* config/i386/i386.c (ix86_adjust_stack_and_probe_stack_clash): New.
[official-gcc.git] / gcc / stor-layout.c
bloba6d430760fc4b376717df21b75f6131137a2c887
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "debug.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 static tree self_referential_size (tree);
54 static void finalize_record_size (record_layout_info);
55 static void finalize_type_size (tree);
56 static void place_union_field (record_layout_info, tree);
57 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
58 HOST_WIDE_INT, tree);
59 extern void debug_rli (record_layout_info);
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
64 tree
65 variable_size (tree size)
67 /* Obviously. */
68 if (TREE_CONSTANT (size))
69 return size;
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size))
74 return self_referential_size (size);
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks.decls.global_bindings_p ())
80 return size;
82 return save_expr (size);
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec<tree, va_gc> *size_functions;
88 /* Return true if T is a self-referential component reference. */
90 static bool
91 self_referential_component_ref_p (tree t)
93 if (TREE_CODE (t) != COMPONENT_REF)
94 return false;
96 while (REFERENCE_CLASS_P (t))
97 t = TREE_OPERAND (t, 0);
99 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
106 static tree
107 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 enum tree_code code = TREE_CODE (*tp);
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code) == tcc_type
113 || TREE_CODE_CLASS (code) == tcc_declaration
114 || TREE_CODE_CLASS (code) == tcc_constant)
116 *walk_subtrees = 0;
117 return NULL_TREE;
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code == ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp))
131 *walk_subtrees = 0;
132 return NULL_TREE;
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code == SAVE_EXPR)
141 return error_mark_node;
143 else if (code == STATEMENT_LIST)
144 gcc_unreachable ();
146 return copy_tree_r (tp, walk_subtrees, data);
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
152 static tree
153 self_referential_size (tree size)
155 static unsigned HOST_WIDE_INT fnno = 0;
156 vec<tree> self_refs = vNULL;
157 tree param_type_list = NULL, param_decl_list = NULL;
158 tree t, ref, return_type, fntype, fnname, fndecl;
159 unsigned int i;
160 char buf[128];
161 vec<tree, va_gc> *args = NULL;
163 /* Do not factor out simple operations. */
164 t = skip_simple_constant_arithmetic (size);
165 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
166 return size;
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size, &self_refs);
170 gcc_assert (self_refs.length () > 0);
172 /* Obtain a private copy of the expression. */
173 t = size;
174 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
175 return size;
176 size = t;
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args, self_refs.length ());
181 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 tree subst, param_name, param_type, param_decl;
185 if (DECL_P (ref))
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref));
189 subst = ref;
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref) == ADDR_EXPR)
193 subst = ref;
194 /* Default case: the component reference. */
195 else
196 subst = TREE_OPERAND (ref, 1);
198 sprintf (buf, "p%d", i);
199 param_name = get_identifier (buf);
200 param_type = TREE_TYPE (ref);
201 param_decl
202 = build_decl (input_location, PARM_DECL, param_name, param_type);
203 DECL_ARG_TYPE (param_decl) = param_type;
204 DECL_ARTIFICIAL (param_decl) = 1;
205 TREE_READONLY (param_decl) = 1;
207 size = substitute_in_expr (size, subst, param_decl);
209 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
210 param_decl_list = chainon (param_decl, param_decl_list);
211 args->quick_push (ref);
214 self_refs.release ();
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 /* The 3 lists have been created in reverse order. */
220 param_type_list = nreverse (param_type_list);
221 param_decl_list = nreverse (param_decl_list);
223 /* Build the function type. */
224 return_type = TREE_TYPE (size);
225 fntype = build_function_type (return_type, param_type_list);
227 /* Build the function declaration. */
228 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
229 fnname = get_file_function_name (buf);
230 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
231 for (t = param_decl_list; t; t = DECL_CHAIN (t))
232 DECL_CONTEXT (t) = fndecl;
233 DECL_ARGUMENTS (fndecl) = param_decl_list;
234 DECL_RESULT (fndecl)
235 = build_decl (input_location, RESULT_DECL, 0, return_type);
236 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl) = 1;
241 DECL_IGNORED_P (fndecl) = 1;
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl) = 1;
245 TREE_NOTHROW (fndecl) = 1;
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl) = 1;
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl) = make_node (BLOCK);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
254 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
255 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
256 TREE_STATIC (fndecl) = 1;
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions, fndecl);
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
272 void
273 finalize_size_functions (void)
275 unsigned int i;
276 tree fndecl;
278 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 allocate_struct_function (fndecl, false);
281 set_cfun (NULL);
282 dump_function (TDI_original, fndecl);
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks->size_function (fndecl);
287 gimplify_function_tree (fndecl);
288 cgraph_node::finalize_function (fndecl, false);
291 vec_free (size_functions);
294 /* Return a machine mode of class MCLASS with SIZE bits of precision,
295 if one exists. The mode may have padding bits as well the SIZE
296 value bits. If LIMIT is nonzero, disregard modes wider than
297 MAX_FIXED_MODE_SIZE. */
299 opt_machine_mode
300 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
302 machine_mode mode;
303 int i;
305 if (limit && size > MAX_FIXED_MODE_SIZE)
306 return opt_machine_mode ();
308 /* Get the first mode which has this size, in the specified class. */
309 FOR_EACH_MODE_IN_CLASS (mode, mclass)
310 if (GET_MODE_PRECISION (mode) == size)
311 return mode;
313 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
314 for (i = 0; i < NUM_INT_N_ENTS; i ++)
315 if (int_n_data[i].bitsize == size
316 && int_n_enabled_p[i])
317 return int_n_data[i].m;
319 return opt_machine_mode ();
322 /* Similar, except passed a tree node. */
324 opt_machine_mode
325 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 unsigned HOST_WIDE_INT uhwi;
328 unsigned int ui;
330 if (!tree_fits_uhwi_p (size))
331 return opt_machine_mode ();
332 uhwi = tree_to_uhwi (size);
333 ui = uhwi;
334 if (uhwi != ui)
335 return opt_machine_mode ();
336 return mode_for_size (ui, mclass, limit);
339 /* Return the narrowest mode of class MCLASS that contains at least
340 SIZE bits. Abort if no such mode exists. */
342 machine_mode
343 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
345 machine_mode mode = VOIDmode;
346 int i;
348 /* Get the first mode which has at least this size, in the
349 specified class. */
350 FOR_EACH_MODE_IN_CLASS (mode, mclass)
351 if (GET_MODE_PRECISION (mode) >= size)
352 break;
354 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
355 for (i = 0; i < NUM_INT_N_ENTS; i ++)
356 if (int_n_data[i].bitsize >= size
357 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
358 && int_n_enabled_p[i])
359 mode = int_n_data[i].m;
361 if (mode == VOIDmode)
362 gcc_unreachable ();
364 return mode;
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
372 switch (GET_MODE_CLASS (mode))
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_VECTOR_INT:
383 case MODE_VECTOR_FLOAT:
384 case MODE_FRACT:
385 case MODE_ACCUM:
386 case MODE_UFRACT:
387 case MODE_UACCUM:
388 case MODE_VECTOR_FRACT:
389 case MODE_VECTOR_ACCUM:
390 case MODE_VECTOR_UFRACT:
391 case MODE_VECTOR_UACCUM:
392 case MODE_POINTER_BOUNDS:
393 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 case MODE_RANDOM:
396 if (mode == BLKmode)
397 return opt_scalar_int_mode ();
399 /* fall through */
401 case MODE_CC:
402 default:
403 gcc_unreachable ();
407 /* Find a mode that can be used for efficient bitwise operations on MODE,
408 if one exists. */
410 opt_machine_mode
411 bitwise_mode_for_mode (machine_mode mode)
413 /* Quick exit if we already have a suitable mode. */
414 unsigned int bitsize = GET_MODE_BITSIZE (mode);
415 scalar_int_mode int_mode;
416 if (is_a <scalar_int_mode> (mode, &int_mode)
417 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418 return int_mode;
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode), true));
423 /* Try to replace complex modes with complex modes. In general we
424 expect both components to be processed independently, so we only
425 care whether there is a register for the inner mode. */
426 if (COMPLEX_MODE_P (mode))
428 machine_mode trial = mode;
429 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
430 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
431 && have_regs_of_mode[GET_MODE_INNER (trial)])
432 return trial;
435 /* Try to replace vector modes with vector modes. Also try using vector
436 modes if an integer mode would be too big. */
437 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
439 machine_mode trial = mode;
440 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
441 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
442 && have_regs_of_mode[trial]
443 && targetm.vector_mode_supported_p (trial))
444 return trial;
447 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
448 return mode_for_size (bitsize, MODE_INT, true);
451 /* Find a type that can be used for efficient bitwise operations on MODE.
452 Return null if no such mode exists. */
454 tree
455 bitwise_type_for_mode (machine_mode mode)
457 if (!bitwise_mode_for_mode (mode).exists (&mode))
458 return NULL_TREE;
460 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
461 tree inner_type = build_nonstandard_integer_type (inner_size, true);
463 if (VECTOR_MODE_P (mode))
464 return build_vector_type_for_mode (inner_type, mode);
466 if (COMPLEX_MODE_P (mode))
467 return build_complex_type (inner_type);
469 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
470 return inner_type;
473 /* Find a mode that is suitable for representing a vector with NUNITS
474 elements of mode INNERMODE, if one exists. The returned mode can be
475 either an integer mode or a vector mode. */
477 opt_machine_mode
478 mode_for_vector (scalar_mode innermode, unsigned nunits)
480 machine_mode mode;
482 /* First, look for a supported vector type. */
483 if (SCALAR_FLOAT_MODE_P (innermode))
484 mode = MIN_MODE_VECTOR_FLOAT;
485 else if (SCALAR_FRACT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FRACT;
487 else if (SCALAR_UFRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_UFRACT;
489 else if (SCALAR_ACCUM_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_ACCUM;
491 else if (SCALAR_UACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_UACCUM;
493 else
494 mode = MIN_MODE_VECTOR_INT;
496 /* Do not check vector_mode_supported_p here. We'll do that
497 later in vector_type_mode. */
498 FOR_EACH_MODE_FROM (mode, mode)
499 if (GET_MODE_NUNITS (mode) == nunits
500 && GET_MODE_INNER (mode) == innermode)
501 return mode;
503 /* For integers, try mapping it to a same-sized scalar mode. */
504 if (GET_MODE_CLASS (innermode) == MODE_INT)
506 unsigned int nbits = nunits * GET_MODE_BITSIZE (innermode);
507 if (int_mode_for_size (nbits, 0).exists (&mode)
508 && have_regs_of_mode[mode])
509 return mode;
512 return opt_machine_mode ();
515 /* Return the mode for a vector that has NUNITS integer elements of
516 INT_BITS bits each, if such a mode exists. The mode can be either
517 an integer mode or a vector mode. */
519 opt_machine_mode
520 mode_for_int_vector (unsigned int int_bits, unsigned int nunits)
522 scalar_int_mode int_mode;
523 machine_mode vec_mode;
524 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
525 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
526 return vec_mode;
527 return opt_machine_mode ();
530 /* Return the alignment of MODE. This will be bounded by 1 and
531 BIGGEST_ALIGNMENT. */
533 unsigned int
534 get_mode_alignment (machine_mode mode)
536 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
539 /* Return the natural mode of an array, given that it is SIZE bytes in
540 total and has elements of type ELEM_TYPE. */
542 static machine_mode
543 mode_for_array (tree elem_type, tree size)
545 tree elem_size;
546 unsigned HOST_WIDE_INT int_size, int_elem_size;
547 bool limit_p;
549 /* One-element arrays get the component type's mode. */
550 elem_size = TYPE_SIZE (elem_type);
551 if (simple_cst_equal (size, elem_size))
552 return TYPE_MODE (elem_type);
554 limit_p = true;
555 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
557 int_size = tree_to_uhwi (size);
558 int_elem_size = tree_to_uhwi (elem_size);
559 if (int_elem_size > 0
560 && int_size % int_elem_size == 0
561 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
562 int_size / int_elem_size))
563 limit_p = false;
565 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
568 /* Subroutine of layout_decl: Force alignment required for the data type.
569 But if the decl itself wants greater alignment, don't override that. */
571 static inline void
572 do_type_align (tree type, tree decl)
574 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
576 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
577 if (TREE_CODE (decl) == FIELD_DECL)
578 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
580 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
581 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
584 /* Set the size, mode and alignment of a ..._DECL node.
585 TYPE_DECL does need this for C++.
586 Note that LABEL_DECL and CONST_DECL nodes do not need this,
587 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
588 Don't call layout_decl for them.
590 KNOWN_ALIGN is the amount of alignment we can assume this
591 decl has with no special effort. It is relevant only for FIELD_DECLs
592 and depends on the previous fields.
593 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
594 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
595 the record will be aligned to suit. */
597 void
598 layout_decl (tree decl, unsigned int known_align)
600 tree type = TREE_TYPE (decl);
601 enum tree_code code = TREE_CODE (decl);
602 rtx rtl = NULL_RTX;
603 location_t loc = DECL_SOURCE_LOCATION (decl);
605 if (code == CONST_DECL)
606 return;
608 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
609 || code == TYPE_DECL || code == FIELD_DECL);
611 rtl = DECL_RTL_IF_SET (decl);
613 if (type == error_mark_node)
614 type = void_type_node;
616 /* Usually the size and mode come from the data type without change,
617 however, the front-end may set the explicit width of the field, so its
618 size may not be the same as the size of its type. This happens with
619 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
620 also happens with other fields. For example, the C++ front-end creates
621 zero-sized fields corresponding to empty base classes, and depends on
622 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
623 size in bytes from the size in bits. If we have already set the mode,
624 don't set it again since we can be called twice for FIELD_DECLs. */
626 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
627 if (DECL_MODE (decl) == VOIDmode)
628 SET_DECL_MODE (decl, TYPE_MODE (type));
630 if (DECL_SIZE (decl) == 0)
632 DECL_SIZE (decl) = TYPE_SIZE (type);
633 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
635 else if (DECL_SIZE_UNIT (decl) == 0)
636 DECL_SIZE_UNIT (decl)
637 = fold_convert_loc (loc, sizetype,
638 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
639 bitsize_unit_node));
641 if (code != FIELD_DECL)
642 /* For non-fields, update the alignment from the type. */
643 do_type_align (type, decl);
644 else
645 /* For fields, it's a bit more complicated... */
647 bool old_user_align = DECL_USER_ALIGN (decl);
648 bool zero_bitfield = false;
649 bool packed_p = DECL_PACKED (decl);
650 unsigned int mfa;
652 if (DECL_BIT_FIELD (decl))
654 DECL_BIT_FIELD_TYPE (decl) = type;
656 /* A zero-length bit-field affects the alignment of the next
657 field. In essence such bit-fields are not influenced by
658 any packing due to #pragma pack or attribute packed. */
659 if (integer_zerop (DECL_SIZE (decl))
660 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
662 zero_bitfield = true;
663 packed_p = false;
664 if (PCC_BITFIELD_TYPE_MATTERS)
665 do_type_align (type, decl);
666 else
668 #ifdef EMPTY_FIELD_BOUNDARY
669 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
671 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
672 DECL_USER_ALIGN (decl) = 0;
674 #endif
678 /* See if we can use an ordinary integer mode for a bit-field.
679 Conditions are: a fixed size that is correct for another mode,
680 occupying a complete byte or bytes on proper boundary. */
681 if (TYPE_SIZE (type) != 0
682 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
683 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
685 machine_mode xmode;
686 if (mode_for_size_tree (DECL_SIZE (decl),
687 MODE_INT, 1).exists (&xmode))
689 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
690 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
691 && (known_align == 0 || known_align >= xalign))
693 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
694 SET_DECL_MODE (decl, xmode);
695 DECL_BIT_FIELD (decl) = 0;
700 /* Turn off DECL_BIT_FIELD if we won't need it set. */
701 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
702 && known_align >= TYPE_ALIGN (type)
703 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
704 DECL_BIT_FIELD (decl) = 0;
706 else if (packed_p && DECL_USER_ALIGN (decl))
707 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
708 round up; we'll reduce it again below. We want packing to
709 supersede USER_ALIGN inherited from the type, but defer to
710 alignment explicitly specified on the field decl. */;
711 else
712 do_type_align (type, decl);
714 /* If the field is packed and not explicitly aligned, give it the
715 minimum alignment. Note that do_type_align may set
716 DECL_USER_ALIGN, so we need to check old_user_align instead. */
717 if (packed_p
718 && !old_user_align)
719 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
721 if (! packed_p && ! DECL_USER_ALIGN (decl))
723 /* Some targets (i.e. i386, VMS) limit struct field alignment
724 to a lower boundary than alignment of variables unless
725 it was overridden by attribute aligned. */
726 #ifdef BIGGEST_FIELD_ALIGNMENT
727 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
728 (unsigned) BIGGEST_FIELD_ALIGNMENT));
729 #endif
730 #ifdef ADJUST_FIELD_ALIGN
731 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
732 DECL_ALIGN (decl)));
733 #endif
736 if (zero_bitfield)
737 mfa = initial_max_fld_align * BITS_PER_UNIT;
738 else
739 mfa = maximum_field_alignment;
740 /* Should this be controlled by DECL_USER_ALIGN, too? */
741 if (mfa != 0)
742 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
745 /* Evaluate nonconstant size only once, either now or as soon as safe. */
746 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
747 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
748 if (DECL_SIZE_UNIT (decl) != 0
749 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
750 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
752 /* If requested, warn about definitions of large data objects. */
753 if (warn_larger_than
754 && (code == VAR_DECL || code == PARM_DECL)
755 && ! DECL_EXTERNAL (decl))
757 tree size = DECL_SIZE_UNIT (decl);
759 if (size != 0 && TREE_CODE (size) == INTEGER_CST
760 && compare_tree_int (size, larger_than_size) > 0)
762 int size_as_int = TREE_INT_CST_LOW (size);
764 if (compare_tree_int (size, size_as_int) == 0)
765 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
766 else
767 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
768 decl, larger_than_size);
772 /* If the RTL was already set, update its mode and mem attributes. */
773 if (rtl)
775 PUT_MODE (rtl, DECL_MODE (decl));
776 SET_DECL_RTL (decl, 0);
777 if (MEM_P (rtl))
778 set_mem_attributes (rtl, decl, 1);
779 SET_DECL_RTL (decl, rtl);
783 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
784 results of a previous call to layout_decl and calls it again. */
786 void
787 relayout_decl (tree decl)
789 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
790 SET_DECL_MODE (decl, VOIDmode);
791 if (!DECL_USER_ALIGN (decl))
792 SET_DECL_ALIGN (decl, 0);
793 if (DECL_RTL_SET_P (decl))
794 SET_DECL_RTL (decl, 0);
796 layout_decl (decl, 0);
799 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
800 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
801 is to be passed to all other layout functions for this record. It is the
802 responsibility of the caller to call `free' for the storage returned.
803 Note that garbage collection is not permitted until we finish laying
804 out the record. */
806 record_layout_info
807 start_record_layout (tree t)
809 record_layout_info rli = XNEW (struct record_layout_info_s);
811 rli->t = t;
813 /* If the type has a minimum specified alignment (via an attribute
814 declaration, for example) use it -- otherwise, start with a
815 one-byte alignment. */
816 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
817 rli->unpacked_align = rli->record_align;
818 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
820 #ifdef STRUCTURE_SIZE_BOUNDARY
821 /* Packed structures don't need to have minimum size. */
822 if (! TYPE_PACKED (t))
824 unsigned tmp;
826 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
827 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
828 if (maximum_field_alignment != 0)
829 tmp = MIN (tmp, maximum_field_alignment);
830 rli->record_align = MAX (rli->record_align, tmp);
832 #endif
834 rli->offset = size_zero_node;
835 rli->bitpos = bitsize_zero_node;
836 rli->prev_field = 0;
837 rli->pending_statics = 0;
838 rli->packed_maybe_necessary = 0;
839 rli->remaining_in_alignment = 0;
841 return rli;
844 /* Return the combined bit position for the byte offset OFFSET and the
845 bit position BITPOS.
847 These functions operate on byte and bit positions present in FIELD_DECLs
848 and assume that these expressions result in no (intermediate) overflow.
849 This assumption is necessary to fold the expressions as much as possible,
850 so as to avoid creating artificially variable-sized types in languages
851 supporting variable-sized types like Ada. */
853 tree
854 bit_from_pos (tree offset, tree bitpos)
856 if (TREE_CODE (offset) == PLUS_EXPR)
857 offset = size_binop (PLUS_EXPR,
858 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
859 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
860 else
861 offset = fold_convert (bitsizetype, offset);
862 return size_binop (PLUS_EXPR, bitpos,
863 size_binop (MULT_EXPR, offset, bitsize_unit_node));
866 /* Return the combined truncated byte position for the byte offset OFFSET and
867 the bit position BITPOS. */
869 tree
870 byte_from_pos (tree offset, tree bitpos)
872 tree bytepos;
873 if (TREE_CODE (bitpos) == MULT_EXPR
874 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
875 bytepos = TREE_OPERAND (bitpos, 0);
876 else
877 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
878 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
881 /* Split the bit position POS into a byte offset *POFFSET and a bit
882 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
884 void
885 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
886 tree pos)
888 tree toff_align = bitsize_int (off_align);
889 if (TREE_CODE (pos) == MULT_EXPR
890 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
892 *poffset = size_binop (MULT_EXPR,
893 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
894 size_int (off_align / BITS_PER_UNIT));
895 *pbitpos = bitsize_zero_node;
897 else
899 *poffset = size_binop (MULT_EXPR,
900 fold_convert (sizetype,
901 size_binop (FLOOR_DIV_EXPR, pos,
902 toff_align)),
903 size_int (off_align / BITS_PER_UNIT));
904 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
908 /* Given a pointer to bit and byte offsets and an offset alignment,
909 normalize the offsets so they are within the alignment. */
911 void
912 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
914 /* If the bit position is now larger than it should be, adjust it
915 downwards. */
916 if (compare_tree_int (*pbitpos, off_align) >= 0)
918 tree offset, bitpos;
919 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
920 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
921 *pbitpos = bitpos;
925 /* Print debugging information about the information in RLI. */
927 DEBUG_FUNCTION void
928 debug_rli (record_layout_info rli)
930 print_node_brief (stderr, "type", rli->t, 0);
931 print_node_brief (stderr, "\noffset", rli->offset, 0);
932 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
934 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
935 rli->record_align, rli->unpacked_align,
936 rli->offset_align);
938 /* The ms_struct code is the only that uses this. */
939 if (targetm.ms_bitfield_layout_p (rli->t))
940 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
942 if (rli->packed_maybe_necessary)
943 fprintf (stderr, "packed may be necessary\n");
945 if (!vec_safe_is_empty (rli->pending_statics))
947 fprintf (stderr, "pending statics:\n");
948 debug_vec_tree (rli->pending_statics);
952 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
953 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
955 void
956 normalize_rli (record_layout_info rli)
958 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
961 /* Returns the size in bytes allocated so far. */
963 tree
964 rli_size_unit_so_far (record_layout_info rli)
966 return byte_from_pos (rli->offset, rli->bitpos);
969 /* Returns the size in bits allocated so far. */
971 tree
972 rli_size_so_far (record_layout_info rli)
974 return bit_from_pos (rli->offset, rli->bitpos);
977 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
978 the next available location within the record is given by KNOWN_ALIGN.
979 Update the variable alignment fields in RLI, and return the alignment
980 to give the FIELD. */
982 unsigned int
983 update_alignment_for_field (record_layout_info rli, tree field,
984 unsigned int known_align)
986 /* The alignment required for FIELD. */
987 unsigned int desired_align;
988 /* The type of this field. */
989 tree type = TREE_TYPE (field);
990 /* True if the field was explicitly aligned by the user. */
991 bool user_align;
992 bool is_bitfield;
994 /* Do not attempt to align an ERROR_MARK node */
995 if (TREE_CODE (type) == ERROR_MARK)
996 return 0;
998 /* Lay out the field so we know what alignment it needs. */
999 layout_decl (field, known_align);
1000 desired_align = DECL_ALIGN (field);
1001 user_align = DECL_USER_ALIGN (field);
1003 is_bitfield = (type != error_mark_node
1004 && DECL_BIT_FIELD_TYPE (field)
1005 && ! integer_zerop (TYPE_SIZE (type)));
1007 /* Record must have at least as much alignment as any field.
1008 Otherwise, the alignment of the field within the record is
1009 meaningless. */
1010 if (targetm.ms_bitfield_layout_p (rli->t))
1012 /* Here, the alignment of the underlying type of a bitfield can
1013 affect the alignment of a record; even a zero-sized field
1014 can do this. The alignment should be to the alignment of
1015 the type, except that for zero-size bitfields this only
1016 applies if there was an immediately prior, nonzero-size
1017 bitfield. (That's the way it is, experimentally.) */
1018 if ((!is_bitfield && !DECL_PACKED (field))
1019 || ((DECL_SIZE (field) == NULL_TREE
1020 || !integer_zerop (DECL_SIZE (field)))
1021 ? !DECL_PACKED (field)
1022 : (rli->prev_field
1023 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1024 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1026 unsigned int type_align = TYPE_ALIGN (type);
1027 type_align = MAX (type_align, desired_align);
1028 if (maximum_field_alignment != 0)
1029 type_align = MIN (type_align, maximum_field_alignment);
1030 rli->record_align = MAX (rli->record_align, type_align);
1031 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1034 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1036 /* Named bit-fields cause the entire structure to have the
1037 alignment implied by their type. Some targets also apply the same
1038 rules to unnamed bitfields. */
1039 if (DECL_NAME (field) != 0
1040 || targetm.align_anon_bitfield ())
1042 unsigned int type_align = TYPE_ALIGN (type);
1044 #ifdef ADJUST_FIELD_ALIGN
1045 if (! TYPE_USER_ALIGN (type))
1046 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1047 #endif
1049 /* Targets might chose to handle unnamed and hence possibly
1050 zero-width bitfield. Those are not influenced by #pragmas
1051 or packed attributes. */
1052 if (integer_zerop (DECL_SIZE (field)))
1054 if (initial_max_fld_align)
1055 type_align = MIN (type_align,
1056 initial_max_fld_align * BITS_PER_UNIT);
1058 else if (maximum_field_alignment != 0)
1059 type_align = MIN (type_align, maximum_field_alignment);
1060 else if (DECL_PACKED (field))
1061 type_align = MIN (type_align, BITS_PER_UNIT);
1063 /* The alignment of the record is increased to the maximum
1064 of the current alignment, the alignment indicated on the
1065 field (i.e., the alignment specified by an __aligned__
1066 attribute), and the alignment indicated by the type of
1067 the field. */
1068 rli->record_align = MAX (rli->record_align, desired_align);
1069 rli->record_align = MAX (rli->record_align, type_align);
1071 if (warn_packed)
1072 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1073 user_align |= TYPE_USER_ALIGN (type);
1076 else
1078 rli->record_align = MAX (rli->record_align, desired_align);
1079 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1082 TYPE_USER_ALIGN (rli->t) |= user_align;
1084 return desired_align;
1087 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1088 the field alignment of FIELD or FIELD isn't aligned. */
1090 static void
1091 handle_warn_if_not_align (tree field, unsigned int record_align)
1093 tree type = TREE_TYPE (field);
1095 if (type == error_mark_node)
1096 return;
1098 unsigned int warn_if_not_align = 0;
1100 int opt_w = 0;
1102 if (warn_if_not_aligned)
1104 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1105 if (!warn_if_not_align)
1106 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1107 if (warn_if_not_align)
1108 opt_w = OPT_Wif_not_aligned;
1111 if (!warn_if_not_align
1112 && warn_packed_not_aligned
1113 && TYPE_USER_ALIGN (type))
1115 warn_if_not_align = TYPE_ALIGN (type);
1116 opt_w = OPT_Wpacked_not_aligned;
1119 if (!warn_if_not_align)
1120 return;
1122 tree context = DECL_CONTEXT (field);
1124 warn_if_not_align /= BITS_PER_UNIT;
1125 record_align /= BITS_PER_UNIT;
1126 if ((record_align % warn_if_not_align) != 0)
1127 warning (opt_w, "alignment %u of %qT is less than %u",
1128 record_align, context, warn_if_not_align);
1130 unsigned HOST_WIDE_INT off
1131 = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1132 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) / BITS_PER_UNIT);
1133 if ((off % warn_if_not_align) != 0)
1134 warning (opt_w, "%q+D offset %wu in %qT isn't aligned to %u",
1135 field, off, context, warn_if_not_align);
1138 /* Called from place_field to handle unions. */
1140 static void
1141 place_union_field (record_layout_info rli, tree field)
1143 update_alignment_for_field (rli, field, /*known_align=*/0);
1145 DECL_FIELD_OFFSET (field) = size_zero_node;
1146 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1147 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1148 handle_warn_if_not_align (field, rli->record_align);
1150 /* If this is an ERROR_MARK return *after* having set the
1151 field at the start of the union. This helps when parsing
1152 invalid fields. */
1153 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1154 return;
1156 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1157 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1158 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1160 /* We assume the union's size will be a multiple of a byte so we don't
1161 bother with BITPOS. */
1162 if (TREE_CODE (rli->t) == UNION_TYPE)
1163 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1164 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1165 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1166 DECL_SIZE_UNIT (field), rli->offset);
1169 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1170 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1171 units of alignment than the underlying TYPE. */
1172 static int
1173 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1174 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1176 /* Note that the calculation of OFFSET might overflow; we calculate it so
1177 that we still get the right result as long as ALIGN is a power of two. */
1178 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1180 offset = offset % align;
1181 return ((offset + size + align - 1) / align
1182 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1185 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1186 is a FIELD_DECL to be added after those fields already present in
1187 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1188 callers that desire that behavior must manually perform that step.) */
1190 void
1191 place_field (record_layout_info rli, tree field)
1193 /* The alignment required for FIELD. */
1194 unsigned int desired_align;
1195 /* The alignment FIELD would have if we just dropped it into the
1196 record as it presently stands. */
1197 unsigned int known_align;
1198 unsigned int actual_align;
1199 /* The type of this field. */
1200 tree type = TREE_TYPE (field);
1202 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1204 /* If FIELD is static, then treat it like a separate variable, not
1205 really like a structure field. If it is a FUNCTION_DECL, it's a
1206 method. In both cases, all we do is lay out the decl, and we do
1207 it *after* the record is laid out. */
1208 if (VAR_P (field))
1210 vec_safe_push (rli->pending_statics, field);
1211 return;
1214 /* Enumerators and enum types which are local to this class need not
1215 be laid out. Likewise for initialized constant fields. */
1216 else if (TREE_CODE (field) != FIELD_DECL)
1217 return;
1219 /* Unions are laid out very differently than records, so split
1220 that code off to another function. */
1221 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1223 place_union_field (rli, field);
1224 return;
1227 else if (TREE_CODE (type) == ERROR_MARK)
1229 /* Place this field at the current allocation position, so we
1230 maintain monotonicity. */
1231 DECL_FIELD_OFFSET (field) = rli->offset;
1232 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1233 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1234 handle_warn_if_not_align (field, rli->record_align);
1235 return;
1238 if (AGGREGATE_TYPE_P (type)
1239 && TYPE_TYPELESS_STORAGE (type))
1240 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1242 /* Work out the known alignment so far. Note that A & (-A) is the
1243 value of the least-significant bit in A that is one. */
1244 if (! integer_zerop (rli->bitpos))
1245 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1246 else if (integer_zerop (rli->offset))
1247 known_align = 0;
1248 else if (tree_fits_uhwi_p (rli->offset))
1249 known_align = (BITS_PER_UNIT
1250 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1251 else
1252 known_align = rli->offset_align;
1254 desired_align = update_alignment_for_field (rli, field, known_align);
1255 if (known_align == 0)
1256 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1258 if (warn_packed && DECL_PACKED (field))
1260 if (known_align >= TYPE_ALIGN (type))
1262 if (TYPE_ALIGN (type) > desired_align)
1264 if (STRICT_ALIGNMENT)
1265 warning (OPT_Wattributes, "packed attribute causes "
1266 "inefficient alignment for %q+D", field);
1267 /* Don't warn if DECL_PACKED was set by the type. */
1268 else if (!TYPE_PACKED (rli->t))
1269 warning (OPT_Wattributes, "packed attribute is "
1270 "unnecessary for %q+D", field);
1273 else
1274 rli->packed_maybe_necessary = 1;
1277 /* Does this field automatically have alignment it needs by virtue
1278 of the fields that precede it and the record's own alignment? */
1279 if (known_align < desired_align)
1281 /* No, we need to skip space before this field.
1282 Bump the cumulative size to multiple of field alignment. */
1284 if (!targetm.ms_bitfield_layout_p (rli->t)
1285 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1286 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1288 /* If the alignment is still within offset_align, just align
1289 the bit position. */
1290 if (desired_align < rli->offset_align)
1291 rli->bitpos = round_up (rli->bitpos, desired_align);
1292 else
1294 /* First adjust OFFSET by the partial bits, then align. */
1295 rli->offset
1296 = size_binop (PLUS_EXPR, rli->offset,
1297 fold_convert (sizetype,
1298 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1299 bitsize_unit_node)));
1300 rli->bitpos = bitsize_zero_node;
1302 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1305 if (! TREE_CONSTANT (rli->offset))
1306 rli->offset_align = desired_align;
1307 if (targetm.ms_bitfield_layout_p (rli->t))
1308 rli->prev_field = NULL;
1311 /* Handle compatibility with PCC. Note that if the record has any
1312 variable-sized fields, we need not worry about compatibility. */
1313 if (PCC_BITFIELD_TYPE_MATTERS
1314 && ! targetm.ms_bitfield_layout_p (rli->t)
1315 && TREE_CODE (field) == FIELD_DECL
1316 && type != error_mark_node
1317 && DECL_BIT_FIELD (field)
1318 && (! DECL_PACKED (field)
1319 /* Enter for these packed fields only to issue a warning. */
1320 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1321 && maximum_field_alignment == 0
1322 && ! integer_zerop (DECL_SIZE (field))
1323 && tree_fits_uhwi_p (DECL_SIZE (field))
1324 && tree_fits_uhwi_p (rli->offset)
1325 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1327 unsigned int type_align = TYPE_ALIGN (type);
1328 tree dsize = DECL_SIZE (field);
1329 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1330 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1331 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1333 #ifdef ADJUST_FIELD_ALIGN
1334 if (! TYPE_USER_ALIGN (type))
1335 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1336 #endif
1338 /* A bit field may not span more units of alignment of its type
1339 than its type itself. Advance to next boundary if necessary. */
1340 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1342 if (DECL_PACKED (field))
1344 if (warn_packed_bitfield_compat == 1)
1345 inform
1346 (input_location,
1347 "offset of packed bit-field %qD has changed in GCC 4.4",
1348 field);
1350 else
1351 rli->bitpos = round_up (rli->bitpos, type_align);
1354 if (! DECL_PACKED (field))
1355 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1357 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1358 TYPE_WARN_IF_NOT_ALIGN (type));
1361 #ifdef BITFIELD_NBYTES_LIMITED
1362 if (BITFIELD_NBYTES_LIMITED
1363 && ! targetm.ms_bitfield_layout_p (rli->t)
1364 && TREE_CODE (field) == FIELD_DECL
1365 && type != error_mark_node
1366 && DECL_BIT_FIELD_TYPE (field)
1367 && ! DECL_PACKED (field)
1368 && ! integer_zerop (DECL_SIZE (field))
1369 && tree_fits_uhwi_p (DECL_SIZE (field))
1370 && tree_fits_uhwi_p (rli->offset)
1371 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1373 unsigned int type_align = TYPE_ALIGN (type);
1374 tree dsize = DECL_SIZE (field);
1375 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1376 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1377 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1379 #ifdef ADJUST_FIELD_ALIGN
1380 if (! TYPE_USER_ALIGN (type))
1381 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1382 #endif
1384 if (maximum_field_alignment != 0)
1385 type_align = MIN (type_align, maximum_field_alignment);
1386 /* ??? This test is opposite the test in the containing if
1387 statement, so this code is unreachable currently. */
1388 else if (DECL_PACKED (field))
1389 type_align = MIN (type_align, BITS_PER_UNIT);
1391 /* A bit field may not span the unit of alignment of its type.
1392 Advance to next boundary if necessary. */
1393 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1394 rli->bitpos = round_up (rli->bitpos, type_align);
1396 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1397 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1398 TYPE_WARN_IF_NOT_ALIGN (type));
1400 #endif
1402 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1403 A subtlety:
1404 When a bit field is inserted into a packed record, the whole
1405 size of the underlying type is used by one or more same-size
1406 adjacent bitfields. (That is, if its long:3, 32 bits is
1407 used in the record, and any additional adjacent long bitfields are
1408 packed into the same chunk of 32 bits. However, if the size
1409 changes, a new field of that size is allocated.) In an unpacked
1410 record, this is the same as using alignment, but not equivalent
1411 when packing.
1413 Note: for compatibility, we use the type size, not the type alignment
1414 to determine alignment, since that matches the documentation */
1416 if (targetm.ms_bitfield_layout_p (rli->t))
1418 tree prev_saved = rli->prev_field;
1419 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1421 /* This is a bitfield if it exists. */
1422 if (rli->prev_field)
1424 /* If both are bitfields, nonzero, and the same size, this is
1425 the middle of a run. Zero declared size fields are special
1426 and handled as "end of run". (Note: it's nonzero declared
1427 size, but equal type sizes!) (Since we know that both
1428 the current and previous fields are bitfields by the
1429 time we check it, DECL_SIZE must be present for both.) */
1430 if (DECL_BIT_FIELD_TYPE (field)
1431 && !integer_zerop (DECL_SIZE (field))
1432 && !integer_zerop (DECL_SIZE (rli->prev_field))
1433 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1434 && tree_fits_uhwi_p (TYPE_SIZE (type))
1435 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1437 /* We're in the middle of a run of equal type size fields; make
1438 sure we realign if we run out of bits. (Not decl size,
1439 type size!) */
1440 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1442 if (rli->remaining_in_alignment < bitsize)
1444 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1446 /* out of bits; bump up to next 'word'. */
1447 rli->bitpos
1448 = size_binop (PLUS_EXPR, rli->bitpos,
1449 bitsize_int (rli->remaining_in_alignment));
1450 rli->prev_field = field;
1451 if (typesize < bitsize)
1452 rli->remaining_in_alignment = 0;
1453 else
1454 rli->remaining_in_alignment = typesize - bitsize;
1456 else
1457 rli->remaining_in_alignment -= bitsize;
1459 else
1461 /* End of a run: if leaving a run of bitfields of the same type
1462 size, we have to "use up" the rest of the bits of the type
1463 size.
1465 Compute the new position as the sum of the size for the prior
1466 type and where we first started working on that type.
1467 Note: since the beginning of the field was aligned then
1468 of course the end will be too. No round needed. */
1470 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1472 rli->bitpos
1473 = size_binop (PLUS_EXPR, rli->bitpos,
1474 bitsize_int (rli->remaining_in_alignment));
1476 else
1477 /* We "use up" size zero fields; the code below should behave
1478 as if the prior field was not a bitfield. */
1479 prev_saved = NULL;
1481 /* Cause a new bitfield to be captured, either this time (if
1482 currently a bitfield) or next time we see one. */
1483 if (!DECL_BIT_FIELD_TYPE (field)
1484 || integer_zerop (DECL_SIZE (field)))
1485 rli->prev_field = NULL;
1488 normalize_rli (rli);
1491 /* If we're starting a new run of same type size bitfields
1492 (or a run of non-bitfields), set up the "first of the run"
1493 fields.
1495 That is, if the current field is not a bitfield, or if there
1496 was a prior bitfield the type sizes differ, or if there wasn't
1497 a prior bitfield the size of the current field is nonzero.
1499 Note: we must be sure to test ONLY the type size if there was
1500 a prior bitfield and ONLY for the current field being zero if
1501 there wasn't. */
1503 if (!DECL_BIT_FIELD_TYPE (field)
1504 || (prev_saved != NULL
1505 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1506 : !integer_zerop (DECL_SIZE (field)) ))
1508 /* Never smaller than a byte for compatibility. */
1509 unsigned int type_align = BITS_PER_UNIT;
1511 /* (When not a bitfield), we could be seeing a flex array (with
1512 no DECL_SIZE). Since we won't be using remaining_in_alignment
1513 until we see a bitfield (and come by here again) we just skip
1514 calculating it. */
1515 if (DECL_SIZE (field) != NULL
1516 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1517 && tree_fits_uhwi_p (DECL_SIZE (field)))
1519 unsigned HOST_WIDE_INT bitsize
1520 = tree_to_uhwi (DECL_SIZE (field));
1521 unsigned HOST_WIDE_INT typesize
1522 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1524 if (typesize < bitsize)
1525 rli->remaining_in_alignment = 0;
1526 else
1527 rli->remaining_in_alignment = typesize - bitsize;
1530 /* Now align (conventionally) for the new type. */
1531 type_align = TYPE_ALIGN (TREE_TYPE (field));
1533 if (maximum_field_alignment != 0)
1534 type_align = MIN (type_align, maximum_field_alignment);
1536 rli->bitpos = round_up (rli->bitpos, type_align);
1538 /* If we really aligned, don't allow subsequent bitfields
1539 to undo that. */
1540 rli->prev_field = NULL;
1544 /* Offset so far becomes the position of this field after normalizing. */
1545 normalize_rli (rli);
1546 DECL_FIELD_OFFSET (field) = rli->offset;
1547 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1548 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1549 handle_warn_if_not_align (field, rli->record_align);
1551 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1552 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1553 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1555 /* If this field ended up more aligned than we thought it would be (we
1556 approximate this by seeing if its position changed), lay out the field
1557 again; perhaps we can use an integral mode for it now. */
1558 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1559 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1560 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1561 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1562 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1563 actual_align = (BITS_PER_UNIT
1564 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1565 else
1566 actual_align = DECL_OFFSET_ALIGN (field);
1567 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1568 store / extract bit field operations will check the alignment of the
1569 record against the mode of bit fields. */
1571 if (known_align != actual_align)
1572 layout_decl (field, actual_align);
1574 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1575 rli->prev_field = field;
1577 /* Now add size of this field to the size of the record. If the size is
1578 not constant, treat the field as being a multiple of bytes and just
1579 adjust the offset, resetting the bit position. Otherwise, apportion the
1580 size amongst the bit position and offset. First handle the case of an
1581 unspecified size, which can happen when we have an invalid nested struct
1582 definition, such as struct j { struct j { int i; } }. The error message
1583 is printed in finish_struct. */
1584 if (DECL_SIZE (field) == 0)
1585 /* Do nothing. */;
1586 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1587 || TREE_OVERFLOW (DECL_SIZE (field)))
1589 rli->offset
1590 = size_binop (PLUS_EXPR, rli->offset,
1591 fold_convert (sizetype,
1592 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1593 bitsize_unit_node)));
1594 rli->offset
1595 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1596 rli->bitpos = bitsize_zero_node;
1597 rli->offset_align = MIN (rli->offset_align, desired_align);
1599 else if (targetm.ms_bitfield_layout_p (rli->t))
1601 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1603 /* If we ended a bitfield before the full length of the type then
1604 pad the struct out to the full length of the last type. */
1605 if ((DECL_CHAIN (field) == NULL
1606 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1607 && DECL_BIT_FIELD_TYPE (field)
1608 && !integer_zerop (DECL_SIZE (field)))
1609 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1610 bitsize_int (rli->remaining_in_alignment));
1612 normalize_rli (rli);
1614 else
1616 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1617 normalize_rli (rli);
1621 /* Assuming that all the fields have been laid out, this function uses
1622 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1623 indicated by RLI. */
1625 static void
1626 finalize_record_size (record_layout_info rli)
1628 tree unpadded_size, unpadded_size_unit;
1630 /* Now we want just byte and bit offsets, so set the offset alignment
1631 to be a byte and then normalize. */
1632 rli->offset_align = BITS_PER_UNIT;
1633 normalize_rli (rli);
1635 /* Determine the desired alignment. */
1636 #ifdef ROUND_TYPE_ALIGN
1637 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1638 rli->record_align));
1639 #else
1640 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1641 #endif
1643 /* Compute the size so far. Be sure to allow for extra bits in the
1644 size in bytes. We have guaranteed above that it will be no more
1645 than a single byte. */
1646 unpadded_size = rli_size_so_far (rli);
1647 unpadded_size_unit = rli_size_unit_so_far (rli);
1648 if (! integer_zerop (rli->bitpos))
1649 unpadded_size_unit
1650 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1652 /* Round the size up to be a multiple of the required alignment. */
1653 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1654 TYPE_SIZE_UNIT (rli->t)
1655 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1657 if (TREE_CONSTANT (unpadded_size)
1658 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1659 && input_location != BUILTINS_LOCATION)
1660 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1662 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1663 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1664 && TREE_CONSTANT (unpadded_size))
1666 tree unpacked_size;
1668 #ifdef ROUND_TYPE_ALIGN
1669 rli->unpacked_align
1670 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1671 #else
1672 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1673 #endif
1675 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1676 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1678 if (TYPE_NAME (rli->t))
1680 tree name;
1682 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1683 name = TYPE_NAME (rli->t);
1684 else
1685 name = DECL_NAME (TYPE_NAME (rli->t));
1687 if (STRICT_ALIGNMENT)
1688 warning (OPT_Wpacked, "packed attribute causes inefficient "
1689 "alignment for %qE", name);
1690 else
1691 warning (OPT_Wpacked,
1692 "packed attribute is unnecessary for %qE", name);
1694 else
1696 if (STRICT_ALIGNMENT)
1697 warning (OPT_Wpacked,
1698 "packed attribute causes inefficient alignment");
1699 else
1700 warning (OPT_Wpacked, "packed attribute is unnecessary");
1706 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1708 void
1709 compute_record_mode (tree type)
1711 tree field;
1712 machine_mode mode = VOIDmode;
1714 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1715 However, if possible, we use a mode that fits in a register
1716 instead, in order to allow for better optimization down the
1717 line. */
1718 SET_TYPE_MODE (type, BLKmode);
1720 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1721 return;
1723 /* A record which has any BLKmode members must itself be
1724 BLKmode; it can't go in a register. Unless the member is
1725 BLKmode only because it isn't aligned. */
1726 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1728 if (TREE_CODE (field) != FIELD_DECL)
1729 continue;
1731 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1732 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1733 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1734 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1735 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1736 || ! tree_fits_uhwi_p (bit_position (field))
1737 || DECL_SIZE (field) == 0
1738 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1739 return;
1741 /* If this field is the whole struct, remember its mode so
1742 that, say, we can put a double in a class into a DF
1743 register instead of forcing it to live in the stack. */
1744 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1745 mode = DECL_MODE (field);
1747 /* With some targets, it is sub-optimal to access an aligned
1748 BLKmode structure as a scalar. */
1749 if (targetm.member_type_forces_blk (field, mode))
1750 return;
1753 /* If we only have one real field; use its mode if that mode's size
1754 matches the type's size. This only applies to RECORD_TYPE. This
1755 does not apply to unions. */
1756 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1757 && tree_fits_uhwi_p (TYPE_SIZE (type))
1758 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1760 else
1761 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1763 /* If structure's known alignment is less than what the scalar
1764 mode would need, and it matters, then stick with BLKmode. */
1765 if (mode != BLKmode
1766 && STRICT_ALIGNMENT
1767 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1768 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1770 /* If this is the only reason this type is BLKmode, then
1771 don't force containing types to be BLKmode. */
1772 TYPE_NO_FORCE_BLK (type) = 1;
1773 mode = BLKmode;
1776 SET_TYPE_MODE (type, mode);
1779 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1780 out. */
1782 static void
1783 finalize_type_size (tree type)
1785 /* Normally, use the alignment corresponding to the mode chosen.
1786 However, where strict alignment is not required, avoid
1787 over-aligning structures, since most compilers do not do this
1788 alignment. */
1789 if (TYPE_MODE (type) != BLKmode
1790 && TYPE_MODE (type) != VOIDmode
1791 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1793 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1795 /* Don't override a larger alignment requirement coming from a user
1796 alignment of one of the fields. */
1797 if (mode_align >= TYPE_ALIGN (type))
1799 SET_TYPE_ALIGN (type, mode_align);
1800 TYPE_USER_ALIGN (type) = 0;
1804 /* Do machine-dependent extra alignment. */
1805 #ifdef ROUND_TYPE_ALIGN
1806 SET_TYPE_ALIGN (type,
1807 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1808 #endif
1810 /* If we failed to find a simple way to calculate the unit size
1811 of the type, find it by division. */
1812 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1813 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1814 result will fit in sizetype. We will get more efficient code using
1815 sizetype, so we force a conversion. */
1816 TYPE_SIZE_UNIT (type)
1817 = fold_convert (sizetype,
1818 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1819 bitsize_unit_node));
1821 if (TYPE_SIZE (type) != 0)
1823 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1824 TYPE_SIZE_UNIT (type)
1825 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1828 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1829 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1830 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1831 if (TYPE_SIZE_UNIT (type) != 0
1832 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1833 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1835 /* Also layout any other variants of the type. */
1836 if (TYPE_NEXT_VARIANT (type)
1837 || type != TYPE_MAIN_VARIANT (type))
1839 tree variant;
1840 /* Record layout info of this variant. */
1841 tree size = TYPE_SIZE (type);
1842 tree size_unit = TYPE_SIZE_UNIT (type);
1843 unsigned int align = TYPE_ALIGN (type);
1844 unsigned int precision = TYPE_PRECISION (type);
1845 unsigned int user_align = TYPE_USER_ALIGN (type);
1846 machine_mode mode = TYPE_MODE (type);
1848 /* Copy it into all variants. */
1849 for (variant = TYPE_MAIN_VARIANT (type);
1850 variant != 0;
1851 variant = TYPE_NEXT_VARIANT (variant))
1853 TYPE_SIZE (variant) = size;
1854 TYPE_SIZE_UNIT (variant) = size_unit;
1855 unsigned valign = align;
1856 if (TYPE_USER_ALIGN (variant))
1857 valign = MAX (valign, TYPE_ALIGN (variant));
1858 else
1859 TYPE_USER_ALIGN (variant) = user_align;
1860 SET_TYPE_ALIGN (variant, valign);
1861 TYPE_PRECISION (variant) = precision;
1862 SET_TYPE_MODE (variant, mode);
1867 /* Return a new underlying object for a bitfield started with FIELD. */
1869 static tree
1870 start_bitfield_representative (tree field)
1872 tree repr = make_node (FIELD_DECL);
1873 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1874 /* Force the representative to begin at a BITS_PER_UNIT aligned
1875 boundary - C++ may use tail-padding of a base object to
1876 continue packing bits so the bitfield region does not start
1877 at bit zero (see g++.dg/abi/bitfield5.C for example).
1878 Unallocated bits may happen for other reasons as well,
1879 for example Ada which allows explicit bit-granular structure layout. */
1880 DECL_FIELD_BIT_OFFSET (repr)
1881 = size_binop (BIT_AND_EXPR,
1882 DECL_FIELD_BIT_OFFSET (field),
1883 bitsize_int (~(BITS_PER_UNIT - 1)));
1884 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1885 DECL_SIZE (repr) = DECL_SIZE (field);
1886 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1887 DECL_PACKED (repr) = DECL_PACKED (field);
1888 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1889 /* There are no indirect accesses to this field. If we introduce
1890 some then they have to use the record alias set. This makes
1891 sure to properly conflict with [indirect] accesses to addressable
1892 fields of the bitfield group. */
1893 DECL_NONADDRESSABLE_P (repr) = 1;
1894 return repr;
1897 /* Finish up a bitfield group that was started by creating the underlying
1898 object REPR with the last field in the bitfield group FIELD. */
1900 static void
1901 finish_bitfield_representative (tree repr, tree field)
1903 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1904 tree nextf, size;
1906 size = size_diffop (DECL_FIELD_OFFSET (field),
1907 DECL_FIELD_OFFSET (repr));
1908 while (TREE_CODE (size) == COMPOUND_EXPR)
1909 size = TREE_OPERAND (size, 1);
1910 gcc_assert (tree_fits_uhwi_p (size));
1911 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1912 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1913 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1914 + tree_to_uhwi (DECL_SIZE (field)));
1916 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1917 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1919 /* Now nothing tells us how to pad out bitsize ... */
1920 nextf = DECL_CHAIN (field);
1921 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1922 nextf = DECL_CHAIN (nextf);
1923 if (nextf)
1925 tree maxsize;
1926 /* If there was an error, the field may be not laid out
1927 correctly. Don't bother to do anything. */
1928 if (TREE_TYPE (nextf) == error_mark_node)
1929 return;
1930 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1931 DECL_FIELD_OFFSET (repr));
1932 if (tree_fits_uhwi_p (maxsize))
1934 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1935 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1936 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1937 /* If the group ends within a bitfield nextf does not need to be
1938 aligned to BITS_PER_UNIT. Thus round up. */
1939 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1941 else
1942 maxbitsize = bitsize;
1944 else
1946 /* Note that if the C++ FE sets up tail-padding to be re-used it
1947 creates a as-base variant of the type with TYPE_SIZE adjusted
1948 accordingly. So it is safe to include tail-padding here. */
1949 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1950 (DECL_CONTEXT (field));
1951 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1952 /* We cannot generally rely on maxsize to fold to an integer constant,
1953 so use bitsize as fallback for this case. */
1954 if (tree_fits_uhwi_p (maxsize))
1955 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1956 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1957 else
1958 maxbitsize = bitsize;
1961 /* Only if we don't artificially break up the representative in
1962 the middle of a large bitfield with different possibly
1963 overlapping representatives. And all representatives start
1964 at byte offset. */
1965 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1967 /* Find the smallest nice mode to use. */
1968 opt_scalar_int_mode mode_iter;
1969 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1970 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
1971 break;
1973 scalar_int_mode mode;
1974 if (!mode_iter.exists (&mode)
1975 || GET_MODE_BITSIZE (mode) > maxbitsize
1976 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
1978 /* We really want a BLKmode representative only as a last resort,
1979 considering the member b in
1980 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1981 Otherwise we simply want to split the representative up
1982 allowing for overlaps within the bitfield region as required for
1983 struct { int a : 7; int b : 7;
1984 int c : 10; int d; } __attribute__((packed));
1985 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1986 DECL_SIZE (repr) = bitsize_int (bitsize);
1987 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1988 SET_DECL_MODE (repr, BLKmode);
1989 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1990 bitsize / BITS_PER_UNIT);
1992 else
1994 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1995 DECL_SIZE (repr) = bitsize_int (modesize);
1996 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1997 SET_DECL_MODE (repr, mode);
1998 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2001 /* Remember whether the bitfield group is at the end of the
2002 structure or not. */
2003 DECL_CHAIN (repr) = nextf;
2006 /* Compute and set FIELD_DECLs for the underlying objects we should
2007 use for bitfield access for the structure T. */
2009 void
2010 finish_bitfield_layout (tree t)
2012 tree field, prev;
2013 tree repr = NULL_TREE;
2015 /* Unions would be special, for the ease of type-punning optimizations
2016 we could use the underlying type as hint for the representative
2017 if the bitfield would fit and the representative would not exceed
2018 the union in size. */
2019 if (TREE_CODE (t) != RECORD_TYPE)
2020 return;
2022 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2023 field; field = DECL_CHAIN (field))
2025 if (TREE_CODE (field) != FIELD_DECL)
2026 continue;
2028 /* In the C++ memory model, consecutive bit fields in a structure are
2029 considered one memory location and updating a memory location
2030 may not store into adjacent memory locations. */
2031 if (!repr
2032 && DECL_BIT_FIELD_TYPE (field))
2034 /* Start new representative. */
2035 repr = start_bitfield_representative (field);
2037 else if (repr
2038 && ! DECL_BIT_FIELD_TYPE (field))
2040 /* Finish off new representative. */
2041 finish_bitfield_representative (repr, prev);
2042 repr = NULL_TREE;
2044 else if (DECL_BIT_FIELD_TYPE (field))
2046 gcc_assert (repr != NULL_TREE);
2048 /* Zero-size bitfields finish off a representative and
2049 do not have a representative themselves. This is
2050 required by the C++ memory model. */
2051 if (integer_zerop (DECL_SIZE (field)))
2053 finish_bitfield_representative (repr, prev);
2054 repr = NULL_TREE;
2057 /* We assume that either DECL_FIELD_OFFSET of the representative
2058 and each bitfield member is a constant or they are equal.
2059 This is because we need to be able to compute the bit-offset
2060 of each field relative to the representative in get_bit_range
2061 during RTL expansion.
2062 If these constraints are not met, simply force a new
2063 representative to be generated. That will at most
2064 generate worse code but still maintain correctness with
2065 respect to the C++ memory model. */
2066 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2067 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2068 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2069 DECL_FIELD_OFFSET (field), 0)))
2071 finish_bitfield_representative (repr, prev);
2072 repr = start_bitfield_representative (field);
2075 else
2076 continue;
2078 if (repr)
2079 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2081 prev = field;
2084 if (repr)
2085 finish_bitfield_representative (repr, prev);
2088 /* Do all of the work required to layout the type indicated by RLI,
2089 once the fields have been laid out. This function will call `free'
2090 for RLI, unless FREE_P is false. Passing a value other than false
2091 for FREE_P is bad practice; this option only exists to support the
2092 G++ 3.2 ABI. */
2094 void
2095 finish_record_layout (record_layout_info rli, int free_p)
2097 tree variant;
2099 /* Compute the final size. */
2100 finalize_record_size (rli);
2102 /* Compute the TYPE_MODE for the record. */
2103 compute_record_mode (rli->t);
2105 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2106 finalize_type_size (rli->t);
2108 /* Compute bitfield representatives. */
2109 finish_bitfield_layout (rli->t);
2111 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2112 With C++ templates, it is too early to do this when the attribute
2113 is being parsed. */
2114 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2115 variant = TYPE_NEXT_VARIANT (variant))
2117 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2118 TYPE_REVERSE_STORAGE_ORDER (variant)
2119 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2122 /* Lay out any static members. This is done now because their type
2123 may use the record's type. */
2124 while (!vec_safe_is_empty (rli->pending_statics))
2125 layout_decl (rli->pending_statics->pop (), 0);
2127 /* Clean up. */
2128 if (free_p)
2130 vec_free (rli->pending_statics);
2131 free (rli);
2136 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2137 NAME, its fields are chained in reverse on FIELDS.
2139 If ALIGN_TYPE is non-null, it is given the same alignment as
2140 ALIGN_TYPE. */
2142 void
2143 finish_builtin_struct (tree type, const char *name, tree fields,
2144 tree align_type)
2146 tree tail, next;
2148 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2150 DECL_FIELD_CONTEXT (fields) = type;
2151 next = DECL_CHAIN (fields);
2152 DECL_CHAIN (fields) = tail;
2154 TYPE_FIELDS (type) = tail;
2156 if (align_type)
2158 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2159 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2160 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2161 TYPE_WARN_IF_NOT_ALIGN (align_type));
2164 layout_type (type);
2165 #if 0 /* not yet, should get fixed properly later */
2166 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2167 #else
2168 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2169 TYPE_DECL, get_identifier (name), type);
2170 #endif
2171 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2172 layout_decl (TYPE_NAME (type), 0);
2175 /* Calculate the mode, size, and alignment for TYPE.
2176 For an array type, calculate the element separation as well.
2177 Record TYPE on the chain of permanent or temporary types
2178 so that dbxout will find out about it.
2180 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2181 layout_type does nothing on such a type.
2183 If the type is incomplete, its TYPE_SIZE remains zero. */
2185 void
2186 layout_type (tree type)
2188 gcc_assert (type);
2190 if (type == error_mark_node)
2191 return;
2193 /* We don't want finalize_type_size to copy an alignment attribute to
2194 variants that don't have it. */
2195 type = TYPE_MAIN_VARIANT (type);
2197 /* Do nothing if type has been laid out before. */
2198 if (TYPE_SIZE (type))
2199 return;
2201 switch (TREE_CODE (type))
2203 case LANG_TYPE:
2204 /* This kind of type is the responsibility
2205 of the language-specific code. */
2206 gcc_unreachable ();
2208 case BOOLEAN_TYPE:
2209 case INTEGER_TYPE:
2210 case ENUMERAL_TYPE:
2212 scalar_int_mode mode
2213 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2214 SET_TYPE_MODE (type, mode);
2215 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2216 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2217 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2218 break;
2221 case REAL_TYPE:
2223 /* Allow the caller to choose the type mode, which is how decimal
2224 floats are distinguished from binary ones. */
2225 if (TYPE_MODE (type) == VOIDmode)
2226 SET_TYPE_MODE
2227 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2228 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2229 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2230 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2231 break;
2234 case FIXED_POINT_TYPE:
2236 /* TYPE_MODE (type) has been set already. */
2237 scalar_mode mode = SCALAR_TYPE_MODE (type);
2238 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2239 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2240 break;
2243 case COMPLEX_TYPE:
2244 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2245 SET_TYPE_MODE (type,
2246 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2248 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2249 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2250 break;
2252 case VECTOR_TYPE:
2254 int nunits = TYPE_VECTOR_SUBPARTS (type);
2255 tree innertype = TREE_TYPE (type);
2257 gcc_assert (!(nunits & (nunits - 1)));
2259 /* Find an appropriate mode for the vector type. */
2260 if (TYPE_MODE (type) == VOIDmode)
2261 SET_TYPE_MODE (type,
2262 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2263 nunits).else_blk ());
2265 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2266 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2267 /* Several boolean vector elements may fit in a single unit. */
2268 if (VECTOR_BOOLEAN_TYPE_P (type)
2269 && type->type_common.mode != BLKmode)
2270 TYPE_SIZE_UNIT (type)
2271 = size_int (GET_MODE_SIZE (type->type_common.mode));
2272 else
2273 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2274 TYPE_SIZE_UNIT (innertype),
2275 size_int (nunits));
2276 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2277 TYPE_SIZE (innertype),
2278 bitsize_int (nunits));
2280 /* For vector types, we do not default to the mode's alignment.
2281 Instead, query a target hook, defaulting to natural alignment.
2282 This prevents ABI changes depending on whether or not native
2283 vector modes are supported. */
2284 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2286 /* However, if the underlying mode requires a bigger alignment than
2287 what the target hook provides, we cannot use the mode. For now,
2288 simply reject that case. */
2289 gcc_assert (TYPE_ALIGN (type)
2290 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2291 break;
2294 case VOID_TYPE:
2295 /* This is an incomplete type and so doesn't have a size. */
2296 SET_TYPE_ALIGN (type, 1);
2297 TYPE_USER_ALIGN (type) = 0;
2298 SET_TYPE_MODE (type, VOIDmode);
2299 break;
2301 case POINTER_BOUNDS_TYPE:
2302 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2303 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2304 break;
2306 case OFFSET_TYPE:
2307 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2308 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2309 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2310 integral, which may be an __intN. */
2311 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2312 TYPE_PRECISION (type) = POINTER_SIZE;
2313 break;
2315 case FUNCTION_TYPE:
2316 case METHOD_TYPE:
2317 /* It's hard to see what the mode and size of a function ought to
2318 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2319 make it consistent with that. */
2320 SET_TYPE_MODE (type,
2321 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2322 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2323 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2324 break;
2326 case POINTER_TYPE:
2327 case REFERENCE_TYPE:
2329 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2330 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2331 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2332 TYPE_UNSIGNED (type) = 1;
2333 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2335 break;
2337 case ARRAY_TYPE:
2339 tree index = TYPE_DOMAIN (type);
2340 tree element = TREE_TYPE (type);
2342 /* We need to know both bounds in order to compute the size. */
2343 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2344 && TYPE_SIZE (element))
2346 tree ub = TYPE_MAX_VALUE (index);
2347 tree lb = TYPE_MIN_VALUE (index);
2348 tree element_size = TYPE_SIZE (element);
2349 tree length;
2351 /* Make sure that an array of zero-sized element is zero-sized
2352 regardless of its extent. */
2353 if (integer_zerop (element_size))
2354 length = size_zero_node;
2356 /* The computation should happen in the original signedness so
2357 that (possible) negative values are handled appropriately
2358 when determining overflow. */
2359 else
2361 /* ??? When it is obvious that the range is signed
2362 represent it using ssizetype. */
2363 if (TREE_CODE (lb) == INTEGER_CST
2364 && TREE_CODE (ub) == INTEGER_CST
2365 && TYPE_UNSIGNED (TREE_TYPE (lb))
2366 && tree_int_cst_lt (ub, lb))
2368 lb = wide_int_to_tree (ssizetype,
2369 offset_int::from (lb, SIGNED));
2370 ub = wide_int_to_tree (ssizetype,
2371 offset_int::from (ub, SIGNED));
2373 length
2374 = fold_convert (sizetype,
2375 size_binop (PLUS_EXPR,
2376 build_int_cst (TREE_TYPE (lb), 1),
2377 size_binop (MINUS_EXPR, ub, lb)));
2380 /* ??? We have no way to distinguish a null-sized array from an
2381 array spanning the whole sizetype range, so we arbitrarily
2382 decide that [0, -1] is the only valid representation. */
2383 if (integer_zerop (length)
2384 && TREE_OVERFLOW (length)
2385 && integer_zerop (lb))
2386 length = size_zero_node;
2388 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2389 fold_convert (bitsizetype,
2390 length));
2392 /* If we know the size of the element, calculate the total size
2393 directly, rather than do some division thing below. This
2394 optimization helps Fortran assumed-size arrays (where the
2395 size of the array is determined at runtime) substantially. */
2396 if (TYPE_SIZE_UNIT (element))
2397 TYPE_SIZE_UNIT (type)
2398 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2401 /* Now round the alignment and size,
2402 using machine-dependent criteria if any. */
2404 unsigned align = TYPE_ALIGN (element);
2405 if (TYPE_USER_ALIGN (type))
2406 align = MAX (align, TYPE_ALIGN (type));
2407 else
2408 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2409 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2410 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2411 TYPE_WARN_IF_NOT_ALIGN (element));
2412 #ifdef ROUND_TYPE_ALIGN
2413 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2414 #else
2415 align = MAX (align, BITS_PER_UNIT);
2416 #endif
2417 SET_TYPE_ALIGN (type, align);
2418 SET_TYPE_MODE (type, BLKmode);
2419 if (TYPE_SIZE (type) != 0
2420 && ! targetm.member_type_forces_blk (type, VOIDmode)
2421 /* BLKmode elements force BLKmode aggregate;
2422 else extract/store fields may lose. */
2423 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2424 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2426 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2427 TYPE_SIZE (type)));
2428 if (TYPE_MODE (type) != BLKmode
2429 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2430 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2432 TYPE_NO_FORCE_BLK (type) = 1;
2433 SET_TYPE_MODE (type, BLKmode);
2436 if (AGGREGATE_TYPE_P (element))
2437 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2438 /* When the element size is constant, check that it is at least as
2439 large as the element alignment. */
2440 if (TYPE_SIZE_UNIT (element)
2441 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2442 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2443 TYPE_ALIGN_UNIT. */
2444 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2445 && !integer_zerop (TYPE_SIZE_UNIT (element))
2446 && compare_tree_int (TYPE_SIZE_UNIT (element),
2447 TYPE_ALIGN_UNIT (element)) < 0)
2448 error ("alignment of array elements is greater than element size");
2449 break;
2452 case RECORD_TYPE:
2453 case UNION_TYPE:
2454 case QUAL_UNION_TYPE:
2456 tree field;
2457 record_layout_info rli;
2459 /* Initialize the layout information. */
2460 rli = start_record_layout (type);
2462 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2463 in the reverse order in building the COND_EXPR that denotes
2464 its size. We reverse them again later. */
2465 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2466 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2468 /* Place all the fields. */
2469 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2470 place_field (rli, field);
2472 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2473 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2475 /* Finish laying out the record. */
2476 finish_record_layout (rli, /*free_p=*/true);
2478 break;
2480 default:
2481 gcc_unreachable ();
2484 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2485 records and unions, finish_record_layout already called this
2486 function. */
2487 if (!RECORD_OR_UNION_TYPE_P (type))
2488 finalize_type_size (type);
2490 /* We should never see alias sets on incomplete aggregates. And we
2491 should not call layout_type on not incomplete aggregates. */
2492 if (AGGREGATE_TYPE_P (type))
2493 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2496 /* Return the least alignment required for type TYPE. */
2498 unsigned int
2499 min_align_of_type (tree type)
2501 unsigned int align = TYPE_ALIGN (type);
2502 if (!TYPE_USER_ALIGN (type))
2504 align = MIN (align, BIGGEST_ALIGNMENT);
2505 #ifdef BIGGEST_FIELD_ALIGNMENT
2506 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2507 #endif
2508 unsigned int field_align = align;
2509 #ifdef ADJUST_FIELD_ALIGN
2510 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2511 #endif
2512 align = MIN (align, field_align);
2514 return align / BITS_PER_UNIT;
2517 /* Create and return a type for signed integers of PRECISION bits. */
2519 tree
2520 make_signed_type (int precision)
2522 tree type = make_node (INTEGER_TYPE);
2524 TYPE_PRECISION (type) = precision;
2526 fixup_signed_type (type);
2527 return type;
2530 /* Create and return a type for unsigned integers of PRECISION bits. */
2532 tree
2533 make_unsigned_type (int precision)
2535 tree type = make_node (INTEGER_TYPE);
2537 TYPE_PRECISION (type) = precision;
2539 fixup_unsigned_type (type);
2540 return type;
2543 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2544 and SATP. */
2546 tree
2547 make_fract_type (int precision, int unsignedp, int satp)
2549 tree type = make_node (FIXED_POINT_TYPE);
2551 TYPE_PRECISION (type) = precision;
2553 if (satp)
2554 TYPE_SATURATING (type) = 1;
2556 /* Lay out the type: set its alignment, size, etc. */
2557 TYPE_UNSIGNED (type) = unsignedp;
2558 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2559 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2560 layout_type (type);
2562 return type;
2565 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2566 and SATP. */
2568 tree
2569 make_accum_type (int precision, int unsignedp, int satp)
2571 tree type = make_node (FIXED_POINT_TYPE);
2573 TYPE_PRECISION (type) = precision;
2575 if (satp)
2576 TYPE_SATURATING (type) = 1;
2578 /* Lay out the type: set its alignment, size, etc. */
2579 TYPE_UNSIGNED (type) = unsignedp;
2580 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2581 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2582 layout_type (type);
2584 return type;
2587 /* Initialize sizetypes so layout_type can use them. */
2589 void
2590 initialize_sizetypes (void)
2592 int precision, bprecision;
2594 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2595 if (strcmp (SIZETYPE, "unsigned int") == 0)
2596 precision = INT_TYPE_SIZE;
2597 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2598 precision = LONG_TYPE_SIZE;
2599 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2600 precision = LONG_LONG_TYPE_SIZE;
2601 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2602 precision = SHORT_TYPE_SIZE;
2603 else
2605 int i;
2607 precision = -1;
2608 for (i = 0; i < NUM_INT_N_ENTS; i++)
2609 if (int_n_enabled_p[i])
2611 char name[50];
2612 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2614 if (strcmp (name, SIZETYPE) == 0)
2616 precision = int_n_data[i].bitsize;
2619 if (precision == -1)
2620 gcc_unreachable ();
2623 bprecision
2624 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2625 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2626 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2627 bprecision = HOST_BITS_PER_DOUBLE_INT;
2629 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2630 sizetype = make_node (INTEGER_TYPE);
2631 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2632 TYPE_PRECISION (sizetype) = precision;
2633 TYPE_UNSIGNED (sizetype) = 1;
2634 bitsizetype = make_node (INTEGER_TYPE);
2635 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2636 TYPE_PRECISION (bitsizetype) = bprecision;
2637 TYPE_UNSIGNED (bitsizetype) = 1;
2639 /* Now layout both types manually. */
2640 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2641 SET_TYPE_MODE (sizetype, mode);
2642 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2643 TYPE_SIZE (sizetype) = bitsize_int (precision);
2644 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2645 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2647 mode = smallest_int_mode_for_size (bprecision);
2648 SET_TYPE_MODE (bitsizetype, mode);
2649 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2650 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2651 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2652 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2654 /* Create the signed variants of *sizetype. */
2655 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2656 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2657 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2658 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2661 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2662 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2663 for TYPE, based on the PRECISION and whether or not the TYPE
2664 IS_UNSIGNED. PRECISION need not correspond to a width supported
2665 natively by the hardware; for example, on a machine with 8-bit,
2666 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2667 61. */
2669 void
2670 set_min_and_max_values_for_integral_type (tree type,
2671 int precision,
2672 signop sgn)
2674 /* For bitfields with zero width we end up creating integer types
2675 with zero precision. Don't assign any minimum/maximum values
2676 to those types, they don't have any valid value. */
2677 if (precision < 1)
2678 return;
2680 TYPE_MIN_VALUE (type)
2681 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2682 TYPE_MAX_VALUE (type)
2683 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2686 /* Set the extreme values of TYPE based on its precision in bits,
2687 then lay it out. Used when make_signed_type won't do
2688 because the tree code is not INTEGER_TYPE. */
2690 void
2691 fixup_signed_type (tree type)
2693 int precision = TYPE_PRECISION (type);
2695 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2697 /* Lay out the type: set its alignment, size, etc. */
2698 layout_type (type);
2701 /* Set the extreme values of TYPE based on its precision in bits,
2702 then lay it out. This is used both in `make_unsigned_type'
2703 and for enumeral types. */
2705 void
2706 fixup_unsigned_type (tree type)
2708 int precision = TYPE_PRECISION (type);
2710 TYPE_UNSIGNED (type) = 1;
2712 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2714 /* Lay out the type: set its alignment, size, etc. */
2715 layout_type (type);
2718 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2719 starting at BITPOS.
2721 BITREGION_START is the bit position of the first bit in this
2722 sequence of bit fields. BITREGION_END is the last bit in this
2723 sequence. If these two fields are non-zero, we should restrict the
2724 memory access to that range. Otherwise, we are allowed to touch
2725 any adjacent non bit-fields.
2727 ALIGN is the alignment of the underlying object in bits.
2728 VOLATILEP says whether the bitfield is volatile. */
2730 bit_field_mode_iterator
2731 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2732 HOST_WIDE_INT bitregion_start,
2733 HOST_WIDE_INT bitregion_end,
2734 unsigned int align, bool volatilep)
2735 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2736 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2737 m_bitregion_end (bitregion_end), m_align (align),
2738 m_volatilep (volatilep), m_count (0)
2740 if (!m_bitregion_end)
2742 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2743 the bitfield is mapped and won't trap, provided that ALIGN isn't
2744 too large. The cap is the biggest required alignment for data,
2745 or at least the word size. And force one such chunk at least. */
2746 unsigned HOST_WIDE_INT units
2747 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2748 if (bitsize <= 0)
2749 bitsize = 1;
2750 m_bitregion_end = bitpos + bitsize + units - 1;
2751 m_bitregion_end -= m_bitregion_end % units + 1;
2755 /* Calls to this function return successively larger modes that can be used
2756 to represent the bitfield. Return true if another bitfield mode is
2757 available, storing it in *OUT_MODE if so. */
2759 bool
2760 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2762 scalar_int_mode mode;
2763 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2765 unsigned int unit = GET_MODE_BITSIZE (mode);
2767 /* Skip modes that don't have full precision. */
2768 if (unit != GET_MODE_PRECISION (mode))
2769 continue;
2771 /* Stop if the mode is too wide to handle efficiently. */
2772 if (unit > MAX_FIXED_MODE_SIZE)
2773 break;
2775 /* Don't deliver more than one multiword mode; the smallest one
2776 should be used. */
2777 if (m_count > 0 && unit > BITS_PER_WORD)
2778 break;
2780 /* Skip modes that are too small. */
2781 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2782 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2783 if (subend > unit)
2784 continue;
2786 /* Stop if the mode goes outside the bitregion. */
2787 HOST_WIDE_INT start = m_bitpos - substart;
2788 if (m_bitregion_start && start < m_bitregion_start)
2789 break;
2790 HOST_WIDE_INT end = start + unit;
2791 if (end > m_bitregion_end + 1)
2792 break;
2794 /* Stop if the mode requires too much alignment. */
2795 if (GET_MODE_ALIGNMENT (mode) > m_align
2796 && targetm.slow_unaligned_access (mode, m_align))
2797 break;
2799 *out_mode = mode;
2800 m_mode = GET_MODE_WIDER_MODE (mode);
2801 m_count++;
2802 return true;
2804 return false;
2807 /* Return true if smaller modes are generally preferred for this kind
2808 of bitfield. */
2810 bool
2811 bit_field_mode_iterator::prefer_smaller_modes ()
2813 return (m_volatilep
2814 ? targetm.narrow_volatile_bitfield ()
2815 : !SLOW_BYTE_ACCESS);
2818 /* Find the best machine mode to use when referencing a bit field of length
2819 BITSIZE bits starting at BITPOS.
2821 BITREGION_START is the bit position of the first bit in this
2822 sequence of bit fields. BITREGION_END is the last bit in this
2823 sequence. If these two fields are non-zero, we should restrict the
2824 memory access to that range. Otherwise, we are allowed to touch
2825 any adjacent non bit-fields.
2827 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2828 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2829 doesn't want to apply a specific limit.
2831 If no mode meets all these conditions, we return VOIDmode.
2833 The underlying object is known to be aligned to a boundary of ALIGN bits.
2835 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2836 smallest mode meeting these conditions.
2838 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2839 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2840 all the conditions.
2842 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2843 decide which of the above modes should be used. */
2845 bool
2846 get_best_mode (int bitsize, int bitpos,
2847 unsigned HOST_WIDE_INT bitregion_start,
2848 unsigned HOST_WIDE_INT bitregion_end,
2849 unsigned int align,
2850 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2851 scalar_int_mode *best_mode)
2853 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2854 bitregion_end, align, volatilep);
2855 scalar_int_mode mode;
2856 bool found = false;
2857 while (iter.next_mode (&mode)
2858 /* ??? For historical reasons, reject modes that would normally
2859 receive greater alignment, even if unaligned accesses are
2860 acceptable. This has both advantages and disadvantages.
2861 Removing this check means that something like:
2863 struct s { unsigned int x; unsigned int y; };
2864 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2866 can be implemented using a single load and compare on
2867 64-bit machines that have no alignment restrictions.
2868 For example, on powerpc64-linux-gnu, we would generate:
2870 ld 3,0(3)
2871 cntlzd 3,3
2872 srdi 3,3,6
2875 rather than:
2877 lwz 9,0(3)
2878 cmpwi 7,9,0
2879 bne 7,.L3
2880 lwz 3,4(3)
2881 cntlzw 3,3
2882 srwi 3,3,5
2883 extsw 3,3
2885 .p2align 4,,15
2886 .L3:
2887 li 3,0
2890 However, accessing more than one field can make life harder
2891 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2892 has a series of unsigned short copies followed by a series of
2893 unsigned short comparisons. With this check, both the copies
2894 and comparisons remain 16-bit accesses and FRE is able
2895 to eliminate the latter. Without the check, the comparisons
2896 can be done using 2 64-bit operations, which FRE isn't able
2897 to handle in the same way.
2899 Either way, it would probably be worth disabling this check
2900 during expand. One particular example where removing the
2901 check would help is the get_best_mode call in store_bit_field.
2902 If we are given a memory bitregion of 128 bits that is aligned
2903 to a 64-bit boundary, and the bitfield we want to modify is
2904 in the second half of the bitregion, this check causes
2905 store_bitfield to turn the memory into a 64-bit reference
2906 to the _first_ half of the region. We later use
2907 adjust_bitfield_address to get a reference to the correct half,
2908 but doing so looks to adjust_bitfield_address as though we are
2909 moving past the end of the original object, so it drops the
2910 associated MEM_EXPR and MEM_OFFSET. Removing the check
2911 causes store_bit_field to keep a 128-bit memory reference,
2912 so that the final bitfield reference still has a MEM_EXPR
2913 and MEM_OFFSET. */
2914 && GET_MODE_ALIGNMENT (mode) <= align
2915 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
2917 *best_mode = mode;
2918 found = true;
2919 if (iter.prefer_smaller_modes ())
2920 break;
2923 return found;
2926 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2927 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2929 void
2930 get_mode_bounds (scalar_int_mode mode, int sign,
2931 scalar_int_mode target_mode,
2932 rtx *mmin, rtx *mmax)
2934 unsigned size = GET_MODE_PRECISION (mode);
2935 unsigned HOST_WIDE_INT min_val, max_val;
2937 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2939 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2940 if (mode == BImode)
2942 if (STORE_FLAG_VALUE < 0)
2944 min_val = STORE_FLAG_VALUE;
2945 max_val = 0;
2947 else
2949 min_val = 0;
2950 max_val = STORE_FLAG_VALUE;
2953 else if (sign)
2955 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2956 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2958 else
2960 min_val = 0;
2961 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2964 *mmin = gen_int_mode (min_val, target_mode);
2965 *mmax = gen_int_mode (max_val, target_mode);
2968 #include "gt-stor-layout.h"