Define ASM_OUTPUT_MAX_SKIP_ALIGN if the assembler supports .p2align.
[official-gcc.git] / gcc / function.c
blob8de57df0ddb5ac548204e3575feefa4d30e8007a
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "obstack.h"
56 #include "toplev.h"
57 #include "hash.h"
58 #include "ggc.h"
59 #include "tm_p.h"
61 #ifndef TRAMPOLINE_ALIGNMENT
62 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
63 #endif
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
69 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
70 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
71 #endif
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #define SYMBOL__MAIN __main
80 #endif
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
92 during rtl generation. If they are different register numbers, this is
93 always true. It may also be true if
94 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
95 generation. See fix_lexical_addr for details. */
97 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
98 #define NEED_SEPARATE_AP
99 #endif
101 /* Nonzero if function being compiled doesn't contain any calls
102 (ignoring the prologue and epilogue). This is set prior to
103 local register allocation and is valid for the remaining
104 compiler passes. */
105 int current_function_is_leaf;
107 /* Nonzero if function being compiled doesn't contain any instructions
108 that can throw an exception. This is set prior to final. */
110 int current_function_nothrow;
112 /* Nonzero if function being compiled doesn't modify the stack pointer
113 (ignoring the prologue and epilogue). This is only valid after
114 life_analysis has run. */
115 int current_function_sp_is_unchanging;
117 /* Nonzero if the function being compiled is a leaf function which only
118 uses leaf registers. This is valid after reload (specifically after
119 sched2) and is useful only if the port defines LEAF_REGISTERS. */
120 int current_function_uses_only_leaf_regs;
122 /* Nonzero once virtual register instantiation has been done.
123 assign_stack_local uses frame_pointer_rtx when this is nonzero.
124 calls.c:emit_library_call_value_1 uses it to set up
125 post-instantiation libcalls. */
126 int virtuals_instantiated;
128 /* These variables hold pointers to functions to create and destroy
129 target specific, per-function data structures. */
130 void (*init_machine_status) PARAMS ((struct function *));
131 void (*free_machine_status) PARAMS ((struct function *));
132 /* This variable holds a pointer to a function to register any
133 data items in the target specific, per-function data structure
134 that will need garbage collection. */
135 void (*mark_machine_status) PARAMS ((struct function *));
137 /* Likewise, but for language-specific data. */
138 void (*init_lang_status) PARAMS ((struct function *));
139 void (*save_lang_status) PARAMS ((struct function *));
140 void (*restore_lang_status) PARAMS ((struct function *));
141 void (*mark_lang_status) PARAMS ((struct function *));
142 void (*free_lang_status) PARAMS ((struct function *));
144 /* The FUNCTION_DECL for an inline function currently being expanded. */
145 tree inline_function_decl;
147 /* The currently compiled function. */
148 struct function *cfun = 0;
150 /* Global list of all compiled functions. */
151 struct function *all_functions = 0;
153 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
154 static varray_type prologue;
155 static varray_type epilogue;
157 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
158 in this function. */
159 static varray_type sibcall_epilogue;
161 /* In order to evaluate some expressions, such as function calls returning
162 structures in memory, we need to temporarily allocate stack locations.
163 We record each allocated temporary in the following structure.
165 Associated with each temporary slot is a nesting level. When we pop up
166 one level, all temporaries associated with the previous level are freed.
167 Normally, all temporaries are freed after the execution of the statement
168 in which they were created. However, if we are inside a ({...}) grouping,
169 the result may be in a temporary and hence must be preserved. If the
170 result could be in a temporary, we preserve it if we can determine which
171 one it is in. If we cannot determine which temporary may contain the
172 result, all temporaries are preserved. A temporary is preserved by
173 pretending it was allocated at the previous nesting level.
175 Automatic variables are also assigned temporary slots, at the nesting
176 level where they are defined. They are marked a "kept" so that
177 free_temp_slots will not free them. */
179 struct temp_slot
181 /* Points to next temporary slot. */
182 struct temp_slot *next;
183 /* The rtx to used to reference the slot. */
184 rtx slot;
185 /* The rtx used to represent the address if not the address of the
186 slot above. May be an EXPR_LIST if multiple addresses exist. */
187 rtx address;
188 /* The alignment (in bits) of the slot. */
189 int align;
190 /* The size, in units, of the slot. */
191 HOST_WIDE_INT size;
192 /* The type of the object in the slot, or zero if it doesn't correspond
193 to a type. We use this to determine whether a slot can be reused.
194 It can be reused if objects of the type of the new slot will always
195 conflict with objects of the type of the old slot. */
196 tree type;
197 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
198 tree rtl_expr;
199 /* Non-zero if this temporary is currently in use. */
200 char in_use;
201 /* Non-zero if this temporary has its address taken. */
202 char addr_taken;
203 /* Nesting level at which this slot is being used. */
204 int level;
205 /* Non-zero if this should survive a call to free_temp_slots. */
206 int keep;
207 /* The offset of the slot from the frame_pointer, including extra space
208 for alignment. This info is for combine_temp_slots. */
209 HOST_WIDE_INT base_offset;
210 /* The size of the slot, including extra space for alignment. This
211 info is for combine_temp_slots. */
212 HOST_WIDE_INT full_size;
215 /* This structure is used to record MEMs or pseudos used to replace VAR, any
216 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
217 maintain this list in case two operands of an insn were required to match;
218 in that case we must ensure we use the same replacement. */
220 struct fixup_replacement
222 rtx old;
223 rtx new;
224 struct fixup_replacement *next;
227 struct insns_for_mem_entry {
228 /* The KEY in HE will be a MEM. */
229 struct hash_entry he;
230 /* These are the INSNS which reference the MEM. */
231 rtx insns;
234 /* Forward declarations. */
236 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
237 int, struct function *));
238 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
239 HOST_WIDE_INT, int, tree));
240 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
241 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
242 enum machine_mode, enum machine_mode,
243 int, unsigned int, int,
244 struct hash_table *));
245 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
246 enum machine_mode,
247 struct hash_table *));
248 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
249 struct hash_table *));
250 static struct fixup_replacement
251 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
252 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
253 int, int));
254 static void fixup_var_refs_insns_with_hash
255 PARAMS ((struct hash_table *, rtx,
256 enum machine_mode, int));
257 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
258 int, int));
259 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
260 struct fixup_replacement **));
261 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
262 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
263 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
264 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
265 static void instantiate_decls PARAMS ((tree, int));
266 static void instantiate_decls_1 PARAMS ((tree, int));
267 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
268 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
269 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
270 static void delete_handlers PARAMS ((void));
271 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
272 struct args_size *));
273 #ifndef ARGS_GROW_DOWNWARD
274 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
275 tree));
276 #endif
277 static rtx round_trampoline_addr PARAMS ((rtx));
278 static rtx adjust_trampoline_addr PARAMS ((rtx));
279 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
280 static void reorder_blocks_0 PARAMS ((rtx));
281 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
282 static tree blocks_nreverse PARAMS ((tree));
283 static int all_blocks PARAMS ((tree, tree *));
284 static tree *get_block_vector PARAMS ((tree, int *));
285 /* We always define `record_insns' even if its not used so that we
286 can always export `prologue_epilogue_contains'. */
287 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
288 static int contains PARAMS ((rtx, varray_type));
289 #ifdef HAVE_return
290 static void emit_return_into_block PARAMS ((basic_block, rtx));
291 #endif
292 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
293 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
294 struct hash_table *));
295 static void purge_single_hard_subreg_set PARAMS ((rtx));
296 #ifdef HAVE_epilogue
297 static void keep_stack_depressed PARAMS ((rtx));
298 #endif
299 static int is_addressof PARAMS ((rtx *, void *));
300 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
301 struct hash_table *,
302 hash_table_key));
303 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
304 static bool insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
305 static int insns_for_mem_walk PARAMS ((rtx *, void *));
306 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
307 static void mark_temp_slot PARAMS ((struct temp_slot *));
308 static void mark_function_status PARAMS ((struct function *));
309 static void mark_function_chain PARAMS ((void *));
310 static void prepare_function_start PARAMS ((void));
311 static void do_clobber_return_reg PARAMS ((rtx, void *));
312 static void do_use_return_reg PARAMS ((rtx, void *));
314 /* Pointer to chain of `struct function' for containing functions. */
315 struct function *outer_function_chain;
317 /* Given a function decl for a containing function,
318 return the `struct function' for it. */
320 struct function *
321 find_function_data (decl)
322 tree decl;
324 struct function *p;
326 for (p = outer_function_chain; p; p = p->next)
327 if (p->decl == decl)
328 return p;
330 abort ();
333 /* Save the current context for compilation of a nested function.
334 This is called from language-specific code. The caller should use
335 the save_lang_status callback to save any language-specific state,
336 since this function knows only about language-independent
337 variables. */
339 void
340 push_function_context_to (context)
341 tree context;
343 struct function *p, *context_data;
345 if (context)
347 context_data = (context == current_function_decl
348 ? cfun
349 : find_function_data (context));
350 context_data->contains_functions = 1;
353 if (cfun == 0)
354 init_dummy_function_start ();
355 p = cfun;
357 p->next = outer_function_chain;
358 outer_function_chain = p;
359 p->fixup_var_refs_queue = 0;
361 if (save_lang_status)
362 (*save_lang_status) (p);
364 cfun = 0;
367 void
368 push_function_context ()
370 push_function_context_to (current_function_decl);
373 /* Restore the last saved context, at the end of a nested function.
374 This function is called from language-specific code. */
376 void
377 pop_function_context_from (context)
378 tree context ATTRIBUTE_UNUSED;
380 struct function *p = outer_function_chain;
381 struct var_refs_queue *queue;
382 struct var_refs_queue *next;
384 cfun = p;
385 outer_function_chain = p->next;
387 current_function_decl = p->decl;
388 reg_renumber = 0;
390 restore_emit_status (p);
392 if (restore_lang_status)
393 (*restore_lang_status) (p);
395 /* Finish doing put_var_into_stack for any of our variables
396 which became addressable during the nested function. */
397 for (queue = p->fixup_var_refs_queue; queue; queue = next)
399 next = queue->next;
400 fixup_var_refs (queue->modified, queue->promoted_mode,
401 queue->unsignedp, 0);
402 free (queue);
404 p->fixup_var_refs_queue = 0;
406 /* Reset variables that have known state during rtx generation. */
407 rtx_equal_function_value_matters = 1;
408 virtuals_instantiated = 0;
409 generating_concat_p = 1;
412 void
413 pop_function_context ()
415 pop_function_context_from (current_function_decl);
418 /* Clear out all parts of the state in F that can safely be discarded
419 after the function has been parsed, but not compiled, to let
420 garbage collection reclaim the memory. */
422 void
423 free_after_parsing (f)
424 struct function *f;
426 /* f->expr->forced_labels is used by code generation. */
427 /* f->emit->regno_reg_rtx is used by code generation. */
428 /* f->varasm is used by code generation. */
429 /* f->eh->eh_return_stub_label is used by code generation. */
431 if (free_lang_status)
432 (*free_lang_status) (f);
433 free_stmt_status (f);
436 /* Clear out all parts of the state in F that can safely be discarded
437 after the function has been compiled, to let garbage collection
438 reclaim the memory. */
440 void
441 free_after_compilation (f)
442 struct function *f;
444 struct temp_slot *ts;
445 struct temp_slot *next;
447 free_eh_status (f);
448 free_expr_status (f);
449 free_emit_status (f);
450 free_varasm_status (f);
452 if (free_machine_status)
453 (*free_machine_status) (f);
455 if (f->x_parm_reg_stack_loc)
456 free (f->x_parm_reg_stack_loc);
458 for (ts = f->x_temp_slots; ts; ts = next)
460 next = ts->next;
461 free (ts);
463 f->x_temp_slots = NULL;
465 f->arg_offset_rtx = NULL;
466 f->return_rtx = NULL;
467 f->internal_arg_pointer = NULL;
468 f->x_nonlocal_labels = NULL;
469 f->x_nonlocal_goto_handler_slots = NULL;
470 f->x_nonlocal_goto_handler_labels = NULL;
471 f->x_nonlocal_goto_stack_level = NULL;
472 f->x_cleanup_label = NULL;
473 f->x_return_label = NULL;
474 f->x_save_expr_regs = NULL;
475 f->x_stack_slot_list = NULL;
476 f->x_rtl_expr_chain = NULL;
477 f->x_tail_recursion_label = NULL;
478 f->x_tail_recursion_reentry = NULL;
479 f->x_arg_pointer_save_area = NULL;
480 f->x_clobber_return_insn = NULL;
481 f->x_context_display = NULL;
482 f->x_trampoline_list = NULL;
483 f->x_parm_birth_insn = NULL;
484 f->x_last_parm_insn = NULL;
485 f->x_parm_reg_stack_loc = NULL;
486 f->fixup_var_refs_queue = NULL;
487 f->original_arg_vector = NULL;
488 f->original_decl_initial = NULL;
489 f->inl_last_parm_insn = NULL;
490 f->epilogue_delay_list = NULL;
493 /* Allocate fixed slots in the stack frame of the current function. */
495 /* Return size needed for stack frame based on slots so far allocated in
496 function F.
497 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
498 the caller may have to do that. */
500 HOST_WIDE_INT
501 get_func_frame_size (f)
502 struct function *f;
504 #ifdef FRAME_GROWS_DOWNWARD
505 return -f->x_frame_offset;
506 #else
507 return f->x_frame_offset;
508 #endif
511 /* Return size needed for stack frame based on slots so far allocated.
512 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
513 the caller may have to do that. */
514 HOST_WIDE_INT
515 get_frame_size ()
517 return get_func_frame_size (cfun);
520 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
521 with machine mode MODE.
523 ALIGN controls the amount of alignment for the address of the slot:
524 0 means according to MODE,
525 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
526 positive specifies alignment boundary in bits.
528 We do not round to stack_boundary here.
530 FUNCTION specifies the function to allocate in. */
532 static rtx
533 assign_stack_local_1 (mode, size, align, function)
534 enum machine_mode mode;
535 HOST_WIDE_INT size;
536 int align;
537 struct function *function;
539 register rtx x, addr;
540 int bigend_correction = 0;
541 int alignment;
543 if (align == 0)
545 tree type;
547 if (mode == BLKmode)
548 alignment = BIGGEST_ALIGNMENT;
549 else
550 alignment = GET_MODE_ALIGNMENT (mode);
552 /* Allow the target to (possibly) increase the alignment of this
553 stack slot. */
554 type = type_for_mode (mode, 0);
555 if (type)
556 alignment = LOCAL_ALIGNMENT (type, alignment);
558 alignment /= BITS_PER_UNIT;
560 else if (align == -1)
562 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
563 size = CEIL_ROUND (size, alignment);
565 else
566 alignment = align / BITS_PER_UNIT;
568 #ifdef FRAME_GROWS_DOWNWARD
569 function->x_frame_offset -= size;
570 #endif
572 /* Ignore alignment we can't do with expected alignment of the boundary. */
573 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
574 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
576 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
577 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
579 /* Round frame offset to that alignment.
580 We must be careful here, since FRAME_OFFSET might be negative and
581 division with a negative dividend isn't as well defined as we might
582 like. So we instead assume that ALIGNMENT is a power of two and
583 use logical operations which are unambiguous. */
584 #ifdef FRAME_GROWS_DOWNWARD
585 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
586 #else
587 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
588 #endif
590 /* On a big-endian machine, if we are allocating more space than we will use,
591 use the least significant bytes of those that are allocated. */
592 if (BYTES_BIG_ENDIAN && mode != BLKmode)
593 bigend_correction = size - GET_MODE_SIZE (mode);
595 /* If we have already instantiated virtual registers, return the actual
596 address relative to the frame pointer. */
597 if (function == cfun && virtuals_instantiated)
598 addr = plus_constant (frame_pointer_rtx,
599 (frame_offset + bigend_correction
600 + STARTING_FRAME_OFFSET));
601 else
602 addr = plus_constant (virtual_stack_vars_rtx,
603 function->x_frame_offset + bigend_correction);
605 #ifndef FRAME_GROWS_DOWNWARD
606 function->x_frame_offset += size;
607 #endif
609 x = gen_rtx_MEM (mode, addr);
611 function->x_stack_slot_list
612 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614 return x;
617 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
618 current function. */
621 assign_stack_local (mode, size, align)
622 enum machine_mode mode;
623 HOST_WIDE_INT size;
624 int align;
626 return assign_stack_local_1 (mode, size, align, cfun);
629 /* Allocate a temporary stack slot and record it for possible later
630 reuse.
632 MODE is the machine mode to be given to the returned rtx.
634 SIZE is the size in units of the space required. We do no rounding here
635 since assign_stack_local will do any required rounding.
637 KEEP is 1 if this slot is to be retained after a call to
638 free_temp_slots. Automatic variables for a block are allocated
639 with this flag. KEEP is 2 if we allocate a longer term temporary,
640 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
641 if we are to allocate something at an inner level to be treated as
642 a variable in the block (e.g., a SAVE_EXPR).
644 TYPE is the type that will be used for the stack slot. */
646 static rtx
647 assign_stack_temp_for_type (mode, size, keep, type)
648 enum machine_mode mode;
649 HOST_WIDE_INT size;
650 int keep;
651 tree type;
653 int align;
654 struct temp_slot *p, *best_p = 0;
656 /* If SIZE is -1 it means that somebody tried to allocate a temporary
657 of a variable size. */
658 if (size == -1)
659 abort ();
661 if (mode == BLKmode)
662 align = BIGGEST_ALIGNMENT;
663 else
664 align = GET_MODE_ALIGNMENT (mode);
666 if (! type)
667 type = type_for_mode (mode, 0);
669 if (type)
670 align = LOCAL_ALIGNMENT (type, align);
672 /* Try to find an available, already-allocated temporary of the proper
673 mode which meets the size and alignment requirements. Choose the
674 smallest one with the closest alignment. */
675 for (p = temp_slots; p; p = p->next)
676 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
677 && ! p->in_use
678 && objects_must_conflict_p (p->type, type)
679 && (best_p == 0 || best_p->size > p->size
680 || (best_p->size == p->size && best_p->align > p->align)))
682 if (p->align == align && p->size == size)
684 best_p = 0;
685 break;
687 best_p = p;
690 /* Make our best, if any, the one to use. */
691 if (best_p)
693 /* If there are enough aligned bytes left over, make them into a new
694 temp_slot so that the extra bytes don't get wasted. Do this only
695 for BLKmode slots, so that we can be sure of the alignment. */
696 if (GET_MODE (best_p->slot) == BLKmode)
698 int alignment = best_p->align / BITS_PER_UNIT;
699 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
701 if (best_p->size - rounded_size >= alignment)
703 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
704 p->in_use = p->addr_taken = 0;
705 p->size = best_p->size - rounded_size;
706 p->base_offset = best_p->base_offset + rounded_size;
707 p->full_size = best_p->full_size - rounded_size;
708 p->slot = gen_rtx_MEM (BLKmode,
709 plus_constant (XEXP (best_p->slot, 0),
710 rounded_size));
711 p->align = best_p->align;
712 p->address = 0;
713 p->rtl_expr = 0;
714 p->type = best_p->type;
715 p->next = temp_slots;
716 temp_slots = p;
718 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
719 stack_slot_list);
721 best_p->size = rounded_size;
722 best_p->full_size = rounded_size;
726 p = best_p;
729 /* If we still didn't find one, make a new temporary. */
730 if (p == 0)
732 HOST_WIDE_INT frame_offset_old = frame_offset;
734 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
736 /* We are passing an explicit alignment request to assign_stack_local.
737 One side effect of that is assign_stack_local will not round SIZE
738 to ensure the frame offset remains suitably aligned.
740 So for requests which depended on the rounding of SIZE, we go ahead
741 and round it now. We also make sure ALIGNMENT is at least
742 BIGGEST_ALIGNMENT. */
743 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
744 abort();
745 p->slot = assign_stack_local (mode,
746 (mode == BLKmode
747 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
748 : size),
749 align);
751 p->align = align;
753 /* The following slot size computation is necessary because we don't
754 know the actual size of the temporary slot until assign_stack_local
755 has performed all the frame alignment and size rounding for the
756 requested temporary. Note that extra space added for alignment
757 can be either above or below this stack slot depending on which
758 way the frame grows. We include the extra space if and only if it
759 is above this slot. */
760 #ifdef FRAME_GROWS_DOWNWARD
761 p->size = frame_offset_old - frame_offset;
762 #else
763 p->size = size;
764 #endif
766 /* Now define the fields used by combine_temp_slots. */
767 #ifdef FRAME_GROWS_DOWNWARD
768 p->base_offset = frame_offset;
769 p->full_size = frame_offset_old - frame_offset;
770 #else
771 p->base_offset = frame_offset_old;
772 p->full_size = frame_offset - frame_offset_old;
773 #endif
774 p->address = 0;
775 p->next = temp_slots;
776 temp_slots = p;
779 p->in_use = 1;
780 p->addr_taken = 0;
781 p->rtl_expr = seq_rtl_expr;
782 p->type = type;
784 if (keep == 2)
786 p->level = target_temp_slot_level;
787 p->keep = 0;
789 else if (keep == 3)
791 p->level = var_temp_slot_level;
792 p->keep = 0;
794 else
796 p->level = temp_slot_level;
797 p->keep = keep;
800 /* We may be reusing an old slot, so clear any MEM flags that may have been
801 set from before. */
802 RTX_UNCHANGING_P (p->slot) = 0;
803 MEM_IN_STRUCT_P (p->slot) = 0;
804 MEM_SCALAR_P (p->slot) = 0;
805 MEM_VOLATILE_P (p->slot) = 0;
807 /* If we know the alias set for the memory that will be used, use
808 it. If there's no TYPE, then we don't know anything about the
809 alias set for the memory. */
810 if (type)
811 MEM_ALIAS_SET (p->slot) = get_alias_set (type);
812 else
813 MEM_ALIAS_SET (p->slot) = 0;
815 /* If a type is specified, set the relevant flags. */
816 if (type != 0)
818 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
819 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
820 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
823 return p->slot;
826 /* Allocate a temporary stack slot and record it for possible later
827 reuse. First three arguments are same as in preceding function. */
830 assign_stack_temp (mode, size, keep)
831 enum machine_mode mode;
832 HOST_WIDE_INT size;
833 int keep;
835 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
838 /* Assign a temporary of given TYPE.
839 KEEP is as for assign_stack_temp.
840 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
841 it is 0 if a register is OK.
842 DONT_PROMOTE is 1 if we should not promote values in register
843 to wider modes. */
846 assign_temp (type, keep, memory_required, dont_promote)
847 tree type;
848 int keep;
849 int memory_required;
850 int dont_promote ATTRIBUTE_UNUSED;
852 enum machine_mode mode = TYPE_MODE (type);
853 #ifndef PROMOTE_FOR_CALL_ONLY
854 int unsignedp = TREE_UNSIGNED (type);
855 #endif
857 if (mode == BLKmode || memory_required)
859 HOST_WIDE_INT size = int_size_in_bytes (type);
860 rtx tmp;
862 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
863 problems with allocating the stack space. */
864 if (size == 0)
865 size = 1;
867 /* Unfortunately, we don't yet know how to allocate variable-sized
868 temporaries. However, sometimes we have a fixed upper limit on
869 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
870 instead. This is the case for Chill variable-sized strings. */
871 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
872 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
873 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
874 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
876 tmp = assign_stack_temp_for_type (mode, size, keep, type);
877 return tmp;
880 #ifndef PROMOTE_FOR_CALL_ONLY
881 if (! dont_promote)
882 mode = promote_mode (type, mode, &unsignedp, 0);
883 #endif
885 return gen_reg_rtx (mode);
888 /* Combine temporary stack slots which are adjacent on the stack.
890 This allows for better use of already allocated stack space. This is only
891 done for BLKmode slots because we can be sure that we won't have alignment
892 problems in this case. */
894 void
895 combine_temp_slots ()
897 struct temp_slot *p, *q;
898 struct temp_slot *prev_p, *prev_q;
899 int num_slots;
901 /* We can't combine slots, because the information about which slot
902 is in which alias set will be lost. */
903 if (flag_strict_aliasing)
904 return;
906 /* If there are a lot of temp slots, don't do anything unless
907 high levels of optimizaton. */
908 if (! flag_expensive_optimizations)
909 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
910 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
911 return;
913 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
915 int delete_p = 0;
917 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
918 for (q = p->next, prev_q = p; q; q = prev_q->next)
920 int delete_q = 0;
921 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
923 if (p->base_offset + p->full_size == q->base_offset)
925 /* Q comes after P; combine Q into P. */
926 p->size += q->size;
927 p->full_size += q->full_size;
928 delete_q = 1;
930 else if (q->base_offset + q->full_size == p->base_offset)
932 /* P comes after Q; combine P into Q. */
933 q->size += p->size;
934 q->full_size += p->full_size;
935 delete_p = 1;
936 break;
939 /* Either delete Q or advance past it. */
940 if (delete_q)
942 prev_q->next = q->next;
943 free (q);
945 else
946 prev_q = q;
948 /* Either delete P or advance past it. */
949 if (delete_p)
951 if (prev_p)
952 prev_p->next = p->next;
953 else
954 temp_slots = p->next;
956 else
957 prev_p = p;
961 /* Find the temp slot corresponding to the object at address X. */
963 static struct temp_slot *
964 find_temp_slot_from_address (x)
965 rtx x;
967 struct temp_slot *p;
968 rtx next;
970 for (p = temp_slots; p; p = p->next)
972 if (! p->in_use)
973 continue;
975 else if (XEXP (p->slot, 0) == x
976 || p->address == x
977 || (GET_CODE (x) == PLUS
978 && XEXP (x, 0) == virtual_stack_vars_rtx
979 && GET_CODE (XEXP (x, 1)) == CONST_INT
980 && INTVAL (XEXP (x, 1)) >= p->base_offset
981 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
982 return p;
984 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
985 for (next = p->address; next; next = XEXP (next, 1))
986 if (XEXP (next, 0) == x)
987 return p;
990 /* If we have a sum involving a register, see if it points to a temp
991 slot. */
992 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
993 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
994 return p;
995 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
996 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
997 return p;
999 return 0;
1002 /* Indicate that NEW is an alternate way of referring to the temp slot
1003 that previously was known by OLD. */
1005 void
1006 update_temp_slot_address (old, new)
1007 rtx old, new;
1009 struct temp_slot *p;
1011 if (rtx_equal_p (old, new))
1012 return;
1014 p = find_temp_slot_from_address (old);
1016 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1017 is a register, see if one operand of the PLUS is a temporary
1018 location. If so, NEW points into it. Otherwise, if both OLD and
1019 NEW are a PLUS and if there is a register in common between them.
1020 If so, try a recursive call on those values. */
1021 if (p == 0)
1023 if (GET_CODE (old) != PLUS)
1024 return;
1026 if (GET_CODE (new) == REG)
1028 update_temp_slot_address (XEXP (old, 0), new);
1029 update_temp_slot_address (XEXP (old, 1), new);
1030 return;
1032 else if (GET_CODE (new) != PLUS)
1033 return;
1035 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1036 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1037 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1038 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1039 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1040 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1041 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1042 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1044 return;
1047 /* Otherwise add an alias for the temp's address. */
1048 else if (p->address == 0)
1049 p->address = new;
1050 else
1052 if (GET_CODE (p->address) != EXPR_LIST)
1053 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1055 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1059 /* If X could be a reference to a temporary slot, mark the fact that its
1060 address was taken. */
1062 void
1063 mark_temp_addr_taken (x)
1064 rtx x;
1066 struct temp_slot *p;
1068 if (x == 0)
1069 return;
1071 /* If X is not in memory or is at a constant address, it cannot be in
1072 a temporary slot. */
1073 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1074 return;
1076 p = find_temp_slot_from_address (XEXP (x, 0));
1077 if (p != 0)
1078 p->addr_taken = 1;
1081 /* If X could be a reference to a temporary slot, mark that slot as
1082 belonging to the to one level higher than the current level. If X
1083 matched one of our slots, just mark that one. Otherwise, we can't
1084 easily predict which it is, so upgrade all of them. Kept slots
1085 need not be touched.
1087 This is called when an ({...}) construct occurs and a statement
1088 returns a value in memory. */
1090 void
1091 preserve_temp_slots (x)
1092 rtx x;
1094 struct temp_slot *p = 0;
1096 /* If there is no result, we still might have some objects whose address
1097 were taken, so we need to make sure they stay around. */
1098 if (x == 0)
1100 for (p = temp_slots; p; p = p->next)
1101 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1102 p->level--;
1104 return;
1107 /* If X is a register that is being used as a pointer, see if we have
1108 a temporary slot we know it points to. To be consistent with
1109 the code below, we really should preserve all non-kept slots
1110 if we can't find a match, but that seems to be much too costly. */
1111 if (GET_CODE (x) == REG && REG_POINTER (x))
1112 p = find_temp_slot_from_address (x);
1114 /* If X is not in memory or is at a constant address, it cannot be in
1115 a temporary slot, but it can contain something whose address was
1116 taken. */
1117 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1119 for (p = temp_slots; p; p = p->next)
1120 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1121 p->level--;
1123 return;
1126 /* First see if we can find a match. */
1127 if (p == 0)
1128 p = find_temp_slot_from_address (XEXP (x, 0));
1130 if (p != 0)
1132 /* Move everything at our level whose address was taken to our new
1133 level in case we used its address. */
1134 struct temp_slot *q;
1136 if (p->level == temp_slot_level)
1138 for (q = temp_slots; q; q = q->next)
1139 if (q != p && q->addr_taken && q->level == p->level)
1140 q->level--;
1142 p->level--;
1143 p->addr_taken = 0;
1145 return;
1148 /* Otherwise, preserve all non-kept slots at this level. */
1149 for (p = temp_slots; p; p = p->next)
1150 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1151 p->level--;
1154 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1155 with that RTL_EXPR, promote it into a temporary slot at the present
1156 level so it will not be freed when we free slots made in the
1157 RTL_EXPR. */
1159 void
1160 preserve_rtl_expr_result (x)
1161 rtx x;
1163 struct temp_slot *p;
1165 /* If X is not in memory or is at a constant address, it cannot be in
1166 a temporary slot. */
1167 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1168 return;
1170 /* If we can find a match, move it to our level unless it is already at
1171 an upper level. */
1172 p = find_temp_slot_from_address (XEXP (x, 0));
1173 if (p != 0)
1175 p->level = MIN (p->level, temp_slot_level);
1176 p->rtl_expr = 0;
1179 return;
1182 /* Free all temporaries used so far. This is normally called at the end
1183 of generating code for a statement. Don't free any temporaries
1184 currently in use for an RTL_EXPR that hasn't yet been emitted.
1185 We could eventually do better than this since it can be reused while
1186 generating the same RTL_EXPR, but this is complex and probably not
1187 worthwhile. */
1189 void
1190 free_temp_slots ()
1192 struct temp_slot *p;
1194 for (p = temp_slots; p; p = p->next)
1195 if (p->in_use && p->level == temp_slot_level && ! p->keep
1196 && p->rtl_expr == 0)
1197 p->in_use = 0;
1199 combine_temp_slots ();
1202 /* Free all temporary slots used in T, an RTL_EXPR node. */
1204 void
1205 free_temps_for_rtl_expr (t)
1206 tree t;
1208 struct temp_slot *p;
1210 for (p = temp_slots; p; p = p->next)
1211 if (p->rtl_expr == t)
1213 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1214 needs to be preserved. This can happen if a temporary in
1215 the RTL_EXPR was addressed; preserve_temp_slots will move
1216 the temporary into a higher level. */
1217 if (temp_slot_level <= p->level)
1218 p->in_use = 0;
1219 else
1220 p->rtl_expr = NULL_TREE;
1223 combine_temp_slots ();
1226 /* Mark all temporaries ever allocated in this function as not suitable
1227 for reuse until the current level is exited. */
1229 void
1230 mark_all_temps_used ()
1232 struct temp_slot *p;
1234 for (p = temp_slots; p; p = p->next)
1236 p->in_use = p->keep = 1;
1237 p->level = MIN (p->level, temp_slot_level);
1241 /* Push deeper into the nesting level for stack temporaries. */
1243 void
1244 push_temp_slots ()
1246 temp_slot_level++;
1249 /* Likewise, but save the new level as the place to allocate variables
1250 for blocks. */
1252 #if 0
1253 void
1254 push_temp_slots_for_block ()
1256 push_temp_slots ();
1258 var_temp_slot_level = temp_slot_level;
1261 /* Likewise, but save the new level as the place to allocate temporaries
1262 for TARGET_EXPRs. */
1264 void
1265 push_temp_slots_for_target ()
1267 push_temp_slots ();
1269 target_temp_slot_level = temp_slot_level;
1272 /* Set and get the value of target_temp_slot_level. The only
1273 permitted use of these functions is to save and restore this value. */
1276 get_target_temp_slot_level ()
1278 return target_temp_slot_level;
1281 void
1282 set_target_temp_slot_level (level)
1283 int level;
1285 target_temp_slot_level = level;
1287 #endif
1289 /* Pop a temporary nesting level. All slots in use in the current level
1290 are freed. */
1292 void
1293 pop_temp_slots ()
1295 struct temp_slot *p;
1297 for (p = temp_slots; p; p = p->next)
1298 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1299 p->in_use = 0;
1301 combine_temp_slots ();
1303 temp_slot_level--;
1306 /* Initialize temporary slots. */
1308 void
1309 init_temp_slots ()
1311 /* We have not allocated any temporaries yet. */
1312 temp_slots = 0;
1313 temp_slot_level = 0;
1314 var_temp_slot_level = 0;
1315 target_temp_slot_level = 0;
1318 /* Retroactively move an auto variable from a register to a stack slot.
1319 This is done when an address-reference to the variable is seen. */
1321 void
1322 put_var_into_stack (decl)
1323 tree decl;
1325 register rtx reg;
1326 enum machine_mode promoted_mode, decl_mode;
1327 struct function *function = 0;
1328 tree context;
1329 int can_use_addressof;
1330 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1331 int usedp = (TREE_USED (decl)
1332 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1334 context = decl_function_context (decl);
1336 /* Get the current rtl used for this object and its original mode. */
1337 reg = (TREE_CODE (decl) == SAVE_EXPR
1338 ? SAVE_EXPR_RTL (decl)
1339 : DECL_RTL_IF_SET (decl));
1341 /* No need to do anything if decl has no rtx yet
1342 since in that case caller is setting TREE_ADDRESSABLE
1343 and a stack slot will be assigned when the rtl is made. */
1344 if (reg == 0)
1345 return;
1347 /* Get the declared mode for this object. */
1348 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1349 : DECL_MODE (decl));
1350 /* Get the mode it's actually stored in. */
1351 promoted_mode = GET_MODE (reg);
1353 /* If this variable comes from an outer function,
1354 find that function's saved context. */
1355 if (context != current_function_decl && context != inline_function_decl)
1356 for (function = outer_function_chain; function; function = function->next)
1357 if (function->decl == context)
1358 break;
1360 /* If this is a variable-size object with a pseudo to address it,
1361 put that pseudo into the stack, if the var is nonlocal. */
1362 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1363 && GET_CODE (reg) == MEM
1364 && GET_CODE (XEXP (reg, 0)) == REG
1365 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1367 reg = XEXP (reg, 0);
1368 decl_mode = promoted_mode = GET_MODE (reg);
1371 can_use_addressof
1372 = (function == 0
1373 && optimize > 0
1374 /* FIXME make it work for promoted modes too */
1375 && decl_mode == promoted_mode
1376 #ifdef NON_SAVING_SETJMP
1377 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1378 #endif
1381 /* If we can't use ADDRESSOF, make sure we see through one we already
1382 generated. */
1383 if (! can_use_addressof && GET_CODE (reg) == MEM
1384 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1385 reg = XEXP (XEXP (reg, 0), 0);
1387 /* Now we should have a value that resides in one or more pseudo regs. */
1389 if (GET_CODE (reg) == REG)
1391 /* If this variable lives in the current function and we don't need
1392 to put things in the stack for the sake of setjmp, try to keep it
1393 in a register until we know we actually need the address. */
1394 if (can_use_addressof)
1395 gen_mem_addressof (reg, decl);
1396 else
1397 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1398 decl_mode, volatilep, 0, usedp, 0);
1400 else if (GET_CODE (reg) == CONCAT)
1402 /* A CONCAT contains two pseudos; put them both in the stack.
1403 We do it so they end up consecutive.
1404 We fixup references to the parts only after we fixup references
1405 to the whole CONCAT, lest we do double fixups for the latter
1406 references. */
1407 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1408 tree part_type = type_for_mode (part_mode, 0);
1409 rtx lopart = XEXP (reg, 0);
1410 rtx hipart = XEXP (reg, 1);
1411 #ifdef FRAME_GROWS_DOWNWARD
1412 /* Since part 0 should have a lower address, do it second. */
1413 put_reg_into_stack (function, hipart, part_type, part_mode,
1414 part_mode, volatilep, 0, 0, 0);
1415 put_reg_into_stack (function, lopart, part_type, part_mode,
1416 part_mode, volatilep, 0, 0, 0);
1417 #else
1418 put_reg_into_stack (function, lopart, part_type, part_mode,
1419 part_mode, volatilep, 0, 0, 0);
1420 put_reg_into_stack (function, hipart, part_type, part_mode,
1421 part_mode, volatilep, 0, 0, 0);
1422 #endif
1424 /* Change the CONCAT into a combined MEM for both parts. */
1425 PUT_CODE (reg, MEM);
1426 set_mem_attributes (reg, decl, 1);
1428 /* The two parts are in memory order already.
1429 Use the lower parts address as ours. */
1430 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1431 /* Prevent sharing of rtl that might lose. */
1432 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1433 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1434 if (usedp)
1436 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1437 promoted_mode, 0);
1438 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1439 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1442 else
1443 return;
1445 if (current_function_check_memory_usage)
1446 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode,
1447 3, XEXP (reg, 0), Pmode,
1448 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1449 TYPE_MODE (sizetype),
1450 GEN_INT (MEMORY_USE_RW),
1451 TYPE_MODE (integer_type_node));
1454 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1455 into the stack frame of FUNCTION (0 means the current function).
1456 DECL_MODE is the machine mode of the user-level data type.
1457 PROMOTED_MODE is the machine mode of the register.
1458 VOLATILE_P is nonzero if this is for a "volatile" decl.
1459 USED_P is nonzero if this reg might have already been used in an insn. */
1461 static void
1462 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1463 original_regno, used_p, ht)
1464 struct function *function;
1465 rtx reg;
1466 tree type;
1467 enum machine_mode promoted_mode, decl_mode;
1468 int volatile_p;
1469 unsigned int original_regno;
1470 int used_p;
1471 struct hash_table *ht;
1473 struct function *func = function ? function : cfun;
1474 rtx new = 0;
1475 unsigned int regno = original_regno;
1477 if (regno == 0)
1478 regno = REGNO (reg);
1480 if (regno < func->x_max_parm_reg)
1481 new = func->x_parm_reg_stack_loc[regno];
1483 if (new == 0)
1484 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1486 PUT_CODE (reg, MEM);
1487 PUT_MODE (reg, decl_mode);
1488 XEXP (reg, 0) = XEXP (new, 0);
1489 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1490 MEM_VOLATILE_P (reg) = volatile_p;
1492 /* If this is a memory ref that contains aggregate components,
1493 mark it as such for cse and loop optimize. If we are reusing a
1494 previously generated stack slot, then we need to copy the bit in
1495 case it was set for other reasons. For instance, it is set for
1496 __builtin_va_alist. */
1497 if (type)
1499 MEM_SET_IN_STRUCT_P (reg,
1500 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1501 MEM_ALIAS_SET (reg) = get_alias_set (type);
1503 if (used_p)
1504 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1507 /* Make sure that all refs to the variable, previously made
1508 when it was a register, are fixed up to be valid again.
1509 See function above for meaning of arguments. */
1511 static void
1512 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1513 struct function *function;
1514 rtx reg;
1515 tree type;
1516 enum machine_mode promoted_mode;
1517 struct hash_table *ht;
1519 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1521 if (function != 0)
1523 struct var_refs_queue *temp;
1525 temp
1526 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1527 temp->modified = reg;
1528 temp->promoted_mode = promoted_mode;
1529 temp->unsignedp = unsigned_p;
1530 temp->next = function->fixup_var_refs_queue;
1531 function->fixup_var_refs_queue = temp;
1533 else
1534 /* Variable is local; fix it up now. */
1535 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1538 static void
1539 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1540 rtx var;
1541 enum machine_mode promoted_mode;
1542 int unsignedp;
1543 struct hash_table *ht;
1545 tree pending;
1546 rtx first_insn = get_insns ();
1547 struct sequence_stack *stack = seq_stack;
1548 tree rtl_exps = rtl_expr_chain;
1550 /* If there's a hash table, it must record all uses of VAR. */
1551 if (ht)
1553 if (stack != 0)
1554 abort ();
1555 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp);
1556 return;
1559 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1560 stack == 0);
1562 /* Scan all pending sequences too. */
1563 for (; stack; stack = stack->next)
1565 push_to_full_sequence (stack->first, stack->last);
1566 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1567 stack->next != 0);
1568 /* Update remembered end of sequence
1569 in case we added an insn at the end. */
1570 stack->last = get_last_insn ();
1571 end_sequence ();
1574 /* Scan all waiting RTL_EXPRs too. */
1575 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1577 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1578 if (seq != const0_rtx && seq != 0)
1580 push_to_sequence (seq);
1581 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1582 end_sequence ();
1587 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1588 some part of an insn. Return a struct fixup_replacement whose OLD
1589 value is equal to X. Allocate a new structure if no such entry exists. */
1591 static struct fixup_replacement *
1592 find_fixup_replacement (replacements, x)
1593 struct fixup_replacement **replacements;
1594 rtx x;
1596 struct fixup_replacement *p;
1598 /* See if we have already replaced this. */
1599 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1602 if (p == 0)
1604 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1605 p->old = x;
1606 p->new = 0;
1607 p->next = *replacements;
1608 *replacements = p;
1611 return p;
1614 /* Scan the insn-chain starting with INSN for refs to VAR
1615 and fix them up. TOPLEVEL is nonzero if this chain is the
1616 main chain of insns for the current function. */
1618 static void
1619 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel)
1620 rtx insn;
1621 rtx var;
1622 enum machine_mode promoted_mode;
1623 int unsignedp;
1624 int toplevel;
1626 while (insn)
1628 /* fixup_var_refs_insn might modify insn, so save its next
1629 pointer now. */
1630 rtx next = NEXT_INSN (insn);
1632 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1633 the three sequences they (potentially) contain, and process
1634 them recursively. The CALL_INSN itself is not interesting. */
1636 if (GET_CODE (insn) == CALL_INSN
1637 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1639 int i;
1641 /* Look at the Normal call, sibling call and tail recursion
1642 sequences attached to the CALL_PLACEHOLDER. */
1643 for (i = 0; i < 3; i++)
1645 rtx seq = XEXP (PATTERN (insn), i);
1646 if (seq)
1648 push_to_sequence (seq);
1649 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1650 XEXP (PATTERN (insn), i) = get_insns ();
1651 end_sequence ();
1656 else if (INSN_P (insn))
1657 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel);
1659 insn = next;
1663 /* Look up the insns which reference VAR in HT and fix them up. Other
1664 arguments are the same as fixup_var_refs_insns.
1666 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1667 because the hash table will point straight to the interesting insn
1668 (inside the CALL_PLACEHOLDER). */
1669 static void
1670 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp)
1671 struct hash_table *ht;
1672 rtx var;
1673 enum machine_mode promoted_mode;
1674 int unsignedp;
1676 struct insns_for_mem_entry *ime = (struct insns_for_mem_entry *)
1677 hash_lookup (ht, var, /*create=*/0, /*copy=*/0);
1678 rtx insn_list = ime->insns;
1680 while (insn_list)
1682 rtx insn = XEXP (insn_list, 0);
1684 if (INSN_P (insn))
1685 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, 1);
1687 insn_list = XEXP (insn_list, 1);
1692 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1693 the insn under examination, VAR is the variable to fix up
1694 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1695 TOPLEVEL is nonzero if this is the main insn chain for this
1696 function. */
1697 static void
1698 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel)
1699 rtx insn;
1700 rtx var;
1701 enum machine_mode promoted_mode;
1702 int unsignedp;
1703 int toplevel;
1705 rtx call_dest = 0;
1706 rtx set, prev, prev_set;
1707 rtx note;
1709 /* Remember the notes in case we delete the insn. */
1710 note = REG_NOTES (insn);
1712 /* If this is a CLOBBER of VAR, delete it.
1714 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1715 and REG_RETVAL notes too. */
1716 if (GET_CODE (PATTERN (insn)) == CLOBBER
1717 && (XEXP (PATTERN (insn), 0) == var
1718 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1719 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1720 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1722 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1723 /* The REG_LIBCALL note will go away since we are going to
1724 turn INSN into a NOTE, so just delete the
1725 corresponding REG_RETVAL note. */
1726 remove_note (XEXP (note, 0),
1727 find_reg_note (XEXP (note, 0), REG_RETVAL,
1728 NULL_RTX));
1730 /* In unoptimized compilation, we shouldn't call delete_insn
1731 except in jump.c doing warnings. */
1732 PUT_CODE (insn, NOTE);
1733 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1734 NOTE_SOURCE_FILE (insn) = 0;
1737 /* The insn to load VAR from a home in the arglist
1738 is now a no-op. When we see it, just delete it.
1739 Similarly if this is storing VAR from a register from which
1740 it was loaded in the previous insn. This will occur
1741 when an ADDRESSOF was made for an arglist slot. */
1742 else if (toplevel
1743 && (set = single_set (insn)) != 0
1744 && SET_DEST (set) == var
1745 /* If this represents the result of an insn group,
1746 don't delete the insn. */
1747 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1748 && (rtx_equal_p (SET_SRC (set), var)
1749 || (GET_CODE (SET_SRC (set)) == REG
1750 && (prev = prev_nonnote_insn (insn)) != 0
1751 && (prev_set = single_set (prev)) != 0
1752 && SET_DEST (prev_set) == SET_SRC (set)
1753 && rtx_equal_p (SET_SRC (prev_set), var))))
1755 /* In unoptimized compilation, we shouldn't call delete_insn
1756 except in jump.c doing warnings. */
1757 PUT_CODE (insn, NOTE);
1758 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1759 NOTE_SOURCE_FILE (insn) = 0;
1761 else
1763 struct fixup_replacement *replacements = 0;
1764 rtx next_insn = NEXT_INSN (insn);
1766 if (SMALL_REGISTER_CLASSES)
1768 /* If the insn that copies the results of a CALL_INSN
1769 into a pseudo now references VAR, we have to use an
1770 intermediate pseudo since we want the life of the
1771 return value register to be only a single insn.
1773 If we don't use an intermediate pseudo, such things as
1774 address computations to make the address of VAR valid
1775 if it is not can be placed between the CALL_INSN and INSN.
1777 To make sure this doesn't happen, we record the destination
1778 of the CALL_INSN and see if the next insn uses both that
1779 and VAR. */
1781 if (call_dest != 0 && GET_CODE (insn) == INSN
1782 && reg_mentioned_p (var, PATTERN (insn))
1783 && reg_mentioned_p (call_dest, PATTERN (insn)))
1785 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1787 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1789 PATTERN (insn) = replace_rtx (PATTERN (insn),
1790 call_dest, temp);
1793 if (GET_CODE (insn) == CALL_INSN
1794 && GET_CODE (PATTERN (insn)) == SET)
1795 call_dest = SET_DEST (PATTERN (insn));
1796 else if (GET_CODE (insn) == CALL_INSN
1797 && GET_CODE (PATTERN (insn)) == PARALLEL
1798 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1799 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1800 else
1801 call_dest = 0;
1804 /* See if we have to do anything to INSN now that VAR is in
1805 memory. If it needs to be loaded into a pseudo, use a single
1806 pseudo for the entire insn in case there is a MATCH_DUP
1807 between two operands. We pass a pointer to the head of
1808 a list of struct fixup_replacements. If fixup_var_refs_1
1809 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1810 it will record them in this list.
1812 If it allocated a pseudo for any replacement, we copy into
1813 it here. */
1815 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1816 &replacements);
1818 /* If this is last_parm_insn, and any instructions were output
1819 after it to fix it up, then we must set last_parm_insn to
1820 the last such instruction emitted. */
1821 if (insn == last_parm_insn)
1822 last_parm_insn = PREV_INSN (next_insn);
1824 while (replacements)
1826 struct fixup_replacement *next;
1828 if (GET_CODE (replacements->new) == REG)
1830 rtx insert_before;
1831 rtx seq;
1833 /* OLD might be a (subreg (mem)). */
1834 if (GET_CODE (replacements->old) == SUBREG)
1835 replacements->old
1836 = fixup_memory_subreg (replacements->old, insn, 0);
1837 else
1838 replacements->old
1839 = fixup_stack_1 (replacements->old, insn);
1841 insert_before = insn;
1843 /* If we are changing the mode, do a conversion.
1844 This might be wasteful, but combine.c will
1845 eliminate much of the waste. */
1847 if (GET_MODE (replacements->new)
1848 != GET_MODE (replacements->old))
1850 start_sequence ();
1851 convert_move (replacements->new,
1852 replacements->old, unsignedp);
1853 seq = gen_sequence ();
1854 end_sequence ();
1856 else
1857 seq = gen_move_insn (replacements->new,
1858 replacements->old);
1860 emit_insn_before (seq, insert_before);
1863 next = replacements->next;
1864 free (replacements);
1865 replacements = next;
1869 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1870 But don't touch other insns referred to by reg-notes;
1871 we will get them elsewhere. */
1872 while (note)
1874 if (GET_CODE (note) != INSN_LIST)
1875 XEXP (note, 0)
1876 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1877 note = XEXP (note, 1);
1881 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1882 See if the rtx expression at *LOC in INSN needs to be changed.
1884 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1885 contain a list of original rtx's and replacements. If we find that we need
1886 to modify this insn by replacing a memory reference with a pseudo or by
1887 making a new MEM to implement a SUBREG, we consult that list to see if
1888 we have already chosen a replacement. If none has already been allocated,
1889 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1890 or the SUBREG, as appropriate, to the pseudo. */
1892 static void
1893 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1894 register rtx var;
1895 enum machine_mode promoted_mode;
1896 register rtx *loc;
1897 rtx insn;
1898 struct fixup_replacement **replacements;
1900 register int i;
1901 register rtx x = *loc;
1902 RTX_CODE code = GET_CODE (x);
1903 register const char *fmt;
1904 register rtx tem, tem1;
1905 struct fixup_replacement *replacement;
1907 switch (code)
1909 case ADDRESSOF:
1910 if (XEXP (x, 0) == var)
1912 /* Prevent sharing of rtl that might lose. */
1913 rtx sub = copy_rtx (XEXP (var, 0));
1915 if (! validate_change (insn, loc, sub, 0))
1917 rtx y = gen_reg_rtx (GET_MODE (sub));
1918 rtx seq, new_insn;
1920 /* We should be able to replace with a register or all is lost.
1921 Note that we can't use validate_change to verify this, since
1922 we're not caring for replacing all dups simultaneously. */
1923 if (! validate_replace_rtx (*loc, y, insn))
1924 abort ();
1926 /* Careful! First try to recognize a direct move of the
1927 value, mimicking how things are done in gen_reload wrt
1928 PLUS. Consider what happens when insn is a conditional
1929 move instruction and addsi3 clobbers flags. */
1931 start_sequence ();
1932 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1933 seq = gen_sequence ();
1934 end_sequence ();
1936 if (recog_memoized (new_insn) < 0)
1938 /* That failed. Fall back on force_operand and hope. */
1940 start_sequence ();
1941 sub = force_operand (sub, y);
1942 if (sub != y)
1943 emit_insn (gen_move_insn (y, sub));
1944 seq = gen_sequence ();
1945 end_sequence ();
1948 #ifdef HAVE_cc0
1949 /* Don't separate setter from user. */
1950 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1951 insn = PREV_INSN (insn);
1952 #endif
1954 emit_insn_before (seq, insn);
1957 return;
1959 case MEM:
1960 if (var == x)
1962 /* If we already have a replacement, use it. Otherwise,
1963 try to fix up this address in case it is invalid. */
1965 replacement = find_fixup_replacement (replacements, var);
1966 if (replacement->new)
1968 *loc = replacement->new;
1969 return;
1972 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1974 /* Unless we are forcing memory to register or we changed the mode,
1975 we can leave things the way they are if the insn is valid. */
1977 INSN_CODE (insn) = -1;
1978 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1979 && recog_memoized (insn) >= 0)
1980 return;
1982 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1983 return;
1986 /* If X contains VAR, we need to unshare it here so that we update
1987 each occurrence separately. But all identical MEMs in one insn
1988 must be replaced with the same rtx because of the possibility of
1989 MATCH_DUPs. */
1991 if (reg_mentioned_p (var, x))
1993 replacement = find_fixup_replacement (replacements, x);
1994 if (replacement->new == 0)
1995 replacement->new = copy_most_rtx (x, var);
1997 *loc = x = replacement->new;
1998 code = GET_CODE (x);
2000 break;
2002 case REG:
2003 case CC0:
2004 case PC:
2005 case CONST_INT:
2006 case CONST:
2007 case SYMBOL_REF:
2008 case LABEL_REF:
2009 case CONST_DOUBLE:
2010 return;
2012 case SIGN_EXTRACT:
2013 case ZERO_EXTRACT:
2014 /* Note that in some cases those types of expressions are altered
2015 by optimize_bit_field, and do not survive to get here. */
2016 if (XEXP (x, 0) == var
2017 || (GET_CODE (XEXP (x, 0)) == SUBREG
2018 && SUBREG_REG (XEXP (x, 0)) == var))
2020 /* Get TEM as a valid MEM in the mode presently in the insn.
2022 We don't worry about the possibility of MATCH_DUP here; it
2023 is highly unlikely and would be tricky to handle. */
2025 tem = XEXP (x, 0);
2026 if (GET_CODE (tem) == SUBREG)
2028 if (GET_MODE_BITSIZE (GET_MODE (tem))
2029 > GET_MODE_BITSIZE (GET_MODE (var)))
2031 replacement = find_fixup_replacement (replacements, var);
2032 if (replacement->new == 0)
2033 replacement->new = gen_reg_rtx (GET_MODE (var));
2034 SUBREG_REG (tem) = replacement->new;
2036 /* The following code works only if we have a MEM, so we
2037 need to handle the subreg here. We directly substitute
2038 it assuming that a subreg must be OK here. We already
2039 scheduled a replacement to copy the mem into the
2040 subreg. */
2041 XEXP (x, 0) = tem;
2042 return;
2044 else
2045 tem = fixup_memory_subreg (tem, insn, 0);
2047 else
2048 tem = fixup_stack_1 (tem, insn);
2050 /* Unless we want to load from memory, get TEM into the proper mode
2051 for an extract from memory. This can only be done if the
2052 extract is at a constant position and length. */
2054 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2055 && GET_CODE (XEXP (x, 2)) == CONST_INT
2056 && ! mode_dependent_address_p (XEXP (tem, 0))
2057 && ! MEM_VOLATILE_P (tem))
2059 enum machine_mode wanted_mode = VOIDmode;
2060 enum machine_mode is_mode = GET_MODE (tem);
2061 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2063 #ifdef HAVE_extzv
2064 if (GET_CODE (x) == ZERO_EXTRACT)
2066 wanted_mode
2067 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2068 if (wanted_mode == VOIDmode)
2069 wanted_mode = word_mode;
2071 #endif
2072 #ifdef HAVE_extv
2073 if (GET_CODE (x) == SIGN_EXTRACT)
2075 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2076 if (wanted_mode == VOIDmode)
2077 wanted_mode = word_mode;
2079 #endif
2080 /* If we have a narrower mode, we can do something. */
2081 if (wanted_mode != VOIDmode
2082 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2084 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2085 rtx old_pos = XEXP (x, 2);
2086 rtx newmem;
2088 /* If the bytes and bits are counted differently, we
2089 must adjust the offset. */
2090 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2091 offset = (GET_MODE_SIZE (is_mode)
2092 - GET_MODE_SIZE (wanted_mode) - offset);
2094 pos %= GET_MODE_BITSIZE (wanted_mode);
2096 newmem = gen_rtx_MEM (wanted_mode,
2097 plus_constant (XEXP (tem, 0), offset));
2098 MEM_COPY_ATTRIBUTES (newmem, tem);
2100 /* Make the change and see if the insn remains valid. */
2101 INSN_CODE (insn) = -1;
2102 XEXP (x, 0) = newmem;
2103 XEXP (x, 2) = GEN_INT (pos);
2105 if (recog_memoized (insn) >= 0)
2106 return;
2108 /* Otherwise, restore old position. XEXP (x, 0) will be
2109 restored later. */
2110 XEXP (x, 2) = old_pos;
2114 /* If we get here, the bitfield extract insn can't accept a memory
2115 reference. Copy the input into a register. */
2117 tem1 = gen_reg_rtx (GET_MODE (tem));
2118 emit_insn_before (gen_move_insn (tem1, tem), insn);
2119 XEXP (x, 0) = tem1;
2120 return;
2122 break;
2124 case SUBREG:
2125 if (SUBREG_REG (x) == var)
2127 /* If this is a special SUBREG made because VAR was promoted
2128 from a wider mode, replace it with VAR and call ourself
2129 recursively, this time saying that the object previously
2130 had its current mode (by virtue of the SUBREG). */
2132 if (SUBREG_PROMOTED_VAR_P (x))
2134 *loc = var;
2135 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2136 return;
2139 /* If this SUBREG makes VAR wider, it has become a paradoxical
2140 SUBREG with VAR in memory, but these aren't allowed at this
2141 stage of the compilation. So load VAR into a pseudo and take
2142 a SUBREG of that pseudo. */
2143 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2145 replacement = find_fixup_replacement (replacements, var);
2146 if (replacement->new == 0)
2147 replacement->new = gen_reg_rtx (GET_MODE (var));
2148 SUBREG_REG (x) = replacement->new;
2149 return;
2152 /* See if we have already found a replacement for this SUBREG.
2153 If so, use it. Otherwise, make a MEM and see if the insn
2154 is recognized. If not, or if we should force MEM into a register,
2155 make a pseudo for this SUBREG. */
2156 replacement = find_fixup_replacement (replacements, x);
2157 if (replacement->new)
2159 *loc = replacement->new;
2160 return;
2163 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2165 INSN_CODE (insn) = -1;
2166 if (! flag_force_mem && recog_memoized (insn) >= 0)
2167 return;
2169 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2170 return;
2172 break;
2174 case SET:
2175 /* First do special simplification of bit-field references. */
2176 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2177 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2178 optimize_bit_field (x, insn, 0);
2179 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2180 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2181 optimize_bit_field (x, insn, NULL_PTR);
2183 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2184 into a register and then store it back out. */
2185 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2186 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2187 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2188 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2189 > GET_MODE_SIZE (GET_MODE (var))))
2191 replacement = find_fixup_replacement (replacements, var);
2192 if (replacement->new == 0)
2193 replacement->new = gen_reg_rtx (GET_MODE (var));
2195 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2196 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2199 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2200 insn into a pseudo and store the low part of the pseudo into VAR. */
2201 if (GET_CODE (SET_DEST (x)) == SUBREG
2202 && SUBREG_REG (SET_DEST (x)) == var
2203 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2204 > GET_MODE_SIZE (GET_MODE (var))))
2206 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2207 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2208 tem)),
2209 insn);
2210 break;
2214 rtx dest = SET_DEST (x);
2215 rtx src = SET_SRC (x);
2216 #ifdef HAVE_insv
2217 rtx outerdest = dest;
2218 #endif
2220 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2221 || GET_CODE (dest) == SIGN_EXTRACT
2222 || GET_CODE (dest) == ZERO_EXTRACT)
2223 dest = XEXP (dest, 0);
2225 if (GET_CODE (src) == SUBREG)
2226 src = SUBREG_REG (src);
2228 /* If VAR does not appear at the top level of the SET
2229 just scan the lower levels of the tree. */
2231 if (src != var && dest != var)
2232 break;
2234 /* We will need to rerecognize this insn. */
2235 INSN_CODE (insn) = -1;
2237 #ifdef HAVE_insv
2238 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2240 /* Since this case will return, ensure we fixup all the
2241 operands here. */
2242 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2243 insn, replacements);
2244 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2245 insn, replacements);
2246 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2247 insn, replacements);
2249 tem = XEXP (outerdest, 0);
2251 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2252 that may appear inside a ZERO_EXTRACT.
2253 This was legitimate when the MEM was a REG. */
2254 if (GET_CODE (tem) == SUBREG
2255 && SUBREG_REG (tem) == var)
2256 tem = fixup_memory_subreg (tem, insn, 0);
2257 else
2258 tem = fixup_stack_1 (tem, insn);
2260 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2261 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2262 && ! mode_dependent_address_p (XEXP (tem, 0))
2263 && ! MEM_VOLATILE_P (tem))
2265 enum machine_mode wanted_mode;
2266 enum machine_mode is_mode = GET_MODE (tem);
2267 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2269 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2270 if (wanted_mode == VOIDmode)
2271 wanted_mode = word_mode;
2273 /* If we have a narrower mode, we can do something. */
2274 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2276 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2277 rtx old_pos = XEXP (outerdest, 2);
2278 rtx newmem;
2280 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2281 offset = (GET_MODE_SIZE (is_mode)
2282 - GET_MODE_SIZE (wanted_mode) - offset);
2284 pos %= GET_MODE_BITSIZE (wanted_mode);
2286 newmem = gen_rtx_MEM (wanted_mode,
2287 plus_constant (XEXP (tem, 0),
2288 offset));
2289 MEM_COPY_ATTRIBUTES (newmem, tem);
2291 /* Make the change and see if the insn remains valid. */
2292 INSN_CODE (insn) = -1;
2293 XEXP (outerdest, 0) = newmem;
2294 XEXP (outerdest, 2) = GEN_INT (pos);
2296 if (recog_memoized (insn) >= 0)
2297 return;
2299 /* Otherwise, restore old position. XEXP (x, 0) will be
2300 restored later. */
2301 XEXP (outerdest, 2) = old_pos;
2305 /* If we get here, the bit-field store doesn't allow memory
2306 or isn't located at a constant position. Load the value into
2307 a register, do the store, and put it back into memory. */
2309 tem1 = gen_reg_rtx (GET_MODE (tem));
2310 emit_insn_before (gen_move_insn (tem1, tem), insn);
2311 emit_insn_after (gen_move_insn (tem, tem1), insn);
2312 XEXP (outerdest, 0) = tem1;
2313 return;
2315 #endif
2317 /* STRICT_LOW_PART is a no-op on memory references
2318 and it can cause combinations to be unrecognizable,
2319 so eliminate it. */
2321 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2322 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2324 /* A valid insn to copy VAR into or out of a register
2325 must be left alone, to avoid an infinite loop here.
2326 If the reference to VAR is by a subreg, fix that up,
2327 since SUBREG is not valid for a memref.
2328 Also fix up the address of the stack slot.
2330 Note that we must not try to recognize the insn until
2331 after we know that we have valid addresses and no
2332 (subreg (mem ...) ...) constructs, since these interfere
2333 with determining the validity of the insn. */
2335 if ((SET_SRC (x) == var
2336 || (GET_CODE (SET_SRC (x)) == SUBREG
2337 && SUBREG_REG (SET_SRC (x)) == var))
2338 && (GET_CODE (SET_DEST (x)) == REG
2339 || (GET_CODE (SET_DEST (x)) == SUBREG
2340 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2341 && GET_MODE (var) == promoted_mode
2342 && x == single_set (insn))
2344 rtx pat, last;
2346 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2347 if (replacement->new)
2348 SET_SRC (x) = replacement->new;
2349 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2350 SET_SRC (x) = replacement->new
2351 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2352 else
2353 SET_SRC (x) = replacement->new
2354 = fixup_stack_1 (SET_SRC (x), insn);
2356 if (recog_memoized (insn) >= 0)
2357 return;
2359 /* INSN is not valid, but we know that we want to
2360 copy SET_SRC (x) to SET_DEST (x) in some way. So
2361 we generate the move and see whether it requires more
2362 than one insn. If it does, we emit those insns and
2363 delete INSN. Otherwise, we an just replace the pattern
2364 of INSN; we have already verified above that INSN has
2365 no other function that to do X. */
2367 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2368 if (GET_CODE (pat) == SEQUENCE)
2370 last = emit_insn_before (pat, insn);
2372 /* INSN might have REG_RETVAL or other important notes, so
2373 we need to store the pattern of the last insn in the
2374 sequence into INSN similarly to the normal case. LAST
2375 should not have REG_NOTES, but we allow them if INSN has
2376 no REG_NOTES. */
2377 if (REG_NOTES (last) && REG_NOTES (insn))
2378 abort ();
2379 if (REG_NOTES (last))
2380 REG_NOTES (insn) = REG_NOTES (last);
2381 PATTERN (insn) = PATTERN (last);
2383 PUT_CODE (last, NOTE);
2384 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2385 NOTE_SOURCE_FILE (last) = 0;
2387 else
2388 PATTERN (insn) = pat;
2390 return;
2393 if ((SET_DEST (x) == var
2394 || (GET_CODE (SET_DEST (x)) == SUBREG
2395 && SUBREG_REG (SET_DEST (x)) == var))
2396 && (GET_CODE (SET_SRC (x)) == REG
2397 || (GET_CODE (SET_SRC (x)) == SUBREG
2398 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2399 && GET_MODE (var) == promoted_mode
2400 && x == single_set (insn))
2402 rtx pat, last;
2404 if (GET_CODE (SET_DEST (x)) == SUBREG)
2405 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2406 else
2407 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2409 if (recog_memoized (insn) >= 0)
2410 return;
2412 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2413 if (GET_CODE (pat) == SEQUENCE)
2415 last = emit_insn_before (pat, insn);
2417 /* INSN might have REG_RETVAL or other important notes, so
2418 we need to store the pattern of the last insn in the
2419 sequence into INSN similarly to the normal case. LAST
2420 should not have REG_NOTES, but we allow them if INSN has
2421 no REG_NOTES. */
2422 if (REG_NOTES (last) && REG_NOTES (insn))
2423 abort ();
2424 if (REG_NOTES (last))
2425 REG_NOTES (insn) = REG_NOTES (last);
2426 PATTERN (insn) = PATTERN (last);
2428 PUT_CODE (last, NOTE);
2429 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2430 NOTE_SOURCE_FILE (last) = 0;
2432 else
2433 PATTERN (insn) = pat;
2435 return;
2438 /* Otherwise, storing into VAR must be handled specially
2439 by storing into a temporary and copying that into VAR
2440 with a new insn after this one. Note that this case
2441 will be used when storing into a promoted scalar since
2442 the insn will now have different modes on the input
2443 and output and hence will be invalid (except for the case
2444 of setting it to a constant, which does not need any
2445 change if it is valid). We generate extra code in that case,
2446 but combine.c will eliminate it. */
2448 if (dest == var)
2450 rtx temp;
2451 rtx fixeddest = SET_DEST (x);
2453 /* STRICT_LOW_PART can be discarded, around a MEM. */
2454 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2455 fixeddest = XEXP (fixeddest, 0);
2456 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2457 if (GET_CODE (fixeddest) == SUBREG)
2459 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2460 promoted_mode = GET_MODE (fixeddest);
2462 else
2463 fixeddest = fixup_stack_1 (fixeddest, insn);
2465 temp = gen_reg_rtx (promoted_mode);
2467 emit_insn_after (gen_move_insn (fixeddest,
2468 gen_lowpart (GET_MODE (fixeddest),
2469 temp)),
2470 insn);
2472 SET_DEST (x) = temp;
2476 default:
2477 break;
2480 /* Nothing special about this RTX; fix its operands. */
2482 fmt = GET_RTX_FORMAT (code);
2483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2485 if (fmt[i] == 'e')
2486 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2487 else if (fmt[i] == 'E')
2489 register int j;
2490 for (j = 0; j < XVECLEN (x, i); j++)
2491 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2492 insn, replacements);
2497 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2498 return an rtx (MEM:m1 newaddr) which is equivalent.
2499 If any insns must be emitted to compute NEWADDR, put them before INSN.
2501 UNCRITICAL nonzero means accept paradoxical subregs.
2502 This is used for subregs found inside REG_NOTES. */
2504 static rtx
2505 fixup_memory_subreg (x, insn, uncritical)
2506 rtx x;
2507 rtx insn;
2508 int uncritical;
2510 int offset = SUBREG_BYTE (x);
2511 rtx addr = XEXP (SUBREG_REG (x), 0);
2512 enum machine_mode mode = GET_MODE (x);
2513 rtx result;
2515 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2516 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2517 && ! uncritical)
2518 abort ();
2520 addr = plus_constant (addr, offset);
2521 if (!flag_force_addr && memory_address_p (mode, addr))
2522 /* Shortcut if no insns need be emitted. */
2523 return change_address (SUBREG_REG (x), mode, addr);
2524 start_sequence ();
2525 result = change_address (SUBREG_REG (x), mode, addr);
2526 emit_insn_before (gen_sequence (), insn);
2527 end_sequence ();
2528 return result;
2531 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2532 Replace subexpressions of X in place.
2533 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2534 Otherwise return X, with its contents possibly altered.
2536 If any insns must be emitted to compute NEWADDR, put them before INSN.
2538 UNCRITICAL is as in fixup_memory_subreg. */
2540 static rtx
2541 walk_fixup_memory_subreg (x, insn, uncritical)
2542 register rtx x;
2543 rtx insn;
2544 int uncritical;
2546 register enum rtx_code code;
2547 register const char *fmt;
2548 register int i;
2550 if (x == 0)
2551 return 0;
2553 code = GET_CODE (x);
2555 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2556 return fixup_memory_subreg (x, insn, uncritical);
2558 /* Nothing special about this RTX; fix its operands. */
2560 fmt = GET_RTX_FORMAT (code);
2561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2563 if (fmt[i] == 'e')
2564 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2565 else if (fmt[i] == 'E')
2567 register int j;
2568 for (j = 0; j < XVECLEN (x, i); j++)
2569 XVECEXP (x, i, j)
2570 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2573 return x;
2576 /* For each memory ref within X, if it refers to a stack slot
2577 with an out of range displacement, put the address in a temp register
2578 (emitting new insns before INSN to load these registers)
2579 and alter the memory ref to use that register.
2580 Replace each such MEM rtx with a copy, to avoid clobberage. */
2582 static rtx
2583 fixup_stack_1 (x, insn)
2584 rtx x;
2585 rtx insn;
2587 register int i;
2588 register RTX_CODE code = GET_CODE (x);
2589 register const char *fmt;
2591 if (code == MEM)
2593 register rtx ad = XEXP (x, 0);
2594 /* If we have address of a stack slot but it's not valid
2595 (displacement is too large), compute the sum in a register. */
2596 if (GET_CODE (ad) == PLUS
2597 && GET_CODE (XEXP (ad, 0)) == REG
2598 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2599 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2600 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2601 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2602 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2603 #endif
2604 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2605 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2606 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2607 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2609 rtx temp, seq;
2610 if (memory_address_p (GET_MODE (x), ad))
2611 return x;
2613 start_sequence ();
2614 temp = copy_to_reg (ad);
2615 seq = gen_sequence ();
2616 end_sequence ();
2617 emit_insn_before (seq, insn);
2618 return change_address (x, VOIDmode, temp);
2620 return x;
2623 fmt = GET_RTX_FORMAT (code);
2624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2626 if (fmt[i] == 'e')
2627 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2628 else if (fmt[i] == 'E')
2630 register int j;
2631 for (j = 0; j < XVECLEN (x, i); j++)
2632 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2635 return x;
2638 /* Optimization: a bit-field instruction whose field
2639 happens to be a byte or halfword in memory
2640 can be changed to a move instruction.
2642 We call here when INSN is an insn to examine or store into a bit-field.
2643 BODY is the SET-rtx to be altered.
2645 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2646 (Currently this is called only from function.c, and EQUIV_MEM
2647 is always 0.) */
2649 static void
2650 optimize_bit_field (body, insn, equiv_mem)
2651 rtx body;
2652 rtx insn;
2653 rtx *equiv_mem;
2655 register rtx bitfield;
2656 int destflag;
2657 rtx seq = 0;
2658 enum machine_mode mode;
2660 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2661 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2662 bitfield = SET_DEST (body), destflag = 1;
2663 else
2664 bitfield = SET_SRC (body), destflag = 0;
2666 /* First check that the field being stored has constant size and position
2667 and is in fact a byte or halfword suitably aligned. */
2669 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2670 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2671 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2672 != BLKmode)
2673 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2675 register rtx memref = 0;
2677 /* Now check that the containing word is memory, not a register,
2678 and that it is safe to change the machine mode. */
2680 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2681 memref = XEXP (bitfield, 0);
2682 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2683 && equiv_mem != 0)
2684 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2685 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2686 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2687 memref = SUBREG_REG (XEXP (bitfield, 0));
2688 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2689 && equiv_mem != 0
2690 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2691 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2693 if (memref
2694 && ! mode_dependent_address_p (XEXP (memref, 0))
2695 && ! MEM_VOLATILE_P (memref))
2697 /* Now adjust the address, first for any subreg'ing
2698 that we are now getting rid of,
2699 and then for which byte of the word is wanted. */
2701 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2702 rtx insns;
2704 /* Adjust OFFSET to count bits from low-address byte. */
2705 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2706 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2707 - offset - INTVAL (XEXP (bitfield, 1)));
2709 /* Adjust OFFSET to count bytes from low-address byte. */
2710 offset /= BITS_PER_UNIT;
2711 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2713 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2714 / UNITS_PER_WORD) * UNITS_PER_WORD;
2715 if (BYTES_BIG_ENDIAN)
2716 offset -= (MIN (UNITS_PER_WORD,
2717 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2718 - MIN (UNITS_PER_WORD,
2719 GET_MODE_SIZE (GET_MODE (memref))));
2722 start_sequence ();
2723 memref = change_address (memref, mode,
2724 plus_constant (XEXP (memref, 0), offset));
2725 insns = get_insns ();
2726 end_sequence ();
2727 emit_insns_before (insns, insn);
2729 /* Store this memory reference where
2730 we found the bit field reference. */
2732 if (destflag)
2734 validate_change (insn, &SET_DEST (body), memref, 1);
2735 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2737 rtx src = SET_SRC (body);
2738 while (GET_CODE (src) == SUBREG
2739 && SUBREG_BYTE (src) == 0)
2740 src = SUBREG_REG (src);
2741 if (GET_MODE (src) != GET_MODE (memref))
2742 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2743 validate_change (insn, &SET_SRC (body), src, 1);
2745 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2746 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2747 /* This shouldn't happen because anything that didn't have
2748 one of these modes should have got converted explicitly
2749 and then referenced through a subreg.
2750 This is so because the original bit-field was
2751 handled by agg_mode and so its tree structure had
2752 the same mode that memref now has. */
2753 abort ();
2755 else
2757 rtx dest = SET_DEST (body);
2759 while (GET_CODE (dest) == SUBREG
2760 && SUBREG_BYTE (dest) == 0
2761 && (GET_MODE_CLASS (GET_MODE (dest))
2762 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2763 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2764 <= UNITS_PER_WORD))
2765 dest = SUBREG_REG (dest);
2767 validate_change (insn, &SET_DEST (body), dest, 1);
2769 if (GET_MODE (dest) == GET_MODE (memref))
2770 validate_change (insn, &SET_SRC (body), memref, 1);
2771 else
2773 /* Convert the mem ref to the destination mode. */
2774 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2776 start_sequence ();
2777 convert_move (newreg, memref,
2778 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2779 seq = get_insns ();
2780 end_sequence ();
2782 validate_change (insn, &SET_SRC (body), newreg, 1);
2786 /* See if we can convert this extraction or insertion into
2787 a simple move insn. We might not be able to do so if this
2788 was, for example, part of a PARALLEL.
2790 If we succeed, write out any needed conversions. If we fail,
2791 it is hard to guess why we failed, so don't do anything
2792 special; just let the optimization be suppressed. */
2794 if (apply_change_group () && seq)
2795 emit_insns_before (seq, insn);
2800 /* These routines are responsible for converting virtual register references
2801 to the actual hard register references once RTL generation is complete.
2803 The following four variables are used for communication between the
2804 routines. They contain the offsets of the virtual registers from their
2805 respective hard registers. */
2807 static int in_arg_offset;
2808 static int var_offset;
2809 static int dynamic_offset;
2810 static int out_arg_offset;
2811 static int cfa_offset;
2813 /* In most machines, the stack pointer register is equivalent to the bottom
2814 of the stack. */
2816 #ifndef STACK_POINTER_OFFSET
2817 #define STACK_POINTER_OFFSET 0
2818 #endif
2820 /* If not defined, pick an appropriate default for the offset of dynamically
2821 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2822 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2824 #ifndef STACK_DYNAMIC_OFFSET
2826 /* The bottom of the stack points to the actual arguments. If
2827 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2828 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2829 stack space for register parameters is not pushed by the caller, but
2830 rather part of the fixed stack areas and hence not included in
2831 `current_function_outgoing_args_size'. Nevertheless, we must allow
2832 for it when allocating stack dynamic objects. */
2834 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2835 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2836 ((ACCUMULATE_OUTGOING_ARGS \
2837 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2838 + (STACK_POINTER_OFFSET)) \
2840 #else
2841 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2842 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2843 + (STACK_POINTER_OFFSET))
2844 #endif
2845 #endif
2847 /* On most machines, the CFA coincides with the first incoming parm. */
2849 #ifndef ARG_POINTER_CFA_OFFSET
2850 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2851 #endif
2853 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2854 its address taken. DECL is the decl for the object stored in the
2855 register, for later use if we do need to force REG into the stack.
2856 REG is overwritten by the MEM like in put_reg_into_stack. */
2859 gen_mem_addressof (reg, decl)
2860 rtx reg;
2861 tree decl;
2863 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2864 REGNO (reg), decl);
2866 /* If the original REG was a user-variable, then so is the REG whose
2867 address is being taken. Likewise for unchanging. */
2868 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2869 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2871 PUT_CODE (reg, MEM);
2872 XEXP (reg, 0) = r;
2873 if (decl)
2875 tree type = TREE_TYPE (decl);
2877 PUT_MODE (reg, DECL_MODE (decl));
2878 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2879 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2880 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2882 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2883 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2885 else
2887 /* We have no alias information about this newly created MEM. */
2888 MEM_ALIAS_SET (reg) = 0;
2890 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2893 return reg;
2896 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2898 void
2899 flush_addressof (decl)
2900 tree decl;
2902 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2903 && DECL_RTL (decl) != 0
2904 && GET_CODE (DECL_RTL (decl)) == MEM
2905 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2906 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2907 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2910 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2912 static void
2913 put_addressof_into_stack (r, ht)
2914 rtx r;
2915 struct hash_table *ht;
2917 tree decl, type;
2918 int volatile_p, used_p;
2920 rtx reg = XEXP (r, 0);
2922 if (GET_CODE (reg) != REG)
2923 abort ();
2925 decl = ADDRESSOF_DECL (r);
2926 if (decl)
2928 type = TREE_TYPE (decl);
2929 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2930 && TREE_THIS_VOLATILE (decl));
2931 used_p = (TREE_USED (decl)
2932 || (TREE_CODE (decl) != SAVE_EXPR
2933 && DECL_INITIAL (decl) != 0));
2935 else
2937 type = NULL_TREE;
2938 volatile_p = 0;
2939 used_p = 1;
2942 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2943 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2946 /* List of replacements made below in purge_addressof_1 when creating
2947 bitfield insertions. */
2948 static rtx purge_bitfield_addressof_replacements;
2950 /* List of replacements made below in purge_addressof_1 for patterns
2951 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2952 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2953 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2954 enough in complex cases, e.g. when some field values can be
2955 extracted by usage MEM with narrower mode. */
2956 static rtx purge_addressof_replacements;
2958 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2959 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2960 the stack. If the function returns FALSE then the replacement could not
2961 be made. */
2963 static bool
2964 purge_addressof_1 (loc, insn, force, store, ht)
2965 rtx *loc;
2966 rtx insn;
2967 int force, store;
2968 struct hash_table *ht;
2970 rtx x;
2971 RTX_CODE code;
2972 int i, j;
2973 const char *fmt;
2974 bool result = true;
2976 /* Re-start here to avoid recursion in common cases. */
2977 restart:
2979 x = *loc;
2980 if (x == 0)
2981 return true;
2983 code = GET_CODE (x);
2985 /* If we don't return in any of the cases below, we will recurse inside
2986 the RTX, which will normally result in any ADDRESSOF being forced into
2987 memory. */
2988 if (code == SET)
2990 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2991 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2992 return result;
2995 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2997 /* We must create a copy of the rtx because it was created by
2998 overwriting a REG rtx which is always shared. */
2999 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3000 rtx insns;
3002 if (validate_change (insn, loc, sub, 0)
3003 || validate_replace_rtx (x, sub, insn))
3004 return true;
3006 start_sequence ();
3007 sub = force_operand (sub, NULL_RTX);
3008 if (! validate_change (insn, loc, sub, 0)
3009 && ! validate_replace_rtx (x, sub, insn))
3010 abort ();
3012 insns = gen_sequence ();
3013 end_sequence ();
3014 emit_insn_before (insns, insn);
3015 return true;
3018 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3020 rtx sub = XEXP (XEXP (x, 0), 0);
3021 rtx sub2;
3023 if (GET_CODE (sub) == MEM)
3025 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
3026 MEM_COPY_ATTRIBUTES (sub2, sub);
3027 sub = sub2;
3029 else if (GET_CODE (sub) == REG
3030 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3032 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3034 int size_x, size_sub;
3036 if (!insn)
3038 /* When processing REG_NOTES look at the list of
3039 replacements done on the insn to find the register that X
3040 was replaced by. */
3041 rtx tem;
3043 for (tem = purge_bitfield_addressof_replacements;
3044 tem != NULL_RTX;
3045 tem = XEXP (XEXP (tem, 1), 1))
3046 if (rtx_equal_p (x, XEXP (tem, 0)))
3048 *loc = XEXP (XEXP (tem, 1), 0);
3049 return true;
3052 /* See comment for purge_addressof_replacements. */
3053 for (tem = purge_addressof_replacements;
3054 tem != NULL_RTX;
3055 tem = XEXP (XEXP (tem, 1), 1))
3056 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3058 rtx z = XEXP (XEXP (tem, 1), 0);
3060 if (GET_MODE (x) == GET_MODE (z)
3061 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3062 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3063 abort ();
3065 /* It can happen that the note may speak of things
3066 in a wider (or just different) mode than the
3067 code did. This is especially true of
3068 REG_RETVAL. */
3070 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3071 z = SUBREG_REG (z);
3073 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3074 && (GET_MODE_SIZE (GET_MODE (x))
3075 > GET_MODE_SIZE (GET_MODE (z))))
3077 /* This can occur as a result in invalid
3078 pointer casts, e.g. float f; ...
3079 *(long long int *)&f.
3080 ??? We could emit a warning here, but
3081 without a line number that wouldn't be
3082 very helpful. */
3083 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3085 else
3086 z = gen_lowpart (GET_MODE (x), z);
3088 *loc = z;
3089 return true;
3092 /* Sometimes we may not be able to find the replacement. For
3093 example when the original insn was a MEM in a wider mode,
3094 and the note is part of a sign extension of a narrowed
3095 version of that MEM. Gcc testcase compile/990829-1.c can
3096 generate an example of this siutation. Rather than complain
3097 we return false, which will prompt our caller to remove the
3098 offending note. */
3099 return false;
3102 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3103 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3105 /* Don't even consider working with paradoxical subregs,
3106 or the moral equivalent seen here. */
3107 if (size_x <= size_sub
3108 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3110 /* Do a bitfield insertion to mirror what would happen
3111 in memory. */
3113 rtx val, seq;
3115 if (store)
3117 rtx p = PREV_INSN (insn);
3119 start_sequence ();
3120 val = gen_reg_rtx (GET_MODE (x));
3121 if (! validate_change (insn, loc, val, 0))
3123 /* Discard the current sequence and put the
3124 ADDRESSOF on stack. */
3125 end_sequence ();
3126 goto give_up;
3128 seq = gen_sequence ();
3129 end_sequence ();
3130 emit_insn_before (seq, insn);
3131 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3132 insn, ht);
3134 start_sequence ();
3135 store_bit_field (sub, size_x, 0, GET_MODE (x),
3136 val, GET_MODE_SIZE (GET_MODE (sub)),
3137 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3139 /* Make sure to unshare any shared rtl that store_bit_field
3140 might have created. */
3141 unshare_all_rtl_again (get_insns ());
3143 seq = gen_sequence ();
3144 end_sequence ();
3145 p = emit_insn_after (seq, insn);
3146 if (NEXT_INSN (insn))
3147 compute_insns_for_mem (NEXT_INSN (insn),
3148 p ? NEXT_INSN (p) : NULL_RTX,
3149 ht);
3151 else
3153 rtx p = PREV_INSN (insn);
3155 start_sequence ();
3156 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3157 GET_MODE (x), GET_MODE (x),
3158 GET_MODE_SIZE (GET_MODE (sub)),
3159 GET_MODE_SIZE (GET_MODE (sub)));
3161 if (! validate_change (insn, loc, val, 0))
3163 /* Discard the current sequence and put the
3164 ADDRESSOF on stack. */
3165 end_sequence ();
3166 goto give_up;
3169 seq = gen_sequence ();
3170 end_sequence ();
3171 emit_insn_before (seq, insn);
3172 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3173 insn, ht);
3176 /* Remember the replacement so that the same one can be done
3177 on the REG_NOTES. */
3178 purge_bitfield_addressof_replacements
3179 = gen_rtx_EXPR_LIST (VOIDmode, x,
3180 gen_rtx_EXPR_LIST
3181 (VOIDmode, val,
3182 purge_bitfield_addressof_replacements));
3184 /* We replaced with a reg -- all done. */
3185 return true;
3189 else if (validate_change (insn, loc, sub, 0))
3191 /* Remember the replacement so that the same one can be done
3192 on the REG_NOTES. */
3193 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3195 rtx tem;
3197 for (tem = purge_addressof_replacements;
3198 tem != NULL_RTX;
3199 tem = XEXP (XEXP (tem, 1), 1))
3200 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3202 XEXP (XEXP (tem, 1), 0) = sub;
3203 return true;
3205 purge_addressof_replacements
3206 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3207 gen_rtx_EXPR_LIST (VOIDmode, sub,
3208 purge_addressof_replacements));
3209 return true;
3211 goto restart;
3213 give_up:;
3214 /* else give up and put it into the stack */
3217 else if (code == ADDRESSOF)
3219 put_addressof_into_stack (x, ht);
3220 return true;
3222 else if (code == SET)
3224 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3225 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3226 return result;
3229 /* Scan all subexpressions. */
3230 fmt = GET_RTX_FORMAT (code);
3231 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3233 if (*fmt == 'e')
3234 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3235 else if (*fmt == 'E')
3236 for (j = 0; j < XVECLEN (x, i); j++)
3237 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3240 return result;
3243 /* Return a new hash table entry in HT. */
3245 static struct hash_entry *
3246 insns_for_mem_newfunc (he, ht, k)
3247 struct hash_entry *he;
3248 struct hash_table *ht;
3249 hash_table_key k ATTRIBUTE_UNUSED;
3251 struct insns_for_mem_entry *ifmhe;
3252 if (he)
3253 return he;
3255 ifmhe = ((struct insns_for_mem_entry *)
3256 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3257 ifmhe->insns = NULL_RTX;
3259 return &ifmhe->he;
3262 /* Return a hash value for K, a REG. */
3264 static unsigned long
3265 insns_for_mem_hash (k)
3266 hash_table_key k;
3268 /* K is really a RTX. Just use the address as the hash value. */
3269 return (unsigned long) k;
3272 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3274 static bool
3275 insns_for_mem_comp (k1, k2)
3276 hash_table_key k1;
3277 hash_table_key k2;
3279 return k1 == k2;
3282 struct insns_for_mem_walk_info {
3283 /* The hash table that we are using to record which INSNs use which
3284 MEMs. */
3285 struct hash_table *ht;
3287 /* The INSN we are currently proessing. */
3288 rtx insn;
3290 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3291 to find the insns that use the REGs in the ADDRESSOFs. */
3292 int pass;
3295 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3296 that might be used in an ADDRESSOF expression, record this INSN in
3297 the hash table given by DATA (which is really a pointer to an
3298 insns_for_mem_walk_info structure). */
3300 static int
3301 insns_for_mem_walk (r, data)
3302 rtx *r;
3303 void *data;
3305 struct insns_for_mem_walk_info *ifmwi
3306 = (struct insns_for_mem_walk_info *) data;
3308 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3309 && GET_CODE (XEXP (*r, 0)) == REG)
3310 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3311 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3313 /* Lookup this MEM in the hashtable, creating it if necessary. */
3314 struct insns_for_mem_entry *ifme
3315 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3317 /*create=*/0,
3318 /*copy=*/0);
3320 /* If we have not already recorded this INSN, do so now. Since
3321 we process the INSNs in order, we know that if we have
3322 recorded it it must be at the front of the list. */
3323 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3324 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3325 ifme->insns);
3328 return 0;
3331 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3332 which REGs in HT. */
3334 static void
3335 compute_insns_for_mem (insns, last_insn, ht)
3336 rtx insns;
3337 rtx last_insn;
3338 struct hash_table *ht;
3340 rtx insn;
3341 struct insns_for_mem_walk_info ifmwi;
3342 ifmwi.ht = ht;
3344 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3345 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3346 if (INSN_P (insn))
3348 ifmwi.insn = insn;
3349 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3353 /* Helper function for purge_addressof called through for_each_rtx.
3354 Returns true iff the rtl is an ADDRESSOF. */
3355 static int
3356 is_addressof (rtl, data)
3357 rtx *rtl;
3358 void *data ATTRIBUTE_UNUSED;
3360 return GET_CODE (*rtl) == ADDRESSOF;
3363 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3364 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3365 stack. */
3367 void
3368 purge_addressof (insns)
3369 rtx insns;
3371 rtx insn;
3372 struct hash_table ht;
3374 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3375 requires a fixup pass over the instruction stream to correct
3376 INSNs that depended on the REG being a REG, and not a MEM. But,
3377 these fixup passes are slow. Furthermore, most MEMs are not
3378 mentioned in very many instructions. So, we speed up the process
3379 by pre-calculating which REGs occur in which INSNs; that allows
3380 us to perform the fixup passes much more quickly. */
3381 hash_table_init (&ht,
3382 insns_for_mem_newfunc,
3383 insns_for_mem_hash,
3384 insns_for_mem_comp);
3385 compute_insns_for_mem (insns, NULL_RTX, &ht);
3387 for (insn = insns; insn; insn = NEXT_INSN (insn))
3388 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3389 || GET_CODE (insn) == CALL_INSN)
3391 if (! purge_addressof_1 (&PATTERN (insn), insn,
3392 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3393 /* If we could not replace the ADDRESSOFs in the insn,
3394 something is wrong. */
3395 abort ();
3397 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3399 /* If we could not replace the ADDRESSOFs in the insn's notes,
3400 we can just remove the offending notes instead. */
3401 rtx note;
3403 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3405 /* If we find a REG_RETVAL note then the insn is a libcall.
3406 Such insns must have REG_EQUAL notes as well, in order
3407 for later passes of the compiler to work. So it is not
3408 safe to delete the notes here, and instead we abort. */
3409 if (REG_NOTE_KIND (note) == REG_RETVAL)
3410 abort ();
3411 if (for_each_rtx (&note, is_addressof, NULL))
3412 remove_note (insn, note);
3417 /* Clean up. */
3418 hash_table_free (&ht);
3419 purge_bitfield_addressof_replacements = 0;
3420 purge_addressof_replacements = 0;
3422 /* REGs are shared. purge_addressof will destructively replace a REG
3423 with a MEM, which creates shared MEMs.
3425 Unfortunately, the children of put_reg_into_stack assume that MEMs
3426 referring to the same stack slot are shared (fixup_var_refs and
3427 the associated hash table code).
3429 So, we have to do another unsharing pass after we have flushed any
3430 REGs that had their address taken into the stack.
3432 It may be worth tracking whether or not we converted any REGs into
3433 MEMs to avoid this overhead when it is not needed. */
3434 unshare_all_rtl_again (get_insns ());
3437 /* Convert a SET of a hard subreg to a set of the appropriet hard
3438 register. A subroutine of purge_hard_subreg_sets. */
3440 static void
3441 purge_single_hard_subreg_set (pattern)
3442 rtx pattern;
3444 rtx reg = SET_DEST (pattern);
3445 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3446 int offset = 0;
3448 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3449 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3451 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3452 GET_MODE (SUBREG_REG (reg)),
3453 SUBREG_BYTE (reg),
3454 GET_MODE (reg));
3455 reg = SUBREG_REG (reg);
3459 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3461 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3462 SET_DEST (pattern) = reg;
3466 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3467 only such SETs that we expect to see are those left in because
3468 integrate can't handle sets of parts of a return value register.
3470 We don't use alter_subreg because we only want to eliminate subregs
3471 of hard registers. */
3473 void
3474 purge_hard_subreg_sets (insn)
3475 rtx insn;
3477 for (; insn; insn = NEXT_INSN (insn))
3479 if (INSN_P (insn))
3481 rtx pattern = PATTERN (insn);
3482 switch (GET_CODE (pattern))
3484 case SET:
3485 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3486 purge_single_hard_subreg_set (pattern);
3487 break;
3488 case PARALLEL:
3490 int j;
3491 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3493 rtx inner_pattern = XVECEXP (pattern, 0, j);
3494 if (GET_CODE (inner_pattern) == SET
3495 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3496 purge_single_hard_subreg_set (inner_pattern);
3499 break;
3500 default:
3501 break;
3507 /* Pass through the INSNS of function FNDECL and convert virtual register
3508 references to hard register references. */
3510 void
3511 instantiate_virtual_regs (fndecl, insns)
3512 tree fndecl;
3513 rtx insns;
3515 rtx insn;
3516 unsigned int i;
3518 /* Compute the offsets to use for this function. */
3519 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3520 var_offset = STARTING_FRAME_OFFSET;
3521 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3522 out_arg_offset = STACK_POINTER_OFFSET;
3523 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3525 /* Scan all variables and parameters of this function. For each that is
3526 in memory, instantiate all virtual registers if the result is a valid
3527 address. If not, we do it later. That will handle most uses of virtual
3528 regs on many machines. */
3529 instantiate_decls (fndecl, 1);
3531 /* Initialize recognition, indicating that volatile is OK. */
3532 init_recog ();
3534 /* Scan through all the insns, instantiating every virtual register still
3535 present. */
3536 for (insn = insns; insn; insn = NEXT_INSN (insn))
3537 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3538 || GET_CODE (insn) == CALL_INSN)
3540 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3541 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3542 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3543 if (GET_CODE (insn) == CALL_INSN)
3544 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3545 NULL_RTX, 0);
3548 /* Instantiate the stack slots for the parm registers, for later use in
3549 addressof elimination. */
3550 for (i = 0; i < max_parm_reg; ++i)
3551 if (parm_reg_stack_loc[i])
3552 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3554 /* Now instantiate the remaining register equivalences for debugging info.
3555 These will not be valid addresses. */
3556 instantiate_decls (fndecl, 0);
3558 /* Indicate that, from now on, assign_stack_local should use
3559 frame_pointer_rtx. */
3560 virtuals_instantiated = 1;
3563 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3564 all virtual registers in their DECL_RTL's.
3566 If VALID_ONLY, do this only if the resulting address is still valid.
3567 Otherwise, always do it. */
3569 static void
3570 instantiate_decls (fndecl, valid_only)
3571 tree fndecl;
3572 int valid_only;
3574 tree decl;
3576 /* Process all parameters of the function. */
3577 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3579 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3581 instantiate_decl (DECL_RTL (decl), size, valid_only);
3583 /* If the parameter was promoted, then the incoming RTL mode may be
3584 larger than the declared type size. We must use the larger of
3585 the two sizes. */
3586 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3587 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3590 /* Now process all variables defined in the function or its subblocks. */
3591 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3594 /* Subroutine of instantiate_decls: Process all decls in the given
3595 BLOCK node and all its subblocks. */
3597 static void
3598 instantiate_decls_1 (let, valid_only)
3599 tree let;
3600 int valid_only;
3602 tree t;
3604 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3605 if (DECL_RTL_SET_P (t))
3606 instantiate_decl (DECL_RTL (t),
3607 int_size_in_bytes (TREE_TYPE (t)),
3608 valid_only);
3610 /* Process all subblocks. */
3611 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3612 instantiate_decls_1 (t, valid_only);
3615 /* Subroutine of the preceding procedures: Given RTL representing a
3616 decl and the size of the object, do any instantiation required.
3618 If VALID_ONLY is non-zero, it means that the RTL should only be
3619 changed if the new address is valid. */
3621 static void
3622 instantiate_decl (x, size, valid_only)
3623 rtx x;
3624 HOST_WIDE_INT size;
3625 int valid_only;
3627 enum machine_mode mode;
3628 rtx addr;
3630 /* If this is not a MEM, no need to do anything. Similarly if the
3631 address is a constant or a register that is not a virtual register. */
3633 if (x == 0 || GET_CODE (x) != MEM)
3634 return;
3636 addr = XEXP (x, 0);
3637 if (CONSTANT_P (addr)
3638 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3639 || (GET_CODE (addr) == REG
3640 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3641 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3642 return;
3644 /* If we should only do this if the address is valid, copy the address.
3645 We need to do this so we can undo any changes that might make the
3646 address invalid. This copy is unfortunate, but probably can't be
3647 avoided. */
3649 if (valid_only)
3650 addr = copy_rtx (addr);
3652 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3654 if (valid_only && size >= 0)
3656 unsigned HOST_WIDE_INT decl_size = size;
3658 /* Now verify that the resulting address is valid for every integer or
3659 floating-point mode up to and including SIZE bytes long. We do this
3660 since the object might be accessed in any mode and frame addresses
3661 are shared. */
3663 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3664 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3665 mode = GET_MODE_WIDER_MODE (mode))
3666 if (! memory_address_p (mode, addr))
3667 return;
3669 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3670 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3671 mode = GET_MODE_WIDER_MODE (mode))
3672 if (! memory_address_p (mode, addr))
3673 return;
3676 /* Put back the address now that we have updated it and we either know
3677 it is valid or we don't care whether it is valid. */
3679 XEXP (x, 0) = addr;
3682 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3683 is a virtual register, return the requivalent hard register and set the
3684 offset indirectly through the pointer. Otherwise, return 0. */
3686 static rtx
3687 instantiate_new_reg (x, poffset)
3688 rtx x;
3689 HOST_WIDE_INT *poffset;
3691 rtx new;
3692 HOST_WIDE_INT offset;
3694 if (x == virtual_incoming_args_rtx)
3695 new = arg_pointer_rtx, offset = in_arg_offset;
3696 else if (x == virtual_stack_vars_rtx)
3697 new = frame_pointer_rtx, offset = var_offset;
3698 else if (x == virtual_stack_dynamic_rtx)
3699 new = stack_pointer_rtx, offset = dynamic_offset;
3700 else if (x == virtual_outgoing_args_rtx)
3701 new = stack_pointer_rtx, offset = out_arg_offset;
3702 else if (x == virtual_cfa_rtx)
3703 new = arg_pointer_rtx, offset = cfa_offset;
3704 else
3705 return 0;
3707 *poffset = offset;
3708 return new;
3711 /* Given a pointer to a piece of rtx and an optional pointer to the
3712 containing object, instantiate any virtual registers present in it.
3714 If EXTRA_INSNS, we always do the replacement and generate
3715 any extra insns before OBJECT. If it zero, we do nothing if replacement
3716 is not valid.
3718 Return 1 if we either had nothing to do or if we were able to do the
3719 needed replacement. Return 0 otherwise; we only return zero if
3720 EXTRA_INSNS is zero.
3722 We first try some simple transformations to avoid the creation of extra
3723 pseudos. */
3725 static int
3726 instantiate_virtual_regs_1 (loc, object, extra_insns)
3727 rtx *loc;
3728 rtx object;
3729 int extra_insns;
3731 rtx x;
3732 RTX_CODE code;
3733 rtx new = 0;
3734 HOST_WIDE_INT offset = 0;
3735 rtx temp;
3736 rtx seq;
3737 int i, j;
3738 const char *fmt;
3740 /* Re-start here to avoid recursion in common cases. */
3741 restart:
3743 x = *loc;
3744 if (x == 0)
3745 return 1;
3747 code = GET_CODE (x);
3749 /* Check for some special cases. */
3750 switch (code)
3752 case CONST_INT:
3753 case CONST_DOUBLE:
3754 case CONST:
3755 case SYMBOL_REF:
3756 case CODE_LABEL:
3757 case PC:
3758 case CC0:
3759 case ASM_INPUT:
3760 case ADDR_VEC:
3761 case ADDR_DIFF_VEC:
3762 case RETURN:
3763 return 1;
3765 case SET:
3766 /* We are allowed to set the virtual registers. This means that
3767 the actual register should receive the source minus the
3768 appropriate offset. This is used, for example, in the handling
3769 of non-local gotos. */
3770 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3772 rtx src = SET_SRC (x);
3774 /* We are setting the register, not using it, so the relevant
3775 offset is the negative of the offset to use were we using
3776 the register. */
3777 offset = - offset;
3778 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3780 /* The only valid sources here are PLUS or REG. Just do
3781 the simplest possible thing to handle them. */
3782 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3783 abort ();
3785 start_sequence ();
3786 if (GET_CODE (src) != REG)
3787 temp = force_operand (src, NULL_RTX);
3788 else
3789 temp = src;
3790 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3791 seq = get_insns ();
3792 end_sequence ();
3794 emit_insns_before (seq, object);
3795 SET_DEST (x) = new;
3797 if (! validate_change (object, &SET_SRC (x), temp, 0)
3798 || ! extra_insns)
3799 abort ();
3801 return 1;
3804 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3805 loc = &SET_SRC (x);
3806 goto restart;
3808 case PLUS:
3809 /* Handle special case of virtual register plus constant. */
3810 if (CONSTANT_P (XEXP (x, 1)))
3812 rtx old, new_offset;
3814 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3815 if (GET_CODE (XEXP (x, 0)) == PLUS)
3817 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3819 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3820 extra_insns);
3821 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3823 else
3825 loc = &XEXP (x, 0);
3826 goto restart;
3830 #ifdef POINTERS_EXTEND_UNSIGNED
3831 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3832 we can commute the PLUS and SUBREG because pointers into the
3833 frame are well-behaved. */
3834 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3835 && GET_CODE (XEXP (x, 1)) == CONST_INT
3836 && 0 != (new
3837 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3838 &offset))
3839 && validate_change (object, loc,
3840 plus_constant (gen_lowpart (ptr_mode,
3841 new),
3842 offset
3843 + INTVAL (XEXP (x, 1))),
3845 return 1;
3846 #endif
3847 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3849 /* We know the second operand is a constant. Unless the
3850 first operand is a REG (which has been already checked),
3851 it needs to be checked. */
3852 if (GET_CODE (XEXP (x, 0)) != REG)
3854 loc = &XEXP (x, 0);
3855 goto restart;
3857 return 1;
3860 new_offset = plus_constant (XEXP (x, 1), offset);
3862 /* If the new constant is zero, try to replace the sum with just
3863 the register. */
3864 if (new_offset == const0_rtx
3865 && validate_change (object, loc, new, 0))
3866 return 1;
3868 /* Next try to replace the register and new offset.
3869 There are two changes to validate here and we can't assume that
3870 in the case of old offset equals new just changing the register
3871 will yield a valid insn. In the interests of a little efficiency,
3872 however, we only call validate change once (we don't queue up the
3873 changes and then call apply_change_group). */
3875 old = XEXP (x, 0);
3876 if (offset == 0
3877 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3878 : (XEXP (x, 0) = new,
3879 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3881 if (! extra_insns)
3883 XEXP (x, 0) = old;
3884 return 0;
3887 /* Otherwise copy the new constant into a register and replace
3888 constant with that register. */
3889 temp = gen_reg_rtx (Pmode);
3890 XEXP (x, 0) = new;
3891 if (validate_change (object, &XEXP (x, 1), temp, 0))
3892 emit_insn_before (gen_move_insn (temp, new_offset), object);
3893 else
3895 /* If that didn't work, replace this expression with a
3896 register containing the sum. */
3898 XEXP (x, 0) = old;
3899 new = gen_rtx_PLUS (Pmode, new, new_offset);
3901 start_sequence ();
3902 temp = force_operand (new, NULL_RTX);
3903 seq = get_insns ();
3904 end_sequence ();
3906 emit_insns_before (seq, object);
3907 if (! validate_change (object, loc, temp, 0)
3908 && ! validate_replace_rtx (x, temp, object))
3909 abort ();
3913 return 1;
3916 /* Fall through to generic two-operand expression case. */
3917 case EXPR_LIST:
3918 case CALL:
3919 case COMPARE:
3920 case MINUS:
3921 case MULT:
3922 case DIV: case UDIV:
3923 case MOD: case UMOD:
3924 case AND: case IOR: case XOR:
3925 case ROTATERT: case ROTATE:
3926 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3927 case NE: case EQ:
3928 case GE: case GT: case GEU: case GTU:
3929 case LE: case LT: case LEU: case LTU:
3930 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3931 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3932 loc = &XEXP (x, 0);
3933 goto restart;
3935 case MEM:
3936 /* Most cases of MEM that convert to valid addresses have already been
3937 handled by our scan of decls. The only special handling we
3938 need here is to make a copy of the rtx to ensure it isn't being
3939 shared if we have to change it to a pseudo.
3941 If the rtx is a simple reference to an address via a virtual register,
3942 it can potentially be shared. In such cases, first try to make it
3943 a valid address, which can also be shared. Otherwise, copy it and
3944 proceed normally.
3946 First check for common cases that need no processing. These are
3947 usually due to instantiation already being done on a previous instance
3948 of a shared rtx. */
3950 temp = XEXP (x, 0);
3951 if (CONSTANT_ADDRESS_P (temp)
3952 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3953 || temp == arg_pointer_rtx
3954 #endif
3955 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3956 || temp == hard_frame_pointer_rtx
3957 #endif
3958 || temp == frame_pointer_rtx)
3959 return 1;
3961 if (GET_CODE (temp) == PLUS
3962 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3963 && (XEXP (temp, 0) == frame_pointer_rtx
3964 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3965 || XEXP (temp, 0) == hard_frame_pointer_rtx
3966 #endif
3967 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3968 || XEXP (temp, 0) == arg_pointer_rtx
3969 #endif
3971 return 1;
3973 if (temp == virtual_stack_vars_rtx
3974 || temp == virtual_incoming_args_rtx
3975 || (GET_CODE (temp) == PLUS
3976 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3977 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3978 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3980 /* This MEM may be shared. If the substitution can be done without
3981 the need to generate new pseudos, we want to do it in place
3982 so all copies of the shared rtx benefit. The call below will
3983 only make substitutions if the resulting address is still
3984 valid.
3986 Note that we cannot pass X as the object in the recursive call
3987 since the insn being processed may not allow all valid
3988 addresses. However, if we were not passed on object, we can
3989 only modify X without copying it if X will have a valid
3990 address.
3992 ??? Also note that this can still lose if OBJECT is an insn that
3993 has less restrictions on an address that some other insn.
3994 In that case, we will modify the shared address. This case
3995 doesn't seem very likely, though. One case where this could
3996 happen is in the case of a USE or CLOBBER reference, but we
3997 take care of that below. */
3999 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4000 object ? object : x, 0))
4001 return 1;
4003 /* Otherwise make a copy and process that copy. We copy the entire
4004 RTL expression since it might be a PLUS which could also be
4005 shared. */
4006 *loc = x = copy_rtx (x);
4009 /* Fall through to generic unary operation case. */
4010 case SUBREG:
4011 case STRICT_LOW_PART:
4012 case NEG: case NOT:
4013 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4014 case SIGN_EXTEND: case ZERO_EXTEND:
4015 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4016 case FLOAT: case FIX:
4017 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4018 case ABS:
4019 case SQRT:
4020 case FFS:
4021 /* These case either have just one operand or we know that we need not
4022 check the rest of the operands. */
4023 loc = &XEXP (x, 0);
4024 goto restart;
4026 case USE:
4027 case CLOBBER:
4028 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4029 go ahead and make the invalid one, but do it to a copy. For a REG,
4030 just make the recursive call, since there's no chance of a problem. */
4032 if ((GET_CODE (XEXP (x, 0)) == MEM
4033 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4035 || (GET_CODE (XEXP (x, 0)) == REG
4036 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4037 return 1;
4039 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4040 loc = &XEXP (x, 0);
4041 goto restart;
4043 case REG:
4044 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4045 in front of this insn and substitute the temporary. */
4046 if ((new = instantiate_new_reg (x, &offset)) != 0)
4048 temp = plus_constant (new, offset);
4049 if (!validate_change (object, loc, temp, 0))
4051 if (! extra_insns)
4052 return 0;
4054 start_sequence ();
4055 temp = force_operand (temp, NULL_RTX);
4056 seq = get_insns ();
4057 end_sequence ();
4059 emit_insns_before (seq, object);
4060 if (! validate_change (object, loc, temp, 0)
4061 && ! validate_replace_rtx (x, temp, object))
4062 abort ();
4066 return 1;
4068 case ADDRESSOF:
4069 if (GET_CODE (XEXP (x, 0)) == REG)
4070 return 1;
4072 else if (GET_CODE (XEXP (x, 0)) == MEM)
4074 /* If we have a (addressof (mem ..)), do any instantiation inside
4075 since we know we'll be making the inside valid when we finally
4076 remove the ADDRESSOF. */
4077 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4078 return 1;
4080 break;
4082 default:
4083 break;
4086 /* Scan all subexpressions. */
4087 fmt = GET_RTX_FORMAT (code);
4088 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4089 if (*fmt == 'e')
4091 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4092 return 0;
4094 else if (*fmt == 'E')
4095 for (j = 0; j < XVECLEN (x, i); j++)
4096 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4097 extra_insns))
4098 return 0;
4100 return 1;
4103 /* Optimization: assuming this function does not receive nonlocal gotos,
4104 delete the handlers for such, as well as the insns to establish
4105 and disestablish them. */
4107 static void
4108 delete_handlers ()
4110 rtx insn;
4111 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4113 /* Delete the handler by turning off the flag that would
4114 prevent jump_optimize from deleting it.
4115 Also permit deletion of the nonlocal labels themselves
4116 if nothing local refers to them. */
4117 if (GET_CODE (insn) == CODE_LABEL)
4119 tree t, last_t;
4121 LABEL_PRESERVE_P (insn) = 0;
4123 /* Remove it from the nonlocal_label list, to avoid confusing
4124 flow. */
4125 for (t = nonlocal_labels, last_t = 0; t;
4126 last_t = t, t = TREE_CHAIN (t))
4127 if (DECL_RTL (TREE_VALUE (t)) == insn)
4128 break;
4129 if (t)
4131 if (! last_t)
4132 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4133 else
4134 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4137 if (GET_CODE (insn) == INSN)
4139 int can_delete = 0;
4140 rtx t;
4141 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4142 if (reg_mentioned_p (t, PATTERN (insn)))
4144 can_delete = 1;
4145 break;
4147 if (can_delete
4148 || (nonlocal_goto_stack_level != 0
4149 && reg_mentioned_p (nonlocal_goto_stack_level,
4150 PATTERN (insn))))
4151 delete_insn (insn);
4157 max_parm_reg_num ()
4159 return max_parm_reg;
4162 /* Return the first insn following those generated by `assign_parms'. */
4165 get_first_nonparm_insn ()
4167 if (last_parm_insn)
4168 return NEXT_INSN (last_parm_insn);
4169 return get_insns ();
4172 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4173 Crash if there is none. */
4176 get_first_block_beg ()
4178 register rtx searcher;
4179 register rtx insn = get_first_nonparm_insn ();
4181 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4182 if (GET_CODE (searcher) == NOTE
4183 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4184 return searcher;
4186 abort (); /* Invalid call to this function. (See comments above.) */
4187 return NULL_RTX;
4190 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4191 This means a type for which function calls must pass an address to the
4192 function or get an address back from the function.
4193 EXP may be a type node or an expression (whose type is tested). */
4196 aggregate_value_p (exp)
4197 tree exp;
4199 int i, regno, nregs;
4200 rtx reg;
4202 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4204 if (TREE_CODE (type) == VOID_TYPE)
4205 return 0;
4206 if (RETURN_IN_MEMORY (type))
4207 return 1;
4208 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4209 and thus can't be returned in registers. */
4210 if (TREE_ADDRESSABLE (type))
4211 return 1;
4212 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4213 return 1;
4214 /* Make sure we have suitable call-clobbered regs to return
4215 the value in; if not, we must return it in memory. */
4216 reg = hard_function_value (type, 0, 0);
4218 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4219 it is OK. */
4220 if (GET_CODE (reg) != REG)
4221 return 0;
4223 regno = REGNO (reg);
4224 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4225 for (i = 0; i < nregs; i++)
4226 if (! call_used_regs[regno + i])
4227 return 1;
4228 return 0;
4231 /* Assign RTL expressions to the function's parameters.
4232 This may involve copying them into registers and using
4233 those registers as the RTL for them. */
4235 void
4236 assign_parms (fndecl)
4237 tree fndecl;
4239 register tree parm;
4240 register rtx entry_parm = 0;
4241 register rtx stack_parm = 0;
4242 CUMULATIVE_ARGS args_so_far;
4243 enum machine_mode promoted_mode, passed_mode;
4244 enum machine_mode nominal_mode, promoted_nominal_mode;
4245 int unsignedp;
4246 /* Total space needed so far for args on the stack,
4247 given as a constant and a tree-expression. */
4248 struct args_size stack_args_size;
4249 tree fntype = TREE_TYPE (fndecl);
4250 tree fnargs = DECL_ARGUMENTS (fndecl);
4251 /* This is used for the arg pointer when referring to stack args. */
4252 rtx internal_arg_pointer;
4253 /* This is a dummy PARM_DECL that we used for the function result if
4254 the function returns a structure. */
4255 tree function_result_decl = 0;
4256 #ifdef SETUP_INCOMING_VARARGS
4257 int varargs_setup = 0;
4258 #endif
4259 rtx conversion_insns = 0;
4260 struct args_size alignment_pad;
4262 /* Nonzero if the last arg is named `__builtin_va_alist',
4263 which is used on some machines for old-fashioned non-ANSI varargs.h;
4264 this should be stuck onto the stack as if it had arrived there. */
4265 int hide_last_arg
4266 = (current_function_varargs
4267 && fnargs
4268 && (parm = tree_last (fnargs)) != 0
4269 && DECL_NAME (parm)
4270 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4271 "__builtin_va_alist")));
4273 /* Nonzero if function takes extra anonymous args.
4274 This means the last named arg must be on the stack
4275 right before the anonymous ones. */
4276 int stdarg
4277 = (TYPE_ARG_TYPES (fntype) != 0
4278 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4279 != void_type_node));
4281 current_function_stdarg = stdarg;
4283 /* If the reg that the virtual arg pointer will be translated into is
4284 not a fixed reg or is the stack pointer, make a copy of the virtual
4285 arg pointer, and address parms via the copy. The frame pointer is
4286 considered fixed even though it is not marked as such.
4288 The second time through, simply use ap to avoid generating rtx. */
4290 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4291 || ! (fixed_regs[ARG_POINTER_REGNUM]
4292 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4293 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4294 else
4295 internal_arg_pointer = virtual_incoming_args_rtx;
4296 current_function_internal_arg_pointer = internal_arg_pointer;
4298 stack_args_size.constant = 0;
4299 stack_args_size.var = 0;
4301 /* If struct value address is treated as the first argument, make it so. */
4302 if (aggregate_value_p (DECL_RESULT (fndecl))
4303 && ! current_function_returns_pcc_struct
4304 && struct_value_incoming_rtx == 0)
4306 tree type = build_pointer_type (TREE_TYPE (fntype));
4308 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4310 DECL_ARG_TYPE (function_result_decl) = type;
4311 TREE_CHAIN (function_result_decl) = fnargs;
4312 fnargs = function_result_decl;
4315 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4316 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4318 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4319 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4320 #else
4321 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4322 #endif
4324 /* We haven't yet found an argument that we must push and pretend the
4325 caller did. */
4326 current_function_pretend_args_size = 0;
4328 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4330 struct args_size stack_offset;
4331 struct args_size arg_size;
4332 int passed_pointer = 0;
4333 int did_conversion = 0;
4334 tree passed_type = DECL_ARG_TYPE (parm);
4335 tree nominal_type = TREE_TYPE (parm);
4336 int pretend_named;
4338 /* Set LAST_NAMED if this is last named arg before some
4339 anonymous args. */
4340 int last_named = ((TREE_CHAIN (parm) == 0
4341 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4342 && (stdarg || current_function_varargs));
4343 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4344 most machines, if this is a varargs/stdarg function, then we treat
4345 the last named arg as if it were anonymous too. */
4346 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4348 if (TREE_TYPE (parm) == error_mark_node
4349 /* This can happen after weird syntax errors
4350 or if an enum type is defined among the parms. */
4351 || TREE_CODE (parm) != PARM_DECL
4352 || passed_type == NULL)
4354 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4355 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4356 TREE_USED (parm) = 1;
4357 continue;
4360 /* For varargs.h function, save info about regs and stack space
4361 used by the individual args, not including the va_alist arg. */
4362 if (hide_last_arg && last_named)
4363 current_function_args_info = args_so_far;
4365 /* Find mode of arg as it is passed, and mode of arg
4366 as it should be during execution of this function. */
4367 passed_mode = TYPE_MODE (passed_type);
4368 nominal_mode = TYPE_MODE (nominal_type);
4370 /* If the parm's mode is VOID, its value doesn't matter,
4371 and avoid the usual things like emit_move_insn that could crash. */
4372 if (nominal_mode == VOIDmode)
4374 SET_DECL_RTL (parm, const0_rtx);
4375 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4376 continue;
4379 /* If the parm is to be passed as a transparent union, use the
4380 type of the first field for the tests below. We have already
4381 verified that the modes are the same. */
4382 if (DECL_TRANSPARENT_UNION (parm)
4383 || (TREE_CODE (passed_type) == UNION_TYPE
4384 && TYPE_TRANSPARENT_UNION (passed_type)))
4385 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4387 /* See if this arg was passed by invisible reference. It is if
4388 it is an object whose size depends on the contents of the
4389 object itself or if the machine requires these objects be passed
4390 that way. */
4392 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4393 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4394 || TREE_ADDRESSABLE (passed_type)
4395 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4396 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4397 passed_type, named_arg)
4398 #endif
4401 passed_type = nominal_type = build_pointer_type (passed_type);
4402 passed_pointer = 1;
4403 passed_mode = nominal_mode = Pmode;
4406 promoted_mode = passed_mode;
4408 #ifdef PROMOTE_FUNCTION_ARGS
4409 /* Compute the mode in which the arg is actually extended to. */
4410 unsignedp = TREE_UNSIGNED (passed_type);
4411 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4412 #endif
4414 /* Let machine desc say which reg (if any) the parm arrives in.
4415 0 means it arrives on the stack. */
4416 #ifdef FUNCTION_INCOMING_ARG
4417 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4418 passed_type, named_arg);
4419 #else
4420 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4421 passed_type, named_arg);
4422 #endif
4424 if (entry_parm == 0)
4425 promoted_mode = passed_mode;
4427 #ifdef SETUP_INCOMING_VARARGS
4428 /* If this is the last named parameter, do any required setup for
4429 varargs or stdargs. We need to know about the case of this being an
4430 addressable type, in which case we skip the registers it
4431 would have arrived in.
4433 For stdargs, LAST_NAMED will be set for two parameters, the one that
4434 is actually the last named, and the dummy parameter. We only
4435 want to do this action once.
4437 Also, indicate when RTL generation is to be suppressed. */
4438 if (last_named && !varargs_setup)
4440 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4441 current_function_pretend_args_size, 0);
4442 varargs_setup = 1;
4444 #endif
4446 /* Determine parm's home in the stack,
4447 in case it arrives in the stack or we should pretend it did.
4449 Compute the stack position and rtx where the argument arrives
4450 and its size.
4452 There is one complexity here: If this was a parameter that would
4453 have been passed in registers, but wasn't only because it is
4454 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4455 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4456 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4457 0 as it was the previous time. */
4459 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4460 locate_and_pad_parm (promoted_mode, passed_type,
4461 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4463 #else
4464 #ifdef FUNCTION_INCOMING_ARG
4465 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4466 passed_type,
4467 pretend_named) != 0,
4468 #else
4469 FUNCTION_ARG (args_so_far, promoted_mode,
4470 passed_type,
4471 pretend_named) != 0,
4472 #endif
4473 #endif
4474 fndecl, &stack_args_size, &stack_offset, &arg_size,
4475 &alignment_pad);
4478 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4480 if (offset_rtx == const0_rtx)
4481 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4482 else
4483 stack_parm = gen_rtx_MEM (promoted_mode,
4484 gen_rtx_PLUS (Pmode,
4485 internal_arg_pointer,
4486 offset_rtx));
4488 set_mem_attributes (stack_parm, parm, 1);
4491 /* If this parameter was passed both in registers and in the stack,
4492 use the copy on the stack. */
4493 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4494 entry_parm = 0;
4496 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4497 /* If this parm was passed part in regs and part in memory,
4498 pretend it arrived entirely in memory
4499 by pushing the register-part onto the stack.
4501 In the special case of a DImode or DFmode that is split,
4502 we could put it together in a pseudoreg directly,
4503 but for now that's not worth bothering with. */
4505 if (entry_parm)
4507 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4508 passed_type, named_arg);
4510 if (nregs > 0)
4512 current_function_pretend_args_size
4513 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4514 / (PARM_BOUNDARY / BITS_PER_UNIT)
4515 * (PARM_BOUNDARY / BITS_PER_UNIT));
4517 /* Handle calls that pass values in multiple non-contiguous
4518 locations. The Irix 6 ABI has examples of this. */
4519 if (GET_CODE (entry_parm) == PARALLEL)
4520 emit_group_store (validize_mem (stack_parm), entry_parm,
4521 int_size_in_bytes (TREE_TYPE (parm)),
4522 TYPE_ALIGN (TREE_TYPE (parm)));
4524 else
4525 move_block_from_reg (REGNO (entry_parm),
4526 validize_mem (stack_parm), nregs,
4527 int_size_in_bytes (TREE_TYPE (parm)));
4529 entry_parm = stack_parm;
4532 #endif
4534 /* If we didn't decide this parm came in a register,
4535 by default it came on the stack. */
4536 if (entry_parm == 0)
4537 entry_parm = stack_parm;
4539 /* Record permanently how this parm was passed. */
4540 DECL_INCOMING_RTL (parm) = entry_parm;
4542 /* If there is actually space on the stack for this parm,
4543 count it in stack_args_size; otherwise set stack_parm to 0
4544 to indicate there is no preallocated stack slot for the parm. */
4546 if (entry_parm == stack_parm
4547 || (GET_CODE (entry_parm) == PARALLEL
4548 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4549 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4550 /* On some machines, even if a parm value arrives in a register
4551 there is still an (uninitialized) stack slot allocated for it.
4553 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4554 whether this parameter already has a stack slot allocated,
4555 because an arg block exists only if current_function_args_size
4556 is larger than some threshold, and we haven't calculated that
4557 yet. So, for now, we just assume that stack slots never exist
4558 in this case. */
4559 || REG_PARM_STACK_SPACE (fndecl) > 0
4560 #endif
4563 stack_args_size.constant += arg_size.constant;
4564 if (arg_size.var)
4565 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4567 else
4568 /* No stack slot was pushed for this parm. */
4569 stack_parm = 0;
4571 /* Update info on where next arg arrives in registers. */
4573 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4574 passed_type, named_arg);
4576 /* If we can't trust the parm stack slot to be aligned enough
4577 for its ultimate type, don't use that slot after entry.
4578 We'll make another stack slot, if we need one. */
4580 unsigned int thisparm_boundary
4581 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4583 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4584 stack_parm = 0;
4587 /* If parm was passed in memory, and we need to convert it on entry,
4588 don't store it back in that same slot. */
4589 if (entry_parm != 0
4590 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4591 stack_parm = 0;
4593 /* When an argument is passed in multiple locations, we can't
4594 make use of this information, but we can save some copying if
4595 the whole argument is passed in a single register. */
4596 if (GET_CODE (entry_parm) == PARALLEL
4597 && nominal_mode != BLKmode && passed_mode != BLKmode)
4599 int i, len = XVECLEN (entry_parm, 0);
4601 for (i = 0; i < len; i++)
4602 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4603 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4604 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4605 == passed_mode)
4606 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4608 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4609 DECL_INCOMING_RTL (parm) = entry_parm;
4610 break;
4614 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4615 in the mode in which it arrives.
4616 STACK_PARM is an RTX for a stack slot where the parameter can live
4617 during the function (in case we want to put it there).
4618 STACK_PARM is 0 if no stack slot was pushed for it.
4620 Now output code if necessary to convert ENTRY_PARM to
4621 the type in which this function declares it,
4622 and store that result in an appropriate place,
4623 which may be a pseudo reg, may be STACK_PARM,
4624 or may be a local stack slot if STACK_PARM is 0.
4626 Set DECL_RTL to that place. */
4628 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4630 /* If a BLKmode arrives in registers, copy it to a stack slot.
4631 Handle calls that pass values in multiple non-contiguous
4632 locations. The Irix 6 ABI has examples of this. */
4633 if (GET_CODE (entry_parm) == REG
4634 || GET_CODE (entry_parm) == PARALLEL)
4636 int size_stored
4637 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4638 UNITS_PER_WORD);
4640 /* Note that we will be storing an integral number of words.
4641 So we have to be careful to ensure that we allocate an
4642 integral number of words. We do this below in the
4643 assign_stack_local if space was not allocated in the argument
4644 list. If it was, this will not work if PARM_BOUNDARY is not
4645 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4646 if it becomes a problem. */
4648 if (stack_parm == 0)
4650 stack_parm
4651 = assign_stack_local (GET_MODE (entry_parm),
4652 size_stored, 0);
4653 set_mem_attributes (stack_parm, parm, 1);
4656 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4657 abort ();
4659 /* Handle calls that pass values in multiple non-contiguous
4660 locations. The Irix 6 ABI has examples of this. */
4661 if (GET_CODE (entry_parm) == PARALLEL)
4662 emit_group_store (validize_mem (stack_parm), entry_parm,
4663 int_size_in_bytes (TREE_TYPE (parm)),
4664 TYPE_ALIGN (TREE_TYPE (parm)));
4665 else
4666 move_block_from_reg (REGNO (entry_parm),
4667 validize_mem (stack_parm),
4668 size_stored / UNITS_PER_WORD,
4669 int_size_in_bytes (TREE_TYPE (parm)));
4671 SET_DECL_RTL (parm, stack_parm);
4673 else if (! ((! optimize
4674 && ! DECL_REGISTER (parm)
4675 && ! DECL_INLINE (fndecl))
4676 || TREE_SIDE_EFFECTS (parm)
4677 /* If -ffloat-store specified, don't put explicit
4678 float variables into registers. */
4679 || (flag_float_store
4680 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4681 /* Always assign pseudo to structure return or item passed
4682 by invisible reference. */
4683 || passed_pointer || parm == function_result_decl)
4685 /* Store the parm in a pseudoregister during the function, but we
4686 may need to do it in a wider mode. */
4688 register rtx parmreg;
4689 unsigned int regno, regnoi = 0, regnor = 0;
4691 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4693 promoted_nominal_mode
4694 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4696 parmreg = gen_reg_rtx (promoted_nominal_mode);
4697 mark_user_reg (parmreg);
4699 /* If this was an item that we received a pointer to, set DECL_RTL
4700 appropriately. */
4701 if (passed_pointer)
4703 SET_DECL_RTL (parm,
4704 gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4705 parmreg));
4706 set_mem_attributes (DECL_RTL (parm), parm, 1);
4708 else
4710 SET_DECL_RTL (parm, parmreg);
4711 maybe_set_unchanging (DECL_RTL (parm), parm);
4714 /* Copy the value into the register. */
4715 if (nominal_mode != passed_mode
4716 || promoted_nominal_mode != promoted_mode)
4718 int save_tree_used;
4719 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4720 mode, by the caller. We now have to convert it to
4721 NOMINAL_MODE, if different. However, PARMREG may be in
4722 a different mode than NOMINAL_MODE if it is being stored
4723 promoted.
4725 If ENTRY_PARM is a hard register, it might be in a register
4726 not valid for operating in its mode (e.g., an odd-numbered
4727 register for a DFmode). In that case, moves are the only
4728 thing valid, so we can't do a convert from there. This
4729 occurs when the calling sequence allow such misaligned
4730 usages.
4732 In addition, the conversion may involve a call, which could
4733 clobber parameters which haven't been copied to pseudo
4734 registers yet. Therefore, we must first copy the parm to
4735 a pseudo reg here, and save the conversion until after all
4736 parameters have been moved. */
4738 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4740 emit_move_insn (tempreg, validize_mem (entry_parm));
4742 push_to_sequence (conversion_insns);
4743 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4745 if (GET_CODE (tempreg) == SUBREG
4746 && GET_MODE (tempreg) == nominal_mode
4747 && GET_CODE (SUBREG_REG (tempreg)) == REG
4748 && nominal_mode == passed_mode
4749 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4750 && GET_MODE_SIZE (GET_MODE (tempreg))
4751 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4753 /* The argument is already sign/zero extended, so note it
4754 into the subreg. */
4755 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4756 SUBREG_PROMOTED_UNSIGNED_P (tempreg) = unsignedp;
4759 /* TREE_USED gets set erroneously during expand_assignment. */
4760 save_tree_used = TREE_USED (parm);
4761 expand_assignment (parm,
4762 make_tree (nominal_type, tempreg), 0, 0);
4763 TREE_USED (parm) = save_tree_used;
4764 conversion_insns = get_insns ();
4765 did_conversion = 1;
4766 end_sequence ();
4768 else
4769 emit_move_insn (parmreg, validize_mem (entry_parm));
4771 /* If we were passed a pointer but the actual value
4772 can safely live in a register, put it in one. */
4773 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4774 && ! ((! optimize
4775 && ! DECL_REGISTER (parm)
4776 && ! DECL_INLINE (fndecl))
4777 || TREE_SIDE_EFFECTS (parm)
4778 /* If -ffloat-store specified, don't put explicit
4779 float variables into registers. */
4780 || (flag_float_store
4781 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4783 /* We can't use nominal_mode, because it will have been set to
4784 Pmode above. We must use the actual mode of the parm. */
4785 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4786 mark_user_reg (parmreg);
4787 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4789 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4790 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4791 push_to_sequence (conversion_insns);
4792 emit_move_insn (tempreg, DECL_RTL (parm));
4793 SET_DECL_RTL (parm,
4794 convert_to_mode (GET_MODE (parmreg),
4795 tempreg,
4796 unsigned_p));
4797 emit_move_insn (parmreg, DECL_RTL (parm));
4798 conversion_insns = get_insns();
4799 did_conversion = 1;
4800 end_sequence ();
4802 else
4803 emit_move_insn (parmreg, DECL_RTL (parm));
4804 SET_DECL_RTL (parm, parmreg);
4805 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4806 now the parm. */
4807 stack_parm = 0;
4809 #ifdef FUNCTION_ARG_CALLEE_COPIES
4810 /* If we are passed an arg by reference and it is our responsibility
4811 to make a copy, do it now.
4812 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4813 original argument, so we must recreate them in the call to
4814 FUNCTION_ARG_CALLEE_COPIES. */
4815 /* ??? Later add code to handle the case that if the argument isn't
4816 modified, don't do the copy. */
4818 else if (passed_pointer
4819 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4820 TYPE_MODE (DECL_ARG_TYPE (parm)),
4821 DECL_ARG_TYPE (parm),
4822 named_arg)
4823 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4825 rtx copy;
4826 tree type = DECL_ARG_TYPE (parm);
4828 /* This sequence may involve a library call perhaps clobbering
4829 registers that haven't been copied to pseudos yet. */
4831 push_to_sequence (conversion_insns);
4833 if (!COMPLETE_TYPE_P (type)
4834 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4835 /* This is a variable sized object. */
4836 copy = gen_rtx_MEM (BLKmode,
4837 allocate_dynamic_stack_space
4838 (expr_size (parm), NULL_RTX,
4839 TYPE_ALIGN (type)));
4840 else
4841 copy = assign_stack_temp (TYPE_MODE (type),
4842 int_size_in_bytes (type), 1);
4843 set_mem_attributes (copy, parm, 1);
4845 store_expr (parm, copy, 0);
4846 emit_move_insn (parmreg, XEXP (copy, 0));
4847 if (current_function_check_memory_usage)
4848 emit_library_call (chkr_set_right_libfunc,
4849 LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
4850 XEXP (copy, 0), Pmode,
4851 GEN_INT (int_size_in_bytes (type)),
4852 TYPE_MODE (sizetype),
4853 GEN_INT (MEMORY_USE_RW),
4854 TYPE_MODE (integer_type_node));
4855 conversion_insns = get_insns ();
4856 did_conversion = 1;
4857 end_sequence ();
4859 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4861 /* In any case, record the parm's desired stack location
4862 in case we later discover it must live in the stack.
4864 If it is a COMPLEX value, store the stack location for both
4865 halves. */
4867 if (GET_CODE (parmreg) == CONCAT)
4868 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4869 else
4870 regno = REGNO (parmreg);
4872 if (regno >= max_parm_reg)
4874 rtx *new;
4875 int old_max_parm_reg = max_parm_reg;
4877 /* It's slow to expand this one register at a time,
4878 but it's also rare and we need max_parm_reg to be
4879 precisely correct. */
4880 max_parm_reg = regno + 1;
4881 new = (rtx *) xrealloc (parm_reg_stack_loc,
4882 max_parm_reg * sizeof (rtx));
4883 memset ((char *) (new + old_max_parm_reg), 0,
4884 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4885 parm_reg_stack_loc = new;
4888 if (GET_CODE (parmreg) == CONCAT)
4890 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4892 regnor = REGNO (gen_realpart (submode, parmreg));
4893 regnoi = REGNO (gen_imagpart (submode, parmreg));
4895 if (stack_parm != 0)
4897 parm_reg_stack_loc[regnor]
4898 = gen_realpart (submode, stack_parm);
4899 parm_reg_stack_loc[regnoi]
4900 = gen_imagpart (submode, stack_parm);
4902 else
4904 parm_reg_stack_loc[regnor] = 0;
4905 parm_reg_stack_loc[regnoi] = 0;
4908 else
4909 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4911 /* Mark the register as eliminable if we did no conversion
4912 and it was copied from memory at a fixed offset,
4913 and the arg pointer was not copied to a pseudo-reg.
4914 If the arg pointer is a pseudo reg or the offset formed
4915 an invalid address, such memory-equivalences
4916 as we make here would screw up life analysis for it. */
4917 if (nominal_mode == passed_mode
4918 && ! did_conversion
4919 && stack_parm != 0
4920 && GET_CODE (stack_parm) == MEM
4921 && stack_offset.var == 0
4922 && reg_mentioned_p (virtual_incoming_args_rtx,
4923 XEXP (stack_parm, 0)))
4925 rtx linsn = get_last_insn ();
4926 rtx sinsn, set;
4928 /* Mark complex types separately. */
4929 if (GET_CODE (parmreg) == CONCAT)
4930 /* Scan backwards for the set of the real and
4931 imaginary parts. */
4932 for (sinsn = linsn; sinsn != 0;
4933 sinsn = prev_nonnote_insn (sinsn))
4935 set = single_set (sinsn);
4936 if (set != 0
4937 && SET_DEST (set) == regno_reg_rtx [regnoi])
4938 REG_NOTES (sinsn)
4939 = gen_rtx_EXPR_LIST (REG_EQUIV,
4940 parm_reg_stack_loc[regnoi],
4941 REG_NOTES (sinsn));
4942 else if (set != 0
4943 && SET_DEST (set) == regno_reg_rtx [regnor])
4944 REG_NOTES (sinsn)
4945 = gen_rtx_EXPR_LIST (REG_EQUIV,
4946 parm_reg_stack_loc[regnor],
4947 REG_NOTES (sinsn));
4949 else if ((set = single_set (linsn)) != 0
4950 && SET_DEST (set) == parmreg)
4951 REG_NOTES (linsn)
4952 = gen_rtx_EXPR_LIST (REG_EQUIV,
4953 stack_parm, REG_NOTES (linsn));
4956 /* For pointer data type, suggest pointer register. */
4957 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4958 mark_reg_pointer (parmreg,
4959 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4961 /* If something wants our address, try to use ADDRESSOF. */
4962 if (TREE_ADDRESSABLE (parm))
4964 /* If we end up putting something into the stack,
4965 fixup_var_refs_insns will need to make a pass over
4966 all the instructions. It looks throughs the pending
4967 sequences -- but it can't see the ones in the
4968 CONVERSION_INSNS, if they're not on the sequence
4969 stack. So, we go back to that sequence, just so that
4970 the fixups will happen. */
4971 push_to_sequence (conversion_insns);
4972 put_var_into_stack (parm);
4973 conversion_insns = get_insns ();
4974 end_sequence ();
4977 else
4979 /* Value must be stored in the stack slot STACK_PARM
4980 during function execution. */
4982 if (promoted_mode != nominal_mode)
4984 /* Conversion is required. */
4985 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4987 emit_move_insn (tempreg, validize_mem (entry_parm));
4989 push_to_sequence (conversion_insns);
4990 entry_parm = convert_to_mode (nominal_mode, tempreg,
4991 TREE_UNSIGNED (TREE_TYPE (parm)));
4992 if (stack_parm)
4994 /* ??? This may need a big-endian conversion on sparc64. */
4995 stack_parm = change_address (stack_parm, nominal_mode,
4996 NULL_RTX);
4998 conversion_insns = get_insns ();
4999 did_conversion = 1;
5000 end_sequence ();
5003 if (entry_parm != stack_parm)
5005 if (stack_parm == 0)
5007 stack_parm
5008 = assign_stack_local (GET_MODE (entry_parm),
5009 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5010 set_mem_attributes (stack_parm, parm, 1);
5013 if (promoted_mode != nominal_mode)
5015 push_to_sequence (conversion_insns);
5016 emit_move_insn (validize_mem (stack_parm),
5017 validize_mem (entry_parm));
5018 conversion_insns = get_insns ();
5019 end_sequence ();
5021 else
5022 emit_move_insn (validize_mem (stack_parm),
5023 validize_mem (entry_parm));
5025 if (current_function_check_memory_usage)
5027 push_to_sequence (conversion_insns);
5028 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK,
5029 VOIDmode, 3, XEXP (stack_parm, 0), Pmode,
5030 GEN_INT (GET_MODE_SIZE (GET_MODE
5031 (entry_parm))),
5032 TYPE_MODE (sizetype),
5033 GEN_INT (MEMORY_USE_RW),
5034 TYPE_MODE (integer_type_node));
5036 conversion_insns = get_insns ();
5037 end_sequence ();
5039 SET_DECL_RTL (parm, stack_parm);
5042 /* If this "parameter" was the place where we are receiving the
5043 function's incoming structure pointer, set up the result. */
5044 if (parm == function_result_decl)
5046 tree result = DECL_RESULT (fndecl);
5048 SET_DECL_RTL (result,
5049 gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm)));
5051 set_mem_attributes (DECL_RTL (result), result, 1);
5055 /* Output all parameter conversion instructions (possibly including calls)
5056 now that all parameters have been copied out of hard registers. */
5057 emit_insns (conversion_insns);
5059 last_parm_insn = get_last_insn ();
5061 current_function_args_size = stack_args_size.constant;
5063 /* Adjust function incoming argument size for alignment and
5064 minimum length. */
5066 #ifdef REG_PARM_STACK_SPACE
5067 #ifndef MAYBE_REG_PARM_STACK_SPACE
5068 current_function_args_size = MAX (current_function_args_size,
5069 REG_PARM_STACK_SPACE (fndecl));
5070 #endif
5071 #endif
5073 #ifdef STACK_BOUNDARY
5074 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5076 current_function_args_size
5077 = ((current_function_args_size + STACK_BYTES - 1)
5078 / STACK_BYTES) * STACK_BYTES;
5079 #endif
5081 #ifdef ARGS_GROW_DOWNWARD
5082 current_function_arg_offset_rtx
5083 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5084 : expand_expr (size_diffop (stack_args_size.var,
5085 size_int (-stack_args_size.constant)),
5086 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
5087 #else
5088 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5089 #endif
5091 /* See how many bytes, if any, of its args a function should try to pop
5092 on return. */
5094 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5095 current_function_args_size);
5097 /* For stdarg.h function, save info about
5098 regs and stack space used by the named args. */
5100 if (!hide_last_arg)
5101 current_function_args_info = args_so_far;
5103 /* Set the rtx used for the function return value. Put this in its
5104 own variable so any optimizers that need this information don't have
5105 to include tree.h. Do this here so it gets done when an inlined
5106 function gets output. */
5108 current_function_return_rtx
5109 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5110 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5113 /* Indicate whether REGNO is an incoming argument to the current function
5114 that was promoted to a wider mode. If so, return the RTX for the
5115 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5116 that REGNO is promoted from and whether the promotion was signed or
5117 unsigned. */
5119 #ifdef PROMOTE_FUNCTION_ARGS
5122 promoted_input_arg (regno, pmode, punsignedp)
5123 unsigned int regno;
5124 enum machine_mode *pmode;
5125 int *punsignedp;
5127 tree arg;
5129 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5130 arg = TREE_CHAIN (arg))
5131 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5132 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5133 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5135 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5136 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5138 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5139 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5140 && mode != DECL_MODE (arg))
5142 *pmode = DECL_MODE (arg);
5143 *punsignedp = unsignedp;
5144 return DECL_INCOMING_RTL (arg);
5148 return 0;
5151 #endif
5153 /* Compute the size and offset from the start of the stacked arguments for a
5154 parm passed in mode PASSED_MODE and with type TYPE.
5156 INITIAL_OFFSET_PTR points to the current offset into the stacked
5157 arguments.
5159 The starting offset and size for this parm are returned in *OFFSET_PTR
5160 and *ARG_SIZE_PTR, respectively.
5162 IN_REGS is non-zero if the argument will be passed in registers. It will
5163 never be set if REG_PARM_STACK_SPACE is not defined.
5165 FNDECL is the function in which the argument was defined.
5167 There are two types of rounding that are done. The first, controlled by
5168 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5169 list to be aligned to the specific boundary (in bits). This rounding
5170 affects the initial and starting offsets, but not the argument size.
5172 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5173 optionally rounds the size of the parm to PARM_BOUNDARY. The
5174 initial offset is not affected by this rounding, while the size always
5175 is and the starting offset may be. */
5177 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5178 initial_offset_ptr is positive because locate_and_pad_parm's
5179 callers pass in the total size of args so far as
5180 initial_offset_ptr. arg_size_ptr is always positive.*/
5182 void
5183 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5184 initial_offset_ptr, offset_ptr, arg_size_ptr,
5185 alignment_pad)
5186 enum machine_mode passed_mode;
5187 tree type;
5188 int in_regs ATTRIBUTE_UNUSED;
5189 tree fndecl ATTRIBUTE_UNUSED;
5190 struct args_size *initial_offset_ptr;
5191 struct args_size *offset_ptr;
5192 struct args_size *arg_size_ptr;
5193 struct args_size *alignment_pad;
5196 tree sizetree
5197 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5198 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5199 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5201 #ifdef REG_PARM_STACK_SPACE
5202 /* If we have found a stack parm before we reach the end of the
5203 area reserved for registers, skip that area. */
5204 if (! in_regs)
5206 int reg_parm_stack_space = 0;
5208 #ifdef MAYBE_REG_PARM_STACK_SPACE
5209 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5210 #else
5211 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5212 #endif
5213 if (reg_parm_stack_space > 0)
5215 if (initial_offset_ptr->var)
5217 initial_offset_ptr->var
5218 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5219 ssize_int (reg_parm_stack_space));
5220 initial_offset_ptr->constant = 0;
5222 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5223 initial_offset_ptr->constant = reg_parm_stack_space;
5226 #endif /* REG_PARM_STACK_SPACE */
5228 arg_size_ptr->var = 0;
5229 arg_size_ptr->constant = 0;
5230 alignment_pad->var = 0;
5231 alignment_pad->constant = 0;
5233 #ifdef ARGS_GROW_DOWNWARD
5234 if (initial_offset_ptr->var)
5236 offset_ptr->constant = 0;
5237 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5238 initial_offset_ptr->var);
5240 else
5242 offset_ptr->constant = -initial_offset_ptr->constant;
5243 offset_ptr->var = 0;
5245 if (where_pad != none
5246 && (!host_integerp (sizetree, 1)
5247 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5248 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5249 SUB_PARM_SIZE (*offset_ptr, sizetree);
5250 if (where_pad != downward)
5251 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5252 if (initial_offset_ptr->var)
5253 arg_size_ptr->var = size_binop (MINUS_EXPR,
5254 size_binop (MINUS_EXPR,
5255 ssize_int (0),
5256 initial_offset_ptr->var),
5257 offset_ptr->var);
5259 else
5260 arg_size_ptr->constant = (-initial_offset_ptr->constant
5261 - offset_ptr->constant);
5263 #else /* !ARGS_GROW_DOWNWARD */
5264 if (!in_regs
5265 #ifdef REG_PARM_STACK_SPACE
5266 || REG_PARM_STACK_SPACE (fndecl) > 0
5267 #endif
5269 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5270 *offset_ptr = *initial_offset_ptr;
5272 #ifdef PUSH_ROUNDING
5273 if (passed_mode != BLKmode)
5274 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5275 #endif
5277 /* Pad_below needs the pre-rounded size to know how much to pad below
5278 so this must be done before rounding up. */
5279 if (where_pad == downward
5280 /* However, BLKmode args passed in regs have their padding done elsewhere.
5281 The stack slot must be able to hold the entire register. */
5282 && !(in_regs && passed_mode == BLKmode))
5283 pad_below (offset_ptr, passed_mode, sizetree);
5285 if (where_pad != none
5286 && (!host_integerp (sizetree, 1)
5287 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5288 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5290 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5291 #endif /* ARGS_GROW_DOWNWARD */
5294 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5295 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5297 static void
5298 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5299 struct args_size *offset_ptr;
5300 int boundary;
5301 struct args_size *alignment_pad;
5303 tree save_var = NULL_TREE;
5304 HOST_WIDE_INT save_constant = 0;
5306 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5308 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5310 save_var = offset_ptr->var;
5311 save_constant = offset_ptr->constant;
5314 alignment_pad->var = NULL_TREE;
5315 alignment_pad->constant = 0;
5317 if (boundary > BITS_PER_UNIT)
5319 if (offset_ptr->var)
5321 offset_ptr->var =
5322 #ifdef ARGS_GROW_DOWNWARD
5323 round_down
5324 #else
5325 round_up
5326 #endif
5327 (ARGS_SIZE_TREE (*offset_ptr),
5328 boundary / BITS_PER_UNIT);
5329 offset_ptr->constant = 0; /*?*/
5330 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5331 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5332 save_var);
5334 else
5336 offset_ptr->constant =
5337 #ifdef ARGS_GROW_DOWNWARD
5338 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5339 #else
5340 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5341 #endif
5342 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5343 alignment_pad->constant = offset_ptr->constant - save_constant;
5348 #ifndef ARGS_GROW_DOWNWARD
5349 static void
5350 pad_below (offset_ptr, passed_mode, sizetree)
5351 struct args_size *offset_ptr;
5352 enum machine_mode passed_mode;
5353 tree sizetree;
5355 if (passed_mode != BLKmode)
5357 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5358 offset_ptr->constant
5359 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5360 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5361 - GET_MODE_SIZE (passed_mode));
5363 else
5365 if (TREE_CODE (sizetree) != INTEGER_CST
5366 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5368 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5369 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5370 /* Add it in. */
5371 ADD_PARM_SIZE (*offset_ptr, s2);
5372 SUB_PARM_SIZE (*offset_ptr, sizetree);
5376 #endif
5378 /* Walk the tree of blocks describing the binding levels within a function
5379 and warn about uninitialized variables.
5380 This is done after calling flow_analysis and before global_alloc
5381 clobbers the pseudo-regs to hard regs. */
5383 void
5384 uninitialized_vars_warning (block)
5385 tree block;
5387 register tree decl, sub;
5388 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5390 if (warn_uninitialized
5391 && TREE_CODE (decl) == VAR_DECL
5392 /* These warnings are unreliable for and aggregates
5393 because assigning the fields one by one can fail to convince
5394 flow.c that the entire aggregate was initialized.
5395 Unions are troublesome because members may be shorter. */
5396 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5397 && DECL_RTL (decl) != 0
5398 && GET_CODE (DECL_RTL (decl)) == REG
5399 /* Global optimizations can make it difficult to determine if a
5400 particular variable has been initialized. However, a VAR_DECL
5401 with a nonzero DECL_INITIAL had an initializer, so do not
5402 claim it is potentially uninitialized.
5404 We do not care about the actual value in DECL_INITIAL, so we do
5405 not worry that it may be a dangling pointer. */
5406 && DECL_INITIAL (decl) == NULL_TREE
5407 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5408 warning_with_decl (decl,
5409 "`%s' might be used uninitialized in this function");
5410 if (extra_warnings
5411 && TREE_CODE (decl) == VAR_DECL
5412 && DECL_RTL (decl) != 0
5413 && GET_CODE (DECL_RTL (decl)) == REG
5414 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5415 warning_with_decl (decl,
5416 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5418 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5419 uninitialized_vars_warning (sub);
5422 /* Do the appropriate part of uninitialized_vars_warning
5423 but for arguments instead of local variables. */
5425 void
5426 setjmp_args_warning ()
5428 register tree decl;
5429 for (decl = DECL_ARGUMENTS (current_function_decl);
5430 decl; decl = TREE_CHAIN (decl))
5431 if (DECL_RTL (decl) != 0
5432 && GET_CODE (DECL_RTL (decl)) == REG
5433 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5434 warning_with_decl (decl,
5435 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5438 /* If this function call setjmp, put all vars into the stack
5439 unless they were declared `register'. */
5441 void
5442 setjmp_protect (block)
5443 tree block;
5445 register tree decl, sub;
5446 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5447 if ((TREE_CODE (decl) == VAR_DECL
5448 || TREE_CODE (decl) == PARM_DECL)
5449 && DECL_RTL (decl) != 0
5450 && (GET_CODE (DECL_RTL (decl)) == REG
5451 || (GET_CODE (DECL_RTL (decl)) == MEM
5452 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5453 /* If this variable came from an inline function, it must be
5454 that its life doesn't overlap the setjmp. If there was a
5455 setjmp in the function, it would already be in memory. We
5456 must exclude such variable because their DECL_RTL might be
5457 set to strange things such as virtual_stack_vars_rtx. */
5458 && ! DECL_FROM_INLINE (decl)
5459 && (
5460 #ifdef NON_SAVING_SETJMP
5461 /* If longjmp doesn't restore the registers,
5462 don't put anything in them. */
5463 NON_SAVING_SETJMP
5465 #endif
5466 ! DECL_REGISTER (decl)))
5467 put_var_into_stack (decl);
5468 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5469 setjmp_protect (sub);
5472 /* Like the previous function, but for args instead of local variables. */
5474 void
5475 setjmp_protect_args ()
5477 register tree decl;
5478 for (decl = DECL_ARGUMENTS (current_function_decl);
5479 decl; decl = TREE_CHAIN (decl))
5480 if ((TREE_CODE (decl) == VAR_DECL
5481 || TREE_CODE (decl) == PARM_DECL)
5482 && DECL_RTL (decl) != 0
5483 && (GET_CODE (DECL_RTL (decl)) == REG
5484 || (GET_CODE (DECL_RTL (decl)) == MEM
5485 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5486 && (
5487 /* If longjmp doesn't restore the registers,
5488 don't put anything in them. */
5489 #ifdef NON_SAVING_SETJMP
5490 NON_SAVING_SETJMP
5492 #endif
5493 ! DECL_REGISTER (decl)))
5494 put_var_into_stack (decl);
5497 /* Return the context-pointer register corresponding to DECL,
5498 or 0 if it does not need one. */
5501 lookup_static_chain (decl)
5502 tree decl;
5504 tree context = decl_function_context (decl);
5505 tree link;
5507 if (context == 0
5508 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5509 return 0;
5511 /* We treat inline_function_decl as an alias for the current function
5512 because that is the inline function whose vars, types, etc.
5513 are being merged into the current function.
5514 See expand_inline_function. */
5515 if (context == current_function_decl || context == inline_function_decl)
5516 return virtual_stack_vars_rtx;
5518 for (link = context_display; link; link = TREE_CHAIN (link))
5519 if (TREE_PURPOSE (link) == context)
5520 return RTL_EXPR_RTL (TREE_VALUE (link));
5522 abort ();
5525 /* Convert a stack slot address ADDR for variable VAR
5526 (from a containing function)
5527 into an address valid in this function (using a static chain). */
5530 fix_lexical_addr (addr, var)
5531 rtx addr;
5532 tree var;
5534 rtx basereg;
5535 HOST_WIDE_INT displacement;
5536 tree context = decl_function_context (var);
5537 struct function *fp;
5538 rtx base = 0;
5540 /* If this is the present function, we need not do anything. */
5541 if (context == current_function_decl || context == inline_function_decl)
5542 return addr;
5544 for (fp = outer_function_chain; fp; fp = fp->next)
5545 if (fp->decl == context)
5546 break;
5548 if (fp == 0)
5549 abort ();
5551 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5552 addr = XEXP (XEXP (addr, 0), 0);
5554 /* Decode given address as base reg plus displacement. */
5555 if (GET_CODE (addr) == REG)
5556 basereg = addr, displacement = 0;
5557 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5558 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5559 else
5560 abort ();
5562 /* We accept vars reached via the containing function's
5563 incoming arg pointer and via its stack variables pointer. */
5564 if (basereg == fp->internal_arg_pointer)
5566 /* If reached via arg pointer, get the arg pointer value
5567 out of that function's stack frame.
5569 There are two cases: If a separate ap is needed, allocate a
5570 slot in the outer function for it and dereference it that way.
5571 This is correct even if the real ap is actually a pseudo.
5572 Otherwise, just adjust the offset from the frame pointer to
5573 compensate. */
5575 #ifdef NEED_SEPARATE_AP
5576 rtx addr;
5578 if (fp->x_arg_pointer_save_area == 0)
5579 fp->x_arg_pointer_save_area
5580 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5582 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5583 addr = memory_address (Pmode, addr);
5585 base = gen_rtx_MEM (Pmode, addr);
5586 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5587 base = copy_to_reg (base);
5588 #else
5589 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5590 base = lookup_static_chain (var);
5591 #endif
5594 else if (basereg == virtual_stack_vars_rtx)
5596 /* This is the same code as lookup_static_chain, duplicated here to
5597 avoid an extra call to decl_function_context. */
5598 tree link;
5600 for (link = context_display; link; link = TREE_CHAIN (link))
5601 if (TREE_PURPOSE (link) == context)
5603 base = RTL_EXPR_RTL (TREE_VALUE (link));
5604 break;
5608 if (base == 0)
5609 abort ();
5611 /* Use same offset, relative to appropriate static chain or argument
5612 pointer. */
5613 return plus_constant (base, displacement);
5616 /* Return the address of the trampoline for entering nested fn FUNCTION.
5617 If necessary, allocate a trampoline (in the stack frame)
5618 and emit rtl to initialize its contents (at entry to this function). */
5621 trampoline_address (function)
5622 tree function;
5624 tree link;
5625 tree rtlexp;
5626 rtx tramp;
5627 struct function *fp;
5628 tree fn_context;
5630 /* Find an existing trampoline and return it. */
5631 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5632 if (TREE_PURPOSE (link) == function)
5633 return
5634 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5636 for (fp = outer_function_chain; fp; fp = fp->next)
5637 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5638 if (TREE_PURPOSE (link) == function)
5640 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5641 function);
5642 return adjust_trampoline_addr (tramp);
5645 /* None exists; we must make one. */
5647 /* Find the `struct function' for the function containing FUNCTION. */
5648 fp = 0;
5649 fn_context = decl_function_context (function);
5650 if (fn_context != current_function_decl
5651 && fn_context != inline_function_decl)
5652 for (fp = outer_function_chain; fp; fp = fp->next)
5653 if (fp->decl == fn_context)
5654 break;
5656 /* Allocate run-time space for this trampoline
5657 (usually in the defining function's stack frame). */
5658 #ifdef ALLOCATE_TRAMPOLINE
5659 tramp = ALLOCATE_TRAMPOLINE (fp);
5660 #else
5661 /* If rounding needed, allocate extra space
5662 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5663 #ifdef TRAMPOLINE_ALIGNMENT
5664 #define TRAMPOLINE_REAL_SIZE \
5665 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5666 #else
5667 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5668 #endif
5669 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5670 fp ? fp : cfun);
5671 #endif
5673 /* Record the trampoline for reuse and note it for later initialization
5674 by expand_function_end. */
5675 if (fp != 0)
5677 rtlexp = make_node (RTL_EXPR);
5678 RTL_EXPR_RTL (rtlexp) = tramp;
5679 fp->x_trampoline_list = tree_cons (function, rtlexp,
5680 fp->x_trampoline_list);
5682 else
5684 /* Make the RTL_EXPR node temporary, not momentary, so that the
5685 trampoline_list doesn't become garbage. */
5686 rtlexp = make_node (RTL_EXPR);
5688 RTL_EXPR_RTL (rtlexp) = tramp;
5689 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5692 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5693 return adjust_trampoline_addr (tramp);
5696 /* Given a trampoline address,
5697 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5699 static rtx
5700 round_trampoline_addr (tramp)
5701 rtx tramp;
5703 #ifdef TRAMPOLINE_ALIGNMENT
5704 /* Round address up to desired boundary. */
5705 rtx temp = gen_reg_rtx (Pmode);
5706 temp = expand_binop (Pmode, add_optab, tramp,
5707 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5708 temp, 0, OPTAB_LIB_WIDEN);
5709 tramp = expand_binop (Pmode, and_optab, temp,
5710 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5711 temp, 0, OPTAB_LIB_WIDEN);
5712 #endif
5713 return tramp;
5716 /* Given a trampoline address, round it then apply any
5717 platform-specific adjustments so that the result can be used for a
5718 function call . */
5720 static rtx
5721 adjust_trampoline_addr (tramp)
5722 rtx tramp;
5724 tramp = round_trampoline_addr (tramp);
5725 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5726 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5727 #endif
5728 return tramp;
5731 /* Put all this function's BLOCK nodes including those that are chained
5732 onto the first block into a vector, and return it.
5733 Also store in each NOTE for the beginning or end of a block
5734 the index of that block in the vector.
5735 The arguments are BLOCK, the chain of top-level blocks of the function,
5736 and INSNS, the insn chain of the function. */
5738 void
5739 identify_blocks ()
5741 int n_blocks;
5742 tree *block_vector, *last_block_vector;
5743 tree *block_stack;
5744 tree block = DECL_INITIAL (current_function_decl);
5746 if (block == 0)
5747 return;
5749 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5750 depth-first order. */
5751 block_vector = get_block_vector (block, &n_blocks);
5752 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5754 last_block_vector = identify_blocks_1 (get_insns (),
5755 block_vector + 1,
5756 block_vector + n_blocks,
5757 block_stack);
5759 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5760 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5761 if (0 && last_block_vector != block_vector + n_blocks)
5762 abort ();
5764 free (block_vector);
5765 free (block_stack);
5768 /* Subroutine of identify_blocks. Do the block substitution on the
5769 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5771 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5772 BLOCK_VECTOR is incremented for each block seen. */
5774 static tree *
5775 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5776 rtx insns;
5777 tree *block_vector;
5778 tree *end_block_vector;
5779 tree *orig_block_stack;
5781 rtx insn;
5782 tree *block_stack = orig_block_stack;
5784 for (insn = insns; insn; insn = NEXT_INSN (insn))
5786 if (GET_CODE (insn) == NOTE)
5788 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5790 tree b;
5792 /* If there are more block notes than BLOCKs, something
5793 is badly wrong. */
5794 if (block_vector == end_block_vector)
5795 abort ();
5797 b = *block_vector++;
5798 NOTE_BLOCK (insn) = b;
5799 *block_stack++ = b;
5801 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5803 /* If there are more NOTE_INSN_BLOCK_ENDs than
5804 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5805 if (block_stack == orig_block_stack)
5806 abort ();
5808 NOTE_BLOCK (insn) = *--block_stack;
5811 else if (GET_CODE (insn) == CALL_INSN
5812 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5814 rtx cp = PATTERN (insn);
5816 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5817 end_block_vector, block_stack);
5818 if (XEXP (cp, 1))
5819 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5820 end_block_vector, block_stack);
5821 if (XEXP (cp, 2))
5822 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5823 end_block_vector, block_stack);
5827 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5828 something is badly wrong. */
5829 if (block_stack != orig_block_stack)
5830 abort ();
5832 return block_vector;
5835 /* Identify BLOCKs referenced by more than one
5836 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5838 void
5839 reorder_blocks ()
5841 tree block = DECL_INITIAL (current_function_decl);
5842 varray_type block_stack;
5844 if (block == NULL_TREE)
5845 return;
5847 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5849 /* Prune the old trees away, so that they don't get in the way. */
5850 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5851 BLOCK_CHAIN (block) = NULL_TREE;
5853 reorder_blocks_0 (get_insns ());
5854 reorder_blocks_1 (get_insns (), block, &block_stack);
5856 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5858 VARRAY_FREE (block_stack);
5861 /* Helper function for reorder_blocks. Process the insn chain beginning
5862 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5864 static void
5865 reorder_blocks_0 (insns)
5866 rtx insns;
5868 rtx insn;
5870 for (insn = insns; insn; insn = NEXT_INSN (insn))
5872 if (GET_CODE (insn) == NOTE)
5874 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5876 tree block = NOTE_BLOCK (insn);
5877 TREE_ASM_WRITTEN (block) = 0;
5880 else if (GET_CODE (insn) == CALL_INSN
5881 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5883 rtx cp = PATTERN (insn);
5884 reorder_blocks_0 (XEXP (cp, 0));
5885 if (XEXP (cp, 1))
5886 reorder_blocks_0 (XEXP (cp, 1));
5887 if (XEXP (cp, 2))
5888 reorder_blocks_0 (XEXP (cp, 2));
5893 static void
5894 reorder_blocks_1 (insns, current_block, p_block_stack)
5895 rtx insns;
5896 tree current_block;
5897 varray_type *p_block_stack;
5899 rtx insn;
5901 for (insn = insns; insn; insn = NEXT_INSN (insn))
5903 if (GET_CODE (insn) == NOTE)
5905 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5907 tree block = NOTE_BLOCK (insn);
5908 /* If we have seen this block before, copy it. */
5909 if (TREE_ASM_WRITTEN (block))
5911 block = copy_node (block);
5912 NOTE_BLOCK (insn) = block;
5914 BLOCK_SUBBLOCKS (block) = 0;
5915 TREE_ASM_WRITTEN (block) = 1;
5916 BLOCK_SUPERCONTEXT (block) = current_block;
5917 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5918 BLOCK_SUBBLOCKS (current_block) = block;
5919 current_block = block;
5920 VARRAY_PUSH_TREE (*p_block_stack, block);
5922 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5924 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5925 VARRAY_POP (*p_block_stack);
5926 BLOCK_SUBBLOCKS (current_block)
5927 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5928 current_block = BLOCK_SUPERCONTEXT (current_block);
5931 else if (GET_CODE (insn) == CALL_INSN
5932 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5934 rtx cp = PATTERN (insn);
5935 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5936 if (XEXP (cp, 1))
5937 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5938 if (XEXP (cp, 2))
5939 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5944 /* Reverse the order of elements in the chain T of blocks,
5945 and return the new head of the chain (old last element). */
5947 static tree
5948 blocks_nreverse (t)
5949 tree t;
5951 register tree prev = 0, decl, next;
5952 for (decl = t; decl; decl = next)
5954 next = BLOCK_CHAIN (decl);
5955 BLOCK_CHAIN (decl) = prev;
5956 prev = decl;
5958 return prev;
5961 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5962 non-NULL, list them all into VECTOR, in a depth-first preorder
5963 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5964 blocks. */
5966 static int
5967 all_blocks (block, vector)
5968 tree block;
5969 tree *vector;
5971 int n_blocks = 0;
5973 while (block)
5975 TREE_ASM_WRITTEN (block) = 0;
5977 /* Record this block. */
5978 if (vector)
5979 vector[n_blocks] = block;
5981 ++n_blocks;
5983 /* Record the subblocks, and their subblocks... */
5984 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5985 vector ? vector + n_blocks : 0);
5986 block = BLOCK_CHAIN (block);
5989 return n_blocks;
5992 /* Return a vector containing all the blocks rooted at BLOCK. The
5993 number of elements in the vector is stored in N_BLOCKS_P. The
5994 vector is dynamically allocated; it is the caller's responsibility
5995 to call `free' on the pointer returned. */
5997 static tree *
5998 get_block_vector (block, n_blocks_p)
5999 tree block;
6000 int *n_blocks_p;
6002 tree *block_vector;
6004 *n_blocks_p = all_blocks (block, NULL);
6005 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6006 all_blocks (block, block_vector);
6008 return block_vector;
6011 static int next_block_index = 2;
6013 /* Set BLOCK_NUMBER for all the blocks in FN. */
6015 void
6016 number_blocks (fn)
6017 tree fn;
6019 int i;
6020 int n_blocks;
6021 tree *block_vector;
6023 /* For SDB and XCOFF debugging output, we start numbering the blocks
6024 from 1 within each function, rather than keeping a running
6025 count. */
6026 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6027 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6028 next_block_index = 1;
6029 #endif
6031 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6033 /* The top-level BLOCK isn't numbered at all. */
6034 for (i = 1; i < n_blocks; ++i)
6035 /* We number the blocks from two. */
6036 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6038 free (block_vector);
6040 return;
6043 /* Allocate a function structure and reset its contents to the defaults. */
6044 static void
6045 prepare_function_start ()
6047 cfun = (struct function *) xcalloc (1, sizeof (struct function));
6049 init_stmt_for_function ();
6050 init_eh_for_function ();
6052 cse_not_expected = ! optimize;
6054 /* Caller save not needed yet. */
6055 caller_save_needed = 0;
6057 /* No stack slots have been made yet. */
6058 stack_slot_list = 0;
6060 current_function_has_nonlocal_label = 0;
6061 current_function_has_nonlocal_goto = 0;
6063 /* There is no stack slot for handling nonlocal gotos. */
6064 nonlocal_goto_handler_slots = 0;
6065 nonlocal_goto_stack_level = 0;
6067 /* No labels have been declared for nonlocal use. */
6068 nonlocal_labels = 0;
6069 nonlocal_goto_handler_labels = 0;
6071 /* No function calls so far in this function. */
6072 function_call_count = 0;
6074 /* No parm regs have been allocated.
6075 (This is important for output_inline_function.) */
6076 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6078 /* Initialize the RTL mechanism. */
6079 init_emit ();
6081 /* Initialize the queue of pending postincrement and postdecrements,
6082 and some other info in expr.c. */
6083 init_expr ();
6085 /* We haven't done register allocation yet. */
6086 reg_renumber = 0;
6088 init_varasm_status (cfun);
6090 /* Clear out data used for inlining. */
6091 cfun->inlinable = 0;
6092 cfun->original_decl_initial = 0;
6093 cfun->original_arg_vector = 0;
6095 #ifdef STACK_BOUNDARY
6096 cfun->stack_alignment_needed = STACK_BOUNDARY;
6097 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6098 #else
6099 cfun->stack_alignment_needed = 0;
6100 cfun->preferred_stack_boundary = 0;
6101 #endif
6103 /* Set if a call to setjmp is seen. */
6104 current_function_calls_setjmp = 0;
6106 /* Set if a call to longjmp is seen. */
6107 current_function_calls_longjmp = 0;
6109 current_function_calls_alloca = 0;
6110 current_function_contains_functions = 0;
6111 current_function_is_leaf = 0;
6112 current_function_nothrow = 0;
6113 current_function_sp_is_unchanging = 0;
6114 current_function_uses_only_leaf_regs = 0;
6115 current_function_has_computed_jump = 0;
6116 current_function_is_thunk = 0;
6118 current_function_returns_pcc_struct = 0;
6119 current_function_returns_struct = 0;
6120 current_function_epilogue_delay_list = 0;
6121 current_function_uses_const_pool = 0;
6122 current_function_uses_pic_offset_table = 0;
6123 current_function_cannot_inline = 0;
6125 /* We have not yet needed to make a label to jump to for tail-recursion. */
6126 tail_recursion_label = 0;
6128 /* We haven't had a need to make a save area for ap yet. */
6129 arg_pointer_save_area = 0;
6131 /* No stack slots allocated yet. */
6132 frame_offset = 0;
6134 /* No SAVE_EXPRs in this function yet. */
6135 save_expr_regs = 0;
6137 /* No RTL_EXPRs in this function yet. */
6138 rtl_expr_chain = 0;
6140 /* Set up to allocate temporaries. */
6141 init_temp_slots ();
6143 /* Indicate that we need to distinguish between the return value of the
6144 present function and the return value of a function being called. */
6145 rtx_equal_function_value_matters = 1;
6147 /* Indicate that we have not instantiated virtual registers yet. */
6148 virtuals_instantiated = 0;
6150 /* Indicate that we want CONCATs now. */
6151 generating_concat_p = 1;
6153 /* Indicate we have no need of a frame pointer yet. */
6154 frame_pointer_needed = 0;
6156 /* By default assume not varargs or stdarg. */
6157 current_function_varargs = 0;
6158 current_function_stdarg = 0;
6160 /* We haven't made any trampolines for this function yet. */
6161 trampoline_list = 0;
6163 init_pending_stack_adjust ();
6164 inhibit_defer_pop = 0;
6166 current_function_outgoing_args_size = 0;
6168 if (init_lang_status)
6169 (*init_lang_status) (cfun);
6170 if (init_machine_status)
6171 (*init_machine_status) (cfun);
6174 /* Initialize the rtl expansion mechanism so that we can do simple things
6175 like generate sequences. This is used to provide a context during global
6176 initialization of some passes. */
6177 void
6178 init_dummy_function_start ()
6180 prepare_function_start ();
6183 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6184 and initialize static variables for generating RTL for the statements
6185 of the function. */
6187 void
6188 init_function_start (subr, filename, line)
6189 tree subr;
6190 const char *filename;
6191 int line;
6193 prepare_function_start ();
6195 /* Remember this function for later. */
6196 cfun->next_global = all_functions;
6197 all_functions = cfun;
6199 current_function_name = (*decl_printable_name) (subr, 2);
6200 cfun->decl = subr;
6202 /* Nonzero if this is a nested function that uses a static chain. */
6204 current_function_needs_context
6205 = (decl_function_context (current_function_decl) != 0
6206 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6208 /* Within function body, compute a type's size as soon it is laid out. */
6209 immediate_size_expand++;
6211 /* Prevent ever trying to delete the first instruction of a function.
6212 Also tell final how to output a linenum before the function prologue.
6213 Note linenums could be missing, e.g. when compiling a Java .class file. */
6214 if (line > 0)
6215 emit_line_note (filename, line);
6217 /* Make sure first insn is a note even if we don't want linenums.
6218 This makes sure the first insn will never be deleted.
6219 Also, final expects a note to appear there. */
6220 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6222 /* Set flags used by final.c. */
6223 if (aggregate_value_p (DECL_RESULT (subr)))
6225 #ifdef PCC_STATIC_STRUCT_RETURN
6226 current_function_returns_pcc_struct = 1;
6227 #endif
6228 current_function_returns_struct = 1;
6231 /* Warn if this value is an aggregate type,
6232 regardless of which calling convention we are using for it. */
6233 if (warn_aggregate_return
6234 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6235 warning ("function returns an aggregate");
6237 current_function_returns_pointer
6238 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6241 /* Make sure all values used by the optimization passes have sane
6242 defaults. */
6243 void
6244 init_function_for_compilation ()
6246 reg_renumber = 0;
6248 /* No prologue/epilogue insns yet. */
6249 VARRAY_GROW (prologue, 0);
6250 VARRAY_GROW (epilogue, 0);
6251 VARRAY_GROW (sibcall_epilogue, 0);
6254 /* Indicate that the current function uses extra args
6255 not explicitly mentioned in the argument list in any fashion. */
6257 void
6258 mark_varargs ()
6260 current_function_varargs = 1;
6263 /* Expand a call to __main at the beginning of a possible main function. */
6265 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6266 #undef HAS_INIT_SECTION
6267 #define HAS_INIT_SECTION
6268 #endif
6270 void
6271 expand_main_function ()
6273 #if !defined (HAS_INIT_SECTION)
6274 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6275 VOIDmode, 0);
6276 #endif /* not HAS_INIT_SECTION */
6279 extern struct obstack permanent_obstack;
6281 /* Start the RTL for a new function, and set variables used for
6282 emitting RTL.
6283 SUBR is the FUNCTION_DECL node.
6284 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6285 the function's parameters, which must be run at any return statement. */
6287 void
6288 expand_function_start (subr, parms_have_cleanups)
6289 tree subr;
6290 int parms_have_cleanups;
6292 tree tem;
6293 rtx last_ptr = NULL_RTX;
6295 /* Make sure volatile mem refs aren't considered
6296 valid operands of arithmetic insns. */
6297 init_recog_no_volatile ();
6299 /* Set this before generating any memory accesses. */
6300 current_function_check_memory_usage
6301 = (flag_check_memory_usage
6302 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6304 current_function_instrument_entry_exit
6305 = (flag_instrument_function_entry_exit
6306 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6308 current_function_limit_stack
6309 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6311 /* If function gets a static chain arg, store it in the stack frame.
6312 Do this first, so it gets the first stack slot offset. */
6313 if (current_function_needs_context)
6315 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6317 /* Delay copying static chain if it is not a register to avoid
6318 conflicts with regs used for parameters. */
6319 if (! SMALL_REGISTER_CLASSES
6320 || GET_CODE (static_chain_incoming_rtx) == REG)
6321 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6324 /* If the parameters of this function need cleaning up, get a label
6325 for the beginning of the code which executes those cleanups. This must
6326 be done before doing anything with return_label. */
6327 if (parms_have_cleanups)
6328 cleanup_label = gen_label_rtx ();
6329 else
6330 cleanup_label = 0;
6332 /* Make the label for return statements to jump to. Do not special
6333 case machines with special return instructions -- they will be
6334 handled later during jump, ifcvt, or epilogue creation. */
6335 return_label = gen_label_rtx ();
6337 /* Initialize rtx used to return the value. */
6338 /* Do this before assign_parms so that we copy the struct value address
6339 before any library calls that assign parms might generate. */
6341 /* Decide whether to return the value in memory or in a register. */
6342 if (aggregate_value_p (DECL_RESULT (subr)))
6344 /* Returning something that won't go in a register. */
6345 register rtx value_address = 0;
6347 #ifdef PCC_STATIC_STRUCT_RETURN
6348 if (current_function_returns_pcc_struct)
6350 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6351 value_address = assemble_static_space (size);
6353 else
6354 #endif
6356 /* Expect to be passed the address of a place to store the value.
6357 If it is passed as an argument, assign_parms will take care of
6358 it. */
6359 if (struct_value_incoming_rtx)
6361 value_address = gen_reg_rtx (Pmode);
6362 emit_move_insn (value_address, struct_value_incoming_rtx);
6365 if (value_address)
6367 SET_DECL_RTL (DECL_RESULT (subr),
6368 gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)),
6369 value_address));
6370 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6371 DECL_RESULT (subr), 1);
6374 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6375 /* If return mode is void, this decl rtl should not be used. */
6376 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6377 else if (parms_have_cleanups
6378 || current_function_instrument_entry_exit
6379 || (flag_exceptions && USING_SJLJ_EXCEPTIONS))
6381 /* If function will end with cleanup code for parms,
6382 compute the return values into a pseudo reg,
6383 which we will copy into the true return register
6384 after the cleanups are done. */
6386 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6388 #ifdef PROMOTE_FUNCTION_RETURN
6389 tree type = TREE_TYPE (DECL_RESULT (subr));
6390 int unsignedp = TREE_UNSIGNED (type);
6392 mode = promote_mode (type, mode, &unsignedp, 1);
6393 #endif
6395 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (mode));
6396 /* Needed because we may need to move this to memory
6397 in case it's a named return value whose address is taken. */
6398 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6400 else
6402 /* Scalar, returned in a register. */
6403 SET_DECL_RTL (DECL_RESULT (subr),
6404 hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6405 subr, 1));
6407 /* Mark this reg as the function's return value. */
6408 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6410 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6411 /* Needed because we may need to move this to memory
6412 in case it's a named return value whose address is taken. */
6413 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6417 /* Initialize rtx for parameters and local variables.
6418 In some cases this requires emitting insns. */
6420 assign_parms (subr);
6422 /* Copy the static chain now if it wasn't a register. The delay is to
6423 avoid conflicts with the parameter passing registers. */
6425 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6426 if (GET_CODE (static_chain_incoming_rtx) != REG)
6427 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6429 /* The following was moved from init_function_start.
6430 The move is supposed to make sdb output more accurate. */
6431 /* Indicate the beginning of the function body,
6432 as opposed to parm setup. */
6433 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6435 if (GET_CODE (get_last_insn ()) != NOTE)
6436 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6437 parm_birth_insn = get_last_insn ();
6439 context_display = 0;
6440 if (current_function_needs_context)
6442 /* Fetch static chain values for containing functions. */
6443 tem = decl_function_context (current_function_decl);
6444 /* Copy the static chain pointer into a pseudo. If we have
6445 small register classes, copy the value from memory if
6446 static_chain_incoming_rtx is a REG. */
6447 if (tem)
6449 /* If the static chain originally came in a register, put it back
6450 there, then move it out in the next insn. The reason for
6451 this peculiar code is to satisfy function integration. */
6452 if (SMALL_REGISTER_CLASSES
6453 && GET_CODE (static_chain_incoming_rtx) == REG)
6454 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6455 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6458 while (tem)
6460 tree rtlexp = make_node (RTL_EXPR);
6462 RTL_EXPR_RTL (rtlexp) = last_ptr;
6463 context_display = tree_cons (tem, rtlexp, context_display);
6464 tem = decl_function_context (tem);
6465 if (tem == 0)
6466 break;
6467 /* Chain thru stack frames, assuming pointer to next lexical frame
6468 is found at the place we always store it. */
6469 #ifdef FRAME_GROWS_DOWNWARD
6470 last_ptr = plus_constant (last_ptr,
6471 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6472 #endif
6473 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6474 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6475 last_ptr = copy_to_reg (last_ptr);
6477 /* If we are not optimizing, ensure that we know that this
6478 piece of context is live over the entire function. */
6479 if (! optimize)
6480 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6481 save_expr_regs);
6485 if (current_function_instrument_entry_exit)
6487 rtx fun = DECL_RTL (current_function_decl);
6488 if (GET_CODE (fun) == MEM)
6489 fun = XEXP (fun, 0);
6490 else
6491 abort ();
6492 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6493 fun, Pmode,
6494 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6496 hard_frame_pointer_rtx),
6497 Pmode);
6500 #ifdef PROFILE_HOOK
6501 if (profile_flag)
6502 PROFILE_HOOK (profile_label_no);
6503 #endif
6505 /* After the display initializations is where the tail-recursion label
6506 should go, if we end up needing one. Ensure we have a NOTE here
6507 since some things (like trampolines) get placed before this. */
6508 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6510 /* Evaluate now the sizes of any types declared among the arguments. */
6511 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6513 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6514 EXPAND_MEMORY_USE_BAD);
6515 /* Flush the queue in case this parameter declaration has
6516 side-effects. */
6517 emit_queue ();
6520 /* Make sure there is a line number after the function entry setup code. */
6521 force_next_line_note ();
6524 /* Undo the effects of init_dummy_function_start. */
6525 void
6526 expand_dummy_function_end ()
6528 /* End any sequences that failed to be closed due to syntax errors. */
6529 while (in_sequence_p ())
6530 end_sequence ();
6532 /* Outside function body, can't compute type's actual size
6533 until next function's body starts. */
6535 free_after_parsing (cfun);
6536 free_after_compilation (cfun);
6537 free (cfun);
6538 cfun = 0;
6541 /* Call DOIT for each hard register used as a return value from
6542 the current function. */
6544 void
6545 diddle_return_value (doit, arg)
6546 void (*doit) PARAMS ((rtx, void *));
6547 void *arg;
6549 rtx outgoing = current_function_return_rtx;
6550 int pcc;
6552 if (! outgoing)
6553 return;
6555 pcc = (current_function_returns_struct
6556 || current_function_returns_pcc_struct);
6558 if ((GET_CODE (outgoing) == REG
6559 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6560 || pcc)
6562 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6564 /* A PCC-style return returns a pointer to the memory in which
6565 the structure is stored. */
6566 if (pcc)
6567 type = build_pointer_type (type);
6569 #ifdef FUNCTION_OUTGOING_VALUE
6570 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6571 #else
6572 outgoing = FUNCTION_VALUE (type, current_function_decl);
6573 #endif
6574 /* If this is a BLKmode structure being returned in registers, then use
6575 the mode computed in expand_return. */
6576 if (GET_MODE (outgoing) == BLKmode)
6577 PUT_MODE (outgoing, GET_MODE (current_function_return_rtx));
6578 REG_FUNCTION_VALUE_P (outgoing) = 1;
6581 if (GET_CODE (outgoing) == REG)
6582 (*doit) (outgoing, arg);
6583 else if (GET_CODE (outgoing) == PARALLEL)
6585 int i;
6587 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6589 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6591 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6592 (*doit) (x, arg);
6597 static void
6598 do_clobber_return_reg (reg, arg)
6599 rtx reg;
6600 void *arg ATTRIBUTE_UNUSED;
6602 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6605 void
6606 clobber_return_register ()
6608 diddle_return_value (do_clobber_return_reg, NULL);
6611 static void
6612 do_use_return_reg (reg, arg)
6613 rtx reg;
6614 void *arg ATTRIBUTE_UNUSED;
6616 emit_insn (gen_rtx_USE (VOIDmode, reg));
6619 void
6620 use_return_register ()
6622 diddle_return_value (do_use_return_reg, NULL);
6625 /* Generate RTL for the end of the current function.
6626 FILENAME and LINE are the current position in the source file.
6628 It is up to language-specific callers to do cleanups for parameters--
6629 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6631 void
6632 expand_function_end (filename, line, end_bindings)
6633 const char *filename;
6634 int line;
6635 int end_bindings;
6637 tree link;
6639 #ifdef TRAMPOLINE_TEMPLATE
6640 static rtx initial_trampoline;
6641 #endif
6643 finish_expr_for_function ();
6645 #ifdef NON_SAVING_SETJMP
6646 /* Don't put any variables in registers if we call setjmp
6647 on a machine that fails to restore the registers. */
6648 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6650 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6651 setjmp_protect (DECL_INITIAL (current_function_decl));
6653 setjmp_protect_args ();
6655 #endif
6657 /* Save the argument pointer if a save area was made for it. */
6658 if (arg_pointer_save_area)
6660 /* arg_pointer_save_area may not be a valid memory address, so we
6661 have to check it and fix it if necessary. */
6662 rtx seq;
6663 start_sequence ();
6664 emit_move_insn (validize_mem (arg_pointer_save_area),
6665 virtual_incoming_args_rtx);
6666 seq = gen_sequence ();
6667 end_sequence ();
6668 emit_insn_before (seq, tail_recursion_reentry);
6671 /* Initialize any trampolines required by this function. */
6672 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6674 tree function = TREE_PURPOSE (link);
6675 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6676 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6677 #ifdef TRAMPOLINE_TEMPLATE
6678 rtx blktramp;
6679 #endif
6680 rtx seq;
6682 #ifdef TRAMPOLINE_TEMPLATE
6683 /* First make sure this compilation has a template for
6684 initializing trampolines. */
6685 if (initial_trampoline == 0)
6687 initial_trampoline
6688 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6690 ggc_add_rtx_root (&initial_trampoline, 1);
6692 #endif
6694 /* Generate insns to initialize the trampoline. */
6695 start_sequence ();
6696 tramp = round_trampoline_addr (XEXP (tramp, 0));
6697 #ifdef TRAMPOLINE_TEMPLATE
6698 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6699 emit_block_move (blktramp, initial_trampoline,
6700 GEN_INT (TRAMPOLINE_SIZE),
6701 TRAMPOLINE_ALIGNMENT);
6702 #endif
6703 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6704 seq = get_insns ();
6705 end_sequence ();
6707 /* Put those insns at entry to the containing function (this one). */
6708 emit_insns_before (seq, tail_recursion_reentry);
6711 /* If we are doing stack checking and this function makes calls,
6712 do a stack probe at the start of the function to ensure we have enough
6713 space for another stack frame. */
6714 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6716 rtx insn, seq;
6718 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6719 if (GET_CODE (insn) == CALL_INSN)
6721 start_sequence ();
6722 probe_stack_range (STACK_CHECK_PROTECT,
6723 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6724 seq = get_insns ();
6725 end_sequence ();
6726 emit_insns_before (seq, tail_recursion_reentry);
6727 break;
6731 /* Warn about unused parms if extra warnings were specified. */
6732 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6733 warning. WARN_UNUSED_PARAMETER is negative when set by
6734 -Wunused. */
6735 if (warn_unused_parameter > 0
6736 || (warn_unused_parameter < 0 && extra_warnings))
6738 tree decl;
6740 for (decl = DECL_ARGUMENTS (current_function_decl);
6741 decl; decl = TREE_CHAIN (decl))
6742 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6743 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6744 warning_with_decl (decl, "unused parameter `%s'");
6747 /* Delete handlers for nonlocal gotos if nothing uses them. */
6748 if (nonlocal_goto_handler_slots != 0
6749 && ! current_function_has_nonlocal_label)
6750 delete_handlers ();
6752 /* End any sequences that failed to be closed due to syntax errors. */
6753 while (in_sequence_p ())
6754 end_sequence ();
6756 /* Outside function body, can't compute type's actual size
6757 until next function's body starts. */
6758 immediate_size_expand--;
6760 clear_pending_stack_adjust ();
6761 do_pending_stack_adjust ();
6763 /* Mark the end of the function body.
6764 If control reaches this insn, the function can drop through
6765 without returning a value. */
6766 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6768 /* Must mark the last line number note in the function, so that the test
6769 coverage code can avoid counting the last line twice. This just tells
6770 the code to ignore the immediately following line note, since there
6771 already exists a copy of this note somewhere above. This line number
6772 note is still needed for debugging though, so we can't delete it. */
6773 if (flag_test_coverage)
6774 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6776 /* Output a linenumber for the end of the function.
6777 SDB depends on this. */
6778 emit_line_note_force (filename, line);
6780 /* Output the label for the actual return from the function,
6781 if one is expected. This happens either because a function epilogue
6782 is used instead of a return instruction, or because a return was done
6783 with a goto in order to run local cleanups, or because of pcc-style
6784 structure returning. */
6786 if (return_label)
6788 rtx before, after;
6790 /* Before the return label, clobber the return registers so that
6791 they are not propogated live to the rest of the function. This
6792 can only happen with functions that drop through; if there had
6793 been a return statement, there would have either been a return
6794 rtx, or a jump to the return label. */
6796 before = get_last_insn ();
6797 clobber_return_register ();
6798 after = get_last_insn ();
6800 if (before != after)
6801 cfun->x_clobber_return_insn = after;
6803 emit_label (return_label);
6806 /* C++ uses this. */
6807 if (end_bindings)
6808 expand_end_bindings (0, 0, 0);
6810 if (current_function_instrument_entry_exit)
6812 rtx fun = DECL_RTL (current_function_decl);
6813 if (GET_CODE (fun) == MEM)
6814 fun = XEXP (fun, 0);
6815 else
6816 abort ();
6817 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6818 fun, Pmode,
6819 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6821 hard_frame_pointer_rtx),
6822 Pmode);
6825 /* Let except.c know where it should emit the call to unregister
6826 the function context for sjlj exceptions. */
6827 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6828 sjlj_emit_function_exit_after (get_last_insn ());
6830 /* If we had calls to alloca, and this machine needs
6831 an accurate stack pointer to exit the function,
6832 insert some code to save and restore the stack pointer. */
6833 #ifdef EXIT_IGNORE_STACK
6834 if (! EXIT_IGNORE_STACK)
6835 #endif
6836 if (current_function_calls_alloca)
6838 rtx tem = 0;
6840 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6841 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6844 /* If scalar return value was computed in a pseudo-reg, or was a named
6845 return value that got dumped to the stack, copy that to the hard
6846 return register. */
6847 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6849 tree decl_result = DECL_RESULT (current_function_decl);
6850 rtx decl_rtl = DECL_RTL (decl_result);
6852 if (REG_P (decl_rtl)
6853 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6854 : DECL_REGISTER (decl_result))
6856 rtx real_decl_rtl;
6858 #ifdef FUNCTION_OUTGOING_VALUE
6859 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6860 current_function_decl);
6861 #else
6862 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6863 current_function_decl);
6864 #endif
6865 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6867 /* If this is a BLKmode structure being returned in registers,
6868 then use the mode computed in expand_return. Note that if
6869 decl_rtl is memory, then its mode may have been changed,
6870 but that current_function_return_rtx has not. */
6871 if (GET_MODE (real_decl_rtl) == BLKmode)
6872 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6874 /* If a named return value dumped decl_return to memory, then
6875 we may need to re-do the PROMOTE_MODE signed/unsigned
6876 extension. */
6877 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6879 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6881 #ifdef PROMOTE_FUNCTION_RETURN
6882 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6883 &unsignedp, 1);
6884 #endif
6886 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6888 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6889 emit_group_load (real_decl_rtl, decl_rtl,
6890 int_size_in_bytes (TREE_TYPE (decl_result)),
6891 TYPE_ALIGN (TREE_TYPE (decl_result)));
6892 else
6893 emit_move_insn (real_decl_rtl, decl_rtl);
6895 /* The delay slot scheduler assumes that current_function_return_rtx
6896 holds the hard register containing the return value, not a
6897 temporary pseudo. */
6898 current_function_return_rtx = real_decl_rtl;
6902 /* If returning a structure, arrange to return the address of the value
6903 in a place where debuggers expect to find it.
6905 If returning a structure PCC style,
6906 the caller also depends on this value.
6907 And current_function_returns_pcc_struct is not necessarily set. */
6908 if (current_function_returns_struct
6909 || current_function_returns_pcc_struct)
6911 rtx value_address
6912 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6913 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6914 #ifdef FUNCTION_OUTGOING_VALUE
6915 rtx outgoing
6916 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6917 current_function_decl);
6918 #else
6919 rtx outgoing
6920 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6921 #endif
6923 /* Mark this as a function return value so integrate will delete the
6924 assignment and USE below when inlining this function. */
6925 REG_FUNCTION_VALUE_P (outgoing) = 1;
6927 #ifdef POINTERS_EXTEND_UNSIGNED
6928 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6929 if (GET_MODE (outgoing) != GET_MODE (value_address))
6930 value_address = convert_memory_address (GET_MODE (outgoing),
6931 value_address);
6932 #endif
6934 emit_move_insn (outgoing, value_address);
6936 /* Show return register used to hold result (in this case the address
6937 of the result. */
6938 current_function_return_rtx = outgoing;
6941 /* If this is an implementation of throw, do what's necessary to
6942 communicate between __builtin_eh_return and the epilogue. */
6943 expand_eh_return ();
6945 /* ??? This should no longer be necessary since stupid is no longer with
6946 us, but there are some parts of the compiler (eg reload_combine, and
6947 sh mach_dep_reorg) that still try and compute their own lifetime info
6948 instead of using the general framework. */
6949 use_return_register ();
6951 /* Output a return insn if we are using one.
6952 Otherwise, let the rtl chain end here, to drop through
6953 into the epilogue. */
6955 #ifdef HAVE_return
6956 if (HAVE_return)
6958 emit_jump_insn (gen_return ());
6959 emit_barrier ();
6961 #endif
6963 /* Fix up any gotos that jumped out to the outermost
6964 binding level of the function.
6965 Must follow emitting RETURN_LABEL. */
6967 /* If you have any cleanups to do at this point,
6968 and they need to create temporary variables,
6969 then you will lose. */
6970 expand_fixups (get_insns ());
6973 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6974 sequence or a single insn). */
6976 static void
6977 record_insns (insns, vecp)
6978 rtx insns;
6979 varray_type *vecp;
6981 if (GET_CODE (insns) == SEQUENCE)
6983 int len = XVECLEN (insns, 0);
6984 int i = VARRAY_SIZE (*vecp);
6986 VARRAY_GROW (*vecp, i + len);
6987 while (--len >= 0)
6989 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6990 ++i;
6993 else
6995 int i = VARRAY_SIZE (*vecp);
6996 VARRAY_GROW (*vecp, i + 1);
6997 VARRAY_INT (*vecp, i) = INSN_UID (insns);
7001 /* Determine how many INSN_UIDs in VEC are part of INSN. */
7003 static int
7004 contains (insn, vec)
7005 rtx insn;
7006 varray_type vec;
7008 register int i, j;
7010 if (GET_CODE (insn) == INSN
7011 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7013 int count = 0;
7014 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7015 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7016 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7017 count++;
7018 return count;
7020 else
7022 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7023 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7024 return 1;
7026 return 0;
7030 prologue_epilogue_contains (insn)
7031 rtx insn;
7033 if (contains (insn, prologue))
7034 return 1;
7035 if (contains (insn, epilogue))
7036 return 1;
7037 return 0;
7041 sibcall_epilogue_contains (insn)
7042 rtx insn;
7044 if (sibcall_epilogue)
7045 return contains (insn, sibcall_epilogue);
7046 return 0;
7049 #ifdef HAVE_return
7050 /* Insert gen_return at the end of block BB. This also means updating
7051 block_for_insn appropriately. */
7053 static void
7054 emit_return_into_block (bb, line_note)
7055 basic_block bb;
7056 rtx line_note;
7058 rtx p, end;
7060 p = NEXT_INSN (bb->end);
7061 end = emit_jump_insn_after (gen_return (), bb->end);
7062 if (line_note)
7063 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7064 NOTE_LINE_NUMBER (line_note), bb->end);
7066 while (1)
7068 set_block_for_insn (p, bb);
7069 if (p == bb->end)
7070 break;
7071 p = PREV_INSN (p);
7073 bb->end = end;
7075 #endif /* HAVE_return */
7077 #ifdef HAVE_epilogue
7079 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7080 to the stack pointer. */
7082 static void
7083 keep_stack_depressed (seq)
7084 rtx seq;
7086 int i;
7087 rtx sp_from_reg = 0;
7088 int sp_modified_unknown = 0;
7090 /* If the epilogue is just a single instruction, it's OK as is */
7092 if (GET_CODE (seq) != SEQUENCE)
7093 return;
7095 /* Scan all insns in SEQ looking for ones that modified the stack
7096 pointer. Record if it modified the stack pointer by copying it
7097 from the frame pointer or if it modified it in some other way.
7098 Then modify any subsequent stack pointer references to take that
7099 into account. We start by only allowing SP to be copied from a
7100 register (presumably FP) and then be subsequently referenced. */
7102 for (i = 0; i < XVECLEN (seq, 0); i++)
7104 rtx insn = XVECEXP (seq, 0, i);
7106 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7107 continue;
7109 if (reg_set_p (stack_pointer_rtx, insn))
7111 rtx set = single_set (insn);
7113 /* If SP is set as a side-effect, we can't support this. */
7114 if (set == 0)
7115 abort ();
7117 if (GET_CODE (SET_SRC (set)) == REG)
7118 sp_from_reg = SET_SRC (set);
7119 else
7120 sp_modified_unknown = 1;
7122 /* Don't allow the SP modification to happen. */
7123 PUT_CODE (insn, NOTE);
7124 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7125 NOTE_SOURCE_FILE (insn) = 0;
7127 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
7129 if (sp_modified_unknown)
7130 abort ();
7132 else if (sp_from_reg != 0)
7133 PATTERN (insn)
7134 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
7138 #endif
7140 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7141 this into place with notes indicating where the prologue ends and where
7142 the epilogue begins. Update the basic block information when possible. */
7144 void
7145 thread_prologue_and_epilogue_insns (f)
7146 rtx f ATTRIBUTE_UNUSED;
7148 int inserted = 0;
7149 edge e;
7150 rtx seq;
7151 #ifdef HAVE_prologue
7152 rtx prologue_end = NULL_RTX;
7153 #endif
7154 #if defined (HAVE_epilogue) || defined(HAVE_return)
7155 rtx epilogue_end = NULL_RTX;
7156 #endif
7158 #ifdef HAVE_prologue
7159 if (HAVE_prologue)
7161 start_sequence ();
7162 seq = gen_prologue ();
7163 emit_insn (seq);
7165 /* Retain a map of the prologue insns. */
7166 if (GET_CODE (seq) != SEQUENCE)
7167 seq = get_insns ();
7168 record_insns (seq, &prologue);
7169 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7171 seq = gen_sequence ();
7172 end_sequence ();
7174 /* If optimization is off, and perhaps in an empty function,
7175 the entry block will have no successors. */
7176 if (ENTRY_BLOCK_PTR->succ)
7178 /* Can't deal with multiple successsors of the entry block. */
7179 if (ENTRY_BLOCK_PTR->succ->succ_next)
7180 abort ();
7182 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7183 inserted = 1;
7185 else
7186 emit_insn_after (seq, f);
7188 #endif
7190 /* If the exit block has no non-fake predecessors, we don't need
7191 an epilogue. */
7192 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7193 if ((e->flags & EDGE_FAKE) == 0)
7194 break;
7195 if (e == NULL)
7196 goto epilogue_done;
7198 #ifdef HAVE_return
7199 if (optimize && HAVE_return)
7201 /* If we're allowed to generate a simple return instruction,
7202 then by definition we don't need a full epilogue. Examine
7203 the block that falls through to EXIT. If it does not
7204 contain any code, examine its predecessors and try to
7205 emit (conditional) return instructions. */
7207 basic_block last;
7208 edge e_next;
7209 rtx label;
7211 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7212 if (e->flags & EDGE_FALLTHRU)
7213 break;
7214 if (e == NULL)
7215 goto epilogue_done;
7216 last = e->src;
7218 /* Verify that there are no active instructions in the last block. */
7219 label = last->end;
7220 while (label && GET_CODE (label) != CODE_LABEL)
7222 if (active_insn_p (label))
7223 break;
7224 label = PREV_INSN (label);
7227 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7229 rtx epilogue_line_note = NULL_RTX;
7231 /* Locate the line number associated with the closing brace,
7232 if we can find one. */
7233 for (seq = get_last_insn ();
7234 seq && ! active_insn_p (seq);
7235 seq = PREV_INSN (seq))
7236 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7238 epilogue_line_note = seq;
7239 break;
7242 for (e = last->pred; e; e = e_next)
7244 basic_block bb = e->src;
7245 rtx jump;
7247 e_next = e->pred_next;
7248 if (bb == ENTRY_BLOCK_PTR)
7249 continue;
7251 jump = bb->end;
7252 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7253 continue;
7255 /* If we have an unconditional jump, we can replace that
7256 with a simple return instruction. */
7257 if (simplejump_p (jump))
7259 emit_return_into_block (bb, epilogue_line_note);
7260 flow_delete_insn (jump);
7263 /* If we have a conditional jump, we can try to replace
7264 that with a conditional return instruction. */
7265 else if (condjump_p (jump))
7267 rtx ret, *loc;
7269 ret = SET_SRC (PATTERN (jump));
7270 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7271 loc = &XEXP (ret, 1);
7272 else
7273 loc = &XEXP (ret, 2);
7274 ret = gen_rtx_RETURN (VOIDmode);
7276 if (! validate_change (jump, loc, ret, 0))
7277 continue;
7278 if (JUMP_LABEL (jump))
7279 LABEL_NUSES (JUMP_LABEL (jump))--;
7281 /* If this block has only one successor, it both jumps
7282 and falls through to the fallthru block, so we can't
7283 delete the edge. */
7284 if (bb->succ->succ_next == NULL)
7285 continue;
7287 else
7288 continue;
7290 /* Fix up the CFG for the successful change we just made. */
7291 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7294 /* Emit a return insn for the exit fallthru block. Whether
7295 this is still reachable will be determined later. */
7297 emit_barrier_after (last->end);
7298 emit_return_into_block (last, epilogue_line_note);
7299 epilogue_end = last->end;
7300 goto epilogue_done;
7303 #endif
7304 #ifdef HAVE_epilogue
7305 if (HAVE_epilogue)
7307 /* Find the edge that falls through to EXIT. Other edges may exist
7308 due to RETURN instructions, but those don't need epilogues.
7309 There really shouldn't be a mixture -- either all should have
7310 been converted or none, however... */
7312 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7313 if (e->flags & EDGE_FALLTHRU)
7314 break;
7315 if (e == NULL)
7316 goto epilogue_done;
7318 start_sequence ();
7319 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7321 seq = gen_epilogue ();
7323 /* If this function returns with the stack depressed, massage
7324 the epilogue to actually do that. */
7325 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7326 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7327 keep_stack_depressed (seq);
7329 emit_jump_insn (seq);
7331 /* Retain a map of the epilogue insns. */
7332 if (GET_CODE (seq) != SEQUENCE)
7333 seq = get_insns ();
7334 record_insns (seq, &epilogue);
7336 seq = gen_sequence ();
7337 end_sequence ();
7339 insert_insn_on_edge (seq, e);
7340 inserted = 1;
7342 #endif
7343 epilogue_done:
7345 if (inserted)
7346 commit_edge_insertions ();
7348 #ifdef HAVE_sibcall_epilogue
7349 /* Emit sibling epilogues before any sibling call sites. */
7350 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7352 basic_block bb = e->src;
7353 rtx insn = bb->end;
7354 rtx i;
7355 rtx newinsn;
7357 if (GET_CODE (insn) != CALL_INSN
7358 || ! SIBLING_CALL_P (insn))
7359 continue;
7361 start_sequence ();
7362 seq = gen_sibcall_epilogue ();
7363 end_sequence ();
7365 i = PREV_INSN (insn);
7366 newinsn = emit_insn_before (seq, insn);
7368 /* Update the UID to basic block map. */
7369 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7370 set_block_for_insn (i, bb);
7372 /* Retain a map of the epilogue insns. Used in life analysis to
7373 avoid getting rid of sibcall epilogue insns. */
7374 record_insns (GET_CODE (seq) == SEQUENCE
7375 ? seq : newinsn, &sibcall_epilogue);
7377 #endif
7379 #ifdef HAVE_prologue
7380 if (prologue_end)
7382 rtx insn, prev;
7384 /* GDB handles `break f' by setting a breakpoint on the first
7385 line note after the prologue. Which means (1) that if
7386 there are line number notes before where we inserted the
7387 prologue we should move them, and (2) we should generate a
7388 note before the end of the first basic block, if there isn't
7389 one already there.
7391 ??? This behaviour is completely broken when dealing with
7392 multiple entry functions. We simply place the note always
7393 into first basic block and let alternate entry points
7394 to be missed.
7397 for (insn = prologue_end; insn; insn = prev)
7399 prev = PREV_INSN (insn);
7400 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7402 /* Note that we cannot reorder the first insn in the
7403 chain, since rest_of_compilation relies on that
7404 remaining constant. */
7405 if (prev == NULL)
7406 break;
7407 reorder_insns (insn, insn, prologue_end);
7411 /* Find the last line number note in the first block. */
7412 for (insn = BASIC_BLOCK (0)->end;
7413 insn != prologue_end && insn;
7414 insn = PREV_INSN (insn))
7415 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7416 break;
7418 /* If we didn't find one, make a copy of the first line number
7419 we run across. */
7420 if (! insn)
7422 for (insn = next_active_insn (prologue_end);
7423 insn;
7424 insn = PREV_INSN (insn))
7425 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7427 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7428 NOTE_LINE_NUMBER (insn),
7429 prologue_end);
7430 break;
7434 #endif
7435 #ifdef HAVE_epilogue
7436 if (epilogue_end)
7438 rtx insn, next;
7440 /* Similarly, move any line notes that appear after the epilogue.
7441 There is no need, however, to be quite so anal about the existance
7442 of such a note. */
7443 for (insn = epilogue_end; insn; insn = next)
7445 next = NEXT_INSN (insn);
7446 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7447 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7450 #endif
7453 /* Reposition the prologue-end and epilogue-begin notes after instruction
7454 scheduling and delayed branch scheduling. */
7456 void
7457 reposition_prologue_and_epilogue_notes (f)
7458 rtx f ATTRIBUTE_UNUSED;
7460 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7461 int len;
7463 if ((len = VARRAY_SIZE (prologue)) > 0)
7465 register rtx insn, note = 0;
7467 /* Scan from the beginning until we reach the last prologue insn.
7468 We apparently can't depend on basic_block_{head,end} after
7469 reorg has run. */
7470 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7472 if (GET_CODE (insn) == NOTE)
7474 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7475 note = insn;
7477 else if ((len -= contains (insn, prologue)) == 0)
7479 rtx next;
7480 /* Find the prologue-end note if we haven't already, and
7481 move it to just after the last prologue insn. */
7482 if (note == 0)
7484 for (note = insn; (note = NEXT_INSN (note));)
7485 if (GET_CODE (note) == NOTE
7486 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7487 break;
7490 next = NEXT_INSN (note);
7492 /* Whether or not we can depend on BLOCK_HEAD,
7493 attempt to keep it up-to-date. */
7494 if (BLOCK_HEAD (0) == note)
7495 BLOCK_HEAD (0) = next;
7497 remove_insn (note);
7498 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7499 if (GET_CODE (insn) == CODE_LABEL)
7500 insn = NEXT_INSN (insn);
7501 add_insn_after (note, insn);
7506 if ((len = VARRAY_SIZE (epilogue)) > 0)
7508 register rtx insn, note = 0;
7510 /* Scan from the end until we reach the first epilogue insn.
7511 We apparently can't depend on basic_block_{head,end} after
7512 reorg has run. */
7513 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7515 if (GET_CODE (insn) == NOTE)
7517 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7518 note = insn;
7520 else if ((len -= contains (insn, epilogue)) == 0)
7522 /* Find the epilogue-begin note if we haven't already, and
7523 move it to just before the first epilogue insn. */
7524 if (note == 0)
7526 for (note = insn; (note = PREV_INSN (note));)
7527 if (GET_CODE (note) == NOTE
7528 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7529 break;
7532 /* Whether or not we can depend on BLOCK_HEAD,
7533 attempt to keep it up-to-date. */
7534 if (n_basic_blocks
7535 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7536 BLOCK_HEAD (n_basic_blocks-1) = note;
7538 remove_insn (note);
7539 add_insn_before (note, insn);
7543 #endif /* HAVE_prologue or HAVE_epilogue */
7546 /* Mark T for GC. */
7548 static void
7549 mark_temp_slot (t)
7550 struct temp_slot *t;
7552 while (t)
7554 ggc_mark_rtx (t->slot);
7555 ggc_mark_rtx (t->address);
7556 ggc_mark_tree (t->rtl_expr);
7557 ggc_mark_tree (t->type);
7559 t = t->next;
7563 /* Mark P for GC. */
7565 static void
7566 mark_function_status (p)
7567 struct function *p;
7569 int i;
7570 rtx *r;
7572 if (p == 0)
7573 return;
7575 ggc_mark_rtx (p->arg_offset_rtx);
7577 if (p->x_parm_reg_stack_loc)
7578 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7579 i > 0; --i, ++r)
7580 ggc_mark_rtx (*r);
7582 ggc_mark_rtx (p->return_rtx);
7583 ggc_mark_rtx (p->x_cleanup_label);
7584 ggc_mark_rtx (p->x_return_label);
7585 ggc_mark_rtx (p->x_save_expr_regs);
7586 ggc_mark_rtx (p->x_stack_slot_list);
7587 ggc_mark_rtx (p->x_parm_birth_insn);
7588 ggc_mark_rtx (p->x_tail_recursion_label);
7589 ggc_mark_rtx (p->x_tail_recursion_reentry);
7590 ggc_mark_rtx (p->internal_arg_pointer);
7591 ggc_mark_rtx (p->x_arg_pointer_save_area);
7592 ggc_mark_tree (p->x_rtl_expr_chain);
7593 ggc_mark_rtx (p->x_last_parm_insn);
7594 ggc_mark_tree (p->x_context_display);
7595 ggc_mark_tree (p->x_trampoline_list);
7596 ggc_mark_rtx (p->epilogue_delay_list);
7597 ggc_mark_rtx (p->x_clobber_return_insn);
7599 mark_temp_slot (p->x_temp_slots);
7602 struct var_refs_queue *q = p->fixup_var_refs_queue;
7603 while (q)
7605 ggc_mark_rtx (q->modified);
7606 q = q->next;
7610 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7611 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7612 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7613 ggc_mark_tree (p->x_nonlocal_labels);
7616 /* Mark the function chain ARG (which is really a struct function **)
7617 for GC. */
7619 static void
7620 mark_function_chain (arg)
7621 void *arg;
7623 struct function *f = *(struct function **) arg;
7625 for (; f; f = f->next_global)
7627 ggc_mark_tree (f->decl);
7629 mark_function_status (f);
7630 mark_eh_status (f->eh);
7631 mark_stmt_status (f->stmt);
7632 mark_expr_status (f->expr);
7633 mark_emit_status (f->emit);
7634 mark_varasm_status (f->varasm);
7636 if (mark_machine_status)
7637 (*mark_machine_status) (f);
7638 if (mark_lang_status)
7639 (*mark_lang_status) (f);
7641 if (f->original_arg_vector)
7642 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7643 if (f->original_decl_initial)
7644 ggc_mark_tree (f->original_decl_initial);
7648 /* Called once, at initialization, to initialize function.c. */
7650 void
7651 init_function_once ()
7653 ggc_add_root (&all_functions, 1, sizeof all_functions,
7654 mark_function_chain);
7656 VARRAY_INT_INIT (prologue, 0, "prologue");
7657 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7658 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");