2011-10-07 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / modulo-sched.c
blob57186ec8710a84a584ca860de201167078493c19
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "cfghooks.h"
43 #include "expr.h"
44 #include "params.h"
45 #include "gcov-io.h"
46 #include "ddg.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "dbgcnt.h"
50 #include "df.h"
52 #ifdef INSN_SCHEDULING
54 /* This file contains the implementation of the Swing Modulo Scheduler,
55 described in the following references:
56 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
57 Lifetime--sensitive modulo scheduling in a production environment.
58 IEEE Trans. on Comps., 50(3), March 2001
59 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
60 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
61 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
63 The basic structure is:
64 1. Build a data-dependence graph (DDG) for each loop.
65 2. Use the DDG to order the insns of a loop (not in topological order
66 necessarily, but rather) trying to place each insn after all its
67 predecessors _or_ after all its successors.
68 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
69 4. Use the ordering to perform list-scheduling of the loop:
70 1. Set II = MII. We will try to schedule the loop within II cycles.
71 2. Try to schedule the insns one by one according to the ordering.
72 For each insn compute an interval of cycles by considering already-
73 scheduled preds and succs (and associated latencies); try to place
74 the insn in the cycles of this window checking for potential
75 resource conflicts (using the DFA interface).
76 Note: this is different from the cycle-scheduling of schedule_insns;
77 here the insns are not scheduled monotonically top-down (nor bottom-
78 up).
79 3. If failed in scheduling all insns - bump II++ and try again, unless
80 II reaches an upper bound MaxII, in which case report failure.
81 5. If we succeeded in scheduling the loop within II cycles, we now
82 generate prolog and epilog, decrease the counter of the loop, and
83 perform modulo variable expansion for live ranges that span more than
84 II cycles (i.e. use register copies to prevent a def from overwriting
85 itself before reaching the use).
87 SMS works with countable loops (1) whose control part can be easily
88 decoupled from the rest of the loop and (2) whose loop count can
89 be easily adjusted. This is because we peel a constant number of
90 iterations into a prologue and epilogue for which we want to avoid
91 emitting the control part, and a kernel which is to iterate that
92 constant number of iterations less than the original loop. So the
93 control part should be a set of insns clearly identified and having
94 its own iv, not otherwise used in the loop (at-least for now), which
95 initializes a register before the loop to the number of iterations.
96 Currently SMS relies on the do-loop pattern to recognize such loops,
97 where (1) the control part comprises of all insns defining and/or
98 using a certain 'count' register and (2) the loop count can be
99 adjusted by modifying this register prior to the loop.
100 TODO: Rely on cfgloop analysis instead. */
102 /* This page defines partial-schedule structures and functions for
103 modulo scheduling. */
105 typedef struct partial_schedule *partial_schedule_ptr;
106 typedef struct ps_insn *ps_insn_ptr;
108 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
109 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
111 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
112 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
114 /* Perform signed modulo, always returning a non-negative value. */
115 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
117 /* The number of different iterations the nodes in ps span, assuming
118 the stage boundaries are placed efficiently. */
119 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
120 + 1 + ii - 1) / ii)
121 /* The stage count of ps. */
122 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
124 /* A single instruction in the partial schedule. */
125 struct ps_insn
127 /* The corresponding DDG_NODE. */
128 ddg_node_ptr node;
130 /* The (absolute) cycle in which the PS instruction is scheduled.
131 Same as SCHED_TIME (node). */
132 int cycle;
134 /* The next/prev PS_INSN in the same row. */
135 ps_insn_ptr next_in_row,
136 prev_in_row;
140 /* Holds the partial schedule as an array of II rows. Each entry of the
141 array points to a linked list of PS_INSNs, which represents the
142 instructions that are scheduled for that row. */
143 struct partial_schedule
145 int ii; /* Number of rows in the partial schedule. */
146 int history; /* Threshold for conflict checking using DFA. */
148 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
149 ps_insn_ptr *rows;
151 /* rows_length[i] holds the number of instructions in the row.
152 It is used only (as an optimization) to back off quickly from
153 trying to schedule a node in a full row; that is, to avoid running
154 through futile DFA state transitions. */
155 int *rows_length;
157 /* The earliest absolute cycle of an insn in the partial schedule. */
158 int min_cycle;
160 /* The latest absolute cycle of an insn in the partial schedule. */
161 int max_cycle;
163 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
165 int stage_count; /* The stage count of the partial schedule. */
168 /* We use this to record all the register replacements we do in
169 the kernel so we can undo SMS if it is not profitable. */
170 struct undo_replace_buff_elem
172 rtx insn;
173 rtx orig_reg;
174 rtx new_reg;
175 struct undo_replace_buff_elem *next;
180 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
181 static void free_partial_schedule (partial_schedule_ptr);
182 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
183 void print_partial_schedule (partial_schedule_ptr, FILE *);
184 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
185 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
186 ddg_node_ptr node, int cycle,
187 sbitmap must_precede,
188 sbitmap must_follow);
189 static void rotate_partial_schedule (partial_schedule_ptr, int);
190 void set_row_column_for_ps (partial_schedule_ptr);
191 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
192 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
195 /* This page defines constants and structures for the modulo scheduling
196 driver. */
198 static int sms_order_nodes (ddg_ptr, int, int *, int *);
199 static void set_node_sched_params (ddg_ptr);
200 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
201 static void permute_partial_schedule (partial_schedule_ptr, rtx);
202 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
203 rtx, rtx);
204 static void duplicate_insns_of_cycles (partial_schedule_ptr,
205 int, int, int, rtx);
206 static int calculate_stage_count (partial_schedule_ptr, int);
207 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
208 int, int, sbitmap, sbitmap, sbitmap);
209 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
210 sbitmap, int, int *, int *, int *);
211 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, ddg_node_ptr,
212 int, int, sbitmap, int *, sbitmap,
213 sbitmap);
214 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
216 #define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
217 #define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
218 #define SCHED_FIRST_REG_MOVE(x) \
219 (((node_sched_params_ptr)(x)->aux.info)->first_reg_move)
220 #define SCHED_NREG_MOVES(x) \
221 (((node_sched_params_ptr)(x)->aux.info)->nreg_moves)
222 #define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row)
223 #define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage)
224 #define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column)
226 /* The scheduling parameters held for each node. */
227 typedef struct node_sched_params
229 int asap; /* A lower-bound on the absolute scheduling cycle. */
230 int time; /* The absolute scheduling cycle (time >= asap). */
232 /* The following field (first_reg_move) is a pointer to the first
233 register-move instruction added to handle the modulo-variable-expansion
234 of the register defined by this node. This register-move copies the
235 original register defined by the node. */
236 rtx first_reg_move;
238 /* The number of register-move instructions added, immediately preceding
239 first_reg_move. */
240 int nreg_moves;
242 int row; /* Holds time % ii. */
243 int stage; /* Holds time / ii. */
245 /* The column of a node inside the ps. If nodes u, v are on the same row,
246 u will precede v if column (u) < column (v). */
247 int column;
248 } *node_sched_params_ptr;
251 /* The following three functions are copied from the current scheduler
252 code in order to use sched_analyze() for computing the dependencies.
253 They are used when initializing the sched_info structure. */
254 static const char *
255 sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
257 static char tmp[80];
259 sprintf (tmp, "i%4d", INSN_UID (insn));
260 return tmp;
263 static void
264 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
265 regset used ATTRIBUTE_UNUSED)
269 static struct common_sched_info_def sms_common_sched_info;
271 static struct sched_deps_info_def sms_sched_deps_info =
273 compute_jump_reg_dependencies,
274 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
275 NULL,
276 0, 0, 0
279 static struct haifa_sched_info sms_sched_info =
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 NULL,
286 sms_print_insn,
287 NULL,
288 NULL, /* insn_finishes_block_p */
289 NULL, NULL,
290 NULL, NULL,
291 0, 0,
293 NULL, NULL, NULL, NULL,
294 NULL, NULL,
298 /* Given HEAD and TAIL which are the first and last insns in a loop;
299 return the register which controls the loop. Return zero if it has
300 more than one occurrence in the loop besides the control part or the
301 do-loop pattern is not of the form we expect. */
302 static rtx
303 doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
305 #ifdef HAVE_doloop_end
306 rtx reg, condition, insn, first_insn_not_to_check;
308 if (!JUMP_P (tail))
309 return NULL_RTX;
311 /* TODO: Free SMS's dependence on doloop_condition_get. */
312 condition = doloop_condition_get (tail);
313 if (! condition)
314 return NULL_RTX;
316 if (REG_P (XEXP (condition, 0)))
317 reg = XEXP (condition, 0);
318 else if (GET_CODE (XEXP (condition, 0)) == PLUS
319 && REG_P (XEXP (XEXP (condition, 0), 0)))
320 reg = XEXP (XEXP (condition, 0), 0);
321 else
322 gcc_unreachable ();
324 /* Check that the COUNT_REG has no other occurrences in the loop
325 until the decrement. We assume the control part consists of
326 either a single (parallel) branch-on-count or a (non-parallel)
327 branch immediately preceded by a single (decrement) insn. */
328 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
329 : prev_nondebug_insn (tail));
331 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
332 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
334 if (dump_file)
336 fprintf (dump_file, "SMS count_reg found ");
337 print_rtl_single (dump_file, reg);
338 fprintf (dump_file, " outside control in insn:\n");
339 print_rtl_single (dump_file, insn);
342 return NULL_RTX;
345 return reg;
346 #else
347 return NULL_RTX;
348 #endif
351 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
352 that the number of iterations is a compile-time constant. If so,
353 return the rtx that sets COUNT_REG to a constant, and set COUNT to
354 this constant. Otherwise return 0. */
355 static rtx
356 const_iteration_count (rtx count_reg, basic_block pre_header,
357 HOST_WIDEST_INT * count)
359 rtx insn;
360 rtx head, tail;
362 if (! pre_header)
363 return NULL_RTX;
365 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
367 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
368 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
369 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
371 rtx pat = single_set (insn);
373 if (CONST_INT_P (SET_SRC (pat)))
375 *count = INTVAL (SET_SRC (pat));
376 return insn;
379 return NULL_RTX;
382 return NULL_RTX;
385 /* A very simple resource-based lower bound on the initiation interval.
386 ??? Improve the accuracy of this bound by considering the
387 utilization of various units. */
388 static int
389 res_MII (ddg_ptr g)
391 if (targetm.sched.sms_res_mii)
392 return targetm.sched.sms_res_mii (g);
394 return ((g->num_nodes - g->num_debug) / issue_rate);
398 /* Points to the array that contains the sched data for each node. */
399 static node_sched_params_ptr node_sched_params;
401 /* Allocate sched_params for each node and initialize it. Assumes that
402 the aux field of each node contain the asap bound (computed earlier),
403 and copies it into the sched_params field. */
404 static void
405 set_node_sched_params (ddg_ptr g)
407 int i;
409 /* Allocate for each node in the DDG a place to hold the "sched_data". */
410 /* Initialize ASAP/ALAP/HIGHT to zero. */
411 node_sched_params = (node_sched_params_ptr)
412 xcalloc (g->num_nodes,
413 sizeof (struct node_sched_params));
415 /* Set the pointer of the general data of the node to point to the
416 appropriate sched_params structure. */
417 for (i = 0; i < g->num_nodes; i++)
419 /* Watch out for aliasing problems? */
420 node_sched_params[i].asap = g->nodes[i].aux.count;
421 g->nodes[i].aux.info = &node_sched_params[i];
425 static void
426 print_node_sched_params (FILE *file, int num_nodes, ddg_ptr g)
428 int i;
430 if (! file)
431 return;
432 for (i = 0; i < num_nodes; i++)
434 node_sched_params_ptr nsp = &node_sched_params[i];
435 rtx reg_move = nsp->first_reg_move;
436 int j;
438 fprintf (file, "Node = %d; INSN = %d\n", i,
439 (INSN_UID (g->nodes[i].insn)));
440 fprintf (file, " asap = %d:\n", nsp->asap);
441 fprintf (file, " time = %d:\n", nsp->time);
442 fprintf (file, " nreg_moves = %d:\n", nsp->nreg_moves);
443 for (j = 0; j < nsp->nreg_moves; j++)
445 fprintf (file, " reg_move = ");
446 print_rtl_single (file, reg_move);
447 reg_move = PREV_INSN (reg_move);
453 Breaking intra-loop register anti-dependences:
454 Each intra-loop register anti-dependence implies a cross-iteration true
455 dependence of distance 1. Therefore, we can remove such false dependencies
456 and figure out if the partial schedule broke them by checking if (for a
457 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
458 if so generate a register move. The number of such moves is equal to:
459 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
460 nreg_moves = ----------------------------------- + 1 - { dependence.
461 ii { 1 if not.
463 static struct undo_replace_buff_elem *
464 generate_reg_moves (partial_schedule_ptr ps, bool rescan)
466 ddg_ptr g = ps->g;
467 int ii = ps->ii;
468 int i;
469 struct undo_replace_buff_elem *reg_move_replaces = NULL;
471 for (i = 0; i < g->num_nodes; i++)
473 ddg_node_ptr u = &g->nodes[i];
474 ddg_edge_ptr e;
475 int nreg_moves = 0, i_reg_move;
476 sbitmap *uses_of_defs;
477 rtx last_reg_move;
478 rtx prev_reg, old_reg;
479 rtx set = single_set (u->insn);
481 /* Skip instructions that do not set a register. */
482 if ((set && !REG_P (SET_DEST (set))))
483 continue;
485 /* Compute the number of reg_moves needed for u, by looking at life
486 ranges started at u (excluding self-loops). */
487 for (e = u->out; e; e = e->next_out)
488 if (e->type == TRUE_DEP && e->dest != e->src)
490 int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
492 if (e->distance == 1)
493 nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
495 /* If dest precedes src in the schedule of the kernel, then dest
496 will read before src writes and we can save one reg_copy. */
497 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
498 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
499 nreg_moves4e--;
501 if (nreg_moves4e >= 1)
503 /* !single_set instructions are not supported yet and
504 thus we do not except to encounter them in the loop
505 except from the doloop part. For the latter case
506 we assume no regmoves are generated as the doloop
507 instructions are tied to the branch with an edge. */
508 gcc_assert (set);
509 /* If the instruction contains auto-inc register then
510 validate that the regmov is being generated for the
511 target regsiter rather then the inc'ed register. */
512 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
515 nreg_moves = MAX (nreg_moves, nreg_moves4e);
518 if (nreg_moves == 0)
519 continue;
521 /* Every use of the register defined by node may require a different
522 copy of this register, depending on the time the use is scheduled.
523 Set a bitmap vector, telling which nodes use each copy of this
524 register. */
525 uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes);
526 sbitmap_vector_zero (uses_of_defs, nreg_moves);
527 for (e = u->out; e; e = e->next_out)
528 if (e->type == TRUE_DEP && e->dest != e->src)
530 int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
532 if (e->distance == 1)
533 dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
535 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
536 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
537 dest_copy--;
539 if (dest_copy)
540 SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid);
543 /* Now generate the reg_moves, attaching relevant uses to them. */
544 SCHED_NREG_MOVES (u) = nreg_moves;
545 old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
546 /* Insert the reg-moves right before the notes which precede
547 the insn they relates to. */
548 last_reg_move = u->first_note;
550 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
552 unsigned int i_use = 0;
553 rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
554 rtx reg_move = gen_move_insn (new_reg, prev_reg);
555 sbitmap_iterator sbi;
557 add_insn_before (reg_move, last_reg_move, NULL);
558 last_reg_move = reg_move;
560 if (!SCHED_FIRST_REG_MOVE (u))
561 SCHED_FIRST_REG_MOVE (u) = reg_move;
563 EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi)
565 struct undo_replace_buff_elem *rep;
567 rep = (struct undo_replace_buff_elem *)
568 xcalloc (1, sizeof (struct undo_replace_buff_elem));
569 rep->insn = g->nodes[i_use].insn;
570 rep->orig_reg = old_reg;
571 rep->new_reg = new_reg;
573 if (! reg_move_replaces)
574 reg_move_replaces = rep;
575 else
577 rep->next = reg_move_replaces;
578 reg_move_replaces = rep;
581 replace_rtx (g->nodes[i_use].insn, old_reg, new_reg);
582 if (rescan)
583 df_insn_rescan (g->nodes[i_use].insn);
586 prev_reg = new_reg;
588 sbitmap_vector_free (uses_of_defs);
590 return reg_move_replaces;
593 /* Free memory allocated for the undo buffer. */
594 static void
595 free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces)
598 while (reg_move_replaces)
600 struct undo_replace_buff_elem *rep = reg_move_replaces;
602 reg_move_replaces = reg_move_replaces->next;
603 free (rep);
607 /* Update the sched_params (time, row and stage) for node U using the II,
608 the CYCLE of U and MIN_CYCLE.
609 We're not simply taking the following
610 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
611 because the stages may not be aligned on cycle 0. */
612 static void
613 update_node_sched_params (ddg_node_ptr u, int ii, int cycle, int min_cycle)
615 int sc_until_cycle_zero;
616 int stage;
618 SCHED_TIME (u) = cycle;
619 SCHED_ROW (u) = SMODULO (cycle, ii);
621 /* The calculation of stage count is done adding the number
622 of stages before cycle zero and after cycle zero. */
623 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
625 if (SCHED_TIME (u) < 0)
627 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
628 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
630 else
632 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
633 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
637 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
638 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
639 will move to cycle zero. */
640 static void
641 reset_sched_times (partial_schedule_ptr ps, int amount)
643 int row;
644 int ii = ps->ii;
645 ps_insn_ptr crr_insn;
647 for (row = 0; row < ii; row++)
648 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
650 ddg_node_ptr u = crr_insn->node;
651 int normalized_time = SCHED_TIME (u) - amount;
652 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
654 if (dump_file)
656 /* Print the scheduling times after the rotation. */
657 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
658 "crr_insn->cycle=%d, min_cycle=%d", crr_insn->node->cuid,
659 INSN_UID (crr_insn->node->insn), normalized_time,
660 new_min_cycle);
661 if (JUMP_P (crr_insn->node->insn))
662 fprintf (dump_file, " (branch)");
663 fprintf (dump_file, "\n");
666 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
667 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
669 crr_insn->cycle = normalized_time;
670 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
674 /* Set SCHED_COLUMN of each node according to its position in PS. */
675 static void
676 set_columns_for_ps (partial_schedule_ptr ps)
678 int row;
680 for (row = 0; row < ps->ii; row++)
682 ps_insn_ptr cur_insn = ps->rows[row];
683 int column = 0;
685 for (; cur_insn; cur_insn = cur_insn->next_in_row)
686 SCHED_COLUMN (cur_insn->node) = column++;
690 /* Permute the insns according to their order in PS, from row 0 to
691 row ii-1, and position them right before LAST. This schedules
692 the insns of the loop kernel. */
693 static void
694 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
696 int ii = ps->ii;
697 int row;
698 ps_insn_ptr ps_ij;
700 for (row = 0; row < ii ; row++)
701 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
702 if (PREV_INSN (last) != ps_ij->node->insn)
703 reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn,
704 PREV_INSN (last));
707 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
708 respectively only if cycle C falls on the border of the scheduling
709 window boundaries marked by START and END cycles. STEP is the
710 direction of the window. */
711 static inline void
712 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
713 sbitmap *tmp_precede, sbitmap must_precede, int c,
714 int start, int end, int step)
716 *tmp_precede = NULL;
717 *tmp_follow = NULL;
719 if (c == start)
721 if (step == 1)
722 *tmp_precede = must_precede;
723 else /* step == -1. */
724 *tmp_follow = must_follow;
726 if (c == end - step)
728 if (step == 1)
729 *tmp_follow = must_follow;
730 else /* step == -1. */
731 *tmp_precede = must_precede;
736 /* Return True if the branch can be moved to row ii-1 while
737 normalizing the partial schedule PS to start from cycle zero and thus
738 optimize the SC. Otherwise return False. */
739 static bool
740 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
742 int amount = PS_MIN_CYCLE (ps);
743 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
744 int start, end, step;
745 int ii = ps->ii;
746 bool ok = false;
747 int stage_count, stage_count_curr;
749 /* Compare the SC after normalization and SC after bringing the branch
750 to row ii-1. If they are equal just bail out. */
751 stage_count = calculate_stage_count (ps, amount);
752 stage_count_curr =
753 calculate_stage_count (ps, SCHED_TIME (g->closing_branch) - (ii - 1));
755 if (stage_count == stage_count_curr)
757 if (dump_file)
758 fprintf (dump_file, "SMS SC already optimized.\n");
760 ok = false;
761 goto clear;
764 if (dump_file)
766 fprintf (dump_file, "SMS Trying to optimize branch location\n");
767 fprintf (dump_file, "SMS partial schedule before trial:\n");
768 print_partial_schedule (ps, dump_file);
771 /* First, normalize the partial scheduling. */
772 reset_sched_times (ps, amount);
773 rotate_partial_schedule (ps, amount);
774 if (dump_file)
776 fprintf (dump_file,
777 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
778 ii, stage_count);
779 print_partial_schedule (ps, dump_file);
782 if (SMODULO (SCHED_TIME (g->closing_branch), ii) == ii - 1)
784 ok = true;
785 goto clear;
788 sbitmap_ones (sched_nodes);
790 /* Calculate the new placement of the branch. It should be in row
791 ii-1 and fall into it's scheduling window. */
792 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
793 &step, &end) == 0)
795 bool success;
796 ps_insn_ptr next_ps_i;
797 int branch_cycle = SCHED_TIME (g->closing_branch);
798 int row = SMODULO (branch_cycle, ps->ii);
799 int num_splits = 0;
800 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
801 int c;
803 if (dump_file)
804 fprintf (dump_file, "\nTrying to schedule node %d "
805 "INSN = %d in (%d .. %d) step %d\n",
806 g->closing_branch->cuid,
807 (INSN_UID (g->closing_branch->insn)), start, end, step);
809 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
810 if (step == 1)
812 c = start + ii - SMODULO (start, ii) - 1;
813 gcc_assert (c >= start);
814 if (c >= end)
816 ok = false;
817 if (dump_file)
818 fprintf (dump_file,
819 "SMS failed to schedule branch at cycle: %d\n", c);
820 goto clear;
823 else
825 c = start - SMODULO (start, ii) - 1;
826 gcc_assert (c <= start);
828 if (c <= end)
830 if (dump_file)
831 fprintf (dump_file,
832 "SMS failed to schedule branch at cycle: %d\n", c);
833 ok = false;
834 goto clear;
838 must_precede = sbitmap_alloc (g->num_nodes);
839 must_follow = sbitmap_alloc (g->num_nodes);
841 /* Try to schedule the branch is it's new cycle. */
842 calculate_must_precede_follow (g->closing_branch, start, end,
843 step, ii, sched_nodes,
844 must_precede, must_follow);
846 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
847 must_precede, c, start, end, step);
849 /* Find the element in the partial schedule related to the closing
850 branch so we can remove it from it's current cycle. */
851 for (next_ps_i = ps->rows[row];
852 next_ps_i; next_ps_i = next_ps_i->next_in_row)
853 if (next_ps_i->node->cuid == g->closing_branch->cuid)
854 break;
856 remove_node_from_ps (ps, next_ps_i);
857 success =
858 try_scheduling_node_in_cycle (ps, g->closing_branch,
859 g->closing_branch->cuid, c,
860 sched_nodes, &num_splits,
861 tmp_precede, tmp_follow);
862 gcc_assert (num_splits == 0);
863 if (!success)
865 if (dump_file)
866 fprintf (dump_file,
867 "SMS failed to schedule branch at cycle: %d, "
868 "bringing it back to cycle %d\n", c, branch_cycle);
870 /* The branch was failed to be placed in row ii - 1.
871 Put it back in it's original place in the partial
872 schedualing. */
873 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
874 must_precede, branch_cycle, start, end,
875 step);
876 success =
877 try_scheduling_node_in_cycle (ps, g->closing_branch,
878 g->closing_branch->cuid,
879 branch_cycle, sched_nodes,
880 &num_splits, tmp_precede,
881 tmp_follow);
882 gcc_assert (success && (num_splits == 0));
883 ok = false;
885 else
887 /* The branch is placed in row ii - 1. */
888 if (dump_file)
889 fprintf (dump_file,
890 "SMS success in moving branch to cycle %d\n", c);
892 update_node_sched_params (g->closing_branch, ii, c,
893 PS_MIN_CYCLE (ps));
894 ok = true;
897 free (must_precede);
898 free (must_follow);
901 clear:
902 free (sched_nodes);
903 return ok;
906 static void
907 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
908 int to_stage, int for_prolog, rtx count_reg)
910 int row;
911 ps_insn_ptr ps_ij;
913 for (row = 0; row < ps->ii; row++)
914 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
916 ddg_node_ptr u_node = ps_ij->node;
917 int j, i_reg_moves;
918 rtx reg_move = NULL_RTX;
920 /* Do not duplicate any insn which refers to count_reg as it
921 belongs to the control part.
922 The closing branch is scheduled as well and thus should
923 be ignored.
924 TODO: This should be done by analyzing the control part of
925 the loop. */
926 if (reg_mentioned_p (count_reg, u_node->insn)
927 || JUMP_P (ps_ij->node->insn))
928 continue;
930 if (for_prolog)
932 /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing
933 number of reg_moves starting with the second occurrence of
934 u_node, which is generated if its SCHED_STAGE <= to_stage. */
935 i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1;
936 i_reg_moves = MAX (i_reg_moves, 0);
937 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
939 /* The reg_moves start from the *first* reg_move backwards. */
940 if (i_reg_moves)
942 reg_move = SCHED_FIRST_REG_MOVE (u_node);
943 for (j = 1; j < i_reg_moves; j++)
944 reg_move = PREV_INSN (reg_move);
947 else /* It's for the epilog. */
949 /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves,
950 starting to decrease one stage after u_node no longer occurs;
951 that is, generate all reg_moves until
952 SCHED_STAGE (u_node) == from_stage - 1. */
953 i_reg_moves = SCHED_NREG_MOVES (u_node)
954 - (from_stage - SCHED_STAGE (u_node) - 1);
955 i_reg_moves = MAX (i_reg_moves, 0);
956 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
958 /* The reg_moves start from the *last* reg_move forwards. */
959 if (i_reg_moves)
961 reg_move = SCHED_FIRST_REG_MOVE (u_node);
962 for (j = 1; j < SCHED_NREG_MOVES (u_node); j++)
963 reg_move = PREV_INSN (reg_move);
967 for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
968 emit_insn (copy_rtx (PATTERN (reg_move)));
969 if (SCHED_STAGE (u_node) >= from_stage
970 && SCHED_STAGE (u_node) <= to_stage)
971 duplicate_insn_chain (u_node->first_note, u_node->insn);
976 /* Generate the instructions (including reg_moves) for prolog & epilog. */
977 static void
978 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
979 rtx count_reg, rtx count_init)
981 int i;
982 int last_stage = PS_STAGE_COUNT (ps) - 1;
983 edge e;
985 /* Generate the prolog, inserting its insns on the loop-entry edge. */
986 start_sequence ();
988 if (!count_init)
990 /* Generate instructions at the beginning of the prolog to
991 adjust the loop count by STAGE_COUNT. If loop count is constant
992 (count_init), this constant is adjusted by STAGE_COUNT in
993 generate_prolog_epilog function. */
994 rtx sub_reg = NULL_RTX;
996 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
997 count_reg, GEN_INT (last_stage),
998 count_reg, 1, OPTAB_DIRECT);
999 gcc_assert (REG_P (sub_reg));
1000 if (REGNO (sub_reg) != REGNO (count_reg))
1001 emit_move_insn (count_reg, sub_reg);
1004 for (i = 0; i < last_stage; i++)
1005 duplicate_insns_of_cycles (ps, 0, i, 1, count_reg);
1007 /* Put the prolog on the entry edge. */
1008 e = loop_preheader_edge (loop);
1009 split_edge_and_insert (e, get_insns ());
1011 end_sequence ();
1013 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1014 start_sequence ();
1016 for (i = 0; i < last_stage; i++)
1017 duplicate_insns_of_cycles (ps, i + 1, last_stage, 0, count_reg);
1019 /* Put the epilogue on the exit edge. */
1020 gcc_assert (single_exit (loop));
1021 e = single_exit (loop);
1022 split_edge_and_insert (e, get_insns ());
1023 end_sequence ();
1026 /* Return true if all the BBs of the loop are empty except the
1027 loop header. */
1028 static bool
1029 loop_single_full_bb_p (struct loop *loop)
1031 unsigned i;
1032 basic_block *bbs = get_loop_body (loop);
1034 for (i = 0; i < loop->num_nodes ; i++)
1036 rtx head, tail;
1037 bool empty_bb = true;
1039 if (bbs[i] == loop->header)
1040 continue;
1042 /* Make sure that basic blocks other than the header
1043 have only notes labels or jumps. */
1044 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1045 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1047 if (NOTE_P (head) || LABEL_P (head)
1048 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1049 continue;
1050 empty_bb = false;
1051 break;
1054 if (! empty_bb)
1056 free (bbs);
1057 return false;
1060 free (bbs);
1061 return true;
1064 /* A simple loop from SMS point of view; it is a loop that is composed of
1065 either a single basic block or two BBs - a header and a latch. */
1066 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1067 && (EDGE_COUNT (loop->latch->preds) == 1) \
1068 && (EDGE_COUNT (loop->latch->succs) == 1))
1070 /* Return true if the loop is in its canonical form and false if not.
1071 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1072 static bool
1073 loop_canon_p (struct loop *loop)
1076 if (loop->inner || !loop_outer (loop))
1078 if (dump_file)
1079 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1080 return false;
1083 if (!single_exit (loop))
1085 if (dump_file)
1087 rtx insn = BB_END (loop->header);
1089 fprintf (dump_file, "SMS loop many exits ");
1090 fprintf (dump_file, " %s %d (file, line)\n",
1091 insn_file (insn), insn_line (insn));
1093 return false;
1096 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1098 if (dump_file)
1100 rtx insn = BB_END (loop->header);
1102 fprintf (dump_file, "SMS loop many BBs. ");
1103 fprintf (dump_file, " %s %d (file, line)\n",
1104 insn_file (insn), insn_line (insn));
1106 return false;
1109 return true;
1112 /* If there are more than one entry for the loop,
1113 make it one by splitting the first entry edge and
1114 redirecting the others to the new BB. */
1115 static void
1116 canon_loop (struct loop *loop)
1118 edge e;
1119 edge_iterator i;
1121 /* Avoid annoying special cases of edges going to exit
1122 block. */
1123 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
1124 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1125 split_edge (e);
1127 if (loop->latch == loop->header
1128 || EDGE_COUNT (loop->latch->succs) > 1)
1130 FOR_EACH_EDGE (e, i, loop->header->preds)
1131 if (e->src == loop->latch)
1132 break;
1133 split_edge (e);
1137 /* Setup infos. */
1138 static void
1139 setup_sched_infos (void)
1141 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1142 sizeof (sms_common_sched_info));
1143 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1144 common_sched_info = &sms_common_sched_info;
1146 sched_deps_info = &sms_sched_deps_info;
1147 current_sched_info = &sms_sched_info;
1150 /* Probability in % that the sms-ed loop rolls enough so that optimized
1151 version may be entered. Just a guess. */
1152 #define PROB_SMS_ENOUGH_ITERATIONS 80
1154 /* Used to calculate the upper bound of ii. */
1155 #define MAXII_FACTOR 2
1157 /* Main entry point, perform SMS scheduling on the loops of the function
1158 that consist of single basic blocks. */
1159 static void
1160 sms_schedule (void)
1162 rtx insn;
1163 ddg_ptr *g_arr, g;
1164 int * node_order;
1165 int maxii, max_asap;
1166 loop_iterator li;
1167 partial_schedule_ptr ps;
1168 basic_block bb = NULL;
1169 struct loop *loop;
1170 basic_block condition_bb = NULL;
1171 edge latch_edge;
1172 gcov_type trip_count = 0;
1174 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1175 | LOOPS_HAVE_RECORDED_EXITS);
1176 if (number_of_loops () <= 1)
1178 loop_optimizer_finalize ();
1179 return; /* There are no loops to schedule. */
1182 /* Initialize issue_rate. */
1183 if (targetm.sched.issue_rate)
1185 int temp = reload_completed;
1187 reload_completed = 1;
1188 issue_rate = targetm.sched.issue_rate ();
1189 reload_completed = temp;
1191 else
1192 issue_rate = 1;
1194 /* Initialize the scheduler. */
1195 setup_sched_infos ();
1196 haifa_sched_init ();
1198 /* Allocate memory to hold the DDG array one entry for each loop.
1199 We use loop->num as index into this array. */
1200 g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
1202 if (dump_file)
1204 fprintf (dump_file, "\n\nSMS analysis phase\n");
1205 fprintf (dump_file, "===================\n\n");
1208 /* Build DDGs for all the relevant loops and hold them in G_ARR
1209 indexed by the loop index. */
1210 FOR_EACH_LOOP (li, loop, 0)
1212 rtx head, tail;
1213 rtx count_reg;
1215 /* For debugging. */
1216 if (dbg_cnt (sms_sched_loop) == false)
1218 if (dump_file)
1219 fprintf (dump_file, "SMS reached max limit... \n");
1221 break;
1224 if (dump_file)
1226 rtx insn = BB_END (loop->header);
1228 fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
1229 loop->num, insn_file (insn), insn_line (insn));
1233 if (! loop_canon_p (loop))
1234 continue;
1236 if (! loop_single_full_bb_p (loop))
1238 if (dump_file)
1239 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1240 continue;
1243 bb = loop->header;
1245 get_ebb_head_tail (bb, bb, &head, &tail);
1246 latch_edge = loop_latch_edge (loop);
1247 gcc_assert (single_exit (loop));
1248 if (single_exit (loop)->count)
1249 trip_count = latch_edge->count / single_exit (loop)->count;
1251 /* Perform SMS only on loops that their average count is above threshold. */
1253 if ( latch_edge->count
1254 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1256 if (dump_file)
1258 fprintf (dump_file, " %s %d (file, line)\n",
1259 insn_file (tail), insn_line (tail));
1260 fprintf (dump_file, "SMS single-bb-loop\n");
1261 if (profile_info && flag_branch_probabilities)
1263 fprintf (dump_file, "SMS loop-count ");
1264 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1265 (HOST_WIDEST_INT) bb->count);
1266 fprintf (dump_file, "\n");
1267 fprintf (dump_file, "SMS trip-count ");
1268 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1269 (HOST_WIDEST_INT) trip_count);
1270 fprintf (dump_file, "\n");
1271 fprintf (dump_file, "SMS profile-sum-max ");
1272 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1273 (HOST_WIDEST_INT) profile_info->sum_max);
1274 fprintf (dump_file, "\n");
1277 continue;
1280 /* Make sure this is a doloop. */
1281 if ( !(count_reg = doloop_register_get (head, tail)))
1283 if (dump_file)
1284 fprintf (dump_file, "SMS doloop_register_get failed\n");
1285 continue;
1288 /* Don't handle BBs with calls or barriers
1289 or !single_set with the exception of instructions that include
1290 count_reg---these instructions are part of the control part
1291 that do-loop recognizes.
1292 ??? Should handle insns defining subregs. */
1293 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1295 rtx set;
1297 if (CALL_P (insn)
1298 || BARRIER_P (insn)
1299 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1300 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1301 && !reg_mentioned_p (count_reg, insn))
1302 || (INSN_P (insn) && (set = single_set (insn))
1303 && GET_CODE (SET_DEST (set)) == SUBREG))
1304 break;
1307 if (insn != NEXT_INSN (tail))
1309 if (dump_file)
1311 if (CALL_P (insn))
1312 fprintf (dump_file, "SMS loop-with-call\n");
1313 else if (BARRIER_P (insn))
1314 fprintf (dump_file, "SMS loop-with-barrier\n");
1315 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1316 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1317 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1318 else
1319 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1320 print_rtl_single (dump_file, insn);
1323 continue;
1326 /* Always schedule the closing branch with the rest of the
1327 instructions. The branch is rotated to be in row ii-1 at the
1328 end of the scheduling procedure to make sure it's the last
1329 instruction in the iteration. */
1330 if (! (g = create_ddg (bb, 1)))
1332 if (dump_file)
1333 fprintf (dump_file, "SMS create_ddg failed\n");
1334 continue;
1337 g_arr[loop->num] = g;
1338 if (dump_file)
1339 fprintf (dump_file, "...OK\n");
1342 if (dump_file)
1344 fprintf (dump_file, "\nSMS transformation phase\n");
1345 fprintf (dump_file, "=========================\n\n");
1348 /* We don't want to perform SMS on new loops - created by versioning. */
1349 FOR_EACH_LOOP (li, loop, 0)
1351 rtx head, tail;
1352 rtx count_reg, count_init;
1353 int mii, rec_mii;
1354 unsigned stage_count = 0;
1355 HOST_WIDEST_INT loop_count = 0;
1356 bool opt_sc_p = false;
1358 if (! (g = g_arr[loop->num]))
1359 continue;
1361 if (dump_file)
1363 rtx insn = BB_END (loop->header);
1365 fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
1366 loop->num, insn_file (insn), insn_line (insn));
1368 print_ddg (dump_file, g);
1371 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1373 latch_edge = loop_latch_edge (loop);
1374 gcc_assert (single_exit (loop));
1375 if (single_exit (loop)->count)
1376 trip_count = latch_edge->count / single_exit (loop)->count;
1378 if (dump_file)
1380 fprintf (dump_file, " %s %d (file, line)\n",
1381 insn_file (tail), insn_line (tail));
1382 fprintf (dump_file, "SMS single-bb-loop\n");
1383 if (profile_info && flag_branch_probabilities)
1385 fprintf (dump_file, "SMS loop-count ");
1386 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1387 (HOST_WIDEST_INT) bb->count);
1388 fprintf (dump_file, "\n");
1389 fprintf (dump_file, "SMS profile-sum-max ");
1390 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1391 (HOST_WIDEST_INT) profile_info->sum_max);
1392 fprintf (dump_file, "\n");
1394 fprintf (dump_file, "SMS doloop\n");
1395 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1396 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1397 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1401 /* In case of th loop have doloop register it gets special
1402 handling. */
1403 count_init = NULL_RTX;
1404 if ((count_reg = doloop_register_get (head, tail)))
1406 basic_block pre_header;
1408 pre_header = loop_preheader_edge (loop)->src;
1409 count_init = const_iteration_count (count_reg, pre_header,
1410 &loop_count);
1412 gcc_assert (count_reg);
1414 if (dump_file && count_init)
1416 fprintf (dump_file, "SMS const-doloop ");
1417 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1418 loop_count);
1419 fprintf (dump_file, "\n");
1422 node_order = XNEWVEC (int, g->num_nodes);
1424 mii = 1; /* Need to pass some estimate of mii. */
1425 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1426 mii = MAX (res_MII (g), rec_mii);
1427 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1429 if (dump_file)
1430 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1431 rec_mii, mii, maxii);
1433 /* After sms_order_nodes and before sms_schedule_by_order, to copy over
1434 ASAP. */
1435 set_node_sched_params (g);
1437 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1439 if (ps)
1441 /* Try to achieve optimized SC by normalizing the partial
1442 schedule (having the cycles start from cycle zero).
1443 The branch location must be placed in row ii-1 in the
1444 final scheduling. If failed, shift all instructions to
1445 position the branch in row ii-1. */
1446 opt_sc_p = optimize_sc (ps, g);
1447 if (opt_sc_p)
1448 stage_count = calculate_stage_count (ps, 0);
1449 else
1451 /* Bring the branch to cycle ii-1. */
1452 int amount = SCHED_TIME (g->closing_branch) - (ps->ii - 1);
1454 if (dump_file)
1455 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1457 stage_count = calculate_stage_count (ps, amount);
1460 gcc_assert (stage_count >= 1);
1461 PS_STAGE_COUNT (ps) = stage_count;
1464 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1465 1 means that there is no interleaving between iterations thus
1466 we let the scheduling passes do the job in this case. */
1467 if (stage_count < (unsigned) PARAM_VALUE (PARAM_SMS_MIN_SC)
1468 || (count_init && (loop_count <= stage_count))
1469 || (flag_branch_probabilities && (trip_count <= stage_count)))
1471 if (dump_file)
1473 fprintf (dump_file, "SMS failed... \n");
1474 fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count);
1475 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1476 fprintf (dump_file, ", trip-count=");
1477 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1478 fprintf (dump_file, ")\n");
1481 else
1483 struct undo_replace_buff_elem *reg_move_replaces;
1485 if (!opt_sc_p)
1487 /* Rotate the partial schedule to have the branch in row ii-1. */
1488 int amount = SCHED_TIME (g->closing_branch) - (ps->ii - 1);
1490 reset_sched_times (ps, amount);
1491 rotate_partial_schedule (ps, amount);
1494 set_columns_for_ps (ps);
1496 canon_loop (loop);
1498 if (dump_file)
1500 fprintf (dump_file,
1501 "%s:%d SMS succeeded %d %d (with ii, sc)\n",
1502 insn_file (tail), insn_line (tail), ps->ii, stage_count);
1503 print_partial_schedule (ps, dump_file);
1506 /* case the BCT count is not known , Do loop-versioning */
1507 if (count_reg && ! count_init)
1509 rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
1510 GEN_INT(stage_count));
1511 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1512 * REG_BR_PROB_BASE) / 100;
1514 loop_version (loop, comp_rtx, &condition_bb,
1515 prob, prob, REG_BR_PROB_BASE - prob,
1516 true);
1519 /* Set new iteration count of loop kernel. */
1520 if (count_reg && count_init)
1521 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1522 - stage_count + 1);
1524 /* Now apply the scheduled kernel to the RTL of the loop. */
1525 permute_partial_schedule (ps, g->closing_branch->first_note);
1527 /* Mark this loop as software pipelined so the later
1528 scheduling passes doesn't touch it. */
1529 if (! flag_resched_modulo_sched)
1530 g->bb->flags |= BB_DISABLE_SCHEDULE;
1531 /* The life-info is not valid any more. */
1532 df_set_bb_dirty (g->bb);
1534 reg_move_replaces = generate_reg_moves (ps, true);
1535 if (dump_file)
1536 print_node_sched_params (dump_file, g->num_nodes, g);
1537 /* Generate prolog and epilog. */
1538 generate_prolog_epilog (ps, loop, count_reg, count_init);
1540 free_undo_replace_buff (reg_move_replaces);
1543 free_partial_schedule (ps);
1544 free (node_sched_params);
1545 free (node_order);
1546 free_ddg (g);
1549 free (g_arr);
1551 /* Release scheduler data, needed until now because of DFA. */
1552 haifa_sched_finish ();
1553 loop_optimizer_finalize ();
1556 /* The SMS scheduling algorithm itself
1557 -----------------------------------
1558 Input: 'O' an ordered list of insns of a loop.
1559 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1561 'Q' is the empty Set
1562 'PS' is the partial schedule; it holds the currently scheduled nodes with
1563 their cycle/slot.
1564 'PSP' previously scheduled predecessors.
1565 'PSS' previously scheduled successors.
1566 't(u)' the cycle where u is scheduled.
1567 'l(u)' is the latency of u.
1568 'd(v,u)' is the dependence distance from v to u.
1569 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1570 the node ordering phase.
1571 'check_hardware_resources_conflicts(u, PS, c)'
1572 run a trace around cycle/slot through DFA model
1573 to check resource conflicts involving instruction u
1574 at cycle c given the partial schedule PS.
1575 'add_to_partial_schedule_at_time(u, PS, c)'
1576 Add the node/instruction u to the partial schedule
1577 PS at time c.
1578 'calculate_register_pressure(PS)'
1579 Given a schedule of instructions, calculate the register
1580 pressure it implies. One implementation could be the
1581 maximum number of overlapping live ranges.
1582 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1583 registers available in the hardware.
1585 1. II = MII.
1586 2. PS = empty list
1587 3. for each node u in O in pre-computed order
1588 4. if (PSP(u) != Q && PSS(u) == Q) then
1589 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1590 6. start = Early_start; end = Early_start + II - 1; step = 1
1591 11. else if (PSP(u) == Q && PSS(u) != Q) then
1592 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1593 13. start = Late_start; end = Late_start - II + 1; step = -1
1594 14. else if (PSP(u) != Q && PSS(u) != Q) then
1595 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1596 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1597 17. start = Early_start;
1598 18. end = min(Early_start + II - 1 , Late_start);
1599 19. step = 1
1600 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1601 21. start = ASAP(u); end = start + II - 1; step = 1
1602 22. endif
1604 23. success = false
1605 24. for (c = start ; c != end ; c += step)
1606 25. if check_hardware_resources_conflicts(u, PS, c) then
1607 26. add_to_partial_schedule_at_time(u, PS, c)
1608 27. success = true
1609 28. break
1610 29. endif
1611 30. endfor
1612 31. if (success == false) then
1613 32. II = II + 1
1614 33. if (II > maxII) then
1615 34. finish - failed to schedule
1616 35. endif
1617 36. goto 2.
1618 37. endif
1619 38. endfor
1620 39. if (calculate_register_pressure(PS) > maxRP) then
1621 40. goto 32.
1622 41. endif
1623 42. compute epilogue & prologue
1624 43. finish - succeeded to schedule
1627 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1628 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1629 set to 0 to save compile time. */
1630 #define DFA_HISTORY SMS_DFA_HISTORY
1632 /* A threshold for the number of repeated unsuccessful attempts to insert
1633 an empty row, before we flush the partial schedule and start over. */
1634 #define MAX_SPLIT_NUM 10
1635 /* Given the partial schedule PS, this function calculates and returns the
1636 cycles in which we can schedule the node with the given index I.
1637 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1638 noticed that there are several cases in which we fail to SMS the loop
1639 because the sched window of a node is empty due to tight data-deps. In
1640 such cases we want to unschedule some of the predecessors/successors
1641 until we get non-empty scheduling window. It returns -1 if the
1642 scheduling window is empty and zero otherwise. */
1644 static int
1645 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1646 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1647 int *end_p)
1649 int start, step, end;
1650 int early_start, late_start;
1651 ddg_edge_ptr e;
1652 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1653 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1654 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1655 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1656 int psp_not_empty;
1657 int pss_not_empty;
1658 int count_preds;
1659 int count_succs;
1661 /* 1. compute sched window for u (start, end, step). */
1662 sbitmap_zero (psp);
1663 sbitmap_zero (pss);
1664 psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
1665 pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
1667 /* We first compute a forward range (start <= end), then decide whether
1668 to reverse it. */
1669 early_start = INT_MIN;
1670 late_start = INT_MAX;
1671 start = INT_MIN;
1672 end = INT_MAX;
1673 step = 1;
1675 count_preds = 0;
1676 count_succs = 0;
1678 if (dump_file && (psp_not_empty || pss_not_empty))
1680 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1681 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1682 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1683 "start", "early start", "late start", "end", "time");
1684 fprintf (dump_file, "=========== =========== =========== ==========="
1685 " =====\n");
1687 /* Calculate early_start and limit end. Both bounds are inclusive. */
1688 if (psp_not_empty)
1689 for (e = u_node->in; e != 0; e = e->next_in)
1691 ddg_node_ptr v_node = e->src;
1693 if (TEST_BIT (sched_nodes, v_node->cuid))
1695 int p_st = SCHED_TIME (v_node);
1696 int earliest = p_st + e->latency - (e->distance * ii);
1697 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1699 if (dump_file)
1701 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1702 "", earliest, "", latest, p_st);
1703 print_ddg_edge (dump_file, e);
1704 fprintf (dump_file, "\n");
1707 early_start = MAX (early_start, earliest);
1708 end = MIN (end, latest);
1710 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1711 count_preds++;
1715 /* Calculate late_start and limit start. Both bounds are inclusive. */
1716 if (pss_not_empty)
1717 for (e = u_node->out; e != 0; e = e->next_out)
1719 ddg_node_ptr v_node = e->dest;
1721 if (TEST_BIT (sched_nodes, v_node->cuid))
1723 int s_st = SCHED_TIME (v_node);
1724 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1725 int latest = s_st - e->latency + (e->distance * ii);
1727 if (dump_file)
1729 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1730 earliest, "", latest, "", s_st);
1731 print_ddg_edge (dump_file, e);
1732 fprintf (dump_file, "\n");
1735 start = MAX (start, earliest);
1736 late_start = MIN (late_start, latest);
1738 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1739 count_succs++;
1743 if (dump_file && (psp_not_empty || pss_not_empty))
1745 fprintf (dump_file, "----------- ----------- ----------- -----------"
1746 " -----\n");
1747 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1748 start, early_start, late_start, end, "",
1749 "(max, max, min, min)");
1752 /* Get a target scheduling window no bigger than ii. */
1753 if (early_start == INT_MIN && late_start == INT_MAX)
1754 early_start = SCHED_ASAP (u_node);
1755 else if (early_start == INT_MIN)
1756 early_start = late_start - (ii - 1);
1757 late_start = MIN (late_start, early_start + (ii - 1));
1759 /* Apply memory dependence limits. */
1760 start = MAX (start, early_start);
1761 end = MIN (end, late_start);
1763 if (dump_file && (psp_not_empty || pss_not_empty))
1764 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1765 "", start, end, "", "");
1767 /* If there are at least as many successors as predecessors, schedule the
1768 node close to its successors. */
1769 if (pss_not_empty && count_succs >= count_preds)
1771 int tmp = end;
1772 end = start;
1773 start = tmp;
1774 step = -1;
1777 /* Now that we've finalized the window, make END an exclusive rather
1778 than an inclusive bound. */
1779 end += step;
1781 *start_p = start;
1782 *step_p = step;
1783 *end_p = end;
1784 sbitmap_free (psp);
1785 sbitmap_free (pss);
1787 if ((start >= end && step == 1) || (start <= end && step == -1))
1789 if (dump_file)
1790 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1791 start, end, step);
1792 return -1;
1795 return 0;
1798 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1799 node currently been scheduled. At the end of the calculation
1800 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
1801 U_NODE which are (1) already scheduled in the first/last row of
1802 U_NODE's scheduling window, (2) whose dependence inequality with U
1803 becomes an equality when U is scheduled in this same row, and (3)
1804 whose dependence latency is zero.
1806 The first and last rows are calculated using the following parameters:
1807 START/END rows - The cycles that begins/ends the traversal on the window;
1808 searching for an empty cycle to schedule U_NODE.
1809 STEP - The direction in which we traverse the window.
1810 II - The initiation interval. */
1812 static void
1813 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
1814 int step, int ii, sbitmap sched_nodes,
1815 sbitmap must_precede, sbitmap must_follow)
1817 ddg_edge_ptr e;
1818 int first_cycle_in_window, last_cycle_in_window;
1820 gcc_assert (must_precede && must_follow);
1822 /* Consider the following scheduling window:
1823 {first_cycle_in_window, first_cycle_in_window+1, ...,
1824 last_cycle_in_window}. If step is 1 then the following will be
1825 the order we traverse the window: {start=first_cycle_in_window,
1826 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
1827 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
1828 end=first_cycle_in_window-1} if step is -1. */
1829 first_cycle_in_window = (step == 1) ? start : end - step;
1830 last_cycle_in_window = (step == 1) ? end - step : start;
1832 sbitmap_zero (must_precede);
1833 sbitmap_zero (must_follow);
1835 if (dump_file)
1836 fprintf (dump_file, "\nmust_precede: ");
1838 /* Instead of checking if:
1839 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
1840 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
1841 first_cycle_in_window)
1842 && e->latency == 0
1843 we use the fact that latency is non-negative:
1844 SCHED_TIME (e->src) - (e->distance * ii) <=
1845 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
1846 first_cycle_in_window
1847 and check only if
1848 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
1849 for (e = u_node->in; e != 0; e = e->next_in)
1850 if (TEST_BIT (sched_nodes, e->src->cuid)
1851 && ((SCHED_TIME (e->src) - (e->distance * ii)) ==
1852 first_cycle_in_window))
1854 if (dump_file)
1855 fprintf (dump_file, "%d ", e->src->cuid);
1857 SET_BIT (must_precede, e->src->cuid);
1860 if (dump_file)
1861 fprintf (dump_file, "\nmust_follow: ");
1863 /* Instead of checking if:
1864 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
1865 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
1866 last_cycle_in_window)
1867 && e->latency == 0
1868 we use the fact that latency is non-negative:
1869 SCHED_TIME (e->dest) + (e->distance * ii) >=
1870 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
1871 last_cycle_in_window
1872 and check only if
1873 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
1874 for (e = u_node->out; e != 0; e = e->next_out)
1875 if (TEST_BIT (sched_nodes, e->dest->cuid)
1876 && ((SCHED_TIME (e->dest) + (e->distance * ii)) ==
1877 last_cycle_in_window))
1879 if (dump_file)
1880 fprintf (dump_file, "%d ", e->dest->cuid);
1882 SET_BIT (must_follow, e->dest->cuid);
1885 if (dump_file)
1886 fprintf (dump_file, "\n");
1889 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
1890 parameters to decide if that's possible:
1891 PS - The partial schedule.
1892 U - The serial number of U_NODE.
1893 NUM_SPLITS - The number of row splits made so far.
1894 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
1895 the first row of the scheduling window)
1896 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
1897 last row of the scheduling window) */
1899 static bool
1900 try_scheduling_node_in_cycle (partial_schedule_ptr ps, ddg_node_ptr u_node,
1901 int u, int cycle, sbitmap sched_nodes,
1902 int *num_splits, sbitmap must_precede,
1903 sbitmap must_follow)
1905 ps_insn_ptr psi;
1906 bool success = 0;
1908 verify_partial_schedule (ps, sched_nodes);
1909 psi = ps_add_node_check_conflicts (ps, u_node, cycle,
1910 must_precede, must_follow);
1911 if (psi)
1913 SCHED_TIME (u_node) = cycle;
1914 SET_BIT (sched_nodes, u);
1915 success = 1;
1916 *num_splits = 0;
1917 if (dump_file)
1918 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
1922 return success;
1925 /* This function implements the scheduling algorithm for SMS according to the
1926 above algorithm. */
1927 static partial_schedule_ptr
1928 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
1930 int ii = mii;
1931 int i, c, success, num_splits = 0;
1932 int flush_and_start_over = true;
1933 int num_nodes = g->num_nodes;
1934 int start, end, step; /* Place together into one struct? */
1935 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
1936 sbitmap must_precede = sbitmap_alloc (num_nodes);
1937 sbitmap must_follow = sbitmap_alloc (num_nodes);
1938 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
1940 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
1942 sbitmap_ones (tobe_scheduled);
1943 sbitmap_zero (sched_nodes);
1945 while (flush_and_start_over && (ii < maxii))
1948 if (dump_file)
1949 fprintf (dump_file, "Starting with ii=%d\n", ii);
1950 flush_and_start_over = false;
1951 sbitmap_zero (sched_nodes);
1953 for (i = 0; i < num_nodes; i++)
1955 int u = nodes_order[i];
1956 ddg_node_ptr u_node = &ps->g->nodes[u];
1957 rtx insn = u_node->insn;
1959 if (!NONDEBUG_INSN_P (insn))
1961 RESET_BIT (tobe_scheduled, u);
1962 continue;
1965 if (TEST_BIT (sched_nodes, u))
1966 continue;
1968 /* Try to get non-empty scheduling window. */
1969 success = 0;
1970 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
1971 &step, &end) == 0)
1973 if (dump_file)
1974 fprintf (dump_file, "\nTrying to schedule node %d "
1975 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
1976 (g->nodes[u].insn)), start, end, step);
1978 gcc_assert ((step > 0 && start < end)
1979 || (step < 0 && start > end));
1981 calculate_must_precede_follow (u_node, start, end, step, ii,
1982 sched_nodes, must_precede,
1983 must_follow);
1985 for (c = start; c != end; c += step)
1987 sbitmap tmp_precede, tmp_follow;
1989 set_must_precede_follow (&tmp_follow, must_follow,
1990 &tmp_precede, must_precede,
1991 c, start, end, step);
1992 success =
1993 try_scheduling_node_in_cycle (ps, u_node, u, c,
1994 sched_nodes,
1995 &num_splits, tmp_precede,
1996 tmp_follow);
1997 if (success)
1998 break;
2001 verify_partial_schedule (ps, sched_nodes);
2003 if (!success)
2005 int split_row;
2007 if (ii++ == maxii)
2008 break;
2010 if (num_splits >= MAX_SPLIT_NUM)
2012 num_splits = 0;
2013 flush_and_start_over = true;
2014 verify_partial_schedule (ps, sched_nodes);
2015 reset_partial_schedule (ps, ii);
2016 verify_partial_schedule (ps, sched_nodes);
2017 break;
2020 num_splits++;
2021 /* The scheduling window is exclusive of 'end'
2022 whereas compute_split_window() expects an inclusive,
2023 ordered range. */
2024 if (step == 1)
2025 split_row = compute_split_row (sched_nodes, start, end - 1,
2026 ps->ii, u_node);
2027 else
2028 split_row = compute_split_row (sched_nodes, end + 1, start,
2029 ps->ii, u_node);
2031 ps_insert_empty_row (ps, split_row, sched_nodes);
2032 i--; /* Go back and retry node i. */
2034 if (dump_file)
2035 fprintf (dump_file, "num_splits=%d\n", num_splits);
2038 /* ??? If (success), check register pressure estimates. */
2039 } /* Continue with next node. */
2040 } /* While flush_and_start_over. */
2041 if (ii >= maxii)
2043 free_partial_schedule (ps);
2044 ps = NULL;
2046 else
2047 gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
2049 sbitmap_free (sched_nodes);
2050 sbitmap_free (must_precede);
2051 sbitmap_free (must_follow);
2052 sbitmap_free (tobe_scheduled);
2054 return ps;
2057 /* This function inserts a new empty row into PS at the position
2058 according to SPLITROW, keeping all already scheduled instructions
2059 intact and updating their SCHED_TIME and cycle accordingly. */
2060 static void
2061 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2062 sbitmap sched_nodes)
2064 ps_insn_ptr crr_insn;
2065 ps_insn_ptr *rows_new;
2066 int ii = ps->ii;
2067 int new_ii = ii + 1;
2068 int row;
2069 int *rows_length_new;
2071 verify_partial_schedule (ps, sched_nodes);
2073 /* We normalize sched_time and rotate ps to have only non-negative sched
2074 times, for simplicity of updating cycles after inserting new row. */
2075 split_row -= ps->min_cycle;
2076 split_row = SMODULO (split_row, ii);
2077 if (dump_file)
2078 fprintf (dump_file, "split_row=%d\n", split_row);
2080 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2081 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2083 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2084 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2085 for (row = 0; row < split_row; row++)
2087 rows_new[row] = ps->rows[row];
2088 rows_length_new[row] = ps->rows_length[row];
2089 ps->rows[row] = NULL;
2090 for (crr_insn = rows_new[row];
2091 crr_insn; crr_insn = crr_insn->next_in_row)
2093 ddg_node_ptr u = crr_insn->node;
2094 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2096 SCHED_TIME (u) = new_time;
2097 crr_insn->cycle = new_time;
2098 SCHED_ROW (u) = new_time % new_ii;
2099 SCHED_STAGE (u) = new_time / new_ii;
2104 rows_new[split_row] = NULL;
2106 for (row = split_row; row < ii; row++)
2108 rows_new[row + 1] = ps->rows[row];
2109 rows_length_new[row + 1] = ps->rows_length[row];
2110 ps->rows[row] = NULL;
2111 for (crr_insn = rows_new[row + 1];
2112 crr_insn; crr_insn = crr_insn->next_in_row)
2114 ddg_node_ptr u = crr_insn->node;
2115 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2117 SCHED_TIME (u) = new_time;
2118 crr_insn->cycle = new_time;
2119 SCHED_ROW (u) = new_time % new_ii;
2120 SCHED_STAGE (u) = new_time / new_ii;
2124 /* Updating ps. */
2125 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2126 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2127 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2128 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2129 free (ps->rows);
2130 ps->rows = rows_new;
2131 free (ps->rows_length);
2132 ps->rows_length = rows_length_new;
2133 ps->ii = new_ii;
2134 gcc_assert (ps->min_cycle >= 0);
2136 verify_partial_schedule (ps, sched_nodes);
2138 if (dump_file)
2139 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2140 ps->max_cycle);
2143 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2144 UP which are the boundaries of it's scheduling window; compute using
2145 SCHED_NODES and II a row in the partial schedule that can be split
2146 which will separate a critical predecessor from a critical successor
2147 thereby expanding the window, and return it. */
2148 static int
2149 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2150 ddg_node_ptr u_node)
2152 ddg_edge_ptr e;
2153 int lower = INT_MIN, upper = INT_MAX;
2154 ddg_node_ptr crit_pred = NULL;
2155 ddg_node_ptr crit_succ = NULL;
2156 int crit_cycle;
2158 for (e = u_node->in; e != 0; e = e->next_in)
2160 ddg_node_ptr v_node = e->src;
2162 if (TEST_BIT (sched_nodes, v_node->cuid)
2163 && (low == SCHED_TIME (v_node) + e->latency - (e->distance * ii)))
2164 if (SCHED_TIME (v_node) > lower)
2166 crit_pred = v_node;
2167 lower = SCHED_TIME (v_node);
2171 if (crit_pred != NULL)
2173 crit_cycle = SCHED_TIME (crit_pred) + 1;
2174 return SMODULO (crit_cycle, ii);
2177 for (e = u_node->out; e != 0; e = e->next_out)
2179 ddg_node_ptr v_node = e->dest;
2180 if (TEST_BIT (sched_nodes, v_node->cuid)
2181 && (up == SCHED_TIME (v_node) - e->latency + (e->distance * ii)))
2182 if (SCHED_TIME (v_node) < upper)
2184 crit_succ = v_node;
2185 upper = SCHED_TIME (v_node);
2189 if (crit_succ != NULL)
2191 crit_cycle = SCHED_TIME (crit_succ);
2192 return SMODULO (crit_cycle, ii);
2195 if (dump_file)
2196 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2198 return SMODULO ((low + up + 1) / 2, ii);
2201 static void
2202 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2204 int row;
2205 ps_insn_ptr crr_insn;
2207 for (row = 0; row < ps->ii; row++)
2209 int length = 0;
2211 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2213 ddg_node_ptr u = crr_insn->node;
2215 length++;
2216 gcc_assert (TEST_BIT (sched_nodes, u->cuid));
2217 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2218 popcount (sched_nodes) == number of insns in ps. */
2219 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2220 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2223 gcc_assert (ps->rows_length[row] == length);
2228 /* This page implements the algorithm for ordering the nodes of a DDG
2229 for modulo scheduling, activated through the
2230 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2232 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2233 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2234 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2235 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2236 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2237 #define DEPTH(x) (ASAP ((x)))
2239 typedef struct node_order_params * nopa;
2241 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2242 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2243 static nopa calculate_order_params (ddg_ptr, int, int *);
2244 static int find_max_asap (ddg_ptr, sbitmap);
2245 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2246 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2248 enum sms_direction {BOTTOMUP, TOPDOWN};
2250 struct node_order_params
2252 int asap;
2253 int alap;
2254 int height;
2257 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2258 static void
2259 check_nodes_order (int *node_order, int num_nodes)
2261 int i;
2262 sbitmap tmp = sbitmap_alloc (num_nodes);
2264 sbitmap_zero (tmp);
2266 if (dump_file)
2267 fprintf (dump_file, "SMS final nodes order: \n");
2269 for (i = 0; i < num_nodes; i++)
2271 int u = node_order[i];
2273 if (dump_file)
2274 fprintf (dump_file, "%d ", u);
2275 gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
2277 SET_BIT (tmp, u);
2280 if (dump_file)
2281 fprintf (dump_file, "\n");
2283 sbitmap_free (tmp);
2286 /* Order the nodes of G for scheduling and pass the result in
2287 NODE_ORDER. Also set aux.count of each node to ASAP.
2288 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2289 static int
2290 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2292 int i;
2293 int rec_mii = 0;
2294 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2296 nopa nops = calculate_order_params (g, mii, pmax_asap);
2298 if (dump_file)
2299 print_sccs (dump_file, sccs, g);
2301 order_nodes_of_sccs (sccs, node_order);
2303 if (sccs->num_sccs > 0)
2304 /* First SCC has the largest recurrence_length. */
2305 rec_mii = sccs->sccs[0]->recurrence_length;
2307 /* Save ASAP before destroying node_order_params. */
2308 for (i = 0; i < g->num_nodes; i++)
2310 ddg_node_ptr v = &g->nodes[i];
2311 v->aux.count = ASAP (v);
2314 free (nops);
2315 free_ddg_all_sccs (sccs);
2316 check_nodes_order (node_order, g->num_nodes);
2318 return rec_mii;
2321 static void
2322 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2324 int i, pos = 0;
2325 ddg_ptr g = all_sccs->ddg;
2326 int num_nodes = g->num_nodes;
2327 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2328 sbitmap on_path = sbitmap_alloc (num_nodes);
2329 sbitmap tmp = sbitmap_alloc (num_nodes);
2330 sbitmap ones = sbitmap_alloc (num_nodes);
2332 sbitmap_zero (prev_sccs);
2333 sbitmap_ones (ones);
2335 /* Perform the node ordering starting from the SCC with the highest recMII.
2336 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2337 for (i = 0; i < all_sccs->num_sccs; i++)
2339 ddg_scc_ptr scc = all_sccs->sccs[i];
2341 /* Add nodes on paths from previous SCCs to the current SCC. */
2342 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2343 sbitmap_a_or_b (tmp, scc->nodes, on_path);
2345 /* Add nodes on paths from the current SCC to previous SCCs. */
2346 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2347 sbitmap_a_or_b (tmp, tmp, on_path);
2349 /* Remove nodes of previous SCCs from current extended SCC. */
2350 sbitmap_difference (tmp, tmp, prev_sccs);
2352 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2353 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2356 /* Handle the remaining nodes that do not belong to any scc. Each call
2357 to order_nodes_in_scc handles a single connected component. */
2358 while (pos < g->num_nodes)
2360 sbitmap_difference (tmp, ones, prev_sccs);
2361 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2363 sbitmap_free (prev_sccs);
2364 sbitmap_free (on_path);
2365 sbitmap_free (tmp);
2366 sbitmap_free (ones);
2369 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2370 static struct node_order_params *
2371 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2373 int u;
2374 int max_asap;
2375 int num_nodes = g->num_nodes;
2376 ddg_edge_ptr e;
2377 /* Allocate a place to hold ordering params for each node in the DDG. */
2378 nopa node_order_params_arr;
2380 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2381 node_order_params_arr = (nopa) xcalloc (num_nodes,
2382 sizeof (struct node_order_params));
2384 /* Set the aux pointer of each node to point to its order_params structure. */
2385 for (u = 0; u < num_nodes; u++)
2386 g->nodes[u].aux.info = &node_order_params_arr[u];
2388 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2389 calculate ASAP, ALAP, mobility, distance, and height for each node
2390 in the dependence (direct acyclic) graph. */
2392 /* We assume that the nodes in the array are in topological order. */
2394 max_asap = 0;
2395 for (u = 0; u < num_nodes; u++)
2397 ddg_node_ptr u_node = &g->nodes[u];
2399 ASAP (u_node) = 0;
2400 for (e = u_node->in; e; e = e->next_in)
2401 if (e->distance == 0)
2402 ASAP (u_node) = MAX (ASAP (u_node),
2403 ASAP (e->src) + e->latency);
2404 max_asap = MAX (max_asap, ASAP (u_node));
2407 for (u = num_nodes - 1; u > -1; u--)
2409 ddg_node_ptr u_node = &g->nodes[u];
2411 ALAP (u_node) = max_asap;
2412 HEIGHT (u_node) = 0;
2413 for (e = u_node->out; e; e = e->next_out)
2414 if (e->distance == 0)
2416 ALAP (u_node) = MIN (ALAP (u_node),
2417 ALAP (e->dest) - e->latency);
2418 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2419 HEIGHT (e->dest) + e->latency);
2422 if (dump_file)
2424 fprintf (dump_file, "\nOrder params\n");
2425 for (u = 0; u < num_nodes; u++)
2427 ddg_node_ptr u_node = &g->nodes[u];
2429 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2430 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2434 *pmax_asap = max_asap;
2435 return node_order_params_arr;
2438 static int
2439 find_max_asap (ddg_ptr g, sbitmap nodes)
2441 unsigned int u = 0;
2442 int max_asap = -1;
2443 int result = -1;
2444 sbitmap_iterator sbi;
2446 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2448 ddg_node_ptr u_node = &g->nodes[u];
2450 if (max_asap < ASAP (u_node))
2452 max_asap = ASAP (u_node);
2453 result = u;
2456 return result;
2459 static int
2460 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2462 unsigned int u = 0;
2463 int max_hv = -1;
2464 int min_mob = INT_MAX;
2465 int result = -1;
2466 sbitmap_iterator sbi;
2468 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2470 ddg_node_ptr u_node = &g->nodes[u];
2472 if (max_hv < HEIGHT (u_node))
2474 max_hv = HEIGHT (u_node);
2475 min_mob = MOB (u_node);
2476 result = u;
2478 else if ((max_hv == HEIGHT (u_node))
2479 && (min_mob > MOB (u_node)))
2481 min_mob = MOB (u_node);
2482 result = u;
2485 return result;
2488 static int
2489 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2491 unsigned int u = 0;
2492 int max_dv = -1;
2493 int min_mob = INT_MAX;
2494 int result = -1;
2495 sbitmap_iterator sbi;
2497 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2499 ddg_node_ptr u_node = &g->nodes[u];
2501 if (max_dv < DEPTH (u_node))
2503 max_dv = DEPTH (u_node);
2504 min_mob = MOB (u_node);
2505 result = u;
2507 else if ((max_dv == DEPTH (u_node))
2508 && (min_mob > MOB (u_node)))
2510 min_mob = MOB (u_node);
2511 result = u;
2514 return result;
2517 /* Places the nodes of SCC into the NODE_ORDER array starting
2518 at position POS, according to the SMS ordering algorithm.
2519 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2520 the NODE_ORDER array, starting from position zero. */
2521 static int
2522 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2523 int * node_order, int pos)
2525 enum sms_direction dir;
2526 int num_nodes = g->num_nodes;
2527 sbitmap workset = sbitmap_alloc (num_nodes);
2528 sbitmap tmp = sbitmap_alloc (num_nodes);
2529 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2530 sbitmap predecessors = sbitmap_alloc (num_nodes);
2531 sbitmap successors = sbitmap_alloc (num_nodes);
2533 sbitmap_zero (predecessors);
2534 find_predecessors (predecessors, g, nodes_ordered);
2536 sbitmap_zero (successors);
2537 find_successors (successors, g, nodes_ordered);
2539 sbitmap_zero (tmp);
2540 if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
2542 sbitmap_copy (workset, tmp);
2543 dir = BOTTOMUP;
2545 else if (sbitmap_a_and_b_cg (tmp, successors, scc))
2547 sbitmap_copy (workset, tmp);
2548 dir = TOPDOWN;
2550 else
2552 int u;
2554 sbitmap_zero (workset);
2555 if ((u = find_max_asap (g, scc)) >= 0)
2556 SET_BIT (workset, u);
2557 dir = BOTTOMUP;
2560 sbitmap_zero (zero_bitmap);
2561 while (!sbitmap_equal (workset, zero_bitmap))
2563 int v;
2564 ddg_node_ptr v_node;
2565 sbitmap v_node_preds;
2566 sbitmap v_node_succs;
2568 if (dir == TOPDOWN)
2570 while (!sbitmap_equal (workset, zero_bitmap))
2572 v = find_max_hv_min_mob (g, workset);
2573 v_node = &g->nodes[v];
2574 node_order[pos++] = v;
2575 v_node_succs = NODE_SUCCESSORS (v_node);
2576 sbitmap_a_and_b (tmp, v_node_succs, scc);
2578 /* Don't consider the already ordered successors again. */
2579 sbitmap_difference (tmp, tmp, nodes_ordered);
2580 sbitmap_a_or_b (workset, workset, tmp);
2581 RESET_BIT (workset, v);
2582 SET_BIT (nodes_ordered, v);
2584 dir = BOTTOMUP;
2585 sbitmap_zero (predecessors);
2586 find_predecessors (predecessors, g, nodes_ordered);
2587 sbitmap_a_and_b (workset, predecessors, scc);
2589 else
2591 while (!sbitmap_equal (workset, zero_bitmap))
2593 v = find_max_dv_min_mob (g, workset);
2594 v_node = &g->nodes[v];
2595 node_order[pos++] = v;
2596 v_node_preds = NODE_PREDECESSORS (v_node);
2597 sbitmap_a_and_b (tmp, v_node_preds, scc);
2599 /* Don't consider the already ordered predecessors again. */
2600 sbitmap_difference (tmp, tmp, nodes_ordered);
2601 sbitmap_a_or_b (workset, workset, tmp);
2602 RESET_BIT (workset, v);
2603 SET_BIT (nodes_ordered, v);
2605 dir = TOPDOWN;
2606 sbitmap_zero (successors);
2607 find_successors (successors, g, nodes_ordered);
2608 sbitmap_a_and_b (workset, successors, scc);
2611 sbitmap_free (tmp);
2612 sbitmap_free (workset);
2613 sbitmap_free (zero_bitmap);
2614 sbitmap_free (predecessors);
2615 sbitmap_free (successors);
2616 return pos;
2620 /* This page contains functions for manipulating partial-schedules during
2621 modulo scheduling. */
2623 /* Create a partial schedule and allocate a memory to hold II rows. */
2625 static partial_schedule_ptr
2626 create_partial_schedule (int ii, ddg_ptr g, int history)
2628 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2629 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2630 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2631 ps->ii = ii;
2632 ps->history = history;
2633 ps->min_cycle = INT_MAX;
2634 ps->max_cycle = INT_MIN;
2635 ps->g = g;
2637 return ps;
2640 /* Free the PS_INSNs in rows array of the given partial schedule.
2641 ??? Consider caching the PS_INSN's. */
2642 static void
2643 free_ps_insns (partial_schedule_ptr ps)
2645 int i;
2647 for (i = 0; i < ps->ii; i++)
2649 while (ps->rows[i])
2651 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2653 free (ps->rows[i]);
2654 ps->rows[i] = ps_insn;
2656 ps->rows[i] = NULL;
2660 /* Free all the memory allocated to the partial schedule. */
2662 static void
2663 free_partial_schedule (partial_schedule_ptr ps)
2665 if (!ps)
2666 return;
2667 free_ps_insns (ps);
2668 free (ps->rows);
2669 free (ps->rows_length);
2670 free (ps);
2673 /* Clear the rows array with its PS_INSNs, and create a new one with
2674 NEW_II rows. */
2676 static void
2677 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2679 if (!ps)
2680 return;
2681 free_ps_insns (ps);
2682 if (new_ii == ps->ii)
2683 return;
2684 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2685 * sizeof (ps_insn_ptr));
2686 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2687 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2688 memset (ps->rows_length, 0, new_ii * sizeof (int));
2689 ps->ii = new_ii;
2690 ps->min_cycle = INT_MAX;
2691 ps->max_cycle = INT_MIN;
2694 /* Prints the partial schedule as an ii rows array, for each rows
2695 print the ids of the insns in it. */
2696 void
2697 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2699 int i;
2701 for (i = 0; i < ps->ii; i++)
2703 ps_insn_ptr ps_i = ps->rows[i];
2705 fprintf (dump, "\n[ROW %d ]: ", i);
2706 while (ps_i)
2708 if (JUMP_P (ps_i->node->insn))
2709 fprintf (dump, "%d (branch), ",
2710 INSN_UID (ps_i->node->insn));
2711 else
2712 fprintf (dump, "%d, ",
2713 INSN_UID (ps_i->node->insn));
2715 ps_i = ps_i->next_in_row;
2720 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2721 static ps_insn_ptr
2722 create_ps_insn (ddg_node_ptr node, int cycle)
2724 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2726 ps_i->node = node;
2727 ps_i->next_in_row = NULL;
2728 ps_i->prev_in_row = NULL;
2729 ps_i->cycle = cycle;
2731 return ps_i;
2735 /* Removes the given PS_INSN from the partial schedule. */
2736 static void
2737 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2739 int row;
2741 gcc_assert (ps && ps_i);
2743 row = SMODULO (ps_i->cycle, ps->ii);
2744 if (! ps_i->prev_in_row)
2746 gcc_assert (ps_i == ps->rows[row]);
2747 ps->rows[row] = ps_i->next_in_row;
2748 if (ps->rows[row])
2749 ps->rows[row]->prev_in_row = NULL;
2751 else
2753 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2754 if (ps_i->next_in_row)
2755 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2758 ps->rows_length[row] -= 1;
2759 free (ps_i);
2760 return;
2763 /* Unlike what literature describes for modulo scheduling (which focuses
2764 on VLIW machines) the order of the instructions inside a cycle is
2765 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2766 where the current instruction should go relative to the already
2767 scheduled instructions in the given cycle. Go over these
2768 instructions and find the first possible column to put it in. */
2769 static bool
2770 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2771 sbitmap must_precede, sbitmap must_follow)
2773 ps_insn_ptr next_ps_i;
2774 ps_insn_ptr first_must_follow = NULL;
2775 ps_insn_ptr last_must_precede = NULL;
2776 ps_insn_ptr last_in_row = NULL;
2777 int row;
2779 if (! ps_i)
2780 return false;
2782 row = SMODULO (ps_i->cycle, ps->ii);
2784 /* Find the first must follow and the last must precede
2785 and insert the node immediately after the must precede
2786 but make sure that it there is no must follow after it. */
2787 for (next_ps_i = ps->rows[row];
2788 next_ps_i;
2789 next_ps_i = next_ps_i->next_in_row)
2791 if (must_follow && TEST_BIT (must_follow, next_ps_i->node->cuid)
2792 && ! first_must_follow)
2793 first_must_follow = next_ps_i;
2794 if (must_precede && TEST_BIT (must_precede, next_ps_i->node->cuid))
2796 /* If we have already met a node that must follow, then
2797 there is no possible column. */
2798 if (first_must_follow)
2799 return false;
2800 else
2801 last_must_precede = next_ps_i;
2803 /* The closing branch must be the last in the row. */
2804 if (must_precede
2805 && TEST_BIT (must_precede, next_ps_i->node->cuid)
2806 && JUMP_P (next_ps_i->node->insn))
2807 return false;
2809 last_in_row = next_ps_i;
2812 /* The closing branch is scheduled as well. Make sure there is no
2813 dependent instruction after it as the branch should be the last
2814 instruction in the row. */
2815 if (JUMP_P (ps_i->node->insn))
2817 if (first_must_follow)
2818 return false;
2819 if (last_in_row)
2821 /* Make the branch the last in the row. New instructions
2822 will be inserted at the beginning of the row or after the
2823 last must_precede instruction thus the branch is guaranteed
2824 to remain the last instruction in the row. */
2825 last_in_row->next_in_row = ps_i;
2826 ps_i->prev_in_row = last_in_row;
2827 ps_i->next_in_row = NULL;
2829 else
2830 ps->rows[row] = ps_i;
2831 return true;
2834 /* Now insert the node after INSERT_AFTER_PSI. */
2836 if (! last_must_precede)
2838 ps_i->next_in_row = ps->rows[row];
2839 ps_i->prev_in_row = NULL;
2840 if (ps_i->next_in_row)
2841 ps_i->next_in_row->prev_in_row = ps_i;
2842 ps->rows[row] = ps_i;
2844 else
2846 ps_i->next_in_row = last_must_precede->next_in_row;
2847 last_must_precede->next_in_row = ps_i;
2848 ps_i->prev_in_row = last_must_precede;
2849 if (ps_i->next_in_row)
2850 ps_i->next_in_row->prev_in_row = ps_i;
2853 return true;
2856 /* Advances the PS_INSN one column in its current row; returns false
2857 in failure and true in success. Bit N is set in MUST_FOLLOW if
2858 the node with cuid N must be come after the node pointed to by
2859 PS_I when scheduled in the same cycle. */
2860 static int
2861 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2862 sbitmap must_follow)
2864 ps_insn_ptr prev, next;
2865 int row;
2866 ddg_node_ptr next_node;
2868 if (!ps || !ps_i)
2869 return false;
2871 row = SMODULO (ps_i->cycle, ps->ii);
2873 if (! ps_i->next_in_row)
2874 return false;
2876 next_node = ps_i->next_in_row->node;
2878 /* Check if next_in_row is dependent on ps_i, both having same sched
2879 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
2880 if (must_follow && TEST_BIT (must_follow, next_node->cuid))
2881 return false;
2883 /* Advance PS_I over its next_in_row in the doubly linked list. */
2884 prev = ps_i->prev_in_row;
2885 next = ps_i->next_in_row;
2887 if (ps_i == ps->rows[row])
2888 ps->rows[row] = next;
2890 ps_i->next_in_row = next->next_in_row;
2892 if (next->next_in_row)
2893 next->next_in_row->prev_in_row = ps_i;
2895 next->next_in_row = ps_i;
2896 ps_i->prev_in_row = next;
2898 next->prev_in_row = prev;
2899 if (prev)
2900 prev->next_in_row = next;
2902 return true;
2905 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
2906 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
2907 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
2908 before/after (respectively) the node pointed to by PS_I when scheduled
2909 in the same cycle. */
2910 static ps_insn_ptr
2911 add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
2912 sbitmap must_precede, sbitmap must_follow)
2914 ps_insn_ptr ps_i;
2915 int row = SMODULO (cycle, ps->ii);
2917 if (ps->rows_length[row] >= issue_rate)
2918 return NULL;
2920 ps_i = create_ps_insn (node, cycle);
2922 /* Finds and inserts PS_I according to MUST_FOLLOW and
2923 MUST_PRECEDE. */
2924 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
2926 free (ps_i);
2927 return NULL;
2930 ps->rows_length[row] += 1;
2931 return ps_i;
2934 /* Advance time one cycle. Assumes DFA is being used. */
2935 static void
2936 advance_one_cycle (void)
2938 if (targetm.sched.dfa_pre_cycle_insn)
2939 state_transition (curr_state,
2940 targetm.sched.dfa_pre_cycle_insn ());
2942 state_transition (curr_state, NULL);
2944 if (targetm.sched.dfa_post_cycle_insn)
2945 state_transition (curr_state,
2946 targetm.sched.dfa_post_cycle_insn ());
2951 /* Checks if PS has resource conflicts according to DFA, starting from
2952 FROM cycle to TO cycle; returns true if there are conflicts and false
2953 if there are no conflicts. Assumes DFA is being used. */
2954 static int
2955 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
2957 int cycle;
2959 state_reset (curr_state);
2961 for (cycle = from; cycle <= to; cycle++)
2963 ps_insn_ptr crr_insn;
2964 /* Holds the remaining issue slots in the current row. */
2965 int can_issue_more = issue_rate;
2967 /* Walk through the DFA for the current row. */
2968 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
2969 crr_insn;
2970 crr_insn = crr_insn->next_in_row)
2972 rtx insn = crr_insn->node->insn;
2974 if (!NONDEBUG_INSN_P (insn))
2975 continue;
2977 /* Check if there is room for the current insn. */
2978 if (!can_issue_more || state_dead_lock_p (curr_state))
2979 return true;
2981 /* Update the DFA state and return with failure if the DFA found
2982 resource conflicts. */
2983 if (state_transition (curr_state, insn) >= 0)
2984 return true;
2986 if (targetm.sched.variable_issue)
2987 can_issue_more =
2988 targetm.sched.variable_issue (sched_dump, sched_verbose,
2989 insn, can_issue_more);
2990 /* A naked CLOBBER or USE generates no instruction, so don't
2991 let them consume issue slots. */
2992 else if (GET_CODE (PATTERN (insn)) != USE
2993 && GET_CODE (PATTERN (insn)) != CLOBBER)
2994 can_issue_more--;
2997 /* Advance the DFA to the next cycle. */
2998 advance_one_cycle ();
3000 return false;
3003 /* Checks if the given node causes resource conflicts when added to PS at
3004 cycle C. If not the node is added to PS and returned; otherwise zero
3005 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3006 cuid N must be come before/after (respectively) the node pointed to by
3007 PS_I when scheduled in the same cycle. */
3008 ps_insn_ptr
3009 ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
3010 int c, sbitmap must_precede,
3011 sbitmap must_follow)
3013 int has_conflicts = 0;
3014 ps_insn_ptr ps_i;
3016 /* First add the node to the PS, if this succeeds check for
3017 conflicts, trying different issue slots in the same row. */
3018 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3019 return NULL; /* Failed to insert the node at the given cycle. */
3021 has_conflicts = ps_has_conflicts (ps, c, c)
3022 || (ps->history > 0
3023 && ps_has_conflicts (ps,
3024 c - ps->history,
3025 c + ps->history));
3027 /* Try different issue slots to find one that the given node can be
3028 scheduled in without conflicts. */
3029 while (has_conflicts)
3031 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3032 break;
3033 has_conflicts = ps_has_conflicts (ps, c, c)
3034 || (ps->history > 0
3035 && ps_has_conflicts (ps,
3036 c - ps->history,
3037 c + ps->history));
3040 if (has_conflicts)
3042 remove_node_from_ps (ps, ps_i);
3043 return NULL;
3046 ps->min_cycle = MIN (ps->min_cycle, c);
3047 ps->max_cycle = MAX (ps->max_cycle, c);
3048 return ps_i;
3051 /* Calculate the stage count of the partial schedule PS. The calculation
3052 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3054 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3056 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3057 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3058 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3060 /* The calculation of stage count is done adding the number of stages
3061 before cycle zero and after cycle zero. */
3062 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3064 return stage_count;
3067 /* Rotate the rows of PS such that insns scheduled at time
3068 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3069 void
3070 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3072 int i, row, backward_rotates;
3073 int last_row = ps->ii - 1;
3075 if (start_cycle == 0)
3076 return;
3078 backward_rotates = SMODULO (start_cycle, ps->ii);
3080 /* Revisit later and optimize this into a single loop. */
3081 for (i = 0; i < backward_rotates; i++)
3083 ps_insn_ptr first_row = ps->rows[0];
3084 int first_row_length = ps->rows_length[0];
3086 for (row = 0; row < last_row; row++)
3088 ps->rows[row] = ps->rows[row + 1];
3089 ps->rows_length[row] = ps->rows_length[row + 1];
3092 ps->rows[last_row] = first_row;
3093 ps->rows_length[last_row] = first_row_length;
3096 ps->max_cycle -= start_cycle;
3097 ps->min_cycle -= start_cycle;
3100 #endif /* INSN_SCHEDULING */
3102 static bool
3103 gate_handle_sms (void)
3105 return (optimize > 0 && flag_modulo_sched);
3109 /* Run instruction scheduler. */
3110 /* Perform SMS module scheduling. */
3111 static unsigned int
3112 rest_of_handle_sms (void)
3114 #ifdef INSN_SCHEDULING
3115 basic_block bb;
3117 /* Collect loop information to be used in SMS. */
3118 cfg_layout_initialize (0);
3119 sms_schedule ();
3121 /* Update the life information, because we add pseudos. */
3122 max_regno = max_reg_num ();
3124 /* Finalize layout changes. */
3125 FOR_EACH_BB (bb)
3126 if (bb->next_bb != EXIT_BLOCK_PTR)
3127 bb->aux = bb->next_bb;
3128 free_dominance_info (CDI_DOMINATORS);
3129 cfg_layout_finalize ();
3130 #endif /* INSN_SCHEDULING */
3131 return 0;
3134 struct rtl_opt_pass pass_sms =
3137 RTL_PASS,
3138 "sms", /* name */
3139 gate_handle_sms, /* gate */
3140 rest_of_handle_sms, /* execute */
3141 NULL, /* sub */
3142 NULL, /* next */
3143 0, /* static_pass_number */
3144 TV_SMS, /* tv_id */
3145 0, /* properties_required */
3146 0, /* properties_provided */
3147 0, /* properties_destroyed */
3148 0, /* todo_flags_start */
3149 TODO_df_finish
3150 | TODO_verify_flow
3151 | TODO_verify_rtl_sharing
3152 | TODO_ggc_collect /* todo_flags_finish */