Daily bump.
[official-gcc.git] / libgfortran / intrinsics / c99_functions.c
blob03bcbfedaa642de6c3633115979f5282b602ef10
1 /* Implementation of various C99 functions
2 Copyright (C) 2004, 2009 Free Software Foundation, Inc.
4 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6 Libgfortran is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public
8 License as published by the Free Software Foundation; either
9 version 3 of the License, or (at your option) any later version.
11 Libgfortran is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 #include "config.h"
27 #define C99_PROTOS_H WE_DONT_WANT_PROTOS_NOW
28 #include "libgfortran.h"
30 /* IRIX's <math.h> declares a non-C99 compliant implementation of cabs,
31 which takes two floating point arguments instead of a single complex.
32 If <complex.h> is missing this prevents building of c99_functions.c.
33 To work around this we redirect cabs{,f,l} calls to __gfc_cabs{,f,l}. */
35 #if defined(__sgi__) && !defined(HAVE_COMPLEX_H)
36 #undef HAVE_CABS
37 #undef HAVE_CABSF
38 #undef HAVE_CABSL
39 #define cabs __gfc_cabs
40 #define cabsf __gfc_cabsf
41 #define cabsl __gfc_cabsl
42 #endif
44 /* Tru64's <math.h> declares a non-C99 compliant implementation of cabs,
45 which takes two floating point arguments instead of a single complex.
46 To work around this we redirect cabs{,f,l} calls to __gfc_cabs{,f,l}. */
48 #ifdef __osf__
49 #undef HAVE_CABS
50 #undef HAVE_CABSF
51 #undef HAVE_CABSL
52 #define cabs __gfc_cabs
53 #define cabsf __gfc_cabsf
54 #define cabsl __gfc_cabsl
55 #endif
57 /* On a C99 system "I" (with I*I = -1) should be defined in complex.h;
58 if not, we define a fallback version here. */
59 #ifndef I
60 # if defined(_Imaginary_I)
61 # define I _Imaginary_I
62 # elif defined(_Complex_I)
63 # define I _Complex_I
64 # else
65 # define I (1.0fi)
66 # endif
67 #endif
69 /* Prototypes are included to silence -Wstrict-prototypes
70 -Wmissing-prototypes. */
73 /* Wrappers for systems without the various C99 single precision Bessel
74 functions. */
76 #if defined(HAVE_J0) && ! defined(HAVE_J0F)
77 #define HAVE_J0F 1
78 float j0f (float);
80 float
81 j0f (float x)
83 return (float) j0 ((double) x);
85 #endif
87 #if defined(HAVE_J1) && !defined(HAVE_J1F)
88 #define HAVE_J1F 1
89 float j1f (float);
91 float j1f (float x)
93 return (float) j1 ((double) x);
95 #endif
97 #if defined(HAVE_JN) && !defined(HAVE_JNF)
98 #define HAVE_JNF 1
99 float jnf (int, float);
101 float
102 jnf (int n, float x)
104 return (float) jn (n, (double) x);
106 #endif
108 #if defined(HAVE_Y0) && !defined(HAVE_Y0F)
109 #define HAVE_Y0F 1
110 float y0f (float);
112 float
113 y0f (float x)
115 return (float) y0 ((double) x);
117 #endif
119 #if defined(HAVE_Y1) && !defined(HAVE_Y1F)
120 #define HAVE_Y1F 1
121 float y1f (float);
123 float
124 y1f (float x)
126 return (float) y1 ((double) x);
128 #endif
130 #if defined(HAVE_YN) && !defined(HAVE_YNF)
131 #define HAVE_YNF 1
132 float ynf (int, float);
134 float
135 ynf (int n, float x)
137 return (float) yn (n, (double) x);
139 #endif
142 /* Wrappers for systems without the C99 erff() and erfcf() functions. */
144 #if defined(HAVE_ERF) && !defined(HAVE_ERFF)
145 #define HAVE_ERFF 1
146 float erff (float);
148 float
149 erff (float x)
151 return (float) erf ((double) x);
153 #endif
155 #if defined(HAVE_ERFC) && !defined(HAVE_ERFCF)
156 #define HAVE_ERFCF 1
157 float erfcf (float);
159 float
160 erfcf (float x)
162 return (float) erfc ((double) x);
164 #endif
167 #ifndef HAVE_ACOSF
168 #define HAVE_ACOSF 1
169 float acosf (float x);
171 float
172 acosf (float x)
174 return (float) acos (x);
176 #endif
178 #if HAVE_ACOSH && !HAVE_ACOSHF
179 float acoshf (float x);
181 float
182 acoshf (float x)
184 return (float) acosh ((double) x);
186 #endif
188 #ifndef HAVE_ASINF
189 #define HAVE_ASINF 1
190 float asinf (float x);
192 float
193 asinf (float x)
195 return (float) asin (x);
197 #endif
199 #if HAVE_ASINH && !HAVE_ASINHF
200 float asinhf (float x);
202 float
203 asinhf (float x)
205 return (float) asinh ((double) x);
207 #endif
209 #ifndef HAVE_ATAN2F
210 #define HAVE_ATAN2F 1
211 float atan2f (float y, float x);
213 float
214 atan2f (float y, float x)
216 return (float) atan2 (y, x);
218 #endif
220 #ifndef HAVE_ATANF
221 #define HAVE_ATANF 1
222 float atanf (float x);
224 float
225 atanf (float x)
227 return (float) atan (x);
229 #endif
231 #if HAVE_ATANH && !HAVE_ATANHF
232 float atanhf (float x);
234 float
235 atanhf (float x)
237 return (float) atanh ((double) x);
239 #endif
241 #ifndef HAVE_CEILF
242 #define HAVE_CEILF 1
243 float ceilf (float x);
245 float
246 ceilf (float x)
248 return (float) ceil (x);
250 #endif
252 #ifndef HAVE_COPYSIGNF
253 #define HAVE_COPYSIGNF 1
254 float copysignf (float x, float y);
256 float
257 copysignf (float x, float y)
259 return (float) copysign (x, y);
261 #endif
263 #ifndef HAVE_COSF
264 #define HAVE_COSF 1
265 float cosf (float x);
267 float
268 cosf (float x)
270 return (float) cos (x);
272 #endif
274 #ifndef HAVE_COSHF
275 #define HAVE_COSHF 1
276 float coshf (float x);
278 float
279 coshf (float x)
281 return (float) cosh (x);
283 #endif
285 #ifndef HAVE_EXPF
286 #define HAVE_EXPF 1
287 float expf (float x);
289 float
290 expf (float x)
292 return (float) exp (x);
294 #endif
296 #ifndef HAVE_FABSF
297 #define HAVE_FABSF 1
298 float fabsf (float x);
300 float
301 fabsf (float x)
303 return (float) fabs (x);
305 #endif
307 #ifndef HAVE_FLOORF
308 #define HAVE_FLOORF 1
309 float floorf (float x);
311 float
312 floorf (float x)
314 return (float) floor (x);
316 #endif
318 #ifndef HAVE_FMODF
319 #define HAVE_FMODF 1
320 float fmodf (float x, float y);
322 float
323 fmodf (float x, float y)
325 return (float) fmod (x, y);
327 #endif
329 #ifndef HAVE_FREXPF
330 #define HAVE_FREXPF 1
331 float frexpf (float x, int *exp);
333 float
334 frexpf (float x, int *exp)
336 return (float) frexp (x, exp);
338 #endif
340 #ifndef HAVE_HYPOTF
341 #define HAVE_HYPOTF 1
342 float hypotf (float x, float y);
344 float
345 hypotf (float x, float y)
347 return (float) hypot (x, y);
349 #endif
351 #ifndef HAVE_LOGF
352 #define HAVE_LOGF 1
353 float logf (float x);
355 float
356 logf (float x)
358 return (float) log (x);
360 #endif
362 #ifndef HAVE_LOG10F
363 #define HAVE_LOG10F 1
364 float log10f (float x);
366 float
367 log10f (float x)
369 return (float) log10 (x);
371 #endif
373 #ifndef HAVE_SCALBN
374 #define HAVE_SCALBN 1
375 double scalbn (double x, int y);
377 double
378 scalbn (double x, int y)
380 #if (FLT_RADIX == 2) && defined(HAVE_LDEXP)
381 return ldexp (x, y);
382 #else
383 return x * pow (FLT_RADIX, y);
384 #endif
386 #endif
388 #ifndef HAVE_SCALBNF
389 #define HAVE_SCALBNF 1
390 float scalbnf (float x, int y);
392 float
393 scalbnf (float x, int y)
395 return (float) scalbn (x, y);
397 #endif
399 #ifndef HAVE_SINF
400 #define HAVE_SINF 1
401 float sinf (float x);
403 float
404 sinf (float x)
406 return (float) sin (x);
408 #endif
410 #ifndef HAVE_SINHF
411 #define HAVE_SINHF 1
412 float sinhf (float x);
414 float
415 sinhf (float x)
417 return (float) sinh (x);
419 #endif
421 #ifndef HAVE_SQRTF
422 #define HAVE_SQRTF 1
423 float sqrtf (float x);
425 float
426 sqrtf (float x)
428 return (float) sqrt (x);
430 #endif
432 #ifndef HAVE_TANF
433 #define HAVE_TANF 1
434 float tanf (float x);
436 float
437 tanf (float x)
439 return (float) tan (x);
441 #endif
443 #ifndef HAVE_TANHF
444 #define HAVE_TANHF 1
445 float tanhf (float x);
447 float
448 tanhf (float x)
450 return (float) tanh (x);
452 #endif
454 #ifndef HAVE_TRUNC
455 #define HAVE_TRUNC 1
456 double trunc (double x);
458 double
459 trunc (double x)
461 if (!isfinite (x))
462 return x;
464 if (x < 0.0)
465 return - floor (-x);
466 else
467 return floor (x);
469 #endif
471 #ifndef HAVE_TRUNCF
472 #define HAVE_TRUNCF 1
473 float truncf (float x);
475 float
476 truncf (float x)
478 return (float) trunc (x);
480 #endif
482 #ifndef HAVE_NEXTAFTERF
483 #define HAVE_NEXTAFTERF 1
484 /* This is a portable implementation of nextafterf that is intended to be
485 independent of the floating point format or its in memory representation.
486 This implementation works correctly with denormalized values. */
487 float nextafterf (float x, float y);
489 float
490 nextafterf (float x, float y)
492 /* This variable is marked volatile to avoid excess precision problems
493 on some platforms, including IA-32. */
494 volatile float delta;
495 float absx, denorm_min;
497 if (isnan (x) || isnan (y))
498 return x + y;
499 if (x == y)
500 return x;
501 if (!isfinite (x))
502 return x > 0 ? __FLT_MAX__ : - __FLT_MAX__;
504 /* absx = fabsf (x); */
505 absx = (x < 0.0) ? -x : x;
507 /* __FLT_DENORM_MIN__ is non-zero iff the target supports denormals. */
508 if (__FLT_DENORM_MIN__ == 0.0f)
509 denorm_min = __FLT_MIN__;
510 else
511 denorm_min = __FLT_DENORM_MIN__;
513 if (absx < __FLT_MIN__)
514 delta = denorm_min;
515 else
517 float frac;
518 int exp;
520 /* Discard the fraction from x. */
521 frac = frexpf (absx, &exp);
522 delta = scalbnf (0.5f, exp);
524 /* Scale x by the epsilon of the representation. By rights we should
525 have been able to combine this with scalbnf, but some targets don't
526 get that correct with denormals. */
527 delta *= __FLT_EPSILON__;
529 /* If we're going to be reducing the absolute value of X, and doing so
530 would reduce the exponent of X, then the delta to be applied is
531 one exponent smaller. */
532 if (frac == 0.5f && (y < x) == (x > 0))
533 delta *= 0.5f;
535 /* If that underflows to zero, then we're back to the minimum. */
536 if (delta == 0.0f)
537 delta = denorm_min;
540 if (y < x)
541 delta = -delta;
543 return x + delta;
545 #endif
548 #if !defined(HAVE_POWF) || defined(HAVE_BROKEN_POWF)
549 #ifndef HAVE_POWF
550 #define HAVE_POWF 1
551 #endif
552 float powf (float x, float y);
554 float
555 powf (float x, float y)
557 return (float) pow (x, y);
559 #endif
561 /* Note that if fpclassify is not defined, then NaN is not handled */
563 /* Algorithm by Steven G. Kargl. */
565 #if !defined(HAVE_ROUNDL)
566 #define HAVE_ROUNDL 1
567 long double roundl (long double x);
569 #if defined(HAVE_CEILL)
570 /* Round to nearest integral value. If the argument is halfway between two
571 integral values then round away from zero. */
573 long double
574 roundl (long double x)
576 long double t;
577 if (!isfinite (x))
578 return (x);
580 if (x >= 0.0)
582 t = ceill (x);
583 if (t - x > 0.5)
584 t -= 1.0;
585 return (t);
587 else
589 t = ceill (-x);
590 if (t + x > 0.5)
591 t -= 1.0;
592 return (-t);
595 #else
597 /* Poor version of roundl for system that don't have ceill. */
598 long double
599 roundl (long double x)
601 if (x > DBL_MAX || x < -DBL_MAX)
603 #ifdef HAVE_NEXTAFTERL
604 static long double prechalf = nexafterl (0.5L, LDBL_MAX);
605 #else
606 static long double prechalf = 0.5L;
607 #endif
608 return (GFC_INTEGER_LARGEST) (x + (x > 0 ? prechalf : -prechalf));
610 else
611 /* Use round(). */
612 return round ((double) x);
615 #endif
616 #endif
618 #ifndef HAVE_ROUND
619 #define HAVE_ROUND 1
620 /* Round to nearest integral value. If the argument is halfway between two
621 integral values then round away from zero. */
622 double round (double x);
624 double
625 round (double x)
627 double t;
628 if (!isfinite (x))
629 return (x);
631 if (x >= 0.0)
633 t = floor (x);
634 if (t - x <= -0.5)
635 t += 1.0;
636 return (t);
638 else
640 t = floor (-x);
641 if (t + x <= -0.5)
642 t += 1.0;
643 return (-t);
646 #endif
648 #ifndef HAVE_ROUNDF
649 #define HAVE_ROUNDF 1
650 /* Round to nearest integral value. If the argument is halfway between two
651 integral values then round away from zero. */
652 float roundf (float x);
654 float
655 roundf (float x)
657 float t;
658 if (!isfinite (x))
659 return (x);
661 if (x >= 0.0)
663 t = floorf (x);
664 if (t - x <= -0.5)
665 t += 1.0;
666 return (t);
668 else
670 t = floorf (-x);
671 if (t + x <= -0.5)
672 t += 1.0;
673 return (-t);
676 #endif
679 /* lround{f,,l} and llround{f,,l} functions. */
681 #if !defined(HAVE_LROUNDF) && defined(HAVE_ROUNDF)
682 #define HAVE_LROUNDF 1
683 long int lroundf (float x);
685 long int
686 lroundf (float x)
688 return (long int) roundf (x);
690 #endif
692 #if !defined(HAVE_LROUND) && defined(HAVE_ROUND)
693 #define HAVE_LROUND 1
694 long int lround (double x);
696 long int
697 lround (double x)
699 return (long int) round (x);
701 #endif
703 #if !defined(HAVE_LROUNDL) && defined(HAVE_ROUNDL)
704 #define HAVE_LROUNDL 1
705 long int lroundl (long double x);
707 long int
708 lroundl (long double x)
710 return (long long int) roundl (x);
712 #endif
714 #if !defined(HAVE_LLROUNDF) && defined(HAVE_ROUNDF)
715 #define HAVE_LLROUNDF 1
716 long long int llroundf (float x);
718 long long int
719 llroundf (float x)
721 return (long long int) roundf (x);
723 #endif
725 #if !defined(HAVE_LLROUND) && defined(HAVE_ROUND)
726 #define HAVE_LLROUND 1
727 long long int llround (double x);
729 long long int
730 llround (double x)
732 return (long long int) round (x);
734 #endif
736 #if !defined(HAVE_LLROUNDL) && defined(HAVE_ROUNDL)
737 #define HAVE_LLROUNDL 1
738 long long int llroundl (long double x);
740 long long int
741 llroundl (long double x)
743 return (long long int) roundl (x);
745 #endif
748 #ifndef HAVE_LOG10L
749 #define HAVE_LOG10L 1
750 /* log10 function for long double variables. The version provided here
751 reduces the argument until it fits into a double, then use log10. */
752 long double log10l (long double x);
754 long double
755 log10l (long double x)
757 #if LDBL_MAX_EXP > DBL_MAX_EXP
758 if (x > DBL_MAX)
760 double val;
761 int p2_result = 0;
762 if (x > 0x1p16383L) { p2_result += 16383; x /= 0x1p16383L; }
763 if (x > 0x1p8191L) { p2_result += 8191; x /= 0x1p8191L; }
764 if (x > 0x1p4095L) { p2_result += 4095; x /= 0x1p4095L; }
765 if (x > 0x1p2047L) { p2_result += 2047; x /= 0x1p2047L; }
766 if (x > 0x1p1023L) { p2_result += 1023; x /= 0x1p1023L; }
767 val = log10 ((double) x);
768 return (val + p2_result * .30102999566398119521373889472449302L);
770 #endif
771 #if LDBL_MIN_EXP < DBL_MIN_EXP
772 if (x < DBL_MIN)
774 double val;
775 int p2_result = 0;
776 if (x < 0x1p-16380L) { p2_result += 16380; x /= 0x1p-16380L; }
777 if (x < 0x1p-8189L) { p2_result += 8189; x /= 0x1p-8189L; }
778 if (x < 0x1p-4093L) { p2_result += 4093; x /= 0x1p-4093L; }
779 if (x < 0x1p-2045L) { p2_result += 2045; x /= 0x1p-2045L; }
780 if (x < 0x1p-1021L) { p2_result += 1021; x /= 0x1p-1021L; }
781 val = fabs (log10 ((double) x));
782 return (- val - p2_result * .30102999566398119521373889472449302L);
784 #endif
785 return log10 (x);
787 #endif
790 #ifndef HAVE_FLOORL
791 #define HAVE_FLOORL 1
792 long double floorl (long double x);
794 long double
795 floorl (long double x)
797 /* Zero, possibly signed. */
798 if (x == 0)
799 return x;
801 /* Large magnitude. */
802 if (x > DBL_MAX || x < (-DBL_MAX))
803 return x;
805 /* Small positive values. */
806 if (x >= 0 && x < DBL_MIN)
807 return 0;
809 /* Small negative values. */
810 if (x < 0 && x > (-DBL_MIN))
811 return -1;
813 return floor (x);
815 #endif
818 #ifndef HAVE_FMODL
819 #define HAVE_FMODL 1
820 long double fmodl (long double x, long double y);
822 long double
823 fmodl (long double x, long double y)
825 if (y == 0.0L)
826 return 0.0L;
828 /* Need to check that the result has the same sign as x and magnitude
829 less than the magnitude of y. */
830 return x - floorl (x / y) * y;
832 #endif
835 #if !defined(HAVE_CABSF)
836 #define HAVE_CABSF 1
837 float cabsf (float complex z);
839 float
840 cabsf (float complex z)
842 return hypotf (REALPART (z), IMAGPART (z));
844 #endif
846 #if !defined(HAVE_CABS)
847 #define HAVE_CABS 1
848 double cabs (double complex z);
850 double
851 cabs (double complex z)
853 return hypot (REALPART (z), IMAGPART (z));
855 #endif
857 #if !defined(HAVE_CABSL) && defined(HAVE_HYPOTL)
858 #define HAVE_CABSL 1
859 long double cabsl (long double complex z);
861 long double
862 cabsl (long double complex z)
864 return hypotl (REALPART (z), IMAGPART (z));
866 #endif
869 #if !defined(HAVE_CARGF)
870 #define HAVE_CARGF 1
871 float cargf (float complex z);
873 float
874 cargf (float complex z)
876 return atan2f (IMAGPART (z), REALPART (z));
878 #endif
880 #if !defined(HAVE_CARG)
881 #define HAVE_CARG 1
882 double carg (double complex z);
884 double
885 carg (double complex z)
887 return atan2 (IMAGPART (z), REALPART (z));
889 #endif
891 #if !defined(HAVE_CARGL) && defined(HAVE_ATAN2L)
892 #define HAVE_CARGL 1
893 long double cargl (long double complex z);
895 long double
896 cargl (long double complex z)
898 return atan2l (IMAGPART (z), REALPART (z));
900 #endif
903 /* exp(z) = exp(a)*(cos(b) + i sin(b)) */
904 #if !defined(HAVE_CEXPF)
905 #define HAVE_CEXPF 1
906 float complex cexpf (float complex z);
908 float complex
909 cexpf (float complex z)
911 float a, b;
912 float complex v;
914 a = REALPART (z);
915 b = IMAGPART (z);
916 COMPLEX_ASSIGN (v, cosf (b), sinf (b));
917 return expf (a) * v;
919 #endif
921 #if !defined(HAVE_CEXP)
922 #define HAVE_CEXP 1
923 double complex cexp (double complex z);
925 double complex
926 cexp (double complex z)
928 double a, b;
929 double complex v;
931 a = REALPART (z);
932 b = IMAGPART (z);
933 COMPLEX_ASSIGN (v, cos (b), sin (b));
934 return exp (a) * v;
936 #endif
938 #if !defined(HAVE_CEXPL) && defined(HAVE_COSL) && defined(HAVE_SINL) && defined(EXPL)
939 #define HAVE_CEXPL 1
940 long double complex cexpl (long double complex z);
942 long double complex
943 cexpl (long double complex z)
945 long double a, b;
946 long double complex v;
948 a = REALPART (z);
949 b = IMAGPART (z);
950 COMPLEX_ASSIGN (v, cosl (b), sinl (b));
951 return expl (a) * v;
953 #endif
956 /* log(z) = log (cabs(z)) + i*carg(z) */
957 #if !defined(HAVE_CLOGF)
958 #define HAVE_CLOGF 1
959 float complex clogf (float complex z);
961 float complex
962 clogf (float complex z)
964 float complex v;
966 COMPLEX_ASSIGN (v, logf (cabsf (z)), cargf (z));
967 return v;
969 #endif
971 #if !defined(HAVE_CLOG)
972 #define HAVE_CLOG 1
973 double complex clog (double complex z);
975 double complex
976 clog (double complex z)
978 double complex v;
980 COMPLEX_ASSIGN (v, log (cabs (z)), carg (z));
981 return v;
983 #endif
985 #if !defined(HAVE_CLOGL) && defined(HAVE_LOGL) && defined(HAVE_CABSL) && defined(HAVE_CARGL)
986 #define HAVE_CLOGL 1
987 long double complex clogl (long double complex z);
989 long double complex
990 clogl (long double complex z)
992 long double complex v;
994 COMPLEX_ASSIGN (v, logl (cabsl (z)), cargl (z));
995 return v;
997 #endif
1000 /* log10(z) = log10 (cabs(z)) + i*carg(z) */
1001 #if !defined(HAVE_CLOG10F)
1002 #define HAVE_CLOG10F 1
1003 float complex clog10f (float complex z);
1005 float complex
1006 clog10f (float complex z)
1008 float complex v;
1010 COMPLEX_ASSIGN (v, log10f (cabsf (z)), cargf (z));
1011 return v;
1013 #endif
1015 #if !defined(HAVE_CLOG10)
1016 #define HAVE_CLOG10 1
1017 double complex clog10 (double complex z);
1019 double complex
1020 clog10 (double complex z)
1022 double complex v;
1024 COMPLEX_ASSIGN (v, log10 (cabs (z)), carg (z));
1025 return v;
1027 #endif
1029 #if !defined(HAVE_CLOG10L) && defined(HAVE_LOG10L) && defined(HAVE_CABSL) && defined(HAVE_CARGL)
1030 #define HAVE_CLOG10L 1
1031 long double complex clog10l (long double complex z);
1033 long double complex
1034 clog10l (long double complex z)
1036 long double complex v;
1038 COMPLEX_ASSIGN (v, log10l (cabsl (z)), cargl (z));
1039 return v;
1041 #endif
1044 /* pow(base, power) = cexp (power * clog (base)) */
1045 #if !defined(HAVE_CPOWF)
1046 #define HAVE_CPOWF 1
1047 float complex cpowf (float complex base, float complex power);
1049 float complex
1050 cpowf (float complex base, float complex power)
1052 return cexpf (power * clogf (base));
1054 #endif
1056 #if !defined(HAVE_CPOW)
1057 #define HAVE_CPOW 1
1058 double complex cpow (double complex base, double complex power);
1060 double complex
1061 cpow (double complex base, double complex power)
1063 return cexp (power * clog (base));
1065 #endif
1067 #if !defined(HAVE_CPOWL) && defined(HAVE_CEXPL) && defined(HAVE_CLOGL)
1068 #define HAVE_CPOWL 1
1069 long double complex cpowl (long double complex base, long double complex power);
1071 long double complex
1072 cpowl (long double complex base, long double complex power)
1074 return cexpl (power * clogl (base));
1076 #endif
1079 /* sqrt(z). Algorithm pulled from glibc. */
1080 #if !defined(HAVE_CSQRTF)
1081 #define HAVE_CSQRTF 1
1082 float complex csqrtf (float complex z);
1084 float complex
1085 csqrtf (float complex z)
1087 float re, im;
1088 float complex v;
1090 re = REALPART (z);
1091 im = IMAGPART (z);
1092 if (im == 0)
1094 if (re < 0)
1096 COMPLEX_ASSIGN (v, 0, copysignf (sqrtf (-re), im));
1098 else
1100 COMPLEX_ASSIGN (v, fabsf (sqrtf (re)), copysignf (0, im));
1103 else if (re == 0)
1105 float r;
1107 r = sqrtf (0.5 * fabsf (im));
1109 COMPLEX_ASSIGN (v, r, copysignf (r, im));
1111 else
1113 float d, r, s;
1115 d = hypotf (re, im);
1116 /* Use the identity 2 Re res Im res = Im x
1117 to avoid cancellation error in d +/- Re x. */
1118 if (re > 0)
1120 r = sqrtf (0.5 * d + 0.5 * re);
1121 s = (0.5 * im) / r;
1123 else
1125 s = sqrtf (0.5 * d - 0.5 * re);
1126 r = fabsf ((0.5 * im) / s);
1129 COMPLEX_ASSIGN (v, r, copysignf (s, im));
1131 return v;
1133 #endif
1135 #if !defined(HAVE_CSQRT)
1136 #define HAVE_CSQRT 1
1137 double complex csqrt (double complex z);
1139 double complex
1140 csqrt (double complex z)
1142 double re, im;
1143 double complex v;
1145 re = REALPART (z);
1146 im = IMAGPART (z);
1147 if (im == 0)
1149 if (re < 0)
1151 COMPLEX_ASSIGN (v, 0, copysign (sqrt (-re), im));
1153 else
1155 COMPLEX_ASSIGN (v, fabs (sqrt (re)), copysign (0, im));
1158 else if (re == 0)
1160 double r;
1162 r = sqrt (0.5 * fabs (im));
1164 COMPLEX_ASSIGN (v, r, copysign (r, im));
1166 else
1168 double d, r, s;
1170 d = hypot (re, im);
1171 /* Use the identity 2 Re res Im res = Im x
1172 to avoid cancellation error in d +/- Re x. */
1173 if (re > 0)
1175 r = sqrt (0.5 * d + 0.5 * re);
1176 s = (0.5 * im) / r;
1178 else
1180 s = sqrt (0.5 * d - 0.5 * re);
1181 r = fabs ((0.5 * im) / s);
1184 COMPLEX_ASSIGN (v, r, copysign (s, im));
1186 return v;
1188 #endif
1190 #if !defined(HAVE_CSQRTL) && defined(HAVE_COPYSIGNL) && defined(HAVE_SQRTL) && defined(HAVE_FABSL) && defined(HAVE_HYPOTL)
1191 #define HAVE_CSQRTL 1
1192 long double complex csqrtl (long double complex z);
1194 long double complex
1195 csqrtl (long double complex z)
1197 long double re, im;
1198 long double complex v;
1200 re = REALPART (z);
1201 im = IMAGPART (z);
1202 if (im == 0)
1204 if (re < 0)
1206 COMPLEX_ASSIGN (v, 0, copysignl (sqrtl (-re), im));
1208 else
1210 COMPLEX_ASSIGN (v, fabsl (sqrtl (re)), copysignl (0, im));
1213 else if (re == 0)
1215 long double r;
1217 r = sqrtl (0.5 * fabsl (im));
1219 COMPLEX_ASSIGN (v, copysignl (r, im), r);
1221 else
1223 long double d, r, s;
1225 d = hypotl (re, im);
1226 /* Use the identity 2 Re res Im res = Im x
1227 to avoid cancellation error in d +/- Re x. */
1228 if (re > 0)
1230 r = sqrtl (0.5 * d + 0.5 * re);
1231 s = (0.5 * im) / r;
1233 else
1235 s = sqrtl (0.5 * d - 0.5 * re);
1236 r = fabsl ((0.5 * im) / s);
1239 COMPLEX_ASSIGN (v, r, copysignl (s, im));
1241 return v;
1243 #endif
1246 /* sinh(a + i b) = sinh(a) cos(b) + i cosh(a) sin(b) */
1247 #if !defined(HAVE_CSINHF)
1248 #define HAVE_CSINHF 1
1249 float complex csinhf (float complex a);
1251 float complex
1252 csinhf (float complex a)
1254 float r, i;
1255 float complex v;
1257 r = REALPART (a);
1258 i = IMAGPART (a);
1259 COMPLEX_ASSIGN (v, sinhf (r) * cosf (i), coshf (r) * sinf (i));
1260 return v;
1262 #endif
1264 #if !defined(HAVE_CSINH)
1265 #define HAVE_CSINH 1
1266 double complex csinh (double complex a);
1268 double complex
1269 csinh (double complex a)
1271 double r, i;
1272 double complex v;
1274 r = REALPART (a);
1275 i = IMAGPART (a);
1276 COMPLEX_ASSIGN (v, sinh (r) * cos (i), cosh (r) * sin (i));
1277 return v;
1279 #endif
1281 #if !defined(HAVE_CSINHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
1282 #define HAVE_CSINHL 1
1283 long double complex csinhl (long double complex a);
1285 long double complex
1286 csinhl (long double complex a)
1288 long double r, i;
1289 long double complex v;
1291 r = REALPART (a);
1292 i = IMAGPART (a);
1293 COMPLEX_ASSIGN (v, sinhl (r) * cosl (i), coshl (r) * sinl (i));
1294 return v;
1296 #endif
1299 /* cosh(a + i b) = cosh(a) cos(b) + i sinh(a) sin(b) */
1300 #if !defined(HAVE_CCOSHF)
1301 #define HAVE_CCOSHF 1
1302 float complex ccoshf (float complex a);
1304 float complex
1305 ccoshf (float complex a)
1307 float r, i;
1308 float complex v;
1310 r = REALPART (a);
1311 i = IMAGPART (a);
1312 COMPLEX_ASSIGN (v, coshf (r) * cosf (i), sinhf (r) * sinf (i));
1313 return v;
1315 #endif
1317 #if !defined(HAVE_CCOSH)
1318 #define HAVE_CCOSH 1
1319 double complex ccosh (double complex a);
1321 double complex
1322 ccosh (double complex a)
1324 double r, i;
1325 double complex v;
1327 r = REALPART (a);
1328 i = IMAGPART (a);
1329 COMPLEX_ASSIGN (v, cosh (r) * cos (i), sinh (r) * sin (i));
1330 return v;
1332 #endif
1334 #if !defined(HAVE_CCOSHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
1335 #define HAVE_CCOSHL 1
1336 long double complex ccoshl (long double complex a);
1338 long double complex
1339 ccoshl (long double complex a)
1341 long double r, i;
1342 long double complex v;
1344 r = REALPART (a);
1345 i = IMAGPART (a);
1346 COMPLEX_ASSIGN (v, coshl (r) * cosl (i), sinhl (r) * sinl (i));
1347 return v;
1349 #endif
1352 /* tanh(a + i b) = (tanh(a) + i tan(b)) / (1 + i tanh(a) tan(b)) */
1353 #if !defined(HAVE_CTANHF)
1354 #define HAVE_CTANHF 1
1355 float complex ctanhf (float complex a);
1357 float complex
1358 ctanhf (float complex a)
1360 float rt, it;
1361 float complex n, d;
1363 rt = tanhf (REALPART (a));
1364 it = tanf (IMAGPART (a));
1365 COMPLEX_ASSIGN (n, rt, it);
1366 COMPLEX_ASSIGN (d, 1, rt * it);
1368 return n / d;
1370 #endif
1372 #if !defined(HAVE_CTANH)
1373 #define HAVE_CTANH 1
1374 double complex ctanh (double complex a);
1375 double complex
1376 ctanh (double complex a)
1378 double rt, it;
1379 double complex n, d;
1381 rt = tanh (REALPART (a));
1382 it = tan (IMAGPART (a));
1383 COMPLEX_ASSIGN (n, rt, it);
1384 COMPLEX_ASSIGN (d, 1, rt * it);
1386 return n / d;
1388 #endif
1390 #if !defined(HAVE_CTANHL) && defined(HAVE_TANL) && defined(HAVE_TANHL)
1391 #define HAVE_CTANHL 1
1392 long double complex ctanhl (long double complex a);
1394 long double complex
1395 ctanhl (long double complex a)
1397 long double rt, it;
1398 long double complex n, d;
1400 rt = tanhl (REALPART (a));
1401 it = tanl (IMAGPART (a));
1402 COMPLEX_ASSIGN (n, rt, it);
1403 COMPLEX_ASSIGN (d, 1, rt * it);
1405 return n / d;
1407 #endif
1410 /* sin(a + i b) = sin(a) cosh(b) + i cos(a) sinh(b) */
1411 #if !defined(HAVE_CSINF)
1412 #define HAVE_CSINF 1
1413 float complex csinf (float complex a);
1415 float complex
1416 csinf (float complex a)
1418 float r, i;
1419 float complex v;
1421 r = REALPART (a);
1422 i = IMAGPART (a);
1423 COMPLEX_ASSIGN (v, sinf (r) * coshf (i), cosf (r) * sinhf (i));
1424 return v;
1426 #endif
1428 #if !defined(HAVE_CSIN)
1429 #define HAVE_CSIN 1
1430 double complex csin (double complex a);
1432 double complex
1433 csin (double complex a)
1435 double r, i;
1436 double complex v;
1438 r = REALPART (a);
1439 i = IMAGPART (a);
1440 COMPLEX_ASSIGN (v, sin (r) * cosh (i), cos (r) * sinh (i));
1441 return v;
1443 #endif
1445 #if !defined(HAVE_CSINL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
1446 #define HAVE_CSINL 1
1447 long double complex csinl (long double complex a);
1449 long double complex
1450 csinl (long double complex a)
1452 long double r, i;
1453 long double complex v;
1455 r = REALPART (a);
1456 i = IMAGPART (a);
1457 COMPLEX_ASSIGN (v, sinl (r) * coshl (i), cosl (r) * sinhl (i));
1458 return v;
1460 #endif
1463 /* cos(a + i b) = cos(a) cosh(b) - i sin(a) sinh(b) */
1464 #if !defined(HAVE_CCOSF)
1465 #define HAVE_CCOSF 1
1466 float complex ccosf (float complex a);
1468 float complex
1469 ccosf (float complex a)
1471 float r, i;
1472 float complex v;
1474 r = REALPART (a);
1475 i = IMAGPART (a);
1476 COMPLEX_ASSIGN (v, cosf (r) * coshf (i), - (sinf (r) * sinhf (i)));
1477 return v;
1479 #endif
1481 #if !defined(HAVE_CCOS)
1482 #define HAVE_CCOS 1
1483 double complex ccos (double complex a);
1485 double complex
1486 ccos (double complex a)
1488 double r, i;
1489 double complex v;
1491 r = REALPART (a);
1492 i = IMAGPART (a);
1493 COMPLEX_ASSIGN (v, cos (r) * cosh (i), - (sin (r) * sinh (i)));
1494 return v;
1496 #endif
1498 #if !defined(HAVE_CCOSL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
1499 #define HAVE_CCOSL 1
1500 long double complex ccosl (long double complex a);
1502 long double complex
1503 ccosl (long double complex a)
1505 long double r, i;
1506 long double complex v;
1508 r = REALPART (a);
1509 i = IMAGPART (a);
1510 COMPLEX_ASSIGN (v, cosl (r) * coshl (i), - (sinl (r) * sinhl (i)));
1511 return v;
1513 #endif
1516 /* tan(a + i b) = (tan(a) + i tanh(b)) / (1 - i tan(a) tanh(b)) */
1517 #if !defined(HAVE_CTANF)
1518 #define HAVE_CTANF 1
1519 float complex ctanf (float complex a);
1521 float complex
1522 ctanf (float complex a)
1524 float rt, it;
1525 float complex n, d;
1527 rt = tanf (REALPART (a));
1528 it = tanhf (IMAGPART (a));
1529 COMPLEX_ASSIGN (n, rt, it);
1530 COMPLEX_ASSIGN (d, 1, - (rt * it));
1532 return n / d;
1534 #endif
1536 #if !defined(HAVE_CTAN)
1537 #define HAVE_CTAN 1
1538 double complex ctan (double complex a);
1540 double complex
1541 ctan (double complex a)
1543 double rt, it;
1544 double complex n, d;
1546 rt = tan (REALPART (a));
1547 it = tanh (IMAGPART (a));
1548 COMPLEX_ASSIGN (n, rt, it);
1549 COMPLEX_ASSIGN (d, 1, - (rt * it));
1551 return n / d;
1553 #endif
1555 #if !defined(HAVE_CTANL) && defined(HAVE_TANL) && defined(HAVE_TANHL)
1556 #define HAVE_CTANL 1
1557 long double complex ctanl (long double complex a);
1559 long double complex
1560 ctanl (long double complex a)
1562 long double rt, it;
1563 long double complex n, d;
1565 rt = tanl (REALPART (a));
1566 it = tanhl (IMAGPART (a));
1567 COMPLEX_ASSIGN (n, rt, it);
1568 COMPLEX_ASSIGN (d, 1, - (rt * it));
1570 return n / d;
1572 #endif
1575 /* Complex ASIN. Returns wrongly NaN for infinite arguments.
1576 Algorithm taken from Abramowitz & Stegun. */
1578 #if !defined(HAVE_CASINF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF)
1579 #define HAVE_CASINF 1
1580 complex float casinf (complex float z);
1582 complex float
1583 casinf (complex float z)
1585 return -I*clogf (I*z + csqrtf (1.0f-z*z));
1587 #endif
1590 #if !defined(HAVE_CASIN) && defined(HAVE_CLOG) && defined(HAVE_CSQRT)
1591 #define HAVE_CASIN 1
1592 complex double casin (complex double z);
1594 complex double
1595 casin (complex double z)
1597 return -I*clog (I*z + csqrt (1.0-z*z));
1599 #endif
1602 #if !defined(HAVE_CASINL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL)
1603 #define HAVE_CASINL 1
1604 complex long double casinl (complex long double z);
1606 complex long double
1607 casinl (complex long double z)
1609 return -I*clogl (I*z + csqrtl (1.0L-z*z));
1611 #endif
1614 /* Complex ACOS. Returns wrongly NaN for infinite arguments.
1615 Algorithm taken from Abramowitz & Stegun. */
1617 #if !defined(HAVE_CACOSF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF)
1618 #define HAVE_CACOSF 1
1619 complex float cacosf (complex float z);
1621 complex float
1622 cacosf (complex float z)
1624 return -I*clogf (z + I*csqrtf (1.0f-z*z));
1626 #endif
1629 #if !defined(HAVE_CACOS) && defined(HAVE_CLOG) && defined(HAVE_CSQRT)
1630 #define HAVE_CACOS 1
1631 complex double cacos (complex double z);
1633 complex double
1634 cacos (complex double z)
1636 return -I*clog (z + I*csqrt (1.0-z*z));
1638 #endif
1641 #if !defined(HAVE_CACOSL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL)
1642 #define HAVE_CACOSL 1
1643 complex long double cacosl (complex long double z);
1645 complex long double
1646 cacosl (complex long double z)
1648 return -I*clogl (z + I*csqrtl (1.0L-z*z));
1650 #endif
1653 /* Complex ATAN. Returns wrongly NaN for infinite arguments.
1654 Algorithm taken from Abramowitz & Stegun. */
1656 #if !defined(HAVE_CATANF) && defined(HAVE_CLOGF)
1657 #define HAVE_CACOSF 1
1658 complex float catanf (complex float z);
1660 complex float
1661 catanf (complex float z)
1663 return I*clogf ((I+z)/(I-z))/2.0f;
1665 #endif
1668 #if !defined(HAVE_CATAN) && defined(HAVE_CLOG)
1669 #define HAVE_CACOS 1
1670 complex double catan (complex double z);
1672 complex double
1673 catan (complex double z)
1675 return I*clog ((I+z)/(I-z))/2.0;
1677 #endif
1680 #if !defined(HAVE_CATANL) && defined(HAVE_CLOGL)
1681 #define HAVE_CACOSL 1
1682 complex long double catanl (complex long double z);
1684 complex long double
1685 catanl (complex long double z)
1687 return I*clogl ((I+z)/(I-z))/2.0L;
1689 #endif
1692 /* Complex ASINH. Returns wrongly NaN for infinite arguments.
1693 Algorithm taken from Abramowitz & Stegun. */
1695 #if !defined(HAVE_CASINHF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF)
1696 #define HAVE_CASINHF 1
1697 complex float casinhf (complex float z);
1699 complex float
1700 casinhf (complex float z)
1702 return clogf (z + csqrtf (z*z+1.0f));
1704 #endif
1707 #if !defined(HAVE_CASINH) && defined(HAVE_CLOG) && defined(HAVE_CSQRT)
1708 #define HAVE_CASINH 1
1709 complex double casinh (complex double z);
1711 complex double
1712 casinh (complex double z)
1714 return clog (z + csqrt (z*z+1.0));
1716 #endif
1719 #if !defined(HAVE_CASINHL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL)
1720 #define HAVE_CASINHL 1
1721 complex long double casinhl (complex long double z);
1723 complex long double
1724 casinhl (complex long double z)
1726 return clogl (z + csqrtl (z*z+1.0L));
1728 #endif
1731 /* Complex ACOSH. Returns wrongly NaN for infinite arguments.
1732 Algorithm taken from Abramowitz & Stegun. */
1734 #if !defined(HAVE_CACOSHF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF)
1735 #define HAVE_CACOSHF 1
1736 complex float cacoshf (complex float z);
1738 complex float
1739 cacoshf (complex float z)
1741 return clogf (z + csqrtf (z-1.0f) * csqrtf (z+1.0f));
1743 #endif
1746 #if !defined(HAVE_CACOSH) && defined(HAVE_CLOG) && defined(HAVE_CSQRT)
1747 #define HAVE_CACOSH 1
1748 complex double cacosh (complex double z);
1750 complex double
1751 cacosh (complex double z)
1753 return clog (z + csqrt (z-1.0) * csqrt (z+1.0));
1755 #endif
1758 #if !defined(HAVE_CACOSHL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL)
1759 #define HAVE_CACOSHL 1
1760 complex long double cacoshl (complex long double z);
1762 complex long double
1763 cacoshl (complex long double z)
1765 return clogl (z + csqrtl (z-1.0L) * csqrtl (z+1.0L));
1767 #endif
1770 /* Complex ATANH. Returns wrongly NaN for infinite arguments.
1771 Algorithm taken from Abramowitz & Stegun. */
1773 #if !defined(HAVE_CATANHF) && defined(HAVE_CLOGF)
1774 #define HAVE_CATANHF 1
1775 complex float catanhf (complex float z);
1777 complex float
1778 catanhf (complex float z)
1780 return clogf ((1.0f+z)/(1.0f-z))/2.0f;
1782 #endif
1785 #if !defined(HAVE_CATANH) && defined(HAVE_CLOG)
1786 #define HAVE_CATANH 1
1787 complex double catanh (complex double z);
1789 complex double
1790 catanh (complex double z)
1792 return clog ((1.0+z)/(1.0-z))/2.0;
1794 #endif
1796 #if !defined(HAVE_CATANHL) && defined(HAVE_CLOGL)
1797 #define HAVE_CATANHL 1
1798 complex long double catanhl (complex long double z);
1800 complex long double
1801 catanhl (complex long double z)
1803 return clogl ((1.0L+z)/(1.0L-z))/2.0L;
1805 #endif
1808 #if !defined(HAVE_TGAMMA)
1809 #define HAVE_TGAMMA 1
1810 double tgamma (double);
1812 /* Fallback tgamma() function. Uses the algorithm from
1813 http://www.netlib.org/specfun/gamma and references therein. */
1815 #undef SQRTPI
1816 #define SQRTPI 0.9189385332046727417803297
1818 #undef PI
1819 #define PI 3.1415926535897932384626434
1821 double
1822 tgamma (double x)
1824 int i, n, parity;
1825 double fact, res, sum, xden, xnum, y, y1, ysq, z;
1827 static double p[8] = {
1828 -1.71618513886549492533811e0, 2.47656508055759199108314e1,
1829 -3.79804256470945635097577e2, 6.29331155312818442661052e2,
1830 8.66966202790413211295064e2, -3.14512729688483675254357e4,
1831 -3.61444134186911729807069e4, 6.64561438202405440627855e4 };
1833 static double q[8] = {
1834 -3.08402300119738975254353e1, 3.15350626979604161529144e2,
1835 -1.01515636749021914166146e3, -3.10777167157231109440444e3,
1836 2.25381184209801510330112e4, 4.75584627752788110767815e3,
1837 -1.34659959864969306392456e5, -1.15132259675553483497211e5 };
1839 static double c[7] = { -1.910444077728e-03,
1840 8.4171387781295e-04, -5.952379913043012e-04,
1841 7.93650793500350248e-04, -2.777777777777681622553e-03,
1842 8.333333333333333331554247e-02, 5.7083835261e-03 };
1844 static const double xminin = 2.23e-308;
1845 static const double xbig = 171.624;
1846 static const double xnan = __builtin_nan ("0x0"), xinf = __builtin_inf ();
1847 static double eps = 0;
1849 if (eps == 0)
1850 eps = nextafter (1., 2.) - 1.;
1852 parity = 0;
1853 fact = 1;
1854 n = 0;
1855 y = x;
1857 if (__builtin_isnan (x))
1858 return x;
1860 if (y <= 0)
1862 y = -x;
1863 y1 = trunc (y);
1864 res = y - y1;
1866 if (res != 0)
1868 if (y1 != trunc (y1*0.5l)*2)
1869 parity = 1;
1870 fact = -PI / sin (PI*res);
1871 y = y + 1;
1873 else
1874 return x == 0 ? copysign (xinf, x) : xnan;
1877 if (y < eps)
1879 if (y >= xminin)
1880 res = 1 / y;
1881 else
1882 return xinf;
1884 else if (y < 13)
1886 y1 = y;
1887 if (y < 1)
1889 z = y;
1890 y = y + 1;
1892 else
1894 n = (int)y - 1;
1895 y = y - n;
1896 z = y - 1;
1899 xnum = 0;
1900 xden = 1;
1901 for (i = 0; i < 8; i++)
1903 xnum = (xnum + p[i]) * z;
1904 xden = xden * z + q[i];
1907 res = xnum / xden + 1;
1909 if (y1 < y)
1910 res = res / y1;
1911 else if (y1 > y)
1912 for (i = 1; i <= n; i++)
1914 res = res * y;
1915 y = y + 1;
1918 else
1920 if (y < xbig)
1922 ysq = y * y;
1923 sum = c[6];
1924 for (i = 0; i < 6; i++)
1925 sum = sum / ysq + c[i];
1927 sum = sum/y - y + SQRTPI;
1928 sum = sum + (y - 0.5) * log (y);
1929 res = exp (sum);
1931 else
1932 return x < 0 ? xnan : xinf;
1935 if (parity)
1936 res = -res;
1937 if (fact != 1)
1938 res = fact / res;
1940 return res;
1942 #endif
1946 #if !defined(HAVE_LGAMMA)
1947 #define HAVE_LGAMMA 1
1948 double lgamma (double);
1950 /* Fallback lgamma() function. Uses the algorithm from
1951 http://www.netlib.org/specfun/algama and references therein,
1952 except for negative arguments (where netlib would return +Inf)
1953 where we use the following identity:
1954 lgamma(y) = log(pi/(|y*sin(pi*y)|)) - lgamma(-y)
1957 double
1958 lgamma (double y)
1961 #undef SQRTPI
1962 #define SQRTPI 0.9189385332046727417803297
1964 #undef PI
1965 #define PI 3.1415926535897932384626434
1967 #define PNT68 0.6796875
1968 #define D1 -0.5772156649015328605195174
1969 #define D2 0.4227843350984671393993777
1970 #define D4 1.791759469228055000094023
1972 static double p1[8] = {
1973 4.945235359296727046734888e0, 2.018112620856775083915565e2,
1974 2.290838373831346393026739e3, 1.131967205903380828685045e4,
1975 2.855724635671635335736389e4, 3.848496228443793359990269e4,
1976 2.637748787624195437963534e4, 7.225813979700288197698961e3 };
1977 static double q1[8] = {
1978 6.748212550303777196073036e1, 1.113332393857199323513008e3,
1979 7.738757056935398733233834e3, 2.763987074403340708898585e4,
1980 5.499310206226157329794414e4, 6.161122180066002127833352e4,
1981 3.635127591501940507276287e4, 8.785536302431013170870835e3 };
1982 static double p2[8] = {
1983 4.974607845568932035012064e0, 5.424138599891070494101986e2,
1984 1.550693864978364947665077e4, 1.847932904445632425417223e5,
1985 1.088204769468828767498470e6, 3.338152967987029735917223e6,
1986 5.106661678927352456275255e6, 3.074109054850539556250927e6 };
1987 static double q2[8] = {
1988 1.830328399370592604055942e2, 7.765049321445005871323047e3,
1989 1.331903827966074194402448e5, 1.136705821321969608938755e6,
1990 5.267964117437946917577538e6, 1.346701454311101692290052e7,
1991 1.782736530353274213975932e7, 9.533095591844353613395747e6 };
1992 static double p4[8] = {
1993 1.474502166059939948905062e4, 2.426813369486704502836312e6,
1994 1.214755574045093227939592e8, 2.663432449630976949898078e9,
1995 2.940378956634553899906876e10, 1.702665737765398868392998e11,
1996 4.926125793377430887588120e11, 5.606251856223951465078242e11 };
1997 static double q4[8] = {
1998 2.690530175870899333379843e3, 6.393885654300092398984238e5,
1999 4.135599930241388052042842e7, 1.120872109616147941376570e9,
2000 1.488613728678813811542398e10, 1.016803586272438228077304e11,
2001 3.417476345507377132798597e11, 4.463158187419713286462081e11 };
2002 static double c[7] = {
2003 -1.910444077728e-03, 8.4171387781295e-04,
2004 -5.952379913043012e-04, 7.93650793500350248e-04,
2005 -2.777777777777681622553e-03, 8.333333333333333331554247e-02,
2006 5.7083835261e-03 };
2008 static double xbig = 2.55e305, xinf = __builtin_inf (), eps = 0,
2009 frtbig = 2.25e76;
2011 int i;
2012 double corr, res, xden, xm1, xm2, xm4, xnum, ysq;
2014 if (eps == 0)
2015 eps = __builtin_nextafter (1., 2.) - 1.;
2017 if ((y > 0) && (y <= xbig))
2019 if (y <= eps)
2020 res = -log (y);
2021 else if (y <= 1.5)
2023 if (y < PNT68)
2025 corr = -log (y);
2026 xm1 = y;
2028 else
2030 corr = 0;
2031 xm1 = (y - 0.5) - 0.5;
2034 if ((y <= 0.5) || (y >= PNT68))
2036 xden = 1;
2037 xnum = 0;
2038 for (i = 0; i < 8; i++)
2040 xnum = xnum*xm1 + p1[i];
2041 xden = xden*xm1 + q1[i];
2043 res = corr + (xm1 * (D1 + xm1*(xnum/xden)));
2045 else
2047 xm2 = (y - 0.5) - 0.5;
2048 xden = 1;
2049 xnum = 0;
2050 for (i = 0; i < 8; i++)
2052 xnum = xnum*xm2 + p2[i];
2053 xden = xden*xm2 + q2[i];
2055 res = corr + xm2 * (D2 + xm2*(xnum/xden));
2058 else if (y <= 4)
2060 xm2 = y - 2;
2061 xden = 1;
2062 xnum = 0;
2063 for (i = 0; i < 8; i++)
2065 xnum = xnum*xm2 + p2[i];
2066 xden = xden*xm2 + q2[i];
2068 res = xm2 * (D2 + xm2*(xnum/xden));
2070 else if (y <= 12)
2072 xm4 = y - 4;
2073 xden = -1;
2074 xnum = 0;
2075 for (i = 0; i < 8; i++)
2077 xnum = xnum*xm4 + p4[i];
2078 xden = xden*xm4 + q4[i];
2080 res = D4 + xm4*(xnum/xden);
2082 else
2084 res = 0;
2085 if (y <= frtbig)
2087 res = c[6];
2088 ysq = y * y;
2089 for (i = 0; i < 6; i++)
2090 res = res / ysq + c[i];
2092 res = res/y;
2093 corr = log (y);
2094 res = res + SQRTPI - 0.5*corr;
2095 res = res + y*(corr-1);
2098 else if (y < 0 && __builtin_floor (y) != y)
2100 /* lgamma(y) = log(pi/(|y*sin(pi*y)|)) - lgamma(-y)
2101 For abs(y) very close to zero, we use a series expansion to
2102 the first order in y to avoid overflow. */
2103 if (y > -1.e-100)
2104 res = -2 * log (fabs (y)) - lgamma (-y);
2105 else
2106 res = log (PI / fabs (y * sin (PI * y))) - lgamma (-y);
2108 else
2109 res = xinf;
2111 return res;
2113 #endif
2116 #if defined(HAVE_TGAMMA) && !defined(HAVE_TGAMMAF)
2117 #define HAVE_TGAMMAF 1
2118 float tgammaf (float);
2120 float
2121 tgammaf (float x)
2123 return (float) tgamma ((double) x);
2125 #endif
2127 #if defined(HAVE_LGAMMA) && !defined(HAVE_LGAMMAF)
2128 #define HAVE_LGAMMAF 1
2129 float lgammaf (float);
2131 float
2132 lgammaf (float x)
2134 return (float) lgamma ((double) x);
2136 #endif