1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008 Free
3 Software Foundation, Inc.
4 Contributed by Michael Matz (matz@ifh.de).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
38 #include "coretypes.h"
41 #include "hard-reg-set.h"
43 #include "basic-block.h"
45 #include "et-forest.h"
48 #include "pointer-set.h"
51 /* We name our nodes with integers, beginning with 1. Zero is reserved for
52 'undefined' or 'end of list'. The name of each node is given by the dfs
53 number of the corresponding basic block. Please note, that we include the
54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
55 support multiple entry points. Its dfs number is of course 1. */
57 /* Type of Basic Block aka. TBB */
58 typedef unsigned int TBB
;
60 /* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
67 /* The parent of a node in the DFS tree. */
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
78 /* And next_bucket[x] points to the next node. */
80 /* After the algorithm is done, dom[x] contains the immediate dominator
84 /* The following few fields implement the structures needed for disjoint
86 /* set_chain[x] is the next node on the path from x to the representative
87 of the set containing x. If set_chain[x]==0 then x is a root. */
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size
;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
99 /* If x is the DFS-index of a node which corresponds with a basic block,
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block
*dfs_to_bb
;
105 /* This is the next free DFS number when creating the DFS tree. */
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge
;
115 static void init_dom_info (struct dom_info
*, enum cdi_direction
);
116 static void free_dom_info (struct dom_info
*);
117 static void calc_dfs_tree_nonrec (struct dom_info
*, basic_block
, bool);
118 static void calc_dfs_tree (struct dom_info
*, bool);
119 static void compress (struct dom_info
*, TBB
);
120 static TBB
eval (struct dom_info
*, TBB
);
121 static void link_roots (struct dom_info
*, TBB
, TBB
);
122 static void calc_idoms (struct dom_info
*, bool);
123 void debug_dominance_info (enum cdi_direction
);
124 void debug_dominance_tree (enum cdi_direction
, basic_block
);
126 /* Helper macro for allocating and initializing an array,
127 for aesthetic reasons. */
128 #define init_ar(var, type, num, content) \
131 unsigned int i = 1; /* Catch content == i. */ \
133 (var) = XCNEWVEC (type, num); \
136 (var) = XNEWVEC (type, (num)); \
137 for (i = 0; i < num; i++) \
138 (var)[i] = (content); \
143 /* Allocate all needed memory in a pessimistic fashion (so we round up).
144 This initializes the contents of DI, which already must be allocated. */
147 init_dom_info (struct dom_info
*di
, enum cdi_direction dir
)
149 /* We need memory for n_basic_blocks nodes. */
150 unsigned int num
= n_basic_blocks
;
151 init_ar (di
->dfs_parent
, TBB
, num
, 0);
152 init_ar (di
->path_min
, TBB
, num
, i
);
153 init_ar (di
->key
, TBB
, num
, i
);
154 init_ar (di
->dom
, TBB
, num
, 0);
156 init_ar (di
->bucket
, TBB
, num
, 0);
157 init_ar (di
->next_bucket
, TBB
, num
, 0);
159 init_ar (di
->set_chain
, TBB
, num
, 0);
160 init_ar (di
->set_size
, unsigned int, num
, 1);
161 init_ar (di
->set_child
, TBB
, num
, 0);
163 init_ar (di
->dfs_order
, TBB
, (unsigned int) last_basic_block
+ 1, 0);
164 init_ar (di
->dfs_to_bb
, basic_block
, num
, 0);
172 di
->fake_exit_edge
= NULL
;
174 case CDI_POST_DOMINATORS
:
175 di
->fake_exit_edge
= BITMAP_ALLOC (NULL
);
185 /* Map dominance calculation type to array index used for various
186 dominance information arrays. This version is simple -- it will need
187 to be modified, obviously, if additional values are added to
191 dom_convert_dir_to_idx (enum cdi_direction dir
)
193 gcc_assert (dir
== CDI_DOMINATORS
|| dir
== CDI_POST_DOMINATORS
);
197 /* Free all allocated memory in DI, but not DI itself. */
200 free_dom_info (struct dom_info
*di
)
202 free (di
->dfs_parent
);
207 free (di
->next_bucket
);
208 free (di
->set_chain
);
210 free (di
->set_child
);
211 free (di
->dfs_order
);
212 free (di
->dfs_to_bb
);
213 BITMAP_FREE (di
->fake_exit_edge
);
216 /* The nonrecursive variant of creating a DFS tree. DI is our working
217 structure, BB the starting basic block for this tree and REVERSE
218 is true, if predecessors should be visited instead of successors of a
219 node. After this is done all nodes reachable from BB were visited, have
220 assigned their dfs number and are linked together to form a tree. */
223 calc_dfs_tree_nonrec (struct dom_info
*di
, basic_block bb
, bool reverse
)
225 /* We call this _only_ if bb is not already visited. */
227 TBB child_i
, my_i
= 0;
228 edge_iterator
*stack
;
229 edge_iterator ei
, einext
;
231 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
233 basic_block en_block
;
235 basic_block ex_block
;
237 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
240 /* Initialize our border blocks, and the first edge. */
243 ei
= ei_start (bb
->preds
);
244 en_block
= EXIT_BLOCK_PTR
;
245 ex_block
= ENTRY_BLOCK_PTR
;
249 ei
= ei_start (bb
->succs
);
250 en_block
= ENTRY_BLOCK_PTR
;
251 ex_block
= EXIT_BLOCK_PTR
;
254 /* When the stack is empty we break out of this loop. */
259 /* This loop traverses edges e in depth first manner, and fills the
261 while (!ei_end_p (ei
))
265 /* Deduce from E the current and the next block (BB and BN), and the
271 /* If the next node BN is either already visited or a border
272 block the current edge is useless, and simply overwritten
273 with the next edge out of the current node. */
274 if (bn
== ex_block
|| di
->dfs_order
[bn
->index
])
280 einext
= ei_start (bn
->preds
);
285 if (bn
== ex_block
|| di
->dfs_order
[bn
->index
])
291 einext
= ei_start (bn
->succs
);
294 gcc_assert (bn
!= en_block
);
296 /* Fill the DFS tree info calculatable _before_ recursing. */
298 my_i
= di
->dfs_order
[bb
->index
];
300 my_i
= di
->dfs_order
[last_basic_block
];
301 child_i
= di
->dfs_order
[bn
->index
] = di
->dfsnum
++;
302 di
->dfs_to_bb
[child_i
] = bn
;
303 di
->dfs_parent
[child_i
] = my_i
;
305 /* Save the current point in the CFG on the stack, and recurse. */
314 /* OK. The edge-list was exhausted, meaning normally we would
315 end the recursion. After returning from the recursive call,
316 there were (may be) other statements which were run after a
317 child node was completely considered by DFS. Here is the
318 point to do it in the non-recursive variant.
319 E.g. The block just completed is in e->dest for forward DFS,
320 the block not yet completed (the parent of the one above)
321 in e->src. This could be used e.g. for computing the number of
322 descendants or the tree depth. */
328 /* The main entry for calculating the DFS tree or forest. DI is our working
329 structure and REVERSE is true, if we are interested in the reverse flow
330 graph. In that case the result is not necessarily a tree but a forest,
331 because there may be nodes from which the EXIT_BLOCK is unreachable. */
334 calc_dfs_tree (struct dom_info
*di
, bool reverse
)
336 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
337 basic_block begin
= reverse
? EXIT_BLOCK_PTR
: ENTRY_BLOCK_PTR
;
338 di
->dfs_order
[last_basic_block
] = di
->dfsnum
;
339 di
->dfs_to_bb
[di
->dfsnum
] = begin
;
342 calc_dfs_tree_nonrec (di
, begin
, reverse
);
346 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
347 They are reverse-unreachable. In the dom-case we disallow such
348 nodes, but in post-dom we have to deal with them.
350 There are two situations in which this occurs. First, noreturn
351 functions. Second, infinite loops. In the first case we need to
352 pretend that there is an edge to the exit block. In the second
353 case, we wind up with a forest. We need to process all noreturn
354 blocks before we know if we've got any infinite loops. */
357 bool saw_unconnected
= false;
359 FOR_EACH_BB_REVERSE (b
)
361 if (EDGE_COUNT (b
->succs
) > 0)
363 if (di
->dfs_order
[b
->index
] == 0)
364 saw_unconnected
= true;
367 bitmap_set_bit (di
->fake_exit_edge
, b
->index
);
368 di
->dfs_order
[b
->index
] = di
->dfsnum
;
369 di
->dfs_to_bb
[di
->dfsnum
] = b
;
370 di
->dfs_parent
[di
->dfsnum
] = di
->dfs_order
[last_basic_block
];
372 calc_dfs_tree_nonrec (di
, b
, reverse
);
377 FOR_EACH_BB_REVERSE (b
)
379 if (di
->dfs_order
[b
->index
])
381 bitmap_set_bit (di
->fake_exit_edge
, b
->index
);
382 di
->dfs_order
[b
->index
] = di
->dfsnum
;
383 di
->dfs_to_bb
[di
->dfsnum
] = b
;
384 di
->dfs_parent
[di
->dfsnum
] = di
->dfs_order
[last_basic_block
];
386 calc_dfs_tree_nonrec (di
, b
, reverse
);
391 di
->nodes
= di
->dfsnum
- 1;
393 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
394 gcc_assert (di
->nodes
== (unsigned int) n_basic_blocks
- 1);
397 /* Compress the path from V to the root of its set and update path_min at the
398 same time. After compress(di, V) set_chain[V] is the root of the set V is
399 in and path_min[V] is the node with the smallest key[] value on the path
400 from V to that root. */
403 compress (struct dom_info
*di
, TBB v
)
405 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
406 greater than 5 even for huge graphs (I've not seen call depth > 4).
407 Also performance wise compress() ranges _far_ behind eval(). */
408 TBB parent
= di
->set_chain
[v
];
409 if (di
->set_chain
[parent
])
411 compress (di
, parent
);
412 if (di
->key
[di
->path_min
[parent
]] < di
->key
[di
->path_min
[v
]])
413 di
->path_min
[v
] = di
->path_min
[parent
];
414 di
->set_chain
[v
] = di
->set_chain
[parent
];
418 /* Compress the path from V to the set root of V if needed (when the root has
419 changed since the last call). Returns the node with the smallest key[]
420 value on the path from V to the root. */
423 eval (struct dom_info
*di
, TBB v
)
425 /* The representative of the set V is in, also called root (as the set
426 representation is a tree). */
427 TBB rep
= di
->set_chain
[v
];
429 /* V itself is the root. */
431 return di
->path_min
[v
];
433 /* Compress only if necessary. */
434 if (di
->set_chain
[rep
])
437 rep
= di
->set_chain
[v
];
440 if (di
->key
[di
->path_min
[rep
]] >= di
->key
[di
->path_min
[v
]])
441 return di
->path_min
[v
];
443 return di
->path_min
[rep
];
446 /* This essentially merges the two sets of V and W, giving a single set with
447 the new root V. The internal representation of these disjoint sets is a
448 balanced tree. Currently link(V,W) is only used with V being the parent
452 link_roots (struct dom_info
*di
, TBB v
, TBB w
)
456 /* Rebalance the tree. */
457 while (di
->key
[di
->path_min
[w
]] < di
->key
[di
->path_min
[di
->set_child
[s
]]])
459 if (di
->set_size
[s
] + di
->set_size
[di
->set_child
[di
->set_child
[s
]]]
460 >= 2 * di
->set_size
[di
->set_child
[s
]])
462 di
->set_chain
[di
->set_child
[s
]] = s
;
463 di
->set_child
[s
] = di
->set_child
[di
->set_child
[s
]];
467 di
->set_size
[di
->set_child
[s
]] = di
->set_size
[s
];
468 s
= di
->set_chain
[s
] = di
->set_child
[s
];
472 di
->path_min
[s
] = di
->path_min
[w
];
473 di
->set_size
[v
] += di
->set_size
[w
];
474 if (di
->set_size
[v
] < 2 * di
->set_size
[w
])
477 s
= di
->set_child
[v
];
478 di
->set_child
[v
] = tmp
;
481 /* Merge all subtrees. */
484 di
->set_chain
[s
] = v
;
485 s
= di
->set_child
[s
];
489 /* This calculates the immediate dominators (or post-dominators if REVERSE is
490 true). DI is our working structure and should hold the DFS forest.
491 On return the immediate dominator to node V is in di->dom[V]. */
494 calc_idoms (struct dom_info
*di
, bool reverse
)
497 basic_block en_block
;
498 edge_iterator ei
, einext
;
501 en_block
= EXIT_BLOCK_PTR
;
503 en_block
= ENTRY_BLOCK_PTR
;
505 /* Go backwards in DFS order, to first look at the leafs. */
509 basic_block bb
= di
->dfs_to_bb
[v
];
512 par
= di
->dfs_parent
[v
];
515 ei
= (reverse
) ? ei_start (bb
->succs
) : ei_start (bb
->preds
);
519 /* If this block has a fake edge to exit, process that first. */
520 if (bitmap_bit_p (di
->fake_exit_edge
, bb
->index
))
524 goto do_fake_exit_edge
;
528 /* Search all direct predecessors for the smallest node with a path
529 to them. That way we have the smallest node with also a path to
530 us only over nodes behind us. In effect we search for our
532 while (!ei_end_p (ei
))
538 b
= (reverse
) ? e
->dest
: e
->src
;
545 k1
= di
->dfs_order
[last_basic_block
];
548 k1
= di
->dfs_order
[b
->index
];
550 /* Call eval() only if really needed. If k1 is above V in DFS tree,
551 then we know, that eval(k1) == k1 and key[k1] == k1. */
553 k1
= di
->key
[eval (di
, k1
)];
561 link_roots (di
, par
, v
);
562 di
->next_bucket
[v
] = di
->bucket
[k
];
565 /* Transform semidominators into dominators. */
566 for (w
= di
->bucket
[par
]; w
; w
= di
->next_bucket
[w
])
569 if (di
->key
[k
] < di
->key
[w
])
574 /* We don't need to cleanup next_bucket[]. */
579 /* Explicitly define the dominators. */
581 for (v
= 2; v
<= di
->nodes
; v
++)
582 if (di
->dom
[v
] != di
->key
[v
])
583 di
->dom
[v
] = di
->dom
[di
->dom
[v
]];
586 /* Assign dfs numbers starting from NUM to NODE and its sons. */
589 assign_dfs_numbers (struct et_node
*node
, int *num
)
593 node
->dfs_num_in
= (*num
)++;
597 assign_dfs_numbers (node
->son
, num
);
598 for (son
= node
->son
->right
; son
!= node
->son
; son
= son
->right
)
599 assign_dfs_numbers (son
, num
);
602 node
->dfs_num_out
= (*num
)++;
605 /* Compute the data necessary for fast resolving of dominator queries in a
606 static dominator tree. */
609 compute_dom_fast_query (enum cdi_direction dir
)
613 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
615 gcc_assert (dom_info_available_p (dir
));
617 if (dom_computed
[dir_index
] == DOM_OK
)
622 if (!bb
->dom
[dir_index
]->father
)
623 assign_dfs_numbers (bb
->dom
[dir_index
], &num
);
626 dom_computed
[dir_index
] = DOM_OK
;
629 /* The main entry point into this module. DIR is set depending on whether
630 we want to compute dominators or postdominators. */
633 calculate_dominance_info (enum cdi_direction dir
)
637 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
638 bool reverse
= (dir
== CDI_POST_DOMINATORS
) ? true : false;
640 if (dom_computed
[dir_index
] == DOM_OK
)
643 timevar_push (TV_DOMINANCE
);
644 if (!dom_info_available_p (dir
))
646 gcc_assert (!n_bbs_in_dom_tree
[dir_index
]);
650 b
->dom
[dir_index
] = et_new_tree (b
);
652 n_bbs_in_dom_tree
[dir_index
] = n_basic_blocks
;
654 init_dom_info (&di
, dir
);
655 calc_dfs_tree (&di
, reverse
);
656 calc_idoms (&di
, reverse
);
660 TBB d
= di
.dom
[di
.dfs_order
[b
->index
]];
663 et_set_father (b
->dom
[dir_index
], di
.dfs_to_bb
[d
]->dom
[dir_index
]);
667 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
670 compute_dom_fast_query (dir
);
672 timevar_pop (TV_DOMINANCE
);
675 /* Free dominance information for direction DIR. */
677 free_dominance_info (enum cdi_direction dir
)
680 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
682 if (!dom_info_available_p (dir
))
687 et_free_tree_force (bb
->dom
[dir_index
]);
688 bb
->dom
[dir_index
] = NULL
;
692 n_bbs_in_dom_tree
[dir_index
] = 0;
694 dom_computed
[dir_index
] = DOM_NONE
;
697 /* Return the immediate dominator of basic block BB. */
699 get_immediate_dominator (enum cdi_direction dir
, basic_block bb
)
701 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
702 struct et_node
*node
= bb
->dom
[dir_index
];
704 gcc_assert (dom_computed
[dir_index
]);
709 return (basic_block
) node
->father
->data
;
712 /* Set the immediate dominator of the block possibly removing
713 existing edge. NULL can be used to remove any edge. */
715 set_immediate_dominator (enum cdi_direction dir
, basic_block bb
,
716 basic_block dominated_by
)
718 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
719 struct et_node
*node
= bb
->dom
[dir_index
];
721 gcc_assert (dom_computed
[dir_index
]);
725 if (node
->father
->data
== dominated_by
)
731 et_set_father (node
, dominated_by
->dom
[dir_index
]);
733 if (dom_computed
[dir_index
] == DOM_OK
)
734 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
737 /* Returns the list of basic blocks immediately dominated by BB, in the
739 VEC (basic_block
, heap
) *
740 get_dominated_by (enum cdi_direction dir
, basic_block bb
)
743 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
744 struct et_node
*node
= bb
->dom
[dir_index
], *son
= node
->son
, *ason
;
745 VEC (basic_block
, heap
) *bbs
= NULL
;
747 gcc_assert (dom_computed
[dir_index
]);
752 VEC_safe_push (basic_block
, heap
, bbs
, (basic_block
) son
->data
);
753 for (ason
= son
->right
, n
= 1; ason
!= son
; ason
= ason
->right
)
754 VEC_safe_push (basic_block
, heap
, bbs
, (basic_block
) ason
->data
);
759 /* Returns the list of basic blocks that are immediately dominated (in
760 direction DIR) by some block between N_REGION ones stored in REGION,
761 except for blocks in the REGION itself. */
763 VEC (basic_block
, heap
) *
764 get_dominated_by_region (enum cdi_direction dir
, basic_block
*region
,
769 VEC (basic_block
, heap
) *doms
= NULL
;
771 for (i
= 0; i
< n_region
; i
++)
772 region
[i
]->flags
|= BB_DUPLICATED
;
773 for (i
= 0; i
< n_region
; i
++)
774 for (dom
= first_dom_son (dir
, region
[i
]);
776 dom
= next_dom_son (dir
, dom
))
777 if (!(dom
->flags
& BB_DUPLICATED
))
778 VEC_safe_push (basic_block
, heap
, doms
, dom
);
779 for (i
= 0; i
< n_region
; i
++)
780 region
[i
]->flags
&= ~BB_DUPLICATED
;
785 /* Redirect all edges pointing to BB to TO. */
787 redirect_immediate_dominators (enum cdi_direction dir
, basic_block bb
,
790 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
791 struct et_node
*bb_node
, *to_node
, *son
;
793 bb_node
= bb
->dom
[dir_index
];
794 to_node
= to
->dom
[dir_index
];
796 gcc_assert (dom_computed
[dir_index
]);
806 et_set_father (son
, to_node
);
809 if (dom_computed
[dir_index
] == DOM_OK
)
810 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
813 /* Find first basic block in the tree dominating both BB1 and BB2. */
815 nearest_common_dominator (enum cdi_direction dir
, basic_block bb1
, basic_block bb2
)
817 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
819 gcc_assert (dom_computed
[dir_index
]);
826 return (basic_block
) et_nca (bb1
->dom
[dir_index
], bb2
->dom
[dir_index
])->data
;
830 /* Find the nearest common dominator for the basic blocks in BLOCKS,
831 using dominance direction DIR. */
834 nearest_common_dominator_for_set (enum cdi_direction dir
, bitmap blocks
)
840 first
= bitmap_first_set_bit (blocks
);
841 dom
= BASIC_BLOCK (first
);
842 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
843 if (dom
!= BASIC_BLOCK (i
))
844 dom
= nearest_common_dominator (dir
, dom
, BASIC_BLOCK (i
));
849 /* Given a dominator tree, we can determine whether one thing
850 dominates another in constant time by using two DFS numbers:
852 1. The number for when we visit a node on the way down the tree
853 2. The number for when we visit a node on the way back up the tree
855 You can view these as bounds for the range of dfs numbers the
856 nodes in the subtree of the dominator tree rooted at that node
859 The dominator tree is always a simple acyclic tree, so there are
860 only three possible relations two nodes in the dominator tree have
863 1. Node A is above Node B (and thus, Node A dominates node B)
872 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
873 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
874 because we must hit A in the dominator tree *before* B on the walk
875 down, and we will hit A *after* B on the walk back up
877 2. Node A is below node B (and thus, node B dominates node A)
886 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
887 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
889 This is because we must hit A in the dominator tree *after* B on
890 the walk down, and we will hit A *before* B on the walk back up
892 3. Node A and B are siblings (and thus, neither dominates the other)
900 In the above case, DFS_Number_In of A will *always* be <=
901 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
902 DFS_Number_Out of B. This is because we will always finish the dfs
903 walk of one of the subtrees before the other, and thus, the dfs
904 numbers for one subtree can't intersect with the range of dfs
905 numbers for the other subtree. If you swap A and B's position in
906 the dominator tree, the comparison changes direction, but the point
907 is that both comparisons will always go the same way if there is no
908 dominance relationship.
910 Thus, it is sufficient to write
912 A_Dominates_B (node A, node B)
914 return DFS_Number_In(A) <= DFS_Number_In(B)
915 && DFS_Number_Out (A) >= DFS_Number_Out(B);
918 A_Dominated_by_B (node A, node B)
920 return DFS_Number_In(A) >= DFS_Number_In(A)
921 && DFS_Number_Out (A) <= DFS_Number_Out(B);
924 /* Return TRUE in case BB1 is dominated by BB2. */
926 dominated_by_p (enum cdi_direction dir
, const_basic_block bb1
, const_basic_block bb2
)
928 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
929 struct et_node
*n1
= bb1
->dom
[dir_index
], *n2
= bb2
->dom
[dir_index
];
931 gcc_assert (dom_computed
[dir_index
]);
933 if (dom_computed
[dir_index
] == DOM_OK
)
934 return (n1
->dfs_num_in
>= n2
->dfs_num_in
935 && n1
->dfs_num_out
<= n2
->dfs_num_out
);
937 return et_below (n1
, n2
);
940 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
943 bb_dom_dfs_in (enum cdi_direction dir
, basic_block bb
)
945 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
946 struct et_node
*n
= bb
->dom
[dir_index
];
948 gcc_assert (dom_computed
[dir_index
] == DOM_OK
);
949 return n
->dfs_num_in
;
952 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
955 bb_dom_dfs_out (enum cdi_direction dir
, basic_block bb
)
957 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
958 struct et_node
*n
= bb
->dom
[dir_index
];
960 gcc_assert (dom_computed
[dir_index
] == DOM_OK
);
961 return n
->dfs_num_out
;
964 /* Verify invariants of dominator structure. */
966 verify_dominators (enum cdi_direction dir
)
969 basic_block bb
, imm_bb
, imm_bb_correct
;
971 bool reverse
= (dir
== CDI_POST_DOMINATORS
) ? true : false;
973 gcc_assert (dom_info_available_p (dir
));
975 init_dom_info (&di
, dir
);
976 calc_dfs_tree (&di
, reverse
);
977 calc_idoms (&di
, reverse
);
981 imm_bb
= get_immediate_dominator (dir
, bb
);
984 error ("dominator of %d status unknown", bb
->index
);
988 imm_bb_correct
= di
.dfs_to_bb
[di
.dom
[di
.dfs_order
[bb
->index
]]];
989 if (imm_bb
!= imm_bb_correct
)
991 error ("dominator of %d should be %d, not %d",
992 bb
->index
, imm_bb_correct
->index
, imm_bb
->index
);
1001 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1002 assuming that dominators of other blocks are correct. We also use it to
1003 recompute the dominators in a restricted area, by iterating it until it
1004 reaches a fixed point. */
1007 recompute_dominator (enum cdi_direction dir
, basic_block bb
)
1009 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1010 basic_block dom_bb
= NULL
;
1014 gcc_assert (dom_computed
[dir_index
]);
1016 if (dir
== CDI_DOMINATORS
)
1018 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1020 if (!dominated_by_p (dir
, e
->src
, bb
))
1021 dom_bb
= nearest_common_dominator (dir
, dom_bb
, e
->src
);
1026 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1028 if (!dominated_by_p (dir
, e
->dest
, bb
))
1029 dom_bb
= nearest_common_dominator (dir
, dom_bb
, e
->dest
);
1036 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1037 of BBS. We assume that all the immediate dominators except for those of the
1038 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1039 currently recorded immediate dominators of blocks in BBS really dominate the
1040 blocks. The basic blocks for that we determine the dominator are removed
1044 prune_bbs_to_update_dominators (VEC (basic_block
, heap
) *bbs
,
1049 basic_block bb
, dom
= NULL
;
1053 for (i
= 0; VEC_iterate (basic_block
, bbs
, i
, bb
);)
1055 if (bb
== ENTRY_BLOCK_PTR
)
1058 if (single_pred_p (bb
))
1060 set_immediate_dominator (CDI_DOMINATORS
, bb
, single_pred (bb
));
1069 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1071 if (dominated_by_p (CDI_DOMINATORS
, e
->src
, bb
))
1079 dom
= nearest_common_dominator (CDI_DOMINATORS
, dom
, e
->src
);
1083 gcc_assert (dom
!= NULL
);
1085 || find_edge (dom
, bb
))
1087 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom
);
1096 VEC_unordered_remove (basic_block
, bbs
, i
);
1100 /* Returns root of the dominance tree in the direction DIR that contains
1104 root_of_dom_tree (enum cdi_direction dir
, basic_block bb
)
1106 return (basic_block
) et_root (bb
->dom
[dom_convert_dir_to_idx (dir
)])->data
;
1109 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1110 for the sons of Y, found using the SON and BROTHER arrays representing
1111 the dominance tree of graph G. BBS maps the vertices of G to the basic
1115 determine_dominators_for_sons (struct graph
*g
, VEC (basic_block
, heap
) *bbs
,
1116 int y
, int *son
, int *brother
)
1120 VEC (int, heap
) **sccs
;
1121 basic_block bb
, dom
, ybb
;
1128 if (y
== (int) VEC_length (basic_block
, bbs
))
1129 ybb
= ENTRY_BLOCK_PTR
;
1131 ybb
= VEC_index (basic_block
, bbs
, y
);
1133 if (brother
[son
[y
]] == -1)
1135 /* Handle the common case Y has just one son specially. */
1136 bb
= VEC_index (basic_block
, bbs
, son
[y
]);
1137 set_immediate_dominator (CDI_DOMINATORS
, bb
,
1138 recompute_dominator (CDI_DOMINATORS
, bb
));
1139 identify_vertices (g
, y
, son
[y
]);
1143 gprime
= BITMAP_ALLOC (NULL
);
1144 for (a
= son
[y
]; a
!= -1; a
= brother
[a
])
1145 bitmap_set_bit (gprime
, a
);
1147 nc
= graphds_scc (g
, gprime
);
1148 BITMAP_FREE (gprime
);
1150 sccs
= XCNEWVEC (VEC (int, heap
) *, nc
);
1151 for (a
= son
[y
]; a
!= -1; a
= brother
[a
])
1152 VEC_safe_push (int, heap
, sccs
[g
->vertices
[a
].component
], a
);
1154 for (i
= nc
- 1; i
>= 0; i
--)
1157 for (si
= 0; VEC_iterate (int, sccs
[i
], si
, a
); si
++)
1159 bb
= VEC_index (basic_block
, bbs
, a
);
1160 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1162 if (root_of_dom_tree (CDI_DOMINATORS
, e
->src
) != ybb
)
1165 dom
= nearest_common_dominator (CDI_DOMINATORS
, dom
, e
->src
);
1169 gcc_assert (dom
!= NULL
);
1170 for (si
= 0; VEC_iterate (int, sccs
[i
], si
, a
); si
++)
1172 bb
= VEC_index (basic_block
, bbs
, a
);
1173 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom
);
1177 for (i
= 0; i
< nc
; i
++)
1178 VEC_free (int, heap
, sccs
[i
]);
1181 for (a
= son
[y
]; a
!= -1; a
= brother
[a
])
1182 identify_vertices (g
, y
, a
);
1185 /* Recompute dominance information for basic blocks in the set BBS. The
1186 function assumes that the immediate dominators of all the other blocks
1187 in CFG are correct, and that there are no unreachable blocks.
1189 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1190 a block of BBS in the current dominance tree dominate it. */
1193 iterate_fix_dominators (enum cdi_direction dir
, VEC (basic_block
, heap
) *bbs
,
1197 basic_block bb
, dom
;
1203 struct pointer_map_t
*map
;
1204 int *parent
, *son
, *brother
;
1205 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1207 /* We only support updating dominators. There are some problems with
1208 updating postdominators (need to add fake edges from infinite loops
1209 and noreturn functions), and since we do not currently use
1210 iterate_fix_dominators for postdominators, any attempt to handle these
1211 problems would be unused, untested, and almost surely buggy. We keep
1212 the DIR argument for consistency with the rest of the dominator analysis
1214 gcc_assert (dir
== CDI_DOMINATORS
);
1215 gcc_assert (dom_computed
[dir_index
]);
1217 /* The algorithm we use takes inspiration from the following papers, although
1218 the details are quite different from any of them:
1220 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1221 Dominator Tree of a Reducible Flowgraph
1222 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1224 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1227 First, we use the following heuristics to decrease the size of the BBS
1229 a) if BB has a single predecessor, then its immediate dominator is this
1231 additionally, if CONSERVATIVE is true:
1232 b) if all the predecessors of BB except for one (X) are dominated by BB,
1233 then X is the immediate dominator of BB
1234 c) if the nearest common ancestor of the predecessors of BB is X and
1235 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1237 Then, we need to establish the dominance relation among the basic blocks
1238 in BBS. We split the dominance tree by removing the immediate dominator
1239 edges from BBS, creating a forest F. We form a graph G whose vertices
1240 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1241 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1242 whose root is X. We then determine dominance tree of G. Note that
1243 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1244 In this step, we can use arbitrary algorithm to determine dominators.
1245 We decided to prefer the algorithm [3] to the algorithm of
1246 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1247 10 during gcc bootstrap), and [3] should perform better in this case.
1249 Finally, we need to determine the immediate dominators for the basic
1250 blocks of BBS. If the immediate dominator of X in G is Y, then
1251 the immediate dominator of X in CFG belongs to the tree of F rooted in
1252 Y. We process the dominator tree T of G recursively, starting from leaves.
1253 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1254 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1255 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1256 the following observations:
1257 (i) the immediate dominator of all blocks in a strongly connected
1258 component of G' is the same
1259 (ii) if X has no predecessors in G', then the immediate dominator of X
1260 is the nearest common ancestor of the predecessors of X in the
1261 subtree of F rooted in Y
1262 Therefore, it suffices to find the topological ordering of G', and
1263 process the nodes X_i in this order using the rules (i) and (ii).
1264 Then, we contract all the nodes X_i with Y in G, so that the further
1265 steps work correctly. */
1269 /* Split the tree now. If the idoms of blocks in BBS are not
1270 conservatively correct, setting the dominators using the
1271 heuristics in prune_bbs_to_update_dominators could
1272 create cycles in the dominance "tree", and cause ICE. */
1273 for (i
= 0; VEC_iterate (basic_block
, bbs
, i
, bb
); i
++)
1274 set_immediate_dominator (CDI_DOMINATORS
, bb
, NULL
);
1277 prune_bbs_to_update_dominators (bbs
, conservative
);
1278 n
= VEC_length (basic_block
, bbs
);
1285 bb
= VEC_index (basic_block
, bbs
, 0);
1286 set_immediate_dominator (CDI_DOMINATORS
, bb
,
1287 recompute_dominator (CDI_DOMINATORS
, bb
));
1291 /* Construct the graph G. */
1292 map
= pointer_map_create ();
1293 for (i
= 0; VEC_iterate (basic_block
, bbs
, i
, bb
); i
++)
1295 /* If the dominance tree is conservatively correct, split it now. */
1297 set_immediate_dominator (CDI_DOMINATORS
, bb
, NULL
);
1298 *pointer_map_insert (map
, bb
) = (void *) (size_t) i
;
1300 *pointer_map_insert (map
, ENTRY_BLOCK_PTR
) = (void *) (size_t) n
;
1302 g
= new_graph (n
+ 1);
1303 for (y
= 0; y
< g
->n_vertices
; y
++)
1304 g
->vertices
[y
].data
= BITMAP_ALLOC (NULL
);
1305 for (i
= 0; VEC_iterate (basic_block
, bbs
, i
, bb
); i
++)
1307 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1309 dom
= root_of_dom_tree (CDI_DOMINATORS
, e
->src
);
1313 dom_i
= (size_t) *pointer_map_contains (map
, dom
);
1315 /* Do not include parallel edges to G. */
1316 if (bitmap_bit_p ((bitmap
) g
->vertices
[dom_i
].data
, i
))
1319 bitmap_set_bit ((bitmap
) g
->vertices
[dom_i
].data
, i
);
1320 add_edge (g
, dom_i
, i
);
1323 for (y
= 0; y
< g
->n_vertices
; y
++)
1324 BITMAP_FREE (g
->vertices
[y
].data
);
1325 pointer_map_destroy (map
);
1327 /* Find the dominator tree of G. */
1328 son
= XNEWVEC (int, n
+ 1);
1329 brother
= XNEWVEC (int, n
+ 1);
1330 parent
= XNEWVEC (int, n
+ 1);
1331 graphds_domtree (g
, n
, parent
, son
, brother
);
1333 /* Finally, traverse the tree and find the immediate dominators. */
1334 for (y
= n
; son
[y
] != -1; y
= son
[y
])
1338 determine_dominators_for_sons (g
, bbs
, y
, son
, brother
);
1340 if (brother
[y
] != -1)
1343 while (son
[y
] != -1)
1358 add_to_dominance_info (enum cdi_direction dir
, basic_block bb
)
1360 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1362 gcc_assert (dom_computed
[dir_index
]);
1363 gcc_assert (!bb
->dom
[dir_index
]);
1365 n_bbs_in_dom_tree
[dir_index
]++;
1367 bb
->dom
[dir_index
] = et_new_tree (bb
);
1369 if (dom_computed
[dir_index
] == DOM_OK
)
1370 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
1374 delete_from_dominance_info (enum cdi_direction dir
, basic_block bb
)
1376 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1378 gcc_assert (dom_computed
[dir_index
]);
1380 et_free_tree (bb
->dom
[dir_index
]);
1381 bb
->dom
[dir_index
] = NULL
;
1382 n_bbs_in_dom_tree
[dir_index
]--;
1384 if (dom_computed
[dir_index
] == DOM_OK
)
1385 dom_computed
[dir_index
] = DOM_NO_FAST_QUERY
;
1388 /* Returns the first son of BB in the dominator or postdominator tree
1389 as determined by DIR. */
1392 first_dom_son (enum cdi_direction dir
, basic_block bb
)
1394 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1395 struct et_node
*son
= bb
->dom
[dir_index
]->son
;
1397 return (basic_block
) (son
? son
->data
: NULL
);
1400 /* Returns the next dominance son after BB in the dominator or postdominator
1401 tree as determined by DIR, or NULL if it was the last one. */
1404 next_dom_son (enum cdi_direction dir
, basic_block bb
)
1406 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1407 struct et_node
*next
= bb
->dom
[dir_index
]->right
;
1409 return (basic_block
) (next
->father
->son
== next
? NULL
: next
->data
);
1412 /* Return dominance availability for dominance info DIR. */
1415 dom_info_state (enum cdi_direction dir
)
1417 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1419 return dom_computed
[dir_index
];
1422 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1425 set_dom_info_availability (enum cdi_direction dir
, enum dom_state new_state
)
1427 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1429 dom_computed
[dir_index
] = new_state
;
1432 /* Returns true if dominance information for direction DIR is available. */
1435 dom_info_available_p (enum cdi_direction dir
)
1437 unsigned int dir_index
= dom_convert_dir_to_idx (dir
);
1439 return dom_computed
[dir_index
] != DOM_NONE
;
1443 debug_dominance_info (enum cdi_direction dir
)
1445 basic_block bb
, bb2
;
1447 if ((bb2
= get_immediate_dominator (dir
, bb
)))
1448 fprintf (stderr
, "%i %i\n", bb
->index
, bb2
->index
);
1451 /* Prints to stderr representation of the dominance tree (for direction DIR)
1452 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1453 the first line of the output is not indented. */
1456 debug_dominance_tree_1 (enum cdi_direction dir
, basic_block root
,
1457 unsigned indent
, bool indent_first
)
1464 for (i
= 0; i
< indent
; i
++)
1465 fprintf (stderr
, "\t");
1466 fprintf (stderr
, "%d\t", root
->index
);
1468 for (son
= first_dom_son (dir
, root
);
1470 son
= next_dom_son (dir
, son
))
1472 debug_dominance_tree_1 (dir
, son
, indent
+ 1, !first
);
1477 fprintf (stderr
, "\n");
1480 /* Prints to stderr representation of the dominance tree (for direction DIR)
1484 debug_dominance_tree (enum cdi_direction dir
, basic_block root
)
1486 debug_dominance_tree_1 (dir
, root
, 0, false);