2015-04-14 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / gcc / cselib.c
blobd6ccbfb46902a523a1d8681afeced324a72c4ea2
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"/* FIXME: For hashing DEBUG_EXPR & friends. */
35 #include "tm_p.h"
36 #include "regs.h"
37 #include "hard-reg-set.h"
38 #include "flags.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "hashtab.h"
42 #include "input.h"
43 #include "function.h"
44 #include "emit-rtl.h"
45 #include "diagnostic-core.h"
46 #include "ggc.h"
47 #include "hash-table.h"
48 #include "dumpfile.h"
49 #include "cselib.h"
50 #include "predict.h"
51 #include "basic-block.h"
52 #include "valtrack.h"
53 #include "params.h"
54 #include "alloc-pool.h"
55 #include "target.h"
56 #include "bitmap.h"
58 /* A list of cselib_val structures. */
59 struct elt_list {
60 struct elt_list *next;
61 cselib_val *elt;
64 static bool cselib_record_memory;
65 static bool cselib_preserve_constants;
66 static bool cselib_any_perm_equivs;
67 static inline void promote_debug_loc (struct elt_loc_list *l);
68 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
69 static void new_elt_loc_list (cselib_val *, rtx);
70 static void unchain_one_value (cselib_val *);
71 static void unchain_one_elt_list (struct elt_list **);
72 static void unchain_one_elt_loc_list (struct elt_loc_list **);
73 static void remove_useless_values (void);
74 static int rtx_equal_for_cselib_1 (rtx, rtx, machine_mode);
75 static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
76 static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
77 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
78 static cselib_val *cselib_lookup_mem (rtx, int);
79 static void cselib_invalidate_regno (unsigned int, machine_mode);
80 static void cselib_invalidate_mem (rtx);
81 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
82 static void cselib_record_sets (rtx_insn *);
84 struct expand_value_data
86 bitmap regs_active;
87 cselib_expand_callback callback;
88 void *callback_arg;
89 bool dummy;
92 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
94 /* There are three ways in which cselib can look up an rtx:
95 - for a REG, the reg_values table (which is indexed by regno) is used
96 - for a MEM, we recursively look up its address and then follow the
97 addr_list of that value
98 - for everything else, we compute a hash value and go through the hash
99 table. Since different rtx's can still have the same hash value,
100 this involves walking the table entries for a given value and comparing
101 the locations of the entries with the rtx we are looking up. */
103 struct cselib_hasher : typed_noop_remove <cselib_val>
105 typedef cselib_val value_type;
106 struct compare_type {
107 /* The rtx value and its mode (needed separately for constant
108 integers). */
109 machine_mode mode;
110 rtx x;
111 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
112 machine_mode memmode;
114 static inline hashval_t hash (const value_type *);
115 static inline bool equal (const value_type *, const compare_type *);
118 /* The hash function for our hash table. The value is always computed with
119 cselib_hash_rtx when adding an element; this function just extracts the
120 hash value from a cselib_val structure. */
122 inline hashval_t
123 cselib_hasher::hash (const value_type *v)
125 return v->hash;
128 /* The equality test for our hash table. The first argument V is a table
129 element (i.e. a cselib_val), while the second arg X is an rtx. We know
130 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
131 CONST of an appropriate mode. */
133 inline bool
134 cselib_hasher::equal (const value_type *v, const compare_type *x_arg)
136 struct elt_loc_list *l;
137 rtx x = x_arg->x;
138 machine_mode mode = x_arg->mode;
139 machine_mode memmode = x_arg->memmode;
141 if (mode != GET_MODE (v->val_rtx))
142 return false;
144 if (GET_CODE (x) == VALUE)
145 return x == v->val_rtx;
147 /* We don't guarantee that distinct rtx's have different hash values,
148 so we need to do a comparison. */
149 for (l = v->locs; l; l = l->next)
150 if (rtx_equal_for_cselib_1 (l->loc, x, memmode))
152 promote_debug_loc (l);
153 return true;
156 return false;
159 /* A table that enables us to look up elts by their value. */
160 static hash_table<cselib_hasher> *cselib_hash_table;
162 /* A table to hold preserved values. */
163 static hash_table<cselib_hasher> *cselib_preserved_hash_table;
165 /* This is a global so we don't have to pass this through every function.
166 It is used in new_elt_loc_list to set SETTING_INSN. */
167 static rtx_insn *cselib_current_insn;
169 /* The unique id that the next create value will take. */
170 static unsigned int next_uid;
172 /* The number of registers we had when the varrays were last resized. */
173 static unsigned int cselib_nregs;
175 /* Count values without known locations, or with only locations that
176 wouldn't have been known except for debug insns. Whenever this
177 grows too big, we remove these useless values from the table.
179 Counting values with only debug values is a bit tricky. We don't
180 want to increment n_useless_values when we create a value for a
181 debug insn, for this would get n_useless_values out of sync, but we
182 want increment it if all locs in the list that were ever referenced
183 in nondebug insns are removed from the list.
185 In the general case, once we do that, we'd have to stop accepting
186 nondebug expressions in the loc list, to avoid having two values
187 equivalent that, without debug insns, would have been made into
188 separate values. However, because debug insns never introduce
189 equivalences themselves (no assignments), the only means for
190 growing loc lists is through nondebug assignments. If the locs
191 also happen to be referenced in debug insns, it will work just fine.
193 A consequence of this is that there's at most one debug-only loc in
194 each loc list. If we keep it in the first entry, testing whether
195 we have a debug-only loc list takes O(1).
197 Furthermore, since any additional entry in a loc list containing a
198 debug loc would have to come from an assignment (nondebug) that
199 references both the initial debug loc and the newly-equivalent loc,
200 the initial debug loc would be promoted to a nondebug loc, and the
201 loc list would not contain debug locs any more.
203 So the only case we have to be careful with in order to keep
204 n_useless_values in sync between debug and nondebug compilations is
205 to avoid incrementing n_useless_values when removing the single loc
206 from a value that turns out to not appear outside debug values. We
207 increment n_useless_debug_values instead, and leave such values
208 alone until, for other reasons, we garbage-collect useless
209 values. */
210 static int n_useless_values;
211 static int n_useless_debug_values;
213 /* Count values whose locs have been taken exclusively from debug
214 insns for the entire life of the value. */
215 static int n_debug_values;
217 /* Number of useless values before we remove them from the hash table. */
218 #define MAX_USELESS_VALUES 32
220 /* This table maps from register number to values. It does not
221 contain pointers to cselib_val structures, but rather elt_lists.
222 The purpose is to be able to refer to the same register in
223 different modes. The first element of the list defines the mode in
224 which the register was set; if the mode is unknown or the value is
225 no longer valid in that mode, ELT will be NULL for the first
226 element. */
227 static struct elt_list **reg_values;
228 static unsigned int reg_values_size;
229 #define REG_VALUES(i) reg_values[i]
231 /* The largest number of hard regs used by any entry added to the
232 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
233 static unsigned int max_value_regs;
235 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
236 in cselib_clear_table() for fast emptying. */
237 static unsigned int *used_regs;
238 static unsigned int n_used_regs;
240 /* We pass this to cselib_invalidate_mem to invalidate all of
241 memory for a non-const call instruction. */
242 static GTY(()) rtx callmem;
244 /* Set by discard_useless_locs if it deleted the last location of any
245 value. */
246 static int values_became_useless;
248 /* Used as stop element of the containing_mem list so we can check
249 presence in the list by checking the next pointer. */
250 static cselib_val dummy_val;
252 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
253 that is constant through the whole function and should never be
254 eliminated. */
255 static cselib_val *cfa_base_preserved_val;
256 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
258 /* Used to list all values that contain memory reference.
259 May or may not contain the useless values - the list is compacted
260 each time memory is invalidated. */
261 static cselib_val *first_containing_mem = &dummy_val;
262 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
264 /* If nonnull, cselib will call this function before freeing useless
265 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
266 void (*cselib_discard_hook) (cselib_val *);
268 /* If nonnull, cselib will call this function before recording sets or
269 even clobbering outputs of INSN. All the recorded sets will be
270 represented in the array sets[n_sets]. new_val_min can be used to
271 tell whether values present in sets are introduced by this
272 instruction. */
273 void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
274 int n_sets);
276 #define PRESERVED_VALUE_P(RTX) \
277 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
279 #define SP_BASED_VALUE_P(RTX) \
280 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
284 /* Allocate a struct elt_list and fill in its two elements with the
285 arguments. */
287 static inline struct elt_list *
288 new_elt_list (struct elt_list *next, cselib_val *elt)
290 struct elt_list *el;
291 el = (struct elt_list *) pool_alloc (elt_list_pool);
292 el->next = next;
293 el->elt = elt;
294 return el;
297 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
298 list. */
300 static inline void
301 new_elt_loc_list (cselib_val *val, rtx loc)
303 struct elt_loc_list *el, *next = val->locs;
305 gcc_checking_assert (!next || !next->setting_insn
306 || !DEBUG_INSN_P (next->setting_insn)
307 || cselib_current_insn == next->setting_insn);
309 /* If we're creating the first loc in a debug insn context, we've
310 just created a debug value. Count it. */
311 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
312 n_debug_values++;
314 val = canonical_cselib_val (val);
315 next = val->locs;
317 if (GET_CODE (loc) == VALUE)
319 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
321 gcc_checking_assert (PRESERVED_VALUE_P (loc)
322 == PRESERVED_VALUE_P (val->val_rtx));
324 if (val->val_rtx == loc)
325 return;
326 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
328 /* Reverse the insertion. */
329 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
330 return;
333 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
335 if (CSELIB_VAL_PTR (loc)->locs)
337 /* Bring all locs from LOC to VAL. */
338 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
340 /* Adjust values that have LOC as canonical so that VAL
341 becomes their canonical. */
342 if (el->loc && GET_CODE (el->loc) == VALUE)
344 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
345 == loc);
346 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
349 el->next = val->locs;
350 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
353 if (CSELIB_VAL_PTR (loc)->addr_list)
355 /* Bring in addr_list into canonical node. */
356 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
357 while (last->next)
358 last = last->next;
359 last->next = val->addr_list;
360 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
361 CSELIB_VAL_PTR (loc)->addr_list = NULL;
364 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
365 && val->next_containing_mem == NULL)
367 /* Add VAL to the containing_mem list after LOC. LOC will
368 be removed when we notice it doesn't contain any
369 MEMs. */
370 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
371 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
374 /* Chain LOC back to VAL. */
375 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
376 el->loc = val->val_rtx;
377 el->setting_insn = cselib_current_insn;
378 el->next = NULL;
379 CSELIB_VAL_PTR (loc)->locs = el;
382 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
383 el->loc = loc;
384 el->setting_insn = cselib_current_insn;
385 el->next = next;
386 val->locs = el;
389 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
390 originating from a debug insn, maintaining the debug values
391 count. */
393 static inline void
394 promote_debug_loc (struct elt_loc_list *l)
396 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
397 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
399 n_debug_values--;
400 l->setting_insn = cselib_current_insn;
401 if (cselib_preserve_constants && l->next)
403 gcc_assert (l->next->setting_insn
404 && DEBUG_INSN_P (l->next->setting_insn)
405 && !l->next->next);
406 l->next->setting_insn = cselib_current_insn;
408 else
409 gcc_assert (!l->next);
413 /* The elt_list at *PL is no longer needed. Unchain it and free its
414 storage. */
416 static inline void
417 unchain_one_elt_list (struct elt_list **pl)
419 struct elt_list *l = *pl;
421 *pl = l->next;
422 pool_free (elt_list_pool, l);
425 /* Likewise for elt_loc_lists. */
427 static void
428 unchain_one_elt_loc_list (struct elt_loc_list **pl)
430 struct elt_loc_list *l = *pl;
432 *pl = l->next;
433 pool_free (elt_loc_list_pool, l);
436 /* Likewise for cselib_vals. This also frees the addr_list associated with
437 V. */
439 static void
440 unchain_one_value (cselib_val *v)
442 while (v->addr_list)
443 unchain_one_elt_list (&v->addr_list);
445 pool_free (cselib_val_pool, v);
448 /* Remove all entries from the hash table. Also used during
449 initialization. */
451 void
452 cselib_clear_table (void)
454 cselib_reset_table (1);
457 /* Return TRUE if V is a constant, a function invariant or a VALUE
458 equivalence; FALSE otherwise. */
460 static bool
461 invariant_or_equiv_p (cselib_val *v)
463 struct elt_loc_list *l;
465 if (v == cfa_base_preserved_val)
466 return true;
468 /* Keep VALUE equivalences around. */
469 for (l = v->locs; l; l = l->next)
470 if (GET_CODE (l->loc) == VALUE)
471 return true;
473 if (v->locs != NULL
474 && v->locs->next == NULL)
476 if (CONSTANT_P (v->locs->loc)
477 && (GET_CODE (v->locs->loc) != CONST
478 || !references_value_p (v->locs->loc, 0)))
479 return true;
480 /* Although a debug expr may be bound to different expressions,
481 we can preserve it as if it was constant, to get unification
482 and proper merging within var-tracking. */
483 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
484 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
485 || GET_CODE (v->locs->loc) == ENTRY_VALUE
486 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
487 return true;
489 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
490 if (GET_CODE (v->locs->loc) == PLUS
491 && CONST_INT_P (XEXP (v->locs->loc, 1))
492 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
493 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
494 return true;
497 return false;
500 /* Remove from hash table all VALUEs except constants, function
501 invariants and VALUE equivalences. */
504 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
506 cselib_val *v = *x;
508 if (invariant_or_equiv_p (v))
510 cselib_hasher::compare_type lookup = {
511 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
513 cselib_val **slot
514 = cselib_preserved_hash_table->find_slot_with_hash (&lookup,
515 v->hash, INSERT);
516 gcc_assert (!*slot);
517 *slot = v;
520 cselib_hash_table->clear_slot (x);
522 return 1;
525 /* Remove all entries from the hash table, arranging for the next
526 value to be numbered NUM. */
528 void
529 cselib_reset_table (unsigned int num)
531 unsigned int i;
533 max_value_regs = 0;
535 if (cfa_base_preserved_val)
537 unsigned int regno = cfa_base_preserved_regno;
538 unsigned int new_used_regs = 0;
539 for (i = 0; i < n_used_regs; i++)
540 if (used_regs[i] == regno)
542 new_used_regs = 1;
543 continue;
545 else
546 REG_VALUES (used_regs[i]) = 0;
547 gcc_assert (new_used_regs == 1);
548 n_used_regs = new_used_regs;
549 used_regs[0] = regno;
550 max_value_regs
551 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
553 else
555 for (i = 0; i < n_used_regs; i++)
556 REG_VALUES (used_regs[i]) = 0;
557 n_used_regs = 0;
560 if (cselib_preserve_constants)
561 cselib_hash_table->traverse <void *, preserve_constants_and_equivs>
562 (NULL);
563 else
565 cselib_hash_table->empty ();
566 gcc_checking_assert (!cselib_any_perm_equivs);
569 n_useless_values = 0;
570 n_useless_debug_values = 0;
571 n_debug_values = 0;
573 next_uid = num;
575 first_containing_mem = &dummy_val;
578 /* Return the number of the next value that will be generated. */
580 unsigned int
581 cselib_get_next_uid (void)
583 return next_uid;
586 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
587 INSERTing if requested. When X is part of the address of a MEM,
588 MEMMODE should specify the mode of the MEM. */
590 static cselib_val **
591 cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
592 enum insert_option insert, machine_mode memmode)
594 cselib_val **slot = NULL;
595 cselib_hasher::compare_type lookup = { mode, x, memmode };
596 if (cselib_preserve_constants)
597 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
598 NO_INSERT);
599 if (!slot)
600 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
601 return slot;
604 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
605 only return true for values which point to a cselib_val whose value
606 element has been set to zero, which implies the cselib_val will be
607 removed. */
610 references_value_p (const_rtx x, int only_useless)
612 const enum rtx_code code = GET_CODE (x);
613 const char *fmt = GET_RTX_FORMAT (code);
614 int i, j;
616 if (GET_CODE (x) == VALUE
617 && (! only_useless ||
618 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
619 return 1;
621 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
623 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
624 return 1;
625 else if (fmt[i] == 'E')
626 for (j = 0; j < XVECLEN (x, i); j++)
627 if (references_value_p (XVECEXP (x, i, j), only_useless))
628 return 1;
631 return 0;
634 /* For all locations found in X, delete locations that reference useless
635 values (i.e. values without any location). Called through
636 htab_traverse. */
639 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
641 cselib_val *v = *x;
642 struct elt_loc_list **p = &v->locs;
643 bool had_locs = v->locs != NULL;
644 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
646 while (*p)
648 if (references_value_p ((*p)->loc, 1))
649 unchain_one_elt_loc_list (p);
650 else
651 p = &(*p)->next;
654 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
656 if (setting_insn && DEBUG_INSN_P (setting_insn))
657 n_useless_debug_values++;
658 else
659 n_useless_values++;
660 values_became_useless = 1;
662 return 1;
665 /* If X is a value with no locations, remove it from the hashtable. */
668 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
670 cselib_val *v = *x;
672 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
674 if (cselib_discard_hook)
675 cselib_discard_hook (v);
677 CSELIB_VAL_PTR (v->val_rtx) = NULL;
678 cselib_hash_table->clear_slot (x);
679 unchain_one_value (v);
680 n_useless_values--;
683 return 1;
686 /* Clean out useless values (i.e. those which no longer have locations
687 associated with them) from the hash table. */
689 static void
690 remove_useless_values (void)
692 cselib_val **p, *v;
694 /* First pass: eliminate locations that reference the value. That in
695 turn can make more values useless. */
698 values_became_useless = 0;
699 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
701 while (values_became_useless);
703 /* Second pass: actually remove the values. */
705 p = &first_containing_mem;
706 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
707 if (v->locs && v == canonical_cselib_val (v))
709 *p = v;
710 p = &(*p)->next_containing_mem;
712 *p = &dummy_val;
714 n_useless_values += n_useless_debug_values;
715 n_debug_values -= n_useless_debug_values;
716 n_useless_debug_values = 0;
718 cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
720 gcc_assert (!n_useless_values);
723 /* Arrange for a value to not be removed from the hash table even if
724 it becomes useless. */
726 void
727 cselib_preserve_value (cselib_val *v)
729 PRESERVED_VALUE_P (v->val_rtx) = 1;
732 /* Test whether a value is preserved. */
734 bool
735 cselib_preserved_value_p (cselib_val *v)
737 return PRESERVED_VALUE_P (v->val_rtx);
740 /* Arrange for a REG value to be assumed constant through the whole function,
741 never invalidated and preserved across cselib_reset_table calls. */
743 void
744 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
746 if (cselib_preserve_constants
747 && v->locs
748 && REG_P (v->locs->loc))
750 cfa_base_preserved_val = v;
751 cfa_base_preserved_regno = regno;
755 /* Clean all non-constant expressions in the hash table, but retain
756 their values. */
758 void
759 cselib_preserve_only_values (void)
761 int i;
763 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
764 cselib_invalidate_regno (i, reg_raw_mode[i]);
766 cselib_invalidate_mem (callmem);
768 remove_useless_values ();
770 gcc_assert (first_containing_mem == &dummy_val);
773 /* Arrange for a value to be marked as based on stack pointer
774 for find_base_term purposes. */
776 void
777 cselib_set_value_sp_based (cselib_val *v)
779 SP_BASED_VALUE_P (v->val_rtx) = 1;
782 /* Test whether a value is based on stack pointer for
783 find_base_term purposes. */
785 bool
786 cselib_sp_based_value_p (cselib_val *v)
788 return SP_BASED_VALUE_P (v->val_rtx);
791 /* Return the mode in which a register was last set. If X is not a
792 register, return its mode. If the mode in which the register was
793 set is not known, or the value was already clobbered, return
794 VOIDmode. */
796 machine_mode
797 cselib_reg_set_mode (const_rtx x)
799 if (!REG_P (x))
800 return GET_MODE (x);
802 if (REG_VALUES (REGNO (x)) == NULL
803 || REG_VALUES (REGNO (x))->elt == NULL)
804 return VOIDmode;
806 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
809 /* Return nonzero if we can prove that X and Y contain the same value, taking
810 our gathered information into account. */
813 rtx_equal_for_cselib_p (rtx x, rtx y)
815 return rtx_equal_for_cselib_1 (x, y, VOIDmode);
818 /* If x is a PLUS or an autoinc operation, expand the operation,
819 storing the offset, if any, in *OFF. */
821 static rtx
822 autoinc_split (rtx x, rtx *off, machine_mode memmode)
824 switch (GET_CODE (x))
826 case PLUS:
827 *off = XEXP (x, 1);
828 return XEXP (x, 0);
830 case PRE_DEC:
831 if (memmode == VOIDmode)
832 return x;
834 *off = GEN_INT (-GET_MODE_SIZE (memmode));
835 return XEXP (x, 0);
836 break;
838 case PRE_INC:
839 if (memmode == VOIDmode)
840 return x;
842 *off = GEN_INT (GET_MODE_SIZE (memmode));
843 return XEXP (x, 0);
845 case PRE_MODIFY:
846 return XEXP (x, 1);
848 case POST_DEC:
849 case POST_INC:
850 case POST_MODIFY:
851 return XEXP (x, 0);
853 default:
854 return x;
858 /* Return nonzero if we can prove that X and Y contain the same value,
859 taking our gathered information into account. MEMMODE holds the
860 mode of the enclosing MEM, if any, as required to deal with autoinc
861 addressing modes. If X and Y are not (known to be) part of
862 addresses, MEMMODE should be VOIDmode. */
864 static int
865 rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode)
867 enum rtx_code code;
868 const char *fmt;
869 int i;
871 if (REG_P (x) || MEM_P (x))
873 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
875 if (e)
876 x = e->val_rtx;
879 if (REG_P (y) || MEM_P (y))
881 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
883 if (e)
884 y = e->val_rtx;
887 if (x == y)
888 return 1;
890 if (GET_CODE (x) == VALUE)
892 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
893 struct elt_loc_list *l;
895 if (GET_CODE (y) == VALUE)
896 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
898 for (l = e->locs; l; l = l->next)
900 rtx t = l->loc;
902 /* Avoid infinite recursion. We know we have the canonical
903 value, so we can just skip any values in the equivalence
904 list. */
905 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
906 continue;
907 else if (rtx_equal_for_cselib_1 (t, y, memmode))
908 return 1;
911 return 0;
913 else if (GET_CODE (y) == VALUE)
915 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
916 struct elt_loc_list *l;
918 for (l = e->locs; l; l = l->next)
920 rtx t = l->loc;
922 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
923 continue;
924 else if (rtx_equal_for_cselib_1 (x, t, memmode))
925 return 1;
928 return 0;
931 if (GET_MODE (x) != GET_MODE (y))
932 return 0;
934 if (GET_CODE (x) != GET_CODE (y))
936 rtx xorig = x, yorig = y;
937 rtx xoff = NULL, yoff = NULL;
939 x = autoinc_split (x, &xoff, memmode);
940 y = autoinc_split (y, &yoff, memmode);
942 if (!xoff != !yoff)
943 return 0;
945 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
946 return 0;
948 /* Don't recurse if nothing changed. */
949 if (x != xorig || y != yorig)
950 return rtx_equal_for_cselib_1 (x, y, memmode);
952 return 0;
955 /* These won't be handled correctly by the code below. */
956 switch (GET_CODE (x))
958 CASE_CONST_UNIQUE:
959 case DEBUG_EXPR:
960 return 0;
962 case DEBUG_IMPLICIT_PTR:
963 return DEBUG_IMPLICIT_PTR_DECL (x)
964 == DEBUG_IMPLICIT_PTR_DECL (y);
966 case DEBUG_PARAMETER_REF:
967 return DEBUG_PARAMETER_REF_DECL (x)
968 == DEBUG_PARAMETER_REF_DECL (y);
970 case ENTRY_VALUE:
971 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
972 use rtx_equal_for_cselib_1 to compare the operands. */
973 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
975 case LABEL_REF:
976 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
978 case MEM:
979 /* We have to compare any autoinc operations in the addresses
980 using this MEM's mode. */
981 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
983 default:
984 break;
987 code = GET_CODE (x);
988 fmt = GET_RTX_FORMAT (code);
990 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
992 int j;
994 switch (fmt[i])
996 case 'w':
997 if (XWINT (x, i) != XWINT (y, i))
998 return 0;
999 break;
1001 case 'n':
1002 case 'i':
1003 if (XINT (x, i) != XINT (y, i))
1004 return 0;
1005 break;
1007 case 'V':
1008 case 'E':
1009 /* Two vectors must have the same length. */
1010 if (XVECLEN (x, i) != XVECLEN (y, i))
1011 return 0;
1013 /* And the corresponding elements must match. */
1014 for (j = 0; j < XVECLEN (x, i); j++)
1015 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
1016 XVECEXP (y, i, j), memmode))
1017 return 0;
1018 break;
1020 case 'e':
1021 if (i == 1
1022 && targetm.commutative_p (x, UNKNOWN)
1023 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
1024 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
1025 return 1;
1026 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
1027 return 0;
1028 break;
1030 case 'S':
1031 case 's':
1032 if (strcmp (XSTR (x, i), XSTR (y, i)))
1033 return 0;
1034 break;
1036 case 'u':
1037 /* These are just backpointers, so they don't matter. */
1038 break;
1040 case '0':
1041 case 't':
1042 break;
1044 /* It is believed that rtx's at this level will never
1045 contain anything but integers and other rtx's,
1046 except for within LABEL_REFs and SYMBOL_REFs. */
1047 default:
1048 gcc_unreachable ();
1051 return 1;
1054 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1055 For registers and memory locations, we look up their cselib_val structure
1056 and return its VALUE element.
1057 Possible reasons for return 0 are: the object is volatile, or we couldn't
1058 find a register or memory location in the table and CREATE is zero. If
1059 CREATE is nonzero, table elts are created for regs and mem.
1060 N.B. this hash function returns the same hash value for RTXes that
1061 differ only in the order of operands, thus it is suitable for comparisons
1062 that take commutativity into account.
1063 If we wanted to also support associative rules, we'd have to use a different
1064 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1065 MEMMODE indicates the mode of an enclosing MEM, and it's only
1066 used to compute autoinc values.
1067 We used to have a MODE argument for hashing for CONST_INTs, but that
1068 didn't make sense, since it caused spurious hash differences between
1069 (set (reg:SI 1) (const_int))
1070 (plus:SI (reg:SI 2) (reg:SI 1))
1072 (plus:SI (reg:SI 2) (const_int))
1073 If the mode is important in any context, it must be checked specifically
1074 in a comparison anyway, since relying on hash differences is unsafe. */
1076 static unsigned int
1077 cselib_hash_rtx (rtx x, int create, machine_mode memmode)
1079 cselib_val *e;
1080 int i, j;
1081 enum rtx_code code;
1082 const char *fmt;
1083 unsigned int hash = 0;
1085 code = GET_CODE (x);
1086 hash += (unsigned) code + (unsigned) GET_MODE (x);
1088 switch (code)
1090 case VALUE:
1091 e = CSELIB_VAL_PTR (x);
1092 return e->hash;
1094 case MEM:
1095 case REG:
1096 e = cselib_lookup (x, GET_MODE (x), create, memmode);
1097 if (! e)
1098 return 0;
1100 return e->hash;
1102 case DEBUG_EXPR:
1103 hash += ((unsigned) DEBUG_EXPR << 7)
1104 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1105 return hash ? hash : (unsigned int) DEBUG_EXPR;
1107 case DEBUG_IMPLICIT_PTR:
1108 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1109 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1110 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1112 case DEBUG_PARAMETER_REF:
1113 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1114 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1115 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1117 case ENTRY_VALUE:
1118 /* ENTRY_VALUEs are function invariant, thus try to avoid
1119 recursing on argument if ENTRY_VALUE is one of the
1120 forms emitted by expand_debug_expr, otherwise
1121 ENTRY_VALUE hash would depend on the current value
1122 in some register or memory. */
1123 if (REG_P (ENTRY_VALUE_EXP (x)))
1124 hash += (unsigned int) REG
1125 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1126 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1127 else if (MEM_P (ENTRY_VALUE_EXP (x))
1128 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1129 hash += (unsigned int) MEM
1130 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1131 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1132 else
1133 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1134 return hash ? hash : (unsigned int) ENTRY_VALUE;
1136 case CONST_INT:
1137 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
1138 return hash ? hash : (unsigned int) CONST_INT;
1140 case CONST_WIDE_INT:
1141 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1142 hash += CONST_WIDE_INT_ELT (x, i);
1143 return hash;
1145 case CONST_DOUBLE:
1146 /* This is like the general case, except that it only counts
1147 the integers representing the constant. */
1148 hash += (unsigned) code + (unsigned) GET_MODE (x);
1149 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
1150 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1151 + (unsigned) CONST_DOUBLE_HIGH (x));
1152 else
1153 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1154 return hash ? hash : (unsigned int) CONST_DOUBLE;
1156 case CONST_FIXED:
1157 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1158 hash += fixed_hash (CONST_FIXED_VALUE (x));
1159 return hash ? hash : (unsigned int) CONST_FIXED;
1161 case CONST_VECTOR:
1163 int units;
1164 rtx elt;
1166 units = CONST_VECTOR_NUNITS (x);
1168 for (i = 0; i < units; ++i)
1170 elt = CONST_VECTOR_ELT (x, i);
1171 hash += cselib_hash_rtx (elt, 0, memmode);
1174 return hash;
1177 /* Assume there is only one rtx object for any given label. */
1178 case LABEL_REF:
1179 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1180 differences and differences between each stage's debugging dumps. */
1181 hash += (((unsigned int) LABEL_REF << 7)
1182 + CODE_LABEL_NUMBER (LABEL_REF_LABEL (x)));
1183 return hash ? hash : (unsigned int) LABEL_REF;
1185 case SYMBOL_REF:
1187 /* Don't hash on the symbol's address to avoid bootstrap differences.
1188 Different hash values may cause expressions to be recorded in
1189 different orders and thus different registers to be used in the
1190 final assembler. This also avoids differences in the dump files
1191 between various stages. */
1192 unsigned int h = 0;
1193 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1195 while (*p)
1196 h += (h << 7) + *p++; /* ??? revisit */
1198 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1199 return hash ? hash : (unsigned int) SYMBOL_REF;
1202 case PRE_DEC:
1203 case PRE_INC:
1204 /* We can't compute these without knowing the MEM mode. */
1205 gcc_assert (memmode != VOIDmode);
1206 i = GET_MODE_SIZE (memmode);
1207 if (code == PRE_DEC)
1208 i = -i;
1209 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1210 like (mem:MEMMODE (plus (reg) (const_int I))). */
1211 hash += (unsigned) PLUS - (unsigned)code
1212 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1213 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1214 return hash ? hash : 1 + (unsigned) PLUS;
1216 case PRE_MODIFY:
1217 gcc_assert (memmode != VOIDmode);
1218 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1220 case POST_DEC:
1221 case POST_INC:
1222 case POST_MODIFY:
1223 gcc_assert (memmode != VOIDmode);
1224 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1226 case PC:
1227 case CC0:
1228 case CALL:
1229 case UNSPEC_VOLATILE:
1230 return 0;
1232 case ASM_OPERANDS:
1233 if (MEM_VOLATILE_P (x))
1234 return 0;
1236 break;
1238 default:
1239 break;
1242 i = GET_RTX_LENGTH (code) - 1;
1243 fmt = GET_RTX_FORMAT (code);
1244 for (; i >= 0; i--)
1246 switch (fmt[i])
1248 case 'e':
1250 rtx tem = XEXP (x, i);
1251 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1253 if (tem_hash == 0)
1254 return 0;
1256 hash += tem_hash;
1258 break;
1259 case 'E':
1260 for (j = 0; j < XVECLEN (x, i); j++)
1262 unsigned int tem_hash
1263 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1265 if (tem_hash == 0)
1266 return 0;
1268 hash += tem_hash;
1270 break;
1272 case 's':
1274 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1276 if (p)
1277 while (*p)
1278 hash += *p++;
1279 break;
1282 case 'i':
1283 hash += XINT (x, i);
1284 break;
1286 case '0':
1287 case 't':
1288 /* unused */
1289 break;
1291 default:
1292 gcc_unreachable ();
1296 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1299 /* Create a new value structure for VALUE and initialize it. The mode of the
1300 value is MODE. */
1302 static inline cselib_val *
1303 new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
1305 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
1307 gcc_assert (hash);
1308 gcc_assert (next_uid);
1310 e->hash = hash;
1311 e->uid = next_uid++;
1312 /* We use an alloc pool to allocate this RTL construct because it
1313 accounts for about 8% of the overall memory usage. We know
1314 precisely when we can have VALUE RTXen (when cselib is active)
1315 so we don't need to put them in garbage collected memory.
1316 ??? Why should a VALUE be an RTX in the first place? */
1317 e->val_rtx = (rtx) pool_alloc (value_pool);
1318 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1319 PUT_CODE (e->val_rtx, VALUE);
1320 PUT_MODE (e->val_rtx, mode);
1321 CSELIB_VAL_PTR (e->val_rtx) = e;
1322 e->addr_list = 0;
1323 e->locs = 0;
1324 e->next_containing_mem = 0;
1326 if (dump_file && (dump_flags & TDF_CSELIB))
1328 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1329 if (flag_dump_noaddr || flag_dump_unnumbered)
1330 fputs ("# ", dump_file);
1331 else
1332 fprintf (dump_file, "%p ", (void*)e);
1333 print_rtl_single (dump_file, x);
1334 fputc ('\n', dump_file);
1337 return e;
1340 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1341 contains the data at this address. X is a MEM that represents the
1342 value. Update the two value structures to represent this situation. */
1344 static void
1345 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1347 struct elt_loc_list *l;
1349 addr_elt = canonical_cselib_val (addr_elt);
1350 mem_elt = canonical_cselib_val (mem_elt);
1352 /* Avoid duplicates. */
1353 for (l = mem_elt->locs; l; l = l->next)
1354 if (MEM_P (l->loc)
1355 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1357 promote_debug_loc (l);
1358 return;
1361 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1362 new_elt_loc_list (mem_elt,
1363 replace_equiv_address_nv (x, addr_elt->val_rtx));
1364 if (mem_elt->next_containing_mem == NULL)
1366 mem_elt->next_containing_mem = first_containing_mem;
1367 first_containing_mem = mem_elt;
1371 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1372 If CREATE, make a new one if we haven't seen it before. */
1374 static cselib_val *
1375 cselib_lookup_mem (rtx x, int create)
1377 machine_mode mode = GET_MODE (x);
1378 machine_mode addr_mode;
1379 cselib_val **slot;
1380 cselib_val *addr;
1381 cselib_val *mem_elt;
1382 struct elt_list *l;
1384 if (MEM_VOLATILE_P (x) || mode == BLKmode
1385 || !cselib_record_memory
1386 || (FLOAT_MODE_P (mode) && flag_float_store))
1387 return 0;
1389 addr_mode = GET_MODE (XEXP (x, 0));
1390 if (addr_mode == VOIDmode)
1391 addr_mode = Pmode;
1393 /* Look up the value for the address. */
1394 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1395 if (! addr)
1396 return 0;
1398 addr = canonical_cselib_val (addr);
1399 /* Find a value that describes a value of our mode at that address. */
1400 for (l = addr->addr_list; l; l = l->next)
1401 if (GET_MODE (l->elt->val_rtx) == mode)
1403 promote_debug_loc (l->elt->locs);
1404 return l->elt;
1407 if (! create)
1408 return 0;
1410 mem_elt = new_cselib_val (next_uid, mode, x);
1411 add_mem_for_addr (addr, mem_elt, x);
1412 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
1413 *slot = mem_elt;
1414 return mem_elt;
1417 /* Search through the possible substitutions in P. We prefer a non reg
1418 substitution because this allows us to expand the tree further. If
1419 we find, just a reg, take the lowest regno. There may be several
1420 non-reg results, we just take the first one because they will all
1421 expand to the same place. */
1423 static rtx
1424 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1425 int max_depth)
1427 rtx reg_result = NULL;
1428 unsigned int regno = UINT_MAX;
1429 struct elt_loc_list *p_in = p;
1431 for (; p; p = p->next)
1433 /* Return these right away to avoid returning stack pointer based
1434 expressions for frame pointer and vice versa, which is something
1435 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1436 for more details. */
1437 if (REG_P (p->loc)
1438 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1439 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1440 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1441 || REGNO (p->loc) == cfa_base_preserved_regno))
1442 return p->loc;
1443 /* Avoid infinite recursion trying to expand a reg into a
1444 the same reg. */
1445 if ((REG_P (p->loc))
1446 && (REGNO (p->loc) < regno)
1447 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1449 reg_result = p->loc;
1450 regno = REGNO (p->loc);
1452 /* Avoid infinite recursion and do not try to expand the
1453 value. */
1454 else if (GET_CODE (p->loc) == VALUE
1455 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1456 continue;
1457 else if (!REG_P (p->loc))
1459 rtx result, note;
1460 if (dump_file && (dump_flags & TDF_CSELIB))
1462 print_inline_rtx (dump_file, p->loc, 0);
1463 fprintf (dump_file, "\n");
1465 if (GET_CODE (p->loc) == LO_SUM
1466 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1467 && p->setting_insn
1468 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1469 && XEXP (note, 0) == XEXP (p->loc, 1))
1470 return XEXP (p->loc, 1);
1471 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1472 if (result)
1473 return result;
1478 if (regno != UINT_MAX)
1480 rtx result;
1481 if (dump_file && (dump_flags & TDF_CSELIB))
1482 fprintf (dump_file, "r%d\n", regno);
1484 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1485 if (result)
1486 return result;
1489 if (dump_file && (dump_flags & TDF_CSELIB))
1491 if (reg_result)
1493 print_inline_rtx (dump_file, reg_result, 0);
1494 fprintf (dump_file, "\n");
1496 else
1497 fprintf (dump_file, "NULL\n");
1499 return reg_result;
1503 /* Forward substitute and expand an expression out to its roots.
1504 This is the opposite of common subexpression. Because local value
1505 numbering is such a weak optimization, the expanded expression is
1506 pretty much unique (not from a pointer equals point of view but
1507 from a tree shape point of view.
1509 This function returns NULL if the expansion fails. The expansion
1510 will fail if there is no value number for one of the operands or if
1511 one of the operands has been overwritten between the current insn
1512 and the beginning of the basic block. For instance x has no
1513 expansion in:
1515 r1 <- r1 + 3
1516 x <- r1 + 8
1518 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1519 It is clear on return. */
1522 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1524 struct expand_value_data evd;
1526 evd.regs_active = regs_active;
1527 evd.callback = NULL;
1528 evd.callback_arg = NULL;
1529 evd.dummy = false;
1531 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1534 /* Same as cselib_expand_value_rtx, but using a callback to try to
1535 resolve some expressions. The CB function should return ORIG if it
1536 can't or does not want to deal with a certain RTX. Any other
1537 return value, including NULL, will be used as the expansion for
1538 VALUE, without any further changes. */
1541 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1542 cselib_expand_callback cb, void *data)
1544 struct expand_value_data evd;
1546 evd.regs_active = regs_active;
1547 evd.callback = cb;
1548 evd.callback_arg = data;
1549 evd.dummy = false;
1551 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1554 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1555 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1556 would return NULL or non-NULL, without allocating new rtx. */
1558 bool
1559 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1560 cselib_expand_callback cb, void *data)
1562 struct expand_value_data evd;
1564 evd.regs_active = regs_active;
1565 evd.callback = cb;
1566 evd.callback_arg = data;
1567 evd.dummy = true;
1569 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1572 /* Internal implementation of cselib_expand_value_rtx and
1573 cselib_expand_value_rtx_cb. */
1575 static rtx
1576 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1577 int max_depth)
1579 rtx copy, scopy;
1580 int i, j;
1581 RTX_CODE code;
1582 const char *format_ptr;
1583 machine_mode mode;
1585 code = GET_CODE (orig);
1587 /* For the context of dse, if we end up expand into a huge tree, we
1588 will not have a useful address, so we might as well just give up
1589 quickly. */
1590 if (max_depth <= 0)
1591 return NULL;
1593 switch (code)
1595 case REG:
1597 struct elt_list *l = REG_VALUES (REGNO (orig));
1599 if (l && l->elt == NULL)
1600 l = l->next;
1601 for (; l; l = l->next)
1602 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1604 rtx result;
1605 unsigned regno = REGNO (orig);
1607 /* The only thing that we are not willing to do (this
1608 is requirement of dse and if others potential uses
1609 need this function we should add a parm to control
1610 it) is that we will not substitute the
1611 STACK_POINTER_REGNUM, FRAME_POINTER or the
1612 HARD_FRAME_POINTER.
1614 These expansions confuses the code that notices that
1615 stores into the frame go dead at the end of the
1616 function and that the frame is not effected by calls
1617 to subroutines. If you allow the
1618 STACK_POINTER_REGNUM substitution, then dse will
1619 think that parameter pushing also goes dead which is
1620 wrong. If you allow the FRAME_POINTER or the
1621 HARD_FRAME_POINTER then you lose the opportunity to
1622 make the frame assumptions. */
1623 if (regno == STACK_POINTER_REGNUM
1624 || regno == FRAME_POINTER_REGNUM
1625 || regno == HARD_FRAME_POINTER_REGNUM
1626 || regno == cfa_base_preserved_regno)
1627 return orig;
1629 bitmap_set_bit (evd->regs_active, regno);
1631 if (dump_file && (dump_flags & TDF_CSELIB))
1632 fprintf (dump_file, "expanding: r%d into: ", regno);
1634 result = expand_loc (l->elt->locs, evd, max_depth);
1635 bitmap_clear_bit (evd->regs_active, regno);
1637 if (result)
1638 return result;
1639 else
1640 return orig;
1644 CASE_CONST_ANY:
1645 case SYMBOL_REF:
1646 case CODE_LABEL:
1647 case PC:
1648 case CC0:
1649 case SCRATCH:
1650 /* SCRATCH must be shared because they represent distinct values. */
1651 return orig;
1652 case CLOBBER:
1653 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1654 return orig;
1655 break;
1657 case CONST:
1658 if (shared_const_p (orig))
1659 return orig;
1660 break;
1662 case SUBREG:
1664 rtx subreg;
1666 if (evd->callback)
1668 subreg = evd->callback (orig, evd->regs_active, max_depth,
1669 evd->callback_arg);
1670 if (subreg != orig)
1671 return subreg;
1674 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1675 max_depth - 1);
1676 if (!subreg)
1677 return NULL;
1678 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1679 GET_MODE (SUBREG_REG (orig)),
1680 SUBREG_BYTE (orig));
1681 if (scopy == NULL
1682 || (GET_CODE (scopy) == SUBREG
1683 && !REG_P (SUBREG_REG (scopy))
1684 && !MEM_P (SUBREG_REG (scopy))))
1685 return NULL;
1687 return scopy;
1690 case VALUE:
1692 rtx result;
1694 if (dump_file && (dump_flags & TDF_CSELIB))
1696 fputs ("\nexpanding ", dump_file);
1697 print_rtl_single (dump_file, orig);
1698 fputs (" into...", dump_file);
1701 if (evd->callback)
1703 result = evd->callback (orig, evd->regs_active, max_depth,
1704 evd->callback_arg);
1706 if (result != orig)
1707 return result;
1710 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1711 return result;
1714 case DEBUG_EXPR:
1715 if (evd->callback)
1716 return evd->callback (orig, evd->regs_active, max_depth,
1717 evd->callback_arg);
1718 return orig;
1720 default:
1721 break;
1724 /* Copy the various flags, fields, and other information. We assume
1725 that all fields need copying, and then clear the fields that should
1726 not be copied. That is the sensible default behavior, and forces
1727 us to explicitly document why we are *not* copying a flag. */
1728 if (evd->dummy)
1729 copy = NULL;
1730 else
1731 copy = shallow_copy_rtx (orig);
1733 format_ptr = GET_RTX_FORMAT (code);
1735 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1736 switch (*format_ptr++)
1738 case 'e':
1739 if (XEXP (orig, i) != NULL)
1741 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1742 max_depth - 1);
1743 if (!result)
1744 return NULL;
1745 if (copy)
1746 XEXP (copy, i) = result;
1748 break;
1750 case 'E':
1751 case 'V':
1752 if (XVEC (orig, i) != NULL)
1754 if (copy)
1755 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1756 for (j = 0; j < XVECLEN (orig, i); j++)
1758 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1759 evd, max_depth - 1);
1760 if (!result)
1761 return NULL;
1762 if (copy)
1763 XVECEXP (copy, i, j) = result;
1766 break;
1768 case 't':
1769 case 'w':
1770 case 'i':
1771 case 's':
1772 case 'S':
1773 case 'T':
1774 case 'u':
1775 case 'B':
1776 case '0':
1777 /* These are left unchanged. */
1778 break;
1780 default:
1781 gcc_unreachable ();
1784 if (evd->dummy)
1785 return orig;
1787 mode = GET_MODE (copy);
1788 /* If an operand has been simplified into CONST_INT, which doesn't
1789 have a mode and the mode isn't derivable from whole rtx's mode,
1790 try simplify_*_operation first with mode from original's operand
1791 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1792 scopy = copy;
1793 switch (GET_RTX_CLASS (code))
1795 case RTX_UNARY:
1796 if (CONST_INT_P (XEXP (copy, 0))
1797 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1799 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1800 GET_MODE (XEXP (orig, 0)));
1801 if (scopy)
1802 return scopy;
1804 break;
1805 case RTX_COMM_ARITH:
1806 case RTX_BIN_ARITH:
1807 /* These expressions can derive operand modes from the whole rtx's mode. */
1808 break;
1809 case RTX_TERNARY:
1810 case RTX_BITFIELD_OPS:
1811 if (CONST_INT_P (XEXP (copy, 0))
1812 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1814 scopy = simplify_ternary_operation (code, mode,
1815 GET_MODE (XEXP (orig, 0)),
1816 XEXP (copy, 0), XEXP (copy, 1),
1817 XEXP (copy, 2));
1818 if (scopy)
1819 return scopy;
1821 break;
1822 case RTX_COMPARE:
1823 case RTX_COMM_COMPARE:
1824 if (CONST_INT_P (XEXP (copy, 0))
1825 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1826 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1827 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1829 scopy = simplify_relational_operation (code, mode,
1830 (GET_MODE (XEXP (orig, 0))
1831 != VOIDmode)
1832 ? GET_MODE (XEXP (orig, 0))
1833 : GET_MODE (XEXP (orig, 1)),
1834 XEXP (copy, 0),
1835 XEXP (copy, 1));
1836 if (scopy)
1837 return scopy;
1839 break;
1840 default:
1841 break;
1843 scopy = simplify_rtx (copy);
1844 if (scopy)
1845 return scopy;
1846 return copy;
1849 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1850 with VALUE expressions. This way, it becomes independent of changes
1851 to registers and memory.
1852 X isn't actually modified; if modifications are needed, new rtl is
1853 allocated. However, the return value can share rtl with X.
1854 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1857 cselib_subst_to_values (rtx x, machine_mode memmode)
1859 enum rtx_code code = GET_CODE (x);
1860 const char *fmt = GET_RTX_FORMAT (code);
1861 cselib_val *e;
1862 struct elt_list *l;
1863 rtx copy = x;
1864 int i;
1866 switch (code)
1868 case REG:
1869 l = REG_VALUES (REGNO (x));
1870 if (l && l->elt == NULL)
1871 l = l->next;
1872 for (; l; l = l->next)
1873 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1874 return l->elt->val_rtx;
1876 gcc_unreachable ();
1878 case MEM:
1879 e = cselib_lookup_mem (x, 0);
1880 /* This used to happen for autoincrements, but we deal with them
1881 properly now. Remove the if stmt for the next release. */
1882 if (! e)
1884 /* Assign a value that doesn't match any other. */
1885 e = new_cselib_val (next_uid, GET_MODE (x), x);
1887 return e->val_rtx;
1889 case ENTRY_VALUE:
1890 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1891 if (! e)
1892 break;
1893 return e->val_rtx;
1895 CASE_CONST_ANY:
1896 return x;
1898 case PRE_DEC:
1899 case PRE_INC:
1900 gcc_assert (memmode != VOIDmode);
1901 i = GET_MODE_SIZE (memmode);
1902 if (code == PRE_DEC)
1903 i = -i;
1904 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1905 XEXP (x, 0), i),
1906 memmode);
1908 case PRE_MODIFY:
1909 gcc_assert (memmode != VOIDmode);
1910 return cselib_subst_to_values (XEXP (x, 1), memmode);
1912 case POST_DEC:
1913 case POST_INC:
1914 case POST_MODIFY:
1915 gcc_assert (memmode != VOIDmode);
1916 return cselib_subst_to_values (XEXP (x, 0), memmode);
1918 default:
1919 break;
1922 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1924 if (fmt[i] == 'e')
1926 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1928 if (t != XEXP (x, i))
1930 if (x == copy)
1931 copy = shallow_copy_rtx (x);
1932 XEXP (copy, i) = t;
1935 else if (fmt[i] == 'E')
1937 int j;
1939 for (j = 0; j < XVECLEN (x, i); j++)
1941 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1943 if (t != XVECEXP (x, i, j))
1945 if (XVEC (x, i) == XVEC (copy, i))
1947 if (x == copy)
1948 copy = shallow_copy_rtx (x);
1949 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1951 XVECEXP (copy, i, j) = t;
1957 return copy;
1960 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1963 cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
1965 rtx ret;
1966 gcc_assert (!cselib_current_insn);
1967 cselib_current_insn = insn;
1968 ret = cselib_subst_to_values (x, memmode);
1969 cselib_current_insn = NULL;
1970 return ret;
1973 /* Look up the rtl expression X in our tables and return the value it
1974 has. If CREATE is zero, we return NULL if we don't know the value.
1975 Otherwise, we create a new one if possible, using mode MODE if X
1976 doesn't have a mode (i.e. because it's a constant). When X is part
1977 of an address, MEMMODE should be the mode of the enclosing MEM if
1978 we're tracking autoinc expressions. */
1980 static cselib_val *
1981 cselib_lookup_1 (rtx x, machine_mode mode,
1982 int create, machine_mode memmode)
1984 cselib_val **slot;
1985 cselib_val *e;
1986 unsigned int hashval;
1988 if (GET_MODE (x) != VOIDmode)
1989 mode = GET_MODE (x);
1991 if (GET_CODE (x) == VALUE)
1992 return CSELIB_VAL_PTR (x);
1994 if (REG_P (x))
1996 struct elt_list *l;
1997 unsigned int i = REGNO (x);
1999 l = REG_VALUES (i);
2000 if (l && l->elt == NULL)
2001 l = l->next;
2002 for (; l; l = l->next)
2003 if (mode == GET_MODE (l->elt->val_rtx))
2005 promote_debug_loc (l->elt->locs);
2006 return l->elt;
2009 if (! create)
2010 return 0;
2012 if (i < FIRST_PSEUDO_REGISTER)
2014 unsigned int n = hard_regno_nregs[i][mode];
2016 if (n > max_value_regs)
2017 max_value_regs = n;
2020 e = new_cselib_val (next_uid, GET_MODE (x), x);
2021 new_elt_loc_list (e, x);
2022 if (REG_VALUES (i) == 0)
2024 /* Maintain the invariant that the first entry of
2025 REG_VALUES, if present, must be the value used to set the
2026 register, or NULL. */
2027 used_regs[n_used_regs++] = i;
2028 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2030 else if (cselib_preserve_constants
2031 && GET_MODE_CLASS (mode) == MODE_INT)
2033 /* During var-tracking, try harder to find equivalences
2034 for SUBREGs. If a setter sets say a DImode register
2035 and user uses that register only in SImode, add a lowpart
2036 subreg location. */
2037 struct elt_list *lwider = NULL;
2038 l = REG_VALUES (i);
2039 if (l && l->elt == NULL)
2040 l = l->next;
2041 for (; l; l = l->next)
2042 if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT
2043 && GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
2044 > GET_MODE_SIZE (mode)
2045 && (lwider == NULL
2046 || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
2047 < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
2049 struct elt_loc_list *el;
2050 if (i < FIRST_PSEUDO_REGISTER
2051 && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1)
2052 continue;
2053 for (el = l->elt->locs; el; el = el->next)
2054 if (!REG_P (el->loc))
2055 break;
2056 if (el)
2057 lwider = l;
2059 if (lwider)
2061 rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx,
2062 GET_MODE (lwider->elt->val_rtx));
2063 if (sub)
2064 new_elt_loc_list (e, sub);
2067 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2068 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
2069 *slot = e;
2070 return e;
2073 if (MEM_P (x))
2074 return cselib_lookup_mem (x, create);
2076 hashval = cselib_hash_rtx (x, create, memmode);
2077 /* Can't even create if hashing is not possible. */
2078 if (! hashval)
2079 return 0;
2081 slot = cselib_find_slot (mode, x, hashval,
2082 create ? INSERT : NO_INSERT, memmode);
2083 if (slot == 0)
2084 return 0;
2086 e = (cselib_val *) *slot;
2087 if (e)
2088 return e;
2090 e = new_cselib_val (hashval, mode, x);
2092 /* We have to fill the slot before calling cselib_subst_to_values:
2093 the hash table is inconsistent until we do so, and
2094 cselib_subst_to_values will need to do lookups. */
2095 *slot = e;
2096 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
2097 return e;
2100 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2102 cselib_val *
2103 cselib_lookup_from_insn (rtx x, machine_mode mode,
2104 int create, machine_mode memmode, rtx_insn *insn)
2106 cselib_val *ret;
2108 gcc_assert (!cselib_current_insn);
2109 cselib_current_insn = insn;
2111 ret = cselib_lookup (x, mode, create, memmode);
2113 cselib_current_insn = NULL;
2115 return ret;
2118 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2119 maintains invariants related with debug insns. */
2121 cselib_val *
2122 cselib_lookup (rtx x, machine_mode mode,
2123 int create, machine_mode memmode)
2125 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2127 /* ??? Should we return NULL if we're not to create an entry, the
2128 found loc is a debug loc and cselib_current_insn is not DEBUG?
2129 If so, we should also avoid converting val to non-DEBUG; probably
2130 easiest setting cselib_current_insn to NULL before the call
2131 above. */
2133 if (dump_file && (dump_flags & TDF_CSELIB))
2135 fputs ("cselib lookup ", dump_file);
2136 print_inline_rtx (dump_file, x, 2);
2137 fprintf (dump_file, " => %u:%u\n",
2138 ret ? ret->uid : 0,
2139 ret ? ret->hash : 0);
2142 return ret;
2145 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2146 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2147 is used to determine how many hard registers are being changed. If MODE
2148 is VOIDmode, then only REGNO is being changed; this is used when
2149 invalidating call clobbered registers across a call. */
2151 static void
2152 cselib_invalidate_regno (unsigned int regno, machine_mode mode)
2154 unsigned int endregno;
2155 unsigned int i;
2157 /* If we see pseudos after reload, something is _wrong_. */
2158 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2159 || reg_renumber[regno] < 0);
2161 /* Determine the range of registers that must be invalidated. For
2162 pseudos, only REGNO is affected. For hard regs, we must take MODE
2163 into account, and we must also invalidate lower register numbers
2164 if they contain values that overlap REGNO. */
2165 if (regno < FIRST_PSEUDO_REGISTER)
2167 gcc_assert (mode != VOIDmode);
2169 if (regno < max_value_regs)
2170 i = 0;
2171 else
2172 i = regno - max_value_regs;
2174 endregno = end_hard_regno (mode, regno);
2176 else
2178 i = regno;
2179 endregno = regno + 1;
2182 for (; i < endregno; i++)
2184 struct elt_list **l = &REG_VALUES (i);
2186 /* Go through all known values for this reg; if it overlaps the range
2187 we're invalidating, remove the value. */
2188 while (*l)
2190 cselib_val *v = (*l)->elt;
2191 bool had_locs;
2192 rtx setting_insn;
2193 struct elt_loc_list **p;
2194 unsigned int this_last = i;
2196 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2197 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2199 if (this_last < regno || v == NULL
2200 || (v == cfa_base_preserved_val
2201 && i == cfa_base_preserved_regno))
2203 l = &(*l)->next;
2204 continue;
2207 /* We have an overlap. */
2208 if (*l == REG_VALUES (i))
2210 /* Maintain the invariant that the first entry of
2211 REG_VALUES, if present, must be the value used to set
2212 the register, or NULL. This is also nice because
2213 then we won't push the same regno onto user_regs
2214 multiple times. */
2215 (*l)->elt = NULL;
2216 l = &(*l)->next;
2218 else
2219 unchain_one_elt_list (l);
2221 v = canonical_cselib_val (v);
2223 had_locs = v->locs != NULL;
2224 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2226 /* Now, we clear the mapping from value to reg. It must exist, so
2227 this code will crash intentionally if it doesn't. */
2228 for (p = &v->locs; ; p = &(*p)->next)
2230 rtx x = (*p)->loc;
2232 if (REG_P (x) && REGNO (x) == i)
2234 unchain_one_elt_loc_list (p);
2235 break;
2239 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2241 if (setting_insn && DEBUG_INSN_P (setting_insn))
2242 n_useless_debug_values++;
2243 else
2244 n_useless_values++;
2250 /* Invalidate any locations in the table which are changed because of a
2251 store to MEM_RTX. If this is called because of a non-const call
2252 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2254 static void
2255 cselib_invalidate_mem (rtx mem_rtx)
2257 cselib_val **vp, *v, *next;
2258 int num_mems = 0;
2259 rtx mem_addr;
2261 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2262 mem_rtx = canon_rtx (mem_rtx);
2264 vp = &first_containing_mem;
2265 for (v = *vp; v != &dummy_val; v = next)
2267 bool has_mem = false;
2268 struct elt_loc_list **p = &v->locs;
2269 bool had_locs = v->locs != NULL;
2270 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
2272 while (*p)
2274 rtx x = (*p)->loc;
2275 cselib_val *addr;
2276 struct elt_list **mem_chain;
2278 /* MEMs may occur in locations only at the top level; below
2279 that every MEM or REG is substituted by its VALUE. */
2280 if (!MEM_P (x))
2282 p = &(*p)->next;
2283 continue;
2285 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2286 && ! canon_anti_dependence (x, false, mem_rtx,
2287 GET_MODE (mem_rtx), mem_addr))
2289 has_mem = true;
2290 num_mems++;
2291 p = &(*p)->next;
2292 continue;
2295 /* This one overlaps. */
2296 /* We must have a mapping from this MEM's address to the
2297 value (E). Remove that, too. */
2298 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2299 addr = canonical_cselib_val (addr);
2300 gcc_checking_assert (v == canonical_cselib_val (v));
2301 mem_chain = &addr->addr_list;
2302 for (;;)
2304 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2306 if (canon == v)
2308 unchain_one_elt_list (mem_chain);
2309 break;
2312 /* Record canonicalized elt. */
2313 (*mem_chain)->elt = canon;
2315 mem_chain = &(*mem_chain)->next;
2318 unchain_one_elt_loc_list (p);
2321 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2323 if (setting_insn && DEBUG_INSN_P (setting_insn))
2324 n_useless_debug_values++;
2325 else
2326 n_useless_values++;
2329 next = v->next_containing_mem;
2330 if (has_mem)
2332 *vp = v;
2333 vp = &(*vp)->next_containing_mem;
2335 else
2336 v->next_containing_mem = NULL;
2338 *vp = &dummy_val;
2341 /* Invalidate DEST, which is being assigned to or clobbered. */
2343 void
2344 cselib_invalidate_rtx (rtx dest)
2346 while (GET_CODE (dest) == SUBREG
2347 || GET_CODE (dest) == ZERO_EXTRACT
2348 || GET_CODE (dest) == STRICT_LOW_PART)
2349 dest = XEXP (dest, 0);
2351 if (REG_P (dest))
2352 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2353 else if (MEM_P (dest))
2354 cselib_invalidate_mem (dest);
2357 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2359 static void
2360 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
2361 void *data ATTRIBUTE_UNUSED)
2363 cselib_invalidate_rtx (dest);
2366 /* Record the result of a SET instruction. DEST is being set; the source
2367 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2368 describes its address. */
2370 static void
2371 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2373 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
2375 if (src_elt == 0 || side_effects_p (dest))
2376 return;
2378 if (dreg >= 0)
2380 if (dreg < FIRST_PSEUDO_REGISTER)
2382 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
2384 if (n > max_value_regs)
2385 max_value_regs = n;
2388 if (REG_VALUES (dreg) == 0)
2390 used_regs[n_used_regs++] = dreg;
2391 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2393 else
2395 /* The register should have been invalidated. */
2396 gcc_assert (REG_VALUES (dreg)->elt == 0);
2397 REG_VALUES (dreg)->elt = src_elt;
2400 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2401 n_useless_values--;
2402 new_elt_loc_list (src_elt, dest);
2404 else if (MEM_P (dest) && dest_addr_elt != 0
2405 && cselib_record_memory)
2407 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2408 n_useless_values--;
2409 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2413 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2415 void
2416 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
2418 cselib_val *nelt;
2419 rtx_insn *save_cselib_current_insn = cselib_current_insn;
2421 gcc_checking_assert (elt);
2422 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2423 gcc_checking_assert (!side_effects_p (x));
2425 cselib_current_insn = insn;
2427 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2429 if (nelt != elt)
2431 cselib_any_perm_equivs = true;
2433 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2434 cselib_preserve_value (nelt);
2436 new_elt_loc_list (nelt, elt->val_rtx);
2439 cselib_current_insn = save_cselib_current_insn;
2442 /* Return TRUE if any permanent equivalences have been recorded since
2443 the table was last initialized. */
2444 bool
2445 cselib_have_permanent_equivalences (void)
2447 return cselib_any_perm_equivs;
2450 /* There is no good way to determine how many elements there can be
2451 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2452 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2454 struct cselib_record_autoinc_data
2456 struct cselib_set *sets;
2457 int n_sets;
2460 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2461 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2463 static int
2464 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2465 rtx dest, rtx src, rtx srcoff, void *arg)
2467 struct cselib_record_autoinc_data *data;
2468 data = (struct cselib_record_autoinc_data *)arg;
2470 data->sets[data->n_sets].dest = dest;
2472 if (srcoff)
2473 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2474 else
2475 data->sets[data->n_sets].src = src;
2477 data->n_sets++;
2479 return 0;
2482 /* Record the effects of any sets and autoincs in INSN. */
2483 static void
2484 cselib_record_sets (rtx_insn *insn)
2486 int n_sets = 0;
2487 int i;
2488 struct cselib_set sets[MAX_SETS];
2489 rtx body = PATTERN (insn);
2490 rtx cond = 0;
2491 int n_sets_before_autoinc;
2492 struct cselib_record_autoinc_data data;
2494 body = PATTERN (insn);
2495 if (GET_CODE (body) == COND_EXEC)
2497 cond = COND_EXEC_TEST (body);
2498 body = COND_EXEC_CODE (body);
2501 /* Find all sets. */
2502 if (GET_CODE (body) == SET)
2504 sets[0].src = SET_SRC (body);
2505 sets[0].dest = SET_DEST (body);
2506 n_sets = 1;
2508 else if (GET_CODE (body) == PARALLEL)
2510 /* Look through the PARALLEL and record the values being
2511 set, if possible. Also handle any CLOBBERs. */
2512 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2514 rtx x = XVECEXP (body, 0, i);
2516 if (GET_CODE (x) == SET)
2518 sets[n_sets].src = SET_SRC (x);
2519 sets[n_sets].dest = SET_DEST (x);
2520 n_sets++;
2525 if (n_sets == 1
2526 && MEM_P (sets[0].src)
2527 && !cselib_record_memory
2528 && MEM_READONLY_P (sets[0].src))
2530 rtx note = find_reg_equal_equiv_note (insn);
2532 if (note && CONSTANT_P (XEXP (note, 0)))
2533 sets[0].src = XEXP (note, 0);
2536 data.sets = sets;
2537 data.n_sets = n_sets_before_autoinc = n_sets;
2538 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
2539 n_sets = data.n_sets;
2541 /* Look up the values that are read. Do this before invalidating the
2542 locations that are written. */
2543 for (i = 0; i < n_sets; i++)
2545 rtx dest = sets[i].dest;
2547 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2548 the low part after invalidating any knowledge about larger modes. */
2549 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2550 sets[i].dest = dest = XEXP (dest, 0);
2552 /* We don't know how to record anything but REG or MEM. */
2553 if (REG_P (dest)
2554 || (MEM_P (dest) && cselib_record_memory))
2556 rtx src = sets[i].src;
2557 if (cond)
2558 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2559 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2560 if (MEM_P (dest))
2562 machine_mode address_mode = get_address_mode (dest);
2564 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2565 address_mode, 1,
2566 GET_MODE (dest));
2568 else
2569 sets[i].dest_addr_elt = 0;
2573 if (cselib_record_sets_hook)
2574 cselib_record_sets_hook (insn, sets, n_sets);
2576 /* Invalidate all locations written by this insn. Note that the elts we
2577 looked up in the previous loop aren't affected, just some of their
2578 locations may go away. */
2579 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2581 for (i = n_sets_before_autoinc; i < n_sets; i++)
2582 cselib_invalidate_rtx (sets[i].dest);
2584 /* If this is an asm, look for duplicate sets. This can happen when the
2585 user uses the same value as an output multiple times. This is valid
2586 if the outputs are not actually used thereafter. Treat this case as
2587 if the value isn't actually set. We do this by smashing the destination
2588 to pc_rtx, so that we won't record the value later. */
2589 if (n_sets >= 2 && asm_noperands (body) >= 0)
2591 for (i = 0; i < n_sets; i++)
2593 rtx dest = sets[i].dest;
2594 if (REG_P (dest) || MEM_P (dest))
2596 int j;
2597 for (j = i + 1; j < n_sets; j++)
2598 if (rtx_equal_p (dest, sets[j].dest))
2600 sets[i].dest = pc_rtx;
2601 sets[j].dest = pc_rtx;
2607 /* Now enter the equivalences in our tables. */
2608 for (i = 0; i < n_sets; i++)
2610 rtx dest = sets[i].dest;
2611 if (REG_P (dest)
2612 || (MEM_P (dest) && cselib_record_memory))
2613 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2617 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2619 bool
2620 fp_setter_insn (rtx insn)
2622 rtx expr, pat = NULL_RTX;
2624 if (!RTX_FRAME_RELATED_P (insn))
2625 return false;
2627 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2628 if (expr)
2629 pat = XEXP (expr, 0);
2630 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2631 return false;
2633 /* Don't return true for frame pointer restores in the epilogue. */
2634 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2635 return false;
2636 return true;
2639 /* Record the effects of INSN. */
2641 void
2642 cselib_process_insn (rtx_insn *insn)
2644 int i;
2645 rtx x;
2647 cselib_current_insn = insn;
2649 /* Forget everything at a CODE_LABEL or a setjmp. */
2650 if ((LABEL_P (insn)
2651 || (CALL_P (insn)
2652 && find_reg_note (insn, REG_SETJMP, NULL)))
2653 && !cselib_preserve_constants)
2655 cselib_reset_table (next_uid);
2656 cselib_current_insn = NULL;
2657 return;
2660 if (! INSN_P (insn))
2662 cselib_current_insn = NULL;
2663 return;
2666 /* If this is a call instruction, forget anything stored in a
2667 call clobbered register, or, if this is not a const call, in
2668 memory. */
2669 if (CALL_P (insn))
2671 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2672 if (call_used_regs[i]
2673 || (REG_VALUES (i) && REG_VALUES (i)->elt
2674 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2675 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2676 cselib_invalidate_regno (i, reg_raw_mode[i]);
2678 /* Since it is not clear how cselib is going to be used, be
2679 conservative here and treat looping pure or const functions
2680 as if they were regular functions. */
2681 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2682 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2683 cselib_invalidate_mem (callmem);
2686 cselib_record_sets (insn);
2688 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2689 after we have processed the insn. */
2690 if (CALL_P (insn))
2692 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2693 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2694 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2695 /* Flush evertything on setjmp. */
2696 if (cselib_preserve_constants
2697 && find_reg_note (insn, REG_SETJMP, NULL))
2699 cselib_preserve_only_values ();
2700 cselib_reset_table (next_uid);
2704 /* On setter of the hard frame pointer if frame_pointer_needed,
2705 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2706 VALUEs are distinct. */
2707 if (reload_completed
2708 && frame_pointer_needed
2709 && fp_setter_insn (insn))
2710 cselib_invalidate_rtx (stack_pointer_rtx);
2712 cselib_current_insn = NULL;
2714 if (n_useless_values > MAX_USELESS_VALUES
2715 /* remove_useless_values is linear in the hash table size. Avoid
2716 quadratic behavior for very large hashtables with very few
2717 useless elements. */
2718 && ((unsigned int)n_useless_values
2719 > (cselib_hash_table->elements () - n_debug_values) / 4))
2720 remove_useless_values ();
2723 /* Initialize cselib for one pass. The caller must also call
2724 init_alias_analysis. */
2726 void
2727 cselib_init (int record_what)
2729 elt_list_pool = create_alloc_pool ("elt_list",
2730 sizeof (struct elt_list), 10);
2731 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2732 sizeof (struct elt_loc_list), 10);
2733 cselib_val_pool = create_alloc_pool ("cselib_val_list",
2734 sizeof (cselib_val), 10);
2735 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2736 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2737 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2738 cselib_any_perm_equivs = false;
2740 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2741 see canon_true_dependence. This is only created once. */
2742 if (! callmem)
2743 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2745 cselib_nregs = max_reg_num ();
2747 /* We preserve reg_values to allow expensive clearing of the whole thing.
2748 Reallocate it however if it happens to be too large. */
2749 if (!reg_values || reg_values_size < cselib_nregs
2750 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2752 free (reg_values);
2753 /* Some space for newly emit instructions so we don't end up
2754 reallocating in between passes. */
2755 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2756 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2758 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2759 n_used_regs = 0;
2760 cselib_hash_table = new hash_table<cselib_hasher> (31);
2761 if (cselib_preserve_constants)
2762 cselib_preserved_hash_table = new hash_table<cselib_hasher> (31);
2763 next_uid = 1;
2766 /* Called when the current user is done with cselib. */
2768 void
2769 cselib_finish (void)
2771 bool preserved = cselib_preserve_constants;
2772 cselib_discard_hook = NULL;
2773 cselib_preserve_constants = false;
2774 cselib_any_perm_equivs = false;
2775 cfa_base_preserved_val = NULL;
2776 cfa_base_preserved_regno = INVALID_REGNUM;
2777 free_alloc_pool (elt_list_pool);
2778 free_alloc_pool (elt_loc_list_pool);
2779 free_alloc_pool (cselib_val_pool);
2780 free_alloc_pool (value_pool);
2781 cselib_clear_table ();
2782 delete cselib_hash_table;
2783 cselib_hash_table = NULL;
2784 if (preserved)
2785 delete cselib_preserved_hash_table;
2786 cselib_preserved_hash_table = NULL;
2787 free (used_regs);
2788 used_regs = 0;
2789 n_useless_values = 0;
2790 n_useless_debug_values = 0;
2791 n_debug_values = 0;
2792 next_uid = 0;
2795 /* Dump the cselib_val *X to FILE *OUT. */
2798 dump_cselib_val (cselib_val **x, FILE *out)
2800 cselib_val *v = *x;
2801 bool need_lf = true;
2803 print_inline_rtx (out, v->val_rtx, 0);
2805 if (v->locs)
2807 struct elt_loc_list *l = v->locs;
2808 if (need_lf)
2810 fputc ('\n', out);
2811 need_lf = false;
2813 fputs (" locs:", out);
2816 if (l->setting_insn)
2817 fprintf (out, "\n from insn %i ",
2818 INSN_UID (l->setting_insn));
2819 else
2820 fprintf (out, "\n ");
2821 print_inline_rtx (out, l->loc, 4);
2823 while ((l = l->next));
2824 fputc ('\n', out);
2826 else
2828 fputs (" no locs", out);
2829 need_lf = true;
2832 if (v->addr_list)
2834 struct elt_list *e = v->addr_list;
2835 if (need_lf)
2837 fputc ('\n', out);
2838 need_lf = false;
2840 fputs (" addr list:", out);
2843 fputs ("\n ", out);
2844 print_inline_rtx (out, e->elt->val_rtx, 2);
2846 while ((e = e->next));
2847 fputc ('\n', out);
2849 else
2851 fputs (" no addrs", out);
2852 need_lf = true;
2855 if (v->next_containing_mem == &dummy_val)
2856 fputs (" last mem\n", out);
2857 else if (v->next_containing_mem)
2859 fputs (" next mem ", out);
2860 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2861 fputc ('\n', out);
2863 else if (need_lf)
2864 fputc ('\n', out);
2866 return 1;
2869 /* Dump to OUT everything in the CSELIB table. */
2871 void
2872 dump_cselib_table (FILE *out)
2874 fprintf (out, "cselib hash table:\n");
2875 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
2876 fprintf (out, "cselib preserved hash table:\n");
2877 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
2878 if (first_containing_mem != &dummy_val)
2880 fputs ("first mem ", out);
2881 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2882 fputc ('\n', out);
2884 fprintf (out, "next uid %i\n", next_uid);
2887 #include "gt-cselib.h"