
(Sel
, Comp
);
4606 Generate_Reference
(Comp
, Sel
);
4607 Set_Etype
(Sel
, Etype
(Comp
));
4608 Set_Etype
(N
, Etype
(Comp
));
4610 -- Emit appropriate message. Gigi will replace the
4611 -- node subsequently with the appropriate Raise.
4613 -- In SPARK mode, this is made into an error to simplify
4614 -- the processing of the formal verification backend.
4617 Apply_Compile_Time_Constraint_Error
4618 (N
, "component not present in }",
4619 CE_Discriminant_Check_Failed
,
4620 Ent
=> Prefix_Type
, Rep
=> False);
4622 Apply_Compile_Time_Constraint_Error
4623 (N
, "component not present in }??",
4624 CE_Discriminant_Check_Failed
,
4625 Ent
=> Prefix_Type
, Rep
=> False);
4628 Set_Raises_Constraint_Error
(N
);
4632 Next_Component
(Comp
);
4637 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4638 Error_Msg_NE
("no selector& for}", N
, Sel
);
4640 -- Add information in the case of an incomplete prefix
4642 if Is_Incomplete_Type
(Type_To_Use
) then
4644 Inc
: constant Entity_Id
:= First_Subtype
(Type_To_Use
);
4647 if From_Limited_With
(Scope
(Type_To_Use
)) then
4649 ("\limited view of& has no components", N
, Inc
);
4653 ("\premature usage of incomplete type&", N
, Inc
);
4655 if Nkind
(Parent
(Inc
)) =
4656 N_Incomplete_Type_Declaration
4658 -- Record location of premature use in entity so that
4659 -- a continuation message is generated when the
4660 -- completion is seen.
4662 Set_Premature_Use
(Parent
(Inc
), N
);
4668 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
4671 Set_Entity
(Sel
, Any_Id
);
4672 Set_Etype
(Sel
, Any_Type
);
4674 end Analyze_Selected_Component
;
4676 ---------------------------
4677 -- Analyze_Short_Circuit --
4678 ---------------------------
4680 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
4681 L
: constant Node_Id
:= Left_Opnd
(N
);
4682 R
: constant Node_Id
:= Right_Opnd
(N
);
4687 Analyze_Expression
(L
);
4688 Analyze_Expression
(R
);
4689 Set_Etype
(N
, Any_Type
);
4691 if not Is_Overloaded
(L
) then
4692 if Root_Type
(Etype
(L
)) = Standard_Boolean
4693 and then Has_Compatible_Type
(R
, Etype
(L
))
4695 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
4699 Get_First_Interp
(L
, Ind
, It
);
4700 while Present
(It
.Typ
) loop
4701 if Root_Type
(It
.Typ
) = Standard_Boolean
4702 and then Has_Compatible_Type
(R
, It
.Typ
)
4704 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
4707 Get_Next_Interp
(Ind
, It
);
4711 -- Here we have failed to find an interpretation. Clearly we know that
4712 -- it is not the case that both operands can have an interpretation of
4713 -- Boolean, but this is by far the most likely intended interpretation.
4714 -- So we simply resolve both operands as Booleans, and at least one of
4715 -- these resolutions will generate an error message, and we do not need
4716 -- to give another error message on the short circuit operation itself.
4718 if Etype
(N
) = Any_Type
then
4719 Resolve
(L
, Standard_Boolean
);
4720 Resolve
(R
, Standard_Boolean
);
4721 Set_Etype
(N
, Standard_Boolean
);
4723 end Analyze_Short_Circuit
;
4729 procedure Analyze_Slice
(N
: Node_Id
) is
4730 D
: constant Node_Id
:= Discrete_Range
(N
);
4731 P
: constant Node_Id
:= Prefix
(N
);
4732 Array_Type
: Entity_Id
;
4733 Index_Type
: Entity_Id
;
4735 procedure Analyze_Overloaded_Slice
;
4736 -- If the prefix is overloaded, select those interpretations that
4737 -- yield a one-dimensional array type.
4739 ------------------------------
4740 -- Analyze_Overloaded_Slice --
4741 ------------------------------
4743 procedure Analyze_Overloaded_Slice
is
4749 Set_Etype
(N
, Any_Type
);
4751 Get_First_Interp
(P
, I
, It
);
4752 while Present
(It
.Nam
) loop
4755 if Is_Access_Type
(Typ
) then
4756 Typ
:= Designated_Type
(Typ
);
4758 (Warn_On_Dereference
, "?d?implicit dereference", N
);
4761 if Is_Array_Type
(Typ
)
4762 and then Number_Dimensions
(Typ
) = 1
4763 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
4765 Add_One_Interp
(N
, Typ
, Typ
);
4768 Get_Next_Interp
(I
, It
);
4771 if Etype
(N
) = Any_Type
then
4772 Error_Msg_N
("expect array type in prefix of slice", N
);
4774 end Analyze_Overloaded_Slice
;
4776 -- Start of processing for Analyze_Slice
4779 if Comes_From_Source
(N
) then
4780 Check_SPARK_Restriction
("slice is not allowed", N
);
4786 if Is_Overloaded
(P
) then
4787 Analyze_Overloaded_Slice
;
4790 Array_Type
:= Etype
(P
);
4791 Set_Etype
(N
, Any_Type
);
4793 if Is_Access_Type
(Array_Type
) then
4794 Array_Type
:= Designated_Type
(Array_Type
);
4795 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4798 if not Is_Array_Type
(Array_Type
) then
4799 Wrong_Type
(P
, Any_Array
);
4801 elsif Number_Dimensions
(Array_Type
) > 1 then
4803 ("type is not one-dimensional array in slice prefix", N
);
4806 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
4807 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
4809 Index_Type
:= Etype
(First_Index
(Array_Type
));
4812 if not Has_Compatible_Type
(D
, Index_Type
) then
4813 Wrong_Type
(D
, Index_Type
);
4815 Set_Etype
(N
, Array_Type
);
4821 -----------------------------
4822 -- Analyze_Type_Conversion --
4823 -----------------------------
4825 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
4826 Expr
: constant Node_Id
:= Expression
(N
);
4830 -- If Conversion_OK is set, then the Etype is already set, and the
4831 -- only processing required is to analyze the expression. This is
4832 -- used to construct certain "illegal" conversions which are not
4833 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4834 -- Sinfo for further details.
4836 if Conversion_OK
(N
) then
4841 -- Otherwise full type analysis is required, as well as some semantic
4842 -- checks to make sure the argument of the conversion is appropriate.
4844 Find_Type
(Subtype_Mark
(N
));
4845 T
:= Entity
(Subtype_Mark
(N
));
4847 Check_Fully_Declared
(T
, N
);
4848 Analyze_Expression
(Expr
);
4849 Validate_Remote_Type_Type_Conversion
(N
);
4851 -- Only remaining step is validity checks on the argument. These
4852 -- are skipped if the conversion does not come from the source.
4854 if not Comes_From_Source
(N
) then
4857 -- If there was an error in a generic unit, no need to replicate the
4858 -- error message. Conversely, constant-folding in the generic may
4859 -- transform the argument of a conversion into a string literal, which
4860 -- is legal. Therefore the following tests are not performed in an
4863 elsif In_Instance
then
4866 elsif Nkind
(Expr
) = N_Null
then
4867 Error_Msg_N
("argument of conversion cannot be null", N
);
4868 Error_Msg_N
("\use qualified expression instead", N
);
4869 Set_Etype
(N
, Any_Type
);
4871 elsif Nkind
(Expr
) = N_Aggregate
then
4872 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
4873 Error_Msg_N
("\use qualified expression instead", N
);
4875 elsif Nkind
(Expr
) = N_Allocator
then
4876 Error_Msg_N
("argument of conversion cannot be an allocator", N
);
4877 Error_Msg_N
("\use qualified expression instead", N
);
4879 elsif Nkind
(Expr
) = N_String_Literal
then
4880 Error_Msg_N
("argument of conversion cannot be string literal", N
);
4881 Error_Msg_N
("\use qualified expression instead", N
);
4883 elsif Nkind
(Expr
) = N_Character_Literal
then
4884 if Ada_Version
= Ada_83
then
4887 Error_Msg_N
("argument of conversion cannot be character literal",
4889 Error_Msg_N
("\use qualified expression instead", N
);
4892 elsif Nkind
(Expr
) = N_Attribute_Reference
4894 Nam_In
(Attribute_Name
(Expr
), Name_Access
,
4895 Name_Unchecked_Access
,
4896 Name_Unrestricted_Access
)
4898 Error_Msg_N
("argument of conversion cannot be access", N
);
4899 Error_Msg_N
("\use qualified expression instead", N
);
4901 end Analyze_Type_Conversion
;
4903 ----------------------
4904 -- Analyze_Unary_Op --
4905 ----------------------
4907 procedure Analyze_Unary_Op
(N
: Node_Id
) is
4908 R
: constant Node_Id
:= Right_Opnd
(N
);
4909 Op_Id
: Entity_Id
:= Entity
(N
);
4912 Set_Etype
(N
, Any_Type
);
4913 Candidate_Type
:= Empty
;
4915 Analyze_Expression
(R
);
4917 if Present
(Op_Id
) then
4918 if Ekind
(Op_Id
) = E_Operator
then
4919 Find_Unary_Types
(R
, Op_Id
, N
);
4921 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4925 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
4926 while Present
(Op_Id
) loop
4927 if Ekind
(Op_Id
) = E_Operator
then
4928 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
4929 Find_Unary_Types
(R
, Op_Id
, N
);
4932 elsif Is_Overloadable
(Op_Id
) then
4933 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
4936 Op_Id
:= Homonym
(Op_Id
);
4941 end Analyze_Unary_Op
;
4943 ----------------------------------
4944 -- Analyze_Unchecked_Expression --
4945 ----------------------------------
4947 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
4949 Analyze
(Expression
(N
), Suppress
=> All_Checks
);
4950 Set_Etype
(N
, Etype
(Expression
(N
)));
4951 Save_Interps
(Expression
(N
), N
);
4952 end Analyze_Unchecked_Expression
;
4954 ---------------------------------------
4955 -- Analyze_Unchecked_Type_Conversion --
4956 ---------------------------------------
4958 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
4960 Find_Type
(Subtype_Mark
(N
));
4961 Analyze_Expression
(Expression
(N
));
4962 Set_Etype
(N
, Entity
(Subtype_Mark
(N
)));
4963 end Analyze_Unchecked_Type_Conversion
;
4965 ------------------------------------
4966 -- Analyze_User_Defined_Binary_Op --
4967 ------------------------------------
4969 procedure Analyze_User_Defined_Binary_Op
4974 -- Only do analysis if the operator Comes_From_Source, since otherwise
4975 -- the operator was generated by the expander, and all such operators
4976 -- always refer to the operators in package Standard.
4978 if Comes_From_Source
(N
) then
4980 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
4981 F2
: constant Entity_Id
:= Next_Formal
(F1
);
4984 -- Verify that Op_Id is a visible binary function. Note that since
4985 -- we know Op_Id is overloaded, potentially use visible means use
4986 -- visible for sure (RM 9.4(11)).
4988 if Ekind
(Op_Id
) = E_Function
4989 and then Present
(F2
)
4990 and then (Is_Immediately_Visible
(Op_Id
)
4991 or else Is_Potentially_Use_Visible
(Op_Id
))
4992 and then Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
4993 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
4995 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4997 -- If the left operand is overloaded, indicate that the
4998 -- current type is a viable candidate. This is redundant
4999 -- in most cases, but for equality and comparison operators
5000 -- where the context does not impose a type on the operands,
5001 -- setting the proper type is necessary to avoid subsequent
5002 -- ambiguities during resolution, when both user-defined and
5003 -- predefined operators may be candidates.
5005 if Is_Overloaded
(Left_Opnd
(N
)) then
5006 Set_Etype
(Left_Opnd
(N
), Etype
(F1
));
5009 if Debug_Flag_E
then
5010 Write_Str
("user defined operator ");
5011 Write_Name
(Chars
(Op_Id
));
5012 Write_Str
(" on node ");
5013 Write_Int
(Int
(N
));
5019 end Analyze_User_Defined_Binary_Op
;
5021 -----------------------------------
5022 -- Analyze_User_Defined_Unary_Op --
5023 -----------------------------------
5025 procedure Analyze_User_Defined_Unary_Op
5030 -- Only do analysis if the operator Comes_From_Source, since otherwise
5031 -- the operator was generated by the expander, and all such operators
5032 -- always refer to the operators in package Standard.
5034 if Comes_From_Source
(N
) then
5036 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
5039 -- Verify that Op_Id is a visible unary function. Note that since
5040 -- we know Op_Id is overloaded, potentially use visible means use
5041 -- visible for sure (RM 9.4(11)).
5043 if Ekind
(Op_Id
) = E_Function
5044 and then No
(Next_Formal
(F
))
5045 and then (Is_Immediately_Visible
(Op_Id
)
5046 or else Is_Potentially_Use_Visible
(Op_Id
))
5047 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
5049 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
5053 end Analyze_User_Defined_Unary_Op
;
5055 ---------------------------
5056 -- Check_Arithmetic_Pair --
5057 ---------------------------
5059 procedure Check_Arithmetic_Pair
5060 (T1
, T2
: Entity_Id
;
5064 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
5066 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
5067 -- Check whether the fixed-point type Typ has a user-defined operator
5068 -- (multiplication or division) that should hide the corresponding
5069 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5070 -- such operators more visible and therefore useful.
5072 -- If the name of the operation is an expanded name with prefix
5073 -- Standard, the predefined universal fixed operator is available,
5074 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5076 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
;
5077 -- Get specific type (i.e. non-universal type if there is one)
5083 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
5084 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
5090 -- If the universal_fixed operation is given explicitly the rule
5091 -- concerning primitive operations of the type do not apply.
5093 if Nkind
(N
) = N_Function_Call
5094 and then Nkind
(Name
(N
)) = N_Expanded_Name
5095 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
5100 -- The operation is treated as primitive if it is declared in the
5101 -- same scope as the type, and therefore on the same entity chain.
5103 Ent
:= Next_Entity
(Typ
);
5104 while Present
(Ent
) loop
5105 if Chars
(Ent
) = Chars
(Op
) then
5106 F1
:= First_Formal
(Ent
);
5107 F2
:= Next_Formal
(F1
);
5109 -- The operation counts as primitive if either operand or
5110 -- result are of the given base type, and both operands are
5111 -- fixed point types.
5113 if (Base_Type
(Etype
(F1
)) = Bas
5114 and then Is_Fixed_Point_Type
(Etype
(F2
)))
5117 (Base_Type
(Etype
(F2
)) = Bas
5118 and then Is_Fixed_Point_Type
(Etype
(F1
)))
5121 (Base_Type
(Etype
(Ent
)) = Bas
5122 and then Is_Fixed_Point_Type
(Etype
(F1
))
5123 and then Is_Fixed_Point_Type
(Etype
(F2
)))
5139 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
is
5141 if T1
= Universal_Integer
or else T1
= Universal_Real
then
5142 return Base_Type
(T2
);
5144 return Base_Type
(T1
);
5148 -- Start of processing for Check_Arithmetic_Pair
5151 if Nam_In
(Op_Name
, Name_Op_Add
, Name_Op_Subtract
) then
5152 if Is_Numeric_Type
(T1
)
5153 and then Is_Numeric_Type
(T2
)
5154 and then (Covers
(T1
=> T1
, T2
=> T2
)
5156 Covers
(T1
=> T2
, T2
=> T1
))
5158 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
5161 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
) then
5162 if Is_Fixed_Point_Type
(T1
)
5163 and then (Is_Fixed_Point_Type
(T2
) or else T2
= Universal_Real
)
5165 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5166 -- and no further processing is required (this is the case of an
5167 -- operator constructed by Exp_Fixd for a fixed point operation)
5168 -- Otherwise add one interpretation with universal fixed result
5169 -- If the operator is given in functional notation, it comes
5170 -- from source and Fixed_As_Integer cannot apply.
5172 if (Nkind
(N
) not in N_Op
5173 or else not Treat_Fixed_As_Integer
(N
))
5175 (not Has_Fixed_Op
(T1
, Op_Id
)
5176 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
5178 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
5181 elsif Is_Fixed_Point_Type
(T2
)
5182 and then (Nkind
(N
) not in N_Op
5183 or else not Treat_Fixed_As_Integer
(N
))
5184 and then T1
= Universal_Real
5186 (not Has_Fixed_Op
(T1
, Op_Id
)
5187 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
5189 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
5191 elsif Is_Numeric_Type
(T1
)
5192 and then Is_Numeric_Type
(T2
)
5193 and then (Covers
(T1
=> T1
, T2
=> T2
)
5195 Covers
(T1
=> T2
, T2
=> T1
))
5197 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
5199 elsif Is_Fixed_Point_Type
(T1
)
5200 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5201 or else T2
= Universal_Integer
)
5203 Add_One_Interp
(N
, Op_Id
, T1
);
5205 elsif T2
= Universal_Real
5206 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
5207 and then Op_Name
= Name_Op_Multiply
5209 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
5211 elsif T1
= Universal_Real
5212 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5214 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
5216 elsif Is_Fixed_Point_Type
(T2
)
5217 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
5218 or else T1
= Universal_Integer
)
5219 and then Op_Name
= Name_Op_Multiply
5221 Add_One_Interp
(N
, Op_Id
, T2
);
5223 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
5224 Add_One_Interp
(N
, Op_Id
, T1
);
5226 elsif T2
= Universal_Real
5227 and then T1
= Universal_Integer
5228 and then Op_Name
= Name_Op_Multiply
5230 Add_One_Interp
(N
, Op_Id
, T2
);
5233 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
5235 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5236 -- set does not require any special processing, since the Etype is
5237 -- already set (case of operation constructed by Exp_Fixed).
5239 if Is_Integer_Type
(T1
)
5240 and then (Covers
(T1
=> T1
, T2
=> T2
)
5242 Covers
(T1
=> T2
, T2
=> T1
))
5244 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
5247 elsif Op_Name
= Name_Op_Expon
then
5248 if Is_Numeric_Type
(T1
)
5249 and then not Is_Fixed_Point_Type
(T1
)
5250 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5251 or else T2
= Universal_Integer
)
5253 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
5256 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
5258 -- If not one of the predefined operators, the node may be one
5259 -- of the intrinsic functions. Its kind is always specific, and
5260 -- we can use it directly, rather than the name of the operation.
5262 if Is_Integer_Type
(T1
)
5263 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
5264 or else T2
= Universal_Integer
)
5266 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
5269 end Check_Arithmetic_Pair
;
5271 -------------------------------
5272 -- Check_Misspelled_Selector --
5273 -------------------------------
5275 procedure Check_Misspelled_Selector
5276 (Prefix
: Entity_Id
;
5279 Max_Suggestions
: constant := 2;
5280 Nr_Of_Suggestions
: Natural := 0;
5282 Suggestion_1
: Entity_Id
:= Empty
;
5283 Suggestion_2
: Entity_Id
:= Empty
;
5288 -- All the components of the prefix of selector Sel are matched
5289 -- against Sel and a count is maintained of possible misspellings.
5290 -- When at the end of the analysis there are one or two (not more!)
5291 -- possible misspellings, these misspellings will be suggested as
5292 -- possible correction.
5294 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
5296 -- Concurrent types should be handled as well ???
5301 Comp
:= First_Entity
(Prefix
);
5302 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
5303 if Is_Visible_Component
(Comp
) then
5304 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
5305 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
5307 case Nr_Of_Suggestions
is
5308 when 1 => Suggestion_1
:= Comp
;
5309 when 2 => Suggestion_2
:= Comp
;
5310 when others => exit;
5315 Comp
:= Next_Entity
(Comp
);
5318 -- Report at most two suggestions
5320 if Nr_Of_Suggestions
= 1 then
5321 Error_Msg_NE
-- CODEFIX
5322 ("\possible misspelling of&", Sel
, Suggestion_1
);
5324 elsif Nr_Of_Suggestions
= 2 then
5325 Error_Msg_Node_2
:= Suggestion_2
;
5326 Error_Msg_NE
-- CODEFIX
5327 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
5329 end Check_Misspelled_Selector
;
5331 ----------------------
5332 -- Defined_In_Scope --
5333 ----------------------
5335 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean
5337 S1
: constant Entity_Id
:= Scope
(Base_Type
(T
));
5340 or else (S1
= System_Aux_Id
and then S
= Scope
(S1
));
5341 end Defined_In_Scope
;
5347 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
5353 Void_Interp_Seen
: Boolean := False;
5356 pragma Warnings
(Off
, Boolean);
5359 if Ada_Version
>= Ada_2005
then
5360 Actual
:= First_Actual
(N
);
5361 while Present
(Actual
) loop
5363 -- Ada 2005 (AI-50217): Post an error in case of premature
5364 -- usage of an entity from the limited view.
5366 if not Analyzed
(Etype
(Actual
))
5367 and then From_Limited_With
(Etype
(Actual
))
5369 Error_Msg_Qual_Level
:= 1;
5371 ("missing with_clause for scope of imported type&",
5372 Actual
, Etype
(Actual
));
5373 Error_Msg_Qual_Level
:= 0;
5376 Next_Actual
(Actual
);
5380 -- Analyze each candidate call again, with full error reporting
5384 ("no candidate interpretations match the actuals:!", Nam
);
5385 Err_Mode
:= All_Errors_Mode
;
5386 All_Errors_Mode
:= True;
5388 -- If this is a call to an operation of a concurrent type,
5389 -- the failed interpretations have been removed from the
5390 -- name. Recover them to provide full diagnostics.
5392 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
5393 Set_Entity
(Nam
, Empty
);
5394 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
5395 Set_Is_Overloaded
(New_Nam
, False);
5396 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
5397 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
5398 Analyze_Selected_Component
(New_Nam
);
5399 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
5401 Get_First_Interp
(Nam
, X
, It
);
5404 while Present
(It
.Nam
) loop
5405 if Etype
(It
.Nam
) = Standard_Void_Type
then
5406 Void_Interp_Seen
:= True;
5409 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
5410 Get_Next_Interp
(X
, It
);
5413 if Nkind
(N
) = N_Function_Call
then
5414 Get_First_Interp
(Nam
, X
, It
);
5415 while Present
(It
.Nam
) loop
5416 if Ekind_In
(It
.Nam
, E_Function
, E_Operator
) then
5419 Get_Next_Interp
(X
, It
);
5423 -- If all interpretations are procedures, this deserves a
5424 -- more precise message. Ditto if this appears as the prefix
5425 -- of a selected component, which may be a lexical error.
5428 ("\context requires function call, found procedure name", Nam
);
5430 if Nkind
(Parent
(N
)) = N_Selected_Component
5431 and then N
= Prefix
(Parent
(N
))
5433 Error_Msg_N
-- CODEFIX
5434 ("\period should probably be semicolon", Parent
(N
));
5437 elsif Nkind
(N
) = N_Procedure_Call_Statement
5438 and then not Void_Interp_Seen
5441 "\function name found in procedure call", Nam
);
5444 All_Errors_Mode
:= Err_Mode
;
5447 ---------------------------
5448 -- Find_Arithmetic_Types --
5449 ---------------------------
5451 procedure Find_Arithmetic_Types
5456 Index1
: Interp_Index
;
5457 Index2
: Interp_Index
;
5461 procedure Check_Right_Argument
(T
: Entity_Id
);
5462 -- Check right operand of operator
5464 --------------------------
5465 -- Check_Right_Argument --
5466 --------------------------
5468 procedure Check_Right_Argument
(T
: Entity_Id
) is
5470 if not Is_Overloaded
(R
) then
5471 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
5473 Get_First_Interp
(R
, Index2
, It2
);
5474 while Present
(It2
.Typ
) loop
5475 Check_Arithmetic_Pair
(T
, It2
.Typ
, Op_Id
, N
);
5476 Get_Next_Interp
(Index2
, It2
);
5479 end Check_Right_Argument
;
5481 -- Start of processing for Find_Arithmetic_Types
5484 if not Is_Overloaded
(L
) then
5485 Check_Right_Argument
(Etype
(L
));
5488 Get_First_Interp
(L
, Index1
, It1
);
5489 while Present
(It1
.Typ
) loop
5490 Check_Right_Argument
(It1
.Typ
);
5491 Get_Next_Interp
(Index1
, It1
);
5495 end Find_Arithmetic_Types
;
5497 ------------------------
5498 -- Find_Boolean_Types --
5499 ------------------------
5501 procedure Find_Boolean_Types
5506 Index
: Interp_Index
;
5509 procedure Check_Numeric_Argument
(T
: Entity_Id
);
5510 -- Special case for logical operations one of whose operands is an
5511 -- integer literal. If both are literal the result is any modular type.
5513 ----------------------------
5514 -- Check_Numeric_Argument --
5515 ----------------------------
5517 procedure Check_Numeric_Argument
(T
: Entity_Id
) is
5519 if T
= Universal_Integer
then
5520 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
5522 elsif Is_Modular_Integer_Type
(T
) then
5523 Add_One_Interp
(N
, Op_Id
, T
);
5525 end Check_Numeric_Argument
;
5527 -- Start of processing for Find_Boolean_Types
5530 if not Is_Overloaded
(L
) then
5531 if Etype
(L
) = Universal_Integer
5532 or else Etype
(L
) = Any_Modular
5534 if not Is_Overloaded
(R
) then
5535 Check_Numeric_Argument
(Etype
(R
));
5538 Get_First_Interp
(R
, Index
, It
);
5539 while Present
(It
.Typ
) loop
5540 Check_Numeric_Argument
(It
.Typ
);
5541 Get_Next_Interp
(Index
, It
);
5545 -- If operands are aggregates, we must assume that they may be
5546 -- boolean arrays, and leave disambiguation for the second pass.
5547 -- If only one is an aggregate, verify that the other one has an
5548 -- interpretation as a boolean array
5550 elsif Nkind
(L
) = N_Aggregate
then
5551 if Nkind
(R
) = N_Aggregate
then
5552 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
5554 elsif not Is_Overloaded
(R
) then
5555 if Valid_Boolean_Arg
(Etype
(R
)) then
5556 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
5560 Get_First_Interp
(R
, Index
, It
);
5561 while Present
(It
.Typ
) loop
5562 if Valid_Boolean_Arg
(It
.Typ
) then
5563 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5566 Get_Next_Interp
(Index
, It
);
5570 elsif Valid_Boolean_Arg
(Etype
(L
))
5571 and then Has_Compatible_Type
(R
, Etype
(L
))
5573 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
5577 Get_First_Interp
(L
, Index
, It
);
5578 while Present
(It
.Typ
) loop
5579 if Valid_Boolean_Arg
(It
.Typ
)
5580 and then Has_Compatible_Type
(R
, It
.Typ
)
5582 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5585 Get_Next_Interp
(Index
, It
);
5588 end Find_Boolean_Types
;
5590 ---------------------------
5591 -- Find_Comparison_Types --
5592 ---------------------------
5594 procedure Find_Comparison_Types
5599 Index
: Interp_Index
;
5601 Found
: Boolean := False;
5604 Scop
: Entity_Id
:= Empty
;
5606 procedure Try_One_Interp
(T1
: Entity_Id
);
5607 -- Routine to try one proposed interpretation. Note that the context
5608 -- of the operator plays no role in resolving the arguments, so that
5609 -- if there is more than one interpretation of the operands that is
5610 -- compatible with comparison, the operation is ambiguous.
5612 --------------------
5613 -- Try_One_Interp --
5614 --------------------
5616 procedure Try_One_Interp
(T1
: Entity_Id
) is
5619 -- If the operator is an expanded name, then the type of the operand
5620 -- must be defined in the corresponding scope. If the type is
5621 -- universal, the context will impose the correct type.
5624 and then not Defined_In_Scope
(T1
, Scop
)
5625 and then T1
/= Universal_Integer
5626 and then T1
/= Universal_Real
5627 and then T1
/= Any_String
5628 and then T1
/= Any_Composite
5633 if Valid_Comparison_Arg
(T1
)
5634 and then Has_Compatible_Type
(R
, T1
)
5637 and then Base_Type
(T1
) /= Base_Type
(T_F
)
5639 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
5641 if It
= No_Interp
then
5642 Ambiguous_Operands
(N
);
5643 Set_Etype
(L
, Any_Type
);
5657 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
5662 -- Start of processing for Find_Comparison_Types
5665 -- If left operand is aggregate, the right operand has to
5666 -- provide a usable type for it.
5668 if Nkind
(L
) = N_Aggregate
5669 and then Nkind
(R
) /= N_Aggregate
5671 Find_Comparison_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
5675 if Nkind
(N
) = N_Function_Call
5676 and then Nkind
(Name
(N
)) = N_Expanded_Name
5678 Scop
:= Entity
(Prefix
(Name
(N
)));
5680 -- The prefix may be a package renaming, and the subsequent test
5681 -- requires the original package.
5683 if Ekind
(Scop
) = E_Package
5684 and then Present
(Renamed_Entity
(Scop
))
5686 Scop
:= Renamed_Entity
(Scop
);
5687 Set_Entity
(Prefix
(Name
(N
)), Scop
);
5691 if not Is_Overloaded
(L
) then
5692 Try_One_Interp
(Etype
(L
));
5695 Get_First_Interp
(L
, Index
, It
);
5696 while Present
(It
.Typ
) loop
5697 Try_One_Interp
(It
.Typ
);
5698 Get_Next_Interp
(Index
, It
);
5701 end Find_Comparison_Types
;
5703 ----------------------------------------
5704 -- Find_Non_Universal_Interpretations --
5705 ----------------------------------------
5707 procedure Find_Non_Universal_Interpretations
5713 Index
: Interp_Index
;
5717 if T1
= Universal_Integer
5718 or else T1
= Universal_Real
5720 -- If the left operand of an equality operator is null, the visibility
5721 -- of the operator must be determined from the interpretation of the
5722 -- right operand. This processing must be done for Any_Access, which
5723 -- is the internal representation of the type of the literal null.
5725 or else T1
= Any_Access
5727 if not Is_Overloaded
(R
) then
5729 (N
, Op_Id
, Standard_Boolean
, Base_Type
(Etype
(R
)));
5731 Get_First_Interp
(R
, Index
, It
);
5732 while Present
(It
.Typ
) loop
5733 if Covers
(It
.Typ
, T1
) then
5735 (N
, Op_Id
, Standard_Boolean
, Base_Type
(It
.Typ
));
5738 Get_Next_Interp
(Index
, It
);
5742 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(T1
));
5744 end Find_Non_Universal_Interpretations
;
5746 ------------------------------
5747 -- Find_Concatenation_Types --
5748 ------------------------------
5750 procedure Find_Concatenation_Types
5755 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
5758 if Is_Array_Type
(Op_Type
)
5759 and then not Is_Limited_Type
(Op_Type
)
5761 and then (Has_Compatible_Type
(L
, Op_Type
)
5763 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
5765 and then (Has_Compatible_Type
(R
, Op_Type
)
5767 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
5769 Add_One_Interp
(N
, Op_Id
, Op_Type
);
5771 end Find_Concatenation_Types
;
5773 -------------------------
5774 -- Find_Equality_Types --
5775 -------------------------
5777 procedure Find_Equality_Types
5782 Index
: Interp_Index
;
5784 Found
: Boolean := False;
5787 Scop
: Entity_Id
:= Empty
;
5789 procedure Try_One_Interp
(T1
: Entity_Id
);
5790 -- The context of the equality operator plays no role in resolving the
5791 -- arguments, so that if there is more than one interpretation of the
5792 -- operands that is compatible with equality, the construct is ambiguous
5793 -- and an error can be emitted now, after trying to disambiguate, i.e.
5794 -- applying preference rules.
5796 --------------------
5797 -- Try_One_Interp --
5798 --------------------
5800 procedure Try_One_Interp
(T1
: Entity_Id
) is
5801 Bas
: constant Entity_Id
:= Base_Type
(T1
);
5804 -- If the operator is an expanded name, then the type of the operand
5805 -- must be defined in the corresponding scope. If the type is
5806 -- universal, the context will impose the correct type. An anonymous
5807 -- type for a 'Access reference is also universal in this sense, as
5808 -- the actual type is obtained from context.
5809 -- In Ada 2005, the equality operator for anonymous access types
5810 -- is declared in Standard, and preference rules apply to it.
5812 if Present
(Scop
) then
5813 if Defined_In_Scope
(T1
, Scop
)
5814 or else T1
= Universal_Integer
5815 or else T1
= Universal_Real
5816 or else T1
= Any_Access
5817 or else T1
= Any_String
5818 or else T1
= Any_Composite
5819 or else (Ekind
(T1
) = E_Access_Subprogram_Type
5820 and then not Comes_From_Source
(T1
))
5824 elsif Ekind
(T1
) = E_Anonymous_Access_Type
5825 and then Scop
= Standard_Standard
5830 -- The scope does not contain an operator for the type
5835 -- If we have infix notation, the operator must be usable. Within
5836 -- an instance, if the type is already established we know it is
5837 -- correct. If an operand is universal it is compatible with any
5840 -- In Ada 2005, the equality on anonymous access types is declared
5841 -- in Standard, and is always visible.
5843 elsif In_Open_Scopes
(Scope
(Bas
))
5844 or else Is_Potentially_Use_Visible
(Bas
)
5845 or else In_Use
(Bas
)
5846 or else (In_Use
(Scope
(Bas
)) and then not Is_Hidden
(Bas
))
5847 or else (In_Instance
5849 (First_Subtype
(T1
) = First_Subtype
(Etype
(R
))
5851 (Is_Numeric_Type
(T1
)
5852 and then Is_Universal_Numeric_Type
(Etype
(R
)))))
5853 or else Ekind
(T1
) = E_Anonymous_Access_Type
5858 -- Save candidate type for subsequent error message, if any
5860 if not Is_Limited_Type
(T1
) then
5861 Candidate_Type
:= T1
;
5867 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5868 -- Do not allow anonymous access types in equality operators.
5870 if Ada_Version
< Ada_2005
5871 and then Ekind
(T1
) = E_Anonymous_Access_Type
5876 -- If the right operand has a type compatible with T1, check for an
5877 -- acceptable interpretation, unless T1 is limited (no predefined
5878 -- equality available), or this is use of a "/=" for a tagged type.
5879 -- In the latter case, possible interpretations of equality need to
5880 -- be considered, we don't want the default inequality declared in
5881 -- Standard to be chosen, and the "/=" will be rewritten as a
5882 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
5883 -- that that rewriting happens during analysis rather than being
5884 -- delayed until expansion (this is needed for ASIS, which only sees
5885 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
5886 -- is Name_Op_Eq then we still proceed with the interpretation,
5887 -- because that indicates the potential rewriting case where the
5888 -- interpretation to consider is actually "=" and the node may be
5889 -- about to be rewritten by Analyze_Equality_Op.
5891 if T1
/= Standard_Void_Type
5892 and then Has_Compatible_Type
(R
, T1
)
5895 ((not Is_Limited_Type
(T1
)
5896 and then not Is_Limited_Composite
(T1
))
5900 and then not Is_Limited_Type
(Component_Type
(T1
))
5901 and then Available_Full_View_Of_Component
(T1
)))
5904 (Nkind
(N
) /= N_Op_Ne
5905 or else not Is_Tagged_Type
(T1
)
5906 or else Chars
(Op_Id
) = Name_Op_Eq
)
5909 and then Base_Type
(T1
) /= Base_Type
(T_F
)
5911 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
5913 if It
= No_Interp
then
5914 Ambiguous_Operands
(N
);
5915 Set_Etype
(L
, Any_Type
);
5928 if not Analyzed
(L
) then
5932 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
5934 -- Case of operator was not visible, Etype still set to Any_Type
5936 if Etype
(N
) = Any_Type
then
5940 elsif Scop
= Standard_Standard
5941 and then Ekind
(T1
) = E_Anonymous_Access_Type
5947 -- Start of processing for Find_Equality_Types
5950 -- If left operand is aggregate, the right operand has to
5951 -- provide a usable type for it.
5953 if Nkind
(L
) = N_Aggregate
5954 and then Nkind
(R
) /= N_Aggregate
5956 Find_Equality_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
5960 if Nkind
(N
) = N_Function_Call
5961 and then Nkind
(Name
(N
)) = N_Expanded_Name
5963 Scop
:= Entity
(Prefix
(Name
(N
)));
5965 -- The prefix may be a package renaming, and the subsequent test
5966 -- requires the original package.
5968 if Ekind
(Scop
) = E_Package
5969 and then Present
(Renamed_Entity
(Scop
))
5971 Scop
:= Renamed_Entity
(Scop
);
5972 Set_Entity
(Prefix
(Name
(N
)), Scop
);
5976 if not Is_Overloaded
(L
) then
5977 Try_One_Interp
(Etype
(L
));
5980 Get_First_Interp
(L
, Index
, It
);
5981 while Present
(It
.Typ
) loop
5982 Try_One_Interp
(It
.Typ
);
5983 Get_Next_Interp
(Index
, It
);
5986 end Find_Equality_Types
;
5988 -------------------------
5989 -- Find_Negation_Types --
5990 -------------------------
5992 procedure Find_Negation_Types
5997 Index
: Interp_Index
;
6001 if not Is_Overloaded
(R
) then
6002 if Etype
(R
) = Universal_Integer
then
6003 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
6004 elsif Valid_Boolean_Arg
(Etype
(R
)) then
6005 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
6009 Get_First_Interp
(R
, Index
, It
);
6010 while Present
(It
.Typ
) loop
6011 if Valid_Boolean_Arg
(It
.Typ
) then
6012 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
6015 Get_Next_Interp
(Index
, It
);
6018 end Find_Negation_Types
;
6020 ------------------------------
6021 -- Find_Primitive_Operation --
6022 ------------------------------
6024 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
6025 Obj
: constant Node_Id
:= Prefix
(N
);
6026 Op
: constant Node_Id
:= Selector_Name
(N
);
6033 Set_Etype
(Op
, Any_Type
);
6035 if Is_Access_Type
(Etype
(Obj
)) then
6036 Typ
:= Designated_Type
(Etype
(Obj
));
6041 if Is_Class_Wide_Type
(Typ
) then
6042 Typ
:= Root_Type
(Typ
);
6045 Prims
:= Primitive_Operations
(Typ
);
6047 Prim
:= First_Elmt
(Prims
);
6048 while Present
(Prim
) loop
6049 if Chars
(Node
(Prim
)) = Chars
(Op
) then
6050 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
6051 Set_Etype
(N
, Etype
(Node
(Prim
)));
6057 -- Now look for class-wide operations of the type or any of its
6058 -- ancestors by iterating over the homonyms of the selector.
6061 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
6065 Hom
:= Current_Entity
(Op
);
6066 while Present
(Hom
) loop
6067 if (Ekind
(Hom
) = E_Procedure
6069 Ekind
(Hom
) = E_Function
)
6070 and then Scope
(Hom
) = Scope
(Typ
)
6071 and then Present
(First_Formal
(Hom
))
6073 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
6075 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
6077 Ekind
(Etype
(First_Formal
(Hom
))) =
6078 E_Anonymous_Access_Type
6081 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
6084 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
6085 Set_Etype
(N
, Etype
(Hom
));
6088 Hom
:= Homonym
(Hom
);
6092 return Etype
(Op
) /= Any_Type
;
6093 end Find_Primitive_Operation
;
6095 ----------------------
6096 -- Find_Unary_Types --
6097 ----------------------
6099 procedure Find_Unary_Types
6104 Index
: Interp_Index
;
6108 if not Is_Overloaded
(R
) then
6109 if Is_Numeric_Type
(Etype
(R
)) then
6111 -- In an instance a generic actual may be a numeric type even if
6112 -- the formal in the generic unit was not. In that case, the
6113 -- predefined operator was not a possible interpretation in the
6114 -- generic, and cannot be one in the instance.
6118 not Is_Numeric_Type
(Corresponding_Generic_Type
(Etype
(R
)))
6122 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
6127 Get_First_Interp
(R
, Index
, It
);
6128 while Present
(It
.Typ
) loop
6129 if Is_Numeric_Type
(It
.Typ
) then
6133 (Corresponding_Generic_Type
(Etype
(It
.Typ
)))
6138 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
6142 Get_Next_Interp
(Index
, It
);
6145 end Find_Unary_Types
;
6151 function Junk_Operand
(N
: Node_Id
) return Boolean is
6155 if Error_Posted
(N
) then
6159 -- Get entity to be tested
6161 if Is_Entity_Name
(N
)
6162 and then Present
(Entity
(N
))
6166 -- An odd case, a procedure name gets converted to a very peculiar
6167 -- function call, and here is where we detect this happening.
6169 elsif Nkind
(N
) = N_Function_Call
6170 and then Is_Entity_Name
(Name
(N
))
6171 and then Present
(Entity
(Name
(N
)))
6175 -- Another odd case, there are at least some cases of selected
6176 -- components where the selected component is not marked as having
6177 -- an entity, even though the selector does have an entity
6179 elsif Nkind
(N
) = N_Selected_Component
6180 and then Present
(Entity
(Selector_Name
(N
)))
6182 Enode
:= Selector_Name
(N
);
6188 -- Now test the entity we got to see if it is a bad case
6190 case Ekind
(Entity
(Enode
)) is
6194 ("package name cannot be used as operand", Enode
);
6196 when Generic_Unit_Kind
=>
6198 ("generic unit name cannot be used as operand", Enode
);
6202 ("subtype name cannot be used as operand", Enode
);
6206 ("entry name cannot be used as operand", Enode
);
6210 ("procedure name cannot be used as operand", Enode
);
6214 ("exception name cannot be used as operand", Enode
);
6216 when E_Block | E_Label | E_Loop
=>
6218 ("label name cannot be used as operand", Enode
);
6228 --------------------
6229 -- Operator_Check --
6230 --------------------
6232 procedure Operator_Check
(N
: Node_Id
) is
6234 Remove_Abstract_Operations
(N
);
6236 -- Test for case of no interpretation found for operator
6238 if Etype
(N
) = Any_Type
then
6242 Op_Id
: Entity_Id
:= Empty
;
6245 R
:= Right_Opnd
(N
);
6247 if Nkind
(N
) in N_Binary_Op
then
6253 -- If either operand has no type, then don't complain further,
6254 -- since this simply means that we have a propagated error.
6257 or else Etype
(R
) = Any_Type
6258 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
6262 -- We explicitly check for the case of concatenation of component
6263 -- with component to avoid reporting spurious matching array types
6264 -- that might happen to be lurking in distant packages (such as
6265 -- run-time packages). This also prevents inconsistencies in the
6266 -- messages for certain ACVC B tests, which can vary depending on
6267 -- types declared in run-time interfaces. Another improvement when
6268 -- aggregates are present is to look for a well-typed operand.
6270 elsif Present
(Candidate_Type
)
6271 and then (Nkind
(N
) /= N_Op_Concat
6272 or else Is_Array_Type
(Etype
(L
))
6273 or else Is_Array_Type
(Etype
(R
)))
6275 if Nkind
(N
) = N_Op_Concat
then
6276 if Etype
(L
) /= Any_Composite
6277 and then Is_Array_Type
(Etype
(L
))
6279 Candidate_Type
:= Etype
(L
);
6281 elsif Etype
(R
) /= Any_Composite
6282 and then Is_Array_Type
(Etype
(R
))
6284 Candidate_Type
:= Etype
(R
);
6288 Error_Msg_NE
-- CODEFIX
6289 ("operator for} is not directly visible!",
6290 N
, First_Subtype
(Candidate_Type
));
6293 U
: constant Node_Id
:=
6294 Cunit
(Get_Source_Unit
(Candidate_Type
));
6296 if Unit_Is_Visible
(U
) then
6297 Error_Msg_N
-- CODEFIX
6298 ("use clause would make operation legal!", N
);
6300 Error_Msg_NE
-- CODEFIX
6301 ("add with_clause and use_clause for&!",
6302 N
, Defining_Entity
(Unit
(U
)));
6307 -- If either operand is a junk operand (e.g. package name), then
6308 -- post appropriate error messages, but do not complain further.
6310 -- Note that the use of OR in this test instead of OR ELSE is
6311 -- quite deliberate, we may as well check both operands in the
6312 -- binary operator case.
6314 elsif Junk_Operand
(R
)
6315 or (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
6319 -- If we have a logical operator, one of whose operands is
6320 -- Boolean, then we know that the other operand cannot resolve to
6321 -- Boolean (since we got no interpretations), but in that case we
6322 -- pretty much know that the other operand should be Boolean, so
6323 -- resolve it that way (generating an error)
6325 elsif Nkind_In
(N
, N_Op_And
, N_Op_Or
, N_Op_Xor
) then
6326 if Etype
(L
) = Standard_Boolean
then
6327 Resolve
(R
, Standard_Boolean
);
6329 elsif Etype
(R
) = Standard_Boolean
then
6330 Resolve
(L
, Standard_Boolean
);
6334 -- For an arithmetic operator or comparison operator, if one
6335 -- of the operands is numeric, then we know the other operand
6336 -- is not the same numeric type. If it is a non-numeric type,
6337 -- then probably it is intended to match the other operand.
6339 elsif Nkind_In
(N
, N_Op_Add
,
6345 Nkind_In
(N
, N_Op_Lt
,
6351 if Is_Numeric_Type
(Etype
(L
))
6352 and then not Is_Numeric_Type
(Etype
(R
))
6354 Resolve
(R
, Etype
(L
));
6357 elsif Is_Numeric_Type
(Etype
(R
))
6358 and then not Is_Numeric_Type
(Etype
(L
))
6360 Resolve
(L
, Etype
(R
));
6364 -- Comparisons on A'Access are common enough to deserve a
6367 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
6368 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
6369 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
6372 ("two access attributes cannot be compared directly", N
);
6374 ("\use qualified expression for one of the operands",
6378 -- Another one for C programmers
6380 elsif Nkind
(N
) = N_Op_Concat
6381 and then Valid_Boolean_Arg
(Etype
(L
))
6382 and then Valid_Boolean_Arg
(Etype
(R
))
6384 Error_Msg_N
("invalid operands for concatenation", N
);
6385 Error_Msg_N
-- CODEFIX
6386 ("\maybe AND was meant", N
);
6389 -- A special case for comparison of access parameter with null
6391 elsif Nkind
(N
) = N_Op_Eq
6392 and then Is_Entity_Name
(L
)
6393 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
6394 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
6396 and then Nkind
(R
) = N_Null
6398 Error_Msg_N
("access parameter is not allowed to be null", L
);
6399 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
6402 -- Another special case for exponentiation, where the right
6403 -- operand must be Natural, independently of the base.
6405 elsif Nkind
(N
) = N_Op_Expon
6406 and then Is_Numeric_Type
(Etype
(L
))
6407 and then not Is_Overloaded
(R
)
6409 First_Subtype
(Base_Type
(Etype
(R
))) /= Standard_Integer
6410 and then Base_Type
(Etype
(R
)) /= Universal_Integer
6412 if Ada_Version
>= Ada_2012
6413 and then Has_Dimension_System
(Etype
(L
))
6416 ("exponent for dimensioned type must be a rational" &
6417 ", found}", R
, Etype
(R
));
6420 ("exponent must be of type Natural, found}", R
, Etype
(R
));
6426 -- If we fall through then just give general message. Note that in
6427 -- the following messages, if the operand is overloaded we choose
6428 -- an arbitrary type to complain about, but that is probably more
6429 -- useful than not giving a type at all.
6431 if Nkind
(N
) in N_Unary_Op
then
6432 Error_Msg_Node_2
:= Etype
(R
);
6433 Error_Msg_N
("operator& not defined for}", N
);
6437 if Nkind
(N
) in N_Binary_Op
then
6438 if not Is_Overloaded
(L
)
6439 and then not Is_Overloaded
(R
)
6440 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
6442 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
6443 Error_Msg_N
("there is no applicable operator& for}", N
);
6446 -- Another attempt to find a fix: one of the candidate
6447 -- interpretations may not be use-visible. This has
6448 -- already been checked for predefined operators, so
6449 -- we examine only user-defined functions.
6451 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
6453 while Present
(Op_Id
) loop
6454 if Ekind
(Op_Id
) /= E_Operator
6455 and then Is_Overloadable
(Op_Id
)
6457 if not Is_Immediately_Visible
(Op_Id
)
6458 and then not In_Use
(Scope
(Op_Id
))
6459 and then not Is_Abstract_Subprogram
(Op_Id
)
6460 and then not Is_Hidden
(Op_Id
)
6461 and then Ekind
(Scope
(Op_Id
)) = E_Package
6464 (L
, Etype
(First_Formal
(Op_Id
)))
6466 (Next_Formal
(First_Formal
(Op_Id
)))
6470 Etype
(Next_Formal
(First_Formal
(Op_Id
))))
6473 ("No legal interpretation for operator&", N
);
6475 ("\use clause on& would make operation legal",
6481 Op_Id
:= Homonym
(Op_Id
);
6485 Error_Msg_N
("invalid operand types for operator&", N
);
6487 if Nkind
(N
) /= N_Op_Concat
then
6488 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
6489 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
6499 -----------------------------------------
6500 -- Process_Implicit_Dereference_Prefix --
6501 -----------------------------------------
6503 function Process_Implicit_Dereference_Prefix
6505 P
: Entity_Id
) return Entity_Id
6508 Typ
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
6512 and then (Operating_Mode
= Check_Semantics
or else not Expander_Active
)
6514 -- We create a dummy reference to E to ensure that the reference
6515 -- is not considered as part of an assignment (an implicit
6516 -- dereference can never assign to its prefix). The Comes_From_Source
6517 -- attribute needs to be propagated for accurate warnings.
6519 Ref
:= New_Reference_To
(E
, Sloc
(P
));
6520 Set_Comes_From_Source
(Ref
, Comes_From_Source
(P
));
6521 Generate_Reference
(E
, Ref
);
6524 -- An implicit dereference is a legal occurrence of an
6525 -- incomplete type imported through a limited_with clause,
6526 -- if the full view is visible.
6528 if From_Limited_With
(Typ
)
6529 and then not From_Limited_With
(Scope
(Typ
))
6531 (Is_Immediately_Visible
(Scope
(Typ
))
6533 (Is_Child_Unit
(Scope
(Typ
))
6534 and then Is_Visible_Lib_Unit
(Scope
(Typ
))))
6536 return Available_View
(Typ
);
6540 end Process_Implicit_Dereference_Prefix
;
6542 --------------------------------
6543 -- Remove_Abstract_Operations --
6544 --------------------------------
6546 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
6547 Abstract_Op
: Entity_Id
:= Empty
;
6548 Address_Kludge
: Boolean := False;
6552 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6553 -- activate this if either extensions are enabled, or if the abstract
6554 -- operation in question comes from a predefined file. This latter test
6555 -- allows us to use abstract to make operations invisible to users. In
6556 -- particular, if type Address is non-private and abstract subprograms
6557 -- are used to hide its operators, they will be truly hidden.
6559 type Operand_Position
is (First_Op
, Second_Op
);
6560 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
6562 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
6563 -- Ambiguities may arise when the operands are literal and the address
6564 -- operations in s-auxdec are visible. In that case, remove the
6565 -- interpretation of a literal as Address, to retain the semantics of
6566 -- Address as a private type.
6568 ------------------------------------
6569 -- Remove_Address_Interpretations --
6570 ------------------------------------
6572 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
6576 if Is_Overloaded
(N
) then
6577 Get_First_Interp
(N
, I
, It
);
6578 while Present
(It
.Nam
) loop
6579 Formal
:= First_Entity
(It
.Nam
);
6581 if Op
= Second_Op
then
6582 Formal
:= Next_Entity
(Formal
);
6585 if Is_Descendent_Of_Address
(Etype
(Formal
)) then
6586 Address_Kludge
:= True;
6590 Get_Next_Interp
(I
, It
);
6593 end Remove_Address_Interpretations
;
6595 -- Start of processing for Remove_Abstract_Operations
6598 if Is_Overloaded
(N
) then
6599 if Debug_Flag_V
then
6600 Write_Str
("Remove_Abstract_Operations: ");
6601 Write_Overloads
(N
);
6604 Get_First_Interp
(N
, I
, It
);
6606 while Present
(It
.Nam
) loop
6607 if Is_Overloadable
(It
.Nam
)
6608 and then Is_Abstract_Subprogram
(It
.Nam
)
6609 and then not Is_Dispatching_Operation
(It
.Nam
)
6611 Abstract_Op
:= It
.Nam
;
6613 if Is_Descendent_Of_Address
(It
.Typ
) then
6614 Address_Kludge
:= True;
6618 -- In Ada 2005, this operation does not participate in overload
6619 -- resolution. If the operation is defined in a predefined
6620 -- unit, it is one of the operations declared abstract in some
6621 -- variants of System, and it must be removed as well.
6623 elsif Ada_Version
>= Ada_2005
6624 or else Is_Predefined_File_Name
6625 (Unit_File_Name
(Get_Source_Unit
(It
.Nam
)))
6632 Get_Next_Interp
(I
, It
);
6635 if No
(Abstract_Op
) then
6637 -- If some interpretation yields an integer type, it is still
6638 -- possible that there are address interpretations. Remove them
6639 -- if one operand is a literal, to avoid spurious ambiguities
6640 -- on systems where Address is a visible integer type.
6642 if Is_Overloaded
(N
)
6643 and then Nkind
(N
) in N_Op
6644 and then Is_Integer_Type
(Etype
(N
))
6646 if Nkind
(N
) in N_Binary_Op
then
6647 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
6648 Remove_Address_Interpretations
(Second_Op
);
6650 elsif Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
6651 Remove_Address_Interpretations
(First_Op
);
6656 elsif Nkind
(N
) in N_Op
then
6658 -- Remove interpretations that treat literals as addresses. This
6659 -- is never appropriate, even when Address is defined as a visible
6660 -- Integer type. The reason is that we would really prefer Address
6661 -- to behave as a private type, even in this case, which is there
6662 -- only to accommodate oddities of VMS address sizes. If Address
6663 -- is a visible integer type, we get lots of overload ambiguities.
6665 if Nkind
(N
) in N_Binary_Op
then
6667 U1
: constant Boolean :=
6668 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
6669 U2
: constant Boolean :=
6670 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
6674 Remove_Address_Interpretations
(Second_Op
);
6678 Remove_Address_Interpretations
(First_Op
);
6681 if not (U1
and U2
) then
6683 -- Remove corresponding predefined operator, which is
6684 -- always added to the overload set.
6686 Get_First_Interp
(N
, I
, It
);
6687 while Present
(It
.Nam
) loop
6688 if Scope
(It
.Nam
) = Standard_Standard
6689 and then Base_Type
(It
.Typ
) =
6690 Base_Type
(Etype
(Abstract_Op
))
6695 Get_Next_Interp
(I
, It
);
6698 elsif Is_Overloaded
(N
)
6699 and then Present
(Univ_Type
)
6701 -- If both operands have a universal interpretation,
6702 -- it is still necessary to remove interpretations that
6703 -- yield Address. Any remaining ambiguities will be
6704 -- removed in Disambiguate.
6706 Get_First_Interp
(N
, I
, It
);
6707 while Present
(It
.Nam
) loop
6708 if Is_Descendent_Of_Address
(It
.Typ
) then
6711 elsif not Is_Type
(It
.Nam
) then
6712 Set_Entity
(N
, It
.Nam
);
6715 Get_Next_Interp
(I
, It
);
6721 elsif Nkind
(N
) = N_Function_Call
6723 (Nkind
(Name
(N
)) = N_Operator_Symbol
6725 (Nkind
(Name
(N
)) = N_Expanded_Name
6727 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
6731 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
6732 U1
: constant Boolean :=
6733 Present
(Universal_Interpretation
(Arg1
));
6734 U2
: constant Boolean :=
6735 Present
(Next
(Arg1
)) and then
6736 Present
(Universal_Interpretation
(Next
(Arg1
)));
6740 Remove_Address_Interpretations
(First_Op
);
6744 Remove_Address_Interpretations
(Second_Op
);
6747 if not (U1
and U2
) then
6748 Get_First_Interp
(N
, I
, It
);
6749 while Present
(It
.Nam
) loop
6750 if Scope
(It
.Nam
) = Standard_Standard
6751 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
6756 Get_Next_Interp
(I
, It
);
6762 -- If the removal has left no valid interpretations, emit an error
6763 -- message now and label node as illegal.
6765 if Present
(Abstract_Op
) then
6766 Get_First_Interp
(N
, I
, It
);
6770 -- Removal of abstract operation left no viable candidate
6772 Set_Etype
(N
, Any_Type
);
6773 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
6775 ("cannot call abstract operation& declared#", N
, Abstract_Op
);
6777 -- In Ada 2005, an abstract operation may disable predefined
6778 -- operators. Since the context is not yet known, we mark the
6779 -- predefined operators as potentially hidden. Do not include
6780 -- predefined operators when addresses are involved since this
6781 -- case is handled separately.
6783 elsif Ada_Version
>= Ada_2005
6784 and then not Address_Kludge
6786 while Present
(It
.Nam
) loop
6787 if Is_Numeric_Type
(It
.Typ
)
6788 and then Scope
(It
.Typ
) = Standard_Standard
6790 Set_Abstract_Op
(I
, Abstract_Op
);
6793 Get_Next_Interp
(I
, It
);
6798 if Debug_Flag_V
then
6799 Write_Str
("Remove_Abstract_Operations done: ");
6800 Write_Overloads
(N
);
6803 end Remove_Abstract_Operations
;
6805 ----------------------------
6806 -- Try_Container_Indexing --
6807 ----------------------------
6809 function Try_Container_Indexing
6812 Exprs
: List_Id
) return Boolean
6814 Loc
: constant Source_Ptr
:= Sloc
(N
);
6818 Func_Name
: Node_Id
;
6823 -- Check whether type has a specified indexing aspect
6827 if Is_Variable
(Prefix
) then
6829 Find_Value_Of_Aspect
(Etype
(Prefix
), Aspect_Variable_Indexing
);
6832 if No
(Func_Name
) then
6834 Find_Value_Of_Aspect
(Etype
(Prefix
), Aspect_Constant_Indexing
);
6837 -- If aspect does not exist the expression is illegal. Error is
6838 -- diagnosed in caller.
6840 if No
(Func_Name
) then
6842 -- The prefix itself may be an indexing of a container
6843 -- rewrite as such and re-analyze.
6845 if Has_Implicit_Dereference
(Etype
(Prefix
)) then
6846 Build_Explicit_Dereference
6847 (Prefix
, First_Discriminant
(Etype
(Prefix
)));
6848 return Try_Container_Indexing
(N
, Prefix
, Exprs
);
6855 Assoc
:= New_List
(Relocate_Node
(Prefix
));
6857 -- A generalized iterator may have nore than one index expression, so
6858 -- transfer all of them to the argument list to be used in the call.
6863 Arg
:= First
(Exprs
);
6864 while Present
(Arg
) loop
6865 Append
(Relocate_Node
(Arg
), Assoc
);
6870 if not Is_Overloaded
(Func_Name
) then
6871 Func
:= Entity
(Func_Name
);
6873 Make_Function_Call
(Loc
,
6874 Name
=> New_Occurrence_Of
(Func
, Loc
),
6875 Parameter_Associations
=> Assoc
);
6876 Rewrite
(N
, Indexing
);
6879 -- If the return type of the indexing function is a reference type,
6880 -- add the dereference as a possible interpretation. Note that the
6881 -- indexing aspect may be a function that returns the element type
6882 -- with no intervening implicit dereference.
6884 if Has_Discriminants
(Etype
(Func
)) then
6885 Disc
:= First_Discriminant
(Etype
(Func
));
6886 while Present
(Disc
) loop
6887 if Has_Implicit_Dereference
(Disc
) then
6888 Add_One_Interp
(N
, Disc
, Designated_Type
(Etype
(Disc
)));
6892 Next_Discriminant
(Disc
);
6897 Indexing
:= Make_Function_Call
(Loc
,
6898 Name
=> Make_Identifier
(Loc
, Chars
(Func_Name
)),
6899 Parameter_Associations
=> Assoc
);
6901 Rewrite
(N
, Indexing
);
6909 Get_First_Interp
(Func_Name
, I
, It
);
6910 Set_Etype
(N
, Any_Type
);
6911 while Present
(It
.Nam
) loop
6912 Analyze_One_Call
(N
, It
.Nam
, False, Success
);
6914 Set_Etype
(Name
(N
), It
.Typ
);
6915 Set_Entity
(Name
(N
), It
.Nam
);
6917 -- Add implicit dereference interpretation
6919 if Has_Discriminants
(Etype
(It
.Nam
)) then
6920 Disc
:= First_Discriminant
(Etype
(It
.Nam
));
6921 while Present
(Disc
) loop
6922 if Has_Implicit_Dereference
(Disc
) then
6924 (N
, Disc
, Designated_Type
(Etype
(Disc
)));
6928 Next_Discriminant
(Disc
);
6934 Get_Next_Interp
(I
, It
);
6939 if Etype
(N
) = Any_Type
then
6941 ("container cannot be indexed with&", N
, Etype
(First
(Exprs
)));
6942 Rewrite
(N
, New_Occurrence_Of
(Any_Id
, Loc
));
6948 end Try_Container_Indexing
;
6950 -----------------------
6951 -- Try_Indirect_Call --
6952 -----------------------
6954 function Try_Indirect_Call
6957 Typ
: Entity_Id
) return Boolean
6963 pragma Warnings
(Off
, Call_OK
);
6966 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
6968 Actual
:= First_Actual
(N
);
6969 Formal
:= First_Formal
(Designated_Type
(Typ
));
6970 while Present
(Actual
) and then Present
(Formal
) loop
6971 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
6976 Next_Formal
(Formal
);
6979 if No
(Actual
) and then No
(Formal
) then
6980 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
6982 -- Nam is a candidate interpretation for the name in the call,
6983 -- if it is not an indirect call.
6985 if not Is_Type
(Nam
)
6986 and then Is_Entity_Name
(Name
(N
))
6988 Set_Entity
(Name
(N
), Nam
);
6995 end Try_Indirect_Call
;
6997 ----------------------
6998 -- Try_Indexed_Call --
6999 ----------------------
7001 function Try_Indexed_Call
7005 Skip_First
: Boolean) return Boolean
7007 Loc
: constant Source_Ptr
:= Sloc
(N
);
7008 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
7013 Actual
:= First
(Actuals
);
7015 -- If the call was originally written in prefix form, skip the first
7016 -- actual, which is obviously not defaulted.
7022 Index
:= First_Index
(Typ
);
7023 while Present
(Actual
) and then Present
(Index
) loop
7025 -- If the parameter list has a named association, the expression
7026 -- is definitely a call and not an indexed component.
7028 if Nkind
(Actual
) = N_Parameter_Association
then
7032 if Is_Entity_Name
(Actual
)
7033 and then Is_Type
(Entity
(Actual
))
7034 and then No
(Next
(Actual
))
7036 -- A single actual that is a type name indicates a slice if the
7037 -- type is discrete, and an error otherwise.
7039 if Is_Discrete_Type
(Entity
(Actual
)) then
7043 Make_Function_Call
(Loc
,
7044 Name
=> Relocate_Node
(Name
(N
))),
7046 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
7051 Error_Msg_N
("invalid use of type in expression", Actual
);
7052 Set_Etype
(N
, Any_Type
);
7057 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
7065 if No
(Actual
) and then No
(Index
) then
7066 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
7068 -- Nam is a candidate interpretation for the name in the call,
7069 -- if it is not an indirect call.
7071 if not Is_Type
(Nam
)
7072 and then Is_Entity_Name
(Name
(N
))
7074 Set_Entity
(Name
(N
), Nam
);
7081 end Try_Indexed_Call
;
7083 --------------------------
7084 -- Try_Object_Operation --
7085 --------------------------
7087 function Try_Object_Operation
7088 (N
: Node_Id
; CW_Test_Only
: Boolean := False) return Boolean
7090 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
7091 Is_Subprg_Call
: constant Boolean := K
in N_Subprogram_Call
;
7092 Loc
: constant Source_Ptr
:= Sloc
(N
);
7093 Obj
: constant Node_Id
:= Prefix
(N
);
7095 Subprog
: constant Node_Id
:=
7096 Make_Identifier
(Sloc
(Selector_Name
(N
)),
7097 Chars
=> Chars
(Selector_Name
(N
)));
7098 -- Identifier on which possible interpretations will be collected
7100 Report_Error
: Boolean := False;
7101 -- If no candidate interpretation matches the context, redo the
7102 -- analysis with error enabled to provide additional information.
7105 Candidate
: Entity_Id
:= Empty
;
7106 New_Call_Node
: Node_Id
:= Empty
;
7107 Node_To_Replace
: Node_Id
;
7108 Obj_Type
: Entity_Id
:= Etype
(Obj
);
7109 Success
: Boolean := False;
7111 function Valid_Candidate
7114 Subp
: Entity_Id
) return Entity_Id
;
7115 -- If the subprogram is a valid interpretation, record it, and add
7116 -- to the list of interpretations of Subprog. Otherwise return Empty.
7118 procedure Complete_Object_Operation
7119 (Call_Node
: Node_Id
;
7120 Node_To_Replace
: Node_Id
);
7121 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7122 -- Call_Node, insert the object (or its dereference) as the first actual
7123 -- in the call, and complete the analysis of the call.
7125 procedure Report_Ambiguity
(Op
: Entity_Id
);
7126 -- If a prefixed procedure call is ambiguous, indicate whether the
7127 -- call includes an implicit dereference or an implicit 'Access.
7129 procedure Transform_Object_Operation
7130 (Call_Node
: out Node_Id
;
7131 Node_To_Replace
: out Node_Id
);
7132 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
7133 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7134 -- either N or the parent of N, and Subprog is a reference to the
7135 -- subprogram we are trying to match.
7137 function Try_Class_Wide_Operation
7138 (Call_Node
: Node_Id
;
7139 Node_To_Replace
: Node_Id
) return Boolean;
7140 -- Traverse all ancestor types looking for a class-wide subprogram
7141 -- for which the current operation is a valid non-dispatching call.
7143 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
7144 -- If prefix is overloaded, its interpretation may include different
7145 -- tagged types, and we must examine the primitive operations and
7146 -- the class-wide operations of each in order to find candidate
7147 -- interpretations for the call as a whole.
7149 function Try_Primitive_Operation
7150 (Call_Node
: Node_Id
;
7151 Node_To_Replace
: Node_Id
) return Boolean;
7152 -- Traverse the list of primitive subprograms looking for a dispatching
7153 -- operation for which the current node is a valid call .
7155 ---------------------
7156 -- Valid_Candidate --
7157 ---------------------
7159 function Valid_Candidate
7162 Subp
: Entity_Id
) return Entity_Id
7164 Arr_Type
: Entity_Id
;
7165 Comp_Type
: Entity_Id
;
7168 -- If the subprogram is a valid interpretation, record it in global
7169 -- variable Subprog, to collect all possible overloadings.
7172 if Subp
/= Entity
(Subprog
) then
7173 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
7177 -- If the call may be an indexed call, retrieve component type of
7178 -- resulting expression, and add possible interpretation.
7183 if Nkind
(Call
) = N_Function_Call
7184 and then Nkind
(Parent
(N
)) = N_Indexed_Component
7185 and then Needs_One_Actual
(Subp
)
7187 if Is_Array_Type
(Etype
(Subp
)) then
7188 Arr_Type
:= Etype
(Subp
);
7190 elsif Is_Access_Type
(Etype
(Subp
))
7191 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
7193 Arr_Type
:= Designated_Type
(Etype
(Subp
));
7197 if Present
(Arr_Type
) then
7199 -- Verify that the actuals (excluding the object) match the types
7207 Actual
:= Next
(First_Actual
(Call
));
7208 Index
:= First_Index
(Arr_Type
);
7209 while Present
(Actual
) and then Present
(Index
) loop
7210 if not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
7215 Next_Actual
(Actual
);
7221 and then Present
(Arr_Type
)
7223 Comp_Type
:= Component_Type
(Arr_Type
);
7227 if Present
(Comp_Type
)
7228 and then Etype
(Subprog
) /= Comp_Type
7230 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
7234 if Etype
(Call
) /= Any_Type
then
7239 end Valid_Candidate
;
7241 -------------------------------
7242 -- Complete_Object_Operation --
7243 -------------------------------
7245 procedure Complete_Object_Operation
7246 (Call_Node
: Node_Id
;
7247 Node_To_Replace
: Node_Id
)
7249 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
7250 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
7251 First_Actual
: Node_Id
;
7254 -- Place the name of the operation, with its interpretations,
7255 -- on the rewritten call.
7257 Set_Name
(Call_Node
, Subprog
);
7259 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
7261 -- For cross-reference purposes, treat the new node as being in
7262 -- the source if the original one is. Set entity and type, even
7263 -- though they may be overwritten during resolution if overloaded.
7265 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
7266 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
7268 if Nkind
(N
) = N_Selected_Component
7269 and then not Inside_A_Generic
7271 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
7272 Set_Etype
(Selector_Name
(N
), Etype
(Entity
(Subprog
)));
7275 -- If need be, rewrite first actual as an explicit dereference
7276 -- If the call is overloaded, the rewriting can only be done
7277 -- once the primitive operation is identified.
7279 if Is_Overloaded
(Subprog
) then
7281 -- The prefix itself may be overloaded, and its interpretations
7282 -- must be propagated to the new actual in the call.
7284 if Is_Overloaded
(Obj
) then
7285 Save_Interps
(Obj
, First_Actual
);
7288 Rewrite
(First_Actual
, Obj
);
7290 elsif not Is_Access_Type
(Formal_Type
)
7291 and then Is_Access_Type
(Etype
(Obj
))
7293 Rewrite
(First_Actual
,
7294 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
7295 Analyze
(First_Actual
);
7297 -- If we need to introduce an explicit dereference, verify that
7298 -- the resulting actual is compatible with the mode of the formal.
7300 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
7301 and then Is_Access_Constant
(Etype
(Obj
))
7304 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
7307 -- Conversely, if the formal is an access parameter and the object
7308 -- is not, replace the actual with a 'Access reference. Its analysis
7309 -- will check that the object is aliased.
7311 elsif Is_Access_Type
(Formal_Type
)
7312 and then not Is_Access_Type
(Etype
(Obj
))
7314 -- A special case: A.all'access is illegal if A is an access to a
7315 -- constant and the context requires an access to a variable.
7317 if not Is_Access_Constant
(Formal_Type
) then
7318 if (Nkind
(Obj
) = N_Explicit_Dereference
7319 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
7320 or else not Is_Variable
(Obj
)
7323 ("actual for& must be a variable", Obj
, Control
);
7327 Rewrite
(First_Actual
,
7328 Make_Attribute_Reference
(Loc
,
7329 Attribute_Name
=> Name_Access
,
7330 Prefix
=> Relocate_Node
(Obj
)));
7332 if not Is_Aliased_View
(Obj
) then
7334 ("object in prefixed call to& must be aliased"
7335 & " (RM-2005 4.3.1 (13))",
7336 Prefix
(First_Actual
), Subprog
);
7339 Analyze
(First_Actual
);
7342 if Is_Overloaded
(Obj
) then
7343 Save_Interps
(Obj
, First_Actual
);
7346 Rewrite
(First_Actual
, Obj
);
7349 Rewrite
(Node_To_Replace
, Call_Node
);
7351 -- Propagate the interpretations collected in subprog to the new
7352 -- function call node, to be resolved from context.
7354 if Is_Overloaded
(Subprog
) then
7355 Save_Interps
(Subprog
, Node_To_Replace
);
7358 Analyze
(Node_To_Replace
);
7360 -- If the operation has been rewritten into a call, which may get
7361 -- subsequently an explicit dereference, preserve the type on the
7362 -- original node (selected component or indexed component) for
7363 -- subsequent legality tests, e.g. Is_Variable. which examines
7364 -- the original node.
7366 if Nkind
(Node_To_Replace
) = N_Function_Call
then
7368 (Original_Node
(Node_To_Replace
), Etype
(Node_To_Replace
));
7371 end Complete_Object_Operation
;
7373 ----------------------
7374 -- Report_Ambiguity --
7375 ----------------------
7377 procedure Report_Ambiguity
(Op
: Entity_Id
) is
7378 Access_Actual
: constant Boolean :=
7379 Is_Access_Type
(Etype
(Prefix
(N
)));
7380 Access_Formal
: Boolean := False;
7383 Error_Msg_Sloc
:= Sloc
(Op
);
7385 if Present
(First_Formal
(Op
)) then
7386 Access_Formal
:= Is_Access_Type
(Etype
(First_Formal
(Op
)));
7389 if Access_Formal
and then not Access_Actual
then
7390 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7392 ("\possible interpretation"
7393 & " (inherited, with implicit 'Access) #", N
);
7396 ("\possible interpretation (with implicit 'Access) #", N
);
7399 elsif not Access_Formal
and then Access_Actual
then
7400 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7402 ("\possible interpretation"
7403 & " ( inherited, with implicit dereference) #", N
);
7406 ("\possible interpretation (with implicit dereference) #", N
);
7410 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7411 Error_Msg_N
("\possible interpretation (inherited)#", N
);
7413 Error_Msg_N
-- CODEFIX
7414 ("\possible interpretation#", N
);
7417 end Report_Ambiguity
;
7419 --------------------------------
7420 -- Transform_Object_Operation --
7421 --------------------------------
7423 procedure Transform_Object_Operation
7424 (Call_Node
: out Node_Id
;
7425 Node_To_Replace
: out Node_Id
)
7427 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
7428 -- Placeholder used as a first parameter in the call, replaced
7429 -- eventually by the proper object.
7431 Parent_Node
: constant Node_Id
:= Parent
(N
);
7437 -- Common case covering 1) Call to a procedure and 2) Call to a
7438 -- function that has some additional actuals.
7440 if Nkind
(Parent_Node
) in N_Subprogram_Call
7442 -- N is a selected component node containing the name of the
7443 -- subprogram. If N is not the name of the parent node we must
7444 -- not replace the parent node by the new construct. This case
7445 -- occurs when N is a parameterless call to a subprogram that
7446 -- is an actual parameter of a call to another subprogram. For
7448 -- Some_Subprogram (..., Obj.Operation, ...)
7450 and then Name
(Parent_Node
) = N
7452 Node_To_Replace
:= Parent_Node
;
7454 Actuals
:= Parameter_Associations
(Parent_Node
);
7456 if Present
(Actuals
) then
7457 Prepend
(Dummy
, Actuals
);
7459 Actuals
:= New_List
(Dummy
);
7462 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
7464 Make_Procedure_Call_Statement
(Loc
,
7465 Name
=> New_Copy
(Subprog
),
7466 Parameter_Associations
=> Actuals
);
7470 Make_Function_Call
(Loc
,
7471 Name
=> New_Copy
(Subprog
),
7472 Parameter_Associations
=> Actuals
);
7476 -- Before analysis, a function call appears as an indexed component
7477 -- if there are no named associations.
7479 elsif Nkind
(Parent_Node
) = N_Indexed_Component
7480 and then N
= Prefix
(Parent_Node
)
7482 Node_To_Replace
:= Parent_Node
;
7483 Actuals
:= Expressions
(Parent_Node
);
7485 Actual
:= First
(Actuals
);
7486 while Present
(Actual
) loop
7491 Prepend
(Dummy
, Actuals
);
7494 Make_Function_Call
(Loc
,
7495 Name
=> New_Copy
(Subprog
),
7496 Parameter_Associations
=> Actuals
);
7498 -- Parameterless call: Obj.F is rewritten as F (Obj)
7501 Node_To_Replace
:= N
;
7504 Make_Function_Call
(Loc
,
7505 Name
=> New_Copy
(Subprog
),
7506 Parameter_Associations
=> New_List
(Dummy
));
7508 end Transform_Object_Operation
;
7510 ------------------------------
7511 -- Try_Class_Wide_Operation --
7512 ------------------------------
7514 function Try_Class_Wide_Operation
7515 (Call_Node
: Node_Id
;
7516 Node_To_Replace
: Node_Id
) return Boolean
7518 Anc_Type
: Entity_Id
;
7519 Matching_Op
: Entity_Id
:= Empty
;
7522 procedure Traverse_Homonyms
7523 (Anc_Type
: Entity_Id
;
7524 Error
: out Boolean);
7525 -- Traverse the homonym chain of the subprogram searching for those
7526 -- homonyms whose first formal has the Anc_Type's class-wide type,
7527 -- or an anonymous access type designating the class-wide type. If
7528 -- an ambiguity is detected, then Error is set to True.
7530 procedure Traverse_Interfaces
7531 (Anc_Type
: Entity_Id
;
7532 Error
: out Boolean);
7533 -- Traverse the list of interfaces, if any, associated with Anc_Type
7534 -- and search for acceptable class-wide homonyms associated with each
7535 -- interface. If an ambiguity is detected, then Error is set to True.
7537 -----------------------
7538 -- Traverse_Homonyms --
7539 -----------------------
7541 procedure Traverse_Homonyms
7542 (Anc_Type
: Entity_Id
;
7543 Error
: out Boolean)
7545 Cls_Type
: Entity_Id
;
7553 Cls_Type
:= Class_Wide_Type
(Anc_Type
);
7555 Hom
:= Current_Entity
(Subprog
);
7557 -- Find a non-hidden operation whose first parameter is of the
7558 -- class-wide type, a subtype thereof, or an anonymous access
7559 -- to same. If in an instance, the operation can be considered
7560 -- even if hidden (it may be hidden because the instantiation is
7561 -- expanded after the containing package has been analyzed).
7563 while Present
(Hom
) loop
7564 if Ekind_In
(Hom
, E_Procedure
, E_Function
)
7565 and then (not Is_Hidden
(Hom
) or else In_Instance
)
7566 and then Scope
(Hom
) = Scope
(Anc_Type
)
7567 and then Present
(First_Formal
(Hom
))
7569 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
7571 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
7573 Ekind
(Etype
(First_Formal
(Hom
))) =
7574 E_Anonymous_Access_Type
7577 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
7580 -- If the context is a procedure call, ignore functions
7581 -- in the name of the call.
7583 if Ekind
(Hom
) = E_Function
7584 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
7585 and then N
= Name
(Parent
(N
))
7589 -- If the context is a function call, ignore procedures
7590 -- in the name of the call.
7592 elsif Ekind
(Hom
) = E_Procedure
7593 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
7598 Set_Etype
(Call_Node
, Any_Type
);
7599 Set_Is_Overloaded
(Call_Node
, False);
7602 if No
(Matching_Op
) then
7603 Hom_Ref
:= New_Reference_To
(Hom
, Sloc
(Subprog
));
7604 Set_Etype
(Call_Node
, Any_Type
);
7605 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
7607 Set_Name
(Call_Node
, Hom_Ref
);
7612 Report
=> Report_Error
,
7614 Skip_First
=> True);
7617 Valid_Candidate
(Success
, Call_Node
, Hom
);
7623 Report
=> Report_Error
,
7625 Skip_First
=> True);
7627 if Present
(Valid_Candidate
(Success
, Call_Node
, Hom
))
7628 and then Nkind
(Call_Node
) /= N_Function_Call
7630 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
7631 Report_Ambiguity
(Matching_Op
);
7632 Report_Ambiguity
(Hom
);
7640 Hom
:= Homonym
(Hom
);
7642 end Traverse_Homonyms
;
7644 -------------------------
7645 -- Traverse_Interfaces --
7646 -------------------------
7648 procedure Traverse_Interfaces
7649 (Anc_Type
: Entity_Id
;
7650 Error
: out Boolean)
7652 Intface_List
: constant List_Id
:=
7653 Abstract_Interface_List
(Anc_Type
);
7659 if Is_Non_Empty_List
(Intface_List
) then
7660 Intface
:= First
(Intface_List
);
7661 while Present
(Intface
) loop
7663 -- Look for acceptable class-wide homonyms associated with
7666 Traverse_Homonyms
(Etype
(Intface
), Error
);
7672 -- Continue the search by looking at each of the interface's
7673 -- associated interface ancestors.
7675 Traverse_Interfaces
(Etype
(Intface
), Error
);
7684 end Traverse_Interfaces
;
7686 -- Start of processing for Try_Class_Wide_Operation
7689 -- If we are searching only for conflicting class-wide subprograms
7690 -- then initialize directly Matching_Op with the target entity.
7692 if CW_Test_Only
then
7693 Matching_Op
:= Entity
(Selector_Name
(N
));
7696 -- Loop through ancestor types (including interfaces), traversing
7697 -- the homonym chain of the subprogram, trying out those homonyms
7698 -- whose first formal has the class-wide type of the ancestor, or
7699 -- an anonymous access type designating the class-wide type.
7701 Anc_Type
:= Obj_Type
;
7703 -- Look for a match among homonyms associated with the ancestor
7705 Traverse_Homonyms
(Anc_Type
, Error
);
7711 -- Continue the search for matches among homonyms associated with
7712 -- any interfaces implemented by the ancestor.
7714 Traverse_Interfaces
(Anc_Type
, Error
);
7720 exit when Etype
(Anc_Type
) = Anc_Type
;
7721 Anc_Type
:= Etype
(Anc_Type
);
7724 if Present
(Matching_Op
) then
7725 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
7728 return Present
(Matching_Op
);
7729 end Try_Class_Wide_Operation
;
7731 -----------------------------------
7732 -- Try_One_Prefix_Interpretation --
7733 -----------------------------------
7735 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
7739 if Is_Access_Type
(Obj_Type
) then
7740 Obj_Type
:= Designated_Type
(Obj_Type
);
7743 if Ekind
(Obj_Type
) = E_Private_Subtype
then
7744 Obj_Type
:= Base_Type
(Obj_Type
);
7747 if Is_Class_Wide_Type
(Obj_Type
) then
7748 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
7751 -- The type may have be obtained through a limited_with clause,
7752 -- in which case the primitive operations are available on its
7753 -- non-limited view. If still incomplete, retrieve full view.
7755 if Ekind
(Obj_Type
) = E_Incomplete_Type
7756 and then From_Limited_With
(Obj_Type
)
7758 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
7761 -- If the object is not tagged, or the type is still an incomplete
7762 -- type, this is not a prefixed call.
7764 if not Is_Tagged_Type
(Obj_Type
)
7765 or else Is_Incomplete_Type
(Obj_Type
)
7771 Dup_Call_Node
: constant Node_Id
:= New_Copy
(New_Call_Node
);
7772 CW_Result
: Boolean;
7773 Prim_Result
: Boolean;
7774 pragma Unreferenced
(CW_Result
);
7777 if not CW_Test_Only
then
7779 Try_Primitive_Operation
7780 (Call_Node
=> New_Call_Node
,
7781 Node_To_Replace
=> Node_To_Replace
);
7784 -- Check if there is a class-wide subprogram covering the
7785 -- primitive. This check must be done even if a candidate
7786 -- was found in order to report ambiguous calls.
7788 if not (Prim_Result
) then
7790 Try_Class_Wide_Operation
7791 (Call_Node
=> New_Call_Node
,
7792 Node_To_Replace
=> Node_To_Replace
);
7794 -- If we found a primitive we search for class-wide subprograms
7795 -- using a duplicate of the call node (done to avoid missing its
7796 -- decoration if there is no ambiguity).
7800 Try_Class_Wide_Operation
7801 (Call_Node
=> Dup_Call_Node
,
7802 Node_To_Replace
=> Node_To_Replace
);
7805 end Try_One_Prefix_Interpretation
;
7807 -----------------------------
7808 -- Try_Primitive_Operation --
7809 -----------------------------
7811 function Try_Primitive_Operation
7812 (Call_Node
: Node_Id
;
7813 Node_To_Replace
: Node_Id
) return Boolean
7816 Prim_Op
: Entity_Id
;
7817 Matching_Op
: Entity_Id
:= Empty
;
7818 Prim_Op_Ref
: Node_Id
:= Empty
;
7820 Corr_Type
: Entity_Id
:= Empty
;
7821 -- If the prefix is a synchronized type, the controlling type of
7822 -- the primitive operation is the corresponding record type, else
7823 -- this is the object type itself.
7825 Success
: Boolean := False;
7827 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
7828 -- For tagged types the candidate interpretations are found in
7829 -- the list of primitive operations of the type and its ancestors.
7830 -- For formal tagged types we have to find the operations declared
7831 -- in the same scope as the type (including in the generic formal
7832 -- part) because the type itself carries no primitive operations,
7833 -- except for formal derived types that inherit the operations of
7834 -- the parent and progenitors.
7835 -- If the context is a generic subprogram body, the generic formals
7836 -- are visible by name, but are not in the entity list of the
7837 -- subprogram because that list starts with the subprogram formals.
7838 -- We retrieve the candidate operations from the generic declaration.
7840 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean;
7841 -- An operation that overrides an inherited operation in the private
7842 -- part of its package may be hidden, but if the inherited operation
7843 -- is visible a direct call to it will dispatch to the private one,
7844 -- which is therefore a valid candidate.
7846 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
7847 -- Verify that the prefix, dereferenced if need be, is a valid
7848 -- controlling argument in a call to Op. The remaining actuals
7849 -- are checked in the subsequent call to Analyze_One_Call.
7851 ------------------------------
7852 -- Collect_Generic_Type_Ops --
7853 ------------------------------
7855 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
7856 Bas
: constant Entity_Id
:= Base_Type
(T
);
7857 Candidates
: constant Elist_Id
:= New_Elmt_List
;
7861 procedure Check_Candidate
;
7862 -- The operation is a candidate if its first parameter is a
7863 -- controlling operand of the desired type.
7865 -----------------------
7866 -- Check_Candidate; --
7867 -----------------------
7869 procedure Check_Candidate
is
7871 Formal
:= First_Formal
(Subp
);
7874 and then Is_Controlling_Formal
(Formal
)
7876 (Base_Type
(Etype
(Formal
)) = Bas
7878 (Is_Access_Type
(Etype
(Formal
))
7879 and then Designated_Type
(Etype
(Formal
)) = Bas
))
7881 Append_Elmt
(Subp
, Candidates
);
7883 end Check_Candidate
;
7885 -- Start of processing for Collect_Generic_Type_Ops
7888 if Is_Derived_Type
(T
) then
7889 return Primitive_Operations
(T
);
7891 elsif Ekind_In
(Scope
(T
), E_Procedure
, E_Function
) then
7893 -- Scan the list of generic formals to find subprograms
7894 -- that may have a first controlling formal of the type.
7896 if Nkind
(Unit_Declaration_Node
(Scope
(T
)))
7897 = N_Generic_Subprogram_Declaration
7904 First
(Generic_Formal_Declarations
7905 (Unit_Declaration_Node
(Scope
(T
))));
7906 while Present
(Decl
) loop
7907 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
7908 Subp
:= Defining_Entity
(Decl
);
7919 -- Scan the list of entities declared in the same scope as
7920 -- the type. In general this will be an open scope, given that
7921 -- the call we are analyzing can only appear within a generic
7922 -- declaration or body (either the one that declares T, or a
7925 -- For a subtype representing a generic actual type, go to the
7928 if Is_Generic_Actual_Type
(T
) then
7929 Subp
:= First_Entity
(Scope
(Base_Type
(T
)));
7931 Subp
:= First_Entity
(Scope
(T
));
7934 while Present
(Subp
) loop
7935 if Is_Overloadable
(Subp
) then
7944 end Collect_Generic_Type_Ops
;
7946 ---------------------------
7947 -- Is_Private_Overriding --
7948 ---------------------------
7950 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean is
7951 Visible_Op
: constant Entity_Id
:= Homonym
(Op
);
7954 return Present
(Visible_Op
)
7955 and then Scope
(Op
) = Scope
(Visible_Op
)
7956 and then not Comes_From_Source
(Visible_Op
)
7957 and then Alias
(Visible_Op
) = Op
7958 and then not Is_Hidden
(Visible_Op
);
7959 end Is_Private_Overriding
;
7961 -----------------------------
7962 -- Valid_First_Argument_Of --
7963 -----------------------------
7965 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
7966 Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
7969 if Is_Concurrent_Type
(Typ
)
7970 and then Present
(Corresponding_Record_Type
(Typ
))
7972 Typ
:= Corresponding_Record_Type
(Typ
);
7975 -- Simple case. Object may be a subtype of the tagged type or
7976 -- may be the corresponding record of a synchronized type.
7978 return Obj_Type
= Typ
7979 or else Base_Type
(Obj_Type
) = Typ
7980 or else Corr_Type
= Typ
7982 -- Prefix can be dereferenced
7985 (Is_Access_Type
(Corr_Type
)
7986 and then Designated_Type
(Corr_Type
) = Typ
)
7988 -- Formal is an access parameter, for which the object
7989 -- can provide an access.
7992 (Ekind
(Typ
) = E_Anonymous_Access_Type
7994 Base_Type
(Designated_Type
(Typ
)) = Base_Type
(Corr_Type
));
7995 end Valid_First_Argument_Of
;
7997 -- Start of processing for Try_Primitive_Operation
8000 -- Look for subprograms in the list of primitive operations. The name
8001 -- must be identical, and the kind of call indicates the expected
8002 -- kind of operation (function or procedure). If the type is a
8003 -- (tagged) synchronized type, the primitive ops are attached to the
8004 -- corresponding record (base) type.
8006 if Is_Concurrent_Type
(Obj_Type
) then
8007 if Present
(Corresponding_Record_Type
(Obj_Type
)) then
8008 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
8009 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
8011 Corr_Type
:= Obj_Type
;
8012 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
8015 elsif not Is_Generic_Type
(Obj_Type
) then
8016 Corr_Type
:= Obj_Type
;
8017 Elmt
:= First_Elmt
(Primitive_Operations
(Obj_Type
));
8020 Corr_Type
:= Obj_Type
;
8021 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
8024 while Present
(Elmt
) loop
8025 Prim_Op
:= Node
(Elmt
);
8027 if Chars
(Prim_Op
) = Chars
(Subprog
)
8028 and then Present
(First_Formal
(Prim_Op
))
8029 and then Valid_First_Argument_Of
(Prim_Op
)
8031 (Nkind
(Call_Node
) = N_Function_Call
)
8032 = (Ekind
(Prim_Op
) = E_Function
)
8034 -- Ada 2005 (AI-251): If this primitive operation corresponds
8035 -- with an immediate ancestor interface there is no need to add
8036 -- it to the list of interpretations; the corresponding aliased
8037 -- primitive is also in this list of primitive operations and
8038 -- will be used instead.
8040 if (Present
(Interface_Alias
(Prim_Op
))
8041 and then Is_Ancestor
(Find_Dispatching_Type
8042 (Alias
(Prim_Op
)), Corr_Type
))
8044 -- Do not consider hidden primitives unless the type is in an
8045 -- open scope or we are within an instance, where visibility
8046 -- is known to be correct, or else if this is an overriding
8047 -- operation in the private part for an inherited operation.
8049 or else (Is_Hidden
(Prim_Op
)
8050 and then not Is_Immediately_Visible
(Obj_Type
)
8051 and then not In_Instance
8052 and then not Is_Private_Overriding
(Prim_Op
))
8057 Set_Etype
(Call_Node
, Any_Type
);
8058 Set_Is_Overloaded
(Call_Node
, False);
8060 if No
(Matching_Op
) then
8061 Prim_Op_Ref
:= New_Reference_To
(Prim_Op
, Sloc
(Subprog
));
8062 Candidate
:= Prim_Op
;
8064 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
8066 Set_Name
(Call_Node
, Prim_Op_Ref
);
8072 Report
=> Report_Error
,
8074 Skip_First
=> True);
8076 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
8078 -- More than one interpretation, collect for subsequent
8079 -- disambiguation. If this is a procedure call and there
8080 -- is another match, report ambiguity now.
8086 Report
=> Report_Error
,
8088 Skip_First
=> True);
8090 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
8091 and then Nkind
(Call_Node
) /= N_Function_Call
8093 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
8094 Report_Ambiguity
(Matching_Op
);
8095 Report_Ambiguity
(Prim_Op
);
8105 if Present
(Matching_Op
) then
8106 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
8109 return Present
(Matching_Op
);
8110 end Try_Primitive_Operation
;
8112 -- Start of processing for Try_Object_Operation
8115 Analyze_Expression
(Obj
);
8117 -- Analyze the actuals if node is known to be a subprogram call
8119 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
8120 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
8121 while Present
(Actual
) loop
8122 Analyze_Expression
(Actual
);
8127 -- Build a subprogram call node, using a copy of Obj as its first
8128 -- actual. This is a placeholder, to be replaced by an explicit
8129 -- dereference when needed.
8131 Transform_Object_Operation
8132 (Call_Node
=> New_Call_Node
,
8133 Node_To_Replace
=> Node_To_Replace
);
8135 Set_Etype
(New_Call_Node
, Any_Type
);
8136 Set_Etype
(Subprog
, Any_Type
);
8137 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
8139 if not Is_Overloaded
(Obj
) then
8140 Try_One_Prefix_Interpretation
(Obj_Type
);
8147 Get_First_Interp
(Obj
, I
, It
);
8148 while Present
(It
.Nam
) loop
8149 Try_One_Prefix_Interpretation
(It
.Typ
);
8150 Get_Next_Interp
(I
, It
);
8155 if Etype
(New_Call_Node
) /= Any_Type
then
8157 -- No need to complete the tree transformations if we are only
8158 -- searching for conflicting class-wide subprograms
8160 if CW_Test_Only
then
8163 Complete_Object_Operation
8164 (Call_Node
=> New_Call_Node
,
8165 Node_To_Replace
=> Node_To_Replace
);
8169 elsif Present
(Candidate
) then
8171 -- The argument list is not type correct. Re-analyze with error
8172 -- reporting enabled, and use one of the possible candidates.
8173 -- In All_Errors_Mode, re-analyze all failed interpretations.
8175 if All_Errors_Mode
then
8176 Report_Error
:= True;
8177 if Try_Primitive_Operation
8178 (Call_Node
=> New_Call_Node
,
8179 Node_To_Replace
=> Node_To_Replace
)
8182 Try_Class_Wide_Operation
8183 (Call_Node
=> New_Call_Node
,
8184 Node_To_Replace
=> Node_To_Replace
)
8191 (N
=> New_Call_Node
,
8195 Skip_First
=> True);
8198 -- No need for further errors
8203 -- There was no candidate operation, so report it as an error
8204 -- in the caller: Analyze_Selected_Component.
8208 end Try_Object_Operation
;
8214 procedure wpo
(T
: Entity_Id
) is
8219 if not Is_Tagged_Type
(T
) then
8223 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
8224 while Present
(E
) loop
8226 Write_Int
(Int
(Op
));
8227 Write_Str
(" === ");
8228 Write_Name
(Chars
(Op
));
8230 Write_Name
(Chars
(Scope
(Op
)));