1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51 #include "cfn-operators.pd"
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
57 Also define operand lists:
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 (define_operator_list X##FN BUILT_IN_I##FN \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
78 /* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80 (match (nop_convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83 (match (nop_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86 && known_eq (TYPE_VECTOR_SUBPARTS (type),
87 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
88 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
89 /* This one has to be last, or it shadows the others. */
90 (match (nop_convert @0)
93 /* Simplifications of operations with one constant operand and
94 simplifications to constants or single values. */
96 (for op (plus pointer_plus minus bit_ior bit_xor)
101 /* 0 +p index -> (type)index */
103 (pointer_plus integer_zerop @1)
104 (non_lvalue (convert @1)))
106 /* ptr - 0 -> (type)ptr */
108 (pointer_diff @0 integer_zerop)
111 /* See if ARG1 is zero and X + ARG1 reduces to X.
112 Likewise if the operands are reversed. */
114 (plus:c @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 0))
118 /* See if ARG1 is zero and X - ARG1 reduces to X. */
120 (minus @0 real_zerop@1)
121 (if (fold_real_zero_addition_p (type, @1, 1))
125 This is unsafe for certain floats even in non-IEEE formats.
126 In IEEE, it is unsafe because it does wrong for NaNs.
127 Also note that operand_equal_p is always false if an operand
131 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
132 { build_zero_cst (type); }))
134 (pointer_diff @@0 @0)
135 { build_zero_cst (type); })
138 (mult @0 integer_zerop@1)
141 /* Maybe fold x * 0 to 0. The expressions aren't the same
142 when x is NaN, since x * 0 is also NaN. Nor are they the
143 same in modes with signed zeros, since multiplying a
144 negative value by 0 gives -0, not +0. */
146 (mult @0 real_zerop@1)
147 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
150 /* In IEEE floating point, x*1 is not equivalent to x for snans.
151 Likewise for complex arithmetic with signed zeros. */
154 (if (!HONOR_SNANS (type)
155 && (!HONOR_SIGNED_ZEROS (type)
156 || !COMPLEX_FLOAT_TYPE_P (type)))
159 /* Transform x * -1.0 into -x. */
161 (mult @0 real_minus_onep)
162 (if (!HONOR_SNANS (type)
163 && (!HONOR_SIGNED_ZEROS (type)
164 || !COMPLEX_FLOAT_TYPE_P (type)))
167 (for cmp (gt ge lt le)
168 outp (convert convert negate negate)
169 outn (negate negate convert convert)
170 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
171 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
172 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
173 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
175 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
177 && types_match (type, TREE_TYPE (@0)))
179 (if (types_match (type, float_type_node))
180 (BUILT_IN_COPYSIGNF @1 (outp @0)))
181 (if (types_match (type, double_type_node))
182 (BUILT_IN_COPYSIGN @1 (outp @0)))
183 (if (types_match (type, long_double_type_node))
184 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
185 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
186 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
187 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
188 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
190 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
191 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
192 && types_match (type, TREE_TYPE (@0)))
194 (if (types_match (type, float_type_node))
195 (BUILT_IN_COPYSIGNF @1 (outn @0)))
196 (if (types_match (type, double_type_node))
197 (BUILT_IN_COPYSIGN @1 (outn @0)))
198 (if (types_match (type, long_double_type_node))
199 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
201 /* Transform X * copysign (1.0, X) into abs(X). */
203 (mult:c @0 (COPYSIGN_ALL real_onep @0))
204 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
207 /* Transform X * copysign (1.0, -X) into -abs(X). */
209 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
210 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
213 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
215 (COPYSIGN_ALL REAL_CST@0 @1)
216 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
217 (COPYSIGN_ALL (negate @0) @1)))
219 /* X * 1, X / 1 -> X. */
220 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
225 /* (A / (1 << B)) -> (A >> B).
226 Only for unsigned A. For signed A, this would not preserve rounding
228 For example: (-1 / ( 1 << B)) != -1 >> B. */
230 (trunc_div @0 (lshift integer_onep@1 @2))
231 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
232 && (!VECTOR_TYPE_P (type)
233 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
234 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
237 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
238 undefined behavior in constexpr evaluation, and assuming that the division
239 traps enables better optimizations than these anyway. */
240 (for div (trunc_div ceil_div floor_div round_div exact_div)
241 /* 0 / X is always zero. */
243 (div integer_zerop@0 @1)
244 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
245 (if (!integer_zerop (@1))
249 (div @0 integer_minus_onep@1)
250 (if (!TYPE_UNSIGNED (type))
255 /* But not for 0 / 0 so that we can get the proper warnings and errors.
256 And not for _Fract types where we can't build 1. */
257 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
258 { build_one_cst (type); }))
259 /* X / abs (X) is X < 0 ? -1 : 1. */
262 (if (INTEGRAL_TYPE_P (type)
263 && TYPE_OVERFLOW_UNDEFINED (type))
264 (cond (lt @0 { build_zero_cst (type); })
265 { build_minus_one_cst (type); } { build_one_cst (type); })))
268 (div:C @0 (negate @0))
269 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
270 && TYPE_OVERFLOW_UNDEFINED (type))
271 { build_minus_one_cst (type); })))
273 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
274 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
277 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
278 && TYPE_UNSIGNED (type))
281 /* Combine two successive divisions. Note that combining ceil_div
282 and floor_div is trickier and combining round_div even more so. */
283 (for div (trunc_div exact_div)
285 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
288 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
289 TYPE_SIGN (type), &overflow_p);
292 (div @0 { wide_int_to_tree (type, mul); })
293 (if (TYPE_UNSIGNED (type)
294 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
295 { build_zero_cst (type); })))))
297 /* Combine successive multiplications. Similar to above, but handling
298 overflow is different. */
300 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
303 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
304 TYPE_SIGN (type), &overflow_p);
306 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
307 otherwise undefined overflow implies that @0 must be zero. */
308 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
309 (mult @0 { wide_int_to_tree (type, mul); }))))
311 /* Optimize A / A to 1.0 if we don't care about
312 NaNs or Infinities. */
315 (if (FLOAT_TYPE_P (type)
316 && ! HONOR_NANS (type)
317 && ! HONOR_INFINITIES (type))
318 { build_one_cst (type); }))
320 /* Optimize -A / A to -1.0 if we don't care about
321 NaNs or Infinities. */
323 (rdiv:C @0 (negate @0))
324 (if (FLOAT_TYPE_P (type)
325 && ! HONOR_NANS (type)
326 && ! HONOR_INFINITIES (type))
327 { build_minus_one_cst (type); }))
329 /* PR71078: x / abs(x) -> copysign (1.0, x) */
331 (rdiv:C (convert? @0) (convert? (abs @0)))
332 (if (SCALAR_FLOAT_TYPE_P (type)
333 && ! HONOR_NANS (type)
334 && ! HONOR_INFINITIES (type))
336 (if (types_match (type, float_type_node))
337 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
338 (if (types_match (type, double_type_node))
339 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
340 (if (types_match (type, long_double_type_node))
341 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
343 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
346 (if (!HONOR_SNANS (type))
349 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
351 (rdiv @0 real_minus_onep)
352 (if (!HONOR_SNANS (type))
355 (if (flag_reciprocal_math)
356 /* Convert (A/B)/C to A/(B*C). */
358 (rdiv (rdiv:s @0 @1) @2)
359 (rdiv @0 (mult @1 @2)))
361 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
363 (rdiv @0 (mult:s @1 REAL_CST@2))
365 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
367 (rdiv (mult @0 { tem; } ) @1))))
369 /* Convert A/(B/C) to (A/B)*C */
371 (rdiv @0 (rdiv:s @1 @2))
372 (mult (rdiv @0 @1) @2)))
374 /* Simplify x / (- y) to -x / y. */
376 (rdiv @0 (negate @1))
377 (rdiv (negate @0) @1))
379 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
380 (for div (trunc_div ceil_div floor_div round_div exact_div)
382 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
383 (if (integer_pow2p (@2)
384 && tree_int_cst_sgn (@2) > 0
385 && tree_nop_conversion_p (type, TREE_TYPE (@0))
386 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
388 { build_int_cst (integer_type_node,
389 wi::exact_log2 (wi::to_wide (@2))); }))))
391 /* If ARG1 is a constant, we can convert this to a multiply by the
392 reciprocal. This does not have the same rounding properties,
393 so only do this if -freciprocal-math. We can actually
394 always safely do it if ARG1 is a power of two, but it's hard to
395 tell if it is or not in a portable manner. */
396 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
400 (if (flag_reciprocal_math
403 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
405 (mult @0 { tem; } )))
406 (if (cst != COMPLEX_CST)
407 (with { tree inverse = exact_inverse (type, @1); }
409 (mult @0 { inverse; } ))))))))
411 (for mod (ceil_mod floor_mod round_mod trunc_mod)
412 /* 0 % X is always zero. */
414 (mod integer_zerop@0 @1)
415 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
416 (if (!integer_zerop (@1))
418 /* X % 1 is always zero. */
420 (mod @0 integer_onep)
421 { build_zero_cst (type); })
422 /* X % -1 is zero. */
424 (mod @0 integer_minus_onep@1)
425 (if (!TYPE_UNSIGNED (type))
426 { build_zero_cst (type); }))
430 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
431 (if (!integer_zerop (@0))
432 { build_zero_cst (type); }))
433 /* (X % Y) % Y is just X % Y. */
435 (mod (mod@2 @0 @1) @1)
437 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
439 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
440 (if (ANY_INTEGRAL_TYPE_P (type)
441 && TYPE_OVERFLOW_UNDEFINED (type)
442 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
444 { build_zero_cst (type); })))
446 /* X % -C is the same as X % C. */
448 (trunc_mod @0 INTEGER_CST@1)
449 (if (TYPE_SIGN (type) == SIGNED
450 && !TREE_OVERFLOW (@1)
451 && wi::neg_p (wi::to_wide (@1))
452 && !TYPE_OVERFLOW_TRAPS (type)
453 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
454 && !sign_bit_p (@1, @1))
455 (trunc_mod @0 (negate @1))))
457 /* X % -Y is the same as X % Y. */
459 (trunc_mod @0 (convert? (negate @1)))
460 (if (INTEGRAL_TYPE_P (type)
461 && !TYPE_UNSIGNED (type)
462 && !TYPE_OVERFLOW_TRAPS (type)
463 && tree_nop_conversion_p (type, TREE_TYPE (@1))
464 /* Avoid this transformation if X might be INT_MIN or
465 Y might be -1, because we would then change valid
466 INT_MIN % -(-1) into invalid INT_MIN % -1. */
467 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
468 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
470 (trunc_mod @0 (convert @1))))
472 /* X - (X / Y) * Y is the same as X % Y. */
474 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
475 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
476 (convert (trunc_mod @0 @1))))
478 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
479 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
480 Also optimize A % (C << N) where C is a power of 2,
481 to A & ((C << N) - 1). */
482 (match (power_of_two_cand @1)
484 (match (power_of_two_cand @1)
485 (lshift INTEGER_CST@1 @2))
486 (for mod (trunc_mod floor_mod)
488 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
489 (if ((TYPE_UNSIGNED (type)
490 || tree_expr_nonnegative_p (@0))
491 && tree_nop_conversion_p (type, TREE_TYPE (@3))
492 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
493 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
495 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
497 (trunc_div (mult @0 integer_pow2p@1) @1)
498 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
499 (bit_and @0 { wide_int_to_tree
500 (type, wi::mask (TYPE_PRECISION (type)
501 - wi::exact_log2 (wi::to_wide (@1)),
502 false, TYPE_PRECISION (type))); })))
504 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
506 (mult (trunc_div @0 integer_pow2p@1) @1)
507 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
508 (bit_and @0 (negate @1))))
510 /* Simplify (t * 2) / 2) -> t. */
511 (for div (trunc_div ceil_div floor_div round_div exact_div)
513 (div (mult:c @0 @1) @1)
514 (if (ANY_INTEGRAL_TYPE_P (type)
515 && TYPE_OVERFLOW_UNDEFINED (type))
519 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
524 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
527 (pows (op @0) REAL_CST@1)
528 (with { HOST_WIDE_INT n; }
529 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
531 /* Likewise for powi. */
534 (pows (op @0) INTEGER_CST@1)
535 (if ((wi::to_wide (@1) & 1) == 0)
537 /* Strip negate and abs from both operands of hypot. */
545 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
546 (for copysigns (COPYSIGN_ALL)
548 (copysigns (op @0) @1)
551 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
556 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
560 (coss (copysigns @0 @1))
563 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
567 (pows (copysigns @0 @2) REAL_CST@1)
568 (with { HOST_WIDE_INT n; }
569 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
571 /* Likewise for powi. */
575 (pows (copysigns @0 @2) INTEGER_CST@1)
576 (if ((wi::to_wide (@1) & 1) == 0)
581 /* hypot(copysign(x, y), z) -> hypot(x, z). */
583 (hypots (copysigns @0 @1) @2)
585 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
587 (hypots @0 (copysigns @1 @2))
590 /* copysign(x, CST) -> [-]abs (x). */
591 (for copysigns (COPYSIGN_ALL)
593 (copysigns @0 REAL_CST@1)
594 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
598 /* copysign(copysign(x, y), z) -> copysign(x, z). */
599 (for copysigns (COPYSIGN_ALL)
601 (copysigns (copysigns @0 @1) @2)
604 /* copysign(x,y)*copysign(x,y) -> x*x. */
605 (for copysigns (COPYSIGN_ALL)
607 (mult (copysigns@2 @0 @1) @2)
610 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
611 (for ccoss (CCOS CCOSH)
616 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
617 (for ops (conj negate)
623 /* Fold (a * (1 << b)) into (a << b) */
625 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
626 (if (! FLOAT_TYPE_P (type)
627 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
630 /* Fold (1 << (C - x)) where C = precision(type) - 1
631 into ((1 << C) >> x). */
633 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
634 (if (INTEGRAL_TYPE_P (type)
635 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
637 (if (TYPE_UNSIGNED (type))
638 (rshift (lshift @0 @2) @3)
640 { tree utype = unsigned_type_for (type); }
641 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
643 /* Fold (C1/X)*C2 into (C1*C2)/X. */
645 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
646 (if (flag_associative_math
649 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
651 (rdiv { tem; } @1)))))
653 /* Simplify ~X & X as zero. */
655 (bit_and:c (convert? @0) (convert? (bit_not @0)))
656 { build_zero_cst (type); })
658 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
660 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
661 (if (TYPE_UNSIGNED (type))
662 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
664 (for bitop (bit_and bit_ior)
666 /* PR35691: Transform
667 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
668 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
670 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
671 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
672 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
673 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
674 (cmp (bit_ior @0 (convert @1)) @2)))
676 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
677 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
679 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
680 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
681 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
682 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
683 (cmp (bit_and @0 (convert @1)) @2))))
685 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
687 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
688 (minus (bit_xor @0 @1) @1))
690 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
691 (if (~wi::to_wide (@2) == wi::to_wide (@1))
692 (minus (bit_xor @0 @1) @1)))
694 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
696 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
697 (minus @1 (bit_xor @0 @1)))
699 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
700 (for op (bit_ior bit_xor plus)
702 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
705 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
706 (if (~wi::to_wide (@2) == wi::to_wide (@1))
709 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
711 (bit_ior:c (bit_xor:c @0 @1) @0)
714 /* (a & ~b) | (a ^ b) --> a ^ b */
716 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
719 /* (a & ~b) ^ ~a --> ~(a & b) */
721 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
722 (bit_not (bit_and @0 @1)))
724 /* (a | b) & ~(a ^ b) --> a & b */
726 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
729 /* a | ~(a ^ b) --> a | ~b */
731 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
732 (bit_ior @0 (bit_not @1)))
734 /* (a | b) | (a &^ b) --> a | b */
735 (for op (bit_and bit_xor)
737 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
740 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
742 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
745 /* ~(~a & b) --> a | ~b */
747 (bit_not (bit_and:cs (bit_not @0) @1))
748 (bit_ior @0 (bit_not @1)))
750 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
753 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
755 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
759 /* X % Y is smaller than Y. */
762 (cmp (trunc_mod @0 @1) @1)
763 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
764 { constant_boolean_node (cmp == LT_EXPR, type); })))
767 (cmp @1 (trunc_mod @0 @1))
768 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
769 { constant_boolean_node (cmp == GT_EXPR, type); })))
773 (bit_ior @0 integer_all_onesp@1)
778 (bit_ior @0 integer_zerop)
783 (bit_and @0 integer_zerop@1)
789 (for op (bit_ior bit_xor plus)
791 (op:c (convert? @0) (convert? (bit_not @0)))
792 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
797 { build_zero_cst (type); })
799 /* Canonicalize X ^ ~0 to ~X. */
801 (bit_xor @0 integer_all_onesp@1)
806 (bit_and @0 integer_all_onesp)
809 /* x & x -> x, x | x -> x */
810 (for bitop (bit_and bit_ior)
815 /* x & C -> x if we know that x & ~C == 0. */
818 (bit_and SSA_NAME@0 INTEGER_CST@1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
820 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
824 /* x + (x & 1) -> (x + 1) & ~1 */
826 (plus:c @0 (bit_and:s @0 integer_onep@1))
827 (bit_and (plus @0 @1) (bit_not @1)))
829 /* x & ~(x & y) -> x & ~y */
830 /* x | ~(x | y) -> x | ~y */
831 (for bitop (bit_and bit_ior)
833 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
834 (bitop @0 (bit_not @1))))
836 /* (x | y) & ~x -> y & ~x */
837 /* (x & y) | ~x -> y | ~x */
838 (for bitop (bit_and bit_ior)
839 rbitop (bit_ior bit_and)
841 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
844 /* (x & y) ^ (x | y) -> x ^ y */
846 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
849 /* (x ^ y) ^ (x | y) -> x & y */
851 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
854 /* (x & y) + (x ^ y) -> x | y */
855 /* (x & y) | (x ^ y) -> x | y */
856 /* (x & y) ^ (x ^ y) -> x | y */
857 (for op (plus bit_ior bit_xor)
859 (op:c (bit_and @0 @1) (bit_xor @0 @1))
862 /* (x & y) + (x | y) -> x + y */
864 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
867 /* (x + y) - (x | y) -> x & y */
869 (minus (plus @0 @1) (bit_ior @0 @1))
870 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
871 && !TYPE_SATURATING (type))
874 /* (x + y) - (x & y) -> x | y */
876 (minus (plus @0 @1) (bit_and @0 @1))
877 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
878 && !TYPE_SATURATING (type))
881 /* (x | y) - (x ^ y) -> x & y */
883 (minus (bit_ior @0 @1) (bit_xor @0 @1))
886 /* (x | y) - (x & y) -> x ^ y */
888 (minus (bit_ior @0 @1) (bit_and @0 @1))
891 /* (x | y) & ~(x & y) -> x ^ y */
893 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
896 /* (x | y) & (~x ^ y) -> x & y */
898 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
901 /* ~x & ~y -> ~(x | y)
902 ~x | ~y -> ~(x & y) */
903 (for op (bit_and bit_ior)
904 rop (bit_ior bit_and)
906 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
907 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
908 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
909 (bit_not (rop (convert @0) (convert @1))))))
911 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
912 with a constant, and the two constants have no bits in common,
913 we should treat this as a BIT_IOR_EXPR since this may produce more
915 (for op (bit_xor plus)
917 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
918 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
919 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
920 && tree_nop_conversion_p (type, TREE_TYPE (@2))
921 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
922 (bit_ior (convert @4) (convert @5)))))
924 /* (X | Y) ^ X -> Y & ~ X*/
926 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
928 (convert (bit_and @1 (bit_not @0)))))
930 /* Convert ~X ^ ~Y to X ^ Y. */
932 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
933 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
935 (bit_xor (convert @0) (convert @1))))
937 /* Convert ~X ^ C to X ^ ~C. */
939 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
940 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
941 (bit_xor (convert @0) (bit_not @1))))
943 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
944 (for opo (bit_and bit_xor)
945 opi (bit_xor bit_and)
947 (opo:c (opi:c @0 @1) @1)
948 (bit_and (bit_not @0) @1)))
950 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
951 operands are another bit-wise operation with a common input. If so,
952 distribute the bit operations to save an operation and possibly two if
953 constants are involved. For example, convert
954 (A | B) & (A | C) into A | (B & C)
955 Further simplification will occur if B and C are constants. */
956 (for op (bit_and bit_ior bit_xor)
957 rop (bit_ior bit_and bit_and)
959 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
960 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
961 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
962 (rop (convert @0) (op (convert @1) (convert @2))))))
964 /* Some simple reassociation for bit operations, also handled in reassoc. */
965 /* (X & Y) & Y -> X & Y
966 (X | Y) | Y -> X | Y */
967 (for op (bit_and bit_ior)
969 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
971 /* (X ^ Y) ^ Y -> X */
973 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
975 /* (X & Y) & (X & Z) -> (X & Y) & Z
976 (X | Y) | (X | Z) -> (X | Y) | Z */
977 (for op (bit_and bit_ior)
979 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
980 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
981 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
982 (if (single_use (@5) && single_use (@6))
984 (if (single_use (@3) && single_use (@4))
985 (op (convert @1) @5))))))
986 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
988 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
989 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
990 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
991 (bit_xor (convert @1) (convert @2))))
1000 (abs tree_expr_nonnegative_p@0)
1003 /* A few cases of fold-const.c negate_expr_p predicate. */
1004 (match negate_expr_p
1006 (if ((INTEGRAL_TYPE_P (type)
1007 && TYPE_UNSIGNED (type))
1008 || (!TYPE_OVERFLOW_SANITIZED (type)
1009 && may_negate_without_overflow_p (t)))))
1010 (match negate_expr_p
1012 (match negate_expr_p
1014 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1015 (match negate_expr_p
1017 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1018 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1020 (match negate_expr_p
1022 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1023 (match negate_expr_p
1025 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1026 || (FLOAT_TYPE_P (type)
1027 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1028 && !HONOR_SIGNED_ZEROS (type)))))
1030 /* (-A) * (-B) -> A * B */
1032 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1033 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1034 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1035 (mult (convert @0) (convert (negate @1)))))
1037 /* -(A + B) -> (-B) - A. */
1039 (negate (plus:c @0 negate_expr_p@1))
1040 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1041 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1042 (minus (negate @1) @0)))
1044 /* -(A - B) -> B - A. */
1046 (negate (minus @0 @1))
1047 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1048 || (FLOAT_TYPE_P (type)
1049 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1050 && !HONOR_SIGNED_ZEROS (type)))
1053 (negate (pointer_diff @0 @1))
1054 (if (TYPE_OVERFLOW_UNDEFINED (type))
1055 (pointer_diff @1 @0)))
1057 /* A - B -> A + (-B) if B is easily negatable. */
1059 (minus @0 negate_expr_p@1)
1060 (if (!FIXED_POINT_TYPE_P (type))
1061 (plus @0 (negate @1))))
1063 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1065 For bitwise binary operations apply operand conversions to the
1066 binary operation result instead of to the operands. This allows
1067 to combine successive conversions and bitwise binary operations.
1068 We combine the above two cases by using a conditional convert. */
1069 (for bitop (bit_and bit_ior bit_xor)
1071 (bitop (convert @0) (convert? @1))
1072 (if (((TREE_CODE (@1) == INTEGER_CST
1073 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1074 && int_fits_type_p (@1, TREE_TYPE (@0)))
1075 || types_match (@0, @1))
1076 /* ??? This transform conflicts with fold-const.c doing
1077 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1078 constants (if x has signed type, the sign bit cannot be set
1079 in c). This folds extension into the BIT_AND_EXPR.
1080 Restrict it to GIMPLE to avoid endless recursions. */
1081 && (bitop != BIT_AND_EXPR || GIMPLE)
1082 && (/* That's a good idea if the conversion widens the operand, thus
1083 after hoisting the conversion the operation will be narrower. */
1084 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1085 /* It's also a good idea if the conversion is to a non-integer
1087 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1088 /* Or if the precision of TO is not the same as the precision
1090 || !type_has_mode_precision_p (type)))
1091 (convert (bitop @0 (convert @1))))))
1093 (for bitop (bit_and bit_ior)
1094 rbitop (bit_ior bit_and)
1095 /* (x | y) & x -> x */
1096 /* (x & y) | x -> x */
1098 (bitop:c (rbitop:c @0 @1) @0)
1100 /* (~x | y) & x -> x & y */
1101 /* (~x & y) | x -> x | y */
1103 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1106 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1108 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1109 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1111 /* Combine successive equal operations with constants. */
1112 (for bitop (bit_and bit_ior bit_xor)
1114 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1115 (if (!CONSTANT_CLASS_P (@0))
1116 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1117 folded to a constant. */
1118 (bitop @0 (bitop @1 @2))
1119 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1120 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1121 the values involved are such that the operation can't be decided at
1122 compile time. Try folding one of @0 or @1 with @2 to see whether
1123 that combination can be decided at compile time.
1125 Keep the existing form if both folds fail, to avoid endless
1127 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1129 (bitop @1 { cst1; })
1130 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1132 (bitop @0 { cst2; }))))))))
1134 /* Try simple folding for X op !X, and X op X with the help
1135 of the truth_valued_p and logical_inverted_value predicates. */
1136 (match truth_valued_p
1138 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1139 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1140 (match truth_valued_p
1142 (match truth_valued_p
1145 (match (logical_inverted_value @0)
1147 (match (logical_inverted_value @0)
1148 (bit_not truth_valued_p@0))
1149 (match (logical_inverted_value @0)
1150 (eq @0 integer_zerop))
1151 (match (logical_inverted_value @0)
1152 (ne truth_valued_p@0 integer_truep))
1153 (match (logical_inverted_value @0)
1154 (bit_xor truth_valued_p@0 integer_truep))
1158 (bit_and:c @0 (logical_inverted_value @0))
1159 { build_zero_cst (type); })
1160 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1161 (for op (bit_ior bit_xor)
1163 (op:c truth_valued_p@0 (logical_inverted_value @0))
1164 { constant_boolean_node (true, type); }))
1165 /* X ==/!= !X is false/true. */
1168 (op:c truth_valued_p@0 (logical_inverted_value @0))
1169 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1173 (bit_not (bit_not @0))
1176 /* Convert ~ (-A) to A - 1. */
1178 (bit_not (convert? (negate @0)))
1179 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1180 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1181 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1183 /* Convert - (~A) to A + 1. */
1185 (negate (nop_convert (bit_not @0)))
1186 (plus (view_convert @0) { build_each_one_cst (type); }))
1188 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1190 (bit_not (convert? (minus @0 integer_each_onep)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193 (convert (negate @0))))
1195 (bit_not (convert? (plus @0 integer_all_onesp)))
1196 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1197 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1198 (convert (negate @0))))
1200 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1202 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1203 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1204 (convert (bit_xor @0 (bit_not @1)))))
1206 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1208 (convert (bit_xor @0 @1))))
1210 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1212 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1214 (bit_not (bit_xor (view_convert @0) @1))))
1216 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1218 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1219 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1221 /* Fold A - (A & B) into ~B & A. */
1223 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1224 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1225 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1226 (convert (bit_and (bit_not @1) @0))))
1228 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1229 (for cmp (gt lt ge le)
1231 (mult (convert (cmp @0 @1)) @2)
1232 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1234 /* For integral types with undefined overflow and C != 0 fold
1235 x * C EQ/NE y * C into x EQ/NE y. */
1238 (cmp (mult:c @0 @1) (mult:c @2 @1))
1239 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1240 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1241 && tree_expr_nonzero_p (@1))
1244 /* For integral types with wrapping overflow and C odd fold
1245 x * C EQ/NE y * C into x EQ/NE y. */
1248 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1249 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1250 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1251 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1254 /* For integral types with undefined overflow and C != 0 fold
1255 x * C RELOP y * C into:
1257 x RELOP y for nonnegative C
1258 y RELOP x for negative C */
1259 (for cmp (lt gt le ge)
1261 (cmp (mult:c @0 @1) (mult:c @2 @1))
1262 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1264 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1266 (if (TREE_CODE (@1) == INTEGER_CST
1267 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1270 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1274 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1275 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1276 && TYPE_UNSIGNED (TREE_TYPE (@0))
1277 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1278 && (wi::to_wide (@2)
1279 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1280 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1281 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1283 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1284 (for cmp (simple_comparison)
1286 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1287 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1290 /* X / C1 op C2 into a simple range test. */
1291 (for cmp (simple_comparison)
1293 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1295 && integer_nonzerop (@1)
1296 && !TREE_OVERFLOW (@1)
1297 && !TREE_OVERFLOW (@2))
1298 (with { tree lo, hi; bool neg_overflow;
1299 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1302 (if (code == LT_EXPR || code == GE_EXPR)
1303 (if (TREE_OVERFLOW (lo))
1304 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1305 (if (code == LT_EXPR)
1308 (if (code == LE_EXPR || code == GT_EXPR)
1309 (if (TREE_OVERFLOW (hi))
1310 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1311 (if (code == LE_EXPR)
1315 { build_int_cst (type, code == NE_EXPR); })
1316 (if (code == EQ_EXPR && !hi)
1318 (if (code == EQ_EXPR && !lo)
1320 (if (code == NE_EXPR && !hi)
1322 (if (code == NE_EXPR && !lo)
1325 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1329 tree etype = range_check_type (TREE_TYPE (@0));
1332 if (! TYPE_UNSIGNED (etype))
1333 etype = unsigned_type_for (etype);
1334 hi = fold_convert (etype, hi);
1335 lo = fold_convert (etype, lo);
1336 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1339 (if (etype && hi && !TREE_OVERFLOW (hi))
1340 (if (code == EQ_EXPR)
1341 (le (minus (convert:etype @0) { lo; }) { hi; })
1342 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1344 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1345 (for op (lt le ge gt)
1347 (op (plus:c @0 @2) (plus:c @1 @2))
1348 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1349 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1351 /* For equality and subtraction, this is also true with wrapping overflow. */
1352 (for op (eq ne minus)
1354 (op (plus:c @0 @2) (plus:c @1 @2))
1355 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1356 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1357 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1360 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1361 (for op (lt le ge gt)
1363 (op (minus @0 @2) (minus @1 @2))
1364 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1365 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1367 /* For equality and subtraction, this is also true with wrapping overflow. */
1368 (for op (eq ne minus)
1370 (op (minus @0 @2) (minus @1 @2))
1371 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1372 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1373 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1375 /* And for pointers... */
1376 (for op (simple_comparison)
1378 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1379 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1382 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1383 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1384 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1385 (pointer_diff @0 @1)))
1387 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1388 (for op (lt le ge gt)
1390 (op (minus @2 @0) (minus @2 @1))
1391 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1392 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1394 /* For equality and subtraction, this is also true with wrapping overflow. */
1395 (for op (eq ne minus)
1397 (op (minus @2 @0) (minus @2 @1))
1398 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1399 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1400 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1402 /* And for pointers... */
1403 (for op (simple_comparison)
1405 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1406 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1409 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1410 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1411 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1412 (pointer_diff @1 @0)))
1414 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1415 (for op (lt le gt ge)
1417 (op:c (plus:c@2 @0 @1) @1)
1418 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1419 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1420 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1421 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1422 /* For equality, this is also true with wrapping overflow. */
1425 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1426 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1427 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1428 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1429 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1430 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1431 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1432 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1434 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1435 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1436 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1437 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1438 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1440 /* X - Y < X is the same as Y > 0 when there is no overflow.
1441 For equality, this is also true with wrapping overflow. */
1442 (for op (simple_comparison)
1444 (op:c @0 (minus@2 @0 @1))
1445 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1446 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1447 || ((op == EQ_EXPR || op == NE_EXPR)
1448 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1449 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1453 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1454 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1459 (cmp (trunc_div @0 @1) integer_zerop)
1460 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1461 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1464 /* X == C - X can never be true if C is odd. */
1467 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1468 (if (TREE_INT_CST_LOW (@1) & 1)
1469 { constant_boolean_node (cmp == NE_EXPR, type); })))
1471 /* Arguments on which one can call get_nonzero_bits to get the bits
1473 (match with_possible_nonzero_bits
1475 (match with_possible_nonzero_bits
1477 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1478 /* Slightly extended version, do not make it recursive to keep it cheap. */
1479 (match (with_possible_nonzero_bits2 @0)
1480 with_possible_nonzero_bits@0)
1481 (match (with_possible_nonzero_bits2 @0)
1482 (bit_and:c with_possible_nonzero_bits@0 @2))
1484 /* Same for bits that are known to be set, but we do not have
1485 an equivalent to get_nonzero_bits yet. */
1486 (match (with_certain_nonzero_bits2 @0)
1488 (match (with_certain_nonzero_bits2 @0)
1489 (bit_ior @1 INTEGER_CST@0))
1491 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1494 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1495 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1496 { constant_boolean_node (cmp == NE_EXPR, type); })))
1498 /* ((X inner_op C0) outer_op C1)
1499 With X being a tree where value_range has reasoned certain bits to always be
1500 zero throughout its computed value range,
1501 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1502 where zero_mask has 1's for all bits that are sure to be 0 in
1504 if (inner_op == '^') C0 &= ~C1;
1505 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1506 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1508 (for inner_op (bit_ior bit_xor)
1509 outer_op (bit_xor bit_ior)
1512 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1516 wide_int zero_mask_not;
1520 if (TREE_CODE (@2) == SSA_NAME)
1521 zero_mask_not = get_nonzero_bits (@2);
1525 if (inner_op == BIT_XOR_EXPR)
1527 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1528 cst_emit = C0 | wi::to_wide (@1);
1532 C0 = wi::to_wide (@0);
1533 cst_emit = C0 ^ wi::to_wide (@1);
1536 (if (!fail && (C0 & zero_mask_not) == 0)
1537 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1538 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1539 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1541 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1543 (pointer_plus (pointer_plus:s @0 @1) @3)
1544 (pointer_plus @0 (plus @1 @3)))
1550 tem4 = (unsigned long) tem3;
1555 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1556 /* Conditionally look through a sign-changing conversion. */
1557 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1558 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1559 || (GENERIC && type == TREE_TYPE (@1))))
1562 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1563 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1567 tem = (sizetype) ptr;
1571 and produce the simpler and easier to analyze with respect to alignment
1572 ... = ptr & ~algn; */
1574 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1575 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1576 (bit_and @0 { algn; })))
1578 /* Try folding difference of addresses. */
1580 (minus (convert ADDR_EXPR@0) (convert @1))
1581 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1582 (with { poly_int64 diff; }
1583 (if (ptr_difference_const (@0, @1, &diff))
1584 { build_int_cst_type (type, diff); }))))
1586 (minus (convert @0) (convert ADDR_EXPR@1))
1587 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1588 (with { poly_int64 diff; }
1589 (if (ptr_difference_const (@0, @1, &diff))
1590 { build_int_cst_type (type, diff); }))))
1592 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1593 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1594 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1595 (with { poly_int64 diff; }
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1599 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1601 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1602 (with { poly_int64 diff; }
1603 (if (ptr_difference_const (@0, @1, &diff))
1604 { build_int_cst_type (type, diff); }))))
1606 /* If arg0 is derived from the address of an object or function, we may
1607 be able to fold this expression using the object or function's
1610 (bit_and (convert? @0) INTEGER_CST@1)
1611 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1612 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1616 unsigned HOST_WIDE_INT bitpos;
1617 get_pointer_alignment_1 (@0, &align, &bitpos);
1619 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1620 { wide_int_to_tree (type, (wi::to_wide (@1)
1621 & (bitpos / BITS_PER_UNIT))); }))))
1624 /* We can't reassociate at all for saturating types. */
1625 (if (!TYPE_SATURATING (type))
1627 /* Contract negates. */
1628 /* A + (-B) -> A - B */
1630 (plus:c @0 (convert? (negate @1)))
1631 /* Apply STRIP_NOPS on the negate. */
1632 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1633 && !TYPE_OVERFLOW_SANITIZED (type))
1637 if (INTEGRAL_TYPE_P (type)
1638 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1639 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1641 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1642 /* A - (-B) -> A + B */
1644 (minus @0 (convert? (negate @1)))
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1646 && !TYPE_OVERFLOW_SANITIZED (type))
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1654 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1656 Sign-extension is ok except for INT_MIN, which thankfully cannot
1657 happen without overflow. */
1659 (negate (convert (negate @1)))
1660 (if (INTEGRAL_TYPE_P (type)
1661 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1662 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1663 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1664 && !TYPE_OVERFLOW_SANITIZED (type)
1665 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1668 (negate (convert negate_expr_p@1))
1669 (if (SCALAR_FLOAT_TYPE_P (type)
1670 && ((DECIMAL_FLOAT_TYPE_P (type)
1671 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1672 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1673 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1674 (convert (negate @1))))
1676 (negate (nop_convert (negate @1)))
1677 (if (!TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1681 /* We can't reassociate floating-point unless -fassociative-math
1682 or fixed-point plus or minus because of saturation to +-Inf. */
1683 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1684 && !FIXED_POINT_TYPE_P (type))
1686 /* Match patterns that allow contracting a plus-minus pair
1687 irrespective of overflow issues. */
1688 /* (A +- B) - A -> +- B */
1689 /* (A +- B) -+ B -> A */
1690 /* A - (A +- B) -> -+ B */
1691 /* A +- (B -+ A) -> +- B */
1693 (minus (plus:c @0 @1) @0)
1696 (minus (minus @0 @1) @0)
1699 (plus:c (minus @0 @1) @1)
1702 (minus @0 (plus:c @0 @1))
1705 (minus @0 (minus @0 @1))
1707 /* (A +- B) + (C - A) -> C +- B */
1708 /* (A + B) - (A - C) -> B + C */
1709 /* More cases are handled with comparisons. */
1711 (plus:c (plus:c @0 @1) (minus @2 @0))
1714 (plus:c (minus @0 @1) (minus @2 @0))
1717 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1718 (if (TYPE_OVERFLOW_UNDEFINED (type)
1719 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1720 (pointer_diff @2 @1)))
1722 (minus (plus:c @0 @1) (minus @0 @2))
1725 /* (A +- CST1) +- CST2 -> A + CST3
1726 Use view_convert because it is safe for vectors and equivalent for
1728 (for outer_op (plus minus)
1729 (for inner_op (plus minus)
1730 neg_inner_op (minus plus)
1732 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1734 /* If one of the types wraps, use that one. */
1735 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1736 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1737 forever if something doesn't simplify into a constant. */
1738 (if (!CONSTANT_CLASS_P (@0))
1739 (if (outer_op == PLUS_EXPR)
1740 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1741 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1742 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1743 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1744 (if (outer_op == PLUS_EXPR)
1745 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1746 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1747 /* If the constant operation overflows we cannot do the transform
1748 directly as we would introduce undefined overflow, for example
1749 with (a - 1) + INT_MIN. */
1750 (if (types_match (type, @0))
1751 (with { tree cst = const_binop (outer_op == inner_op
1752 ? PLUS_EXPR : MINUS_EXPR,
1754 (if (cst && !TREE_OVERFLOW (cst))
1755 (inner_op @0 { cst; } )
1756 /* X+INT_MAX+1 is X-INT_MIN. */
1757 (if (INTEGRAL_TYPE_P (type) && cst
1758 && wi::to_wide (cst) == wi::min_value (type))
1759 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1760 /* Last resort, use some unsigned type. */
1761 (with { tree utype = unsigned_type_for (type); }
1762 (view_convert (inner_op
1763 (view_convert:utype @0)
1765 { drop_tree_overflow (cst); })))))))))))))
1767 /* (CST1 - A) +- CST2 -> CST3 - A */
1768 (for outer_op (plus minus)
1770 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1771 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1772 (if (cst && !TREE_OVERFLOW (cst))
1773 (minus { cst; } @0)))))
1775 /* CST1 - (CST2 - A) -> CST3 + A */
1777 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1778 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1779 (if (cst && !TREE_OVERFLOW (cst))
1780 (plus { cst; } @0))))
1784 (plus:c (bit_not @0) @0)
1785 (if (!TYPE_OVERFLOW_TRAPS (type))
1786 { build_all_ones_cst (type); }))
1790 (plus (convert? (bit_not @0)) integer_each_onep)
1791 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1792 (negate (convert @0))))
1796 (minus (convert? (negate @0)) integer_each_onep)
1797 (if (!TYPE_OVERFLOW_TRAPS (type)
1798 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1799 (bit_not (convert @0))))
1803 (minus integer_all_onesp @0)
1806 /* (T)(P + A) - (T)P -> (T) A */
1808 (minus (convert (plus:c @@0 @1))
1810 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1811 /* For integer types, if A has a smaller type
1812 than T the result depends on the possible
1814 E.g. T=size_t, A=(unsigned)429497295, P>0.
1815 However, if an overflow in P + A would cause
1816 undefined behavior, we can assume that there
1818 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1819 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1822 (minus (convert (pointer_plus @@0 @1))
1824 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825 /* For pointer types, if the conversion of A to the
1826 final type requires a sign- or zero-extension,
1827 then we have to punt - it is not defined which
1829 || (POINTER_TYPE_P (TREE_TYPE (@0))
1830 && TREE_CODE (@1) == INTEGER_CST
1831 && tree_int_cst_sign_bit (@1) == 0))
1834 (pointer_diff (pointer_plus @@0 @1) @0)
1835 /* The second argument of pointer_plus must be interpreted as signed, and
1836 thus sign-extended if necessary. */
1837 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1838 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1839 second arg is unsigned even when we need to consider it as signed,
1840 we don't want to diagnose overflow here. */
1841 (convert (view_convert:stype @1))))
1843 /* (T)P - (T)(P + A) -> -(T) A */
1845 (minus (convert? @0)
1846 (convert (plus:c @@0 @1)))
1847 (if (INTEGRAL_TYPE_P (type)
1848 && TYPE_OVERFLOW_UNDEFINED (type)
1849 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1850 (with { tree utype = unsigned_type_for (type); }
1851 (convert (negate (convert:utype @1))))
1852 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1853 /* For integer types, if A has a smaller type
1854 than T the result depends on the possible
1856 E.g. T=size_t, A=(unsigned)429497295, P>0.
1857 However, if an overflow in P + A would cause
1858 undefined behavior, we can assume that there
1860 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1861 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1862 (negate (convert @1)))))
1865 (convert (pointer_plus @@0 @1)))
1866 (if (INTEGRAL_TYPE_P (type)
1867 && TYPE_OVERFLOW_UNDEFINED (type)
1868 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1869 (with { tree utype = unsigned_type_for (type); }
1870 (convert (negate (convert:utype @1))))
1871 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1872 /* For pointer types, if the conversion of A to the
1873 final type requires a sign- or zero-extension,
1874 then we have to punt - it is not defined which
1876 || (POINTER_TYPE_P (TREE_TYPE (@0))
1877 && TREE_CODE (@1) == INTEGER_CST
1878 && tree_int_cst_sign_bit (@1) == 0))
1879 (negate (convert @1)))))
1881 (pointer_diff @0 (pointer_plus @@0 @1))
1882 /* The second argument of pointer_plus must be interpreted as signed, and
1883 thus sign-extended if necessary. */
1884 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1885 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1886 second arg is unsigned even when we need to consider it as signed,
1887 we don't want to diagnose overflow here. */
1888 (negate (convert (view_convert:stype @1)))))
1890 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1892 (minus (convert (plus:c @@0 @1))
1893 (convert (plus:c @0 @2)))
1894 (if (INTEGRAL_TYPE_P (type)
1895 && TYPE_OVERFLOW_UNDEFINED (type)
1896 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1897 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1898 (with { tree utype = unsigned_type_for (type); }
1899 (convert (minus (convert:utype @1) (convert:utype @2))))
1900 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1901 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1902 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1903 /* For integer types, if A has a smaller type
1904 than T the result depends on the possible
1906 E.g. T=size_t, A=(unsigned)429497295, P>0.
1907 However, if an overflow in P + A would cause
1908 undefined behavior, we can assume that there
1910 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1911 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1912 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1913 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1914 (minus (convert @1) (convert @2)))))
1916 (minus (convert (pointer_plus @@0 @1))
1917 (convert (pointer_plus @0 @2)))
1918 (if (INTEGRAL_TYPE_P (type)
1919 && TYPE_OVERFLOW_UNDEFINED (type)
1920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1921 (with { tree utype = unsigned_type_for (type); }
1922 (convert (minus (convert:utype @1) (convert:utype @2))))
1923 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1924 /* For pointer types, if the conversion of A to the
1925 final type requires a sign- or zero-extension,
1926 then we have to punt - it is not defined which
1928 || (POINTER_TYPE_P (TREE_TYPE (@0))
1929 && TREE_CODE (@1) == INTEGER_CST
1930 && tree_int_cst_sign_bit (@1) == 0
1931 && TREE_CODE (@2) == INTEGER_CST
1932 && tree_int_cst_sign_bit (@2) == 0))
1933 (minus (convert @1) (convert @2)))))
1935 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1936 /* The second argument of pointer_plus must be interpreted as signed, and
1937 thus sign-extended if necessary. */
1938 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1939 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1940 second arg is unsigned even when we need to consider it as signed,
1941 we don't want to diagnose overflow here. */
1942 (minus (convert (view_convert:stype @1))
1943 (convert (view_convert:stype @2)))))))
1945 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1946 Modeled after fold_plusminus_mult_expr. */
1947 (if (!TYPE_SATURATING (type)
1948 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1949 (for plusminus (plus minus)
1951 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1952 (if ((!ANY_INTEGRAL_TYPE_P (type)
1953 || TYPE_OVERFLOW_WRAPS (type)
1954 || (INTEGRAL_TYPE_P (type)
1955 && tree_expr_nonzero_p (@0)
1956 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1957 /* If @1 +- @2 is constant require a hard single-use on either
1958 original operand (but not on both). */
1959 && (single_use (@3) || single_use (@4)))
1960 (mult (plusminus @1 @2) @0)))
1961 /* We cannot generate constant 1 for fract. */
1962 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1964 (plusminus @0 (mult:c@3 @0 @2))
1965 (if ((!ANY_INTEGRAL_TYPE_P (type)
1966 || TYPE_OVERFLOW_WRAPS (type)
1967 || (INTEGRAL_TYPE_P (type)
1968 && tree_expr_nonzero_p (@0)
1969 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1971 (mult (plusminus { build_one_cst (type); } @2) @0)))
1973 (plusminus (mult:c@3 @0 @2) @0)
1974 (if ((!ANY_INTEGRAL_TYPE_P (type)
1975 || TYPE_OVERFLOW_WRAPS (type)
1976 || (INTEGRAL_TYPE_P (type)
1977 && tree_expr_nonzero_p (@0)
1978 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1980 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1982 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1984 (for minmax (min max FMIN_ALL FMAX_ALL)
1988 /* min(max(x,y),y) -> y. */
1990 (min:c (max:c @0 @1) @1)
1992 /* max(min(x,y),y) -> y. */
1994 (max:c (min:c @0 @1) @1)
1996 /* max(a,-a) -> abs(a). */
1998 (max:c @0 (negate @0))
1999 (if (TREE_CODE (type) != COMPLEX_TYPE
2000 && (! ANY_INTEGRAL_TYPE_P (type)
2001 || TYPE_OVERFLOW_UNDEFINED (type)))
2003 /* min(a,-a) -> -abs(a). */
2005 (min:c @0 (negate @0))
2006 (if (TREE_CODE (type) != COMPLEX_TYPE
2007 && (! ANY_INTEGRAL_TYPE_P (type)
2008 || TYPE_OVERFLOW_UNDEFINED (type)))
2013 (if (INTEGRAL_TYPE_P (type)
2014 && TYPE_MIN_VALUE (type)
2015 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2017 (if (INTEGRAL_TYPE_P (type)
2018 && TYPE_MAX_VALUE (type)
2019 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2024 (if (INTEGRAL_TYPE_P (type)
2025 && TYPE_MAX_VALUE (type)
2026 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2028 (if (INTEGRAL_TYPE_P (type)
2029 && TYPE_MIN_VALUE (type)
2030 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2033 /* max (a, a + CST) -> a + CST where CST is positive. */
2034 /* max (a, a + CST) -> a where CST is negative. */
2036 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2037 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2038 (if (tree_int_cst_sgn (@1) > 0)
2042 /* min (a, a + CST) -> a where CST is positive. */
2043 /* min (a, a + CST) -> a + CST where CST is negative. */
2045 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2046 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2047 (if (tree_int_cst_sgn (@1) > 0)
2051 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2052 and the outer convert demotes the expression back to x's type. */
2053 (for minmax (min max)
2055 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2056 (if (INTEGRAL_TYPE_P (type)
2057 && types_match (@1, type) && int_fits_type_p (@2, type)
2058 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2059 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2060 (minmax @1 (convert @2)))))
2062 (for minmax (FMIN_ALL FMAX_ALL)
2063 /* If either argument is NaN, return the other one. Avoid the
2064 transformation if we get (and honor) a signalling NaN. */
2066 (minmax:c @0 REAL_CST@1)
2067 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2068 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2070 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2071 functions to return the numeric arg if the other one is NaN.
2072 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2073 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2074 worry about it either. */
2075 (if (flag_finite_math_only)
2082 /* min (-A, -B) -> -max (A, B) */
2083 (for minmax (min max FMIN_ALL FMAX_ALL)
2084 maxmin (max min FMAX_ALL FMIN_ALL)
2086 (minmax (negate:s@2 @0) (negate:s@3 @1))
2087 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2088 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2089 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2090 (negate (maxmin @0 @1)))))
2091 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2092 MAX (~X, ~Y) -> ~MIN (X, Y) */
2093 (for minmax (min max)
2096 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2097 (bit_not (maxmin @0 @1))))
2099 /* MIN (X, Y) == X -> X <= Y */
2100 (for minmax (min min max max)
2104 (cmp:c (minmax:c @0 @1) @0)
2105 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2107 /* MIN (X, 5) == 0 -> X == 0
2108 MIN (X, 5) == 7 -> false */
2111 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2112 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2113 TYPE_SIGN (TREE_TYPE (@0))))
2114 { constant_boolean_node (cmp == NE_EXPR, type); }
2115 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2116 TYPE_SIGN (TREE_TYPE (@0))))
2120 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2121 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2122 TYPE_SIGN (TREE_TYPE (@0))))
2123 { constant_boolean_node (cmp == NE_EXPR, type); }
2124 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2125 TYPE_SIGN (TREE_TYPE (@0))))
2127 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2128 (for minmax (min min max max min min max max )
2129 cmp (lt le gt ge gt ge lt le )
2130 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2132 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2133 (comb (cmp @0 @2) (cmp @1 @2))))
2135 /* Simplifications of shift and rotates. */
2137 (for rotate (lrotate rrotate)
2139 (rotate integer_all_onesp@0 @1)
2142 /* Optimize -1 >> x for arithmetic right shifts. */
2144 (rshift integer_all_onesp@0 @1)
2145 (if (!TYPE_UNSIGNED (type)
2146 && tree_expr_nonnegative_p (@1))
2149 /* Optimize (x >> c) << c into x & (-1<<c). */
2151 (lshift (rshift @0 INTEGER_CST@1) @1)
2152 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2153 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2155 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2158 (rshift (lshift @0 INTEGER_CST@1) @1)
2159 (if (TYPE_UNSIGNED (type)
2160 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2161 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2163 (for shiftrotate (lrotate rrotate lshift rshift)
2165 (shiftrotate @0 integer_zerop)
2168 (shiftrotate integer_zerop@0 @1)
2170 /* Prefer vector1 << scalar to vector1 << vector2
2171 if vector2 is uniform. */
2172 (for vec (VECTOR_CST CONSTRUCTOR)
2174 (shiftrotate @0 vec@1)
2175 (with { tree tem = uniform_vector_p (@1); }
2177 (shiftrotate @0 { tem; }))))))
2179 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2180 Y is 0. Similarly for X >> Y. */
2182 (for shift (lshift rshift)
2184 (shift @0 SSA_NAME@1)
2185 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2187 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2188 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2190 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2194 /* Rewrite an LROTATE_EXPR by a constant into an
2195 RROTATE_EXPR by a new constant. */
2197 (lrotate @0 INTEGER_CST@1)
2198 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2199 build_int_cst (TREE_TYPE (@1),
2200 element_precision (type)), @1); }))
2202 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2203 (for op (lrotate rrotate rshift lshift)
2205 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2206 (with { unsigned int prec = element_precision (type); }
2207 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2208 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2209 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2210 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2211 (with { unsigned int low = (tree_to_uhwi (@1)
2212 + tree_to_uhwi (@2)); }
2213 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2214 being well defined. */
2216 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2217 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2218 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2219 { build_zero_cst (type); }
2220 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2221 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2224 /* ((1 << A) & 1) != 0 -> A == 0
2225 ((1 << A) & 1) == 0 -> A != 0 */
2229 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2230 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2232 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2233 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2237 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2238 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2240 || (!integer_zerop (@2)
2241 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2242 { constant_boolean_node (cmp == NE_EXPR, type); }
2243 (if (!integer_zerop (@2)
2244 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2245 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2247 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2248 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2249 if the new mask might be further optimized. */
2250 (for shift (lshift rshift)
2252 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2254 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2255 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2256 && tree_fits_uhwi_p (@1)
2257 && tree_to_uhwi (@1) > 0
2258 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2261 unsigned int shiftc = tree_to_uhwi (@1);
2262 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2263 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2264 tree shift_type = TREE_TYPE (@3);
2267 if (shift == LSHIFT_EXPR)
2268 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2269 else if (shift == RSHIFT_EXPR
2270 && type_has_mode_precision_p (shift_type))
2272 prec = TYPE_PRECISION (TREE_TYPE (@3));
2274 /* See if more bits can be proven as zero because of
2277 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2279 tree inner_type = TREE_TYPE (@0);
2280 if (type_has_mode_precision_p (inner_type)
2281 && TYPE_PRECISION (inner_type) < prec)
2283 prec = TYPE_PRECISION (inner_type);
2284 /* See if we can shorten the right shift. */
2286 shift_type = inner_type;
2287 /* Otherwise X >> C1 is all zeros, so we'll optimize
2288 it into (X, 0) later on by making sure zerobits
2292 zerobits = HOST_WIDE_INT_M1U;
2295 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2296 zerobits <<= prec - shiftc;
2298 /* For arithmetic shift if sign bit could be set, zerobits
2299 can contain actually sign bits, so no transformation is
2300 possible, unless MASK masks them all away. In that
2301 case the shift needs to be converted into logical shift. */
2302 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2303 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2305 if ((mask & zerobits) == 0)
2306 shift_type = unsigned_type_for (TREE_TYPE (@3));
2312 /* ((X << 16) & 0xff00) is (X, 0). */
2313 (if ((mask & zerobits) == mask)
2314 { build_int_cst (type, 0); }
2315 (with { newmask = mask | zerobits; }
2316 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2319 /* Only do the transformation if NEWMASK is some integer
2321 for (prec = BITS_PER_UNIT;
2322 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2323 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2326 (if (prec < HOST_BITS_PER_WIDE_INT
2327 || newmask == HOST_WIDE_INT_M1U)
2329 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2330 (if (!tree_int_cst_equal (newmaskt, @2))
2331 (if (shift_type != TREE_TYPE (@3))
2332 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2333 (bit_and @4 { newmaskt; })))))))))))))
2335 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2336 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2337 (for shift (lshift rshift)
2338 (for bit_op (bit_and bit_xor bit_ior)
2340 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2341 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2342 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2343 (bit_op (shift (convert @0) @1) { mask; }))))))
2345 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2347 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2348 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2349 && (element_precision (TREE_TYPE (@0))
2350 <= element_precision (TREE_TYPE (@1))
2351 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2353 { tree shift_type = TREE_TYPE (@0); }
2354 (convert (rshift (convert:shift_type @1) @2)))))
2356 /* ~(~X >>r Y) -> X >>r Y
2357 ~(~X <<r Y) -> X <<r Y */
2358 (for rotate (lrotate rrotate)
2360 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2361 (if ((element_precision (TREE_TYPE (@0))
2362 <= element_precision (TREE_TYPE (@1))
2363 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2364 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2365 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2367 { tree rotate_type = TREE_TYPE (@0); }
2368 (convert (rotate (convert:rotate_type @1) @2))))))
2370 /* Simplifications of conversions. */
2372 /* Basic strip-useless-type-conversions / strip_nops. */
2373 (for cvt (convert view_convert float fix_trunc)
2376 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2377 || (GENERIC && type == TREE_TYPE (@0)))
2380 /* Contract view-conversions. */
2382 (view_convert (view_convert @0))
2385 /* For integral conversions with the same precision or pointer
2386 conversions use a NOP_EXPR instead. */
2389 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2390 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2391 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2394 /* Strip inner integral conversions that do not change precision or size, or
2395 zero-extend while keeping the same size (for bool-to-char). */
2397 (view_convert (convert@0 @1))
2398 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2399 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2400 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2401 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2402 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2403 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2406 /* Re-association barriers around constants and other re-association
2407 barriers can be removed. */
2409 (paren CONSTANT_CLASS_P@0)
2412 (paren (paren@1 @0))
2415 /* Handle cases of two conversions in a row. */
2416 (for ocvt (convert float fix_trunc)
2417 (for icvt (convert float)
2422 tree inside_type = TREE_TYPE (@0);
2423 tree inter_type = TREE_TYPE (@1);
2424 int inside_int = INTEGRAL_TYPE_P (inside_type);
2425 int inside_ptr = POINTER_TYPE_P (inside_type);
2426 int inside_float = FLOAT_TYPE_P (inside_type);
2427 int inside_vec = VECTOR_TYPE_P (inside_type);
2428 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2429 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2430 int inter_int = INTEGRAL_TYPE_P (inter_type);
2431 int inter_ptr = POINTER_TYPE_P (inter_type);
2432 int inter_float = FLOAT_TYPE_P (inter_type);
2433 int inter_vec = VECTOR_TYPE_P (inter_type);
2434 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2435 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2436 int final_int = INTEGRAL_TYPE_P (type);
2437 int final_ptr = POINTER_TYPE_P (type);
2438 int final_float = FLOAT_TYPE_P (type);
2439 int final_vec = VECTOR_TYPE_P (type);
2440 unsigned int final_prec = TYPE_PRECISION (type);
2441 int final_unsignedp = TYPE_UNSIGNED (type);
2444 /* In addition to the cases of two conversions in a row
2445 handled below, if we are converting something to its own
2446 type via an object of identical or wider precision, neither
2447 conversion is needed. */
2448 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2450 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2451 && (((inter_int || inter_ptr) && final_int)
2452 || (inter_float && final_float))
2453 && inter_prec >= final_prec)
2456 /* Likewise, if the intermediate and initial types are either both
2457 float or both integer, we don't need the middle conversion if the
2458 former is wider than the latter and doesn't change the signedness
2459 (for integers). Avoid this if the final type is a pointer since
2460 then we sometimes need the middle conversion. */
2461 (if (((inter_int && inside_int) || (inter_float && inside_float))
2462 && (final_int || final_float)
2463 && inter_prec >= inside_prec
2464 && (inter_float || inter_unsignedp == inside_unsignedp))
2467 /* If we have a sign-extension of a zero-extended value, we can
2468 replace that by a single zero-extension. Likewise if the
2469 final conversion does not change precision we can drop the
2470 intermediate conversion. */
2471 (if (inside_int && inter_int && final_int
2472 && ((inside_prec < inter_prec && inter_prec < final_prec
2473 && inside_unsignedp && !inter_unsignedp)
2474 || final_prec == inter_prec))
2477 /* Two conversions in a row are not needed unless:
2478 - some conversion is floating-point (overstrict for now), or
2479 - some conversion is a vector (overstrict for now), or
2480 - the intermediate type is narrower than both initial and
2482 - the intermediate type and innermost type differ in signedness,
2483 and the outermost type is wider than the intermediate, or
2484 - the initial type is a pointer type and the precisions of the
2485 intermediate and final types differ, or
2486 - the final type is a pointer type and the precisions of the
2487 initial and intermediate types differ. */
2488 (if (! inside_float && ! inter_float && ! final_float
2489 && ! inside_vec && ! inter_vec && ! final_vec
2490 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2491 && ! (inside_int && inter_int
2492 && inter_unsignedp != inside_unsignedp
2493 && inter_prec < final_prec)
2494 && ((inter_unsignedp && inter_prec > inside_prec)
2495 == (final_unsignedp && final_prec > inter_prec))
2496 && ! (inside_ptr && inter_prec != final_prec)
2497 && ! (final_ptr && inside_prec != inter_prec))
2500 /* A truncation to an unsigned type (a zero-extension) should be
2501 canonicalized as bitwise and of a mask. */
2502 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2503 && final_int && inter_int && inside_int
2504 && final_prec == inside_prec
2505 && final_prec > inter_prec
2507 (convert (bit_and @0 { wide_int_to_tree
2509 wi::mask (inter_prec, false,
2510 TYPE_PRECISION (inside_type))); })))
2512 /* If we are converting an integer to a floating-point that can
2513 represent it exactly and back to an integer, we can skip the
2514 floating-point conversion. */
2515 (if (GIMPLE /* PR66211 */
2516 && inside_int && inter_float && final_int &&
2517 (unsigned) significand_size (TYPE_MODE (inter_type))
2518 >= inside_prec - !inside_unsignedp)
2521 /* If we have a narrowing conversion to an integral type that is fed by a
2522 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2523 masks off bits outside the final type (and nothing else). */
2525 (convert (bit_and @0 INTEGER_CST@1))
2526 (if (INTEGRAL_TYPE_P (type)
2527 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2528 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2529 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2530 TYPE_PRECISION (type)), 0))
2534 /* (X /[ex] A) * A -> X. */
2536 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2539 /* Canonicalization of binary operations. */
2541 /* Convert X + -C into X - C. */
2543 (plus @0 REAL_CST@1)
2544 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2545 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2546 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2547 (minus @0 { tem; })))))
2549 /* Convert x+x into x*2. */
2552 (if (SCALAR_FLOAT_TYPE_P (type))
2553 (mult @0 { build_real (type, dconst2); })
2554 (if (INTEGRAL_TYPE_P (type))
2555 (mult @0 { build_int_cst (type, 2); }))))
2559 (minus integer_zerop @1)
2562 (pointer_diff integer_zerop @1)
2563 (negate (convert @1)))
2565 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2566 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2567 (-ARG1 + ARG0) reduces to -ARG1. */
2569 (minus real_zerop@0 @1)
2570 (if (fold_real_zero_addition_p (type, @0, 0))
2573 /* Transform x * -1 into -x. */
2575 (mult @0 integer_minus_onep)
2578 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2579 signed overflow for CST != 0 && CST != -1. */
2581 (mult:c (mult:s @0 INTEGER_CST@1) @2)
2582 (if (TREE_CODE (@2) != INTEGER_CST
2583 && !integer_zerop (@1) && !integer_minus_onep (@1))
2584 (mult (mult @0 @2) @1)))
2586 /* True if we can easily extract the real and imaginary parts of a complex
2588 (match compositional_complex
2589 (convert? (complex @0 @1)))
2591 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2593 (complex (realpart @0) (imagpart @0))
2596 (realpart (complex @0 @1))
2599 (imagpart (complex @0 @1))
2602 /* Sometimes we only care about half of a complex expression. */
2604 (realpart (convert?:s (conj:s @0)))
2605 (convert (realpart @0)))
2607 (imagpart (convert?:s (conj:s @0)))
2608 (convert (negate (imagpart @0))))
2609 (for part (realpart imagpart)
2610 (for op (plus minus)
2612 (part (convert?:s@2 (op:s @0 @1)))
2613 (convert (op (part @0) (part @1))))))
2615 (realpart (convert?:s (CEXPI:s @0)))
2618 (imagpart (convert?:s (CEXPI:s @0)))
2621 /* conj(conj(x)) -> x */
2623 (conj (convert? (conj @0)))
2624 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2627 /* conj({x,y}) -> {x,-y} */
2629 (conj (convert?:s (complex:s @0 @1)))
2630 (with { tree itype = TREE_TYPE (type); }
2631 (complex (convert:itype @0) (negate (convert:itype @1)))))
2633 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2634 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2639 (bswap (bit_not (bswap @0)))
2641 (for bitop (bit_xor bit_ior bit_and)
2643 (bswap (bitop:c (bswap @0) @1))
2644 (bitop @0 (bswap @1)))))
2647 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2649 /* Simplify constant conditions.
2650 Only optimize constant conditions when the selected branch
2651 has the same type as the COND_EXPR. This avoids optimizing
2652 away "c ? x : throw", where the throw has a void type.
2653 Note that we cannot throw away the fold-const.c variant nor
2654 this one as we depend on doing this transform before possibly
2655 A ? B : B -> B triggers and the fold-const.c one can optimize
2656 0 ? A : B to B even if A has side-effects. Something
2657 genmatch cannot handle. */
2659 (cond INTEGER_CST@0 @1 @2)
2660 (if (integer_zerop (@0))
2661 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2663 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2666 (vec_cond VECTOR_CST@0 @1 @2)
2667 (if (integer_all_onesp (@0))
2669 (if (integer_zerop (@0))
2672 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2674 /* This pattern implements two kinds simplification:
2677 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2678 1) Conversions are type widening from smaller type.
2679 2) Const c1 equals to c2 after canonicalizing comparison.
2680 3) Comparison has tree code LT, LE, GT or GE.
2681 This specific pattern is needed when (cmp (convert x) c) may not
2682 be simplified by comparison patterns because of multiple uses of
2683 x. It also makes sense here because simplifying across multiple
2684 referred var is always benefitial for complicated cases.
2687 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2688 (for cmp (lt le gt ge eq)
2690 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2693 tree from_type = TREE_TYPE (@1);
2694 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2695 enum tree_code code = ERROR_MARK;
2697 if (INTEGRAL_TYPE_P (from_type)
2698 && int_fits_type_p (@2, from_type)
2699 && (types_match (c1_type, from_type)
2700 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2701 && (TYPE_UNSIGNED (from_type)
2702 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2703 && (types_match (c2_type, from_type)
2704 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2705 && (TYPE_UNSIGNED (from_type)
2706 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2710 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2712 /* X <= Y - 1 equals to X < Y. */
2715 /* X > Y - 1 equals to X >= Y. */
2719 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2721 /* X < Y + 1 equals to X <= Y. */
2724 /* X >= Y + 1 equals to X > Y. */
2728 if (code != ERROR_MARK
2729 || wi::to_widest (@2) == wi::to_widest (@3))
2731 if (cmp == LT_EXPR || cmp == LE_EXPR)
2733 if (cmp == GT_EXPR || cmp == GE_EXPR)
2737 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2738 else if (int_fits_type_p (@3, from_type))
2742 (if (code == MAX_EXPR)
2743 (convert (max @1 (convert @2)))
2744 (if (code == MIN_EXPR)
2745 (convert (min @1 (convert @2)))
2746 (if (code == EQ_EXPR)
2747 (convert (cond (eq @1 (convert @3))
2748 (convert:from_type @3) (convert:from_type @2)))))))))
2750 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2752 1) OP is PLUS or MINUS.
2753 2) CMP is LT, LE, GT or GE.
2754 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2756 This pattern also handles special cases like:
2758 A) Operand x is a unsigned to signed type conversion and c1 is
2759 integer zero. In this case,
2760 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2761 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2762 B) Const c1 may not equal to (C3 op' C2). In this case we also
2763 check equality for (c1+1) and (c1-1) by adjusting comparison
2766 TODO: Though signed type is handled by this pattern, it cannot be
2767 simplified at the moment because C standard requires additional
2768 type promotion. In order to match&simplify it here, the IR needs
2769 to be cleaned up by other optimizers, i.e, VRP. */
2770 (for op (plus minus)
2771 (for cmp (lt le gt ge)
2773 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2774 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2775 (if (types_match (from_type, to_type)
2776 /* Check if it is special case A). */
2777 || (TYPE_UNSIGNED (from_type)
2778 && !TYPE_UNSIGNED (to_type)
2779 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2780 && integer_zerop (@1)
2781 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2784 bool overflow = false;
2785 enum tree_code code, cmp_code = cmp;
2787 wide_int c1 = wi::to_wide (@1);
2788 wide_int c2 = wi::to_wide (@2);
2789 wide_int c3 = wi::to_wide (@3);
2790 signop sgn = TYPE_SIGN (from_type);
2792 /* Handle special case A), given x of unsigned type:
2793 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2794 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2795 if (!types_match (from_type, to_type))
2797 if (cmp_code == LT_EXPR)
2799 if (cmp_code == GE_EXPR)
2801 c1 = wi::max_value (to_type);
2803 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2804 compute (c3 op' c2) and check if it equals to c1 with op' being
2805 the inverted operator of op. Make sure overflow doesn't happen
2806 if it is undefined. */
2807 if (op == PLUS_EXPR)
2808 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2810 real_c1 = wi::add (c3, c2, sgn, &overflow);
2813 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2815 /* Check if c1 equals to real_c1. Boundary condition is handled
2816 by adjusting comparison operation if necessary. */
2817 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2820 /* X <= Y - 1 equals to X < Y. */
2821 if (cmp_code == LE_EXPR)
2823 /* X > Y - 1 equals to X >= Y. */
2824 if (cmp_code == GT_EXPR)
2827 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2830 /* X < Y + 1 equals to X <= Y. */
2831 if (cmp_code == LT_EXPR)
2833 /* X >= Y + 1 equals to X > Y. */
2834 if (cmp_code == GE_EXPR)
2837 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2839 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2841 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2846 (if (code == MAX_EXPR)
2847 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2848 { wide_int_to_tree (from_type, c2); })
2849 (if (code == MIN_EXPR)
2850 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2851 { wide_int_to_tree (from_type, c2); })))))))))
2853 (for cnd (cond vec_cond)
2854 /* A ? B : (A ? X : C) -> A ? B : C. */
2856 (cnd @0 (cnd @0 @1 @2) @3)
2859 (cnd @0 @1 (cnd @0 @2 @3))
2861 /* A ? B : (!A ? C : X) -> A ? B : C. */
2862 /* ??? This matches embedded conditions open-coded because genmatch
2863 would generate matching code for conditions in separate stmts only.
2864 The following is still important to merge then and else arm cases
2865 from if-conversion. */
2867 (cnd @0 @1 (cnd @2 @3 @4))
2868 (if (COMPARISON_CLASS_P (@0)
2869 && COMPARISON_CLASS_P (@2)
2870 && invert_tree_comparison
2871 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2872 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2873 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2876 (cnd @0 (cnd @1 @2 @3) @4)
2877 (if (COMPARISON_CLASS_P (@0)
2878 && COMPARISON_CLASS_P (@1)
2879 && invert_tree_comparison
2880 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2881 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2882 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2885 /* A ? B : B -> B. */
2890 /* !A ? B : C -> A ? C : B. */
2892 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2895 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2896 return all -1 or all 0 results. */
2897 /* ??? We could instead convert all instances of the vec_cond to negate,
2898 but that isn't necessarily a win on its own. */
2900 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2901 (if (VECTOR_TYPE_P (type)
2902 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2903 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2904 && (TYPE_MODE (TREE_TYPE (type))
2905 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2906 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2908 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2910 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2911 (if (VECTOR_TYPE_P (type)
2912 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2913 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2914 && (TYPE_MODE (TREE_TYPE (type))
2915 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2916 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2919 /* Simplifications of comparisons. */
2921 /* See if we can reduce the magnitude of a constant involved in a
2922 comparison by changing the comparison code. This is a canonicalization
2923 formerly done by maybe_canonicalize_comparison_1. */
2927 (cmp @0 INTEGER_CST@1)
2928 (if (tree_int_cst_sgn (@1) == -1)
2929 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2933 (cmp @0 INTEGER_CST@1)
2934 (if (tree_int_cst_sgn (@1) == 1)
2935 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2938 /* We can simplify a logical negation of a comparison to the
2939 inverted comparison. As we cannot compute an expression
2940 operator using invert_tree_comparison we have to simulate
2941 that with expression code iteration. */
2942 (for cmp (tcc_comparison)
2943 icmp (inverted_tcc_comparison)
2944 ncmp (inverted_tcc_comparison_with_nans)
2945 /* Ideally we'd like to combine the following two patterns
2946 and handle some more cases by using
2947 (logical_inverted_value (cmp @0 @1))
2948 here but for that genmatch would need to "inline" that.
2949 For now implement what forward_propagate_comparison did. */
2951 (bit_not (cmp @0 @1))
2952 (if (VECTOR_TYPE_P (type)
2953 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2954 /* Comparison inversion may be impossible for trapping math,
2955 invert_tree_comparison will tell us. But we can't use
2956 a computed operator in the replacement tree thus we have
2957 to play the trick below. */
2958 (with { enum tree_code ic = invert_tree_comparison
2959 (cmp, HONOR_NANS (@0)); }
2965 (bit_xor (cmp @0 @1) integer_truep)
2966 (with { enum tree_code ic = invert_tree_comparison
2967 (cmp, HONOR_NANS (@0)); }
2973 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2974 ??? The transformation is valid for the other operators if overflow
2975 is undefined for the type, but performing it here badly interacts
2976 with the transformation in fold_cond_expr_with_comparison which
2977 attempts to synthetize ABS_EXPR. */
2979 (for sub (minus pointer_diff)
2981 (cmp (sub@2 @0 @1) integer_zerop)
2982 (if (single_use (@2))
2985 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2986 signed arithmetic case. That form is created by the compiler
2987 often enough for folding it to be of value. One example is in
2988 computing loop trip counts after Operator Strength Reduction. */
2989 (for cmp (simple_comparison)
2990 scmp (swapped_simple_comparison)
2992 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2993 /* Handle unfolded multiplication by zero. */
2994 (if (integer_zerop (@1))
2996 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2997 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2999 /* If @1 is negative we swap the sense of the comparison. */
3000 (if (tree_int_cst_sgn (@1) < 0)
3004 /* Simplify comparison of something with itself. For IEEE
3005 floating-point, we can only do some of these simplifications. */
3009 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3010 || ! HONOR_NANS (@0))
3011 { constant_boolean_node (true, type); }
3012 (if (cmp != EQ_EXPR)
3018 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3019 || ! HONOR_NANS (@0))
3020 { constant_boolean_node (false, type); })))
3021 (for cmp (unle unge uneq)
3024 { constant_boolean_node (true, type); }))
3025 (for cmp (unlt ungt)
3031 (if (!flag_trapping_math)
3032 { constant_boolean_node (false, type); }))
3034 /* Fold ~X op ~Y as Y op X. */
3035 (for cmp (simple_comparison)
3037 (cmp (bit_not@2 @0) (bit_not@3 @1))
3038 (if (single_use (@2) && single_use (@3))
3041 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3042 (for cmp (simple_comparison)
3043 scmp (swapped_simple_comparison)
3045 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3046 (if (single_use (@2)
3047 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3048 (scmp @0 (bit_not @1)))))
3050 (for cmp (simple_comparison)
3051 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3053 (cmp (convert@2 @0) (convert? @1))
3054 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3055 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3056 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3057 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3058 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3061 tree type1 = TREE_TYPE (@1);
3062 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3064 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3065 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3066 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3067 type1 = float_type_node;
3068 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3069 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3070 type1 = double_type_node;
3073 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3074 ? TREE_TYPE (@0) : type1);
3076 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3077 (cmp (convert:newtype @0) (convert:newtype @1))))))
3081 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3083 /* a CMP (-0) -> a CMP 0 */
3084 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3085 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3086 /* x != NaN is always true, other ops are always false. */
3087 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3088 && ! HONOR_SNANS (@1))
3089 { constant_boolean_node (cmp == NE_EXPR, type); })
3090 /* Fold comparisons against infinity. */
3091 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3092 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3095 REAL_VALUE_TYPE max;
3096 enum tree_code code = cmp;
3097 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3099 code = swap_tree_comparison (code);
3102 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3103 (if (code == GT_EXPR
3104 && !(HONOR_NANS (@0) && flag_trapping_math))
3105 { constant_boolean_node (false, type); })
3106 (if (code == LE_EXPR)
3107 /* x <= +Inf is always true, if we don't care about NaNs. */
3108 (if (! HONOR_NANS (@0))
3109 { constant_boolean_node (true, type); }
3110 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3111 an "invalid" exception. */
3112 (if (!flag_trapping_math)
3114 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3115 for == this introduces an exception for x a NaN. */
3116 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3118 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3120 (lt @0 { build_real (TREE_TYPE (@0), max); })
3121 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3122 /* x < +Inf is always equal to x <= DBL_MAX. */
3123 (if (code == LT_EXPR)
3124 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3126 (ge @0 { build_real (TREE_TYPE (@0), max); })
3127 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3128 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3129 an exception for x a NaN so use an unordered comparison. */
3130 (if (code == NE_EXPR)
3131 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3132 (if (! HONOR_NANS (@0))
3134 (ge @0 { build_real (TREE_TYPE (@0), max); })
3135 (le @0 { build_real (TREE_TYPE (@0), max); }))
3137 (unge @0 { build_real (TREE_TYPE (@0), max); })
3138 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3140 /* If this is a comparison of a real constant with a PLUS_EXPR
3141 or a MINUS_EXPR of a real constant, we can convert it into a
3142 comparison with a revised real constant as long as no overflow
3143 occurs when unsafe_math_optimizations are enabled. */
3144 (if (flag_unsafe_math_optimizations)
3145 (for op (plus minus)
3147 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3150 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3151 TREE_TYPE (@1), @2, @1);
3153 (if (tem && !TREE_OVERFLOW (tem))
3154 (cmp @0 { tem; }))))))
3156 /* Likewise, we can simplify a comparison of a real constant with
3157 a MINUS_EXPR whose first operand is also a real constant, i.e.
3158 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3159 floating-point types only if -fassociative-math is set. */
3160 (if (flag_associative_math)
3162 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3163 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3164 (if (tem && !TREE_OVERFLOW (tem))
3165 (cmp { tem; } @1)))))
3167 /* Fold comparisons against built-in math functions. */
3168 (if (flag_unsafe_math_optimizations
3169 && ! flag_errno_math)
3172 (cmp (sq @0) REAL_CST@1)
3174 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3176 /* sqrt(x) < y is always false, if y is negative. */
3177 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3178 { constant_boolean_node (false, type); })
3179 /* sqrt(x) > y is always true, if y is negative and we
3180 don't care about NaNs, i.e. negative values of x. */
3181 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3182 { constant_boolean_node (true, type); })
3183 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3184 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3185 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3187 /* sqrt(x) < 0 is always false. */
3188 (if (cmp == LT_EXPR)
3189 { constant_boolean_node (false, type); })
3190 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3191 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3192 { constant_boolean_node (true, type); })
3193 /* sqrt(x) <= 0 -> x == 0. */
3194 (if (cmp == LE_EXPR)
3196 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3197 == or !=. In the last case:
3199 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3201 if x is negative or NaN. Due to -funsafe-math-optimizations,
3202 the results for other x follow from natural arithmetic. */
3204 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3208 real_arithmetic (&c2, MULT_EXPR,
3209 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3210 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3212 (if (REAL_VALUE_ISINF (c2))
3213 /* sqrt(x) > y is x == +Inf, when y is very large. */
3214 (if (HONOR_INFINITIES (@0))
3215 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3216 { constant_boolean_node (false, type); })
3217 /* sqrt(x) > c is the same as x > c*c. */
3218 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3219 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3223 real_arithmetic (&c2, MULT_EXPR,
3224 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3225 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3227 (if (REAL_VALUE_ISINF (c2))
3229 /* sqrt(x) < y is always true, when y is a very large
3230 value and we don't care about NaNs or Infinities. */
3231 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3232 { constant_boolean_node (true, type); })
3233 /* sqrt(x) < y is x != +Inf when y is very large and we
3234 don't care about NaNs. */
3235 (if (! HONOR_NANS (@0))
3236 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3237 /* sqrt(x) < y is x >= 0 when y is very large and we
3238 don't care about Infinities. */
3239 (if (! HONOR_INFINITIES (@0))
3240 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3241 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3244 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3245 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3246 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3247 (if (! HONOR_NANS (@0))
3248 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3249 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3252 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3253 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3254 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3256 (cmp (sq @0) (sq @1))
3257 (if (! HONOR_NANS (@0))
3260 /* Optimize various special cases of (FTYPE) N CMP CST. */
3261 (for cmp (lt le eq ne ge gt)
3262 icmp (le le eq ne ge ge)
3264 (cmp (float @0) REAL_CST@1)
3265 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3266 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3269 tree itype = TREE_TYPE (@0);
3270 signop isign = TYPE_SIGN (itype);
3271 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3272 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3273 /* Be careful to preserve any potential exceptions due to
3274 NaNs. qNaNs are ok in == or != context.
3275 TODO: relax under -fno-trapping-math or
3276 -fno-signaling-nans. */
3278 = real_isnan (cst) && (cst->signalling
3279 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3280 /* INT?_MIN is power-of-two so it takes
3281 only one mantissa bit. */
3282 bool signed_p = isign == SIGNED;
3283 bool itype_fits_ftype_p
3284 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3286 /* TODO: allow non-fitting itype and SNaNs when
3287 -fno-trapping-math. */
3288 (if (itype_fits_ftype_p && ! exception_p)
3291 REAL_VALUE_TYPE imin, imax;
3292 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3293 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3295 REAL_VALUE_TYPE icst;
3296 if (cmp == GT_EXPR || cmp == GE_EXPR)
3297 real_ceil (&icst, fmt, cst);
3298 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3299 real_floor (&icst, fmt, cst);
3301 real_trunc (&icst, fmt, cst);
3303 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3305 bool overflow_p = false;
3307 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3310 /* Optimize cases when CST is outside of ITYPE's range. */
3311 (if (real_compare (LT_EXPR, cst, &imin))
3312 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3314 (if (real_compare (GT_EXPR, cst, &imax))
3315 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3317 /* Remove cast if CST is an integer representable by ITYPE. */
3319 (cmp @0 { gcc_assert (!overflow_p);
3320 wide_int_to_tree (itype, icst_val); })
3322 /* When CST is fractional, optimize
3323 (FTYPE) N == CST -> 0
3324 (FTYPE) N != CST -> 1. */
3325 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3326 { constant_boolean_node (cmp == NE_EXPR, type); })
3327 /* Otherwise replace with sensible integer constant. */
3330 gcc_checking_assert (!overflow_p);
3332 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3334 /* Fold A /[ex] B CMP C to A CMP B * C. */
3337 (cmp (exact_div @0 @1) INTEGER_CST@2)
3338 (if (!integer_zerop (@1))
3339 (if (wi::to_wide (@2) == 0)
3341 (if (TREE_CODE (@1) == INTEGER_CST)
3345 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3346 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3349 { constant_boolean_node (cmp == NE_EXPR, type); }
3350 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3351 (for cmp (lt le gt ge)
3353 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3354 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3358 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3359 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3362 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3363 TYPE_SIGN (TREE_TYPE (@2)))
3364 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3365 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3367 /* Unordered tests if either argument is a NaN. */
3369 (bit_ior (unordered @0 @0) (unordered @1 @1))
3370 (if (types_match (@0, @1))
3373 (bit_and (ordered @0 @0) (ordered @1 @1))
3374 (if (types_match (@0, @1))
3377 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3380 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3383 /* Simple range test simplifications. */
3384 /* A < B || A >= B -> true. */
3385 (for test1 (lt le le le ne ge)
3386 test2 (ge gt ge ne eq ne)
3388 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3389 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3390 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3391 { constant_boolean_node (true, type); })))
3392 /* A < B && A >= B -> false. */
3393 (for test1 (lt lt lt le ne eq)
3394 test2 (ge gt eq gt eq gt)
3396 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3397 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3398 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3399 { constant_boolean_node (false, type); })))
3401 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3402 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3404 Note that comparisons
3405 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3406 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3407 will be canonicalized to above so there's no need to
3414 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3415 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3418 tree ty = TREE_TYPE (@0);
3419 unsigned prec = TYPE_PRECISION (ty);
3420 wide_int mask = wi::to_wide (@2, prec);
3421 wide_int rhs = wi::to_wide (@3, prec);
3422 signop sgn = TYPE_SIGN (ty);
3424 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3425 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3426 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3427 { build_zero_cst (ty); }))))))
3429 /* -A CMP -B -> B CMP A. */
3430 (for cmp (tcc_comparison)
3431 scmp (swapped_tcc_comparison)
3433 (cmp (negate @0) (negate @1))
3434 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3435 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3436 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3439 (cmp (negate @0) CONSTANT_CLASS_P@1)
3440 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3441 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3442 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3443 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3444 (if (tem && !TREE_OVERFLOW (tem))
3445 (scmp @0 { tem; }))))))
3447 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3450 (op (abs @0) zerop@1)
3453 /* From fold_sign_changed_comparison and fold_widened_comparison.
3454 FIXME: the lack of symmetry is disturbing. */
3455 (for cmp (simple_comparison)
3457 (cmp (convert@0 @00) (convert?@1 @10))
3458 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3459 /* Disable this optimization if we're casting a function pointer
3460 type on targets that require function pointer canonicalization. */
3461 && !(targetm.have_canonicalize_funcptr_for_compare ()
3462 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3463 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3465 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3466 && (TREE_CODE (@10) == INTEGER_CST
3468 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3471 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3472 /* ??? The special-casing of INTEGER_CST conversion was in the original
3473 code and here to avoid a spurious overflow flag on the resulting
3474 constant which fold_convert produces. */
3475 (if (TREE_CODE (@1) == INTEGER_CST)
3476 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3477 TREE_OVERFLOW (@1)); })
3478 (cmp @00 (convert @1)))
3480 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3481 /* If possible, express the comparison in the shorter mode. */
3482 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3483 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3484 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3485 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3486 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3487 || ((TYPE_PRECISION (TREE_TYPE (@00))
3488 >= TYPE_PRECISION (TREE_TYPE (@10)))
3489 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3490 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3491 || (TREE_CODE (@10) == INTEGER_CST
3492 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3493 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3494 (cmp @00 (convert @10))
3495 (if (TREE_CODE (@10) == INTEGER_CST
3496 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3497 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3500 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3501 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3502 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3503 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3505 (if (above || below)
3506 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3507 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3508 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3509 { constant_boolean_node (above ? true : false, type); }
3510 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3511 { constant_boolean_node (above ? false : true, type); }))))))))))))
3514 /* A local variable can never be pointed to by
3515 the default SSA name of an incoming parameter.
3516 SSA names are canonicalized to 2nd place. */
3518 (cmp addr@0 SSA_NAME@1)
3519 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3520 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3521 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3522 (if (TREE_CODE (base) == VAR_DECL
3523 && auto_var_in_fn_p (base, current_function_decl))
3524 (if (cmp == NE_EXPR)
3525 { constant_boolean_node (true, type); }
3526 { constant_boolean_node (false, type); }))))))
3528 /* Equality compare simplifications from fold_binary */
3531 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3532 Similarly for NE_EXPR. */
3534 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3535 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3536 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3537 { constant_boolean_node (cmp == NE_EXPR, type); }))
3539 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3541 (cmp (bit_xor @0 @1) integer_zerop)
3544 /* (X ^ Y) == Y becomes X == 0.
3545 Likewise (X ^ Y) == X becomes Y == 0. */
3547 (cmp:c (bit_xor:c @0 @1) @0)
3548 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3550 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3552 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3553 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3554 (cmp @0 (bit_xor @1 (convert @2)))))
3557 (cmp (convert? addr@0) integer_zerop)
3558 (if (tree_single_nonzero_warnv_p (@0, NULL))
3559 { constant_boolean_node (cmp == NE_EXPR, type); })))
3561 /* If we have (A & C) == C where C is a power of 2, convert this into
3562 (A & C) != 0. Similarly for NE_EXPR. */
3566 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3567 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3569 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3570 convert this into a shift followed by ANDing with D. */
3573 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3574 INTEGER_CST@2 integer_zerop)
3575 (if (integer_pow2p (@2))
3577 int shift = (wi::exact_log2 (wi::to_wide (@2))
3578 - wi::exact_log2 (wi::to_wide (@1)));
3582 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3584 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3587 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3588 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3592 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3593 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3594 && type_has_mode_precision_p (TREE_TYPE (@0))
3595 && element_precision (@2) >= element_precision (@0)
3596 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3597 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3598 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3600 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3601 this into a right shift or sign extension followed by ANDing with C. */
3604 (lt @0 integer_zerop)
3605 INTEGER_CST@1 integer_zerop)
3606 (if (integer_pow2p (@1)
3607 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3609 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3613 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3615 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3616 sign extension followed by AND with C will achieve the effect. */
3617 (bit_and (convert @0) @1)))))
3619 /* When the addresses are not directly of decls compare base and offset.
3620 This implements some remaining parts of fold_comparison address
3621 comparisons but still no complete part of it. Still it is good
3622 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3623 (for cmp (simple_comparison)
3625 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3628 poly_int64 off0, off1;
3629 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3630 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3631 if (base0 && TREE_CODE (base0) == MEM_REF)
3633 off0 += mem_ref_offset (base0).force_shwi ();
3634 base0 = TREE_OPERAND (base0, 0);
3636 if (base1 && TREE_CODE (base1) == MEM_REF)
3638 off1 += mem_ref_offset (base1).force_shwi ();
3639 base1 = TREE_OPERAND (base1, 0);
3642 (if (base0 && base1)
3646 /* Punt in GENERIC on variables with value expressions;
3647 the value expressions might point to fields/elements
3648 of other vars etc. */
3650 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3651 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3653 else if (decl_in_symtab_p (base0)
3654 && decl_in_symtab_p (base1))
3655 equal = symtab_node::get_create (base0)
3656 ->equal_address_to (symtab_node::get_create (base1));
3657 else if ((DECL_P (base0)
3658 || TREE_CODE (base0) == SSA_NAME
3659 || TREE_CODE (base0) == STRING_CST)
3661 || TREE_CODE (base1) == SSA_NAME
3662 || TREE_CODE (base1) == STRING_CST))
3663 equal = (base0 == base1);
3666 && (cmp == EQ_EXPR || cmp == NE_EXPR
3667 /* If the offsets are equal we can ignore overflow. */
3668 || known_eq (off0, off1)
3669 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3670 /* Or if we compare using pointers to decls or strings. */
3671 || (POINTER_TYPE_P (TREE_TYPE (@2))
3672 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3674 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3675 { constant_boolean_node (known_eq (off0, off1), type); })
3676 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3677 { constant_boolean_node (known_ne (off0, off1), type); })
3678 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3679 { constant_boolean_node (known_lt (off0, off1), type); })
3680 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3681 { constant_boolean_node (known_le (off0, off1), type); })
3682 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3683 { constant_boolean_node (known_ge (off0, off1), type); })
3684 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3685 { constant_boolean_node (known_gt (off0, off1), type); }))
3687 && DECL_P (base0) && DECL_P (base1)
3688 /* If we compare this as integers require equal offset. */
3689 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3690 || known_eq (off0, off1)))
3692 (if (cmp == EQ_EXPR)
3693 { constant_boolean_node (false, type); })
3694 (if (cmp == NE_EXPR)
3695 { constant_boolean_node (true, type); })))))))))
3697 /* Simplify pointer equality compares using PTA. */
3701 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3702 && ptrs_compare_unequal (@0, @1))
3703 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3705 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3706 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3707 Disable the transform if either operand is pointer to function.
3708 This broke pr22051-2.c for arm where function pointer
3709 canonicalizaion is not wanted. */
3713 (cmp (convert @0) INTEGER_CST@1)
3714 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3715 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3716 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3717 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3718 (cmp @0 (convert @1)))))
3720 /* Non-equality compare simplifications from fold_binary */
3721 (for cmp (lt gt le ge)
3722 /* Comparisons with the highest or lowest possible integer of
3723 the specified precision will have known values. */
3725 (cmp (convert?@2 @0) INTEGER_CST@1)
3726 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3727 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3730 tree arg1_type = TREE_TYPE (@1);
3731 unsigned int prec = TYPE_PRECISION (arg1_type);
3732 wide_int max = wi::max_value (arg1_type);
3733 wide_int signed_max = wi::max_value (prec, SIGNED);
3734 wide_int min = wi::min_value (arg1_type);
3737 (if (wi::to_wide (@1) == max)
3739 (if (cmp == GT_EXPR)
3740 { constant_boolean_node (false, type); })
3741 (if (cmp == GE_EXPR)
3743 (if (cmp == LE_EXPR)
3744 { constant_boolean_node (true, type); })
3745 (if (cmp == LT_EXPR)
3747 (if (wi::to_wide (@1) == min)
3749 (if (cmp == LT_EXPR)
3750 { constant_boolean_node (false, type); })
3751 (if (cmp == LE_EXPR)
3753 (if (cmp == GE_EXPR)
3754 { constant_boolean_node (true, type); })
3755 (if (cmp == GT_EXPR)
3757 (if (wi::to_wide (@1) == max - 1)
3759 (if (cmp == GT_EXPR)
3760 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3761 (if (cmp == LE_EXPR)
3762 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3763 (if (wi::to_wide (@1) == min + 1)
3765 (if (cmp == GE_EXPR)
3766 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3767 (if (cmp == LT_EXPR)
3768 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3769 (if (wi::to_wide (@1) == signed_max
3770 && TYPE_UNSIGNED (arg1_type)
3771 /* We will flip the signedness of the comparison operator
3772 associated with the mode of @1, so the sign bit is
3773 specified by this mode. Check that @1 is the signed
3774 max associated with this sign bit. */
3775 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3776 /* signed_type does not work on pointer types. */
3777 && INTEGRAL_TYPE_P (arg1_type))
3778 /* The following case also applies to X < signed_max+1
3779 and X >= signed_max+1 because previous transformations. */
3780 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3781 (with { tree st = signed_type_for (arg1_type); }
3782 (if (cmp == LE_EXPR)
3783 (ge (convert:st @0) { build_zero_cst (st); })
3784 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3786 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3787 /* If the second operand is NaN, the result is constant. */
3790 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3791 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3792 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3793 ? false : true, type); })))
3795 /* bool_var != 0 becomes bool_var. */
3797 (ne @0 integer_zerop)
3798 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3799 && types_match (type, TREE_TYPE (@0)))
3801 /* bool_var == 1 becomes bool_var. */
3803 (eq @0 integer_onep)
3804 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3805 && types_match (type, TREE_TYPE (@0)))
3808 bool_var == 0 becomes !bool_var or
3809 bool_var != 1 becomes !bool_var
3810 here because that only is good in assignment context as long
3811 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3812 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3813 clearly less optimal and which we'll transform again in forwprop. */
3815 /* When one argument is a constant, overflow detection can be simplified.
3816 Currently restricted to single use so as not to interfere too much with
3817 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3818 A + CST CMP A -> A CMP' CST' */
3819 (for cmp (lt le ge gt)
3822 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3823 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3824 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3825 && wi::to_wide (@1) != 0
3827 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3828 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3829 wi::max_value (prec, UNSIGNED)
3830 - wi::to_wide (@1)); })))))
3832 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3833 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3834 expects the long form, so we restrict the transformation for now. */
3837 (cmp:c (minus@2 @0 @1) @0)
3838 (if (single_use (@2)
3839 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3840 && TYPE_UNSIGNED (TREE_TYPE (@0))
3841 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3844 /* Testing for overflow is unnecessary if we already know the result. */
3849 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3850 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3851 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3852 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3857 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3858 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3859 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3860 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3862 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3863 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3867 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3868 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3869 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3870 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3872 /* Simplification of math builtins. These rules must all be optimizations
3873 as well as IL simplifications. If there is a possibility that the new
3874 form could be a pessimization, the rule should go in the canonicalization
3875 section that follows this one.
3877 Rules can generally go in this section if they satisfy one of
3880 - the rule describes an identity
3882 - the rule replaces calls with something as simple as addition or
3885 - the rule contains unary calls only and simplifies the surrounding
3886 arithmetic. (The idea here is to exclude non-unary calls in which
3887 one operand is constant and in which the call is known to be cheap
3888 when the operand has that value.) */
3890 (if (flag_unsafe_math_optimizations)
3891 /* Simplify sqrt(x) * sqrt(x) -> x. */
3893 (mult (SQRT_ALL@1 @0) @1)
3894 (if (!HONOR_SNANS (type))
3897 (for op (plus minus)
3898 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3902 (rdiv (op @0 @2) @1)))
3904 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3905 (for root (SQRT CBRT)
3907 (mult (root:s @0) (root:s @1))
3908 (root (mult @0 @1))))
3910 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3911 (for exps (EXP EXP2 EXP10 POW10)
3913 (mult (exps:s @0) (exps:s @1))
3914 (exps (plus @0 @1))))
3916 /* Simplify a/root(b/c) into a*root(c/b). */
3917 (for root (SQRT CBRT)
3919 (rdiv @0 (root:s (rdiv:s @1 @2)))
3920 (mult @0 (root (rdiv @2 @1)))))
3922 /* Simplify x/expN(y) into x*expN(-y). */
3923 (for exps (EXP EXP2 EXP10 POW10)
3925 (rdiv @0 (exps:s @1))
3926 (mult @0 (exps (negate @1)))))
3928 (for logs (LOG LOG2 LOG10 LOG10)
3929 exps (EXP EXP2 EXP10 POW10)
3930 /* logN(expN(x)) -> x. */
3934 /* expN(logN(x)) -> x. */
3939 /* Optimize logN(func()) for various exponential functions. We
3940 want to determine the value "x" and the power "exponent" in
3941 order to transform logN(x**exponent) into exponent*logN(x). */
3942 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3943 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3946 (if (SCALAR_FLOAT_TYPE_P (type))
3952 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3953 x = build_real_truncate (type, dconst_e ());
3956 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3957 x = build_real (type, dconst2);
3961 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3963 REAL_VALUE_TYPE dconst10;
3964 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3965 x = build_real (type, dconst10);
3972 (mult (logs { x; }) @0)))))
3980 (if (SCALAR_FLOAT_TYPE_P (type))
3986 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3987 x = build_real (type, dconsthalf);
3990 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3991 x = build_real_truncate (type, dconst_third ());
3997 (mult { x; } (logs @0))))))
3999 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4000 (for logs (LOG LOG2 LOG10)
4004 (mult @1 (logs @0))))
4006 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4007 or if C is a positive power of 2,
4008 pow(C,x) -> exp2(log2(C)*x). */
4016 (pows REAL_CST@0 @1)
4017 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4018 && real_isfinite (TREE_REAL_CST_PTR (@0))
4019 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4020 the use_exp2 case until after vectorization. It seems actually
4021 beneficial for all constants to postpone this until later,
4022 because exp(log(C)*x), while faster, will have worse precision
4023 and if x folds into a constant too, that is unnecessary
4025 && canonicalize_math_after_vectorization_p ())
4027 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4028 bool use_exp2 = false;
4029 if (targetm.libc_has_function (function_c99_misc)
4030 && value->cl == rvc_normal)
4032 REAL_VALUE_TYPE frac_rvt = *value;
4033 SET_REAL_EXP (&frac_rvt, 1);
4034 if (real_equal (&frac_rvt, &dconst1))
4039 (if (optimize_pow_to_exp (@0, @1))
4040 (exps (mult (logs @0) @1)))
4041 (exp2s (mult (log2s @0) @1)))))))
4044 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4046 exps (EXP EXP2 EXP10 POW10)
4047 logs (LOG LOG2 LOG10 LOG10)
4049 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4050 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4051 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4052 (exps (plus (mult (logs @0) @1) @2)))))
4057 exps (EXP EXP2 EXP10 POW10)
4058 /* sqrt(expN(x)) -> expN(x*0.5). */
4061 (exps (mult @0 { build_real (type, dconsthalf); })))
4062 /* cbrt(expN(x)) -> expN(x/3). */
4065 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4066 /* pow(expN(x), y) -> expN(x*y). */
4069 (exps (mult @0 @1))))
4071 /* tan(atan(x)) -> x. */
4078 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4080 (CABS (complex:C @0 real_zerop@1))
4083 /* trunc(trunc(x)) -> trunc(x), etc. */
4084 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4088 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4089 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4091 (fns integer_valued_real_p@0)
4094 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4096 (HYPOT:c @0 real_zerop@1)
4099 /* pow(1,x) -> 1. */
4101 (POW real_onep@0 @1)
4105 /* copysign(x,x) -> x. */
4106 (COPYSIGN_ALL @0 @0)
4110 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4111 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4114 (for scale (LDEXP SCALBN SCALBLN)
4115 /* ldexp(0, x) -> 0. */
4117 (scale real_zerop@0 @1)
4119 /* ldexp(x, 0) -> x. */
4121 (scale @0 integer_zerop@1)
4123 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4125 (scale REAL_CST@0 @1)
4126 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4129 /* Canonicalization of sequences of math builtins. These rules represent
4130 IL simplifications but are not necessarily optimizations.
4132 The sincos pass is responsible for picking "optimal" implementations
4133 of math builtins, which may be more complicated and can sometimes go
4134 the other way, e.g. converting pow into a sequence of sqrts.
4135 We only want to do these canonicalizations before the pass has run. */
4137 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4138 /* Simplify tan(x) * cos(x) -> sin(x). */
4140 (mult:c (TAN:s @0) (COS:s @0))
4143 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4145 (mult:c @0 (POW:s @0 REAL_CST@1))
4146 (if (!TREE_OVERFLOW (@1))
4147 (POW @0 (plus @1 { build_one_cst (type); }))))
4149 /* Simplify sin(x) / cos(x) -> tan(x). */
4151 (rdiv (SIN:s @0) (COS:s @0))
4154 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4156 (rdiv (COS:s @0) (SIN:s @0))
4157 (rdiv { build_one_cst (type); } (TAN @0)))
4159 /* Simplify sin(x) / tan(x) -> cos(x). */
4161 (rdiv (SIN:s @0) (TAN:s @0))
4162 (if (! HONOR_NANS (@0)
4163 && ! HONOR_INFINITIES (@0))
4166 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4168 (rdiv (TAN:s @0) (SIN:s @0))
4169 (if (! HONOR_NANS (@0)
4170 && ! HONOR_INFINITIES (@0))
4171 (rdiv { build_one_cst (type); } (COS @0))))
4173 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4175 (mult (POW:s @0 @1) (POW:s @0 @2))
4176 (POW @0 (plus @1 @2)))
4178 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4180 (mult (POW:s @0 @1) (POW:s @2 @1))
4181 (POW (mult @0 @2) @1))
4183 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4185 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4186 (POWI (mult @0 @2) @1))
4188 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4190 (rdiv (POW:s @0 REAL_CST@1) @0)
4191 (if (!TREE_OVERFLOW (@1))
4192 (POW @0 (minus @1 { build_one_cst (type); }))))
4194 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4196 (rdiv @0 (POW:s @1 @2))
4197 (mult @0 (POW @1 (negate @2))))
4202 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4205 (pows @0 { build_real (type, dconst_quarter ()); }))
4206 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4209 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4210 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4213 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4214 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4216 (cbrts (cbrts tree_expr_nonnegative_p@0))
4217 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4218 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4220 (sqrts (pows @0 @1))
4221 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4222 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4224 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4225 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4226 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4228 (pows (sqrts @0) @1)
4229 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4230 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4232 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4233 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4234 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4236 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4237 (pows @0 (mult @1 @2))))
4239 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4241 (CABS (complex @0 @0))
4242 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4244 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4247 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4249 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4254 (cexps compositional_complex@0)
4255 (if (targetm.libc_has_function (function_c99_math_complex))
4257 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4258 (mult @1 (imagpart @2)))))))
4260 (if (canonicalize_math_p ())
4261 /* floor(x) -> trunc(x) if x is nonnegative. */
4262 (for floors (FLOOR_ALL)
4265 (floors tree_expr_nonnegative_p@0)
4268 (match double_value_p
4270 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4271 (for froms (BUILT_IN_TRUNCL
4283 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4284 (if (optimize && canonicalize_math_p ())
4286 (froms (convert double_value_p@0))
4287 (convert (tos @0)))))
4289 (match float_value_p
4291 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4292 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4293 BUILT_IN_FLOORL BUILT_IN_FLOOR
4294 BUILT_IN_CEILL BUILT_IN_CEIL
4295 BUILT_IN_ROUNDL BUILT_IN_ROUND
4296 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4297 BUILT_IN_RINTL BUILT_IN_RINT)
4298 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4299 BUILT_IN_FLOORF BUILT_IN_FLOORF
4300 BUILT_IN_CEILF BUILT_IN_CEILF
4301 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4302 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4303 BUILT_IN_RINTF BUILT_IN_RINTF)
4304 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4306 (if (optimize && canonicalize_math_p ()
4307 && targetm.libc_has_function (function_c99_misc))
4309 (froms (convert float_value_p@0))
4310 (convert (tos @0)))))
4312 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4313 tos (XFLOOR XCEIL XROUND XRINT)
4314 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4315 (if (optimize && canonicalize_math_p ())
4317 (froms (convert double_value_p@0))
4320 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4321 XFLOOR XCEIL XROUND XRINT)
4322 tos (XFLOORF XCEILF XROUNDF XRINTF)
4323 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4325 (if (optimize && canonicalize_math_p ())
4327 (froms (convert float_value_p@0))
4330 (if (canonicalize_math_p ())
4331 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4332 (for floors (IFLOOR LFLOOR LLFLOOR)
4334 (floors tree_expr_nonnegative_p@0)
4337 (if (canonicalize_math_p ())
4338 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4339 (for fns (IFLOOR LFLOOR LLFLOOR
4341 IROUND LROUND LLROUND)
4343 (fns integer_valued_real_p@0)
4345 (if (!flag_errno_math)
4346 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4347 (for rints (IRINT LRINT LLRINT)
4349 (rints integer_valued_real_p@0)
4352 (if (canonicalize_math_p ())
4353 (for ifn (IFLOOR ICEIL IROUND IRINT)
4354 lfn (LFLOOR LCEIL LROUND LRINT)
4355 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4356 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4357 sizeof (int) == sizeof (long). */
4358 (if (TYPE_PRECISION (integer_type_node)
4359 == TYPE_PRECISION (long_integer_type_node))
4362 (lfn:long_integer_type_node @0)))
4363 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4364 sizeof (long long) == sizeof (long). */
4365 (if (TYPE_PRECISION (long_long_integer_type_node)
4366 == TYPE_PRECISION (long_integer_type_node))
4369 (lfn:long_integer_type_node @0)))))
4371 /* cproj(x) -> x if we're ignoring infinities. */
4374 (if (!HONOR_INFINITIES (type))
4377 /* If the real part is inf and the imag part is known to be
4378 nonnegative, return (inf + 0i). */
4380 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4381 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4382 { build_complex_inf (type, false); }))
4384 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4386 (CPROJ (complex @0 REAL_CST@1))
4387 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4388 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4394 (pows @0 REAL_CST@1)
4396 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4397 REAL_VALUE_TYPE tmp;
4400 /* pow(x,0) -> 1. */
4401 (if (real_equal (value, &dconst0))
4402 { build_real (type, dconst1); })
4403 /* pow(x,1) -> x. */
4404 (if (real_equal (value, &dconst1))
4406 /* pow(x,-1) -> 1/x. */
4407 (if (real_equal (value, &dconstm1))
4408 (rdiv { build_real (type, dconst1); } @0))
4409 /* pow(x,0.5) -> sqrt(x). */
4410 (if (flag_unsafe_math_optimizations
4411 && canonicalize_math_p ()
4412 && real_equal (value, &dconsthalf))
4414 /* pow(x,1/3) -> cbrt(x). */
4415 (if (flag_unsafe_math_optimizations
4416 && canonicalize_math_p ()
4417 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4418 real_equal (value, &tmp)))
4421 /* powi(1,x) -> 1. */
4423 (POWI real_onep@0 @1)
4427 (POWI @0 INTEGER_CST@1)
4429 /* powi(x,0) -> 1. */
4430 (if (wi::to_wide (@1) == 0)
4431 { build_real (type, dconst1); })
4432 /* powi(x,1) -> x. */
4433 (if (wi::to_wide (@1) == 1)
4435 /* powi(x,-1) -> 1/x. */
4436 (if (wi::to_wide (@1) == -1)
4437 (rdiv { build_real (type, dconst1); } @0))))
4439 /* Narrowing of arithmetic and logical operations.
4441 These are conceptually similar to the transformations performed for
4442 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4443 term we want to move all that code out of the front-ends into here. */
4445 /* If we have a narrowing conversion of an arithmetic operation where
4446 both operands are widening conversions from the same type as the outer
4447 narrowing conversion. Then convert the innermost operands to a suitable
4448 unsigned type (to avoid introducing undefined behavior), perform the
4449 operation and convert the result to the desired type. */
4450 (for op (plus minus)
4452 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4453 (if (INTEGRAL_TYPE_P (type)
4454 /* We check for type compatibility between @0 and @1 below,
4455 so there's no need to check that @1/@3 are integral types. */
4456 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4457 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4458 /* The precision of the type of each operand must match the
4459 precision of the mode of each operand, similarly for the
4461 && type_has_mode_precision_p (TREE_TYPE (@0))
4462 && type_has_mode_precision_p (TREE_TYPE (@1))
4463 && type_has_mode_precision_p (type)
4464 /* The inner conversion must be a widening conversion. */
4465 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4466 && types_match (@0, type)
4467 && (types_match (@0, @1)
4468 /* Or the second operand is const integer or converted const
4469 integer from valueize. */
4470 || TREE_CODE (@1) == INTEGER_CST))
4471 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4472 (op @0 (convert @1))
4473 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4474 (convert (op (convert:utype @0)
4475 (convert:utype @1))))))))
4477 /* This is another case of narrowing, specifically when there's an outer
4478 BIT_AND_EXPR which masks off bits outside the type of the innermost
4479 operands. Like the previous case we have to convert the operands
4480 to unsigned types to avoid introducing undefined behavior for the
4481 arithmetic operation. */
4482 (for op (minus plus)
4484 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4485 (if (INTEGRAL_TYPE_P (type)
4486 /* We check for type compatibility between @0 and @1 below,
4487 so there's no need to check that @1/@3 are integral types. */
4488 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4489 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4490 /* The precision of the type of each operand must match the
4491 precision of the mode of each operand, similarly for the
4493 && type_has_mode_precision_p (TREE_TYPE (@0))
4494 && type_has_mode_precision_p (TREE_TYPE (@1))
4495 && type_has_mode_precision_p (type)
4496 /* The inner conversion must be a widening conversion. */
4497 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4498 && types_match (@0, @1)
4499 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4500 <= TYPE_PRECISION (TREE_TYPE (@0)))
4501 && (wi::to_wide (@4)
4502 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4503 true, TYPE_PRECISION (type))) == 0)
4504 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4505 (with { tree ntype = TREE_TYPE (@0); }
4506 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4507 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4508 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4509 (convert:utype @4))))))))
4511 /* Transform (@0 < @1 and @0 < @2) to use min,
4512 (@0 > @1 and @0 > @2) to use max */
4513 (for op (lt le gt ge)
4514 ext (min min max max)
4516 (bit_and (op:cs @0 @1) (op:cs @0 @2))
4517 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4518 && TREE_CODE (@0) != INTEGER_CST)
4519 (op @0 (ext @1 @2)))))
4522 /* signbit(x) -> 0 if x is nonnegative. */
4523 (SIGNBIT tree_expr_nonnegative_p@0)
4524 { integer_zero_node; })
4527 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4529 (if (!HONOR_SIGNED_ZEROS (@0))
4530 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4532 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4534 (for op (plus minus)
4537 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4538 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4539 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4540 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4541 && !TYPE_SATURATING (TREE_TYPE (@0)))
4542 (with { tree res = int_const_binop (rop, @2, @1); }
4543 (if (TREE_OVERFLOW (res)
4544 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4545 { constant_boolean_node (cmp == NE_EXPR, type); }
4546 (if (single_use (@3))
4547 (cmp @0 { TREE_OVERFLOW (res)
4548 ? drop_tree_overflow (res) : res; }))))))))
4549 (for cmp (lt le gt ge)
4550 (for op (plus minus)
4553 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4554 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4555 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4556 (with { tree res = int_const_binop (rop, @2, @1); }
4557 (if (TREE_OVERFLOW (res))
4559 fold_overflow_warning (("assuming signed overflow does not occur "
4560 "when simplifying conditional to constant"),
4561 WARN_STRICT_OVERFLOW_CONDITIONAL);
4562 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4563 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4564 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4565 TYPE_SIGN (TREE_TYPE (@1)))
4566 != (op == MINUS_EXPR);
4567 constant_boolean_node (less == ovf_high, type);
4569 (if (single_use (@3))
4572 fold_overflow_warning (("assuming signed overflow does not occur "
4573 "when changing X +- C1 cmp C2 to "
4575 WARN_STRICT_OVERFLOW_COMPARISON);
4577 (cmp @0 { res; })))))))))
4579 /* Canonicalizations of BIT_FIELD_REFs. */
4582 (BIT_FIELD_REF @0 @1 @2)
4584 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4585 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4587 (if (integer_zerop (@2))
4588 (view_convert (realpart @0)))
4589 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4590 (view_convert (imagpart @0)))))
4591 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4592 && INTEGRAL_TYPE_P (type)
4593 /* On GIMPLE this should only apply to register arguments. */
4594 && (! GIMPLE || is_gimple_reg (@0))
4595 /* A bit-field-ref that referenced the full argument can be stripped. */
4596 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4597 && integer_zerop (@2))
4598 /* Low-parts can be reduced to integral conversions.
4599 ??? The following doesn't work for PDP endian. */
4600 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4601 /* Don't even think about BITS_BIG_ENDIAN. */
4602 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4603 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4604 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4605 ? (TYPE_PRECISION (TREE_TYPE (@0))
4606 - TYPE_PRECISION (type))
4610 /* Simplify vector extracts. */
4613 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4614 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4615 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4616 || (VECTOR_TYPE_P (type)
4617 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4620 tree ctor = (TREE_CODE (@0) == SSA_NAME
4621 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4622 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4623 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4624 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4625 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4628 && (idx % width) == 0
4630 && known_le ((idx + n) / width,
4631 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4636 /* Constructor elements can be subvectors. */
4638 if (CONSTRUCTOR_NELTS (ctor) != 0)
4640 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4641 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4642 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4644 unsigned HOST_WIDE_INT elt, count, const_k;
4647 /* We keep an exact subset of the constructor elements. */
4648 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4649 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4650 { build_constructor (type, NULL); }
4652 (if (elt < CONSTRUCTOR_NELTS (ctor))
4653 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4654 { build_zero_cst (type); })
4656 vec<constructor_elt, va_gc> *vals;
4657 vec_alloc (vals, count);
4658 for (unsigned i = 0;
4659 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4660 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4661 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4662 build_constructor (type, vals);
4664 /* The bitfield references a single constructor element. */
4665 (if (k.is_constant (&const_k)
4666 && idx + n <= (idx / const_k + 1) * const_k)
4668 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4669 { build_zero_cst (type); })
4671 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4672 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4673 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4675 /* Simplify a bit extraction from a bit insertion for the cases with
4676 the inserted element fully covering the extraction or the insertion
4677 not touching the extraction. */
4679 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4682 unsigned HOST_WIDE_INT isize;
4683 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4684 isize = TYPE_PRECISION (TREE_TYPE (@1));
4686 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4689 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4690 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4691 wi::to_wide (@ipos) + isize))
4692 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4694 - wi::to_wide (@ipos)); }))
4695 (if (wi::geu_p (wi::to_wide (@ipos),
4696 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4697 || wi::geu_p (wi::to_wide (@rpos),
4698 wi::to_wide (@ipos) + isize))
4699 (BIT_FIELD_REF @0 @rsize @rpos)))))