* target.h (asm_out.byte_op, asm_out.aligned_op, asm_out.unaligned_op,
[official-gcc.git] / gcc / config / pdp11 / pdp11.h
blob61327e748f583ad256b108b36bde263c709d06e8
1 /* Definitions of target machine for GNU compiler, for the pdp-11
2 Copyright (C) 1994, 1995, 1996, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* check whether load_fpu_reg or not */
25 #define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
26 #define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
27 #define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
28 #define CPU_REG_P(x) ((x)<8)
30 /* Names to predefine in the preprocessor for this target machine. */
32 #define CPP_PREDEFINES "-Dpdp11"
34 /* Print subsidiary information on the compiler version in use. */
35 #define TARGET_VERSION fprintf (stderr, " (pdp11)");
38 /* Generate DBX debugging information. */
40 /* #define DBX_DEBUGGING_INFO */
42 /* Run-time compilation parameters selecting different hardware subsets.
45 extern int target_flags;
47 /* Macro to define tables used to set the flags.
48 This is a list in braces of triplets in braces,
49 each triplet being { "NAME", VALUE, DOC }
50 where VALUE is the bits to set or minus the bits to clear and DOC
51 is the documentation for --help (NULL if intentionally undocumented).
52 An empty string NAME is used to identify the default VALUE. */
54 #define TARGET_SWITCHES \
55 { { "fpu", 1, N_("Use hardware floating point") }, \
56 { "soft-float", -1, N_("Do not use hardware floating point") }, \
57 /* return float result in ac0 */ \
58 { "ac0", 2, N_("Return floating point results in ac0") }, \
59 { "no-ac0", -2, N_("Return floating point results in memory") }, \
60 /* is 11/40 */ \
61 { "40", 4, N_("Generate code for an 11/40") }, \
62 { "no-40", -4, "" }, \
63 /* is 11/45 */ \
64 { "45", 8, N_("Generate code for an 11/45") }, \
65 { "no-45", -8, "" }, \
66 /* is 11/10 */ \
67 { "10", -12, N_("Generate code for an 11/10") }, \
68 /* use movstrhi for bcopy */ \
69 { "bcopy", 16, NULL }, \
70 { "bcopy-builtin", -16, NULL }, \
71 /* use 32 bit for int */ \
72 { "int32", 32, N_("Use 32 bit int") }, \
73 { "no-int16", 32, N_("Use 32 bit int") }, \
74 { "int16", -32, N_("Use 16 bit int") }, \
75 { "no-int32", -32, N_("Use 16 bit int") }, \
76 /* use 32 bit for float */ \
77 { "float32", 64, N_("Use 32 bit float") }, \
78 { "no-float64", 64, N_("Use 32 bit float") }, \
79 { "float64", -64, N_("Use 64 bit float") }, \
80 { "no-float32", -64, N_("Use 64 bit float") }, \
81 /* allow abshi pattern? - can trigger "optimizations" which make code SLOW! */\
82 { "abshi", 128, NULL }, \
83 { "no-abshi", -128, NULL }, \
84 /* is branching expensive - on a PDP, it's actually really cheap */ \
85 /* this is just to play around and check what code gcc generates */ \
86 { "branch-expensive", 256, NULL }, \
87 { "branch-cheap", -256, NULL }, \
88 /* split instruction and data memory? */ \
89 { "split", 1024, N_("Target has split I&D") }, \
90 { "no-split", -1024, N_("Target does not have split I&D") }, \
91 /* UNIX assembler syntax? */ \
92 { "unix-asm", 2048, N_("Use UNIX assembler syntax") }, \
93 { "dec-asm", -2048, N_("Use DEC assembler syntax") }, \
94 /* default */ \
95 { "", TARGET_DEFAULT, NULL} \
98 #define TARGET_DEFAULT (1 | 8 | 128 | TARGET_UNIX_ASM_DEFAULT)
100 #define TARGET_FPU (target_flags & 1)
101 #define TARGET_SOFT_FLOAT (!TARGET_FPU)
103 #define TARGET_AC0 ((target_flags & 2) && TARGET_FPU)
104 #define TARGET_NO_AC0 (! TARGET_AC0)
106 #define TARGET_45 (target_flags & 8)
107 #define TARGET_40_PLUS ((target_flags & 4) || (target_flags & 8))
108 #define TARGET_10 (! TARGET_40_PLUS)
110 #define TARGET_BCOPY_BUILTIN (! (target_flags & 16))
112 #define TARGET_INT16 (! TARGET_INT32)
113 #define TARGET_INT32 (target_flags & 32)
115 #define TARGET_FLOAT32 (target_flags & 64)
116 #define TARGET_FLOAT64 (! TARGET_FLOAT32)
118 #define TARGET_ABSHI_BUILTIN (target_flags & 128)
120 #define TARGET_BRANCH_EXPENSIVE (target_flags & 256)
121 #define TARGET_BRANCH_CHEAP (!TARGET_BRANCH_EXPENSIVE)
123 #define TARGET_SPLIT (target_flags & 1024)
124 #define TARGET_NOSPLIT (! TARGET_SPLIT)
126 #define TARGET_UNIX_ASM (target_flags & 2048)
127 #define TARGET_UNIX_ASM_DEFAULT 0
129 #define ASSEMBLER_DIALECT (TARGET_UNIX_ASM ? 1 : 0)
133 /* TYPE SIZES */
134 #define CHAR_TYPE_SIZE 8
135 #define SHORT_TYPE_SIZE 16
136 #define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
137 #define LONG_TYPE_SIZE 32
138 #define LONG_LONG_TYPE_SIZE 64
140 /* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
141 of saving core for huge arrays - the definitions are
142 already in md - but floats can never reside in
143 an FPU register - we keep the FPU in double float mode
144 all the time !! */
145 #define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
146 #define DOUBLE_TYPE_SIZE 64
147 #define LONG_DOUBLE_TYPE_SIZE 64
149 /* machine types from ansi */
150 #define SIZE_TYPE "unsigned int" /* definition of size_t */
151 #define WCHAR_TYPE "int" /* or long int???? */
152 #define WCHAR_TYPE_SIZE 16
154 #define PTRDIFF_TYPE "int"
156 /* target machine storage layout */
158 /* Define this if most significant bit is lowest numbered
159 in instructions that operate on numbered bit-fields. */
160 #define BITS_BIG_ENDIAN 0
162 /* Define this if most significant byte of a word is the lowest numbered. */
163 #define BYTES_BIG_ENDIAN 0
165 /* Define this if most significant word of a multiword number is numbered. */
166 #define WORDS_BIG_ENDIAN 1
168 /* number of bits in an addressable storage unit */
169 #define BITS_PER_UNIT 8
171 /* Width in bits of a "word", which is the contents of a machine register.
172 Note that this is not necessarily the width of data type `int';
173 if using 16-bit ints on a 68000, this would still be 32.
174 But on a machine with 16-bit registers, this would be 16. */
175 /* This is a machine with 16-bit registers */
176 #define BITS_PER_WORD 16
178 /* Width of a word, in units (bytes).
180 UNITS OR BYTES - seems like units */
181 #define UNITS_PER_WORD 2
183 /* Maximum sized of reasonable data type
184 DImode or Dfmode ...*/
185 #define MAX_FIXED_MODE_SIZE 64
187 /* Width in bits of a pointer.
188 See also the macro `Pmode' defined below. */
189 #define POINTER_SIZE 16
191 /* Allocation boundary (in *bits*) for storing pointers in memory. */
192 #define POINTER_BOUNDARY 16
194 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
195 #define PARM_BOUNDARY 16
197 /* Boundary (in *bits*) on which stack pointer should be aligned. */
198 #define STACK_BOUNDARY 16
200 /* Allocation boundary (in *bits*) for the code of a function. */
201 #define FUNCTION_BOUNDARY 16
203 /* Alignment of field after `int : 0' in a structure. */
204 #define EMPTY_FIELD_BOUNDARY 16
206 /* No data type wants to be aligned rounder than this. */
207 #define BIGGEST_ALIGNMENT 16
209 /* Define this if move instructions will actually fail to work
210 when given unaligned data. */
211 #define STRICT_ALIGNMENT 1
213 /* Standard register usage. */
215 /* Number of actual hardware registers.
216 The hardware registers are assigned numbers for the compiler
217 from 0 to just below FIRST_PSEUDO_REGISTER.
218 All registers that the compiler knows about must be given numbers,
219 even those that are not normally considered general registers.
221 we have 8 integer registers, plus 6 float
222 (don't use scratch float !) */
224 #define FIRST_PSEUDO_REGISTER 14
226 /* 1 for registers that have pervasive standard uses
227 and are not available for the register allocator.
229 On the pdp, these are:
230 Reg 7 = pc;
231 reg 6 = sp;
232 reg 5 = fp; not necessarily!
235 /* don't let them touch fp regs for the time being !*/
237 #define FIXED_REGISTERS \
238 {0, 0, 0, 0, 0, 0, 1, 1, \
239 0, 0, 0, 0, 0, 0 }
243 /* 1 for registers not available across function calls.
244 These must include the FIXED_REGISTERS and also any
245 registers that can be used without being saved.
246 The latter must include the registers where values are returned
247 and the register where structure-value addresses are passed.
248 Aside from that, you can include as many other registers as you like. */
250 /* don't know about fp */
251 #define CALL_USED_REGISTERS \
252 {1, 1, 0, 0, 0, 0, 1, 1, \
253 0, 0, 0, 0, 0, 0 }
256 /* Make sure everything's fine if we *don't* have an FPU.
257 This assumes that putting a register in fixed_regs will keep the
258 compiler's mitts completely off it. We don't bother to zero it out
259 of register classes. Also fix incompatible register naming with
260 the UNIX assembler.
262 #define CONDITIONAL_REGISTER_USAGE \
264 int i; \
265 HARD_REG_SET x; \
266 if (!TARGET_FPU) \
268 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
269 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
270 if (TEST_HARD_REG_BIT (x, i)) \
271 fixed_regs[i] = call_used_regs[i] = 1; \
274 if (TARGET_AC0) \
275 call_used_regs[8] = 1; \
276 if (TARGET_UNIX_ASM) \
278 /* Change names of FPU registers for the UNIX assembler. */ \
279 reg_names[8] = "fr0"; \
280 reg_names[9] = "fr1"; \
281 reg_names[10] = "fr2"; \
282 reg_names[11] = "fr3"; \
283 reg_names[12] = "fr4"; \
284 reg_names[13] = "fr5"; \
288 /* Return number of consecutive hard regs needed starting at reg REGNO
289 to hold something of mode MODE.
290 This is ordinarily the length in words of a value of mode MODE
291 but can be less for certain modes in special long registers.
294 #define HARD_REGNO_NREGS(REGNO, MODE) \
295 ((REGNO < 8)? \
296 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
300 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
301 On the pdp, the cpu registers can hold any mode - check alignment
303 FPU can only hold DF - simplifies life!
305 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
306 (((REGNO) < 8)? \
307 ((GET_MODE_BITSIZE(MODE) <= 16) \
308 || (GET_MODE_BITSIZE(MODE) == 32 && !((REGNO) & 1))) \
309 :(MODE) == DFmode)
312 /* Value is 1 if it is a good idea to tie two pseudo registers
313 when one has mode MODE1 and one has mode MODE2.
314 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
315 for any hard reg, then this must be 0 for correct output. */
316 #define MODES_TIEABLE_P(MODE1, MODE2) 0
318 /* Specify the registers used for certain standard purposes.
319 The values of these macros are register numbers. */
321 /* the pdp11 pc overloaded on a register that the compiler knows about. */
322 #define PC_REGNUM 7
324 /* Register to use for pushing function arguments. */
325 #define STACK_POINTER_REGNUM 6
327 /* Base register for access to local variables of the function. */
328 #define FRAME_POINTER_REGNUM 5
330 /* Value should be nonzero if functions must have frame pointers.
331 Zero means the frame pointer need not be set up (and parms
332 may be accessed via the stack pointer) in functions that seem suitable.
333 This is computed in `reload', in reload1.c.
336 #define FRAME_POINTER_REQUIRED 0
338 /* Base register for access to arguments of the function. */
339 #define ARG_POINTER_REGNUM 5
341 /* Register in which static-chain is passed to a function. */
342 /* ??? - i don't want to give up a reg for this! */
343 #define STATIC_CHAIN_REGNUM 4
345 /* Register in which address to store a structure value
346 is passed to a function.
347 let's make it an invisible first argument!!! */
349 #define STRUCT_VALUE 0
352 /* Define the classes of registers for register constraints in the
353 machine description. Also define ranges of constants.
355 One of the classes must always be named ALL_REGS and include all hard regs.
356 If there is more than one class, another class must be named NO_REGS
357 and contain no registers.
359 The name GENERAL_REGS must be the name of a class (or an alias for
360 another name such as ALL_REGS). This is the class of registers
361 that is allowed by "g" or "r" in a register constraint.
362 Also, registers outside this class are allocated only when
363 instructions express preferences for them.
365 The classes must be numbered in nondecreasing order; that is,
366 a larger-numbered class must never be contained completely
367 in a smaller-numbered class.
369 For any two classes, it is very desirable that there be another
370 class that represents their union. */
372 /* The pdp has a couple of classes:
374 MUL_REGS are used for odd numbered regs, to use in 16 bit multiplication
375 (even numbered do 32 bit multiply)
376 LMUL_REGS long multiply registers (even numbered regs )
377 (don't need them, all 32 bit regs are even numbered!)
378 GENERAL_REGS is all cpu
379 LOAD_FPU_REGS is the first four cpu regs, they are easier to load
380 NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
381 FPU_REGS is all fpu regs
384 enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };
386 #define N_REG_CLASSES (int) LIM_REG_CLASSES
388 /* have to allow this till cmpsi/tstsi are fixed in a better way !! */
389 #define SMALL_REGISTER_CLASSES 1
391 /* Since GENERAL_REGS is the same class as ALL_REGS,
392 don't give it a different class number; just make it an alias. */
394 /* #define GENERAL_REGS ALL_REGS */
396 /* Give names of register classes as strings for dump file. */
398 #define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }
400 /* Define which registers fit in which classes.
401 This is an initializer for a vector of HARD_REG_SET
402 of length N_REG_CLASSES. */
404 #define REG_CLASS_CONTENTS {{0}, {0x00aa}, {0x00ff}, {0x0f00}, {0x3000}, {0x3f00}, {0x3fff}}
406 /* The same information, inverted:
407 Return the class number of the smallest class containing
408 reg number REGNO. This could be a conditional expression
409 or could index an array. */
411 #define REGNO_REG_CLASS(REGNO) \
412 ((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):(((REGNO)&1)?MUL_REGS:GENERAL_REGS))
415 /* The class value for index registers, and the one for base regs. */
416 #define INDEX_REG_CLASS GENERAL_REGS
417 #define BASE_REG_CLASS GENERAL_REGS
419 /* Get reg_class from a letter such as appears in the machine description. */
421 #define REG_CLASS_FROM_LETTER(C) \
422 ((C) == 'f' ? FPU_REGS : \
423 ((C) == 'd' ? MUL_REGS : \
424 ((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))
427 /* The letters I, J, K, L and M in a register constraint string
428 can be used to stand for particular ranges of immediate operands.
429 This macro defines what the ranges are.
430 C is the letter, and VALUE is a constant value.
431 Return 1 if VALUE is in the range specified by C.
433 I bits 31-16 0000
434 J bits 15-00 0000
435 K completely random 32 bit
436 L,M,N -1,1,0 respectively
437 O where doing shifts in sequence is faster than
438 one big shift
441 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
442 ((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
443 : (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
444 : (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
445 && ((VALUE) & 0x0000ffff) != 0) \
446 : (C) == 'L' ? ((VALUE) == 1) \
447 : (C) == 'M' ? ((VALUE) == -1) \
448 : (C) == 'N' ? ((VALUE) == 0) \
449 : (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
450 : 0)
452 /* Similar, but for floating constants, and defining letters G and H.
453 Here VALUE is the CONST_DOUBLE rtx itself. */
455 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
456 ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
459 /* Letters in the range `Q' through `U' may be defined in a
460 machine-dependent fashion to stand for arbitrary operand types.
461 The machine description macro `EXTRA_CONSTRAINT' is passed the
462 operand as its first argument and the constraint letter as its
463 second operand.
465 `Q' is for memory references using take more than 1 instruction.
466 `R' is for memory references which take 1 word for the instruction. */
468 #define EXTRA_CONSTRAINT(OP,CODE) \
469 ((GET_CODE (OP) != MEM) ? 0 \
470 : !legitimate_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \
471 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
472 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
473 : 0)
475 /* Given an rtx X being reloaded into a reg required to be
476 in class CLASS, return the class of reg to actually use.
477 In general this is just CLASS; but on some machines
478 in some cases it is preferable to use a more restrictive class.
480 loading is easier into LOAD_FPU_REGS than FPU_REGS! */
482 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
483 (((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)
485 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
486 (((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)
488 /* Return the maximum number of consecutive registers
489 needed to represent mode MODE in a register of class CLASS. */
490 #define CLASS_MAX_NREGS(CLASS, MODE) \
491 ((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
492 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
497 /* Stack layout; function entry, exit and calling. */
499 /* Define this if pushing a word on the stack
500 makes the stack pointer a smaller address. */
501 #define STACK_GROWS_DOWNWARD
503 /* Define this if the nominal address of the stack frame
504 is at the high-address end of the local variables;
505 that is, each additional local variable allocated
506 goes at a more negative offset in the frame.
508 #define FRAME_GROWS_DOWNWARD
510 /* Offset within stack frame to start allocating local variables at.
511 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
512 first local allocated. Otherwise, it is the offset to the BEGINNING
513 of the first local allocated. */
514 #define STARTING_FRAME_OFFSET 0
516 /* If we generate an insn to push BYTES bytes,
517 this says how many the stack pointer really advances by.
518 On the pdp11, the stack is on an even boundary */
519 #define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)
521 /* current_first_parm_offset stores the # of registers pushed on the
522 stack */
523 extern int current_first_parm_offset;
525 /* Offset of first parameter from the argument pointer register value.
526 For the pdp11, this is non-zero to account for the return address.
527 1 - return address
528 2 - frame pointer (always saved, even when not used!!!!)
529 -- chnage some day !!!:q!
532 #define FIRST_PARM_OFFSET(FNDECL) 4
534 /* Value is 1 if returning from a function call automatically
535 pops the arguments described by the number-of-args field in the call.
536 FUNDECL is the declaration node of the function (as a tree),
537 FUNTYPE is the data type of the function (as a tree),
538 or for a library call it is an identifier node for the subroutine name. */
540 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
542 /* Define how to find the value returned by a function.
543 VALTYPE is the data type of the value (as a tree).
544 If the precise function being called is known, FUNC is its FUNCTION_DECL;
545 otherwise, FUNC is 0. */
546 #define BASE_RETURN_VALUE_REG(MODE) \
547 ((MODE) == DFmode ? 8 : 0)
549 /* On the pdp11 the value is found in R0 (or ac0???
550 not without FPU!!!! ) */
552 #define FUNCTION_VALUE(VALTYPE, FUNC) \
553 gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
555 /* and the called function leaves it in the first register.
556 Difference only on machines with register windows. */
558 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
559 gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
561 /* Define how to find the value returned by a library function
562 assuming the value has mode MODE. */
564 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, BASE_RETURN_VALUE_REG(MODE))
566 /* 1 if N is a possible register number for a function value
567 as seen by the caller.
568 On the pdp, the first "output" reg is the only register thus used.
570 maybe ac0 ? - as option someday! */
572 #define FUNCTION_VALUE_REGNO_P(N) (((N) == 0) || (TARGET_AC0 && (N) == 8))
574 /* should probably return DImode and DFmode in memory,lest
575 we fill up all regs!
577 have to, else we crash - exception: maybe return result in
578 ac0 if DFmode and FPU present - compatibility problem with
579 libraries for non-floating point ...
582 #define RETURN_IN_MEMORY(TYPE) \
583 (TYPE_MODE(TYPE) == DImode || (TYPE_MODE(TYPE) == DFmode && ! TARGET_AC0))
586 /* 1 if N is a possible register number for function argument passing.
587 - not used on pdp */
589 #define FUNCTION_ARG_REGNO_P(N) 0
591 /* Define a data type for recording info about an argument list
592 during the scan of that argument list. This data type should
593 hold all necessary information about the function itself
594 and about the args processed so far, enough to enable macros
595 such as FUNCTION_ARG to determine where the next arg should go.
599 #define CUMULATIVE_ARGS int
601 /* Initialize a variable CUM of type CUMULATIVE_ARGS
602 for a call to a function whose data type is FNTYPE.
603 For a library call, FNTYPE is 0.
605 ...., the offset normally starts at 0, but starts at 1 word
606 when the function gets a structure-value-address as an
607 invisible first argument. */
609 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
610 ((CUM) = 0)
612 /* Update the data in CUM to advance over an argument
613 of mode MODE and data type TYPE.
614 (TYPE is null for libcalls where that information may not be available.)
619 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
620 ((CUM) += ((MODE) != BLKmode \
621 ? (GET_MODE_SIZE (MODE)) \
622 : (int_size_in_bytes (TYPE))))
624 /* Determine where to put an argument to a function.
625 Value is zero to push the argument on the stack,
626 or a hard register in which to store the argument.
628 MODE is the argument's machine mode.
629 TYPE is the data type of the argument (as a tree).
630 This is null for libcalls where that information may
631 not be available.
632 CUM is a variable of type CUMULATIVE_ARGS which gives info about
633 the preceding args and about the function being called.
634 NAMED is nonzero if this argument is a named parameter
635 (otherwise it is an extra parameter matching an ellipsis). */
637 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
639 /* Define where a function finds its arguments.
640 This would be different from FUNCTION_ARG if we had register windows. */
642 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
643 FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
646 /* For an arg passed partly in registers and partly in memory,
647 this is the number of registers used.
648 For args passed entirely in registers or entirely in memory, zero. */
650 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
652 /* Output assembler code to FILE to increment profiler label # LABELNO
653 for profiling a function entry. */
655 #define FUNCTION_PROFILER(FILE, LABELNO) \
656 abort ();
658 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
659 the stack pointer does not matter. The value is tested only in
660 functions that have frame pointers.
661 No definition is equivalent to always zero. */
663 extern int may_call_alloca;
665 #define EXIT_IGNORE_STACK 1
667 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
669 int offset, regno; \
670 offset = get_frame_size(); \
671 for (regno = 0; regno < 8; regno++) \
672 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
673 offset += 2; \
674 for (regno = 8; regno < 14; regno++) \
675 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
676 offset += 8; \
677 /* offset -= 2; no fp on stack frame */ \
678 (DEPTH_VAR) = offset; \
682 /* Addressing modes, and classification of registers for them. */
684 #define HAVE_POST_INCREMENT 1
685 /* #define HAVE_POST_DECREMENT 0 */
687 #define HAVE_PRE_DECREMENT 1
688 /* #define HAVE_PRE_INCREMENT 0 */
690 /* Macros to check register numbers against specific register classes. */
692 /* These assume that REGNO is a hard or pseudo reg number.
693 They give nonzero only if REGNO is a hard reg of the suitable class
694 or a pseudo reg currently allocated to a suitable hard reg.
695 Since they use reg_renumber, they are safe only once reg_renumber
696 has been allocated, which happens in local-alloc.c. */
698 #define REGNO_OK_FOR_INDEX_P(REGNO) \
699 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
700 #define REGNO_OK_FOR_BASE_P(REGNO) \
701 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
703 /* Now macros that check whether X is a register and also,
704 strictly, whether it is in a specified class.
709 /* Maximum number of registers that can appear in a valid memory address. */
711 #define MAX_REGS_PER_ADDRESS 2
713 /* Recognize any constant value that is a valid address. */
715 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
717 /* Nonzero if the constant value X is a legitimate general operand.
718 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
720 #define LEGITIMATE_CONSTANT_P(X) (1)
722 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
723 and check its validity for a certain class.
724 We have two alternate definitions for each of them.
725 The usual definition accepts all pseudo regs; the other rejects
726 them unless they have been allocated suitable hard regs.
727 The symbol REG_OK_STRICT causes the latter definition to be used.
729 Most source files want to accept pseudo regs in the hope that
730 they will get allocated to the class that the insn wants them to be in.
731 Source files for reload pass need to be strict.
732 After reload, it makes no difference, since pseudo regs have
733 been eliminated by then. */
735 #ifndef REG_OK_STRICT
737 /* Nonzero if X is a hard reg that can be used as an index
738 or if it is a pseudo reg. */
739 #define REG_OK_FOR_INDEX_P(X) (1)
740 /* Nonzero if X is a hard reg that can be used as a base reg
741 or if it is a pseudo reg. */
742 #define REG_OK_FOR_BASE_P(X) (1)
744 #else
746 /* Nonzero if X is a hard reg that can be used as an index. */
747 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
748 /* Nonzero if X is a hard reg that can be used as a base reg. */
749 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
751 #endif
753 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
754 that is a valid memory address for an instruction.
755 The MODE argument is the machine mode for the MEM expression
756 that wants to use this address.
760 #define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \
762 rtx xfoob; \
764 /* accept (R0) */ \
765 if (GET_CODE (operand) == REG \
766 && REG_OK_FOR_BASE_P(operand)) \
767 goto ADDR; \
769 /* accept @#address */ \
770 if (CONSTANT_ADDRESS_P (operand)) \
771 goto ADDR; \
773 /* accept X(R0) */ \
774 if (GET_CODE (operand) == PLUS \
775 && GET_CODE (XEXP (operand, 0)) == REG \
776 && REG_OK_FOR_BASE_P (XEXP (operand, 0)) \
777 && CONSTANT_ADDRESS_P (XEXP (operand, 1))) \
778 goto ADDR; \
780 /* accept -(R0) */ \
781 if (GET_CODE (operand) == PRE_DEC \
782 && GET_CODE (XEXP (operand, 0)) == REG \
783 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
784 goto ADDR; \
786 /* accept (R0)+ */ \
787 if (GET_CODE (operand) == POST_INC \
788 && GET_CODE (XEXP (operand, 0)) == REG \
789 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
790 goto ADDR; \
792 /* handle another level of indirection ! */ \
793 if (GET_CODE(operand) != MEM) \
794 goto fail; \
796 xfoob = XEXP (operand, 0); \
798 /* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \
799 /* also forbidden for float, because we have to handle this */ \
800 /* in output_move_double and/or output_move_quad() - we could */ \
801 /* do it, but currently it's not worth it!!! */ \
802 /* now that DFmode cannot go into CPU register file, */ \
803 /* maybe I should allow float ... */ \
804 /* but then I have to handle memory-to-memory moves in movdf ?? */ \
806 if (GET_MODE_BITSIZE(mode) > 16) \
807 goto fail; \
809 /* accept @(R0) - which is @0(R0) */ \
810 if (GET_CODE (xfoob) == REG \
811 && REG_OK_FOR_BASE_P(xfoob)) \
812 goto ADDR; \
814 /* accept @address */ \
815 if (CONSTANT_ADDRESS_P (xfoob)) \
816 goto ADDR; \
818 /* accept @X(R0) */ \
819 if (GET_CODE (xfoob) == PLUS \
820 && GET_CODE (XEXP (xfoob, 0)) == REG \
821 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \
822 && CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \
823 goto ADDR; \
825 /* accept @-(R0) */ \
826 if (GET_CODE (xfoob) == PRE_DEC \
827 && GET_CODE (XEXP (xfoob, 0)) == REG \
828 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
829 goto ADDR; \
831 /* accept @(R0)+ */ \
832 if (GET_CODE (xfoob) == POST_INC \
833 && GET_CODE (XEXP (xfoob, 0)) == REG \
834 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
835 goto ADDR; \
837 /* anything else is invalid */ \
838 fail: ; \
842 /* Try machine-dependent ways of modifying an illegitimate address
843 to be legitimate. If we find one, return the new, valid address.
844 This macro is used in only one place: `memory_address' in explow.c.
846 OLDX is the address as it was before break_out_memory_refs was called.
847 In some cases it is useful to look at this to decide what needs to be done.
849 MODE and WIN are passed so that this macro can use
850 GO_IF_LEGITIMATE_ADDRESS.
852 It is always safe for this macro to do nothing. It exists to recognize
853 opportunities to optimize the output. */
855 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
858 /* Go to LABEL if ADDR (a legitimate address expression)
859 has an effect that depends on the machine mode it is used for.
860 On the pdp this is for predec/postinc */
862 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
863 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
864 goto LABEL; \
868 /* Specify the machine mode that this machine uses
869 for the index in the tablejump instruction. */
870 #define CASE_VECTOR_MODE HImode
872 /* Define this if a raw index is all that is needed for a
873 `tablejump' insn. */
874 #define CASE_TAKES_INDEX_RAW
876 /* Define as C expression which evaluates to nonzero if the tablejump
877 instruction expects the table to contain offsets from the address of the
878 table.
879 Do not define this if the table should contain absolute addresses. */
880 /* #define CASE_VECTOR_PC_RELATIVE 1 */
882 /* Specify the tree operation to be used to convert reals to integers. */
883 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
885 /* This is the kind of divide that is easiest to do in the general case. */
886 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
888 /* Define this as 1 if `char' should by default be signed; else as 0. */
889 #define DEFAULT_SIGNED_CHAR 1
891 /* Max number of bytes we can move from memory to memory
892 in one reasonably fast instruction.
895 #define MOVE_MAX 2
897 /* Zero extension is faster if the target is known to be zero */
898 /* #define SLOW_ZERO_EXTEND */
900 /* Nonzero if access to memory by byte is slow and undesirable. -
902 #define SLOW_BYTE_ACCESS 0
904 /* Do not break .stabs pseudos into continuations. */
905 #define DBX_CONTIN_LENGTH 0
907 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
908 is done just by pretending it is already truncated. */
909 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
912 /* Add any extra modes needed to represent the condition code.
914 CCFPmode is used for FPU, but should we use a separate reg? */
915 #define EXTRA_CC_MODES CC(CCFPmode, "CCFP")
917 /* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
918 return the mode to be used for the comparison. For floating-point, CCFPmode
919 should be used. */
921 #define SELECT_CC_MODE(OP,X,Y) \
922 (GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)
924 /* We assume that the store-condition-codes instructions store 0 for false
925 and some other value for true. This is the value stored for true. */
927 /* #define STORE_FLAG_VALUE 1 */
929 /* Specify the machine mode that pointers have.
930 After generation of rtl, the compiler makes no further distinction
931 between pointers and any other objects of this machine mode. */
932 #define Pmode HImode
934 /* A function address in a call instruction
935 is a word address (for indexing purposes)
936 so give the MEM rtx a word's mode. */
937 #define FUNCTION_MODE HImode
939 /* Define this if addresses of constant functions
940 shouldn't be put through pseudo regs where they can be cse'd.
941 Desirable on machines where ordinary constants are expensive
942 but a CALL with constant address is cheap. */
943 /* #define NO_FUNCTION_CSE */
945 /* Compute the cost of computing a constant rtl expression RTX
946 whose rtx-code is CODE. The body of this macro is a portion
947 of a switch statement. If the code is computed here,
948 return it with a return statement. Otherwise, break from the switch.
950 -1, 0, 1 are cheaper for add, sub ...
953 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
954 case CONST_INT: \
955 if (INTVAL(RTX) == 0 \
956 || INTVAL(RTX) == -1 \
957 || INTVAL(RTX) == 1) \
958 return 0; \
959 case CONST: \
960 case LABEL_REF: \
961 case SYMBOL_REF: \
962 /* twice as expensive as REG */ \
963 return 2; \
964 case CONST_DOUBLE: \
965 /* twice (or 4 times) as expensive as 16 bit */ \
966 return 4;
968 /* cost of moving one register class to another */
969 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
970 register_move_cost (CLASS1, CLASS2)
972 /* Tell emit-rtl.c how to initialize special values on a per-function base. */
973 extern int optimize;
974 extern struct rtx_def *cc0_reg_rtx;
976 #define CC_STATUS_MDEP rtx
978 #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
980 /* Tell final.c how to eliminate redundant test instructions. */
982 /* Here we define machine-dependent flags and fields in cc_status
983 (see `conditions.h'). */
985 #define CC_IN_FPU 04000
987 /* Do UPDATE_CC if EXP is a set, used in
988 NOTICE_UPDATE_CC
990 floats only do compare correctly, else nullify ...
992 get cc0 out soon ...
995 /* Store in cc_status the expressions
996 that the condition codes will describe
997 after execution of an instruction whose pattern is EXP.
998 Do not alter them if the instruction would not alter the cc's. */
1000 #define NOTICE_UPDATE_CC(EXP, INSN) \
1001 { if (GET_CODE (EXP) == SET) \
1003 notice_update_cc_on_set(EXP, INSN); \
1005 else if (GET_CODE (EXP) == PARALLEL \
1006 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
1008 notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
1010 else if (GET_CODE (EXP) == CALL) \
1011 { /* all bets are off */ CC_STATUS_INIT; } \
1012 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
1013 && cc_status.value2 \
1014 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1016 printf ("here!\n"); \
1017 cc_status.value2 = 0; \
1021 /* Control the assembler format that we output. */
1023 /* Output at beginning of assembler file. */
1025 #if 0
1026 #define ASM_FILE_START(FILE) \
1028 fprintf (FILE, "\t.data\n"), \
1029 fprintf (FILE, "$help$: . = .+8 ; space for tmp moves!\n") \
1030 /* do we need reg def's R0 = %0 etc ??? */ \
1032 #else
1033 #define ASM_FILE_START(FILE)
1034 #endif
1037 /* Output to assembler file text saying following lines
1038 may contain character constants, extra white space, comments, etc. */
1040 #define ASM_APP_ON ""
1042 /* Output to assembler file text saying following lines
1043 no longer contain unusual constructs. */
1045 #define ASM_APP_OFF ""
1047 /* Output before read-only data. */
1049 #define TEXT_SECTION_ASM_OP "\t.text\n"
1051 /* Output before writable data. */
1053 #define DATA_SECTION_ASM_OP "\t.data\n"
1055 /* How to refer to registers in assembler output.
1056 This sequence is indexed by compiler's hard-register-number (see above). */
1058 #define REGISTER_NAMES \
1059 {"r0", "r1", "r2", "r3", "r4", "r5", "sp", "pc", \
1060 "ac0", "ac1", "ac2", "ac3", "ac4", "ac5" }
1062 /* This is how to output the definition of a user-level label named NAME,
1063 such as the label on a static function or variable NAME. */
1065 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1066 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1068 /* This is how to output a command to make the user-level label named NAME
1069 defined for reference from other files. */
1071 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1072 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs("\n", FILE); } while (0)
1074 /* The prefix to add to user-visible assembler symbols. */
1076 #define USER_LABEL_PREFIX "_"
1078 /* This is how to output an internal numbered label where
1079 PREFIX is the class of label and NUM is the number within the class. */
1081 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1082 fprintf (FILE, "%s_%d:\n", PREFIX, NUM)
1084 /* This is how to store into the string LABEL
1085 the symbol_ref name of an internal numbered label where
1086 PREFIX is the class of label and NUM is the number within the class.
1087 This is suitable for output with `assemble_name'. */
1089 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1090 sprintf (LABEL, "*%s_%d", PREFIX, NUM)
1092 /* This is how to output an assembler line defining a `double' constant. */
1094 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1095 fprintf (FILE, "\tdouble %.20e\n", (VALUE))
1097 /* This is how to output an assembler line defining a `float' constant. */
1099 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1100 fprintf (FILE, "\tfloat %.12e\n", (VALUE))
1102 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1103 output_ascii (FILE, P, SIZE)
1105 /* This is how to output an element of a case-vector that is absolute. */
1107 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1108 fprintf (FILE, "\t%sL_%d\n", TARGET_UNIX_ASM ? "" : ".word ", VALUE)
1110 /* This is how to output an element of a case-vector that is relative.
1111 Don't define this if it is not supported. */
1113 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
1115 /* This is how to output an assembler line
1116 that says to advance the location counter
1117 to a multiple of 2**LOG bytes.
1119 who needs this????
1122 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1123 switch (LOG) \
1125 case 0: \
1126 break; \
1127 case 1: \
1128 fprintf (FILE, "\t.even\n"); \
1129 break; \
1130 default: \
1131 abort (); \
1134 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1135 fprintf (FILE, "\t.=.+ %o\n", (SIZE))
1137 /* This says how to output an assembler line
1138 to define a global common symbol. */
1140 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1141 ( fprintf ((FILE), ".globl "), \
1142 assemble_name ((FILE), (NAME)), \
1143 fprintf ((FILE), "\n"), \
1144 assemble_name ((FILE), (NAME)), \
1145 fprintf ((FILE), ": .=.+ %o\n", (ROUNDED)) \
1148 /* This says how to output an assembler line
1149 to define a local common symbol. */
1151 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1152 ( assemble_name ((FILE), (NAME)), \
1153 fprintf ((FILE), ":\t.=.+ %o\n", (ROUNDED)))
1155 /* Store in OUTPUT a string (made with alloca) containing
1156 an assembler-name for a local static variable named NAME.
1157 LABELNO is an integer which is different for each call. */
1159 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1160 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1161 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1163 /* Print operand X (an rtx) in assembler syntax to file FILE.
1164 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1165 For `%' followed by punctuation, CODE is the punctuation and X is null.
1170 #define PRINT_OPERAND(FILE, X, CODE) \
1171 { if (CODE == '#') fprintf (FILE, "#"); \
1172 else if (GET_CODE (X) == REG) \
1173 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1174 else if (GET_CODE (X) == MEM) \
1175 output_address (XEXP (X, 0)); \
1176 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
1177 { union { double d; int i[2]; } u; \
1178 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1179 fprintf (FILE, "#%.20e", u.d); } \
1180 else { putc ('$', FILE); output_addr_const_pdp11 (FILE, X); }}
1182 /* Print a memory address as an operand to reference that memory location. */
1184 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1185 print_operand_address (FILE, ADDR)
1187 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1189 fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
1192 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1194 fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
1197 /* trampoline - how should i do it in separate i+d ?
1198 have some allocate_trampoline magic???
1200 the following should work for shared I/D: */
1202 /* lets see whether this works as trampoline:
1203 MV #STATIC, $4 0x940Y 0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
1204 JMP FUNCTION 0x0058 0x0000 <- FUNCTION
1207 #define TRAMPOLINE_TEMPLATE(FILE) \
1209 if (TARGET_SPLIT) \
1210 abort(); \
1212 assemble_aligned_integer (2, GEN_INT (0x9400+STATIC_CHAIN_REGNUM)); \
1213 assemble_aligned_integer (2, const0_rtx); \
1214 assemble_aligned_integer (2, GEN_INT(0x0058)); \
1215 assemble_aligned_integer (2, const0_rtx); \
1218 #define TRAMPOLINE_SIZE 8
1219 #define TRAMPOLINE_ALIGN 16
1221 /* Emit RTL insns to initialize the variable parts of a trampoline.
1222 FNADDR is an RTX for the address of the function's pure code.
1223 CXT is an RTX for the static chain value for the function. */
1225 #define INITIALIZE_TRAMPOLINE(TRAMP,FNADDR,CXT) \
1227 if (TARGET_SPLIT) \
1228 abort(); \
1230 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 2)), CXT); \
1231 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)), FNADDR); \
1235 /* Some machines may desire to change what optimizations are
1236 performed for various optimization levels. This macro, if
1237 defined, is executed once just after the optimization level is
1238 determined and before the remainder of the command options have
1239 been parsed. Values set in this macro are used as the default
1240 values for the other command line options.
1242 LEVEL is the optimization level specified; 2 if -O2 is
1243 specified, 1 if -O is specified, and 0 if neither is specified. */
1245 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
1247 if (LEVEL >= 3) \
1249 if (! SIZE) \
1250 flag_inline_functions = 1; \
1251 flag_omit_frame_pointer = 1; \
1252 /* flag_unroll_loops = 1; */ \
1257 /* Provide the costs of a rtl expression. This is in the body of a
1258 switch on CODE.
1260 we don't say how expensive SImode is - pretty expensive!!!
1262 there is something wrong in MULT because MULT is not
1263 as cheap as total = 2 even if we can shift!
1265 if optimizing for size make mult etc cheap, but not 1, so when
1266 in doubt the faster insn is chosen.
1269 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1270 case MULT: \
1271 if (optimize_size) \
1272 total = COSTS_N_INSNS(2); \
1273 else \
1274 total = COSTS_N_INSNS (11); \
1275 break; \
1276 case DIV: \
1277 if (optimize_size) \
1278 total = COSTS_N_INSNS(2); \
1279 else \
1280 total = COSTS_N_INSNS (25); \
1281 break; \
1282 case MOD: \
1283 if (optimize_size) \
1284 total = COSTS_N_INSNS(2); \
1285 else \
1286 total = COSTS_N_INSNS (26); \
1287 break; \
1288 case ABS: \
1289 /* equivalent to length, so same for optimize_size */ \
1290 total = COSTS_N_INSNS (3); \
1291 break; \
1292 case ZERO_EXTEND: \
1293 /* only used for: qi->hi */ \
1294 total = COSTS_N_INSNS(1); \
1295 break; \
1296 case SIGN_EXTEND: \
1297 if (GET_MODE(X) == HImode) \
1298 total = COSTS_N_INSNS(1); \
1299 else if (GET_MODE(X) == SImode) \
1300 total = COSTS_N_INSNS(6); \
1301 else \
1302 total = COSTS_N_INSNS(2); \
1303 break; \
1304 /* case LSHIFT: */ \
1305 case ASHIFT: \
1306 case LSHIFTRT: \
1307 case ASHIFTRT: \
1308 if (optimize_size) \
1309 total = COSTS_N_INSNS(1); \
1310 else if (GET_MODE(X) == QImode) \
1312 if (GET_CODE(XEXP (X,1)) != CONST_INT) \
1313 total = COSTS_N_INSNS(8); /* worst case */ \
1314 else \
1315 total = COSTS_N_INSNS(INTVAL(XEXP (X,1))); \
1317 else if (GET_MODE(X) == HImode) \
1319 if (GET_CODE(XEXP (X,1)) == CONST_INT) \
1321 if (abs (INTVAL (XEXP (X, 1))) == 1) \
1322 total = COSTS_N_INSNS(1); \
1323 else \
1324 total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
1326 else /* worst case */ \
1327 total = COSTS_N_INSNS (10); \
1329 else if (GET_MODE(X) == SImode) \
1331 if (GET_CODE(XEXP (X,1)) == CONST_INT) \
1332 total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
1333 else /* worst case */ \
1334 total = COSTS_N_INSNS(18); \
1336 break;
1339 /* there is no point in avoiding branches on a pdp,
1340 since branches are really cheap - I just want to find out
1341 how much difference the BRANCH_COST macro makes in code */
1342 #define BRANCH_COST (TARGET_BRANCH_CHEAP ? 0 : 1)
1345 #define COMPARE_FLAG_MODE HImode