PR tree-optimization/27639
[official-gcc.git] / gcc / tree-ssa-loop-prefetch.c
blobb58dbf6fccdb13e77330ac415712b09aab18f885
1 /* Array prefetching.
2 Copyright (C) 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "varray.h"
37 #include "expr.h"
38 #include "tree-pass.h"
39 #include "ggc.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "hashtab.h"
43 #include "tree-chrec.h"
44 #include "tree-scalar-evolution.h"
45 #include "toplev.h"
46 #include "params.h"
47 #include "langhooks.h"
49 /* This pass inserts prefetch instructions to optimize cache usage during
50 accesses to arrays in loops. It processes loops sequentially and:
52 1) Gathers all memory references in the single loop.
53 2) For each of the references it decides when it is profitable to prefetch
54 it. To do it, we evaluate the reuse among the accesses, and determines
55 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
56 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
57 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
58 iterations of the loop that are zero modulo PREFETCH_MOD). For example
59 (assuming cache line size is 64 bytes, char has size 1 byte and there
60 is no hardware sequential prefetch):
62 char *a;
63 for (i = 0; i < max; i++)
65 a[255] = ...; (0)
66 a[i] = ...; (1)
67 a[i + 64] = ...; (2)
68 a[16*i] = ...; (3)
69 a[187*i] = ...; (4)
70 a[187*i + 50] = ...; (5)
73 (0) obviously has PREFETCH_BEFORE 1
74 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
75 location 64 iterations before it, and PREFETCH_MOD 64 (since
76 it hits the same cache line otherwise).
77 (2) has PREFETCH_MOD 64
78 (3) has PREFETCH_MOD 4
79 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
80 the cache line accessed by (4) is the same with probability only
81 7/32.
82 (5) has PREFETCH_MOD 1 as well.
84 3) We determine how much ahead we need to prefetch. The number of
85 iterations needed is time to fetch / time spent in one iteration of
86 the loop. The problem is that we do not know either of these values,
87 so we just make a heuristic guess based on a magic (possibly)
88 target-specific constant and size of the loop.
90 4) Determine which of the references we prefetch. We take into account
91 that there is a maximum number of simultaneous prefetches (provided
92 by machine description). We prefetch as many prefetches as possible
93 while still within this bound (starting with those with lowest
94 prefetch_mod, since they are responsible for most of the cache
95 misses).
97 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
98 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
99 prefetching nonaccessed memory.
100 TODO -- actually implement peeling.
102 6) We actually emit the prefetch instructions. ??? Perhaps emit the
103 prefetch instructions with guards in cases where 5) was not sufficient
104 to satisfy the constraints?
106 Some other TODO:
107 -- write and use more general reuse analysis (that could be also used
108 in other cache aimed loop optimizations)
109 -- make it behave sanely together with the prefetches given by user
110 (now we just ignore them; at the very least we should avoid
111 optimizing loops in that user put his own prefetches)
112 -- we assume cache line size alignment of arrays; this could be
113 improved. */
115 /* Magic constants follow. These should be replaced by machine specific
116 numbers. */
118 /* A number that should roughly correspond to the number of instructions
119 executed before the prefetch is completed. */
121 #ifndef PREFETCH_LATENCY
122 #define PREFETCH_LATENCY 200
123 #endif
125 /* Number of prefetches that can run at the same time. */
127 #ifndef SIMULTANEOUS_PREFETCHES
128 #define SIMULTANEOUS_PREFETCHES 3
129 #endif
131 /* True if write can be prefetched by a read prefetch. */
133 #ifndef WRITE_CAN_USE_READ_PREFETCH
134 #define WRITE_CAN_USE_READ_PREFETCH 1
135 #endif
137 /* True if read can be prefetched by a write prefetch. */
139 #ifndef READ_CAN_USE_WRITE_PREFETCH
140 #define READ_CAN_USE_WRITE_PREFETCH 0
141 #endif
143 /* Cache line size. Assumed to be a power of two. */
145 #ifndef PREFETCH_BLOCK
146 #define PREFETCH_BLOCK 32
147 #endif
149 /* Do we have a forward hardware sequential prefetching? */
151 #ifndef HAVE_FORWARD_PREFETCH
152 #define HAVE_FORWARD_PREFETCH 0
153 #endif
155 /* Do we have a backward hardware sequential prefetching? */
157 #ifndef HAVE_BACKWARD_PREFETCH
158 #define HAVE_BACKWARD_PREFETCH 0
159 #endif
161 /* In some cases we are only able to determine that there is a certain
162 probability that the two accesses hit the same cache line. In this
163 case, we issue the prefetches for both of them if this probability
164 is less then (1000 - ACCEPTABLE_MISS_RATE) promile. */
166 #ifndef ACCEPTABLE_MISS_RATE
167 #define ACCEPTABLE_MISS_RATE 50
168 #endif
170 #ifndef HAVE_prefetch
171 #define HAVE_prefetch 0
172 #endif
174 /* The group of references between that reuse may occur. */
176 struct mem_ref_group
178 tree base; /* Base of the reference. */
179 HOST_WIDE_INT step; /* Step of the reference. */
180 struct mem_ref *refs; /* References in the group. */
181 struct mem_ref_group *next; /* Next group of references. */
184 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
186 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
188 /* The memory reference. */
190 struct mem_ref
192 tree stmt; /* Statement in that the reference appears. */
193 tree mem; /* The reference. */
194 HOST_WIDE_INT delta; /* Constant offset of the reference. */
195 bool write_p; /* Is it a write? */
196 struct mem_ref_group *group; /* The group of references it belongs to. */
197 unsigned HOST_WIDE_INT prefetch_mod;
198 /* Prefetch only each PREFETCH_MOD-th
199 iteration. */
200 unsigned HOST_WIDE_INT prefetch_before;
201 /* Prefetch only first PREFETCH_BEFORE
202 iterations. */
203 bool issue_prefetch_p; /* Should we really issue the prefetch? */
204 struct mem_ref *next; /* The next reference in the group. */
207 /* Dumps information about reference REF to FILE. */
209 static void
210 dump_mem_ref (FILE *file, struct mem_ref *ref)
212 fprintf (file, "Reference %p:\n", (void *) ref);
214 fprintf (file, " group %p (base ", (void *) ref->group);
215 print_generic_expr (file, ref->group->base, TDF_SLIM);
216 fprintf (file, ", step ");
217 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
218 fprintf (file, ")\n");
220 fprintf (dump_file, " delta ");
221 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
222 fprintf (file, "\n");
224 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
226 fprintf (file, "\n");
229 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
230 exist. */
232 static struct mem_ref_group *
233 find_or_create_group (struct mem_ref_group **groups, tree base,
234 HOST_WIDE_INT step)
236 struct mem_ref_group *group;
238 for (; *groups; groups = &(*groups)->next)
240 if ((*groups)->step == step
241 && operand_equal_p ((*groups)->base, base, 0))
242 return *groups;
244 /* Keep the list of groups sorted by decreasing step. */
245 if ((*groups)->step < step)
246 break;
249 group = xcalloc (1, sizeof (struct mem_ref_group));
250 group->base = base;
251 group->step = step;
252 group->refs = NULL;
253 group->next = *groups;
254 *groups = group;
256 return group;
259 /* Records a memory reference MEM in GROUP with offset DELTA and write status
260 WRITE_P. The reference occurs in statement STMT. */
262 static void
263 record_ref (struct mem_ref_group *group, tree stmt, tree mem,
264 HOST_WIDE_INT delta, bool write_p)
266 struct mem_ref **aref;
268 /* Do not record the same address twice. */
269 for (aref = &group->refs; *aref; aref = &(*aref)->next)
271 /* It does not have to be possible for write reference to reuse the read
272 prefetch, or vice versa. */
273 if (!WRITE_CAN_USE_READ_PREFETCH
274 && write_p
275 && !(*aref)->write_p)
276 continue;
277 if (!READ_CAN_USE_WRITE_PREFETCH
278 && !write_p
279 && (*aref)->write_p)
280 continue;
282 if ((*aref)->delta == delta)
283 return;
286 (*aref) = xcalloc (1, sizeof (struct mem_ref));
287 (*aref)->stmt = stmt;
288 (*aref)->mem = mem;
289 (*aref)->delta = delta;
290 (*aref)->write_p = write_p;
291 (*aref)->prefetch_before = PREFETCH_ALL;
292 (*aref)->prefetch_mod = 1;
293 (*aref)->issue_prefetch_p = false;
294 (*aref)->group = group;
295 (*aref)->next = NULL;
297 if (dump_file && (dump_flags & TDF_DETAILS))
298 dump_mem_ref (dump_file, *aref);
301 /* Release memory references in GROUPS. */
303 static void
304 release_mem_refs (struct mem_ref_group *groups)
306 struct mem_ref_group *next_g;
307 struct mem_ref *ref, *next_r;
309 for (; groups; groups = next_g)
311 next_g = groups->next;
312 for (ref = groups->refs; ref; ref = next_r)
314 next_r = ref->next;
315 free (ref);
317 free (groups);
321 /* A structure used to pass arguments to idx_analyze_ref. */
323 struct ar_data
325 struct loop *loop; /* Loop of the reference. */
326 tree stmt; /* Statement of the reference. */
327 HOST_WIDE_INT *step; /* Step of the memory reference. */
328 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
331 /* Analyzes a single INDEX of a memory reference to obtain information
332 described at analyze_ref. Callback for for_each_index. */
334 static bool
335 idx_analyze_ref (tree base, tree *index, void *data)
337 struct ar_data *ar_data = data;
338 tree ibase, step, stepsize;
339 HOST_WIDE_INT istep, idelta = 0, imult = 1;
340 affine_iv iv;
342 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
343 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
344 return false;
346 if (!simple_iv (ar_data->loop, ar_data->stmt, *index, &iv, false))
347 return false;
348 ibase = iv.base;
349 step = iv.step;
351 if (zero_p (step))
352 istep = 0;
353 else
355 if (!cst_and_fits_in_hwi (step))
356 return false;
357 istep = int_cst_value (step);
360 if (TREE_CODE (ibase) == PLUS_EXPR
361 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
363 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
364 ibase = TREE_OPERAND (ibase, 0);
366 if (cst_and_fits_in_hwi (ibase))
368 idelta += int_cst_value (ibase);
369 ibase = build_int_cst (TREE_TYPE (ibase), 0);
372 if (TREE_CODE (base) == ARRAY_REF)
374 stepsize = array_ref_element_size (base);
375 if (!cst_and_fits_in_hwi (stepsize))
376 return false;
377 imult = int_cst_value (stepsize);
379 istep *= imult;
380 idelta *= imult;
383 *ar_data->step += istep;
384 *ar_data->delta += idelta;
385 *index = ibase;
387 return true;
390 /* Tries to express REF in shape &BASE + STEP * iter + DELTA, where DELTA and
391 STEP are integer constants and iter is number of iterations of LOOP. The
392 reference occurs in statement STMT. */
394 static bool
395 analyze_ref (struct loop *loop, tree ref, tree *base,
396 HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
397 tree stmt)
399 struct ar_data ar_data;
400 tree off;
401 HOST_WIDE_INT bit_offset;
403 *step = 0;
404 *delta = 0;
406 /* First strip off the component references. Ignore bitfields. */
407 if (TREE_CODE (ref) == COMPONENT_REF
408 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
409 ref = TREE_OPERAND (ref, 0);
411 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
413 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
414 bit_offset = TREE_INT_CST_LOW (off);
415 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
417 *delta += bit_offset / BITS_PER_UNIT;
420 *base = unshare_expr (ref);
421 ar_data.loop = loop;
422 ar_data.stmt = stmt;
423 ar_data.step = step;
424 ar_data.delta = delta;
425 return for_each_index (base, idx_analyze_ref, &ar_data);
428 /* Record a memory reference REF to the list REFS. The reference occurs in
429 LOOP in statement STMT and it is write if WRITE_P. */
431 static void
432 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
433 tree ref, bool write_p, tree stmt)
435 tree base;
436 HOST_WIDE_INT step, delta;
437 struct mem_ref_group *agrp;
439 if (!analyze_ref (loop, ref, &base, &step, &delta, stmt))
440 return;
442 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
443 are integer constants. */
444 agrp = find_or_create_group (refs, base, step);
445 record_ref (agrp, stmt, ref, delta, write_p);
448 /* Record the suitable memory references in LOOP. */
450 static struct mem_ref_group *
451 gather_memory_references (struct loop *loop)
453 basic_block *body = get_loop_body_in_dom_order (loop);
454 basic_block bb;
455 unsigned i;
456 block_stmt_iterator bsi;
457 tree stmt, lhs, rhs;
458 struct mem_ref_group *refs = NULL;
460 /* Scan the loop body in order, so that the former references precede the
461 later ones. */
462 for (i = 0; i < loop->num_nodes; i++)
464 bb = body[i];
465 if (bb->loop_father != loop)
466 continue;
468 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
470 stmt = bsi_stmt (bsi);
471 if (TREE_CODE (stmt) != MODIFY_EXPR)
472 continue;
474 lhs = TREE_OPERAND (stmt, 0);
475 rhs = TREE_OPERAND (stmt, 1);
477 if (REFERENCE_CLASS_P (rhs))
478 gather_memory_references_ref (loop, &refs, rhs, false, stmt);
479 if (REFERENCE_CLASS_P (lhs))
480 gather_memory_references_ref (loop, &refs, lhs, true, stmt);
483 free (body);
485 return refs;
488 /* Prune the prefetch candidate REF using the self-reuse. */
490 static void
491 prune_ref_by_self_reuse (struct mem_ref *ref)
493 HOST_WIDE_INT step = ref->group->step;
494 bool backward = step < 0;
496 if (step == 0)
498 /* Prefetch references to invariant address just once. */
499 ref->prefetch_before = 1;
500 return;
503 if (backward)
504 step = -step;
506 if (step > PREFETCH_BLOCK)
507 return;
509 if ((backward && HAVE_BACKWARD_PREFETCH)
510 || (!backward && HAVE_FORWARD_PREFETCH))
512 ref->prefetch_before = 1;
513 return;
516 ref->prefetch_mod = PREFETCH_BLOCK / step;
519 /* Divides X by BY, rounding down. */
521 static HOST_WIDE_INT
522 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
524 gcc_assert (by > 0);
526 if (x >= 0)
527 return x / by;
528 else
529 return (x + by - 1) / by;
532 /* Prune the prefetch candidate REF using the reuse with BY.
533 If BY_IS_BEFORE is true, BY is before REF in the loop. */
535 static void
536 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
537 bool by_is_before)
539 HOST_WIDE_INT step = ref->group->step;
540 bool backward = step < 0;
541 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
542 HOST_WIDE_INT delta = delta_b - delta_r;
543 HOST_WIDE_INT hit_from;
544 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
546 if (delta == 0)
548 /* If the references has the same address, only prefetch the
549 former. */
550 if (by_is_before)
551 ref->prefetch_before = 0;
553 return;
556 if (!step)
558 /* If the reference addresses are invariant and fall into the
559 same cache line, prefetch just the first one. */
560 if (!by_is_before)
561 return;
563 if (ddown (ref->delta, PREFETCH_BLOCK)
564 != ddown (by->delta, PREFETCH_BLOCK))
565 return;
567 ref->prefetch_before = 0;
568 return;
571 /* Only prune the reference that is behind in the array. */
572 if (backward)
574 if (delta > 0)
575 return;
577 /* Transform the data so that we may assume that the accesses
578 are forward. */
579 delta = - delta;
580 step = -step;
581 delta_r = PREFETCH_BLOCK - 1 - delta_r;
582 delta_b = PREFETCH_BLOCK - 1 - delta_b;
584 else
586 if (delta < 0)
587 return;
590 /* Check whether the two references are likely to hit the same cache
591 line, and how distant the iterations in that it occurs are from
592 each other. */
594 if (step <= PREFETCH_BLOCK)
596 /* The accesses are sure to meet. Let us check when. */
597 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
598 prefetch_before = (hit_from - delta_r + step - 1) / step;
600 if (prefetch_before < ref->prefetch_before)
601 ref->prefetch_before = prefetch_before;
603 return;
606 /* A more complicated case. First let us ensure that size of cache line
607 and step are coprime (here we assume that PREFETCH_BLOCK is a power
608 of two. */
609 prefetch_block = PREFETCH_BLOCK;
610 while ((step & 1) == 0
611 && prefetch_block > 1)
613 step >>= 1;
614 prefetch_block >>= 1;
615 delta >>= 1;
618 /* Now step > prefetch_block, and step and prefetch_block are coprime.
619 Determine the probability that the accesses hit the same cache line. */
621 prefetch_before = delta / step;
622 delta %= step;
623 if ((unsigned HOST_WIDE_INT) delta
624 <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
626 if (prefetch_before < ref->prefetch_before)
627 ref->prefetch_before = prefetch_before;
629 return;
632 /* Try also the following iteration. */
633 prefetch_before++;
634 delta = step - delta;
635 if ((unsigned HOST_WIDE_INT) delta
636 <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
638 if (prefetch_before < ref->prefetch_before)
639 ref->prefetch_before = prefetch_before;
641 return;
644 /* The ref probably does not reuse by. */
645 return;
648 /* Prune the prefetch candidate REF using the reuses with other references
649 in REFS. */
651 static void
652 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
654 struct mem_ref *prune_by;
655 bool before = true;
657 prune_ref_by_self_reuse (ref);
659 for (prune_by = refs; prune_by; prune_by = prune_by->next)
661 if (prune_by == ref)
663 before = false;
664 continue;
667 if (!WRITE_CAN_USE_READ_PREFETCH
668 && ref->write_p
669 && !prune_by->write_p)
670 continue;
671 if (!READ_CAN_USE_WRITE_PREFETCH
672 && !ref->write_p
673 && prune_by->write_p)
674 continue;
676 prune_ref_by_group_reuse (ref, prune_by, before);
680 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
682 static void
683 prune_group_by_reuse (struct mem_ref_group *group)
685 struct mem_ref *ref_pruned;
687 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
689 prune_ref_by_reuse (ref_pruned, group->refs);
691 if (dump_file && (dump_flags & TDF_DETAILS))
693 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
695 if (ref_pruned->prefetch_before == PREFETCH_ALL
696 && ref_pruned->prefetch_mod == 1)
697 fprintf (dump_file, " no restrictions");
698 else if (ref_pruned->prefetch_before == 0)
699 fprintf (dump_file, " do not prefetch");
700 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
701 fprintf (dump_file, " prefetch once");
702 else
704 if (ref_pruned->prefetch_before != PREFETCH_ALL)
706 fprintf (dump_file, " prefetch before ");
707 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
708 ref_pruned->prefetch_before);
710 if (ref_pruned->prefetch_mod != 1)
712 fprintf (dump_file, " prefetch mod ");
713 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
714 ref_pruned->prefetch_mod);
717 fprintf (dump_file, "\n");
722 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
724 static void
725 prune_by_reuse (struct mem_ref_group *groups)
727 for (; groups; groups = groups->next)
728 prune_group_by_reuse (groups);
731 /* Returns true if we should issue prefetch for REF. */
733 static bool
734 should_issue_prefetch_p (struct mem_ref *ref)
736 /* For now do not issue prefetches for only first few of the
737 iterations. */
738 if (ref->prefetch_before != PREFETCH_ALL)
739 return false;
741 return true;
744 /* Decide which of the prefetch candidates in GROUPS to prefetch.
745 AHEAD is the number of iterations to prefetch ahead (which corresponds
746 to the number of simultaneous instances of one prefetch running at a
747 time). UNROLL_FACTOR is the factor by that the loop is going to be
748 unrolled. Returns true if there is anything to prefetch. */
750 static bool
751 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
752 unsigned ahead)
754 unsigned max_prefetches, n_prefetches;
755 struct mem_ref *ref;
756 bool any = false;
758 max_prefetches = (SIMULTANEOUS_PREFETCHES * unroll_factor) / ahead;
759 if (max_prefetches > (unsigned) SIMULTANEOUS_PREFETCHES)
760 max_prefetches = SIMULTANEOUS_PREFETCHES;
762 if (dump_file && (dump_flags & TDF_DETAILS))
763 fprintf (dump_file, "Max prefetches to issue: %d.\n", max_prefetches);
765 if (!max_prefetches)
766 return false;
768 /* For now we just take memory references one by one and issue
769 prefetches for as many as possible. The groups are sorted
770 starting with the largest step, since the references with
771 large step are more likely to cause many cache misses. */
773 for (; groups; groups = groups->next)
774 for (ref = groups->refs; ref; ref = ref->next)
776 if (!should_issue_prefetch_p (ref))
777 continue;
779 ref->issue_prefetch_p = true;
781 /* If prefetch_mod is less then unroll_factor, we need to insert
782 several prefetches for the reference. */
783 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
784 / ref->prefetch_mod);
785 if (max_prefetches <= n_prefetches)
786 return true;
788 max_prefetches -= n_prefetches;
789 any = true;
792 return any;
795 /* Determine whether there is any reference suitable for prefetching
796 in GROUPS. */
798 static bool
799 anything_to_prefetch_p (struct mem_ref_group *groups)
801 struct mem_ref *ref;
803 for (; groups; groups = groups->next)
804 for (ref = groups->refs; ref; ref = ref->next)
805 if (should_issue_prefetch_p (ref))
806 return true;
808 return false;
811 /* Issue prefetches for the reference REF into loop as decided before.
812 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
813 is the factor by which LOOP was unrolled. */
815 static void
816 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
818 HOST_WIDE_INT delta;
819 tree addr, addr_base, prefetch, params, write_p;
820 block_stmt_iterator bsi;
821 unsigned n_prefetches, ap;
823 if (dump_file && (dump_flags & TDF_DETAILS))
824 fprintf (dump_file, "Issued prefetch for %p.\n", (void *) ref);
826 bsi = bsi_for_stmt (ref->stmt);
828 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
829 / ref->prefetch_mod);
830 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
831 addr_base = force_gimple_operand_bsi (&bsi, unshare_expr (addr_base), true, NULL);
833 for (ap = 0; ap < n_prefetches; ap++)
835 /* Determine the address to prefetch. */
836 delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
837 addr = fold_build2 (PLUS_EXPR, ptr_type_node,
838 addr_base, build_int_cst (ptr_type_node, delta));
839 addr = force_gimple_operand_bsi (&bsi, unshare_expr (addr), true, NULL);
841 /* Create the prefetch instruction. */
842 write_p = ref->write_p ? integer_one_node : integer_zero_node;
843 params = tree_cons (NULL_TREE, addr,
844 tree_cons (NULL_TREE, write_p, NULL_TREE));
846 prefetch = build_function_call_expr (built_in_decls[BUILT_IN_PREFETCH],
847 params);
848 bsi_insert_before (&bsi, prefetch, BSI_SAME_STMT);
852 /* Issue prefetches for the references in GROUPS into loop as decided before.
853 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
854 factor by that LOOP was unrolled. */
856 static void
857 issue_prefetches (struct mem_ref_group *groups,
858 unsigned unroll_factor, unsigned ahead)
860 struct mem_ref *ref;
862 for (; groups; groups = groups->next)
863 for (ref = groups->refs; ref; ref = ref->next)
864 if (ref->issue_prefetch_p)
865 issue_prefetch_ref (ref, unroll_factor, ahead);
868 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
869 this is the case, fill in DESC by the description of number of
870 iterations. */
872 static bool
873 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
874 unsigned factor)
876 if (!can_unroll_loop_p (loop, factor, desc))
877 return false;
879 /* We only consider loops without control flow for unrolling. This is not
880 a hard restriction -- tree_unroll_loop works with arbitrary loops
881 as well; but the unrolling/prefetching is usually more profitable for
882 loops consisting of a single basic block, and we want to limit the
883 code growth. */
884 if (loop->num_nodes > 2)
885 return false;
887 return true;
890 /* Determine the coefficient by that unroll LOOP, from the information
891 contained in the list of memory references REFS. Description of
892 umber of iterations of LOOP is stored to DESC. AHEAD is the number
893 of iterations ahead that we need to prefetch. NINSNS is number of
894 insns of the LOOP. */
896 static unsigned
897 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
898 unsigned ahead, unsigned ninsns,
899 struct tree_niter_desc *desc)
901 unsigned upper_bound, size_factor, constraint_factor;
902 unsigned factor, max_mod_constraint, ahead_factor;
903 struct mem_ref_group *agp;
904 struct mem_ref *ref;
906 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
908 /* First check whether the loop is not too large to unroll. */
909 size_factor = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
910 if (size_factor <= 1)
911 return 1;
913 if (size_factor < upper_bound)
914 upper_bound = size_factor;
916 max_mod_constraint = 1;
917 for (agp = refs; agp; agp = agp->next)
918 for (ref = agp->refs; ref; ref = ref->next)
919 if (should_issue_prefetch_p (ref)
920 && ref->prefetch_mod > max_mod_constraint)
921 max_mod_constraint = ref->prefetch_mod;
923 /* Set constraint_factor as large as needed to be able to satisfy the
924 largest modulo constraint. */
925 constraint_factor = max_mod_constraint;
927 /* If ahead is too large in comparison with the number of available
928 prefetches, unroll the loop as much as needed to be able to prefetch
929 at least partially some of the references in the loop. */
930 ahead_factor = ((ahead + SIMULTANEOUS_PREFETCHES - 1)
931 / SIMULTANEOUS_PREFETCHES);
933 /* Unroll as much as useful, but bound the code size growth. */
934 if (constraint_factor < ahead_factor)
935 factor = ahead_factor;
936 else
937 factor = constraint_factor;
938 if (factor > upper_bound)
939 factor = upper_bound;
941 if (!should_unroll_loop_p (loop, desc, factor))
942 return 1;
944 return factor;
947 /* Issue prefetch instructions for array references in LOOP. Returns
948 true if the LOOP was unrolled. LOOPS is the array containing all
949 loops. */
951 static bool
952 loop_prefetch_arrays (struct loops *loops, struct loop *loop)
954 struct mem_ref_group *refs;
955 unsigned ahead, ninsns, unroll_factor;
956 struct tree_niter_desc desc;
957 bool unrolled = false;
959 /* Step 1: gather the memory references. */
960 refs = gather_memory_references (loop);
962 /* Step 2: estimate the reuse effects. */
963 prune_by_reuse (refs);
965 if (!anything_to_prefetch_p (refs))
966 goto fail;
968 /* Step 3: determine the ahead and unroll factor. */
970 /* FIXME: We should use not size of the loop, but the average number of
971 instructions executed per iteration of the loop. */
972 ninsns = tree_num_loop_insns (loop);
973 ahead = (PREFETCH_LATENCY + ninsns - 1) / ninsns;
974 unroll_factor = determine_unroll_factor (loop, refs, ahead, ninsns,
975 &desc);
976 if (dump_file && (dump_flags & TDF_DETAILS))
977 fprintf (dump_file, "Ahead %d, unroll factor %d\n", ahead, unroll_factor);
979 /* If the loop rolls less than the required unroll factor, prefetching
980 is useless. */
981 if (unroll_factor > 1
982 && cst_and_fits_in_hwi (desc.niter)
983 && (unsigned HOST_WIDE_INT) int_cst_value (desc.niter) < unroll_factor)
984 goto fail;
986 /* Step 4: what to prefetch? */
987 if (!schedule_prefetches (refs, unroll_factor, ahead))
988 goto fail;
990 /* Step 5: unroll the loop. TODO -- peeling of first and last few
991 iterations so that we do not issue superfluous prefetches. */
992 if (unroll_factor != 1)
994 tree_unroll_loop (loops, loop, unroll_factor,
995 single_dom_exit (loop), &desc);
996 unrolled = true;
999 /* Step 6: issue the prefetches. */
1000 issue_prefetches (refs, unroll_factor, ahead);
1002 fail:
1003 release_mem_refs (refs);
1004 return unrolled;
1007 /* Issue prefetch instructions for array references in LOOPS. */
1009 void
1010 tree_ssa_prefetch_arrays (struct loops *loops)
1012 unsigned i;
1013 struct loop *loop;
1014 bool unrolled = false;
1016 if (!HAVE_prefetch
1017 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1018 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1019 of processor costs and i486 does not have prefetch, but
1020 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1021 || PREFETCH_BLOCK == 0)
1022 return;
1024 initialize_original_copy_tables ();
1026 if (!built_in_decls[BUILT_IN_PREFETCH])
1028 tree type = build_function_type (void_type_node,
1029 tree_cons (NULL_TREE,
1030 const_ptr_type_node,
1031 NULL_TREE));
1032 tree decl = lang_hooks.builtin_function ("__builtin_prefetch", type,
1033 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1034 NULL, NULL_TREE);
1035 DECL_IS_NOVOPS (decl) = true;
1036 built_in_decls[BUILT_IN_PREFETCH] = decl;
1039 /* We assume that size of cache line is a power of two, so verify this
1040 here. */
1041 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1043 for (i = loops->num - 1; i > 0; i--)
1045 loop = loops->parray[i];
1047 if (dump_file && (dump_flags & TDF_DETAILS))
1048 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1050 if (loop)
1051 unrolled |= loop_prefetch_arrays (loops, loop);
1053 if (dump_file && (dump_flags & TDF_DETAILS))
1054 fprintf (dump_file, "\n\n");
1057 if (unrolled)
1059 scev_reset ();
1060 cleanup_tree_cfg_loop ();
1063 free_original_copy_tables ();