1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
36 /* A list of cselib_val structures. */
39 struct elt_list
*next
;
43 static bool cselib_record_memory
;
44 static bool cselib_preserve_constants
;
45 static bool cselib_any_perm_equivs
;
46 static inline void promote_debug_loc (struct elt_loc_list
*l
);
47 static struct elt_list
*new_elt_list (struct elt_list
*, cselib_val
*);
48 static void new_elt_loc_list (cselib_val
*, rtx
);
49 static void unchain_one_value (cselib_val
*);
50 static void unchain_one_elt_list (struct elt_list
**);
51 static void unchain_one_elt_loc_list (struct elt_loc_list
**);
52 static void remove_useless_values (void);
53 static unsigned int cselib_hash_rtx (rtx
, int, machine_mode
);
54 static cselib_val
*new_cselib_val (unsigned int, machine_mode
, rtx
);
55 static void add_mem_for_addr (cselib_val
*, cselib_val
*, rtx
);
56 static cselib_val
*cselib_lookup_mem (rtx
, int);
57 static void cselib_invalidate_regno (unsigned int, machine_mode
);
58 static void cselib_invalidate_mem (rtx
);
59 static void cselib_record_set (rtx
, cselib_val
*, cselib_val
*);
60 static void cselib_record_sets (rtx_insn
*);
62 struct expand_value_data
65 cselib_expand_callback callback
;
70 static rtx
cselib_expand_value_rtx_1 (rtx
, struct expand_value_data
*, int);
72 /* There are three ways in which cselib can look up an rtx:
73 - for a REG, the reg_values table (which is indexed by regno) is used
74 - for a MEM, we recursively look up its address and then follow the
75 addr_list of that value
76 - for everything else, we compute a hash value and go through the hash
77 table. Since different rtx's can still have the same hash value,
78 this involves walking the table entries for a given value and comparing
79 the locations of the entries with the rtx we are looking up. */
81 struct cselib_hasher
: nofree_ptr_hash
<cselib_val
>
84 /* The rtx value and its mode (needed separately for constant
88 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
91 typedef key
*compare_type
;
92 static inline hashval_t
hash (const cselib_val
*);
93 static inline bool equal (const cselib_val
*, const key
*);
96 /* The hash function for our hash table. The value is always computed with
97 cselib_hash_rtx when adding an element; this function just extracts the
98 hash value from a cselib_val structure. */
101 cselib_hasher::hash (const cselib_val
*v
)
106 /* The equality test for our hash table. The first argument V is a table
107 element (i.e. a cselib_val), while the second arg X is an rtx. We know
108 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
109 CONST of an appropriate mode. */
112 cselib_hasher::equal (const cselib_val
*v
, const key
*x_arg
)
114 struct elt_loc_list
*l
;
116 machine_mode mode
= x_arg
->mode
;
117 machine_mode memmode
= x_arg
->memmode
;
119 if (mode
!= GET_MODE (v
->val_rtx
))
122 if (GET_CODE (x
) == VALUE
)
123 return x
== v
->val_rtx
;
125 /* We don't guarantee that distinct rtx's have different hash values,
126 so we need to do a comparison. */
127 for (l
= v
->locs
; l
; l
= l
->next
)
128 if (rtx_equal_for_cselib_1 (l
->loc
, x
, memmode
))
130 promote_debug_loc (l
);
137 /* A table that enables us to look up elts by their value. */
138 static hash_table
<cselib_hasher
> *cselib_hash_table
;
140 /* A table to hold preserved values. */
141 static hash_table
<cselib_hasher
> *cselib_preserved_hash_table
;
143 /* This is a global so we don't have to pass this through every function.
144 It is used in new_elt_loc_list to set SETTING_INSN. */
145 static rtx_insn
*cselib_current_insn
;
147 /* The unique id that the next create value will take. */
148 static unsigned int next_uid
;
150 /* The number of registers we had when the varrays were last resized. */
151 static unsigned int cselib_nregs
;
153 /* Count values without known locations, or with only locations that
154 wouldn't have been known except for debug insns. Whenever this
155 grows too big, we remove these useless values from the table.
157 Counting values with only debug values is a bit tricky. We don't
158 want to increment n_useless_values when we create a value for a
159 debug insn, for this would get n_useless_values out of sync, but we
160 want increment it if all locs in the list that were ever referenced
161 in nondebug insns are removed from the list.
163 In the general case, once we do that, we'd have to stop accepting
164 nondebug expressions in the loc list, to avoid having two values
165 equivalent that, without debug insns, would have been made into
166 separate values. However, because debug insns never introduce
167 equivalences themselves (no assignments), the only means for
168 growing loc lists is through nondebug assignments. If the locs
169 also happen to be referenced in debug insns, it will work just fine.
171 A consequence of this is that there's at most one debug-only loc in
172 each loc list. If we keep it in the first entry, testing whether
173 we have a debug-only loc list takes O(1).
175 Furthermore, since any additional entry in a loc list containing a
176 debug loc would have to come from an assignment (nondebug) that
177 references both the initial debug loc and the newly-equivalent loc,
178 the initial debug loc would be promoted to a nondebug loc, and the
179 loc list would not contain debug locs any more.
181 So the only case we have to be careful with in order to keep
182 n_useless_values in sync between debug and nondebug compilations is
183 to avoid incrementing n_useless_values when removing the single loc
184 from a value that turns out to not appear outside debug values. We
185 increment n_useless_debug_values instead, and leave such values
186 alone until, for other reasons, we garbage-collect useless
188 static int n_useless_values
;
189 static int n_useless_debug_values
;
191 /* Count values whose locs have been taken exclusively from debug
192 insns for the entire life of the value. */
193 static int n_debug_values
;
195 /* Number of useless values before we remove them from the hash table. */
196 #define MAX_USELESS_VALUES 32
198 /* This table maps from register number to values. It does not
199 contain pointers to cselib_val structures, but rather elt_lists.
200 The purpose is to be able to refer to the same register in
201 different modes. The first element of the list defines the mode in
202 which the register was set; if the mode is unknown or the value is
203 no longer valid in that mode, ELT will be NULL for the first
205 static struct elt_list
**reg_values
;
206 static unsigned int reg_values_size
;
207 #define REG_VALUES(i) reg_values[i]
209 /* The largest number of hard regs used by any entry added to the
210 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
211 static unsigned int max_value_regs
;
213 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
214 in cselib_clear_table() for fast emptying. */
215 static unsigned int *used_regs
;
216 static unsigned int n_used_regs
;
218 /* We pass this to cselib_invalidate_mem to invalidate all of
219 memory for a non-const call instruction. */
220 static GTY(()) rtx callmem
;
222 /* Set by discard_useless_locs if it deleted the last location of any
224 static int values_became_useless
;
226 /* Used as stop element of the containing_mem list so we can check
227 presence in the list by checking the next pointer. */
228 static cselib_val dummy_val
;
230 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
231 that is constant through the whole function and should never be
233 static cselib_val
*cfa_base_preserved_val
;
234 static unsigned int cfa_base_preserved_regno
= INVALID_REGNUM
;
236 /* Used to list all values that contain memory reference.
237 May or may not contain the useless values - the list is compacted
238 each time memory is invalidated. */
239 static cselib_val
*first_containing_mem
= &dummy_val
;
241 static object_allocator
<elt_list
> elt_list_pool ("elt_list");
242 static object_allocator
<elt_loc_list
> elt_loc_list_pool ("elt_loc_list");
243 static object_allocator
<cselib_val
> cselib_val_pool ("cselib_val_list");
245 static pool_allocator
value_pool ("value", RTX_CODE_SIZE (VALUE
));
247 /* If nonnull, cselib will call this function before freeing useless
248 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
249 void (*cselib_discard_hook
) (cselib_val
*);
251 /* If nonnull, cselib will call this function before recording sets or
252 even clobbering outputs of INSN. All the recorded sets will be
253 represented in the array sets[n_sets]. new_val_min can be used to
254 tell whether values present in sets are introduced by this
256 void (*cselib_record_sets_hook
) (rtx_insn
*insn
, struct cselib_set
*sets
,
259 #define PRESERVED_VALUE_P(RTX) \
260 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
262 #define SP_BASED_VALUE_P(RTX) \
263 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
267 /* Allocate a struct elt_list and fill in its two elements with the
270 static inline struct elt_list
*
271 new_elt_list (struct elt_list
*next
, cselib_val
*elt
)
273 elt_list
*el
= elt_list_pool
.allocate ();
279 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
283 new_elt_loc_list (cselib_val
*val
, rtx loc
)
285 struct elt_loc_list
*el
, *next
= val
->locs
;
287 gcc_checking_assert (!next
|| !next
->setting_insn
288 || !DEBUG_INSN_P (next
->setting_insn
)
289 || cselib_current_insn
== next
->setting_insn
);
291 /* If we're creating the first loc in a debug insn context, we've
292 just created a debug value. Count it. */
293 if (!next
&& cselib_current_insn
&& DEBUG_INSN_P (cselib_current_insn
))
296 val
= canonical_cselib_val (val
);
299 if (GET_CODE (loc
) == VALUE
)
301 loc
= canonical_cselib_val (CSELIB_VAL_PTR (loc
))->val_rtx
;
303 gcc_checking_assert (PRESERVED_VALUE_P (loc
)
304 == PRESERVED_VALUE_P (val
->val_rtx
));
306 if (val
->val_rtx
== loc
)
308 else if (val
->uid
> CSELIB_VAL_PTR (loc
)->uid
)
310 /* Reverse the insertion. */
311 new_elt_loc_list (CSELIB_VAL_PTR (loc
), val
->val_rtx
);
315 gcc_checking_assert (val
->uid
< CSELIB_VAL_PTR (loc
)->uid
);
317 if (CSELIB_VAL_PTR (loc
)->locs
)
319 /* Bring all locs from LOC to VAL. */
320 for (el
= CSELIB_VAL_PTR (loc
)->locs
; el
->next
; el
= el
->next
)
322 /* Adjust values that have LOC as canonical so that VAL
323 becomes their canonical. */
324 if (el
->loc
&& GET_CODE (el
->loc
) == VALUE
)
326 gcc_checking_assert (CSELIB_VAL_PTR (el
->loc
)->locs
->loc
328 CSELIB_VAL_PTR (el
->loc
)->locs
->loc
= val
->val_rtx
;
331 el
->next
= val
->locs
;
332 next
= val
->locs
= CSELIB_VAL_PTR (loc
)->locs
;
335 if (CSELIB_VAL_PTR (loc
)->addr_list
)
337 /* Bring in addr_list into canonical node. */
338 struct elt_list
*last
= CSELIB_VAL_PTR (loc
)->addr_list
;
341 last
->next
= val
->addr_list
;
342 val
->addr_list
= CSELIB_VAL_PTR (loc
)->addr_list
;
343 CSELIB_VAL_PTR (loc
)->addr_list
= NULL
;
346 if (CSELIB_VAL_PTR (loc
)->next_containing_mem
!= NULL
347 && val
->next_containing_mem
== NULL
)
349 /* Add VAL to the containing_mem list after LOC. LOC will
350 be removed when we notice it doesn't contain any
352 val
->next_containing_mem
= CSELIB_VAL_PTR (loc
)->next_containing_mem
;
353 CSELIB_VAL_PTR (loc
)->next_containing_mem
= val
;
356 /* Chain LOC back to VAL. */
357 el
= elt_loc_list_pool
.allocate ();
358 el
->loc
= val
->val_rtx
;
359 el
->setting_insn
= cselib_current_insn
;
361 CSELIB_VAL_PTR (loc
)->locs
= el
;
364 el
= elt_loc_list_pool
.allocate ();
366 el
->setting_insn
= cselib_current_insn
;
371 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
372 originating from a debug insn, maintaining the debug values
376 promote_debug_loc (struct elt_loc_list
*l
)
378 if (l
&& l
->setting_insn
&& DEBUG_INSN_P (l
->setting_insn
)
379 && (!cselib_current_insn
|| !DEBUG_INSN_P (cselib_current_insn
)))
382 l
->setting_insn
= cselib_current_insn
;
383 if (cselib_preserve_constants
&& l
->next
)
385 gcc_assert (l
->next
->setting_insn
386 && DEBUG_INSN_P (l
->next
->setting_insn
)
388 l
->next
->setting_insn
= cselib_current_insn
;
391 gcc_assert (!l
->next
);
395 /* The elt_list at *PL is no longer needed. Unchain it and free its
399 unchain_one_elt_list (struct elt_list
**pl
)
401 struct elt_list
*l
= *pl
;
404 elt_list_pool
.remove (l
);
407 /* Likewise for elt_loc_lists. */
410 unchain_one_elt_loc_list (struct elt_loc_list
**pl
)
412 struct elt_loc_list
*l
= *pl
;
415 elt_loc_list_pool
.remove (l
);
418 /* Likewise for cselib_vals. This also frees the addr_list associated with
422 unchain_one_value (cselib_val
*v
)
425 unchain_one_elt_list (&v
->addr_list
);
427 cselib_val_pool
.remove (v
);
430 /* Remove all entries from the hash table. Also used during
434 cselib_clear_table (void)
436 cselib_reset_table (1);
439 /* Return TRUE if V is a constant, a function invariant or a VALUE
440 equivalence; FALSE otherwise. */
443 invariant_or_equiv_p (cselib_val
*v
)
445 struct elt_loc_list
*l
;
447 if (v
== cfa_base_preserved_val
)
450 /* Keep VALUE equivalences around. */
451 for (l
= v
->locs
; l
; l
= l
->next
)
452 if (GET_CODE (l
->loc
) == VALUE
)
456 && v
->locs
->next
== NULL
)
458 if (CONSTANT_P (v
->locs
->loc
)
459 && (GET_CODE (v
->locs
->loc
) != CONST
460 || !references_value_p (v
->locs
->loc
, 0)))
462 /* Although a debug expr may be bound to different expressions,
463 we can preserve it as if it was constant, to get unification
464 and proper merging within var-tracking. */
465 if (GET_CODE (v
->locs
->loc
) == DEBUG_EXPR
466 || GET_CODE (v
->locs
->loc
) == DEBUG_IMPLICIT_PTR
467 || GET_CODE (v
->locs
->loc
) == ENTRY_VALUE
468 || GET_CODE (v
->locs
->loc
) == DEBUG_PARAMETER_REF
)
471 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
472 if (GET_CODE (v
->locs
->loc
) == PLUS
473 && CONST_INT_P (XEXP (v
->locs
->loc
, 1))
474 && GET_CODE (XEXP (v
->locs
->loc
, 0)) == VALUE
475 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v
->locs
->loc
, 0))))
482 /* Remove from hash table all VALUEs except constants, function
483 invariants and VALUE equivalences. */
486 preserve_constants_and_equivs (cselib_val
**x
, void *info ATTRIBUTE_UNUSED
)
490 if (invariant_or_equiv_p (v
))
492 cselib_hasher::key lookup
= {
493 GET_MODE (v
->val_rtx
), v
->val_rtx
, VOIDmode
496 = cselib_preserved_hash_table
->find_slot_with_hash (&lookup
,
502 cselib_hash_table
->clear_slot (x
);
507 /* Remove all entries from the hash table, arranging for the next
508 value to be numbered NUM. */
511 cselib_reset_table (unsigned int num
)
517 if (cfa_base_preserved_val
)
519 unsigned int regno
= cfa_base_preserved_regno
;
520 unsigned int new_used_regs
= 0;
521 for (i
= 0; i
< n_used_regs
; i
++)
522 if (used_regs
[i
] == regno
)
528 REG_VALUES (used_regs
[i
]) = 0;
529 gcc_assert (new_used_regs
== 1);
530 n_used_regs
= new_used_regs
;
531 used_regs
[0] = regno
;
533 = hard_regno_nregs
[regno
][GET_MODE (cfa_base_preserved_val
->locs
->loc
)];
537 for (i
= 0; i
< n_used_regs
; i
++)
538 REG_VALUES (used_regs
[i
]) = 0;
542 if (cselib_preserve_constants
)
543 cselib_hash_table
->traverse
<void *, preserve_constants_and_equivs
>
547 cselib_hash_table
->empty ();
548 gcc_checking_assert (!cselib_any_perm_equivs
);
551 n_useless_values
= 0;
552 n_useless_debug_values
= 0;
557 first_containing_mem
= &dummy_val
;
560 /* Return the number of the next value that will be generated. */
563 cselib_get_next_uid (void)
568 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
569 INSERTing if requested. When X is part of the address of a MEM,
570 MEMMODE should specify the mode of the MEM. */
573 cselib_find_slot (machine_mode mode
, rtx x
, hashval_t hash
,
574 enum insert_option insert
, machine_mode memmode
)
576 cselib_val
**slot
= NULL
;
577 cselib_hasher::key lookup
= { mode
, x
, memmode
};
578 if (cselib_preserve_constants
)
579 slot
= cselib_preserved_hash_table
->find_slot_with_hash (&lookup
, hash
,
582 slot
= cselib_hash_table
->find_slot_with_hash (&lookup
, hash
, insert
);
586 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
587 only return true for values which point to a cselib_val whose value
588 element has been set to zero, which implies the cselib_val will be
592 references_value_p (const_rtx x
, int only_useless
)
594 const enum rtx_code code
= GET_CODE (x
);
595 const char *fmt
= GET_RTX_FORMAT (code
);
598 if (GET_CODE (x
) == VALUE
599 && (! only_useless
||
600 (CSELIB_VAL_PTR (x
)->locs
== 0 && !PRESERVED_VALUE_P (x
))))
603 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
605 if (fmt
[i
] == 'e' && references_value_p (XEXP (x
, i
), only_useless
))
607 else if (fmt
[i
] == 'E')
608 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
609 if (references_value_p (XVECEXP (x
, i
, j
), only_useless
))
616 /* For all locations found in X, delete locations that reference useless
617 values (i.e. values without any location). Called through
621 discard_useless_locs (cselib_val
**x
, void *info ATTRIBUTE_UNUSED
)
624 struct elt_loc_list
**p
= &v
->locs
;
625 bool had_locs
= v
->locs
!= NULL
;
626 rtx_insn
*setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
630 if (references_value_p ((*p
)->loc
, 1))
631 unchain_one_elt_loc_list (p
);
636 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
638 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
639 n_useless_debug_values
++;
642 values_became_useless
= 1;
647 /* If X is a value with no locations, remove it from the hashtable. */
650 discard_useless_values (cselib_val
**x
, void *info ATTRIBUTE_UNUSED
)
654 if (v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
656 if (cselib_discard_hook
)
657 cselib_discard_hook (v
);
659 CSELIB_VAL_PTR (v
->val_rtx
) = NULL
;
660 cselib_hash_table
->clear_slot (x
);
661 unchain_one_value (v
);
668 /* Clean out useless values (i.e. those which no longer have locations
669 associated with them) from the hash table. */
672 remove_useless_values (void)
676 /* First pass: eliminate locations that reference the value. That in
677 turn can make more values useless. */
680 values_became_useless
= 0;
681 cselib_hash_table
->traverse
<void *, discard_useless_locs
> (NULL
);
683 while (values_became_useless
);
685 /* Second pass: actually remove the values. */
687 p
= &first_containing_mem
;
688 for (v
= *p
; v
!= &dummy_val
; v
= v
->next_containing_mem
)
689 if (v
->locs
&& v
== canonical_cselib_val (v
))
692 p
= &(*p
)->next_containing_mem
;
696 n_useless_values
+= n_useless_debug_values
;
697 n_debug_values
-= n_useless_debug_values
;
698 n_useless_debug_values
= 0;
700 cselib_hash_table
->traverse
<void *, discard_useless_values
> (NULL
);
702 gcc_assert (!n_useless_values
);
705 /* Arrange for a value to not be removed from the hash table even if
706 it becomes useless. */
709 cselib_preserve_value (cselib_val
*v
)
711 PRESERVED_VALUE_P (v
->val_rtx
) = 1;
714 /* Test whether a value is preserved. */
717 cselib_preserved_value_p (cselib_val
*v
)
719 return PRESERVED_VALUE_P (v
->val_rtx
);
722 /* Arrange for a REG value to be assumed constant through the whole function,
723 never invalidated and preserved across cselib_reset_table calls. */
726 cselib_preserve_cfa_base_value (cselib_val
*v
, unsigned int regno
)
728 if (cselib_preserve_constants
730 && REG_P (v
->locs
->loc
))
732 cfa_base_preserved_val
= v
;
733 cfa_base_preserved_regno
= regno
;
737 /* Clean all non-constant expressions in the hash table, but retain
741 cselib_preserve_only_values (void)
745 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
746 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
748 cselib_invalidate_mem (callmem
);
750 remove_useless_values ();
752 gcc_assert (first_containing_mem
== &dummy_val
);
755 /* Arrange for a value to be marked as based on stack pointer
756 for find_base_term purposes. */
759 cselib_set_value_sp_based (cselib_val
*v
)
761 SP_BASED_VALUE_P (v
->val_rtx
) = 1;
764 /* Test whether a value is based on stack pointer for
765 find_base_term purposes. */
768 cselib_sp_based_value_p (cselib_val
*v
)
770 return SP_BASED_VALUE_P (v
->val_rtx
);
773 /* Return the mode in which a register was last set. If X is not a
774 register, return its mode. If the mode in which the register was
775 set is not known, or the value was already clobbered, return
779 cselib_reg_set_mode (const_rtx x
)
784 if (REG_VALUES (REGNO (x
)) == NULL
785 || REG_VALUES (REGNO (x
))->elt
== NULL
)
788 return GET_MODE (REG_VALUES (REGNO (x
))->elt
->val_rtx
);
791 /* If x is a PLUS or an autoinc operation, expand the operation,
792 storing the offset, if any, in *OFF. */
795 autoinc_split (rtx x
, rtx
*off
, machine_mode memmode
)
797 switch (GET_CODE (x
))
804 if (memmode
== VOIDmode
)
807 *off
= GEN_INT (-GET_MODE_SIZE (memmode
));
811 if (memmode
== VOIDmode
)
814 *off
= GEN_INT (GET_MODE_SIZE (memmode
));
830 /* Return nonzero if we can prove that X and Y contain the same value,
831 taking our gathered information into account. MEMMODE holds the
832 mode of the enclosing MEM, if any, as required to deal with autoinc
833 addressing modes. If X and Y are not (known to be) part of
834 addresses, MEMMODE should be VOIDmode. */
837 rtx_equal_for_cselib_1 (rtx x
, rtx y
, machine_mode memmode
)
843 if (REG_P (x
) || MEM_P (x
))
845 cselib_val
*e
= cselib_lookup (x
, GET_MODE (x
), 0, memmode
);
851 if (REG_P (y
) || MEM_P (y
))
853 cselib_val
*e
= cselib_lookup (y
, GET_MODE (y
), 0, memmode
);
862 if (GET_CODE (x
) == VALUE
)
864 cselib_val
*e
= canonical_cselib_val (CSELIB_VAL_PTR (x
));
865 struct elt_loc_list
*l
;
867 if (GET_CODE (y
) == VALUE
)
868 return e
== canonical_cselib_val (CSELIB_VAL_PTR (y
));
870 for (l
= e
->locs
; l
; l
= l
->next
)
874 /* Avoid infinite recursion. We know we have the canonical
875 value, so we can just skip any values in the equivalence
877 if (REG_P (t
) || MEM_P (t
) || GET_CODE (t
) == VALUE
)
879 else if (rtx_equal_for_cselib_1 (t
, y
, memmode
))
885 else if (GET_CODE (y
) == VALUE
)
887 cselib_val
*e
= canonical_cselib_val (CSELIB_VAL_PTR (y
));
888 struct elt_loc_list
*l
;
890 for (l
= e
->locs
; l
; l
= l
->next
)
894 if (REG_P (t
) || MEM_P (t
) || GET_CODE (t
) == VALUE
)
896 else if (rtx_equal_for_cselib_1 (x
, t
, memmode
))
903 if (GET_MODE (x
) != GET_MODE (y
))
906 if (GET_CODE (x
) != GET_CODE (y
))
908 rtx xorig
= x
, yorig
= y
;
909 rtx xoff
= NULL
, yoff
= NULL
;
911 x
= autoinc_split (x
, &xoff
, memmode
);
912 y
= autoinc_split (y
, &yoff
, memmode
);
917 if (xoff
&& !rtx_equal_for_cselib_1 (xoff
, yoff
, memmode
))
920 /* Don't recurse if nothing changed. */
921 if (x
!= xorig
|| y
!= yorig
)
922 return rtx_equal_for_cselib_1 (x
, y
, memmode
);
927 /* These won't be handled correctly by the code below. */
928 switch (GET_CODE (x
))
934 case DEBUG_IMPLICIT_PTR
:
935 return DEBUG_IMPLICIT_PTR_DECL (x
)
936 == DEBUG_IMPLICIT_PTR_DECL (y
);
938 case DEBUG_PARAMETER_REF
:
939 return DEBUG_PARAMETER_REF_DECL (x
)
940 == DEBUG_PARAMETER_REF_DECL (y
);
943 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
944 use rtx_equal_for_cselib_1 to compare the operands. */
945 return rtx_equal_p (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
948 return label_ref_label (x
) == label_ref_label (y
);
951 return REGNO (x
) == REGNO (y
);
954 /* We have to compare any autoinc operations in the addresses
955 using this MEM's mode. */
956 return rtx_equal_for_cselib_1 (XEXP (x
, 0), XEXP (y
, 0), GET_MODE (x
));
963 fmt
= GET_RTX_FORMAT (code
);
965 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
972 if (XWINT (x
, i
) != XWINT (y
, i
))
978 if (XINT (x
, i
) != XINT (y
, i
))
984 /* Two vectors must have the same length. */
985 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
988 /* And the corresponding elements must match. */
989 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
990 if (! rtx_equal_for_cselib_1 (XVECEXP (x
, i
, j
),
991 XVECEXP (y
, i
, j
), memmode
))
997 && targetm
.commutative_p (x
, UNKNOWN
)
998 && rtx_equal_for_cselib_1 (XEXP (x
, 1), XEXP (y
, 0), memmode
)
999 && rtx_equal_for_cselib_1 (XEXP (x
, 0), XEXP (y
, 1), memmode
))
1001 if (! rtx_equal_for_cselib_1 (XEXP (x
, i
), XEXP (y
, i
), memmode
))
1007 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1012 /* These are just backpointers, so they don't matter. */
1019 /* It is believed that rtx's at this level will never
1020 contain anything but integers and other rtx's,
1021 except for within LABEL_REFs and SYMBOL_REFs. */
1029 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1030 For registers and memory locations, we look up their cselib_val structure
1031 and return its VALUE element.
1032 Possible reasons for return 0 are: the object is volatile, or we couldn't
1033 find a register or memory location in the table and CREATE is zero. If
1034 CREATE is nonzero, table elts are created for regs and mem.
1035 N.B. this hash function returns the same hash value for RTXes that
1036 differ only in the order of operands, thus it is suitable for comparisons
1037 that take commutativity into account.
1038 If we wanted to also support associative rules, we'd have to use a different
1039 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1040 MEMMODE indicates the mode of an enclosing MEM, and it's only
1041 used to compute autoinc values.
1042 We used to have a MODE argument for hashing for CONST_INTs, but that
1043 didn't make sense, since it caused spurious hash differences between
1044 (set (reg:SI 1) (const_int))
1045 (plus:SI (reg:SI 2) (reg:SI 1))
1047 (plus:SI (reg:SI 2) (const_int))
1048 If the mode is important in any context, it must be checked specifically
1049 in a comparison anyway, since relying on hash differences is unsafe. */
1052 cselib_hash_rtx (rtx x
, int create
, machine_mode memmode
)
1058 unsigned int hash
= 0;
1060 code
= GET_CODE (x
);
1061 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1066 e
= CSELIB_VAL_PTR (x
);
1071 e
= cselib_lookup (x
, GET_MODE (x
), create
, memmode
);
1078 hash
+= ((unsigned) DEBUG_EXPR
<< 7)
1079 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
));
1080 return hash
? hash
: (unsigned int) DEBUG_EXPR
;
1082 case DEBUG_IMPLICIT_PTR
:
1083 hash
+= ((unsigned) DEBUG_IMPLICIT_PTR
<< 7)
1084 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x
));
1085 return hash
? hash
: (unsigned int) DEBUG_IMPLICIT_PTR
;
1087 case DEBUG_PARAMETER_REF
:
1088 hash
+= ((unsigned) DEBUG_PARAMETER_REF
<< 7)
1089 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x
));
1090 return hash
? hash
: (unsigned int) DEBUG_PARAMETER_REF
;
1093 /* ENTRY_VALUEs are function invariant, thus try to avoid
1094 recursing on argument if ENTRY_VALUE is one of the
1095 forms emitted by expand_debug_expr, otherwise
1096 ENTRY_VALUE hash would depend on the current value
1097 in some register or memory. */
1098 if (REG_P (ENTRY_VALUE_EXP (x
)))
1099 hash
+= (unsigned int) REG
1100 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x
))
1101 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x
));
1102 else if (MEM_P (ENTRY_VALUE_EXP (x
))
1103 && REG_P (XEXP (ENTRY_VALUE_EXP (x
), 0)))
1104 hash
+= (unsigned int) MEM
1105 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x
), 0))
1106 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x
), 0));
1108 hash
+= cselib_hash_rtx (ENTRY_VALUE_EXP (x
), create
, memmode
);
1109 return hash
? hash
: (unsigned int) ENTRY_VALUE
;
1112 hash
+= ((unsigned) CONST_INT
<< 7) + UINTVAL (x
);
1113 return hash
? hash
: (unsigned int) CONST_INT
;
1115 case CONST_WIDE_INT
:
1116 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (x
); i
++)
1117 hash
+= CONST_WIDE_INT_ELT (x
, i
);
1121 /* This is like the general case, except that it only counts
1122 the integers representing the constant. */
1123 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1124 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
1125 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
1126 + (unsigned) CONST_DOUBLE_HIGH (x
));
1128 hash
+= real_hash (CONST_DOUBLE_REAL_VALUE (x
));
1129 return hash
? hash
: (unsigned int) CONST_DOUBLE
;
1132 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
1133 hash
+= fixed_hash (CONST_FIXED_VALUE (x
));
1134 return hash
? hash
: (unsigned int) CONST_FIXED
;
1141 units
= CONST_VECTOR_NUNITS (x
);
1143 for (i
= 0; i
< units
; ++i
)
1145 elt
= CONST_VECTOR_ELT (x
, i
);
1146 hash
+= cselib_hash_rtx (elt
, 0, memmode
);
1152 /* Assume there is only one rtx object for any given label. */
1154 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1155 differences and differences between each stage's debugging dumps. */
1156 hash
+= (((unsigned int) LABEL_REF
<< 7)
1157 + CODE_LABEL_NUMBER (label_ref_label (x
)));
1158 return hash
? hash
: (unsigned int) LABEL_REF
;
1162 /* Don't hash on the symbol's address to avoid bootstrap differences.
1163 Different hash values may cause expressions to be recorded in
1164 different orders and thus different registers to be used in the
1165 final assembler. This also avoids differences in the dump files
1166 between various stages. */
1168 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
1171 h
+= (h
<< 7) + *p
++; /* ??? revisit */
1173 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
1174 return hash
? hash
: (unsigned int) SYMBOL_REF
;
1179 /* We can't compute these without knowing the MEM mode. */
1180 gcc_assert (memmode
!= VOIDmode
);
1181 i
= GET_MODE_SIZE (memmode
);
1182 if (code
== PRE_DEC
)
1184 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1185 like (mem:MEMMODE (plus (reg) (const_int I))). */
1186 hash
+= (unsigned) PLUS
- (unsigned)code
1187 + cselib_hash_rtx (XEXP (x
, 0), create
, memmode
)
1188 + cselib_hash_rtx (GEN_INT (i
), create
, memmode
);
1189 return hash
? hash
: 1 + (unsigned) PLUS
;
1192 gcc_assert (memmode
!= VOIDmode
);
1193 return cselib_hash_rtx (XEXP (x
, 1), create
, memmode
);
1198 gcc_assert (memmode
!= VOIDmode
);
1199 return cselib_hash_rtx (XEXP (x
, 0), create
, memmode
);
1204 case UNSPEC_VOLATILE
:
1208 if (MEM_VOLATILE_P (x
))
1217 i
= GET_RTX_LENGTH (code
) - 1;
1218 fmt
= GET_RTX_FORMAT (code
);
1225 rtx tem
= XEXP (x
, i
);
1226 unsigned int tem_hash
= cselib_hash_rtx (tem
, create
, memmode
);
1235 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1237 unsigned int tem_hash
1238 = cselib_hash_rtx (XVECEXP (x
, i
, j
), create
, memmode
);
1249 const unsigned char *p
= (const unsigned char *) XSTR (x
, i
);
1258 hash
+= XINT (x
, i
);
1271 return hash
? hash
: 1 + (unsigned int) GET_CODE (x
);
1274 /* Create a new value structure for VALUE and initialize it. The mode of the
1277 static inline cselib_val
*
1278 new_cselib_val (unsigned int hash
, machine_mode mode
, rtx x
)
1280 cselib_val
*e
= cselib_val_pool
.allocate ();
1283 gcc_assert (next_uid
);
1286 e
->uid
= next_uid
++;
1287 /* We use an alloc pool to allocate this RTL construct because it
1288 accounts for about 8% of the overall memory usage. We know
1289 precisely when we can have VALUE RTXen (when cselib is active)
1290 so we don't need to put them in garbage collected memory.
1291 ??? Why should a VALUE be an RTX in the first place? */
1292 e
->val_rtx
= (rtx_def
*) value_pool
.allocate ();
1293 memset (e
->val_rtx
, 0, RTX_HDR_SIZE
);
1294 PUT_CODE (e
->val_rtx
, VALUE
);
1295 PUT_MODE (e
->val_rtx
, mode
);
1296 CSELIB_VAL_PTR (e
->val_rtx
) = e
;
1299 e
->next_containing_mem
= 0;
1301 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1303 fprintf (dump_file
, "cselib value %u:%u ", e
->uid
, hash
);
1304 if (flag_dump_noaddr
|| flag_dump_unnumbered
)
1305 fputs ("# ", dump_file
);
1307 fprintf (dump_file
, "%p ", (void*)e
);
1308 print_rtl_single (dump_file
, x
);
1309 fputc ('\n', dump_file
);
1315 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1316 contains the data at this address. X is a MEM that represents the
1317 value. Update the two value structures to represent this situation. */
1320 add_mem_for_addr (cselib_val
*addr_elt
, cselib_val
*mem_elt
, rtx x
)
1322 addr_elt
= canonical_cselib_val (addr_elt
);
1323 mem_elt
= canonical_cselib_val (mem_elt
);
1325 /* Avoid duplicates. */
1326 addr_space_t as
= MEM_ADDR_SPACE (x
);
1327 for (elt_loc_list
*l
= mem_elt
->locs
; l
; l
= l
->next
)
1329 && CSELIB_VAL_PTR (XEXP (l
->loc
, 0)) == addr_elt
1330 && MEM_ADDR_SPACE (l
->loc
) == as
)
1332 promote_debug_loc (l
);
1336 addr_elt
->addr_list
= new_elt_list (addr_elt
->addr_list
, mem_elt
);
1337 new_elt_loc_list (mem_elt
,
1338 replace_equiv_address_nv (x
, addr_elt
->val_rtx
));
1339 if (mem_elt
->next_containing_mem
== NULL
)
1341 mem_elt
->next_containing_mem
= first_containing_mem
;
1342 first_containing_mem
= mem_elt
;
1346 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1347 If CREATE, make a new one if we haven't seen it before. */
1350 cselib_lookup_mem (rtx x
, int create
)
1352 machine_mode mode
= GET_MODE (x
);
1353 machine_mode addr_mode
;
1356 cselib_val
*mem_elt
;
1358 if (MEM_VOLATILE_P (x
) || mode
== BLKmode
1359 || !cselib_record_memory
1360 || (FLOAT_MODE_P (mode
) && flag_float_store
))
1363 addr_mode
= GET_MODE (XEXP (x
, 0));
1364 if (addr_mode
== VOIDmode
)
1367 /* Look up the value for the address. */
1368 addr
= cselib_lookup (XEXP (x
, 0), addr_mode
, create
, mode
);
1371 addr
= canonical_cselib_val (addr
);
1373 /* Find a value that describes a value of our mode at that address. */
1374 addr_space_t as
= MEM_ADDR_SPACE (x
);
1375 for (elt_list
*l
= addr
->addr_list
; l
; l
= l
->next
)
1376 if (GET_MODE (l
->elt
->val_rtx
) == mode
)
1378 for (elt_loc_list
*l2
= l
->elt
->locs
; l2
; l2
= l2
->next
)
1379 if (MEM_P (l2
->loc
) && MEM_ADDR_SPACE (l2
->loc
) == as
)
1381 promote_debug_loc (l
->elt
->locs
);
1389 mem_elt
= new_cselib_val (next_uid
, mode
, x
);
1390 add_mem_for_addr (addr
, mem_elt
, x
);
1391 slot
= cselib_find_slot (mode
, x
, mem_elt
->hash
, INSERT
, VOIDmode
);
1396 /* Search through the possible substitutions in P. We prefer a non reg
1397 substitution because this allows us to expand the tree further. If
1398 we find, just a reg, take the lowest regno. There may be several
1399 non-reg results, we just take the first one because they will all
1400 expand to the same place. */
1403 expand_loc (struct elt_loc_list
*p
, struct expand_value_data
*evd
,
1406 rtx reg_result
= NULL
;
1407 unsigned int regno
= UINT_MAX
;
1408 struct elt_loc_list
*p_in
= p
;
1410 for (; p
; p
= p
->next
)
1412 /* Return these right away to avoid returning stack pointer based
1413 expressions for frame pointer and vice versa, which is something
1414 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1415 for more details. */
1417 && (REGNO (p
->loc
) == STACK_POINTER_REGNUM
1418 || REGNO (p
->loc
) == FRAME_POINTER_REGNUM
1419 || REGNO (p
->loc
) == HARD_FRAME_POINTER_REGNUM
1420 || REGNO (p
->loc
) == cfa_base_preserved_regno
))
1422 /* Avoid infinite recursion trying to expand a reg into a
1424 if ((REG_P (p
->loc
))
1425 && (REGNO (p
->loc
) < regno
)
1426 && !bitmap_bit_p (evd
->regs_active
, REGNO (p
->loc
)))
1428 reg_result
= p
->loc
;
1429 regno
= REGNO (p
->loc
);
1431 /* Avoid infinite recursion and do not try to expand the
1433 else if (GET_CODE (p
->loc
) == VALUE
1434 && CSELIB_VAL_PTR (p
->loc
)->locs
== p_in
)
1436 else if (!REG_P (p
->loc
))
1439 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1441 print_inline_rtx (dump_file
, p
->loc
, 0);
1442 fprintf (dump_file
, "\n");
1444 if (GET_CODE (p
->loc
) == LO_SUM
1445 && GET_CODE (XEXP (p
->loc
, 1)) == SYMBOL_REF
1447 && (note
= find_reg_note (p
->setting_insn
, REG_EQUAL
, NULL_RTX
))
1448 && XEXP (note
, 0) == XEXP (p
->loc
, 1))
1449 return XEXP (p
->loc
, 1);
1450 result
= cselib_expand_value_rtx_1 (p
->loc
, evd
, max_depth
- 1);
1457 if (regno
!= UINT_MAX
)
1460 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1461 fprintf (dump_file
, "r%d\n", regno
);
1463 result
= cselib_expand_value_rtx_1 (reg_result
, evd
, max_depth
- 1);
1468 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1472 print_inline_rtx (dump_file
, reg_result
, 0);
1473 fprintf (dump_file
, "\n");
1476 fprintf (dump_file
, "NULL\n");
1482 /* Forward substitute and expand an expression out to its roots.
1483 This is the opposite of common subexpression. Because local value
1484 numbering is such a weak optimization, the expanded expression is
1485 pretty much unique (not from a pointer equals point of view but
1486 from a tree shape point of view.
1488 This function returns NULL if the expansion fails. The expansion
1489 will fail if there is no value number for one of the operands or if
1490 one of the operands has been overwritten between the current insn
1491 and the beginning of the basic block. For instance x has no
1497 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1498 It is clear on return. */
1501 cselib_expand_value_rtx (rtx orig
, bitmap regs_active
, int max_depth
)
1503 struct expand_value_data evd
;
1505 evd
.regs_active
= regs_active
;
1506 evd
.callback
= NULL
;
1507 evd
.callback_arg
= NULL
;
1510 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
);
1513 /* Same as cselib_expand_value_rtx, but using a callback to try to
1514 resolve some expressions. The CB function should return ORIG if it
1515 can't or does not want to deal with a certain RTX. Any other
1516 return value, including NULL, will be used as the expansion for
1517 VALUE, without any further changes. */
1520 cselib_expand_value_rtx_cb (rtx orig
, bitmap regs_active
, int max_depth
,
1521 cselib_expand_callback cb
, void *data
)
1523 struct expand_value_data evd
;
1525 evd
.regs_active
= regs_active
;
1527 evd
.callback_arg
= data
;
1530 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
);
1533 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1534 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1535 would return NULL or non-NULL, without allocating new rtx. */
1538 cselib_dummy_expand_value_rtx_cb (rtx orig
, bitmap regs_active
, int max_depth
,
1539 cselib_expand_callback cb
, void *data
)
1541 struct expand_value_data evd
;
1543 evd
.regs_active
= regs_active
;
1545 evd
.callback_arg
= data
;
1548 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
) != NULL
;
1551 /* Internal implementation of cselib_expand_value_rtx and
1552 cselib_expand_value_rtx_cb. */
1555 cselib_expand_value_rtx_1 (rtx orig
, struct expand_value_data
*evd
,
1561 const char *format_ptr
;
1564 code
= GET_CODE (orig
);
1566 /* For the context of dse, if we end up expand into a huge tree, we
1567 will not have a useful address, so we might as well just give up
1576 struct elt_list
*l
= REG_VALUES (REGNO (orig
));
1578 if (l
&& l
->elt
== NULL
)
1580 for (; l
; l
= l
->next
)
1581 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (orig
))
1584 unsigned regno
= REGNO (orig
);
1586 /* The only thing that we are not willing to do (this
1587 is requirement of dse and if others potential uses
1588 need this function we should add a parm to control
1589 it) is that we will not substitute the
1590 STACK_POINTER_REGNUM, FRAME_POINTER or the
1593 These expansions confuses the code that notices that
1594 stores into the frame go dead at the end of the
1595 function and that the frame is not effected by calls
1596 to subroutines. If you allow the
1597 STACK_POINTER_REGNUM substitution, then dse will
1598 think that parameter pushing also goes dead which is
1599 wrong. If you allow the FRAME_POINTER or the
1600 HARD_FRAME_POINTER then you lose the opportunity to
1601 make the frame assumptions. */
1602 if (regno
== STACK_POINTER_REGNUM
1603 || regno
== FRAME_POINTER_REGNUM
1604 || regno
== HARD_FRAME_POINTER_REGNUM
1605 || regno
== cfa_base_preserved_regno
)
1608 bitmap_set_bit (evd
->regs_active
, regno
);
1610 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1611 fprintf (dump_file
, "expanding: r%d into: ", regno
);
1613 result
= expand_loc (l
->elt
->locs
, evd
, max_depth
);
1614 bitmap_clear_bit (evd
->regs_active
, regno
);
1630 /* SCRATCH must be shared because they represent distinct values. */
1633 if (REG_P (XEXP (orig
, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0))))
1638 if (shared_const_p (orig
))
1648 subreg
= evd
->callback (orig
, evd
->regs_active
, max_depth
,
1654 subreg
= cselib_expand_value_rtx_1 (SUBREG_REG (orig
), evd
,
1658 scopy
= simplify_gen_subreg (GET_MODE (orig
), subreg
,
1659 GET_MODE (SUBREG_REG (orig
)),
1660 SUBREG_BYTE (orig
));
1662 || (GET_CODE (scopy
) == SUBREG
1663 && !REG_P (SUBREG_REG (scopy
))
1664 && !MEM_P (SUBREG_REG (scopy
))))
1674 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1676 fputs ("\nexpanding ", dump_file
);
1677 print_rtl_single (dump_file
, orig
);
1678 fputs (" into...", dump_file
);
1683 result
= evd
->callback (orig
, evd
->regs_active
, max_depth
,
1690 result
= expand_loc (CSELIB_VAL_PTR (orig
)->locs
, evd
, max_depth
);
1696 return evd
->callback (orig
, evd
->regs_active
, max_depth
,
1704 /* Copy the various flags, fields, and other information. We assume
1705 that all fields need copying, and then clear the fields that should
1706 not be copied. That is the sensible default behavior, and forces
1707 us to explicitly document why we are *not* copying a flag. */
1711 copy
= shallow_copy_rtx (orig
);
1713 format_ptr
= GET_RTX_FORMAT (code
);
1715 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1716 switch (*format_ptr
++)
1719 if (XEXP (orig
, i
) != NULL
)
1721 rtx result
= cselib_expand_value_rtx_1 (XEXP (orig
, i
), evd
,
1726 XEXP (copy
, i
) = result
;
1732 if (XVEC (orig
, i
) != NULL
)
1735 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
1736 for (j
= 0; j
< XVECLEN (orig
, i
); j
++)
1738 rtx result
= cselib_expand_value_rtx_1 (XVECEXP (orig
, i
, j
),
1739 evd
, max_depth
- 1);
1743 XVECEXP (copy
, i
, j
) = result
;
1757 /* These are left unchanged. */
1767 mode
= GET_MODE (copy
);
1768 /* If an operand has been simplified into CONST_INT, which doesn't
1769 have a mode and the mode isn't derivable from whole rtx's mode,
1770 try simplify_*_operation first with mode from original's operand
1771 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1773 switch (GET_RTX_CLASS (code
))
1776 if (CONST_INT_P (XEXP (copy
, 0))
1777 && GET_MODE (XEXP (orig
, 0)) != VOIDmode
)
1779 scopy
= simplify_unary_operation (code
, mode
, XEXP (copy
, 0),
1780 GET_MODE (XEXP (orig
, 0)));
1785 case RTX_COMM_ARITH
:
1787 /* These expressions can derive operand modes from the whole rtx's mode. */
1790 case RTX_BITFIELD_OPS
:
1791 if (CONST_INT_P (XEXP (copy
, 0))
1792 && GET_MODE (XEXP (orig
, 0)) != VOIDmode
)
1794 scopy
= simplify_ternary_operation (code
, mode
,
1795 GET_MODE (XEXP (orig
, 0)),
1796 XEXP (copy
, 0), XEXP (copy
, 1),
1803 case RTX_COMM_COMPARE
:
1804 if (CONST_INT_P (XEXP (copy
, 0))
1805 && GET_MODE (XEXP (copy
, 1)) == VOIDmode
1806 && (GET_MODE (XEXP (orig
, 0)) != VOIDmode
1807 || GET_MODE (XEXP (orig
, 1)) != VOIDmode
))
1809 scopy
= simplify_relational_operation (code
, mode
,
1810 (GET_MODE (XEXP (orig
, 0))
1812 ? GET_MODE (XEXP (orig
, 0))
1813 : GET_MODE (XEXP (orig
, 1)),
1823 scopy
= simplify_rtx (copy
);
1829 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1830 with VALUE expressions. This way, it becomes independent of changes
1831 to registers and memory.
1832 X isn't actually modified; if modifications are needed, new rtl is
1833 allocated. However, the return value can share rtl with X.
1834 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1837 cselib_subst_to_values (rtx x
, machine_mode memmode
)
1839 enum rtx_code code
= GET_CODE (x
);
1840 const char *fmt
= GET_RTX_FORMAT (code
);
1849 l
= REG_VALUES (REGNO (x
));
1850 if (l
&& l
->elt
== NULL
)
1852 for (; l
; l
= l
->next
)
1853 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (x
))
1854 return l
->elt
->val_rtx
;
1859 e
= cselib_lookup_mem (x
, 0);
1860 /* This used to happen for autoincrements, but we deal with them
1861 properly now. Remove the if stmt for the next release. */
1864 /* Assign a value that doesn't match any other. */
1865 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
1870 e
= cselib_lookup (x
, GET_MODE (x
), 0, memmode
);
1880 gcc_assert (memmode
!= VOIDmode
);
1881 i
= GET_MODE_SIZE (memmode
);
1882 if (code
== PRE_DEC
)
1884 return cselib_subst_to_values (plus_constant (GET_MODE (x
),
1889 gcc_assert (memmode
!= VOIDmode
);
1890 return cselib_subst_to_values (XEXP (x
, 1), memmode
);
1895 gcc_assert (memmode
!= VOIDmode
);
1896 return cselib_subst_to_values (XEXP (x
, 0), memmode
);
1902 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1906 rtx t
= cselib_subst_to_values (XEXP (x
, i
), memmode
);
1908 if (t
!= XEXP (x
, i
))
1911 copy
= shallow_copy_rtx (x
);
1915 else if (fmt
[i
] == 'E')
1919 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1921 rtx t
= cselib_subst_to_values (XVECEXP (x
, i
, j
), memmode
);
1923 if (t
!= XVECEXP (x
, i
, j
))
1925 if (XVEC (x
, i
) == XVEC (copy
, i
))
1928 copy
= shallow_copy_rtx (x
);
1929 XVEC (copy
, i
) = shallow_copy_rtvec (XVEC (x
, i
));
1931 XVECEXP (copy
, i
, j
) = t
;
1940 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1943 cselib_subst_to_values_from_insn (rtx x
, machine_mode memmode
, rtx_insn
*insn
)
1946 gcc_assert (!cselib_current_insn
);
1947 cselib_current_insn
= insn
;
1948 ret
= cselib_subst_to_values (x
, memmode
);
1949 cselib_current_insn
= NULL
;
1953 /* Look up the rtl expression X in our tables and return the value it
1954 has. If CREATE is zero, we return NULL if we don't know the value.
1955 Otherwise, we create a new one if possible, using mode MODE if X
1956 doesn't have a mode (i.e. because it's a constant). When X is part
1957 of an address, MEMMODE should be the mode of the enclosing MEM if
1958 we're tracking autoinc expressions. */
1961 cselib_lookup_1 (rtx x
, machine_mode mode
,
1962 int create
, machine_mode memmode
)
1966 unsigned int hashval
;
1968 if (GET_MODE (x
) != VOIDmode
)
1969 mode
= GET_MODE (x
);
1971 if (GET_CODE (x
) == VALUE
)
1972 return CSELIB_VAL_PTR (x
);
1977 unsigned int i
= REGNO (x
);
1980 if (l
&& l
->elt
== NULL
)
1982 for (; l
; l
= l
->next
)
1983 if (mode
== GET_MODE (l
->elt
->val_rtx
))
1985 promote_debug_loc (l
->elt
->locs
);
1992 if (i
< FIRST_PSEUDO_REGISTER
)
1994 unsigned int n
= hard_regno_nregs
[i
][mode
];
1996 if (n
> max_value_regs
)
2000 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
2001 new_elt_loc_list (e
, x
);
2002 if (REG_VALUES (i
) == 0)
2004 /* Maintain the invariant that the first entry of
2005 REG_VALUES, if present, must be the value used to set the
2006 register, or NULL. */
2007 used_regs
[n_used_regs
++] = i
;
2008 REG_VALUES (i
) = new_elt_list (REG_VALUES (i
), NULL
);
2010 else if (cselib_preserve_constants
2011 && GET_MODE_CLASS (mode
) == MODE_INT
)
2013 /* During var-tracking, try harder to find equivalences
2014 for SUBREGs. If a setter sets say a DImode register
2015 and user uses that register only in SImode, add a lowpart
2017 struct elt_list
*lwider
= NULL
;
2019 if (l
&& l
->elt
== NULL
)
2021 for (; l
; l
= l
->next
)
2022 if (GET_MODE_CLASS (GET_MODE (l
->elt
->val_rtx
)) == MODE_INT
2023 && GET_MODE_SIZE (GET_MODE (l
->elt
->val_rtx
))
2024 > GET_MODE_SIZE (mode
)
2026 || GET_MODE_SIZE (GET_MODE (l
->elt
->val_rtx
))
2027 < GET_MODE_SIZE (GET_MODE (lwider
->elt
->val_rtx
))))
2029 struct elt_loc_list
*el
;
2030 if (i
< FIRST_PSEUDO_REGISTER
2031 && hard_regno_nregs
[i
][GET_MODE (l
->elt
->val_rtx
)] != 1)
2033 for (el
= l
->elt
->locs
; el
; el
= el
->next
)
2034 if (!REG_P (el
->loc
))
2041 rtx sub
= lowpart_subreg (mode
, lwider
->elt
->val_rtx
,
2042 GET_MODE (lwider
->elt
->val_rtx
));
2044 new_elt_loc_list (e
, sub
);
2047 REG_VALUES (i
)->next
= new_elt_list (REG_VALUES (i
)->next
, e
);
2048 slot
= cselib_find_slot (mode
, x
, e
->hash
, INSERT
, memmode
);
2054 return cselib_lookup_mem (x
, create
);
2056 hashval
= cselib_hash_rtx (x
, create
, memmode
);
2057 /* Can't even create if hashing is not possible. */
2061 slot
= cselib_find_slot (mode
, x
, hashval
,
2062 create
? INSERT
: NO_INSERT
, memmode
);
2066 e
= (cselib_val
*) *slot
;
2070 e
= new_cselib_val (hashval
, mode
, x
);
2072 /* We have to fill the slot before calling cselib_subst_to_values:
2073 the hash table is inconsistent until we do so, and
2074 cselib_subst_to_values will need to do lookups. */
2076 new_elt_loc_list (e
, cselib_subst_to_values (x
, memmode
));
2080 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2083 cselib_lookup_from_insn (rtx x
, machine_mode mode
,
2084 int create
, machine_mode memmode
, rtx_insn
*insn
)
2088 gcc_assert (!cselib_current_insn
);
2089 cselib_current_insn
= insn
;
2091 ret
= cselib_lookup (x
, mode
, create
, memmode
);
2093 cselib_current_insn
= NULL
;
2098 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2099 maintains invariants related with debug insns. */
2102 cselib_lookup (rtx x
, machine_mode mode
,
2103 int create
, machine_mode memmode
)
2105 cselib_val
*ret
= cselib_lookup_1 (x
, mode
, create
, memmode
);
2107 /* ??? Should we return NULL if we're not to create an entry, the
2108 found loc is a debug loc and cselib_current_insn is not DEBUG?
2109 If so, we should also avoid converting val to non-DEBUG; probably
2110 easiest setting cselib_current_insn to NULL before the call
2113 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
2115 fputs ("cselib lookup ", dump_file
);
2116 print_inline_rtx (dump_file
, x
, 2);
2117 fprintf (dump_file
, " => %u:%u\n",
2119 ret
? ret
->hash
: 0);
2125 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2126 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2127 is used to determine how many hard registers are being changed. If MODE
2128 is VOIDmode, then only REGNO is being changed; this is used when
2129 invalidating call clobbered registers across a call. */
2132 cselib_invalidate_regno (unsigned int regno
, machine_mode mode
)
2134 unsigned int endregno
;
2137 /* If we see pseudos after reload, something is _wrong_. */
2138 gcc_assert (!reload_completed
|| regno
< FIRST_PSEUDO_REGISTER
2139 || reg_renumber
[regno
] < 0);
2141 /* Determine the range of registers that must be invalidated. For
2142 pseudos, only REGNO is affected. For hard regs, we must take MODE
2143 into account, and we must also invalidate lower register numbers
2144 if they contain values that overlap REGNO. */
2145 if (regno
< FIRST_PSEUDO_REGISTER
)
2147 gcc_assert (mode
!= VOIDmode
);
2149 if (regno
< max_value_regs
)
2152 i
= regno
- max_value_regs
;
2154 endregno
= end_hard_regno (mode
, regno
);
2159 endregno
= regno
+ 1;
2162 for (; i
< endregno
; i
++)
2164 struct elt_list
**l
= ®_VALUES (i
);
2166 /* Go through all known values for this reg; if it overlaps the range
2167 we're invalidating, remove the value. */
2170 cselib_val
*v
= (*l
)->elt
;
2172 rtx_insn
*setting_insn
;
2173 struct elt_loc_list
**p
;
2174 unsigned int this_last
= i
;
2176 if (i
< FIRST_PSEUDO_REGISTER
&& v
!= NULL
)
2177 this_last
= end_hard_regno (GET_MODE (v
->val_rtx
), i
) - 1;
2179 if (this_last
< regno
|| v
== NULL
2180 || (v
== cfa_base_preserved_val
2181 && i
== cfa_base_preserved_regno
))
2187 /* We have an overlap. */
2188 if (*l
== REG_VALUES (i
))
2190 /* Maintain the invariant that the first entry of
2191 REG_VALUES, if present, must be the value used to set
2192 the register, or NULL. This is also nice because
2193 then we won't push the same regno onto user_regs
2199 unchain_one_elt_list (l
);
2201 v
= canonical_cselib_val (v
);
2203 had_locs
= v
->locs
!= NULL
;
2204 setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
2206 /* Now, we clear the mapping from value to reg. It must exist, so
2207 this code will crash intentionally if it doesn't. */
2208 for (p
= &v
->locs
; ; p
= &(*p
)->next
)
2212 if (REG_P (x
) && REGNO (x
) == i
)
2214 unchain_one_elt_loc_list (p
);
2219 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
2221 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
2222 n_useless_debug_values
++;
2230 /* Invalidate any locations in the table which are changed because of a
2231 store to MEM_RTX. If this is called because of a non-const call
2232 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2235 cselib_invalidate_mem (rtx mem_rtx
)
2237 cselib_val
**vp
, *v
, *next
;
2241 mem_addr
= canon_rtx (get_addr (XEXP (mem_rtx
, 0)));
2242 mem_rtx
= canon_rtx (mem_rtx
);
2244 vp
= &first_containing_mem
;
2245 for (v
= *vp
; v
!= &dummy_val
; v
= next
)
2247 bool has_mem
= false;
2248 struct elt_loc_list
**p
= &v
->locs
;
2249 bool had_locs
= v
->locs
!= NULL
;
2250 rtx_insn
*setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
2256 struct elt_list
**mem_chain
;
2258 /* MEMs may occur in locations only at the top level; below
2259 that every MEM or REG is substituted by its VALUE. */
2265 if (num_mems
< PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS
)
2266 && ! canon_anti_dependence (x
, false, mem_rtx
,
2267 GET_MODE (mem_rtx
), mem_addr
))
2275 /* This one overlaps. */
2276 /* We must have a mapping from this MEM's address to the
2277 value (E). Remove that, too. */
2278 addr
= cselib_lookup (XEXP (x
, 0), VOIDmode
, 0, GET_MODE (x
));
2279 addr
= canonical_cselib_val (addr
);
2280 gcc_checking_assert (v
== canonical_cselib_val (v
));
2281 mem_chain
= &addr
->addr_list
;
2284 cselib_val
*canon
= canonical_cselib_val ((*mem_chain
)->elt
);
2288 unchain_one_elt_list (mem_chain
);
2292 /* Record canonicalized elt. */
2293 (*mem_chain
)->elt
= canon
;
2295 mem_chain
= &(*mem_chain
)->next
;
2298 unchain_one_elt_loc_list (p
);
2301 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
2303 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
2304 n_useless_debug_values
++;
2309 next
= v
->next_containing_mem
;
2313 vp
= &(*vp
)->next_containing_mem
;
2316 v
->next_containing_mem
= NULL
;
2321 /* Invalidate DEST, which is being assigned to or clobbered. */
2324 cselib_invalidate_rtx (rtx dest
)
2326 while (GET_CODE (dest
) == SUBREG
2327 || GET_CODE (dest
) == ZERO_EXTRACT
2328 || GET_CODE (dest
) == STRICT_LOW_PART
)
2329 dest
= XEXP (dest
, 0);
2332 cselib_invalidate_regno (REGNO (dest
), GET_MODE (dest
));
2333 else if (MEM_P (dest
))
2334 cselib_invalidate_mem (dest
);
2337 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2340 cselib_invalidate_rtx_note_stores (rtx dest
, const_rtx ignore ATTRIBUTE_UNUSED
,
2341 void *data ATTRIBUTE_UNUSED
)
2343 cselib_invalidate_rtx (dest
);
2346 /* Record the result of a SET instruction. DEST is being set; the source
2347 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2348 describes its address. */
2351 cselib_record_set (rtx dest
, cselib_val
*src_elt
, cselib_val
*dest_addr_elt
)
2353 if (src_elt
== 0 || side_effects_p (dest
))
2358 unsigned int dreg
= REGNO (dest
);
2359 if (dreg
< FIRST_PSEUDO_REGISTER
)
2361 unsigned int n
= REG_NREGS (dest
);
2363 if (n
> max_value_regs
)
2367 if (REG_VALUES (dreg
) == 0)
2369 used_regs
[n_used_regs
++] = dreg
;
2370 REG_VALUES (dreg
) = new_elt_list (REG_VALUES (dreg
), src_elt
);
2374 /* The register should have been invalidated. */
2375 gcc_assert (REG_VALUES (dreg
)->elt
== 0);
2376 REG_VALUES (dreg
)->elt
= src_elt
;
2379 if (src_elt
->locs
== 0 && !PRESERVED_VALUE_P (src_elt
->val_rtx
))
2381 new_elt_loc_list (src_elt
, dest
);
2383 else if (MEM_P (dest
) && dest_addr_elt
!= 0
2384 && cselib_record_memory
)
2386 if (src_elt
->locs
== 0 && !PRESERVED_VALUE_P (src_elt
->val_rtx
))
2388 add_mem_for_addr (dest_addr_elt
, src_elt
, dest
);
2392 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2395 cselib_add_permanent_equiv (cselib_val
*elt
, rtx x
, rtx_insn
*insn
)
2398 rtx_insn
*save_cselib_current_insn
= cselib_current_insn
;
2400 gcc_checking_assert (elt
);
2401 gcc_checking_assert (PRESERVED_VALUE_P (elt
->val_rtx
));
2402 gcc_checking_assert (!side_effects_p (x
));
2404 cselib_current_insn
= insn
;
2406 nelt
= cselib_lookup (x
, GET_MODE (elt
->val_rtx
), 1, VOIDmode
);
2410 cselib_any_perm_equivs
= true;
2412 if (!PRESERVED_VALUE_P (nelt
->val_rtx
))
2413 cselib_preserve_value (nelt
);
2415 new_elt_loc_list (nelt
, elt
->val_rtx
);
2418 cselib_current_insn
= save_cselib_current_insn
;
2421 /* Return TRUE if any permanent equivalences have been recorded since
2422 the table was last initialized. */
2424 cselib_have_permanent_equivalences (void)
2426 return cselib_any_perm_equivs
;
2429 /* There is no good way to determine how many elements there can be
2430 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2431 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2433 struct cselib_record_autoinc_data
2435 struct cselib_set
*sets
;
2439 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2440 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2443 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED
, rtx op ATTRIBUTE_UNUSED
,
2444 rtx dest
, rtx src
, rtx srcoff
, void *arg
)
2446 struct cselib_record_autoinc_data
*data
;
2447 data
= (struct cselib_record_autoinc_data
*)arg
;
2449 data
->sets
[data
->n_sets
].dest
= dest
;
2452 data
->sets
[data
->n_sets
].src
= gen_rtx_PLUS (GET_MODE (src
), src
, srcoff
);
2454 data
->sets
[data
->n_sets
].src
= src
;
2461 /* Record the effects of any sets and autoincs in INSN. */
2463 cselib_record_sets (rtx_insn
*insn
)
2467 struct cselib_set sets
[MAX_SETS
];
2468 rtx body
= PATTERN (insn
);
2470 int n_sets_before_autoinc
;
2471 struct cselib_record_autoinc_data data
;
2473 body
= PATTERN (insn
);
2474 if (GET_CODE (body
) == COND_EXEC
)
2476 cond
= COND_EXEC_TEST (body
);
2477 body
= COND_EXEC_CODE (body
);
2480 /* Find all sets. */
2481 if (GET_CODE (body
) == SET
)
2483 sets
[0].src
= SET_SRC (body
);
2484 sets
[0].dest
= SET_DEST (body
);
2487 else if (GET_CODE (body
) == PARALLEL
)
2489 /* Look through the PARALLEL and record the values being
2490 set, if possible. Also handle any CLOBBERs. */
2491 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
2493 rtx x
= XVECEXP (body
, 0, i
);
2495 if (GET_CODE (x
) == SET
)
2497 sets
[n_sets
].src
= SET_SRC (x
);
2498 sets
[n_sets
].dest
= SET_DEST (x
);
2505 && MEM_P (sets
[0].src
)
2506 && !cselib_record_memory
2507 && MEM_READONLY_P (sets
[0].src
))
2509 rtx note
= find_reg_equal_equiv_note (insn
);
2511 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2512 sets
[0].src
= XEXP (note
, 0);
2516 data
.n_sets
= n_sets_before_autoinc
= n_sets
;
2517 for_each_inc_dec (PATTERN (insn
), cselib_record_autoinc_cb
, &data
);
2518 n_sets
= data
.n_sets
;
2520 /* Look up the values that are read. Do this before invalidating the
2521 locations that are written. */
2522 for (i
= 0; i
< n_sets
; i
++)
2524 rtx dest
= sets
[i
].dest
;
2526 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2527 the low part after invalidating any knowledge about larger modes. */
2528 if (GET_CODE (sets
[i
].dest
) == STRICT_LOW_PART
)
2529 sets
[i
].dest
= dest
= XEXP (dest
, 0);
2531 /* We don't know how to record anything but REG or MEM. */
2533 || (MEM_P (dest
) && cselib_record_memory
))
2535 rtx src
= sets
[i
].src
;
2537 src
= gen_rtx_IF_THEN_ELSE (GET_MODE (dest
), cond
, src
, dest
);
2538 sets
[i
].src_elt
= cselib_lookup (src
, GET_MODE (dest
), 1, VOIDmode
);
2541 machine_mode address_mode
= get_address_mode (dest
);
2543 sets
[i
].dest_addr_elt
= cselib_lookup (XEXP (dest
, 0),
2548 sets
[i
].dest_addr_elt
= 0;
2552 if (cselib_record_sets_hook
)
2553 cselib_record_sets_hook (insn
, sets
, n_sets
);
2555 /* Invalidate all locations written by this insn. Note that the elts we
2556 looked up in the previous loop aren't affected, just some of their
2557 locations may go away. */
2558 note_stores (body
, cselib_invalidate_rtx_note_stores
, NULL
);
2560 for (i
= n_sets_before_autoinc
; i
< n_sets
; i
++)
2561 cselib_invalidate_rtx (sets
[i
].dest
);
2563 /* If this is an asm, look for duplicate sets. This can happen when the
2564 user uses the same value as an output multiple times. This is valid
2565 if the outputs are not actually used thereafter. Treat this case as
2566 if the value isn't actually set. We do this by smashing the destination
2567 to pc_rtx, so that we won't record the value later. */
2568 if (n_sets
>= 2 && asm_noperands (body
) >= 0)
2570 for (i
= 0; i
< n_sets
; i
++)
2572 rtx dest
= sets
[i
].dest
;
2573 if (REG_P (dest
) || MEM_P (dest
))
2576 for (j
= i
+ 1; j
< n_sets
; j
++)
2577 if (rtx_equal_p (dest
, sets
[j
].dest
))
2579 sets
[i
].dest
= pc_rtx
;
2580 sets
[j
].dest
= pc_rtx
;
2586 /* Now enter the equivalences in our tables. */
2587 for (i
= 0; i
< n_sets
; i
++)
2589 rtx dest
= sets
[i
].dest
;
2591 || (MEM_P (dest
) && cselib_record_memory
))
2592 cselib_record_set (dest
, sets
[i
].src_elt
, sets
[i
].dest_addr_elt
);
2596 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2599 fp_setter_insn (rtx_insn
*insn
)
2601 rtx expr
, pat
= NULL_RTX
;
2603 if (!RTX_FRAME_RELATED_P (insn
))
2606 expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
2608 pat
= XEXP (expr
, 0);
2609 if (!modified_in_p (hard_frame_pointer_rtx
, pat
? pat
: insn
))
2612 /* Don't return true for frame pointer restores in the epilogue. */
2613 if (find_reg_note (insn
, REG_CFA_RESTORE
, hard_frame_pointer_rtx
))
2618 /* Record the effects of INSN. */
2621 cselib_process_insn (rtx_insn
*insn
)
2626 cselib_current_insn
= insn
;
2628 /* Forget everything at a CODE_LABEL or a setjmp. */
2631 && find_reg_note (insn
, REG_SETJMP
, NULL
)))
2632 && !cselib_preserve_constants
)
2634 cselib_reset_table (next_uid
);
2635 cselib_current_insn
= NULL
;
2639 if (! INSN_P (insn
))
2641 cselib_current_insn
= NULL
;
2645 /* If this is a call instruction, forget anything stored in a
2646 call clobbered register, or, if this is not a const call, in
2650 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2651 if (call_used_regs
[i
]
2652 || (REG_VALUES (i
) && REG_VALUES (i
)->elt
2653 && HARD_REGNO_CALL_PART_CLOBBERED (i
,
2654 GET_MODE (REG_VALUES (i
)->elt
->val_rtx
))))
2655 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
2657 /* Since it is not clear how cselib is going to be used, be
2658 conservative here and treat looping pure or const functions
2659 as if they were regular functions. */
2660 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
)
2661 || !(RTL_CONST_OR_PURE_CALL_P (insn
)))
2662 cselib_invalidate_mem (callmem
);
2664 /* For const/pure calls, invalidate any argument slots because
2665 they are owned by the callee. */
2666 for (x
= CALL_INSN_FUNCTION_USAGE (insn
); x
; x
= XEXP (x
, 1))
2667 if (GET_CODE (XEXP (x
, 0)) == USE
2668 && MEM_P (XEXP (XEXP (x
, 0), 0)))
2669 cselib_invalidate_mem (XEXP (XEXP (x
, 0), 0));
2672 cselib_record_sets (insn
);
2674 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2675 after we have processed the insn. */
2678 for (x
= CALL_INSN_FUNCTION_USAGE (insn
); x
; x
= XEXP (x
, 1))
2679 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
2680 cselib_invalidate_rtx (XEXP (XEXP (x
, 0), 0));
2681 /* Flush evertything on setjmp. */
2682 if (cselib_preserve_constants
2683 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2685 cselib_preserve_only_values ();
2686 cselib_reset_table (next_uid
);
2690 /* On setter of the hard frame pointer if frame_pointer_needed,
2691 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2692 VALUEs are distinct. */
2693 if (reload_completed
2694 && frame_pointer_needed
2695 && fp_setter_insn (insn
))
2696 cselib_invalidate_rtx (stack_pointer_rtx
);
2698 cselib_current_insn
= NULL
;
2700 if (n_useless_values
> MAX_USELESS_VALUES
2701 /* remove_useless_values is linear in the hash table size. Avoid
2702 quadratic behavior for very large hashtables with very few
2703 useless elements. */
2704 && ((unsigned int)n_useless_values
2705 > (cselib_hash_table
->elements () - n_debug_values
) / 4))
2706 remove_useless_values ();
2709 /* Initialize cselib for one pass. The caller must also call
2710 init_alias_analysis. */
2713 cselib_init (int record_what
)
2715 cselib_record_memory
= record_what
& CSELIB_RECORD_MEMORY
;
2716 cselib_preserve_constants
= record_what
& CSELIB_PRESERVE_CONSTANTS
;
2717 cselib_any_perm_equivs
= false;
2719 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2720 see canon_true_dependence. This is only created once. */
2722 callmem
= gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
));
2724 cselib_nregs
= max_reg_num ();
2726 /* We preserve reg_values to allow expensive clearing of the whole thing.
2727 Reallocate it however if it happens to be too large. */
2728 if (!reg_values
|| reg_values_size
< cselib_nregs
2729 || (reg_values_size
> 10 && reg_values_size
> cselib_nregs
* 4))
2732 /* Some space for newly emit instructions so we don't end up
2733 reallocating in between passes. */
2734 reg_values_size
= cselib_nregs
+ (63 + cselib_nregs
) / 16;
2735 reg_values
= XCNEWVEC (struct elt_list
*, reg_values_size
);
2737 used_regs
= XNEWVEC (unsigned int, cselib_nregs
);
2739 cselib_hash_table
= new hash_table
<cselib_hasher
> (31);
2740 if (cselib_preserve_constants
)
2741 cselib_preserved_hash_table
= new hash_table
<cselib_hasher
> (31);
2745 /* Called when the current user is done with cselib. */
2748 cselib_finish (void)
2750 bool preserved
= cselib_preserve_constants
;
2751 cselib_discard_hook
= NULL
;
2752 cselib_preserve_constants
= false;
2753 cselib_any_perm_equivs
= false;
2754 cfa_base_preserved_val
= NULL
;
2755 cfa_base_preserved_regno
= INVALID_REGNUM
;
2756 elt_list_pool
.release ();
2757 elt_loc_list_pool
.release ();
2758 cselib_val_pool
.release ();
2759 value_pool
.release ();
2760 cselib_clear_table ();
2761 delete cselib_hash_table
;
2762 cselib_hash_table
= NULL
;
2764 delete cselib_preserved_hash_table
;
2765 cselib_preserved_hash_table
= NULL
;
2768 n_useless_values
= 0;
2769 n_useless_debug_values
= 0;
2774 /* Dump the cselib_val *X to FILE *OUT. */
2777 dump_cselib_val (cselib_val
**x
, FILE *out
)
2780 bool need_lf
= true;
2782 print_inline_rtx (out
, v
->val_rtx
, 0);
2786 struct elt_loc_list
*l
= v
->locs
;
2792 fputs (" locs:", out
);
2795 if (l
->setting_insn
)
2796 fprintf (out
, "\n from insn %i ",
2797 INSN_UID (l
->setting_insn
));
2799 fprintf (out
, "\n ");
2800 print_inline_rtx (out
, l
->loc
, 4);
2802 while ((l
= l
->next
));
2807 fputs (" no locs", out
);
2813 struct elt_list
*e
= v
->addr_list
;
2819 fputs (" addr list:", out
);
2823 print_inline_rtx (out
, e
->elt
->val_rtx
, 2);
2825 while ((e
= e
->next
));
2830 fputs (" no addrs", out
);
2834 if (v
->next_containing_mem
== &dummy_val
)
2835 fputs (" last mem\n", out
);
2836 else if (v
->next_containing_mem
)
2838 fputs (" next mem ", out
);
2839 print_inline_rtx (out
, v
->next_containing_mem
->val_rtx
, 2);
2848 /* Dump to OUT everything in the CSELIB table. */
2851 dump_cselib_table (FILE *out
)
2853 fprintf (out
, "cselib hash table:\n");
2854 cselib_hash_table
->traverse
<FILE *, dump_cselib_val
> (out
);
2855 fprintf (out
, "cselib preserved hash table:\n");
2856 cselib_preserved_hash_table
->traverse
<FILE *, dump_cselib_val
> (out
);
2857 if (first_containing_mem
!= &dummy_val
)
2859 fputs ("first mem ", out
);
2860 print_inline_rtx (out
, first_containing_mem
->val_rtx
, 2);
2863 fprintf (out
, "next uid %i\n", next_uid
);
2866 #include "gt-cselib.h"