1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
28 #include "tree-chrec.h"
31 innermost_loop_behavior describes the evolution of the address of the memory
32 reference in the innermost enclosing loop. The address is expressed as
33 BASE + STEP * # of iteration, and base is further decomposed as the base
34 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
35 constant offset (INIT). Examples, in loop nest
37 for (i = 0; i < 100; i++)
38 for (j = 3; j < 100; j++)
41 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
44 innermost_loop_behavior
47 init 3 * D_j + offsetof (b) 28
51 struct innermost_loop_behavior
58 /* Alignment information. ALIGNED_TO is set to the largest power of two
59 that divides OFFSET. */
63 /* Describes the evolutions of indices of the memory reference. The indices
64 are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
65 For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
66 (note that this reference does not have to be valid, if zero does not
67 belong to the range of the array; hence it is not recommended to use
68 BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
69 set to the loop-invariant part of the address of the object, except for
70 the constant offset. For the examples above,
72 base_object: a[0].b[0][0] *(p + x + 4B * j_0)
73 indices: {j_0, +, 1}_2 {16, +, 4}_2
83 /* A list of chrecs. Access functions of the indices. */
84 VEC(tree
,heap
) *access_fns
;
89 /* The alias information that should be used for new pointers to this
90 location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
91 struct ptr_info_def
*ptr_info
;
93 /* The set of virtual operands corresponding to this memory reference,
94 serving as a description of the alias information for the memory
95 reference. This could be eliminated if we had alias oracle. */
99 typedef struct scop
*scop_p
;
101 /* Each vector of the access matrix represents a linear access
102 function for a subscript. First elements correspond to the
103 leftmost indices, ie. for a[i][j] the first vector corresponds to
104 the subscript in "i". The elements of a vector are relative to
105 the loop nests in which the data reference is considered,
106 i.e. the vector is relative to the SCoP that provides the context
107 in which this data reference occurs.
115 if "i" varies in loop_1 and "j" varies in loop_2, the access
116 matrix with respect to the loop nest {loop_1, loop_2} is:
118 | loop_1 loop_2 param_n cst
122 whereas the access matrix with respect to loop_2 considers "i" as
125 | loop_2 param_i param_n cst
131 VEC (loop_p
, heap
) *loop_nest
;
132 int nb_induction_vars
;
133 VEC (tree
, heap
) *parameters
;
134 VEC (lambda_vector
, gc
) *matrix
;
137 #define AM_LOOP_NEST(M) (M)->loop_nest
138 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
139 #define AM_PARAMETERS(M) (M)->parameters
140 #define AM_MATRIX(M) (M)->matrix
141 #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
142 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
143 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
144 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
145 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
147 /* Return the column in the access matrix of LOOP_NUM. */
150 am_vector_index_for_loop (struct access_matrix
*access_matrix
, int loop_num
)
155 for (i
= 0; VEC_iterate (loop_p
, AM_LOOP_NEST (access_matrix
), i
, l
); i
++)
156 if (l
->num
== loop_num
)
162 int access_matrix_get_index_for_parameter (tree
, struct access_matrix
*);
164 struct data_reference
166 /* A pointer to the statement that contains this DR. */
169 /* A pointer to the memory reference. */
172 /* Auxiliary info specific to a pass. */
175 /* True when the data reference is in RHS of a stmt. */
178 /* Behavior of the memory reference in the innermost loop. */
179 struct innermost_loop_behavior innermost
;
181 /* Subscripts of this data reference. */
182 struct indices indices
;
184 /* Alias information for the data reference. */
185 struct dr_alias alias
;
187 /* The SCoP in which the data reference was analyzed. */
190 /* Matrix representation for the data access functions. */
191 struct access_matrix
*access_matrix
;
194 #define DR_SCOP(DR) (DR)->scop
195 #define DR_STMT(DR) (DR)->stmt
196 #define DR_REF(DR) (DR)->ref
197 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
198 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
199 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
200 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
201 #define DR_IS_READ(DR) (DR)->is_read
202 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
203 #define DR_OFFSET(DR) (DR)->innermost.offset
204 #define DR_INIT(DR) (DR)->innermost.init
205 #define DR_STEP(DR) (DR)->innermost.step
206 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
207 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
208 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
210 typedef struct data_reference
*data_reference_p
;
211 DEF_VEC_P(data_reference_p
);
212 DEF_VEC_ALLOC_P (data_reference_p
, heap
);
214 enum data_dependence_direction
{
218 dir_positive_or_negative
,
219 dir_positive_or_equal
,
220 dir_negative_or_equal
,
225 /* The description of the grid of iterations that overlap. At most
226 two loops are considered at the same time just now, hence at most
227 two functions are needed. For each of the functions, we store
228 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
229 where x, y, ... are variables. */
233 /* Special values of N. */
234 #define NO_DEPENDENCE 0
235 #define NOT_KNOWN (MAX_DIM + 1)
236 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
237 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
238 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
240 typedef VEC (tree
, heap
) *affine_fn
;
245 affine_fn fns
[MAX_DIM
];
248 /* What is a subscript? Given two array accesses a subscript is the
249 tuple composed of the access functions for a given dimension.
250 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
251 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
252 are stored in the data_dependence_relation structure under the form
253 of an array of subscripts. */
257 /* A description of the iterations for which the elements are
259 conflict_function
*conflicting_iterations_in_a
;
260 conflict_function
*conflicting_iterations_in_b
;
262 /* This field stores the information about the iteration domain
263 validity of the dependence relation. */
266 /* Distance from the iteration that access a conflicting element in
267 A to the iteration that access this same conflicting element in
268 B. The distance is a tree scalar expression, i.e. a constant or a
269 symbolic expression, but certainly not a chrec function. */
273 typedef struct subscript
*subscript_p
;
274 DEF_VEC_P(subscript_p
);
275 DEF_VEC_ALLOC_P (subscript_p
, heap
);
277 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
278 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
279 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
280 #define SUB_DISTANCE(SUB) SUB->distance
282 /* A data_dependence_relation represents a relation between two
283 data_references A and B. */
285 struct data_dependence_relation
288 struct data_reference
*a
;
289 struct data_reference
*b
;
291 /* A "yes/no/maybe" field for the dependence relation:
293 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
294 relation between A and B, and the description of this relation
295 is given in the SUBSCRIPTS array,
297 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
300 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
301 but the analyzer cannot be more specific. */
304 /* For each subscript in the dependence test, there is an element in
305 this array. This is the attribute that labels the edge A->B of
306 the data_dependence_relation. */
307 VEC (subscript_p
, heap
) *subscripts
;
309 /* The analyzed loop nest. */
310 VEC (loop_p
, heap
) *loop_nest
;
312 /* The classic direction vector. */
313 VEC (lambda_vector
, heap
) *dir_vects
;
315 /* The classic distance vector. */
316 VEC (lambda_vector
, heap
) *dist_vects
;
318 /* An index in loop_nest for the innermost loop that varies for
319 this data dependence relation. */
322 /* Is the dependence reversed with respect to the lexicographic order? */
325 /* When the dependence relation is affine, it can be represented by
326 a distance vector. */
329 /* Set to true when the dependence relation is on the same data
331 bool self_reference_p
;
334 typedef struct data_dependence_relation
*ddr_p
;
336 DEF_VEC_ALLOC_P(ddr_p
,heap
);
338 #define DDR_A(DDR) DDR->a
339 #define DDR_B(DDR) DDR->b
340 #define DDR_AFFINE_P(DDR) DDR->affine_p
341 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
342 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
343 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
344 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
346 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
347 /* The size of the direction/distance vectors: the number of loops in
349 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
350 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
351 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
353 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
354 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
355 #define DDR_NUM_DIST_VECTS(DDR) \
356 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
357 #define DDR_NUM_DIR_VECTS(DDR) \
358 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
359 #define DDR_DIR_VECT(DDR, I) \
360 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
361 #define DDR_DIST_VECT(DDR, I) \
362 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
363 #define DDR_REVERSED_P(DDR) DDR->reversed_p
367 /* Describes a location of a memory reference. */
369 typedef struct data_ref_loc_d
371 /* Position of the memory reference. */
374 /* True if the memory reference is read. */
378 DEF_VEC_O (data_ref_loc
);
379 DEF_VEC_ALLOC_O (data_ref_loc
, heap
);
381 bool get_references_in_stmt (gimple
, VEC (data_ref_loc
, heap
) **);
382 bool dr_analyze_innermost (struct data_reference
*);
383 extern bool compute_data_dependences_for_loop (struct loop
*, bool,
384 VEC (data_reference_p
, heap
) **,
385 VEC (ddr_p
, heap
) **);
386 extern bool compute_data_dependences_for_bb (basic_block
, bool,
387 VEC (data_reference_p
, heap
) **,
388 VEC (ddr_p
, heap
) **);
389 extern tree
find_data_references_in_loop (struct loop
*,
390 VEC (data_reference_p
, heap
) **);
391 extern void print_direction_vector (FILE *, lambda_vector
, int);
392 extern void print_dir_vectors (FILE *, VEC (lambda_vector
, heap
) *, int);
393 extern void print_dist_vectors (FILE *, VEC (lambda_vector
, heap
) *, int);
394 extern void dump_subscript (FILE *, struct subscript
*);
395 extern void dump_ddrs (FILE *, VEC (ddr_p
, heap
) *);
396 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p
, heap
) *);
397 extern void dump_data_reference (FILE *, struct data_reference
*);
398 extern void dump_data_references (FILE *, VEC (data_reference_p
, heap
) *);
399 extern void debug_data_dependence_relation (struct data_dependence_relation
*);
400 extern void dump_data_dependence_relation (FILE *,
401 struct data_dependence_relation
*);
402 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p
, heap
) *);
403 extern void debug_data_dependence_relations (VEC (ddr_p
, heap
) *);
404 extern void dump_data_dependence_direction (FILE *,
405 enum data_dependence_direction
);
406 extern void free_dependence_relation (struct data_dependence_relation
*);
407 extern void free_dependence_relations (VEC (ddr_p
, heap
) *);
408 extern void free_data_ref (data_reference_p
);
409 extern void free_data_refs (VEC (data_reference_p
, heap
) *);
410 extern bool find_data_references_in_stmt (struct loop
*, gimple
,
411 VEC (data_reference_p
, heap
) **);
412 struct data_reference
*create_data_ref (struct loop
*, tree
, gimple
, bool);
413 extern bool find_loop_nest (struct loop
*, VEC (loop_p
, heap
) **);
414 extern void compute_all_dependences (VEC (data_reference_p
, heap
) *,
415 VEC (ddr_p
, heap
) **, VEC (loop_p
, heap
) *,
418 extern void create_rdg_vertices (struct graph
*, VEC (gimple
, heap
) *);
419 extern bool dr_may_alias_p (const struct data_reference
*,
420 const struct data_reference
*);
421 extern bool stmt_simple_memref_p (struct loop
*, gimple
, tree
);
423 /* Return true when the DDR contains two data references that have the
424 same access functions. */
427 same_access_functions (const struct data_dependence_relation
*ddr
)
431 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
432 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr
), i
),
433 DR_ACCESS_FN (DDR_B (ddr
), i
)))
439 /* Return true when DDR is an anti-dependence relation. */
442 ddr_is_anti_dependent (ddr_p ddr
)
444 return (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
445 && DR_IS_READ (DDR_A (ddr
))
446 && !DR_IS_READ (DDR_B (ddr
))
447 && !same_access_functions (ddr
));
450 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
453 ddrs_have_anti_deps (VEC (ddr_p
, heap
) *dependence_relations
)
458 for (i
= 0; VEC_iterate (ddr_p
, dependence_relations
, i
, ddr
); i
++)
459 if (ddr_is_anti_dependent (ddr
))
465 /* Return the dependence level for the DDR relation. */
467 static inline unsigned
468 ddr_dependence_level (ddr_p ddr
)
473 if (DDR_DIST_VECTS (ddr
))
474 level
= dependence_level (DDR_DIST_VECT (ddr
, 0), DDR_NB_LOOPS (ddr
));
476 for (vector
= 1; vector
< DDR_NUM_DIST_VECTS (ddr
); vector
++)
477 level
= MIN (level
, dependence_level (DDR_DIST_VECT (ddr
, vector
),
478 DDR_NB_LOOPS (ddr
)));
484 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
485 typedef struct rdg_vertex
487 /* The statement represented by this vertex. */
490 /* True when the statement contains a write to memory. */
493 /* True when the statement contains a read from memory. */
497 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
498 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
499 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
500 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
501 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
502 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
504 void dump_rdg_vertex (FILE *, struct graph
*, int);
505 void debug_rdg_vertex (struct graph
*, int);
506 void dump_rdg_component (FILE *, struct graph
*, int, bitmap
);
507 void debug_rdg_component (struct graph
*, int);
508 void dump_rdg (FILE *, struct graph
*);
509 void debug_rdg (struct graph
*);
510 void dot_rdg (struct graph
*);
511 int rdg_vertex_for_stmt (struct graph
*, gimple
);
513 /* Data dependence type. */
517 /* Read After Write (RAW). */
520 /* Write After Read (WAR). */
523 /* Write After Write (WAW). */
526 /* Read After Read (RAR). */
530 /* Dependence information attached to an edge of the RDG. */
532 typedef struct rdg_edge
534 /* Type of the dependence. */
535 enum rdg_dep_type type
;
537 /* Levels of the dependence: the depth of the loops that carry the
541 /* Dependence relation between data dependences, NULL when one of
542 the vertices is a scalar. */
546 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
547 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
548 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
550 struct graph
*build_rdg (struct loop
*);
551 struct graph
*build_empty_rdg (int);
552 void free_rdg (struct graph
*);
554 /* Return the index of the variable VAR in the LOOP_NEST array. */
557 index_in_loop_nest (int var
, VEC (loop_p
, heap
) *loop_nest
)
562 for (var_index
= 0; VEC_iterate (loop_p
, loop_nest
, var_index
, loopi
);
564 if (loopi
->num
== var
)
570 void stores_from_loop (struct loop
*, VEC (gimple
, heap
) **);
571 void remove_similar_memory_refs (VEC (gimple
, heap
) **);
572 bool rdg_defs_used_in_other_loops_p (struct graph
*, int);
573 bool have_similar_memory_accesses (gimple
, gimple
);
575 /* Determines whether RDG vertices V1 and V2 access to similar memory
576 locations, in which case they have to be in the same partition. */
579 rdg_has_similar_memory_accesses (struct graph
*rdg
, int v1
, int v2
)
581 return have_similar_memory_accesses (RDG_STMT (rdg
, v1
),
585 /* In lambda-code.c */
586 bool lambda_transform_legal_p (lambda_trans_matrix
, int,
587 VEC (ddr_p
, heap
) *);
588 void lambda_collect_parameters (VEC (data_reference_p
, heap
) *,
589 VEC (tree
, heap
) **);
590 bool lambda_compute_access_matrices (VEC (data_reference_p
, heap
) *,
591 VEC (tree
, heap
) *, VEC (loop_p
, heap
) *);
593 /* In tree-data-ref.c */
594 void split_constant_offset (tree
, tree
*, tree
*);
596 /* Strongly connected components of the reduced data dependence graph. */
598 typedef struct rdg_component
601 VEC (int, heap
) *vertices
;
605 DEF_VEC_ALLOC_P (rdgc
, heap
);
608 DEF_VEC_ALLOC_P (bitmap
, heap
);
610 #endif /* GCC_TREE_DATA_REF_H */