1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "insn-config.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
36 #include "addresses.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx
, const_rtx
, void *);
41 static bool covers_regno_p (const_rtx
, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
43 static int computed_jump_p_1 (const_rtx
);
44 static void parms_set (rtx
, const_rtx
, void *);
46 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, machine_mode
,
47 const_rtx
, machine_mode
,
48 unsigned HOST_WIDE_INT
);
49 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, machine_mode
,
50 const_rtx
, machine_mode
,
51 unsigned HOST_WIDE_INT
);
52 static unsigned int cached_num_sign_bit_copies (const_rtx
, machine_mode
, const_rtx
,
55 static unsigned int num_sign_bit_copies1 (const_rtx
, machine_mode
, const_rtx
,
56 machine_mode
, unsigned int);
58 rtx_subrtx_bound_info rtx_all_subrtx_bounds
[NUM_RTX_CODE
];
59 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds
[NUM_RTX_CODE
];
61 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
62 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
63 SIGN_EXTEND then while narrowing we also have to enforce the
64 representation and sign-extend the value to mode DESTINATION_REP.
66 If the value is already sign-extended to DESTINATION_REP mode we
67 can just switch to DESTINATION mode on it. For each pair of
68 integral modes SOURCE and DESTINATION, when truncating from SOURCE
69 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
70 contains the number of high-order bits in SOURCE that have to be
71 copies of the sign-bit so that we can do this mode-switch to
75 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
77 /* Store X into index I of ARRAY. ARRAY is known to have at least I
78 elements. Return the new base of ARRAY. */
81 typename
T::value_type
*
82 generic_subrtx_iterator
<T
>::add_single_to_queue (array_type
&array
,
84 size_t i
, value_type x
)
86 if (base
== array
.stack
)
93 gcc_checking_assert (i
== LOCAL_ELEMS
);
94 /* A previous iteration might also have moved from the stack to the
95 heap, in which case the heap array will already be big enough. */
96 if (vec_safe_length (array
.heap
) <= i
)
97 vec_safe_grow (array
.heap
, i
+ 1);
98 base
= array
.heap
->address ();
99 memcpy (base
, array
.stack
, sizeof (array
.stack
));
100 base
[LOCAL_ELEMS
] = x
;
103 unsigned int length
= array
.heap
->length ();
106 gcc_checking_assert (base
== array
.heap
->address ());
112 gcc_checking_assert (i
== length
);
113 vec_safe_push (array
.heap
, x
);
114 return array
.heap
->address ();
118 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
119 number of elements added to the worklist. */
121 template <typename T
>
123 generic_subrtx_iterator
<T
>::add_subrtxes_to_queue (array_type
&array
,
125 size_t end
, rtx_type x
)
127 enum rtx_code code
= GET_CODE (x
);
128 const char *format
= GET_RTX_FORMAT (code
);
129 size_t orig_end
= end
;
130 if (__builtin_expect (INSN_P (x
), false))
132 /* Put the pattern at the top of the queue, since that's what
133 we're likely to want most. It also allows for the SEQUENCE
135 for (int i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; --i
)
136 if (format
[i
] == 'e')
138 value_type subx
= T::get_value (x
->u
.fld
[i
].rt_rtx
);
139 if (__builtin_expect (end
< LOCAL_ELEMS
, true))
142 base
= add_single_to_queue (array
, base
, end
++, subx
);
146 for (int i
= 0; format
[i
]; ++i
)
147 if (format
[i
] == 'e')
149 value_type subx
= T::get_value (x
->u
.fld
[i
].rt_rtx
);
150 if (__builtin_expect (end
< LOCAL_ELEMS
, true))
153 base
= add_single_to_queue (array
, base
, end
++, subx
);
155 else if (format
[i
] == 'E')
157 unsigned int length
= GET_NUM_ELEM (x
->u
.fld
[i
].rt_rtvec
);
158 rtx
*vec
= x
->u
.fld
[i
].rt_rtvec
->elem
;
159 if (__builtin_expect (end
+ length
<= LOCAL_ELEMS
, true))
160 for (unsigned int j
= 0; j
< length
; j
++)
161 base
[end
++] = T::get_value (vec
[j
]);
163 for (unsigned int j
= 0; j
< length
; j
++)
164 base
= add_single_to_queue (array
, base
, end
++,
165 T::get_value (vec
[j
]));
166 if (code
== SEQUENCE
&& end
== length
)
167 /* If the subrtxes of the sequence fill the entire array then
168 we know that no other parts of a containing insn are queued.
169 The caller is therefore iterating over the sequence as a
170 PATTERN (...), so we also want the patterns of the
172 for (unsigned int j
= 0; j
< length
; j
++)
174 typename
T::rtx_type x
= T::get_rtx (base
[j
]);
176 base
[j
] = T::get_value (PATTERN (x
));
179 return end
- orig_end
;
182 template <typename T
>
184 generic_subrtx_iterator
<T
>::free_array (array_type
&array
)
186 vec_free (array
.heap
);
189 template <typename T
>
190 const size_t generic_subrtx_iterator
<T
>::LOCAL_ELEMS
;
192 template class generic_subrtx_iterator
<const_rtx_accessor
>;
193 template class generic_subrtx_iterator
<rtx_var_accessor
>;
194 template class generic_subrtx_iterator
<rtx_ptr_accessor
>;
196 /* Return 1 if the value of X is unstable
197 (would be different at a different point in the program).
198 The frame pointer, arg pointer, etc. are considered stable
199 (within one function) and so is anything marked `unchanging'. */
202 rtx_unstable_p (const_rtx x
)
204 const RTX_CODE code
= GET_CODE (x
);
211 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
220 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
221 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
222 /* The arg pointer varies if it is not a fixed register. */
223 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
225 /* ??? When call-clobbered, the value is stable modulo the restore
226 that must happen after a call. This currently screws up local-alloc
227 into believing that the restore is not needed. */
228 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
233 if (MEM_VOLATILE_P (x
))
242 fmt
= GET_RTX_FORMAT (code
);
243 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
246 if (rtx_unstable_p (XEXP (x
, i
)))
249 else if (fmt
[i
] == 'E')
252 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
253 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
260 /* Return 1 if X has a value that can vary even between two
261 executions of the program. 0 means X can be compared reliably
262 against certain constants or near-constants.
263 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
264 zero, we are slightly more conservative.
265 The frame pointer and the arg pointer are considered constant. */
268 rtx_varies_p (const_rtx x
, bool for_alias
)
281 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
290 /* Note that we have to test for the actual rtx used for the frame
291 and arg pointers and not just the register number in case we have
292 eliminated the frame and/or arg pointer and are using it
294 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
295 /* The arg pointer varies if it is not a fixed register. */
296 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
298 if (x
== pic_offset_table_rtx
299 /* ??? When call-clobbered, the value is stable modulo the restore
300 that must happen after a call. This currently screws up
301 local-alloc into believing that the restore is not needed, so we
302 must return 0 only if we are called from alias analysis. */
303 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
308 /* The operand 0 of a LO_SUM is considered constant
309 (in fact it is related specifically to operand 1)
310 during alias analysis. */
311 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
312 || rtx_varies_p (XEXP (x
, 1), for_alias
);
315 if (MEM_VOLATILE_P (x
))
324 fmt
= GET_RTX_FORMAT (code
);
325 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
328 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
331 else if (fmt
[i
] == 'E')
334 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
335 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
342 /* Compute an approximation for the offset between the register
343 FROM and TO for the current function, as it was at the start
347 get_initial_register_offset (int from
, int to
)
349 static const struct elim_table_t
353 } table
[] = ELIMINABLE_REGS
;
354 HOST_WIDE_INT offset1
, offset2
;
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed
)
365 offset1
= crtl
->outgoing_args_size
+ get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
369 if (to
== STACK_POINTER_REGNUM
)
371 else if (from
== STACK_POINTER_REGNUM
)
377 for (i
= 0; i
< ARRAY_SIZE (table
); i
++)
378 if (table
[i
].from
== from
)
380 if (table
[i
].to
== to
)
382 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
386 for (j
= 0; j
< ARRAY_SIZE (table
); j
++)
388 if (table
[j
].to
== to
389 && table
[j
].from
== table
[i
].to
)
391 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
393 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
395 return offset1
+ offset2
;
397 if (table
[j
].from
== to
398 && table
[j
].to
== table
[i
].to
)
400 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
402 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
404 return offset1
- offset2
;
408 else if (table
[i
].to
== from
)
410 if (table
[i
].from
== to
)
412 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
416 for (j
= 0; j
< ARRAY_SIZE (table
); j
++)
418 if (table
[j
].to
== to
419 && table
[j
].from
== table
[i
].from
)
421 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
423 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
425 return - offset1
+ offset2
;
427 if (table
[j
].from
== to
428 && table
[j
].to
== table
[i
].from
)
430 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
432 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
434 return - offset1
- offset2
;
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from
== ARG_POINTER_REGNUM
)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM
, to
);
443 else if (to
== ARG_POINTER_REGNUM
)
444 return get_initial_register_offset (from
, HARD_FRAME_POINTER_REGNUM
);
445 else if (from
== HARD_FRAME_POINTER_REGNUM
)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM
, to
);
447 else if (to
== HARD_FRAME_POINTER_REGNUM
)
448 return get_initial_register_offset (from
, FRAME_POINTER_REGNUM
);
453 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
454 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
455 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
456 references on strict alignment machines. */
459 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
460 machine_mode mode
, bool unaligned_mems
)
462 enum rtx_code code
= GET_CODE (x
);
464 /* The offset must be a multiple of the mode size if we are considering
465 unaligned memory references on strict alignment machines. */
466 if (STRICT_ALIGNMENT
&& unaligned_mems
&& GET_MODE_SIZE (mode
) != 0)
468 HOST_WIDE_INT actual_offset
= offset
;
470 #ifdef SPARC_STACK_BOUNDARY_HACK
471 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
472 the real alignment of %sp. However, when it does this, the
473 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
474 if (SPARC_STACK_BOUNDARY_HACK
475 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
476 actual_offset
-= STACK_POINTER_OFFSET
;
479 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
486 if (SYMBOL_REF_WEAK (x
))
488 if (!CONSTANT_POOL_ADDRESS_P (x
))
491 HOST_WIDE_INT decl_size
;
496 size
= GET_MODE_SIZE (mode
);
500 /* If the size of the access or of the symbol is unknown,
502 decl
= SYMBOL_REF_DECL (x
);
504 /* Else check that the access is in bounds. TODO: restructure
505 expr_size/tree_expr_size/int_expr_size and just use the latter. */
508 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
509 decl_size
= (tree_fits_shwi_p (DECL_SIZE_UNIT (decl
))
510 ? tree_to_shwi (DECL_SIZE_UNIT (decl
))
512 else if (TREE_CODE (decl
) == STRING_CST
)
513 decl_size
= TREE_STRING_LENGTH (decl
);
514 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
515 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
519 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
528 /* Stack references are assumed not to trap, but we need to deal with
529 nonsensical offsets. */
530 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
531 || x
== stack_pointer_rtx
532 /* The arg pointer varies if it is not a fixed register. */
533 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
536 HOST_WIDE_INT red_zone_size
= RED_ZONE_SIZE
;
538 HOST_WIDE_INT red_zone_size
= 0;
540 HOST_WIDE_INT stack_boundary
= PREFERRED_STACK_BOUNDARY
542 HOST_WIDE_INT low_bound
, high_bound
;
545 size
= GET_MODE_SIZE (mode
);
549 if (x
== frame_pointer_rtx
)
551 if (FRAME_GROWS_DOWNWARD
)
553 high_bound
= STARTING_FRAME_OFFSET
;
554 low_bound
= high_bound
- get_frame_size ();
558 low_bound
= STARTING_FRAME_OFFSET
;
559 high_bound
= low_bound
+ get_frame_size ();
562 else if (x
== hard_frame_pointer_rtx
)
564 HOST_WIDE_INT sp_offset
565 = get_initial_register_offset (STACK_POINTER_REGNUM
,
566 HARD_FRAME_POINTER_REGNUM
);
567 HOST_WIDE_INT ap_offset
568 = get_initial_register_offset (ARG_POINTER_REGNUM
,
569 HARD_FRAME_POINTER_REGNUM
);
571 #if STACK_GROWS_DOWNWARD
572 low_bound
= sp_offset
- red_zone_size
- stack_boundary
;
573 high_bound
= ap_offset
574 + FIRST_PARM_OFFSET (current_function_decl
)
575 #if !ARGS_GROW_DOWNWARD
580 high_bound
= sp_offset
+ red_zone_size
+ stack_boundary
;
581 low_bound
= ap_offset
582 + FIRST_PARM_OFFSET (current_function_decl
)
583 #if ARGS_GROW_DOWNWARD
589 else if (x
== stack_pointer_rtx
)
591 HOST_WIDE_INT ap_offset
592 = get_initial_register_offset (ARG_POINTER_REGNUM
,
593 STACK_POINTER_REGNUM
);
595 #if STACK_GROWS_DOWNWARD
596 low_bound
= - red_zone_size
- stack_boundary
;
597 high_bound
= ap_offset
598 + FIRST_PARM_OFFSET (current_function_decl
)
599 #if !ARGS_GROW_DOWNWARD
604 high_bound
= red_zone_size
+ stack_boundary
;
605 low_bound
= ap_offset
606 + FIRST_PARM_OFFSET (current_function_decl
)
607 #if ARGS_GROW_DOWNWARD
615 /* We assume that accesses are safe to at least the
617 Examples are varargs and __builtin_return_address. */
618 #if ARGS_GROW_DOWNWARD
619 high_bound
= FIRST_PARM_OFFSET (current_function_decl
)
621 low_bound
= FIRST_PARM_OFFSET (current_function_decl
)
622 - crtl
->args
.size
- stack_boundary
;
624 low_bound
= FIRST_PARM_OFFSET (current_function_decl
)
626 high_bound
= FIRST_PARM_OFFSET (current_function_decl
)
627 + crtl
->args
.size
+ stack_boundary
;
631 if (offset
>= low_bound
&& offset
<= high_bound
- size
)
635 /* All of the virtual frame registers are stack references. */
636 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
637 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
642 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
643 mode
, unaligned_mems
);
646 /* An address is assumed not to trap if:
647 - it is the pic register plus a constant. */
648 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
651 /* - or it is an address that can't trap plus a constant integer. */
652 if (CONST_INT_P (XEXP (x
, 1))
653 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
654 size
, mode
, unaligned_mems
))
661 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
662 mode
, unaligned_mems
);
669 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
670 mode
, unaligned_mems
);
676 /* If it isn't one of the case above, it can cause a trap. */
680 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
683 rtx_addr_can_trap_p (const_rtx x
)
685 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
688 /* Return true if X contains a MEM subrtx. */
691 contains_mem_rtx_p (rtx x
)
693 subrtx_iterator::array_type array
;
694 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
701 /* Return true if X is an address that is known to not be zero. */
704 nonzero_address_p (const_rtx x
)
706 const enum rtx_code code
= GET_CODE (x
);
711 return flag_delete_null_pointer_checks
&& !SYMBOL_REF_WEAK (x
);
717 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
718 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
719 || x
== stack_pointer_rtx
720 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
722 /* All of the virtual frame registers are stack references. */
723 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
724 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
729 return nonzero_address_p (XEXP (x
, 0));
732 /* Handle PIC references. */
733 if (XEXP (x
, 0) == pic_offset_table_rtx
734 && CONSTANT_P (XEXP (x
, 1)))
739 /* Similar to the above; allow positive offsets. Further, since
740 auto-inc is only allowed in memories, the register must be a
742 if (CONST_INT_P (XEXP (x
, 1))
743 && INTVAL (XEXP (x
, 1)) > 0)
745 return nonzero_address_p (XEXP (x
, 0));
748 /* Similarly. Further, the offset is always positive. */
755 return nonzero_address_p (XEXP (x
, 0));
758 return nonzero_address_p (XEXP (x
, 1));
764 /* If it isn't one of the case above, might be zero. */
768 /* Return 1 if X refers to a memory location whose address
769 cannot be compared reliably with constant addresses,
770 or if X refers to a BLKmode memory object.
771 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
772 zero, we are slightly more conservative. */
775 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
786 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
788 fmt
= GET_RTX_FORMAT (code
);
789 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
792 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
795 else if (fmt
[i
] == 'E')
798 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
799 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
805 /* Return the CALL in X if there is one. */
808 get_call_rtx_from (rtx x
)
812 if (GET_CODE (x
) == PARALLEL
)
813 x
= XVECEXP (x
, 0, 0);
814 if (GET_CODE (x
) == SET
)
816 if (GET_CODE (x
) == CALL
&& MEM_P (XEXP (x
, 0)))
821 /* Return the value of the integer term in X, if one is apparent;
823 Only obvious integer terms are detected.
824 This is used in cse.c with the `related_value' field. */
827 get_integer_term (const_rtx x
)
829 if (GET_CODE (x
) == CONST
)
832 if (GET_CODE (x
) == MINUS
833 && CONST_INT_P (XEXP (x
, 1)))
834 return - INTVAL (XEXP (x
, 1));
835 if (GET_CODE (x
) == PLUS
836 && CONST_INT_P (XEXP (x
, 1)))
837 return INTVAL (XEXP (x
, 1));
841 /* If X is a constant, return the value sans apparent integer term;
843 Only obvious integer terms are detected. */
846 get_related_value (const_rtx x
)
848 if (GET_CODE (x
) != CONST
)
851 if (GET_CODE (x
) == PLUS
852 && CONST_INT_P (XEXP (x
, 1)))
854 else if (GET_CODE (x
) == MINUS
855 && CONST_INT_P (XEXP (x
, 1)))
860 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
861 to somewhere in the same object or object_block as SYMBOL. */
864 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
868 if (GET_CODE (symbol
) != SYMBOL_REF
)
876 if (CONSTANT_POOL_ADDRESS_P (symbol
)
877 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
880 decl
= SYMBOL_REF_DECL (symbol
);
881 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
885 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
886 && SYMBOL_REF_BLOCK (symbol
)
887 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
888 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
889 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
895 /* Split X into a base and a constant offset, storing them in *BASE_OUT
896 and *OFFSET_OUT respectively. */
899 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
901 if (GET_CODE (x
) == CONST
)
904 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
906 *base_out
= XEXP (x
, 0);
907 *offset_out
= XEXP (x
, 1);
912 *offset_out
= const0_rtx
;
915 /* Return the number of places FIND appears within X. If COUNT_DEST is
916 zero, we do not count occurrences inside the destination of a SET. */
919 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
923 const char *format_ptr
;
942 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
944 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
948 if (MEM_P (find
) && rtx_equal_p (x
, find
))
953 if (SET_DEST (x
) == find
&& ! count_dest
)
954 return count_occurrences (SET_SRC (x
), find
, count_dest
);
961 format_ptr
= GET_RTX_FORMAT (code
);
964 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
966 switch (*format_ptr
++)
969 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
973 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
974 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
982 /* Return TRUE if OP is a register or subreg of a register that
983 holds an unsigned quantity. Otherwise, return FALSE. */
986 unsigned_reg_p (rtx op
)
990 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op
))))
993 if (GET_CODE (op
) == SUBREG
994 && SUBREG_PROMOTED_SIGN (op
))
1001 /* Nonzero if register REG appears somewhere within IN.
1002 Also works if REG is not a register; in this case it checks
1003 for a subexpression of IN that is Lisp "equal" to REG. */
1006 reg_mentioned_p (const_rtx reg
, const_rtx in
)
1018 if (GET_CODE (in
) == LABEL_REF
)
1019 return reg
== label_ref_label (in
);
1021 code
= GET_CODE (in
);
1025 /* Compare registers by number. */
1027 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
1029 /* These codes have no constituent expressions
1037 /* These are kept unique for a given value. */
1044 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
1047 fmt
= GET_RTX_FORMAT (code
);
1049 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1054 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
1055 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
1058 else if (fmt
[i
] == 'e'
1059 && reg_mentioned_p (reg
, XEXP (in
, i
)))
1065 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1066 no CODE_LABEL insn. */
1069 no_labels_between_p (const rtx_insn
*beg
, const rtx_insn
*end
)
1074 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
1080 /* Nonzero if register REG is used in an insn between
1081 FROM_INSN and TO_INSN (exclusive of those two). */
1084 reg_used_between_p (const_rtx reg
, const rtx_insn
*from_insn
,
1085 const rtx_insn
*to_insn
)
1089 if (from_insn
== to_insn
)
1092 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
1093 if (NONDEBUG_INSN_P (insn
)
1094 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
1095 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
1100 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1101 is entirely replaced by a new value and the only use is as a SET_DEST,
1102 we do not consider it a reference. */
1105 reg_referenced_p (const_rtx x
, const_rtx body
)
1109 switch (GET_CODE (body
))
1112 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
1115 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1116 of a REG that occupies all of the REG, the insn references X if
1117 it is mentioned in the destination. */
1118 if (GET_CODE (SET_DEST (body
)) != CC0
1119 && GET_CODE (SET_DEST (body
)) != PC
1120 && !REG_P (SET_DEST (body
))
1121 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
1122 && REG_P (SUBREG_REG (SET_DEST (body
)))
1123 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
1124 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
1125 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
1126 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
1127 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
1132 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1133 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
1140 return reg_overlap_mentioned_p (x
, body
);
1143 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
1146 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
1149 case UNSPEC_VOLATILE
:
1150 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1151 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
1156 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1157 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
1162 if (MEM_P (XEXP (body
, 0)))
1163 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
1168 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
1170 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
1177 /* Nonzero if register REG is set or clobbered in an insn between
1178 FROM_INSN and TO_INSN (exclusive of those two). */
1181 reg_set_between_p (const_rtx reg
, const rtx_insn
*from_insn
,
1182 const rtx_insn
*to_insn
)
1184 const rtx_insn
*insn
;
1186 if (from_insn
== to_insn
)
1189 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
1190 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
1195 /* Return true if REG is set or clobbered inside INSN. */
1198 reg_set_p (const_rtx reg
, const_rtx insn
)
1200 /* After delay slot handling, call and branch insns might be in a
1201 sequence. Check all the elements there. */
1202 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1204 for (int i
= 0; i
< XVECLEN (PATTERN (insn
), 0); ++i
)
1205 if (reg_set_p (reg
, XVECEXP (PATTERN (insn
), 0, i
)))
1211 /* We can be passed an insn or part of one. If we are passed an insn,
1212 check if a side-effect of the insn clobbers REG. */
1214 && (FIND_REG_INC_NOTE (insn
, reg
)
1217 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
1218 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
1219 GET_MODE (reg
), REGNO (reg
)))
1221 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
1224 return set_of (reg
, insn
) != NULL_RTX
;
1227 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1228 only if none of them are modified between START and END. Return 1 if
1229 X contains a MEM; this routine does use memory aliasing. */
1232 modified_between_p (const_rtx x
, const rtx_insn
*start
, const rtx_insn
*end
)
1234 const enum rtx_code code
= GET_CODE (x
);
1255 if (modified_between_p (XEXP (x
, 0), start
, end
))
1257 if (MEM_READONLY_P (x
))
1259 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
1260 if (memory_modified_in_insn_p (x
, insn
))
1265 return reg_set_between_p (x
, start
, end
);
1271 fmt
= GET_RTX_FORMAT (code
);
1272 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1274 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
1277 else if (fmt
[i
] == 'E')
1278 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1279 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
1286 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1287 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1288 does use memory aliasing. */
1291 modified_in_p (const_rtx x
, const_rtx insn
)
1293 const enum rtx_code code
= GET_CODE (x
);
1310 if (modified_in_p (XEXP (x
, 0), insn
))
1312 if (MEM_READONLY_P (x
))
1314 if (memory_modified_in_insn_p (x
, insn
))
1319 return reg_set_p (x
, insn
);
1325 fmt
= GET_RTX_FORMAT (code
);
1326 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1328 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
1331 else if (fmt
[i
] == 'E')
1332 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1333 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
1340 /* Helper function for set_of. */
1348 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
1350 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
1351 if (rtx_equal_p (x
, data
->pat
)
1352 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1356 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1357 (either directly or via STRICT_LOW_PART and similar modifiers). */
1359 set_of (const_rtx pat
, const_rtx insn
)
1361 struct set_of_data data
;
1362 data
.found
= NULL_RTX
;
1364 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1368 /* Add all hard register in X to *PSET. */
1370 find_all_hard_regs (const_rtx x
, HARD_REG_SET
*pset
)
1372 subrtx_iterator::array_type array
;
1373 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
1375 const_rtx x
= *iter
;
1376 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1377 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1381 /* This function, called through note_stores, collects sets and
1382 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1385 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1387 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1388 if (REG_P (x
) && HARD_REGISTER_P (x
))
1389 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1392 /* Examine INSN, and compute the set of hard registers written by it.
1393 Store it in *PSET. Should only be called after reload. */
1395 find_all_hard_reg_sets (const rtx_insn
*insn
, HARD_REG_SET
*pset
, bool implicit
)
1399 CLEAR_HARD_REG_SET (*pset
);
1400 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1404 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1406 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1407 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1409 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1410 if (REG_NOTE_KIND (link
) == REG_INC
)
1411 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1414 /* Like record_hard_reg_sets, but called through note_uses. */
1416 record_hard_reg_uses (rtx
*px
, void *data
)
1418 find_all_hard_regs (*px
, (HARD_REG_SET
*) data
);
1421 /* Given an INSN, return a SET expression if this insn has only a single SET.
1422 It may also have CLOBBERs, USEs, or SET whose output
1423 will not be used, which we ignore. */
1426 single_set_2 (const rtx_insn
*insn
, const_rtx pat
)
1429 int set_verified
= 1;
1432 if (GET_CODE (pat
) == PARALLEL
)
1434 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1436 rtx sub
= XVECEXP (pat
, 0, i
);
1437 switch (GET_CODE (sub
))
1444 /* We can consider insns having multiple sets, where all
1445 but one are dead as single set insns. In common case
1446 only single set is present in the pattern so we want
1447 to avoid checking for REG_UNUSED notes unless necessary.
1449 When we reach set first time, we just expect this is
1450 the single set we are looking for and only when more
1451 sets are found in the insn, we check them. */
1454 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1455 && !side_effects_p (set
))
1461 set
= sub
, set_verified
= 0;
1462 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1463 || side_effects_p (sub
))
1475 /* Given an INSN, return nonzero if it has more than one SET, else return
1479 multiple_sets (const_rtx insn
)
1484 /* INSN must be an insn. */
1485 if (! INSN_P (insn
))
1488 /* Only a PARALLEL can have multiple SETs. */
1489 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1491 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1492 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1494 /* If we have already found a SET, then return now. */
1502 /* Either zero or one SET. */
1506 /* Return nonzero if the destination of SET equals the source
1507 and there are no side effects. */
1510 set_noop_p (const_rtx set
)
1512 rtx src
= SET_SRC (set
);
1513 rtx dst
= SET_DEST (set
);
1515 if (dst
== pc_rtx
&& src
== pc_rtx
)
1518 if (MEM_P (dst
) && MEM_P (src
))
1519 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1521 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1522 return rtx_equal_p (XEXP (dst
, 0), src
)
1523 && !BITS_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1524 && !side_effects_p (src
);
1526 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1527 dst
= XEXP (dst
, 0);
1529 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1531 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1533 src
= SUBREG_REG (src
);
1534 dst
= SUBREG_REG (dst
);
1537 /* It is a NOOP if destination overlaps with selected src vector
1539 if (GET_CODE (src
) == VEC_SELECT
1540 && REG_P (XEXP (src
, 0)) && REG_P (dst
)
1541 && HARD_REGISTER_P (XEXP (src
, 0))
1542 && HARD_REGISTER_P (dst
))
1545 rtx par
= XEXP (src
, 1);
1546 rtx src0
= XEXP (src
, 0);
1547 int c0
= INTVAL (XVECEXP (par
, 0, 0));
1548 HOST_WIDE_INT offset
= GET_MODE_UNIT_SIZE (GET_MODE (src0
)) * c0
;
1550 for (i
= 1; i
< XVECLEN (par
, 0); i
++)
1551 if (INTVAL (XVECEXP (par
, 0, i
)) != c0
+ i
)
1554 simplify_subreg_regno (REGNO (src0
), GET_MODE (src0
),
1555 offset
, GET_MODE (dst
)) == (int) REGNO (dst
);
1558 return (REG_P (src
) && REG_P (dst
)
1559 && REGNO (src
) == REGNO (dst
));
1562 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1566 noop_move_p (const rtx_insn
*insn
)
1568 rtx pat
= PATTERN (insn
);
1570 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1573 /* Insns carrying these notes are useful later on. */
1574 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1577 /* Check the code to be executed for COND_EXEC. */
1578 if (GET_CODE (pat
) == COND_EXEC
)
1579 pat
= COND_EXEC_CODE (pat
);
1581 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1584 if (GET_CODE (pat
) == PARALLEL
)
1587 /* If nothing but SETs of registers to themselves,
1588 this insn can also be deleted. */
1589 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1591 rtx tem
= XVECEXP (pat
, 0, i
);
1593 if (GET_CODE (tem
) == USE
1594 || GET_CODE (tem
) == CLOBBER
)
1597 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1607 /* Return nonzero if register in range [REGNO, ENDREGNO)
1608 appears either explicitly or implicitly in X
1609 other than being stored into.
1611 References contained within the substructure at LOC do not count.
1612 LOC may be zero, meaning don't ignore anything. */
1615 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1619 unsigned int x_regno
;
1624 /* The contents of a REG_NONNEG note is always zero, so we must come here
1625 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1629 code
= GET_CODE (x
);
1634 x_regno
= REGNO (x
);
1636 /* If we modifying the stack, frame, or argument pointer, it will
1637 clobber a virtual register. In fact, we could be more precise,
1638 but it isn't worth it. */
1639 if ((x_regno
== STACK_POINTER_REGNUM
1640 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1641 && x_regno
== ARG_POINTER_REGNUM
)
1642 || x_regno
== FRAME_POINTER_REGNUM
)
1643 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1646 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1649 /* If this is a SUBREG of a hard reg, we can see exactly which
1650 registers are being modified. Otherwise, handle normally. */
1651 if (REG_P (SUBREG_REG (x
))
1652 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1654 unsigned int inner_regno
= subreg_regno (x
);
1655 unsigned int inner_endregno
1656 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1657 ? subreg_nregs (x
) : 1);
1659 return endregno
> inner_regno
&& regno
< inner_endregno
;
1665 if (&SET_DEST (x
) != loc
1666 /* Note setting a SUBREG counts as referring to the REG it is in for
1667 a pseudo but not for hard registers since we can
1668 treat each word individually. */
1669 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1670 && loc
!= &SUBREG_REG (SET_DEST (x
))
1671 && REG_P (SUBREG_REG (SET_DEST (x
)))
1672 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1673 && refers_to_regno_p (regno
, endregno
,
1674 SUBREG_REG (SET_DEST (x
)), loc
))
1675 || (!REG_P (SET_DEST (x
))
1676 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1679 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1688 /* X does not match, so try its subexpressions. */
1690 fmt
= GET_RTX_FORMAT (code
);
1691 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1693 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1701 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1704 else if (fmt
[i
] == 'E')
1707 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1708 if (loc
!= &XVECEXP (x
, i
, j
)
1709 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1716 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1717 we check if any register number in X conflicts with the relevant register
1718 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1719 contains a MEM (we don't bother checking for memory addresses that can't
1720 conflict because we expect this to be a rare case. */
1723 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1725 unsigned int regno
, endregno
;
1727 /* If either argument is a constant, then modifying X can not
1728 affect IN. Here we look at IN, we can profitably combine
1729 CONSTANT_P (x) with the switch statement below. */
1730 if (CONSTANT_P (in
))
1734 switch (GET_CODE (x
))
1736 case STRICT_LOW_PART
:
1739 /* Overly conservative. */
1744 regno
= REGNO (SUBREG_REG (x
));
1745 if (regno
< FIRST_PSEUDO_REGISTER
)
1746 regno
= subreg_regno (x
);
1747 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1748 ? subreg_nregs (x
) : 1);
1753 endregno
= END_REGNO (x
);
1755 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1765 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1766 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1769 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1772 else if (fmt
[i
] == 'E')
1775 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1776 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1786 return reg_mentioned_p (x
, in
);
1792 /* If any register in here refers to it we return true. */
1793 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1794 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1795 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1801 gcc_assert (CONSTANT_P (x
));
1806 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1807 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1808 ignored by note_stores, but passed to FUN.
1810 FUN receives three arguments:
1811 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1812 2. the SET or CLOBBER rtx that does the store,
1813 3. the pointer DATA provided to note_stores.
1815 If the item being stored in or clobbered is a SUBREG of a hard register,
1816 the SUBREG will be passed. */
1819 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1823 if (GET_CODE (x
) == COND_EXEC
)
1824 x
= COND_EXEC_CODE (x
);
1826 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1828 rtx dest
= SET_DEST (x
);
1830 while ((GET_CODE (dest
) == SUBREG
1831 && (!REG_P (SUBREG_REG (dest
))
1832 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1833 || GET_CODE (dest
) == ZERO_EXTRACT
1834 || GET_CODE (dest
) == STRICT_LOW_PART
)
1835 dest
= XEXP (dest
, 0);
1837 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1838 each of whose first operand is a register. */
1839 if (GET_CODE (dest
) == PARALLEL
)
1841 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1842 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1843 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1846 (*fun
) (dest
, x
, data
);
1849 else if (GET_CODE (x
) == PARALLEL
)
1850 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1851 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1854 /* Like notes_stores, but call FUN for each expression that is being
1855 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1856 FUN for each expression, not any interior subexpressions. FUN receives a
1857 pointer to the expression and the DATA passed to this function.
1859 Note that this is not quite the same test as that done in reg_referenced_p
1860 since that considers something as being referenced if it is being
1861 partially set, while we do not. */
1864 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1869 switch (GET_CODE (body
))
1872 (*fun
) (&COND_EXEC_TEST (body
), data
);
1873 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1877 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1878 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1882 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1883 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1887 (*fun
) (&XEXP (body
, 0), data
);
1891 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1892 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1896 (*fun
) (&TRAP_CONDITION (body
), data
);
1900 (*fun
) (&XEXP (body
, 0), data
);
1904 case UNSPEC_VOLATILE
:
1905 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1906 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1910 if (MEM_P (XEXP (body
, 0)))
1911 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1916 rtx dest
= SET_DEST (body
);
1918 /* For sets we replace everything in source plus registers in memory
1919 expression in store and operands of a ZERO_EXTRACT. */
1920 (*fun
) (&SET_SRC (body
), data
);
1922 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1924 (*fun
) (&XEXP (dest
, 1), data
);
1925 (*fun
) (&XEXP (dest
, 2), data
);
1928 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1929 dest
= XEXP (dest
, 0);
1932 (*fun
) (&XEXP (dest
, 0), data
);
1937 /* All the other possibilities never store. */
1938 (*fun
) (pbody
, data
);
1943 /* Return nonzero if X's old contents don't survive after INSN.
1944 This will be true if X is (cc0) or if X is a register and
1945 X dies in INSN or because INSN entirely sets X.
1947 "Entirely set" means set directly and not through a SUBREG, or
1948 ZERO_EXTRACT, so no trace of the old contents remains.
1949 Likewise, REG_INC does not count.
1951 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1952 but for this use that makes no difference, since regs don't overlap
1953 during their lifetimes. Therefore, this function may be used
1954 at any time after deaths have been computed.
1956 If REG is a hard reg that occupies multiple machine registers, this
1957 function will only return 1 if each of those registers will be replaced
1961 dead_or_set_p (const rtx_insn
*insn
, const_rtx x
)
1963 unsigned int regno
, end_regno
;
1966 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1967 if (GET_CODE (x
) == CC0
)
1970 gcc_assert (REG_P (x
));
1973 end_regno
= END_REGNO (x
);
1974 for (i
= regno
; i
< end_regno
; i
++)
1975 if (! dead_or_set_regno_p (insn
, i
))
1981 /* Return TRUE iff DEST is a register or subreg of a register and
1982 doesn't change the number of words of the inner register, and any
1983 part of the register is TEST_REGNO. */
1986 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1988 unsigned int regno
, endregno
;
1990 if (GET_CODE (dest
) == SUBREG
1991 && (((GET_MODE_SIZE (GET_MODE (dest
))
1992 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1993 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1994 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1995 dest
= SUBREG_REG (dest
);
2000 regno
= REGNO (dest
);
2001 endregno
= END_REGNO (dest
);
2002 return (test_regno
>= regno
&& test_regno
< endregno
);
2005 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2006 any member matches the covers_regno_no_parallel_p criteria. */
2009 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
2011 if (GET_CODE (dest
) == PARALLEL
)
2013 /* Some targets place small structures in registers for return
2014 values of functions, and those registers are wrapped in
2015 PARALLELs that we may see as the destination of a SET. */
2018 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
2020 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
2021 if (inner
!= NULL_RTX
2022 && covers_regno_no_parallel_p (inner
, test_regno
))
2029 return covers_regno_no_parallel_p (dest
, test_regno
);
2032 /* Utility function for dead_or_set_p to check an individual register. */
2035 dead_or_set_regno_p (const rtx_insn
*insn
, unsigned int test_regno
)
2039 /* See if there is a death note for something that includes TEST_REGNO. */
2040 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
2044 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
2047 pattern
= PATTERN (insn
);
2049 /* If a COND_EXEC is not executed, the value survives. */
2050 if (GET_CODE (pattern
) == COND_EXEC
)
2053 if (GET_CODE (pattern
) == SET
)
2054 return covers_regno_p (SET_DEST (pattern
), test_regno
);
2055 else if (GET_CODE (pattern
) == PARALLEL
)
2059 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
2061 rtx body
= XVECEXP (pattern
, 0, i
);
2063 if (GET_CODE (body
) == COND_EXEC
)
2064 body
= COND_EXEC_CODE (body
);
2066 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
2067 && covers_regno_p (SET_DEST (body
), test_regno
))
2075 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2076 If DATUM is nonzero, look for one whose datum is DATUM. */
2079 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
2083 gcc_checking_assert (insn
);
2085 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2086 if (! INSN_P (insn
))
2090 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2091 if (REG_NOTE_KIND (link
) == kind
)
2096 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2097 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
2102 /* Return the reg-note of kind KIND in insn INSN which applies to register
2103 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2104 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2105 it might be the case that the note overlaps REGNO. */
2108 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
2112 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2113 if (! INSN_P (insn
))
2116 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2117 if (REG_NOTE_KIND (link
) == kind
2118 /* Verify that it is a register, so that scratch and MEM won't cause a
2120 && REG_P (XEXP (link
, 0))
2121 && REGNO (XEXP (link
, 0)) <= regno
2122 && END_REGNO (XEXP (link
, 0)) > regno
)
2127 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2131 find_reg_equal_equiv_note (const_rtx insn
)
2138 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2139 if (REG_NOTE_KIND (link
) == REG_EQUAL
2140 || REG_NOTE_KIND (link
) == REG_EQUIV
)
2142 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2143 insns that have multiple sets. Checking single_set to
2144 make sure of this is not the proper check, as explained
2145 in the comment in set_unique_reg_note.
2147 This should be changed into an assert. */
2148 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
2155 /* Check whether INSN is a single_set whose source is known to be
2156 equivalent to a constant. Return that constant if so, otherwise
2160 find_constant_src (const rtx_insn
*insn
)
2164 set
= single_set (insn
);
2167 x
= avoid_constant_pool_reference (SET_SRC (set
));
2172 note
= find_reg_equal_equiv_note (insn
);
2173 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2174 return XEXP (note
, 0);
2179 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2180 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2183 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
2185 /* If it's not a CALL_INSN, it can't possibly have a
2186 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2196 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
2198 link
= XEXP (link
, 1))
2199 if (GET_CODE (XEXP (link
, 0)) == code
2200 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
2205 unsigned int regno
= REGNO (datum
);
2207 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2208 to pseudo registers, so don't bother checking. */
2210 if (regno
< FIRST_PSEUDO_REGISTER
)
2212 unsigned int end_regno
= END_REGNO (datum
);
2215 for (i
= regno
; i
< end_regno
; i
++)
2216 if (find_regno_fusage (insn
, code
, i
))
2224 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2225 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2228 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
2232 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2233 to pseudo registers, so don't bother checking. */
2235 if (regno
>= FIRST_PSEUDO_REGISTER
2239 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
2243 if (GET_CODE (op
= XEXP (link
, 0)) == code
2244 && REG_P (reg
= XEXP (op
, 0))
2245 && REGNO (reg
) <= regno
2246 && END_REGNO (reg
) > regno
)
2254 /* Return true if KIND is an integer REG_NOTE. */
2257 int_reg_note_p (enum reg_note kind
)
2259 return kind
== REG_BR_PROB
;
2262 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2263 stored as the pointer to the next register note. */
2266 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
2270 gcc_checking_assert (!int_reg_note_p (kind
));
2275 case REG_LABEL_TARGET
:
2276 case REG_LABEL_OPERAND
:
2278 /* These types of register notes use an INSN_LIST rather than an
2279 EXPR_LIST, so that copying is done right and dumps look
2281 note
= alloc_INSN_LIST (datum
, list
);
2282 PUT_REG_NOTE_KIND (note
, kind
);
2286 note
= alloc_EXPR_LIST (kind
, datum
, list
);
2293 /* Add register note with kind KIND and datum DATUM to INSN. */
2296 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
2298 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
2301 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2304 add_int_reg_note (rtx_insn
*insn
, enum reg_note kind
, int datum
)
2306 gcc_checking_assert (int_reg_note_p (kind
));
2307 REG_NOTES (insn
) = gen_rtx_INT_LIST ((machine_mode
) kind
,
2308 datum
, REG_NOTES (insn
));
2311 /* Add a register note like NOTE to INSN. */
2314 add_shallow_copy_of_reg_note (rtx_insn
*insn
, rtx note
)
2316 if (GET_CODE (note
) == INT_LIST
)
2317 add_int_reg_note (insn
, REG_NOTE_KIND (note
), XINT (note
, 0));
2319 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
2322 /* Duplicate NOTE and return the copy. */
2324 duplicate_reg_note (rtx note
)
2326 reg_note kind
= REG_NOTE_KIND (note
);
2328 if (GET_CODE (note
) == INT_LIST
)
2329 return gen_rtx_INT_LIST ((machine_mode
) kind
, XINT (note
, 0), NULL_RTX
);
2330 else if (GET_CODE (note
) == EXPR_LIST
)
2331 return alloc_reg_note (kind
, copy_insn_1 (XEXP (note
, 0)), NULL_RTX
);
2333 return alloc_reg_note (kind
, XEXP (note
, 0), NULL_RTX
);
2336 /* Remove register note NOTE from the REG_NOTES of INSN. */
2339 remove_note (rtx_insn
*insn
, const_rtx note
)
2343 if (note
== NULL_RTX
)
2346 if (REG_NOTES (insn
) == note
)
2347 REG_NOTES (insn
) = XEXP (note
, 1);
2349 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2350 if (XEXP (link
, 1) == note
)
2352 XEXP (link
, 1) = XEXP (note
, 1);
2356 switch (REG_NOTE_KIND (note
))
2360 df_notes_rescan (insn
);
2367 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2368 Return true if any note has been removed. */
2371 remove_reg_equal_equiv_notes (rtx_insn
*insn
)
2376 loc
= ®_NOTES (insn
);
2379 enum reg_note kind
= REG_NOTE_KIND (*loc
);
2380 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
2382 *loc
= XEXP (*loc
, 1);
2386 loc
= &XEXP (*loc
, 1);
2391 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2394 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2401 /* This loop is a little tricky. We cannot just go down the chain because
2402 it is being modified by some actions in the loop. So we just iterate
2403 over the head. We plan to drain the list anyway. */
2404 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2406 rtx_insn
*insn
= DF_REF_INSN (eq_use
);
2407 rtx note
= find_reg_equal_equiv_note (insn
);
2409 /* This assert is generally triggered when someone deletes a REG_EQUAL
2410 or REG_EQUIV note by hacking the list manually rather than calling
2414 remove_note (insn
, note
);
2418 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2419 return 1 if it is found. A simple equality test is used to determine if
2423 in_insn_list_p (const rtx_insn_list
*listp
, const rtx_insn
*node
)
2427 for (x
= listp
; x
; x
= XEXP (x
, 1))
2428 if (node
== XEXP (x
, 0))
2434 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2435 remove that entry from the list if it is found.
2437 A simple equality test is used to determine if NODE matches. */
2440 remove_node_from_expr_list (const_rtx node
, rtx_expr_list
**listp
)
2442 rtx_expr_list
*temp
= *listp
;
2443 rtx_expr_list
*prev
= NULL
;
2447 if (node
== temp
->element ())
2449 /* Splice the node out of the list. */
2451 XEXP (prev
, 1) = temp
->next ();
2453 *listp
= temp
->next ();
2459 temp
= temp
->next ();
2463 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2464 remove that entry from the list if it is found.
2466 A simple equality test is used to determine if NODE matches. */
2469 remove_node_from_insn_list (const rtx_insn
*node
, rtx_insn_list
**listp
)
2471 rtx_insn_list
*temp
= *listp
;
2472 rtx_insn_list
*prev
= NULL
;
2476 if (node
== temp
->insn ())
2478 /* Splice the node out of the list. */
2480 XEXP (prev
, 1) = temp
->next ();
2482 *listp
= temp
->next ();
2488 temp
= temp
->next ();
2492 /* Nonzero if X contains any volatile instructions. These are instructions
2493 which may cause unpredictable machine state instructions, and thus no
2494 instructions or register uses should be moved or combined across them.
2495 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2498 volatile_insn_p (const_rtx x
)
2500 const RTX_CODE code
= GET_CODE (x
);
2518 case UNSPEC_VOLATILE
:
2523 if (MEM_VOLATILE_P (x
))
2530 /* Recursively scan the operands of this expression. */
2533 const char *const fmt
= GET_RTX_FORMAT (code
);
2536 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2540 if (volatile_insn_p (XEXP (x
, i
)))
2543 else if (fmt
[i
] == 'E')
2546 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2547 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2555 /* Nonzero if X contains any volatile memory references
2556 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2559 volatile_refs_p (const_rtx x
)
2561 const RTX_CODE code
= GET_CODE (x
);
2577 case UNSPEC_VOLATILE
:
2583 if (MEM_VOLATILE_P (x
))
2590 /* Recursively scan the operands of this expression. */
2593 const char *const fmt
= GET_RTX_FORMAT (code
);
2596 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2600 if (volatile_refs_p (XEXP (x
, i
)))
2603 else if (fmt
[i
] == 'E')
2606 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2607 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2615 /* Similar to above, except that it also rejects register pre- and post-
2619 side_effects_p (const_rtx x
)
2621 const RTX_CODE code
= GET_CODE (x
);
2638 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2639 when some combination can't be done. If we see one, don't think
2640 that we can simplify the expression. */
2641 return (GET_MODE (x
) != VOIDmode
);
2650 case UNSPEC_VOLATILE
:
2656 if (MEM_VOLATILE_P (x
))
2663 /* Recursively scan the operands of this expression. */
2666 const char *fmt
= GET_RTX_FORMAT (code
);
2669 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2673 if (side_effects_p (XEXP (x
, i
)))
2676 else if (fmt
[i
] == 'E')
2679 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2680 if (side_effects_p (XVECEXP (x
, i
, j
)))
2688 /* Return nonzero if evaluating rtx X might cause a trap.
2689 FLAGS controls how to consider MEMs. A nonzero means the context
2690 of the access may have changed from the original, such that the
2691 address may have become invalid. */
2694 may_trap_p_1 (const_rtx x
, unsigned flags
)
2700 /* We make no distinction currently, but this function is part of
2701 the internal target-hooks ABI so we keep the parameter as
2702 "unsigned flags". */
2703 bool code_changed
= flags
!= 0;
2707 code
= GET_CODE (x
);
2710 /* Handle these cases quickly. */
2722 return targetm
.unspec_may_trap_p (x
, flags
);
2724 case UNSPEC_VOLATILE
:
2730 return MEM_VOLATILE_P (x
);
2732 /* Memory ref can trap unless it's a static var or a stack slot. */
2734 /* Recognize specific pattern of stack checking probes. */
2735 if (flag_stack_check
2736 && MEM_VOLATILE_P (x
)
2737 && XEXP (x
, 0) == stack_pointer_rtx
)
2739 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2740 reference; moving it out of context such as when moving code
2741 when optimizing, might cause its address to become invalid. */
2743 || !MEM_NOTRAP_P (x
))
2745 HOST_WIDE_INT size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : 0;
2746 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2747 GET_MODE (x
), code_changed
);
2752 /* Division by a non-constant might trap. */
2757 if (HONOR_SNANS (x
))
2759 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2760 return flag_trapping_math
;
2761 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2766 /* An EXPR_LIST is used to represent a function call. This
2767 certainly may trap. */
2776 /* Some floating point comparisons may trap. */
2777 if (!flag_trapping_math
)
2779 /* ??? There is no machine independent way to check for tests that trap
2780 when COMPARE is used, though many targets do make this distinction.
2781 For instance, sparc uses CCFPE for compares which generate exceptions
2782 and CCFP for compares which do not generate exceptions. */
2785 /* But often the compare has some CC mode, so check operand
2787 if (HONOR_NANS (XEXP (x
, 0))
2788 || HONOR_NANS (XEXP (x
, 1)))
2794 if (HONOR_SNANS (x
))
2796 /* Often comparison is CC mode, so check operand modes. */
2797 if (HONOR_SNANS (XEXP (x
, 0))
2798 || HONOR_SNANS (XEXP (x
, 1)))
2803 /* Conversion of floating point might trap. */
2804 if (flag_trapping_math
&& HONOR_NANS (XEXP (x
, 0)))
2811 /* These operations don't trap even with floating point. */
2815 /* Any floating arithmetic may trap. */
2816 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)) && flag_trapping_math
)
2820 fmt
= GET_RTX_FORMAT (code
);
2821 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2825 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2828 else if (fmt
[i
] == 'E')
2831 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2832 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2839 /* Return nonzero if evaluating rtx X might cause a trap. */
2842 may_trap_p (const_rtx x
)
2844 return may_trap_p_1 (x
, 0);
2847 /* Same as above, but additionally return nonzero if evaluating rtx X might
2848 cause a fault. We define a fault for the purpose of this function as a
2849 erroneous execution condition that cannot be encountered during the normal
2850 execution of a valid program; the typical example is an unaligned memory
2851 access on a strict alignment machine. The compiler guarantees that it
2852 doesn't generate code that will fault from a valid program, but this
2853 guarantee doesn't mean anything for individual instructions. Consider
2854 the following example:
2856 struct S { int d; union { char *cp; int *ip; }; };
2858 int foo(struct S *s)
2866 on a strict alignment machine. In a valid program, foo will never be
2867 invoked on a structure for which d is equal to 1 and the underlying
2868 unique field of the union not aligned on a 4-byte boundary, but the
2869 expression *s->ip might cause a fault if considered individually.
2871 At the RTL level, potentially problematic expressions will almost always
2872 verify may_trap_p; for example, the above dereference can be emitted as
2873 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2874 However, suppose that foo is inlined in a caller that causes s->cp to
2875 point to a local character variable and guarantees that s->d is not set
2876 to 1; foo may have been effectively translated into pseudo-RTL as:
2879 (set (reg:SI) (mem:SI (%fp - 7)))
2881 (set (reg:QI) (mem:QI (%fp - 7)))
2883 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2884 memory reference to a stack slot, but it will certainly cause a fault
2885 on a strict alignment machine. */
2888 may_trap_or_fault_p (const_rtx x
)
2890 return may_trap_p_1 (x
, 1);
2893 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2894 i.e., an inequality. */
2897 inequality_comparisons_p (const_rtx x
)
2901 const enum rtx_code code
= GET_CODE (x
);
2929 len
= GET_RTX_LENGTH (code
);
2930 fmt
= GET_RTX_FORMAT (code
);
2932 for (i
= 0; i
< len
; i
++)
2936 if (inequality_comparisons_p (XEXP (x
, i
)))
2939 else if (fmt
[i
] == 'E')
2942 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2943 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2951 /* Replace any occurrence of FROM in X with TO. The function does
2952 not enter into CONST_DOUBLE for the replace.
2954 Note that copying is not done so X must not be shared unless all copies
2957 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2958 those pointer-equal ones. */
2961 replace_rtx (rtx x
, rtx from
, rtx to
, bool all_regs
)
2969 /* Allow this function to make replacements in EXPR_LISTs. */
2976 && REGNO (x
) == REGNO (from
))
2978 gcc_assert (GET_MODE (x
) == GET_MODE (from
));
2981 else if (GET_CODE (x
) == SUBREG
)
2983 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
, all_regs
);
2985 if (CONST_INT_P (new_rtx
))
2987 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2988 GET_MODE (SUBREG_REG (x
)),
2993 SUBREG_REG (x
) = new_rtx
;
2997 else if (GET_CODE (x
) == ZERO_EXTEND
)
2999 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
, all_regs
);
3001 if (CONST_INT_P (new_rtx
))
3003 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
3004 new_rtx
, GET_MODE (XEXP (x
, 0)));
3008 XEXP (x
, 0) = new_rtx
;
3013 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3014 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3017 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
, all_regs
);
3018 else if (fmt
[i
] == 'E')
3019 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3020 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
),
3021 from
, to
, all_regs
);
3027 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3028 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3031 replace_label (rtx
*loc
, rtx old_label
, rtx new_label
, bool update_label_nuses
)
3033 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3035 if (JUMP_TABLE_DATA_P (x
))
3038 rtvec vec
= XVEC (x
, GET_CODE (x
) == ADDR_DIFF_VEC
);
3039 int len
= GET_NUM_ELEM (vec
);
3040 for (int i
= 0; i
< len
; ++i
)
3042 rtx ref
= RTVEC_ELT (vec
, i
);
3043 if (XEXP (ref
, 0) == old_label
)
3045 XEXP (ref
, 0) = new_label
;
3046 if (update_label_nuses
)
3048 ++LABEL_NUSES (new_label
);
3049 --LABEL_NUSES (old_label
);
3056 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3057 field. This is not handled by the iterator because it doesn't
3058 handle unprinted ('0') fields. */
3059 if (JUMP_P (x
) && JUMP_LABEL (x
) == old_label
)
3060 JUMP_LABEL (x
) = new_label
;
3062 subrtx_ptr_iterator::array_type array
;
3063 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, ALL
)
3068 if (GET_CODE (x
) == SYMBOL_REF
3069 && CONSTANT_POOL_ADDRESS_P (x
))
3071 rtx c
= get_pool_constant (x
);
3072 if (rtx_referenced_p (old_label
, c
))
3074 /* Create a copy of constant C; replace the label inside
3075 but do not update LABEL_NUSES because uses in constant pool
3077 rtx new_c
= copy_rtx (c
);
3078 replace_label (&new_c
, old_label
, new_label
, false);
3080 /* Add the new constant NEW_C to constant pool and replace
3081 the old reference to constant by new reference. */
3082 rtx new_mem
= force_const_mem (get_pool_mode (x
), new_c
);
3083 *loc
= replace_rtx (x
, x
, XEXP (new_mem
, 0));
3087 if ((GET_CODE (x
) == LABEL_REF
3088 || GET_CODE (x
) == INSN_LIST
)
3089 && XEXP (x
, 0) == old_label
)
3091 XEXP (x
, 0) = new_label
;
3092 if (update_label_nuses
)
3094 ++LABEL_NUSES (new_label
);
3095 --LABEL_NUSES (old_label
);
3103 replace_label_in_insn (rtx_insn
*insn
, rtx_insn
*old_label
,
3104 rtx_insn
*new_label
, bool update_label_nuses
)
3106 rtx insn_as_rtx
= insn
;
3107 replace_label (&insn_as_rtx
, old_label
, new_label
, update_label_nuses
);
3108 gcc_checking_assert (insn_as_rtx
== insn
);
3111 /* Return true if X is referenced in BODY. */
3114 rtx_referenced_p (const_rtx x
, const_rtx body
)
3116 subrtx_iterator::array_type array
;
3117 FOR_EACH_SUBRTX (iter
, array
, body
, ALL
)
3118 if (const_rtx y
= *iter
)
3120 /* Check if a label_ref Y refers to label X. */
3121 if (GET_CODE (y
) == LABEL_REF
3123 && label_ref_label (y
) == x
)
3126 if (rtx_equal_p (x
, y
))
3129 /* If Y is a reference to pool constant traverse the constant. */
3130 if (GET_CODE (y
) == SYMBOL_REF
3131 && CONSTANT_POOL_ADDRESS_P (y
))
3132 iter
.substitute (get_pool_constant (y
));
3137 /* If INSN is a tablejump return true and store the label (before jump table) to
3138 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3141 tablejump_p (const rtx_insn
*insn
, rtx_insn
**labelp
,
3142 rtx_jump_table_data
**tablep
)
3147 rtx target
= JUMP_LABEL (insn
);
3148 if (target
== NULL_RTX
|| ANY_RETURN_P (target
))
3151 rtx_insn
*label
= as_a
<rtx_insn
*> (target
);
3152 rtx_insn
*table
= next_insn (label
);
3153 if (table
== NULL_RTX
|| !JUMP_TABLE_DATA_P (table
))
3159 *tablep
= as_a
<rtx_jump_table_data
*> (table
);
3163 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3164 constant that is not in the constant pool and not in the condition
3165 of an IF_THEN_ELSE. */
3168 computed_jump_p_1 (const_rtx x
)
3170 const enum rtx_code code
= GET_CODE (x
);
3187 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
3188 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
3191 return (computed_jump_p_1 (XEXP (x
, 1))
3192 || computed_jump_p_1 (XEXP (x
, 2)));
3198 fmt
= GET_RTX_FORMAT (code
);
3199 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3202 && computed_jump_p_1 (XEXP (x
, i
)))
3205 else if (fmt
[i
] == 'E')
3206 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3207 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
3214 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3216 Tablejumps and casesi insns are not considered indirect jumps;
3217 we can recognize them by a (use (label_ref)). */
3220 computed_jump_p (const rtx_insn
*insn
)
3225 rtx pat
= PATTERN (insn
);
3227 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3228 if (JUMP_LABEL (insn
) != NULL
)
3231 if (GET_CODE (pat
) == PARALLEL
)
3233 int len
= XVECLEN (pat
, 0);
3234 int has_use_labelref
= 0;
3236 for (i
= len
- 1; i
>= 0; i
--)
3237 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
3238 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
3241 has_use_labelref
= 1;
3245 if (! has_use_labelref
)
3246 for (i
= len
- 1; i
>= 0; i
--)
3247 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
3248 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
3249 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
3252 else if (GET_CODE (pat
) == SET
3253 && SET_DEST (pat
) == pc_rtx
3254 && computed_jump_p_1 (SET_SRC (pat
)))
3262 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3263 the equivalent add insn and pass the result to FN, using DATA as the
3267 for_each_inc_dec_find_inc_dec (rtx mem
, for_each_inc_dec_fn fn
, void *data
)
3269 rtx x
= XEXP (mem
, 0);
3270 switch (GET_CODE (x
))
3275 int size
= GET_MODE_SIZE (GET_MODE (mem
));
3276 rtx r1
= XEXP (x
, 0);
3277 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
3278 return fn (mem
, x
, r1
, r1
, c
, data
);
3284 int size
= GET_MODE_SIZE (GET_MODE (mem
));
3285 rtx r1
= XEXP (x
, 0);
3286 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
3287 return fn (mem
, x
, r1
, r1
, c
, data
);
3293 rtx r1
= XEXP (x
, 0);
3294 rtx add
= XEXP (x
, 1);
3295 return fn (mem
, x
, r1
, add
, NULL
, data
);
3303 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3304 For each such autoinc operation found, call FN, passing it
3305 the innermost enclosing MEM, the operation itself, the RTX modified
3306 by the operation, two RTXs (the second may be NULL) that, once
3307 added, represent the value to be held by the modified RTX
3308 afterwards, and DATA. FN is to return 0 to continue the
3309 traversal or any other value to have it returned to the caller of
3310 for_each_inc_dec. */
3313 for_each_inc_dec (rtx x
,
3314 for_each_inc_dec_fn fn
,
3317 subrtx_var_iterator::array_type array
;
3318 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
3323 && GET_RTX_CLASS (GET_CODE (XEXP (mem
, 0))) == RTX_AUTOINC
)
3325 int res
= for_each_inc_dec_find_inc_dec (mem
, fn
, data
);
3328 iter
.skip_subrtxes ();
3335 /* Searches X for any reference to REGNO, returning the rtx of the
3336 reference found if any. Otherwise, returns NULL_RTX. */
3339 regno_use_in (unsigned int regno
, rtx x
)
3345 if (REG_P (x
) && REGNO (x
) == regno
)
3348 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3349 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3353 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3356 else if (fmt
[i
] == 'E')
3357 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3358 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3365 /* Return a value indicating whether OP, an operand of a commutative
3366 operation, is preferred as the first or second operand. The more
3367 positive the value, the stronger the preference for being the first
3371 commutative_operand_precedence (rtx op
)
3373 enum rtx_code code
= GET_CODE (op
);
3375 /* Constants always become the second operand. Prefer "nice" constants. */
3376 if (code
== CONST_INT
)
3378 if (code
== CONST_WIDE_INT
)
3380 if (code
== CONST_DOUBLE
)
3382 if (code
== CONST_FIXED
)
3384 op
= avoid_constant_pool_reference (op
);
3385 code
= GET_CODE (op
);
3387 switch (GET_RTX_CLASS (code
))
3390 if (code
== CONST_INT
)
3392 if (code
== CONST_WIDE_INT
)
3394 if (code
== CONST_DOUBLE
)
3396 if (code
== CONST_FIXED
)
3401 /* SUBREGs of objects should come second. */
3402 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3407 /* Complex expressions should be the first, so decrease priority
3408 of objects. Prefer pointer objects over non pointer objects. */
3409 if ((REG_P (op
) && REG_POINTER (op
))
3410 || (MEM_P (op
) && MEM_POINTER (op
)))
3414 case RTX_COMM_ARITH
:
3415 /* Prefer operands that are themselves commutative to be first.
3416 This helps to make things linear. In particular,
3417 (and (and (reg) (reg)) (not (reg))) is canonical. */
3421 /* If only one operand is a binary expression, it will be the first
3422 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3423 is canonical, although it will usually be further simplified. */
3427 /* Then prefer NEG and NOT. */
3428 if (code
== NEG
|| code
== NOT
)
3437 /* Return 1 iff it is necessary to swap operands of commutative operation
3438 in order to canonicalize expression. */
3441 swap_commutative_operands_p (rtx x
, rtx y
)
3443 return (commutative_operand_precedence (x
)
3444 < commutative_operand_precedence (y
));
3447 /* Return 1 if X is an autoincrement side effect and the register is
3448 not the stack pointer. */
3450 auto_inc_p (const_rtx x
)
3452 switch (GET_CODE (x
))
3460 /* There are no REG_INC notes for SP. */
3461 if (XEXP (x
, 0) != stack_pointer_rtx
)
3469 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3471 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3480 code
= GET_CODE (in
);
3481 fmt
= GET_RTX_FORMAT (code
);
3482 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3486 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3489 else if (fmt
[i
] == 'E')
3490 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3491 if (loc
== &XVECEXP (in
, i
, j
)
3492 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3498 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3499 and SUBREG_BYTE, return the bit offset where the subreg begins
3500 (counting from the least significant bit of the operand). */
3503 subreg_lsb_1 (machine_mode outer_mode
,
3504 machine_mode inner_mode
,
3505 unsigned int subreg_byte
)
3507 unsigned int bitpos
;
3511 /* A paradoxical subreg begins at bit position 0. */
3512 if (GET_MODE_PRECISION (outer_mode
) > GET_MODE_PRECISION (inner_mode
))
3515 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3516 /* If the subreg crosses a word boundary ensure that
3517 it also begins and ends on a word boundary. */
3518 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3519 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3520 && (subreg_byte
% UNITS_PER_WORD
3521 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3523 if (WORDS_BIG_ENDIAN
)
3524 word
= (GET_MODE_SIZE (inner_mode
)
3525 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3527 word
= subreg_byte
/ UNITS_PER_WORD
;
3528 bitpos
= word
* BITS_PER_WORD
;
3530 if (BYTES_BIG_ENDIAN
)
3531 byte
= (GET_MODE_SIZE (inner_mode
)
3532 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3534 byte
= subreg_byte
% UNITS_PER_WORD
;
3535 bitpos
+= byte
* BITS_PER_UNIT
;
3540 /* Given a subreg X, return the bit offset where the subreg begins
3541 (counting from the least significant bit of the reg). */
3544 subreg_lsb (const_rtx x
)
3546 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3550 /* Return the subreg byte offset for a subreg whose outer value has
3551 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3552 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3553 lsb of the inner value. This is the inverse of the calculation
3554 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3557 subreg_size_offset_from_lsb (unsigned int outer_bytes
,
3558 unsigned int inner_bytes
,
3559 unsigned int lsb_shift
)
3561 /* A paradoxical subreg begins at bit position 0. */
3562 if (outer_bytes
> inner_bytes
)
3564 gcc_checking_assert (lsb_shift
== 0);
3568 gcc_assert (lsb_shift
% BITS_PER_UNIT
== 0);
3569 unsigned int lower_bytes
= lsb_shift
/ BITS_PER_UNIT
;
3570 unsigned int upper_bytes
= inner_bytes
- (lower_bytes
+ outer_bytes
);
3571 if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
3573 else if (!WORDS_BIG_ENDIAN
&& !BYTES_BIG_ENDIAN
)
3577 unsigned int lower_word_part
= lower_bytes
& -UNITS_PER_WORD
;
3578 unsigned int upper_word_part
= upper_bytes
& -UNITS_PER_WORD
;
3579 if (WORDS_BIG_ENDIAN
)
3580 return upper_word_part
+ (lower_bytes
- lower_word_part
);
3582 return lower_word_part
+ (upper_bytes
- upper_word_part
);
3586 /* Fill in information about a subreg of a hard register.
3587 xregno - A regno of an inner hard subreg_reg (or what will become one).
3588 xmode - The mode of xregno.
3589 offset - The byte offset.
3590 ymode - The mode of a top level SUBREG (or what may become one).
3591 info - Pointer to structure to fill in.
3593 Rather than considering one particular inner register (and thus one
3594 particular "outer" register) in isolation, this function really uses
3595 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3596 function does not check whether adding INFO->offset to XREGNO gives
3597 a valid hard register; even if INFO->offset + XREGNO is out of range,
3598 there might be another register of the same type that is in range.
3599 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3600 register, since that can depend on things like whether the final
3601 register number is even or odd. Callers that want to check whether
3602 this particular subreg can be replaced by a simple (reg ...) should
3603 use simplify_subreg_regno. */
3606 subreg_get_info (unsigned int xregno
, machine_mode xmode
,
3607 unsigned int offset
, machine_mode ymode
,
3608 struct subreg_info
*info
)
3610 unsigned int nregs_xmode
, nregs_ymode
;
3612 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3614 unsigned int xsize
= GET_MODE_SIZE (xmode
);
3615 unsigned int ysize
= GET_MODE_SIZE (ymode
);
3616 bool rknown
= false;
3618 /* If the register representation of a non-scalar mode has holes in it,
3619 we expect the scalar units to be concatenated together, with the holes
3620 distributed evenly among the scalar units. Each scalar unit must occupy
3621 at least one register. */
3622 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3624 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3625 unsigned int nunits
= GET_MODE_NUNITS (xmode
);
3626 machine_mode xmode_unit
= GET_MODE_INNER (xmode
);
3627 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3628 gcc_assert (nregs_xmode
3630 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3631 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3632 == hard_regno_nregs
[xregno
][xmode_unit
] * nunits
);
3634 /* You can only ask for a SUBREG of a value with holes in the middle
3635 if you don't cross the holes. (Such a SUBREG should be done by
3636 picking a different register class, or doing it in memory if
3637 necessary.) An example of a value with holes is XCmode on 32-bit
3638 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3639 3 for each part, but in memory it's two 128-bit parts.
3640 Padding is assumed to be at the end (not necessarily the 'high part')
3642 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1 < nunits
)
3643 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3644 != ((offset
+ ysize
- 1) / GET_MODE_SIZE (xmode_unit
))))
3646 info
->representable_p
= false;
3651 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3653 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3655 /* Paradoxical subregs are otherwise valid. */
3656 if (!rknown
&& offset
== 0 && ysize
> xsize
)
3658 info
->representable_p
= true;
3659 /* If this is a big endian paradoxical subreg, which uses more
3660 actual hard registers than the original register, we must
3661 return a negative offset so that we find the proper highpart
3664 We assume that the ordering of registers within a multi-register
3665 value has a consistent endianness: if bytes and register words
3666 have different endianness, the hard registers that make up a
3667 multi-register value must be at least word-sized. */
3668 if (REG_WORDS_BIG_ENDIAN
)
3669 info
->offset
= (int) nregs_xmode
- (int) nregs_ymode
;
3672 info
->nregs
= nregs_ymode
;
3676 /* If registers store different numbers of bits in the different
3677 modes, we cannot generally form this subreg. */
3678 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3679 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3680 && (xsize
% nregs_xmode
) == 0
3681 && (ysize
% nregs_ymode
) == 0)
3683 int regsize_xmode
= xsize
/ nregs_xmode
;
3684 int regsize_ymode
= ysize
/ nregs_ymode
;
3686 && ((nregs_ymode
> 1 && regsize_xmode
> regsize_ymode
)
3687 || (nregs_xmode
> 1 && regsize_ymode
> regsize_xmode
)))
3689 info
->representable_p
= false;
3690 info
->nregs
= CEIL (ysize
, regsize_xmode
);
3691 info
->offset
= offset
/ regsize_xmode
;
3694 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3695 would go outside of XMODE. */
3696 if (!rknown
&& ysize
+ offset
> xsize
)
3698 info
->representable_p
= false;
3699 info
->nregs
= nregs_ymode
;
3700 info
->offset
= offset
/ regsize_xmode
;
3703 /* Quick exit for the simple and common case of extracting whole
3704 subregisters from a multiregister value. */
3705 /* ??? It would be better to integrate this into the code below,
3706 if we can generalize the concept enough and figure out how
3707 odd-sized modes can coexist with the other weird cases we support. */
3709 && WORDS_BIG_ENDIAN
== REG_WORDS_BIG_ENDIAN
3710 && regsize_xmode
== regsize_ymode
3711 && (offset
% regsize_ymode
) == 0)
3713 info
->representable_p
= true;
3714 info
->nregs
= nregs_ymode
;
3715 info
->offset
= offset
/ regsize_ymode
;
3716 gcc_assert (info
->offset
+ info
->nregs
<= (int) nregs_xmode
);
3721 /* Lowpart subregs are otherwise valid. */
3722 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3724 info
->representable_p
= true;
3727 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3730 info
->nregs
= nregs_ymode
;
3735 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3736 values there are in (reg:XMODE XREGNO). We can view the register
3737 as consisting of this number of independent "blocks", where each
3738 block occupies NREGS_YMODE registers and contains exactly one
3739 representable YMODE value. */
3740 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3741 unsigned int num_blocks
= nregs_xmode
/ nregs_ymode
;
3743 /* Calculate the number of bytes in each block. This must always
3744 be exact, otherwise we don't know how to verify the constraint.
3745 These conditions may be relaxed but subreg_regno_offset would
3746 need to be redesigned. */
3747 gcc_assert ((xsize
% num_blocks
) == 0);
3748 unsigned int bytes_per_block
= xsize
/ num_blocks
;
3750 /* Get the number of the first block that contains the subreg and the byte
3751 offset of the subreg from the start of that block. */
3752 unsigned int block_number
= offset
/ bytes_per_block
;
3753 unsigned int subblock_offset
= offset
% bytes_per_block
;
3757 /* Only the lowpart of each block is representable. */
3758 info
->representable_p
3760 == subreg_size_lowpart_offset (ysize
, bytes_per_block
));
3764 /* We assume that the ordering of registers within a multi-register
3765 value has a consistent endianness: if bytes and register words
3766 have different endianness, the hard registers that make up a
3767 multi-register value must be at least word-sized. */
3768 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
)
3769 /* The block number we calculated above followed memory endianness.
3770 Convert it to register endianness by counting back from the end.
3771 (Note that, because of the assumption above, each block must be
3772 at least word-sized.) */
3773 info
->offset
= (num_blocks
- block_number
- 1) * nregs_ymode
;
3775 info
->offset
= block_number
* nregs_ymode
;
3776 info
->nregs
= nregs_ymode
;
3779 /* This function returns the regno offset of a subreg expression.
3780 xregno - A regno of an inner hard subreg_reg (or what will become one).
3781 xmode - The mode of xregno.
3782 offset - The byte offset.
3783 ymode - The mode of a top level SUBREG (or what may become one).
3784 RETURN - The regno offset which would be used. */
3786 subreg_regno_offset (unsigned int xregno
, machine_mode xmode
,
3787 unsigned int offset
, machine_mode ymode
)
3789 struct subreg_info info
;
3790 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3794 /* This function returns true when the offset is representable via
3795 subreg_offset in the given regno.
3796 xregno - A regno of an inner hard subreg_reg (or what will become one).
3797 xmode - The mode of xregno.
3798 offset - The byte offset.
3799 ymode - The mode of a top level SUBREG (or what may become one).
3800 RETURN - Whether the offset is representable. */
3802 subreg_offset_representable_p (unsigned int xregno
, machine_mode xmode
,
3803 unsigned int offset
, machine_mode ymode
)
3805 struct subreg_info info
;
3806 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3807 return info
.representable_p
;
3810 /* Return the number of a YMODE register to which
3812 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3814 can be simplified. Return -1 if the subreg can't be simplified.
3816 XREGNO is a hard register number. */
3819 simplify_subreg_regno (unsigned int xregno
, machine_mode xmode
,
3820 unsigned int offset
, machine_mode ymode
)
3822 struct subreg_info info
;
3823 unsigned int yregno
;
3825 #ifdef CANNOT_CHANGE_MODE_CLASS
3826 /* Give the backend a chance to disallow the mode change. */
3827 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3828 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3829 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
)
3830 /* We can use mode change in LRA for some transformations. */
3831 && ! lra_in_progress
)
3835 /* We shouldn't simplify stack-related registers. */
3836 if ((!reload_completed
|| frame_pointer_needed
)
3837 && xregno
== FRAME_POINTER_REGNUM
)
3840 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3841 && xregno
== ARG_POINTER_REGNUM
)
3844 if (xregno
== STACK_POINTER_REGNUM
3845 /* We should convert hard stack register in LRA if it is
3847 && ! lra_in_progress
)
3850 /* Try to get the register offset. */
3851 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3852 if (!info
.representable_p
)
3855 /* Make sure that the offsetted register value is in range. */
3856 yregno
= xregno
+ info
.offset
;
3857 if (!HARD_REGISTER_NUM_P (yregno
))
3860 /* See whether (reg:YMODE YREGNO) is valid.
3862 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3863 This is a kludge to work around how complex FP arguments are passed
3864 on IA-64 and should be fixed. See PR target/49226. */
3865 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3866 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3869 return (int) yregno
;
3872 /* Return the final regno that a subreg expression refers to. */
3874 subreg_regno (const_rtx x
)
3877 rtx subreg
= SUBREG_REG (x
);
3878 int regno
= REGNO (subreg
);
3880 ret
= regno
+ subreg_regno_offset (regno
,
3888 /* Return the number of registers that a subreg expression refers
3891 subreg_nregs (const_rtx x
)
3893 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3896 /* Return the number of registers that a subreg REG with REGNO
3897 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3898 changed so that the regno can be passed in. */
3901 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3903 struct subreg_info info
;
3904 rtx subreg
= SUBREG_REG (x
);
3906 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3911 struct parms_set_data
3917 /* Helper function for noticing stores to parameter registers. */
3919 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3921 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3922 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3923 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3925 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3930 /* Look backward for first parameter to be loaded.
3931 Note that loads of all parameters will not necessarily be
3932 found if CSE has eliminated some of them (e.g., an argument
3933 to the outer function is passed down as a parameter).
3934 Do not skip BOUNDARY. */
3936 find_first_parameter_load (rtx_insn
*call_insn
, rtx_insn
*boundary
)
3938 struct parms_set_data parm
;
3940 rtx_insn
*before
, *first_set
;
3942 /* Since different machines initialize their parameter registers
3943 in different orders, assume nothing. Collect the set of all
3944 parameter registers. */
3945 CLEAR_HARD_REG_SET (parm
.regs
);
3947 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3948 if (GET_CODE (XEXP (p
, 0)) == USE
3949 && REG_P (XEXP (XEXP (p
, 0), 0))
3950 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p
, 0), 0)))
3952 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3954 /* We only care about registers which can hold function
3956 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3959 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3963 first_set
= call_insn
;
3965 /* Search backward for the first set of a register in this set. */
3966 while (parm
.nregs
&& before
!= boundary
)
3968 before
= PREV_INSN (before
);
3970 /* It is possible that some loads got CSEed from one call to
3971 another. Stop in that case. */
3972 if (CALL_P (before
))
3975 /* Our caller needs either ensure that we will find all sets
3976 (in case code has not been optimized yet), or take care
3977 for possible labels in a way by setting boundary to preceding
3979 if (LABEL_P (before
))
3981 gcc_assert (before
== boundary
);
3985 if (INSN_P (before
))
3987 int nregs_old
= parm
.nregs
;
3988 note_stores (PATTERN (before
), parms_set
, &parm
);
3989 /* If we found something that did not set a parameter reg,
3990 we're done. Do not keep going, as that might result
3991 in hoisting an insn before the setting of a pseudo
3992 that is used by the hoisted insn. */
3993 if (nregs_old
!= parm
.nregs
)
4002 /* Return true if we should avoid inserting code between INSN and preceding
4003 call instruction. */
4006 keep_with_call_p (const rtx_insn
*insn
)
4010 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
4012 if (REG_P (SET_DEST (set
))
4013 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
4014 && fixed_regs
[REGNO (SET_DEST (set
))]
4015 && general_operand (SET_SRC (set
), VOIDmode
))
4017 if (REG_P (SET_SRC (set
))
4018 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
4019 && REG_P (SET_DEST (set
))
4020 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
4022 /* There may be a stack pop just after the call and before the store
4023 of the return register. Search for the actual store when deciding
4024 if we can break or not. */
4025 if (SET_DEST (set
) == stack_pointer_rtx
)
4027 /* This CONST_CAST is okay because next_nonnote_insn just
4028 returns its argument and we assign it to a const_rtx
4031 = next_nonnote_insn (const_cast<rtx_insn
*> (insn
));
4032 if (i2
&& keep_with_call_p (i2
))
4039 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4040 to non-complex jumps. That is, direct unconditional, conditional,
4041 and tablejumps, but not computed jumps or returns. It also does
4042 not apply to the fallthru case of a conditional jump. */
4045 label_is_jump_target_p (const_rtx label
, const rtx_insn
*jump_insn
)
4047 rtx tmp
= JUMP_LABEL (jump_insn
);
4048 rtx_jump_table_data
*table
;
4053 if (tablejump_p (jump_insn
, NULL
, &table
))
4055 rtvec vec
= table
->get_labels ();
4056 int i
, veclen
= GET_NUM_ELEM (vec
);
4058 for (i
= 0; i
< veclen
; ++i
)
4059 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
4063 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
4070 /* Return an estimate of the cost of computing rtx X.
4071 One use is in cse, to decide which expression to keep in the hash table.
4072 Another is in rtl generation, to pick the cheapest way to multiply.
4073 Other uses like the latter are expected in the future.
4075 X appears as operand OPNO in an expression with code OUTER_CODE.
4076 SPEED specifies whether costs optimized for speed or size should
4080 rtx_cost (rtx x
, machine_mode mode
, enum rtx_code outer_code
,
4081 int opno
, bool speed
)
4092 if (GET_MODE (x
) != VOIDmode
)
4093 mode
= GET_MODE (x
);
4095 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4096 many insns, taking N times as long. */
4097 factor
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4101 /* Compute the default costs of certain things.
4102 Note that targetm.rtx_costs can override the defaults. */
4104 code
= GET_CODE (x
);
4108 /* Multiplication has time-complexity O(N*N), where N is the
4109 number of units (translated from digits) when using
4110 schoolbook long multiplication. */
4111 total
= factor
* factor
* COSTS_N_INSNS (5);
4117 /* Similarly, complexity for schoolbook long division. */
4118 total
= factor
* factor
* COSTS_N_INSNS (7);
4121 /* Used in combine.c as a marker. */
4125 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4126 the mode for the factor. */
4127 mode
= GET_MODE (SET_DEST (x
));
4128 factor
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4133 total
= factor
* COSTS_N_INSNS (1);
4143 /* If we can't tie these modes, make this expensive. The larger
4144 the mode, the more expensive it is. */
4145 if (! MODES_TIEABLE_P (mode
, GET_MODE (SUBREG_REG (x
))))
4146 return COSTS_N_INSNS (2 + factor
);
4150 if (targetm
.rtx_costs (x
, mode
, outer_code
, opno
, &total
, speed
))
4155 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4156 which is already in total. */
4158 fmt
= GET_RTX_FORMAT (code
);
4159 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4161 total
+= rtx_cost (XEXP (x
, i
), mode
, code
, i
, speed
);
4162 else if (fmt
[i
] == 'E')
4163 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4164 total
+= rtx_cost (XVECEXP (x
, i
, j
), mode
, code
, i
, speed
);
4169 /* Fill in the structure C with information about both speed and size rtx
4170 costs for X, which is operand OPNO in an expression with code OUTER. */
4173 get_full_rtx_cost (rtx x
, machine_mode mode
, enum rtx_code outer
, int opno
,
4174 struct full_rtx_costs
*c
)
4176 c
->speed
= rtx_cost (x
, mode
, outer
, opno
, true);
4177 c
->size
= rtx_cost (x
, mode
, outer
, opno
, false);
4181 /* Return cost of address expression X.
4182 Expect that X is properly formed address reference.
4184 SPEED parameter specify whether costs optimized for speed or size should
4188 address_cost (rtx x
, machine_mode mode
, addr_space_t as
, bool speed
)
4190 /* We may be asked for cost of various unusual addresses, such as operands
4191 of push instruction. It is not worthwhile to complicate writing
4192 of the target hook by such cases. */
4194 if (!memory_address_addr_space_p (mode
, x
, as
))
4197 return targetm
.address_cost (x
, mode
, as
, speed
);
4200 /* If the target doesn't override, compute the cost as with arithmetic. */
4203 default_address_cost (rtx x
, machine_mode
, addr_space_t
, bool speed
)
4205 return rtx_cost (x
, Pmode
, MEM
, 0, speed
);
4209 unsigned HOST_WIDE_INT
4210 nonzero_bits (const_rtx x
, machine_mode mode
)
4212 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
4216 num_sign_bit_copies (const_rtx x
, machine_mode mode
)
4218 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
4221 /* Return true if nonzero_bits1 might recurse into both operands
4225 nonzero_bits_binary_arith_p (const_rtx x
)
4227 if (!ARITHMETIC_P (x
))
4229 switch (GET_CODE (x
))
4251 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4252 It avoids exponential behavior in nonzero_bits1 when X has
4253 identical subexpressions on the first or the second level. */
4255 static unsigned HOST_WIDE_INT
4256 cached_nonzero_bits (const_rtx x
, machine_mode mode
, const_rtx known_x
,
4257 machine_mode known_mode
,
4258 unsigned HOST_WIDE_INT known_ret
)
4260 if (x
== known_x
&& mode
== known_mode
)
4263 /* Try to find identical subexpressions. If found call
4264 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4265 precomputed value for the subexpression as KNOWN_RET. */
4267 if (nonzero_bits_binary_arith_p (x
))
4269 rtx x0
= XEXP (x
, 0);
4270 rtx x1
= XEXP (x
, 1);
4272 /* Check the first level. */
4274 return nonzero_bits1 (x
, mode
, x0
, mode
,
4275 cached_nonzero_bits (x0
, mode
, known_x
,
4276 known_mode
, known_ret
));
4278 /* Check the second level. */
4279 if (nonzero_bits_binary_arith_p (x0
)
4280 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4281 return nonzero_bits1 (x
, mode
, x1
, mode
,
4282 cached_nonzero_bits (x1
, mode
, known_x
,
4283 known_mode
, known_ret
));
4285 if (nonzero_bits_binary_arith_p (x1
)
4286 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4287 return nonzero_bits1 (x
, mode
, x0
, mode
,
4288 cached_nonzero_bits (x0
, mode
, known_x
,
4289 known_mode
, known_ret
));
4292 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
4295 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4296 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4297 is less useful. We can't allow both, because that results in exponential
4298 run time recursion. There is a nullstone testcase that triggered
4299 this. This macro avoids accidental uses of num_sign_bit_copies. */
4300 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4302 /* Given an expression, X, compute which bits in X can be nonzero.
4303 We don't care about bits outside of those defined in MODE.
4305 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4306 an arithmetic operation, we can do better. */
4308 static unsigned HOST_WIDE_INT
4309 nonzero_bits1 (const_rtx x
, machine_mode mode
, const_rtx known_x
,
4310 machine_mode known_mode
,
4311 unsigned HOST_WIDE_INT known_ret
)
4313 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
4314 unsigned HOST_WIDE_INT inner_nz
;
4316 machine_mode inner_mode
;
4317 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
4319 /* For floating-point and vector values, assume all bits are needed. */
4320 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
4321 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4324 /* If X is wider than MODE, use its mode instead. */
4325 if (GET_MODE_PRECISION (GET_MODE (x
)) > mode_width
)
4327 mode
= GET_MODE (x
);
4328 nonzero
= GET_MODE_MASK (mode
);
4329 mode_width
= GET_MODE_PRECISION (mode
);
4332 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
4333 /* Our only callers in this case look for single bit values. So
4334 just return the mode mask. Those tests will then be false. */
4337 /* If MODE is wider than X, but both are a single word for both the host
4338 and target machines, we can compute this from which bits of the
4339 object might be nonzero in its own mode, taking into account the fact
4340 that on many CISC machines, accessing an object in a wider mode
4341 causes the high-order bits to become undefined. So they are
4342 not known to be zero. */
4344 if (!WORD_REGISTER_OPERATIONS
4345 && GET_MODE (x
) != VOIDmode
4346 && GET_MODE (x
) != mode
4347 && GET_MODE_PRECISION (GET_MODE (x
)) <= BITS_PER_WORD
4348 && GET_MODE_PRECISION (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
4349 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (GET_MODE (x
)))
4351 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
4352 known_x
, known_mode
, known_ret
);
4353 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
4357 /* Please keep nonzero_bits_binary_arith_p above in sync with
4358 the code in the switch below. */
4359 code
= GET_CODE (x
);
4363 #if defined(POINTERS_EXTEND_UNSIGNED)
4364 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4365 all the bits above ptr_mode are known to be zero. */
4366 /* As we do not know which address space the pointer is referring to,
4367 we can do this only if the target does not support different pointer
4368 or address modes depending on the address space. */
4369 if (target_default_pointer_address_modes_p ()
4370 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4372 && !targetm
.have_ptr_extend ())
4373 nonzero
&= GET_MODE_MASK (ptr_mode
);
4376 /* Include declared information about alignment of pointers. */
4377 /* ??? We don't properly preserve REG_POINTER changes across
4378 pointer-to-integer casts, so we can't trust it except for
4379 things that we know must be pointers. See execute/960116-1.c. */
4380 if ((x
== stack_pointer_rtx
4381 || x
== frame_pointer_rtx
4382 || x
== arg_pointer_rtx
)
4383 && REGNO_POINTER_ALIGN (REGNO (x
)))
4385 unsigned HOST_WIDE_INT alignment
4386 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
4388 #ifdef PUSH_ROUNDING
4389 /* If PUSH_ROUNDING is defined, it is possible for the
4390 stack to be momentarily aligned only to that amount,
4391 so we pick the least alignment. */
4392 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
4393 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
4397 nonzero
&= ~(alignment
- 1);
4401 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4402 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
4403 known_mode
, known_ret
,
4407 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4408 known_mode
, known_ret
);
4410 return nonzero_for_hook
;
4414 /* If X is negative in MODE, sign-extend the value. */
4415 if (SHORT_IMMEDIATES_SIGN_EXTEND
&& INTVAL (x
) > 0
4416 && mode_width
< BITS_PER_WORD
4417 && (UINTVAL (x
) & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
4419 return UINTVAL (x
) | (HOST_WIDE_INT_M1U
<< mode_width
);
4424 /* In many, if not most, RISC machines, reading a byte from memory
4425 zeros the rest of the register. Noticing that fact saves a lot
4426 of extra zero-extends. */
4427 if (load_extend_op (GET_MODE (x
)) == ZERO_EXTEND
)
4428 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
4432 case UNEQ
: case LTGT
:
4433 case GT
: case GTU
: case UNGT
:
4434 case LT
: case LTU
: case UNLT
:
4435 case GE
: case GEU
: case UNGE
:
4436 case LE
: case LEU
: case UNLE
:
4437 case UNORDERED
: case ORDERED
:
4438 /* If this produces an integer result, we know which bits are set.
4439 Code here used to clear bits outside the mode of X, but that is
4441 /* Mind that MODE is the mode the caller wants to look at this
4442 operation in, and not the actual operation mode. We can wind
4443 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4444 that describes the results of a vector compare. */
4445 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
4446 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4447 nonzero
= STORE_FLAG_VALUE
;
4452 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4453 and num_sign_bit_copies. */
4454 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4455 == GET_MODE_PRECISION (GET_MODE (x
)))
4459 if (GET_MODE_PRECISION (GET_MODE (x
)) < mode_width
)
4460 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
4465 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4466 and num_sign_bit_copies. */
4467 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4468 == GET_MODE_PRECISION (GET_MODE (x
)))
4474 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4475 known_x
, known_mode
, known_ret
)
4476 & GET_MODE_MASK (mode
));
4480 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4481 known_x
, known_mode
, known_ret
);
4482 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4483 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4487 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4488 Otherwise, show all the bits in the outer mode but not the inner
4490 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4491 known_x
, known_mode
, known_ret
);
4492 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4494 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4495 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4496 inner_nz
|= (GET_MODE_MASK (mode
)
4497 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4500 nonzero
&= inner_nz
;
4504 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4505 known_x
, known_mode
, known_ret
)
4506 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4507 known_x
, known_mode
, known_ret
);
4511 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4513 unsigned HOST_WIDE_INT nonzero0
4514 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4515 known_x
, known_mode
, known_ret
);
4517 /* Don't call nonzero_bits for the second time if it cannot change
4519 if ((nonzero
& nonzero0
) != nonzero
)
4521 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4522 known_x
, known_mode
, known_ret
);
4526 case PLUS
: case MINUS
:
4528 case DIV
: case UDIV
:
4529 case MOD
: case UMOD
:
4530 /* We can apply the rules of arithmetic to compute the number of
4531 high- and low-order zero bits of these operations. We start by
4532 computing the width (position of the highest-order nonzero bit)
4533 and the number of low-order zero bits for each value. */
4535 unsigned HOST_WIDE_INT nz0
4536 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4537 known_x
, known_mode
, known_ret
);
4538 unsigned HOST_WIDE_INT nz1
4539 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4540 known_x
, known_mode
, known_ret
);
4541 int sign_index
= GET_MODE_PRECISION (GET_MODE (x
)) - 1;
4542 int width0
= floor_log2 (nz0
) + 1;
4543 int width1
= floor_log2 (nz1
) + 1;
4544 int low0
= ctz_or_zero (nz0
);
4545 int low1
= ctz_or_zero (nz1
);
4546 unsigned HOST_WIDE_INT op0_maybe_minusp
4547 = nz0
& (HOST_WIDE_INT_1U
<< sign_index
);
4548 unsigned HOST_WIDE_INT op1_maybe_minusp
4549 = nz1
& (HOST_WIDE_INT_1U
<< sign_index
);
4550 unsigned int result_width
= mode_width
;
4556 result_width
= MAX (width0
, width1
) + 1;
4557 result_low
= MIN (low0
, low1
);
4560 result_low
= MIN (low0
, low1
);
4563 result_width
= width0
+ width1
;
4564 result_low
= low0
+ low1
;
4569 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4570 result_width
= width0
;
4575 result_width
= width0
;
4580 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4581 result_width
= MIN (width0
, width1
);
4582 result_low
= MIN (low0
, low1
);
4587 result_width
= MIN (width0
, width1
);
4588 result_low
= MIN (low0
, low1
);
4594 if (result_width
< mode_width
)
4595 nonzero
&= (HOST_WIDE_INT_1U
<< result_width
) - 1;
4598 nonzero
&= ~((HOST_WIDE_INT_1U
<< result_low
) - 1);
4603 if (CONST_INT_P (XEXP (x
, 1))
4604 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4605 nonzero
&= (HOST_WIDE_INT_1U
<< INTVAL (XEXP (x
, 1))) - 1;
4609 /* If this is a SUBREG formed for a promoted variable that has
4610 been zero-extended, we know that at least the high-order bits
4611 are zero, though others might be too. */
4612 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
))
4613 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4614 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4615 known_x
, known_mode
, known_ret
);
4617 /* If the inner mode is a single word for both the host and target
4618 machines, we can compute this from which bits of the inner
4619 object might be nonzero. */
4620 inner_mode
= GET_MODE (SUBREG_REG (x
));
4621 if (GET_MODE_PRECISION (inner_mode
) <= BITS_PER_WORD
4622 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
)
4624 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4625 known_x
, known_mode
, known_ret
);
4627 /* On many CISC machines, accessing an object in a wider mode
4628 causes the high-order bits to become undefined. So they are
4629 not known to be zero. */
4631 if ((!WORD_REGISTER_OPERATIONS
4632 /* If this is a typical RISC machine, we only have to worry
4633 about the way loads are extended. */
4634 || ((extend_op
= load_extend_op (inner_mode
)) == SIGN_EXTEND
4635 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4636 : extend_op
!= ZERO_EXTEND
)
4637 || (!MEM_P (SUBREG_REG (x
)) && !REG_P (SUBREG_REG (x
))))
4638 && GET_MODE_PRECISION (GET_MODE (x
))
4639 > GET_MODE_PRECISION (inner_mode
))
4641 |= (GET_MODE_MASK (GET_MODE (x
)) & ~GET_MODE_MASK (inner_mode
));
4649 /* The nonzero bits are in two classes: any bits within MODE
4650 that aren't in GET_MODE (x) are always significant. The rest of the
4651 nonzero bits are those that are significant in the operand of
4652 the shift when shifted the appropriate number of bits. This
4653 shows that high-order bits are cleared by the right shift and
4654 low-order bits by left shifts. */
4655 if (CONST_INT_P (XEXP (x
, 1))
4656 && INTVAL (XEXP (x
, 1)) >= 0
4657 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4658 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4660 machine_mode inner_mode
= GET_MODE (x
);
4661 unsigned int width
= GET_MODE_PRECISION (inner_mode
);
4662 int count
= INTVAL (XEXP (x
, 1));
4663 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4664 unsigned HOST_WIDE_INT op_nonzero
4665 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4666 known_x
, known_mode
, known_ret
);
4667 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4668 unsigned HOST_WIDE_INT outer
= 0;
4670 if (mode_width
> width
)
4671 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4673 if (code
== LSHIFTRT
)
4675 else if (code
== ASHIFTRT
)
4679 /* If the sign bit may have been nonzero before the shift, we
4680 need to mark all the places it could have been copied to
4681 by the shift as possibly nonzero. */
4682 if (inner
& (HOST_WIDE_INT_1U
<< (width
- 1 - count
)))
4683 inner
|= ((HOST_WIDE_INT_1U
<< count
) - 1)
4686 else if (code
== ASHIFT
)
4689 inner
= ((inner
<< (count
% width
)
4690 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4692 nonzero
&= (outer
| inner
);
4698 /* This is at most the number of bits in the mode. */
4699 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4703 /* If CLZ has a known value at zero, then the nonzero bits are
4704 that value, plus the number of bits in the mode minus one. */
4705 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4707 |= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4713 /* If CTZ has a known value at zero, then the nonzero bits are
4714 that value, plus the number of bits in the mode minus one. */
4715 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4717 |= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4723 /* This is at most the number of bits in the mode minus 1. */
4724 nonzero
= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4733 unsigned HOST_WIDE_INT nonzero_true
4734 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4735 known_x
, known_mode
, known_ret
);
4737 /* Don't call nonzero_bits for the second time if it cannot change
4739 if ((nonzero
& nonzero_true
) != nonzero
)
4740 nonzero
&= nonzero_true
4741 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4742 known_x
, known_mode
, known_ret
);
4753 /* See the macro definition above. */
4754 #undef cached_num_sign_bit_copies
4757 /* Return true if num_sign_bit_copies1 might recurse into both operands
4761 num_sign_bit_copies_binary_arith_p (const_rtx x
)
4763 if (!ARITHMETIC_P (x
))
4765 switch (GET_CODE (x
))
4783 /* The function cached_num_sign_bit_copies is a wrapper around
4784 num_sign_bit_copies1. It avoids exponential behavior in
4785 num_sign_bit_copies1 when X has identical subexpressions on the
4786 first or the second level. */
4789 cached_num_sign_bit_copies (const_rtx x
, machine_mode mode
, const_rtx known_x
,
4790 machine_mode known_mode
,
4791 unsigned int known_ret
)
4793 if (x
== known_x
&& mode
== known_mode
)
4796 /* Try to find identical subexpressions. If found call
4797 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4798 the precomputed value for the subexpression as KNOWN_RET. */
4800 if (num_sign_bit_copies_binary_arith_p (x
))
4802 rtx x0
= XEXP (x
, 0);
4803 rtx x1
= XEXP (x
, 1);
4805 /* Check the first level. */
4808 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4809 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4813 /* Check the second level. */
4814 if (num_sign_bit_copies_binary_arith_p (x0
)
4815 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4817 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4818 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4822 if (num_sign_bit_copies_binary_arith_p (x1
)
4823 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4825 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4826 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4831 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4834 /* Return the number of bits at the high-order end of X that are known to
4835 be equal to the sign bit. X will be used in mode MODE; if MODE is
4836 VOIDmode, X will be used in its own mode. The returned value will always
4837 be between 1 and the number of bits in MODE. */
4840 num_sign_bit_copies1 (const_rtx x
, machine_mode mode
, const_rtx known_x
,
4841 machine_mode known_mode
,
4842 unsigned int known_ret
)
4844 enum rtx_code code
= GET_CODE (x
);
4845 machine_mode inner_mode
;
4846 int num0
, num1
, result
;
4847 unsigned HOST_WIDE_INT nonzero
;
4849 /* If we weren't given a mode, use the mode of X. If the mode is still
4850 VOIDmode, we don't know anything. Likewise if one of the modes is
4853 if (mode
== VOIDmode
)
4854 mode
= GET_MODE (x
);
4856 gcc_checking_assert (mode
!= BLKmode
);
4858 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4859 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4862 /* For a smaller mode, just ignore the high bits. */
4863 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4864 if (bitwidth
< GET_MODE_PRECISION (GET_MODE (x
)))
4866 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4867 known_x
, known_mode
, known_ret
);
4869 num0
- (int) (GET_MODE_PRECISION (GET_MODE (x
)) - bitwidth
));
4872 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_PRECISION (GET_MODE (x
)))
4874 /* If this machine does not do all register operations on the entire
4875 register and MODE is wider than the mode of X, we can say nothing
4876 at all about the high-order bits. */
4877 if (!WORD_REGISTER_OPERATIONS
)
4880 /* Likewise on machines that do, if the mode of the object is smaller
4881 than a word and loads of that size don't sign extend, we can say
4882 nothing about the high order bits. */
4883 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
4884 && load_extend_op (GET_MODE (x
)) != SIGN_EXTEND
)
4888 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4889 the code in the switch below. */
4894 #if defined(POINTERS_EXTEND_UNSIGNED)
4895 /* If pointers extend signed and this is a pointer in Pmode, say that
4896 all the bits above ptr_mode are known to be sign bit copies. */
4897 /* As we do not know which address space the pointer is referring to,
4898 we can do this only if the target does not support different pointer
4899 or address modes depending on the address space. */
4900 if (target_default_pointer_address_modes_p ()
4901 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4902 && mode
== Pmode
&& REG_POINTER (x
)
4903 && !targetm
.have_ptr_extend ())
4904 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
4908 unsigned int copies_for_hook
= 1, copies
= 1;
4909 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4910 known_mode
, known_ret
,
4914 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4915 known_mode
, known_ret
);
4917 if (copies
> 1 || copies_for_hook
> 1)
4918 return MAX (copies
, copies_for_hook
);
4920 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4925 /* Some RISC machines sign-extend all loads of smaller than a word. */
4926 if (load_extend_op (GET_MODE (x
)) == SIGN_EXTEND
)
4927 return MAX (1, ((int) bitwidth
4928 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1));
4932 /* If the constant is negative, take its 1's complement and remask.
4933 Then see how many zero bits we have. */
4934 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4935 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4936 && (nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
4937 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4939 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4942 /* If this is a SUBREG for a promoted object that is sign-extended
4943 and we are looking at it in a wider mode, we know that at least the
4944 high-order bits are known to be sign bit copies. */
4946 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_SIGNED_P (x
))
4948 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4949 known_x
, known_mode
, known_ret
);
4950 return MAX ((int) bitwidth
4951 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1,
4955 /* For a smaller object, just ignore the high bits. */
4956 inner_mode
= GET_MODE (SUBREG_REG (x
));
4957 if (bitwidth
<= GET_MODE_PRECISION (inner_mode
))
4959 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4960 known_x
, known_mode
, known_ret
);
4962 MAX (1, num0
- (int) (GET_MODE_PRECISION (inner_mode
) - bitwidth
));
4965 /* For paradoxical SUBREGs on machines where all register operations
4966 affect the entire register, just look inside. Note that we are
4967 passing MODE to the recursive call, so the number of sign bit copies
4968 will remain relative to that mode, not the inner mode. */
4970 /* This works only if loads sign extend. Otherwise, if we get a
4971 reload for the inner part, it may be loaded from the stack, and
4972 then we lose all sign bit copies that existed before the store
4975 if (WORD_REGISTER_OPERATIONS
4976 && load_extend_op (inner_mode
) == SIGN_EXTEND
4977 && paradoxical_subreg_p (x
)
4978 && (MEM_P (SUBREG_REG (x
)) || REG_P (SUBREG_REG (x
))))
4979 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4980 known_x
, known_mode
, known_ret
);
4984 if (CONST_INT_P (XEXP (x
, 1)))
4985 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4989 return (bitwidth
- GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4990 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4991 known_x
, known_mode
, known_ret
));
4994 /* For a smaller object, just ignore the high bits. */
4995 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4996 known_x
, known_mode
, known_ret
);
4997 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
5001 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5002 known_x
, known_mode
, known_ret
);
5004 case ROTATE
: case ROTATERT
:
5005 /* If we are rotating left by a number of bits less than the number
5006 of sign bit copies, we can just subtract that amount from the
5008 if (CONST_INT_P (XEXP (x
, 1))
5009 && INTVAL (XEXP (x
, 1)) >= 0
5010 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
5012 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5013 known_x
, known_mode
, known_ret
);
5014 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
5015 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
5020 /* In general, this subtracts one sign bit copy. But if the value
5021 is known to be positive, the number of sign bit copies is the
5022 same as that of the input. Finally, if the input has just one bit
5023 that might be nonzero, all the bits are copies of the sign bit. */
5024 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5025 known_x
, known_mode
, known_ret
);
5026 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5027 return num0
> 1 ? num0
- 1 : 1;
5029 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
5034 && ((HOST_WIDE_INT_1U
<< (bitwidth
- 1)) & nonzero
))
5039 case IOR
: case AND
: case XOR
:
5040 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
5041 /* Logical operations will preserve the number of sign-bit copies.
5042 MIN and MAX operations always return one of the operands. */
5043 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5044 known_x
, known_mode
, known_ret
);
5045 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5046 known_x
, known_mode
, known_ret
);
5048 /* If num1 is clearing some of the top bits then regardless of
5049 the other term, we are guaranteed to have at least that many
5050 high-order zero bits. */
5053 && bitwidth
<= HOST_BITS_PER_WIDE_INT
5054 && CONST_INT_P (XEXP (x
, 1))
5055 && (UINTVAL (XEXP (x
, 1))
5056 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) == 0)
5059 /* Similarly for IOR when setting high-order bits. */
5062 && bitwidth
<= HOST_BITS_PER_WIDE_INT
5063 && CONST_INT_P (XEXP (x
, 1))
5064 && (UINTVAL (XEXP (x
, 1))
5065 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5068 return MIN (num0
, num1
);
5070 case PLUS
: case MINUS
:
5071 /* For addition and subtraction, we can have a 1-bit carry. However,
5072 if we are subtracting 1 from a positive number, there will not
5073 be such a carry. Furthermore, if the positive number is known to
5074 be 0 or 1, we know the result is either -1 or 0. */
5076 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
5077 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
5079 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
5080 if (((HOST_WIDE_INT_1U
<< (bitwidth
- 1)) & nonzero
) == 0)
5081 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
5082 : bitwidth
- floor_log2 (nonzero
) - 1);
5085 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5086 known_x
, known_mode
, known_ret
);
5087 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5088 known_x
, known_mode
, known_ret
);
5089 result
= MAX (1, MIN (num0
, num1
) - 1);
5094 /* The number of bits of the product is the sum of the number of
5095 bits of both terms. However, unless one of the terms if known
5096 to be positive, we must allow for an additional bit since negating
5097 a negative number can remove one sign bit copy. */
5099 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5100 known_x
, known_mode
, known_ret
);
5101 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5102 known_x
, known_mode
, known_ret
);
5104 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
5106 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5107 || (((nonzero_bits (XEXP (x
, 0), mode
)
5108 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5109 && ((nonzero_bits (XEXP (x
, 1), mode
)
5110 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1)))
5114 return MAX (1, result
);
5117 /* The result must be <= the first operand. If the first operand
5118 has the high bit set, we know nothing about the number of sign
5120 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5122 else if ((nonzero_bits (XEXP (x
, 0), mode
)
5123 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5126 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5127 known_x
, known_mode
, known_ret
);
5130 /* The result must be <= the second operand. If the second operand
5131 has (or just might have) the high bit set, we know nothing about
5132 the number of sign bit copies. */
5133 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5135 else if ((nonzero_bits (XEXP (x
, 1), mode
)
5136 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5139 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5140 known_x
, known_mode
, known_ret
);
5143 /* Similar to unsigned division, except that we have to worry about
5144 the case where the divisor is negative, in which case we have
5146 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5147 known_x
, known_mode
, known_ret
);
5149 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5150 || (nonzero_bits (XEXP (x
, 1), mode
)
5151 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0))
5157 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5158 known_x
, known_mode
, known_ret
);
5160 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5161 || (nonzero_bits (XEXP (x
, 1), mode
)
5162 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0))
5168 /* Shifts by a constant add to the number of bits equal to the
5170 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5171 known_x
, known_mode
, known_ret
);
5172 if (CONST_INT_P (XEXP (x
, 1))
5173 && INTVAL (XEXP (x
, 1)) > 0
5174 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
5175 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
5180 /* Left shifts destroy copies. */
5181 if (!CONST_INT_P (XEXP (x
, 1))
5182 || INTVAL (XEXP (x
, 1)) < 0
5183 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
5184 || INTVAL (XEXP (x
, 1)) >= GET_MODE_PRECISION (GET_MODE (x
)))
5187 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5188 known_x
, known_mode
, known_ret
);
5189 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
5192 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5193 known_x
, known_mode
, known_ret
);
5194 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
5195 known_x
, known_mode
, known_ret
);
5196 return MIN (num0
, num1
);
5198 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
5199 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
5200 case GEU
: case GTU
: case LEU
: case LTU
:
5201 case UNORDERED
: case ORDERED
:
5202 /* If the constant is negative, take its 1's complement and remask.
5203 Then see how many zero bits we have. */
5204 nonzero
= STORE_FLAG_VALUE
;
5205 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
5206 && (nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5207 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
5209 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
5215 /* If we haven't been able to figure it out by one of the above rules,
5216 see if some of the high-order bits are known to be zero. If so,
5217 count those bits and return one less than that amount. If we can't
5218 safely compute the mask for this mode, always return BITWIDTH. */
5220 bitwidth
= GET_MODE_PRECISION (mode
);
5221 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5224 nonzero
= nonzero_bits (x
, mode
);
5225 return nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))
5226 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
5229 /* Calculate the rtx_cost of a single instruction. A return value of
5230 zero indicates an instruction pattern without a known cost. */
5233 insn_rtx_cost (rtx pat
, bool speed
)
5238 /* Extract the single set rtx from the instruction pattern.
5239 We can't use single_set since we only have the pattern. */
5240 if (GET_CODE (pat
) == SET
)
5242 else if (GET_CODE (pat
) == PARALLEL
)
5245 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
5247 rtx x
= XVECEXP (pat
, 0, i
);
5248 if (GET_CODE (x
) == SET
)
5261 cost
= set_src_cost (SET_SRC (set
), GET_MODE (SET_DEST (set
)), speed
);
5262 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
5265 /* Returns estimate on cost of computing SEQ. */
5268 seq_cost (const rtx_insn
*seq
, bool speed
)
5273 for (; seq
; seq
= NEXT_INSN (seq
))
5275 set
= single_set (seq
);
5277 cost
+= set_rtx_cost (set
, speed
);
5285 /* Given an insn INSN and condition COND, return the condition in a
5286 canonical form to simplify testing by callers. Specifically:
5288 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5289 (2) Both operands will be machine operands; (cc0) will have been replaced.
5290 (3) If an operand is a constant, it will be the second operand.
5291 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5292 for GE, GEU, and LEU.
5294 If the condition cannot be understood, or is an inequality floating-point
5295 comparison which needs to be reversed, 0 will be returned.
5297 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5299 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5300 insn used in locating the condition was found. If a replacement test
5301 of the condition is desired, it should be placed in front of that
5302 insn and we will be sure that the inputs are still valid.
5304 If WANT_REG is nonzero, we wish the condition to be relative to that
5305 register, if possible. Therefore, do not canonicalize the condition
5306 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5307 to be a compare to a CC mode register.
5309 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5313 canonicalize_condition (rtx_insn
*insn
, rtx cond
, int reverse
,
5314 rtx_insn
**earliest
,
5315 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
5318 rtx_insn
*prev
= insn
;
5322 int reverse_code
= 0;
5324 basic_block bb
= BLOCK_FOR_INSN (insn
);
5326 code
= GET_CODE (cond
);
5327 mode
= GET_MODE (cond
);
5328 op0
= XEXP (cond
, 0);
5329 op1
= XEXP (cond
, 1);
5332 code
= reversed_comparison_code (cond
, insn
);
5333 if (code
== UNKNOWN
)
5339 /* If we are comparing a register with zero, see if the register is set
5340 in the previous insn to a COMPARE or a comparison operation. Perform
5341 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5344 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
5345 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
5346 && op1
== CONST0_RTX (GET_MODE (op0
))
5349 /* Set nonzero when we find something of interest. */
5352 /* If comparison with cc0, import actual comparison from compare
5356 if ((prev
= prev_nonnote_insn (prev
)) == 0
5357 || !NONJUMP_INSN_P (prev
)
5358 || (set
= single_set (prev
)) == 0
5359 || SET_DEST (set
) != cc0_rtx
)
5362 op0
= SET_SRC (set
);
5363 op1
= CONST0_RTX (GET_MODE (op0
));
5368 /* If this is a COMPARE, pick up the two things being compared. */
5369 if (GET_CODE (op0
) == COMPARE
)
5371 op1
= XEXP (op0
, 1);
5372 op0
= XEXP (op0
, 0);
5375 else if (!REG_P (op0
))
5378 /* Go back to the previous insn. Stop if it is not an INSN. We also
5379 stop if it isn't a single set or if it has a REG_INC note because
5380 we don't want to bother dealing with it. */
5382 prev
= prev_nonnote_nondebug_insn (prev
);
5385 || !NONJUMP_INSN_P (prev
)
5386 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
5387 /* In cfglayout mode, there do not have to be labels at the
5388 beginning of a block, or jumps at the end, so the previous
5389 conditions would not stop us when we reach bb boundary. */
5390 || BLOCK_FOR_INSN (prev
) != bb
)
5393 set
= set_of (op0
, prev
);
5396 && (GET_CODE (set
) != SET
5397 || !rtx_equal_p (SET_DEST (set
), op0
)))
5400 /* If this is setting OP0, get what it sets it to if it looks
5404 machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
5405 #ifdef FLOAT_STORE_FLAG_VALUE
5406 REAL_VALUE_TYPE fsfv
;
5409 /* ??? We may not combine comparisons done in a CCmode with
5410 comparisons not done in a CCmode. This is to aid targets
5411 like Alpha that have an IEEE compliant EQ instruction, and
5412 a non-IEEE compliant BEQ instruction. The use of CCmode is
5413 actually artificial, simply to prevent the combination, but
5414 should not affect other platforms.
5416 However, we must allow VOIDmode comparisons to match either
5417 CCmode or non-CCmode comparison, because some ports have
5418 modeless comparisons inside branch patterns.
5420 ??? This mode check should perhaps look more like the mode check
5421 in simplify_comparison in combine. */
5422 if (((GET_MODE_CLASS (mode
) == MODE_CC
)
5423 != (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5425 && inner_mode
!= VOIDmode
)
5427 if (GET_CODE (SET_SRC (set
)) == COMPARE
5430 && val_signbit_known_set_p (inner_mode
,
5432 #ifdef FLOAT_STORE_FLAG_VALUE
5434 && SCALAR_FLOAT_MODE_P (inner_mode
)
5435 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5436 REAL_VALUE_NEGATIVE (fsfv
)))
5439 && COMPARISON_P (SET_SRC (set
))))
5441 else if (((code
== EQ
5443 && val_signbit_known_set_p (inner_mode
,
5445 #ifdef FLOAT_STORE_FLAG_VALUE
5447 && SCALAR_FLOAT_MODE_P (inner_mode
)
5448 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5449 REAL_VALUE_NEGATIVE (fsfv
)))
5452 && COMPARISON_P (SET_SRC (set
)))
5457 else if ((code
== EQ
|| code
== NE
)
5458 && GET_CODE (SET_SRC (set
)) == XOR
)
5459 /* Handle sequences like:
5462 ...(eq|ne op0 (const_int 0))...
5466 (eq op0 (const_int 0)) reduces to (eq X Y)
5467 (ne op0 (const_int 0)) reduces to (ne X Y)
5469 This is the form used by MIPS16, for example. */
5475 else if (reg_set_p (op0
, prev
))
5476 /* If this sets OP0, but not directly, we have to give up. */
5481 /* If the caller is expecting the condition to be valid at INSN,
5482 make sure X doesn't change before INSN. */
5483 if (valid_at_insn_p
)
5484 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5486 if (COMPARISON_P (x
))
5487 code
= GET_CODE (x
);
5490 code
= reversed_comparison_code (x
, prev
);
5491 if (code
== UNKNOWN
)
5496 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5502 /* If constant is first, put it last. */
5503 if (CONSTANT_P (op0
))
5504 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5506 /* If OP0 is the result of a comparison, we weren't able to find what
5507 was really being compared, so fail. */
5509 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5512 /* Canonicalize any ordered comparison with integers involving equality
5513 if we can do computations in the relevant mode and we do not
5516 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
5517 && CONST_INT_P (op1
)
5518 && GET_MODE (op0
) != VOIDmode
5519 && GET_MODE_PRECISION (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
5521 HOST_WIDE_INT const_val
= INTVAL (op1
);
5522 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5523 unsigned HOST_WIDE_INT max_val
5524 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
5529 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5530 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
5533 /* When cross-compiling, const_val might be sign-extended from
5534 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5536 if ((const_val
& max_val
)
5537 != (HOST_WIDE_INT_1U
5538 << (GET_MODE_PRECISION (GET_MODE (op0
)) - 1)))
5539 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
5543 if (uconst_val
< max_val
)
5544 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
5548 if (uconst_val
!= 0)
5549 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
5557 /* Never return CC0; return zero instead. */
5561 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5564 /* Given a jump insn JUMP, return the condition that will cause it to branch
5565 to its JUMP_LABEL. If the condition cannot be understood, or is an
5566 inequality floating-point comparison which needs to be reversed, 0 will
5569 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5570 insn used in locating the condition was found. If a replacement test
5571 of the condition is desired, it should be placed in front of that
5572 insn and we will be sure that the inputs are still valid. If EARLIEST
5573 is null, the returned condition will be valid at INSN.
5575 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5576 compare CC mode register.
5578 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5581 get_condition (rtx_insn
*jump
, rtx_insn
**earliest
, int allow_cc_mode
,
5582 int valid_at_insn_p
)
5588 /* If this is not a standard conditional jump, we can't parse it. */
5590 || ! any_condjump_p (jump
))
5592 set
= pc_set (jump
);
5594 cond
= XEXP (SET_SRC (set
), 0);
5596 /* If this branches to JUMP_LABEL when the condition is false, reverse
5599 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5600 && label_ref_label (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (jump
);
5602 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5603 allow_cc_mode
, valid_at_insn_p
);
5606 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5607 TARGET_MODE_REP_EXTENDED.
5609 Note that we assume that the property of
5610 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5611 narrower than mode B. I.e., if A is a mode narrower than B then in
5612 order to be able to operate on it in mode B, mode A needs to
5613 satisfy the requirements set by the representation of mode B. */
5616 init_num_sign_bit_copies_in_rep (void)
5618 machine_mode mode
, in_mode
;
5620 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
5621 in_mode
= GET_MODE_WIDER_MODE (mode
))
5622 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
5623 mode
= GET_MODE_WIDER_MODE (mode
))
5627 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5628 extends to the next widest mode. */
5629 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5630 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5632 /* We are in in_mode. Count how many bits outside of mode
5633 have to be copies of the sign-bit. */
5634 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5636 machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5638 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5639 /* We can only check sign-bit copies starting from the
5640 top-bit. In order to be able to check the bits we
5641 have already seen we pretend that subsequent bits
5642 have to be sign-bit copies too. */
5643 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5644 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5645 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5650 /* Suppose that truncation from the machine mode of X to MODE is not a
5651 no-op. See if there is anything special about X so that we can
5652 assume it already contains a truncated value of MODE. */
5655 truncated_to_mode (machine_mode mode
, const_rtx x
)
5657 /* This register has already been used in MODE without explicit
5659 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5662 /* See if we already satisfy the requirements of MODE. If yes we
5663 can just switch to MODE. */
5664 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5665 && (num_sign_bit_copies (x
, GET_MODE (x
))
5666 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5672 /* Return true if RTX code CODE has a single sequence of zero or more
5673 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5674 entry in that case. */
5677 setup_reg_subrtx_bounds (unsigned int code
)
5679 const char *format
= GET_RTX_FORMAT ((enum rtx_code
) code
);
5681 for (; format
[i
] != 'e'; ++i
)
5684 /* No subrtxes. Leave start and count as 0. */
5686 if (format
[i
] == 'E' || format
[i
] == 'V')
5690 /* Record the sequence of 'e's. */
5691 rtx_all_subrtx_bounds
[code
].start
= i
;
5694 while (format
[i
] == 'e');
5695 rtx_all_subrtx_bounds
[code
].count
= i
- rtx_all_subrtx_bounds
[code
].start
;
5696 /* rtl-iter.h relies on this. */
5697 gcc_checking_assert (rtx_all_subrtx_bounds
[code
].count
<= 3);
5699 for (; format
[i
]; ++i
)
5700 if (format
[i
] == 'E' || format
[i
] == 'V' || format
[i
] == 'e')
5706 /* Initialize rtx_all_subrtx_bounds. */
5711 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5713 if (!setup_reg_subrtx_bounds (i
))
5714 rtx_all_subrtx_bounds
[i
].count
= UCHAR_MAX
;
5715 if (GET_RTX_CLASS (i
) != RTX_CONST_OBJ
)
5716 rtx_nonconst_subrtx_bounds
[i
] = rtx_all_subrtx_bounds
[i
];
5719 init_num_sign_bit_copies_in_rep ();
5722 /* Check whether this is a constant pool constant. */
5724 constant_pool_constant_p (rtx x
)
5726 x
= avoid_constant_pool_reference (x
);
5727 return CONST_DOUBLE_P (x
);
5730 /* If M is a bitmask that selects a field of low-order bits within an item but
5731 not the entire word, return the length of the field. Return -1 otherwise.
5732 M is used in machine mode MODE. */
5735 low_bitmask_len (machine_mode mode
, unsigned HOST_WIDE_INT m
)
5737 if (mode
!= VOIDmode
)
5739 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
5741 m
&= GET_MODE_MASK (mode
);
5744 return exact_log2 (m
+ 1);
5747 /* Return the mode of MEM's address. */
5750 get_address_mode (rtx mem
)
5754 gcc_assert (MEM_P (mem
));
5755 mode
= GET_MODE (XEXP (mem
, 0));
5756 if (mode
!= VOIDmode
)
5758 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
5761 /* Split up a CONST_DOUBLE or integer constant rtx
5762 into two rtx's for single words,
5763 storing in *FIRST the word that comes first in memory in the target
5764 and in *SECOND the other.
5766 TODO: This function needs to be rewritten to work on any size
5770 split_double (rtx value
, rtx
*first
, rtx
*second
)
5772 if (CONST_INT_P (value
))
5774 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
5776 /* In this case the CONST_INT holds both target words.
5777 Extract the bits from it into two word-sized pieces.
5778 Sign extend each half to HOST_WIDE_INT. */
5779 unsigned HOST_WIDE_INT low
, high
;
5780 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
5781 unsigned bits_per_word
= BITS_PER_WORD
;
5783 /* Set sign_bit to the most significant bit of a word. */
5785 sign_bit
<<= bits_per_word
- 1;
5787 /* Set mask so that all bits of the word are set. We could
5788 have used 1 << BITS_PER_WORD instead of basing the
5789 calculation on sign_bit. However, on machines where
5790 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5791 compiler warning, even though the code would never be
5793 mask
= sign_bit
<< 1;
5796 /* Set sign_extend as any remaining bits. */
5797 sign_extend
= ~mask
;
5799 /* Pick the lower word and sign-extend it. */
5800 low
= INTVAL (value
);
5805 /* Pick the higher word, shifted to the least significant
5806 bits, and sign-extend it. */
5807 high
= INTVAL (value
);
5808 high
>>= bits_per_word
- 1;
5811 if (high
& sign_bit
)
5812 high
|= sign_extend
;
5814 /* Store the words in the target machine order. */
5815 if (WORDS_BIG_ENDIAN
)
5817 *first
= GEN_INT (high
);
5818 *second
= GEN_INT (low
);
5822 *first
= GEN_INT (low
);
5823 *second
= GEN_INT (high
);
5828 /* The rule for using CONST_INT for a wider mode
5829 is that we regard the value as signed.
5830 So sign-extend it. */
5831 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
5832 if (WORDS_BIG_ENDIAN
)
5844 else if (GET_CODE (value
) == CONST_WIDE_INT
)
5846 /* All of this is scary code and needs to be converted to
5847 properly work with any size integer. */
5848 gcc_assert (CONST_WIDE_INT_NUNITS (value
) == 2);
5849 if (WORDS_BIG_ENDIAN
)
5851 *first
= GEN_INT (CONST_WIDE_INT_ELT (value
, 1));
5852 *second
= GEN_INT (CONST_WIDE_INT_ELT (value
, 0));
5856 *first
= GEN_INT (CONST_WIDE_INT_ELT (value
, 0));
5857 *second
= GEN_INT (CONST_WIDE_INT_ELT (value
, 1));
5860 else if (!CONST_DOUBLE_P (value
))
5862 if (WORDS_BIG_ENDIAN
)
5864 *first
= const0_rtx
;
5870 *second
= const0_rtx
;
5873 else if (GET_MODE (value
) == VOIDmode
5874 /* This is the old way we did CONST_DOUBLE integers. */
5875 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
5877 /* In an integer, the words are defined as most and least significant.
5878 So order them by the target's convention. */
5879 if (WORDS_BIG_ENDIAN
)
5881 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5882 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
5886 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
5887 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5894 /* Note, this converts the REAL_VALUE_TYPE to the target's
5895 format, splits up the floating point double and outputs
5896 exactly 32 bits of it into each of l[0] and l[1] --
5897 not necessarily BITS_PER_WORD bits. */
5898 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value
), l
);
5900 /* If 32 bits is an entire word for the target, but not for the host,
5901 then sign-extend on the host so that the number will look the same
5902 way on the host that it would on the target. See for instance
5903 simplify_unary_operation. The #if is needed to avoid compiler
5906 #if HOST_BITS_PER_LONG > 32
5907 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
5909 if (l
[0] & ((long) 1 << 31))
5910 l
[0] |= ((unsigned long) (-1) << 32);
5911 if (l
[1] & ((long) 1 << 31))
5912 l
[1] |= ((unsigned long) (-1) << 32);
5916 *first
= GEN_INT (l
[0]);
5917 *second
= GEN_INT (l
[1]);
5921 /* Return true if X is a sign_extract or zero_extract from the least
5925 lsb_bitfield_op_p (rtx x
)
5927 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_BITFIELD_OPS
)
5929 machine_mode mode
= GET_MODE (XEXP (x
, 0));
5930 HOST_WIDE_INT len
= INTVAL (XEXP (x
, 1));
5931 HOST_WIDE_INT pos
= INTVAL (XEXP (x
, 2));
5933 return (pos
== (BITS_BIG_ENDIAN
? GET_MODE_PRECISION (mode
) - len
: 0));
5938 /* Strip outer address "mutations" from LOC and return a pointer to the
5939 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5940 stripped expression there.
5942 "Mutations" either convert between modes or apply some kind of
5943 extension, truncation or alignment. */
5946 strip_address_mutations (rtx
*loc
, enum rtx_code
*outer_code
)
5950 enum rtx_code code
= GET_CODE (*loc
);
5951 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
5952 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5953 used to convert between pointer sizes. */
5954 loc
= &XEXP (*loc
, 0);
5955 else if (lsb_bitfield_op_p (*loc
))
5956 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5957 acts as a combined truncation and extension. */
5958 loc
= &XEXP (*loc
, 0);
5959 else if (code
== AND
&& CONST_INT_P (XEXP (*loc
, 1)))
5960 /* (and ... (const_int -X)) is used to align to X bytes. */
5961 loc
= &XEXP (*loc
, 0);
5962 else if (code
== SUBREG
5963 && !OBJECT_P (SUBREG_REG (*loc
))
5964 && subreg_lowpart_p (*loc
))
5965 /* (subreg (operator ...) ...) inside and is used for mode
5967 loc
= &SUBREG_REG (*loc
);
5975 /* Return true if CODE applies some kind of scale. The scaled value is
5976 is the first operand and the scale is the second. */
5979 binary_scale_code_p (enum rtx_code code
)
5981 return (code
== MULT
5983 /* Needed by ARM targets. */
5987 || code
== ROTATERT
);
5990 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5991 (see address_info). Return null otherwise. */
5994 get_base_term (rtx
*inner
)
5996 if (GET_CODE (*inner
) == LO_SUM
)
5997 inner
= strip_address_mutations (&XEXP (*inner
, 0));
6000 || GET_CODE (*inner
) == SUBREG
6001 || GET_CODE (*inner
) == SCRATCH
)
6006 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6007 (see address_info). Return null otherwise. */
6010 get_index_term (rtx
*inner
)
6012 /* At present, only constant scales are allowed. */
6013 if (binary_scale_code_p (GET_CODE (*inner
)) && CONSTANT_P (XEXP (*inner
, 1)))
6014 inner
= strip_address_mutations (&XEXP (*inner
, 0));
6017 || GET_CODE (*inner
) == SUBREG
6018 || GET_CODE (*inner
) == SCRATCH
)
6023 /* Set the segment part of address INFO to LOC, given that INNER is the
6027 set_address_segment (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6029 gcc_assert (!info
->segment
);
6030 info
->segment
= loc
;
6031 info
->segment_term
= inner
;
6034 /* Set the base part of address INFO to LOC, given that INNER is the
6038 set_address_base (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6040 gcc_assert (!info
->base
);
6042 info
->base_term
= inner
;
6045 /* Set the index part of address INFO to LOC, given that INNER is the
6049 set_address_index (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6051 gcc_assert (!info
->index
);
6053 info
->index_term
= inner
;
6056 /* Set the displacement part of address INFO to LOC, given that INNER
6057 is the constant term. */
6060 set_address_disp (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6062 gcc_assert (!info
->disp
);
6064 info
->disp_term
= inner
;
6067 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6068 rest of INFO accordingly. */
6071 decompose_incdec_address (struct address_info
*info
)
6073 info
->autoinc_p
= true;
6075 rtx
*base
= &XEXP (*info
->inner
, 0);
6076 set_address_base (info
, base
, base
);
6077 gcc_checking_assert (info
->base
== info
->base_term
);
6079 /* These addresses are only valid when the size of the addressed
6081 gcc_checking_assert (info
->mode
!= VOIDmode
);
6084 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6085 of INFO accordingly. */
6088 decompose_automod_address (struct address_info
*info
)
6090 info
->autoinc_p
= true;
6092 rtx
*base
= &XEXP (*info
->inner
, 0);
6093 set_address_base (info
, base
, base
);
6094 gcc_checking_assert (info
->base
== info
->base_term
);
6096 rtx plus
= XEXP (*info
->inner
, 1);
6097 gcc_assert (GET_CODE (plus
) == PLUS
);
6099 info
->base_term2
= &XEXP (plus
, 0);
6100 gcc_checking_assert (rtx_equal_p (*info
->base_term
, *info
->base_term2
));
6102 rtx
*step
= &XEXP (plus
, 1);
6103 rtx
*inner_step
= strip_address_mutations (step
);
6104 if (CONSTANT_P (*inner_step
))
6105 set_address_disp (info
, step
, inner_step
);
6107 set_address_index (info
, step
, inner_step
);
6110 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6111 values in [PTR, END). Return a pointer to the end of the used array. */
6114 extract_plus_operands (rtx
*loc
, rtx
**ptr
, rtx
**end
)
6117 if (GET_CODE (x
) == PLUS
)
6119 ptr
= extract_plus_operands (&XEXP (x
, 0), ptr
, end
);
6120 ptr
= extract_plus_operands (&XEXP (x
, 1), ptr
, end
);
6124 gcc_assert (ptr
!= end
);
6130 /* Evaluate the likelihood of X being a base or index value, returning
6131 positive if it is likely to be a base, negative if it is likely to be
6132 an index, and 0 if we can't tell. Make the magnitude of the return
6133 value reflect the amount of confidence we have in the answer.
6135 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6138 baseness (rtx x
, machine_mode mode
, addr_space_t as
,
6139 enum rtx_code outer_code
, enum rtx_code index_code
)
6141 /* Believe *_POINTER unless the address shape requires otherwise. */
6142 if (REG_P (x
) && REG_POINTER (x
))
6144 if (MEM_P (x
) && MEM_POINTER (x
))
6147 if (REG_P (x
) && HARD_REGISTER_P (x
))
6149 /* X is a hard register. If it only fits one of the base
6150 or index classes, choose that interpretation. */
6151 int regno
= REGNO (x
);
6152 bool base_p
= ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
6153 bool index_p
= REGNO_OK_FOR_INDEX_P (regno
);
6154 if (base_p
!= index_p
)
6155 return base_p
? 1 : -1;
6160 /* INFO->INNER describes a normal, non-automodified address.
6161 Fill in the rest of INFO accordingly. */
6164 decompose_normal_address (struct address_info
*info
)
6166 /* Treat the address as the sum of up to four values. */
6168 size_t n_ops
= extract_plus_operands (info
->inner
, ops
,
6169 ops
+ ARRAY_SIZE (ops
)) - ops
;
6171 /* If there is more than one component, any base component is in a PLUS. */
6173 info
->base_outer_code
= PLUS
;
6175 /* Try to classify each sum operand now. Leave those that could be
6176 either a base or an index in OPS. */
6179 for (size_t in
= 0; in
< n_ops
; ++in
)
6182 rtx
*inner
= strip_address_mutations (loc
);
6183 if (CONSTANT_P (*inner
))
6184 set_address_disp (info
, loc
, inner
);
6185 else if (GET_CODE (*inner
) == UNSPEC
)
6186 set_address_segment (info
, loc
, inner
);
6189 /* The only other possibilities are a base or an index. */
6190 rtx
*base_term
= get_base_term (inner
);
6191 rtx
*index_term
= get_index_term (inner
);
6192 gcc_assert (base_term
|| index_term
);
6194 set_address_index (info
, loc
, index_term
);
6195 else if (!index_term
)
6196 set_address_base (info
, loc
, base_term
);
6199 gcc_assert (base_term
== index_term
);
6201 inner_ops
[out
] = base_term
;
6207 /* Classify the remaining OPS members as bases and indexes. */
6210 /* If we haven't seen a base or an index yet, assume that this is
6211 the base. If we were confident that another term was the base
6212 or index, treat the remaining operand as the other kind. */
6214 set_address_base (info
, ops
[0], inner_ops
[0]);
6216 set_address_index (info
, ops
[0], inner_ops
[0]);
6220 /* In the event of a tie, assume the base comes first. */
6221 if (baseness (*inner_ops
[0], info
->mode
, info
->as
, PLUS
,
6223 >= baseness (*inner_ops
[1], info
->mode
, info
->as
, PLUS
,
6224 GET_CODE (*ops
[0])))
6226 set_address_base (info
, ops
[0], inner_ops
[0]);
6227 set_address_index (info
, ops
[1], inner_ops
[1]);
6231 set_address_base (info
, ops
[1], inner_ops
[1]);
6232 set_address_index (info
, ops
[0], inner_ops
[0]);
6236 gcc_assert (out
== 0);
6239 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6240 or VOIDmode if not known. AS is the address space associated with LOC.
6241 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6244 decompose_address (struct address_info
*info
, rtx
*loc
, machine_mode mode
,
6245 addr_space_t as
, enum rtx_code outer_code
)
6247 memset (info
, 0, sizeof (*info
));
6250 info
->addr_outer_code
= outer_code
;
6252 info
->inner
= strip_address_mutations (loc
, &outer_code
);
6253 info
->base_outer_code
= outer_code
;
6254 switch (GET_CODE (*info
->inner
))
6260 decompose_incdec_address (info
);
6265 decompose_automod_address (info
);
6269 decompose_normal_address (info
);
6274 /* Describe address operand LOC in INFO. */
6277 decompose_lea_address (struct address_info
*info
, rtx
*loc
)
6279 decompose_address (info
, loc
, VOIDmode
, ADDR_SPACE_GENERIC
, ADDRESS
);
6282 /* Describe the address of MEM X in INFO. */
6285 decompose_mem_address (struct address_info
*info
, rtx x
)
6287 gcc_assert (MEM_P (x
));
6288 decompose_address (info
, &XEXP (x
, 0), GET_MODE (x
),
6289 MEM_ADDR_SPACE (x
), MEM
);
6292 /* Update INFO after a change to the address it describes. */
6295 update_address (struct address_info
*info
)
6297 decompose_address (info
, info
->outer
, info
->mode
, info
->as
,
6298 info
->addr_outer_code
);
6301 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6302 more complicated than that. */
6305 get_index_scale (const struct address_info
*info
)
6307 rtx index
= *info
->index
;
6308 if (GET_CODE (index
) == MULT
6309 && CONST_INT_P (XEXP (index
, 1))
6310 && info
->index_term
== &XEXP (index
, 0))
6311 return INTVAL (XEXP (index
, 1));
6313 if (GET_CODE (index
) == ASHIFT
6314 && CONST_INT_P (XEXP (index
, 1))
6315 && info
->index_term
== &XEXP (index
, 0))
6316 return HOST_WIDE_INT_1
<< INTVAL (XEXP (index
, 1));
6318 if (info
->index
== info
->index_term
)
6324 /* Return the "index code" of INFO, in the form required by
6328 get_index_code (const struct address_info
*info
)
6331 return GET_CODE (*info
->index
);
6334 return GET_CODE (*info
->disp
);
6339 /* Return true if RTL X contains a SYMBOL_REF. */
6342 contains_symbol_ref_p (const_rtx x
)
6344 subrtx_iterator::array_type array
;
6345 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6346 if (SYMBOL_REF_P (*iter
))
6352 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6355 contains_symbolic_reference_p (const_rtx x
)
6357 subrtx_iterator::array_type array
;
6358 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6359 if (SYMBOL_REF_P (*iter
) || GET_CODE (*iter
) == LABEL_REF
)
6365 /* Return true if X contains a thread-local symbol. */
6368 tls_referenced_p (const_rtx x
)
6370 if (!targetm
.have_tls
)
6373 subrtx_iterator::array_type array
;
6374 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6375 if (GET_CODE (*iter
) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (*iter
) != 0)