PR sanitizer/59009
[official-gcc.git] / gcc / tree-cfg.c
blob601efd65aa86d9464df645be31cff304c8114a3c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "gimplify.h"
34 #include "gimple-ssa.h"
35 #include "cgraph.h"
36 #include "tree-cfg.h"
37 #include "tree-phinodes.h"
38 #include "ssa-iterators.h"
39 #include "tree-ssanames.h"
40 #include "tree-ssa-loop-manip.h"
41 #include "tree-ssa-loop-niter.h"
42 #include "tree-into-ssa.h"
43 #include "tree-dfa.h"
44 #include "tree-ssa.h"
45 #include "tree-dump.h"
46 #include "tree-pass.h"
47 #include "diagnostic-core.h"
48 #include "except.h"
49 #include "cfgloop.h"
50 #include "tree-ssa-propagate.h"
51 #include "value-prof.h"
52 #include "pointer-set.h"
53 #include "tree-inline.h"
54 #include "target.h"
55 #include "tree-ssa-live.h"
56 #include "omp-low.h"
57 #include "tree-cfgcleanup.h"
59 /* This file contains functions for building the Control Flow Graph (CFG)
60 for a function tree. */
62 /* Local declarations. */
64 /* Initial capacity for the basic block array. */
65 static const int initial_cfg_capacity = 20;
67 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
68 which use a particular edge. The CASE_LABEL_EXPRs are chained together
69 via their CASE_CHAIN field, which we clear after we're done with the
70 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
72 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
73 update the case vector in response to edge redirections.
75 Right now this table is set up and torn down at key points in the
76 compilation process. It would be nice if we could make the table
77 more persistent. The key is getting notification of changes to
78 the CFG (particularly edge removal, creation and redirection). */
80 static struct pointer_map_t *edge_to_cases;
82 /* If we record edge_to_cases, this bitmap will hold indexes
83 of basic blocks that end in a GIMPLE_SWITCH which we touched
84 due to edge manipulations. */
86 static bitmap touched_switch_bbs;
88 /* CFG statistics. */
89 struct cfg_stats_d
91 long num_merged_labels;
94 static struct cfg_stats_d cfg_stats;
96 /* Nonzero if we found a computed goto while building basic blocks. */
97 static bool found_computed_goto;
99 /* Hash table to store last discriminator assigned for each locus. */
100 struct locus_discrim_map
102 location_t locus;
103 int discriminator;
106 /* Hashtable helpers. */
108 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
110 typedef locus_discrim_map value_type;
111 typedef locus_discrim_map compare_type;
112 static inline hashval_t hash (const value_type *);
113 static inline bool equal (const value_type *, const compare_type *);
116 /* Trivial hash function for a location_t. ITEM is a pointer to
117 a hash table entry that maps a location_t to a discriminator. */
119 inline hashval_t
120 locus_discrim_hasher::hash (const value_type *item)
122 return LOCATION_LINE (item->locus);
125 /* Equality function for the locus-to-discriminator map. A and B
126 point to the two hash table entries to compare. */
128 inline bool
129 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
131 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
134 static hash_table <locus_discrim_hasher> discriminator_per_locus;
136 /* Basic blocks and flowgraphs. */
137 static void make_blocks (gimple_seq);
138 static void factor_computed_gotos (void);
140 /* Edges. */
141 static void make_edges (void);
142 static void assign_discriminators (void);
143 static void make_cond_expr_edges (basic_block);
144 static void make_gimple_switch_edges (basic_block);
145 static void make_goto_expr_edges (basic_block);
146 static void make_gimple_asm_edges (basic_block);
147 static edge gimple_redirect_edge_and_branch (edge, basic_block);
148 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
149 static unsigned int split_critical_edges (void);
151 /* Various helpers. */
152 static inline bool stmt_starts_bb_p (gimple, gimple);
153 static int gimple_verify_flow_info (void);
154 static void gimple_make_forwarder_block (edge);
155 static gimple first_non_label_stmt (basic_block);
156 static bool verify_gimple_transaction (gimple);
158 /* Flowgraph optimization and cleanup. */
159 static void gimple_merge_blocks (basic_block, basic_block);
160 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
161 static void remove_bb (basic_block);
162 static edge find_taken_edge_computed_goto (basic_block, tree);
163 static edge find_taken_edge_cond_expr (basic_block, tree);
164 static edge find_taken_edge_switch_expr (basic_block, tree);
165 static tree find_case_label_for_value (gimple, tree);
167 void
168 init_empty_tree_cfg_for_function (struct function *fn)
170 /* Initialize the basic block array. */
171 init_flow (fn);
172 profile_status_for_function (fn) = PROFILE_ABSENT;
173 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
174 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
175 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
176 vec_safe_grow_cleared (basic_block_info_for_function (fn),
177 initial_cfg_capacity);
179 /* Build a mapping of labels to their associated blocks. */
180 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
181 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
182 initial_cfg_capacity);
184 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
185 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
186 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
187 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
189 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
190 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
191 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
192 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
195 void
196 init_empty_tree_cfg (void)
198 init_empty_tree_cfg_for_function (cfun);
201 /*---------------------------------------------------------------------------
202 Create basic blocks
203 ---------------------------------------------------------------------------*/
205 /* Entry point to the CFG builder for trees. SEQ is the sequence of
206 statements to be added to the flowgraph. */
208 static void
209 build_gimple_cfg (gimple_seq seq)
211 /* Register specific gimple functions. */
212 gimple_register_cfg_hooks ();
214 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
216 init_empty_tree_cfg ();
218 found_computed_goto = 0;
219 make_blocks (seq);
221 /* Computed gotos are hell to deal with, especially if there are
222 lots of them with a large number of destinations. So we factor
223 them to a common computed goto location before we build the
224 edge list. After we convert back to normal form, we will un-factor
225 the computed gotos since factoring introduces an unwanted jump. */
226 if (found_computed_goto)
227 factor_computed_gotos ();
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR);
233 /* Adjust the size of the array. */
234 if (basic_block_info->length () < (size_t) n_basic_blocks)
235 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
237 /* To speed up statement iterator walks, we first purge dead labels. */
238 cleanup_dead_labels ();
240 /* Group case nodes to reduce the number of edges.
241 We do this after cleaning up dead labels because otherwise we miss
242 a lot of obvious case merging opportunities. */
243 group_case_labels ();
245 /* Create the edges of the flowgraph. */
246 discriminator_per_locus.create (13);
247 make_edges ();
248 assign_discriminators ();
249 cleanup_dead_labels ();
250 discriminator_per_locus.dispose ();
254 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
255 it and set loop->safelen to INT_MAX. We assume that the annotation
256 comes immediately before the condition. */
258 static void
259 replace_loop_annotate ()
261 struct loop *loop;
262 loop_iterator li;
263 basic_block bb;
264 gimple_stmt_iterator gsi;
265 gimple stmt;
267 FOR_EACH_LOOP (li, loop, 0)
269 gsi = gsi_last_bb (loop->header);
270 stmt = gsi_stmt (gsi);
271 if (stmt && gimple_code (stmt) == GIMPLE_COND)
273 gsi_prev_nondebug (&gsi);
274 if (gsi_end_p (gsi))
275 continue;
276 stmt = gsi_stmt (gsi);
277 if (gimple_code (stmt) != GIMPLE_CALL)
278 continue;
279 if (!gimple_call_internal_p (stmt)
280 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
281 continue;
282 if ((annot_expr_kind) tree_low_cst (gimple_call_arg (stmt, 1), 0)
283 != annot_expr_ivdep_kind)
284 continue;
285 stmt = gimple_build_assign (gimple_call_lhs (stmt),
286 gimple_call_arg (stmt, 0));
287 gsi_replace (&gsi, stmt, true);
288 loop->safelen = INT_MAX;
292 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
293 FOR_EACH_BB (bb)
295 gsi = gsi_last_bb (bb);
296 stmt = gsi_stmt (gsi);
297 if (stmt && gimple_code (stmt) == GIMPLE_COND)
298 gsi_prev_nondebug (&gsi);
299 if (gsi_end_p (gsi))
300 continue;
301 stmt = gsi_stmt (gsi);
302 if (gimple_code (stmt) != GIMPLE_CALL)
303 continue;
304 if (!gimple_call_internal_p (stmt)
305 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
306 continue;
307 if ((annot_expr_kind) tree_low_cst (gimple_call_arg (stmt, 1), 0)
308 != annot_expr_ivdep_kind)
309 continue;
310 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
311 "annotation");
312 stmt = gimple_build_assign (gimple_call_lhs (stmt),
313 gimple_call_arg (stmt, 0));
314 gsi_replace (&gsi, stmt, true);
319 static unsigned int
320 execute_build_cfg (void)
322 gimple_seq body = gimple_body (current_function_decl);
324 build_gimple_cfg (body);
325 gimple_set_body (current_function_decl, NULL);
326 if (dump_file && (dump_flags & TDF_DETAILS))
328 fprintf (dump_file, "Scope blocks:\n");
329 dump_scope_blocks (dump_file, dump_flags);
331 cleanup_tree_cfg ();
332 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
333 replace_loop_annotate ();
334 return 0;
337 namespace {
339 const pass_data pass_data_build_cfg =
341 GIMPLE_PASS, /* type */
342 "cfg", /* name */
343 OPTGROUP_NONE, /* optinfo_flags */
344 false, /* has_gate */
345 true, /* has_execute */
346 TV_TREE_CFG, /* tv_id */
347 PROP_gimple_leh, /* properties_required */
348 ( PROP_cfg | PROP_loops ), /* properties_provided */
349 0, /* properties_destroyed */
350 0, /* todo_flags_start */
351 TODO_verify_stmts, /* todo_flags_finish */
354 class pass_build_cfg : public gimple_opt_pass
356 public:
357 pass_build_cfg (gcc::context *ctxt)
358 : gimple_opt_pass (pass_data_build_cfg, ctxt)
361 /* opt_pass methods: */
362 unsigned int execute () { return execute_build_cfg (); }
364 }; // class pass_build_cfg
366 } // anon namespace
368 gimple_opt_pass *
369 make_pass_build_cfg (gcc::context *ctxt)
371 return new pass_build_cfg (ctxt);
375 /* Return true if T is a computed goto. */
377 static bool
378 computed_goto_p (gimple t)
380 return (gimple_code (t) == GIMPLE_GOTO
381 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
384 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
385 the other edge points to a bb with just __builtin_unreachable ().
386 I.e. return true for C->M edge in:
387 <bb C>:
389 if (something)
390 goto <bb N>;
391 else
392 goto <bb M>;
393 <bb N>:
394 __builtin_unreachable ();
395 <bb M>: */
397 bool
398 assert_unreachable_fallthru_edge_p (edge e)
400 basic_block pred_bb = e->src;
401 gimple last = last_stmt (pred_bb);
402 if (last && gimple_code (last) == GIMPLE_COND)
404 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
405 if (other_bb == e->dest)
406 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
407 if (EDGE_COUNT (other_bb->succs) == 0)
409 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
410 gimple stmt;
412 if (gsi_end_p (gsi))
413 return false;
414 stmt = gsi_stmt (gsi);
415 if (is_gimple_debug (stmt))
417 gsi_next_nondebug (&gsi);
418 if (gsi_end_p (gsi))
419 return false;
420 stmt = gsi_stmt (gsi);
422 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
425 return false;
429 /* Search the CFG for any computed gotos. If found, factor them to a
430 common computed goto site. Also record the location of that site so
431 that we can un-factor the gotos after we have converted back to
432 normal form. */
434 static void
435 factor_computed_gotos (void)
437 basic_block bb;
438 tree factored_label_decl = NULL;
439 tree var = NULL;
440 gimple factored_computed_goto_label = NULL;
441 gimple factored_computed_goto = NULL;
443 /* We know there are one or more computed gotos in this function.
444 Examine the last statement in each basic block to see if the block
445 ends with a computed goto. */
447 FOR_EACH_BB (bb)
449 gimple_stmt_iterator gsi = gsi_last_bb (bb);
450 gimple last;
452 if (gsi_end_p (gsi))
453 continue;
455 last = gsi_stmt (gsi);
457 /* Ignore the computed goto we create when we factor the original
458 computed gotos. */
459 if (last == factored_computed_goto)
460 continue;
462 /* If the last statement is a computed goto, factor it. */
463 if (computed_goto_p (last))
465 gimple assignment;
467 /* The first time we find a computed goto we need to create
468 the factored goto block and the variable each original
469 computed goto will use for their goto destination. */
470 if (!factored_computed_goto)
472 basic_block new_bb = create_empty_bb (bb);
473 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
475 /* Create the destination of the factored goto. Each original
476 computed goto will put its desired destination into this
477 variable and jump to the label we create immediately
478 below. */
479 var = create_tmp_var (ptr_type_node, "gotovar");
481 /* Build a label for the new block which will contain the
482 factored computed goto. */
483 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
484 factored_computed_goto_label
485 = gimple_build_label (factored_label_decl);
486 gsi_insert_after (&new_gsi, factored_computed_goto_label,
487 GSI_NEW_STMT);
489 /* Build our new computed goto. */
490 factored_computed_goto = gimple_build_goto (var);
491 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
494 /* Copy the original computed goto's destination into VAR. */
495 assignment = gimple_build_assign (var, gimple_goto_dest (last));
496 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
498 /* And re-vector the computed goto to the new destination. */
499 gimple_goto_set_dest (last, factored_label_decl);
505 /* Build a flowgraph for the sequence of stmts SEQ. */
507 static void
508 make_blocks (gimple_seq seq)
510 gimple_stmt_iterator i = gsi_start (seq);
511 gimple stmt = NULL;
512 bool start_new_block = true;
513 bool first_stmt_of_seq = true;
514 basic_block bb = ENTRY_BLOCK_PTR;
516 while (!gsi_end_p (i))
518 gimple prev_stmt;
520 prev_stmt = stmt;
521 stmt = gsi_stmt (i);
523 /* If the statement starts a new basic block or if we have determined
524 in a previous pass that we need to create a new block for STMT, do
525 so now. */
526 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
528 if (!first_stmt_of_seq)
529 gsi_split_seq_before (&i, &seq);
530 bb = create_basic_block (seq, NULL, bb);
531 start_new_block = false;
534 /* Now add STMT to BB and create the subgraphs for special statement
535 codes. */
536 gimple_set_bb (stmt, bb);
538 if (computed_goto_p (stmt))
539 found_computed_goto = true;
541 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
542 next iteration. */
543 if (stmt_ends_bb_p (stmt))
545 /* If the stmt can make abnormal goto use a new temporary
546 for the assignment to the LHS. This makes sure the old value
547 of the LHS is available on the abnormal edge. Otherwise
548 we will end up with overlapping life-ranges for abnormal
549 SSA names. */
550 if (gimple_has_lhs (stmt)
551 && stmt_can_make_abnormal_goto (stmt)
552 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
554 tree lhs = gimple_get_lhs (stmt);
555 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
556 gimple s = gimple_build_assign (lhs, tmp);
557 gimple_set_location (s, gimple_location (stmt));
558 gimple_set_block (s, gimple_block (stmt));
559 gimple_set_lhs (stmt, tmp);
560 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
561 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
562 DECL_GIMPLE_REG_P (tmp) = 1;
563 gsi_insert_after (&i, s, GSI_SAME_STMT);
565 start_new_block = true;
568 gsi_next (&i);
569 first_stmt_of_seq = false;
574 /* Create and return a new empty basic block after bb AFTER. */
576 static basic_block
577 create_bb (void *h, void *e, basic_block after)
579 basic_block bb;
581 gcc_assert (!e);
583 /* Create and initialize a new basic block. Since alloc_block uses
584 GC allocation that clears memory to allocate a basic block, we do
585 not have to clear the newly allocated basic block here. */
586 bb = alloc_block ();
588 bb->index = last_basic_block;
589 bb->flags = BB_NEW;
590 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
592 /* Add the new block to the linked list of blocks. */
593 link_block (bb, after);
595 /* Grow the basic block array if needed. */
596 if ((size_t) last_basic_block == basic_block_info->length ())
598 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
599 vec_safe_grow_cleared (basic_block_info, new_size);
602 /* Add the newly created block to the array. */
603 SET_BASIC_BLOCK (last_basic_block, bb);
605 n_basic_blocks++;
606 last_basic_block++;
608 return bb;
612 /*---------------------------------------------------------------------------
613 Edge creation
614 ---------------------------------------------------------------------------*/
616 /* Fold COND_EXPR_COND of each COND_EXPR. */
618 void
619 fold_cond_expr_cond (void)
621 basic_block bb;
623 FOR_EACH_BB (bb)
625 gimple stmt = last_stmt (bb);
627 if (stmt && gimple_code (stmt) == GIMPLE_COND)
629 location_t loc = gimple_location (stmt);
630 tree cond;
631 bool zerop, onep;
633 fold_defer_overflow_warnings ();
634 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
635 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
636 if (cond)
638 zerop = integer_zerop (cond);
639 onep = integer_onep (cond);
641 else
642 zerop = onep = false;
644 fold_undefer_overflow_warnings (zerop || onep,
645 stmt,
646 WARN_STRICT_OVERFLOW_CONDITIONAL);
647 if (zerop)
648 gimple_cond_make_false (stmt);
649 else if (onep)
650 gimple_cond_make_true (stmt);
655 /* Join all the blocks in the flowgraph. */
657 static void
658 make_edges (void)
660 basic_block bb;
661 struct omp_region *cur_region = NULL;
663 /* Create an edge from entry to the first block with executable
664 statements in it. */
665 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
667 /* Traverse the basic block array placing edges. */
668 FOR_EACH_BB (bb)
670 gimple last = last_stmt (bb);
671 bool fallthru;
673 if (last)
675 enum gimple_code code = gimple_code (last);
676 switch (code)
678 case GIMPLE_GOTO:
679 make_goto_expr_edges (bb);
680 fallthru = false;
681 break;
682 case GIMPLE_RETURN:
683 make_edge (bb, EXIT_BLOCK_PTR, 0);
684 fallthru = false;
685 break;
686 case GIMPLE_COND:
687 make_cond_expr_edges (bb);
688 fallthru = false;
689 break;
690 case GIMPLE_SWITCH:
691 make_gimple_switch_edges (bb);
692 fallthru = false;
693 break;
694 case GIMPLE_RESX:
695 make_eh_edges (last);
696 fallthru = false;
697 break;
698 case GIMPLE_EH_DISPATCH:
699 fallthru = make_eh_dispatch_edges (last);
700 break;
702 case GIMPLE_CALL:
703 /* If this function receives a nonlocal goto, then we need to
704 make edges from this call site to all the nonlocal goto
705 handlers. */
706 if (stmt_can_make_abnormal_goto (last))
707 make_abnormal_goto_edges (bb, true);
709 /* If this statement has reachable exception handlers, then
710 create abnormal edges to them. */
711 make_eh_edges (last);
713 /* BUILTIN_RETURN is really a return statement. */
714 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
715 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
716 /* Some calls are known not to return. */
717 else
718 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
719 break;
721 case GIMPLE_ASSIGN:
722 /* A GIMPLE_ASSIGN may throw internally and thus be considered
723 control-altering. */
724 if (is_ctrl_altering_stmt (last))
725 make_eh_edges (last);
726 fallthru = true;
727 break;
729 case GIMPLE_ASM:
730 make_gimple_asm_edges (bb);
731 fallthru = true;
732 break;
734 CASE_GIMPLE_OMP:
735 fallthru = make_gimple_omp_edges (bb, &cur_region);
736 break;
738 case GIMPLE_TRANSACTION:
740 tree abort_label = gimple_transaction_label (last);
741 if (abort_label)
742 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
743 fallthru = true;
745 break;
747 default:
748 gcc_assert (!stmt_ends_bb_p (last));
749 fallthru = true;
752 else
753 fallthru = true;
755 if (fallthru)
756 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
759 free_omp_regions ();
761 /* Fold COND_EXPR_COND of each COND_EXPR. */
762 fold_cond_expr_cond ();
765 /* Find the next available discriminator value for LOCUS. The
766 discriminator distinguishes among several basic blocks that
767 share a common locus, allowing for more accurate sample-based
768 profiling. */
770 static int
771 next_discriminator_for_locus (location_t locus)
773 struct locus_discrim_map item;
774 struct locus_discrim_map **slot;
776 item.locus = locus;
777 item.discriminator = 0;
778 slot = discriminator_per_locus.find_slot_with_hash (
779 &item, LOCATION_LINE (locus), INSERT);
780 gcc_assert (slot);
781 if (*slot == HTAB_EMPTY_ENTRY)
783 *slot = XNEW (struct locus_discrim_map);
784 gcc_assert (*slot);
785 (*slot)->locus = locus;
786 (*slot)->discriminator = 0;
788 (*slot)->discriminator++;
789 return (*slot)->discriminator;
792 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
794 static bool
795 same_line_p (location_t locus1, location_t locus2)
797 expanded_location from, to;
799 if (locus1 == locus2)
800 return true;
802 from = expand_location (locus1);
803 to = expand_location (locus2);
805 if (from.line != to.line)
806 return false;
807 if (from.file == to.file)
808 return true;
809 return (from.file != NULL
810 && to.file != NULL
811 && filename_cmp (from.file, to.file) == 0);
814 /* Assign discriminators to each basic block. */
816 static void
817 assign_discriminators (void)
819 basic_block bb;
821 FOR_EACH_BB (bb)
823 edge e;
824 edge_iterator ei;
825 gimple last = last_stmt (bb);
826 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
828 if (locus == UNKNOWN_LOCATION)
829 continue;
831 FOR_EACH_EDGE (e, ei, bb->succs)
833 gimple first = first_non_label_stmt (e->dest);
834 gimple last = last_stmt (e->dest);
835 if ((first && same_line_p (locus, gimple_location (first)))
836 || (last && same_line_p (locus, gimple_location (last))))
838 if (e->dest->discriminator != 0 && bb->discriminator == 0)
839 bb->discriminator = next_discriminator_for_locus (locus);
840 else
841 e->dest->discriminator = next_discriminator_for_locus (locus);
847 /* Create the edges for a GIMPLE_COND starting at block BB. */
849 static void
850 make_cond_expr_edges (basic_block bb)
852 gimple entry = last_stmt (bb);
853 gimple then_stmt, else_stmt;
854 basic_block then_bb, else_bb;
855 tree then_label, else_label;
856 edge e;
858 gcc_assert (entry);
859 gcc_assert (gimple_code (entry) == GIMPLE_COND);
861 /* Entry basic blocks for each component. */
862 then_label = gimple_cond_true_label (entry);
863 else_label = gimple_cond_false_label (entry);
864 then_bb = label_to_block (then_label);
865 else_bb = label_to_block (else_label);
866 then_stmt = first_stmt (then_bb);
867 else_stmt = first_stmt (else_bb);
869 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
870 e->goto_locus = gimple_location (then_stmt);
871 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
872 if (e)
873 e->goto_locus = gimple_location (else_stmt);
875 /* We do not need the labels anymore. */
876 gimple_cond_set_true_label (entry, NULL_TREE);
877 gimple_cond_set_false_label (entry, NULL_TREE);
881 /* Called for each element in the hash table (P) as we delete the
882 edge to cases hash table.
884 Clear all the TREE_CHAINs to prevent problems with copying of
885 SWITCH_EXPRs and structure sharing rules, then free the hash table
886 element. */
888 static bool
889 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
890 void *data ATTRIBUTE_UNUSED)
892 tree t, next;
894 for (t = (tree) *value; t; t = next)
896 next = CASE_CHAIN (t);
897 CASE_CHAIN (t) = NULL;
900 *value = NULL;
901 return true;
904 /* Start recording information mapping edges to case labels. */
906 void
907 start_recording_case_labels (void)
909 gcc_assert (edge_to_cases == NULL);
910 edge_to_cases = pointer_map_create ();
911 touched_switch_bbs = BITMAP_ALLOC (NULL);
914 /* Return nonzero if we are recording information for case labels. */
916 static bool
917 recording_case_labels_p (void)
919 return (edge_to_cases != NULL);
922 /* Stop recording information mapping edges to case labels and
923 remove any information we have recorded. */
924 void
925 end_recording_case_labels (void)
927 bitmap_iterator bi;
928 unsigned i;
929 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
930 pointer_map_destroy (edge_to_cases);
931 edge_to_cases = NULL;
932 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
934 basic_block bb = BASIC_BLOCK (i);
935 if (bb)
937 gimple stmt = last_stmt (bb);
938 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
939 group_case_labels_stmt (stmt);
942 BITMAP_FREE (touched_switch_bbs);
945 /* If we are inside a {start,end}_recording_cases block, then return
946 a chain of CASE_LABEL_EXPRs from T which reference E.
948 Otherwise return NULL. */
950 static tree
951 get_cases_for_edge (edge e, gimple t)
953 void **slot;
954 size_t i, n;
956 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
957 chains available. Return NULL so the caller can detect this case. */
958 if (!recording_case_labels_p ())
959 return NULL;
961 slot = pointer_map_contains (edge_to_cases, e);
962 if (slot)
963 return (tree) *slot;
965 /* If we did not find E in the hash table, then this must be the first
966 time we have been queried for information about E & T. Add all the
967 elements from T to the hash table then perform the query again. */
969 n = gimple_switch_num_labels (t);
970 for (i = 0; i < n; i++)
972 tree elt = gimple_switch_label (t, i);
973 tree lab = CASE_LABEL (elt);
974 basic_block label_bb = label_to_block (lab);
975 edge this_edge = find_edge (e->src, label_bb);
977 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
978 a new chain. */
979 slot = pointer_map_insert (edge_to_cases, this_edge);
980 CASE_CHAIN (elt) = (tree) *slot;
981 *slot = elt;
984 return (tree) *pointer_map_contains (edge_to_cases, e);
987 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
989 static void
990 make_gimple_switch_edges (basic_block bb)
992 gimple entry = last_stmt (bb);
993 size_t i, n;
995 n = gimple_switch_num_labels (entry);
997 for (i = 0; i < n; ++i)
999 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1000 basic_block label_bb = label_to_block (lab);
1001 make_edge (bb, label_bb, 0);
1006 /* Return the basic block holding label DEST. */
1008 basic_block
1009 label_to_block_fn (struct function *ifun, tree dest)
1011 int uid = LABEL_DECL_UID (dest);
1013 /* We would die hard when faced by an undefined label. Emit a label to
1014 the very first basic block. This will hopefully make even the dataflow
1015 and undefined variable warnings quite right. */
1016 if (seen_error () && uid < 0)
1018 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
1019 gimple stmt;
1021 stmt = gimple_build_label (dest);
1022 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1023 uid = LABEL_DECL_UID (dest);
1025 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1026 return NULL;
1027 return (*ifun->cfg->x_label_to_block_map)[uid];
1030 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
1031 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
1033 void
1034 make_abnormal_goto_edges (basic_block bb, bool for_call)
1036 basic_block target_bb;
1037 gimple_stmt_iterator gsi;
1039 FOR_EACH_BB (target_bb)
1041 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1043 gimple label_stmt = gsi_stmt (gsi);
1044 tree target;
1046 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1047 break;
1049 target = gimple_label_label (label_stmt);
1051 /* Make an edge to every label block that has been marked as a
1052 potential target for a computed goto or a non-local goto. */
1053 if ((FORCED_LABEL (target) && !for_call)
1054 || (DECL_NONLOCAL (target) && for_call))
1056 make_edge (bb, target_bb, EDGE_ABNORMAL);
1057 break;
1060 if (!gsi_end_p (gsi)
1061 && is_gimple_debug (gsi_stmt (gsi)))
1062 gsi_next_nondebug (&gsi);
1063 if (!gsi_end_p (gsi))
1065 /* Make an edge to every setjmp-like call. */
1066 gimple call_stmt = gsi_stmt (gsi);
1067 if (is_gimple_call (call_stmt)
1068 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1069 make_edge (bb, target_bb, EDGE_ABNORMAL);
1074 /* Create edges for a goto statement at block BB. */
1076 static void
1077 make_goto_expr_edges (basic_block bb)
1079 gimple_stmt_iterator last = gsi_last_bb (bb);
1080 gimple goto_t = gsi_stmt (last);
1082 /* A simple GOTO creates normal edges. */
1083 if (simple_goto_p (goto_t))
1085 tree dest = gimple_goto_dest (goto_t);
1086 basic_block label_bb = label_to_block (dest);
1087 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1088 e->goto_locus = gimple_location (goto_t);
1089 gsi_remove (&last, true);
1090 return;
1093 /* A computed GOTO creates abnormal edges. */
1094 make_abnormal_goto_edges (bb, false);
1097 /* Create edges for an asm statement with labels at block BB. */
1099 static void
1100 make_gimple_asm_edges (basic_block bb)
1102 gimple stmt = last_stmt (bb);
1103 int i, n = gimple_asm_nlabels (stmt);
1105 for (i = 0; i < n; ++i)
1107 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1108 basic_block label_bb = label_to_block (label);
1109 make_edge (bb, label_bb, 0);
1113 /*---------------------------------------------------------------------------
1114 Flowgraph analysis
1115 ---------------------------------------------------------------------------*/
1117 /* Cleanup useless labels in basic blocks. This is something we wish
1118 to do early because it allows us to group case labels before creating
1119 the edges for the CFG, and it speeds up block statement iterators in
1120 all passes later on.
1121 We rerun this pass after CFG is created, to get rid of the labels that
1122 are no longer referenced. After then we do not run it any more, since
1123 (almost) no new labels should be created. */
1125 /* A map from basic block index to the leading label of that block. */
1126 static struct label_record
1128 /* The label. */
1129 tree label;
1131 /* True if the label is referenced from somewhere. */
1132 bool used;
1133 } *label_for_bb;
1135 /* Given LABEL return the first label in the same basic block. */
1137 static tree
1138 main_block_label (tree label)
1140 basic_block bb = label_to_block (label);
1141 tree main_label = label_for_bb[bb->index].label;
1143 /* label_to_block possibly inserted undefined label into the chain. */
1144 if (!main_label)
1146 label_for_bb[bb->index].label = label;
1147 main_label = label;
1150 label_for_bb[bb->index].used = true;
1151 return main_label;
1154 /* Clean up redundant labels within the exception tree. */
1156 static void
1157 cleanup_dead_labels_eh (void)
1159 eh_landing_pad lp;
1160 eh_region r;
1161 tree lab;
1162 int i;
1164 if (cfun->eh == NULL)
1165 return;
1167 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1168 if (lp && lp->post_landing_pad)
1170 lab = main_block_label (lp->post_landing_pad);
1171 if (lab != lp->post_landing_pad)
1173 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1174 EH_LANDING_PAD_NR (lab) = lp->index;
1178 FOR_ALL_EH_REGION (r)
1179 switch (r->type)
1181 case ERT_CLEANUP:
1182 case ERT_MUST_NOT_THROW:
1183 break;
1185 case ERT_TRY:
1187 eh_catch c;
1188 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1190 lab = c->label;
1191 if (lab)
1192 c->label = main_block_label (lab);
1195 break;
1197 case ERT_ALLOWED_EXCEPTIONS:
1198 lab = r->u.allowed.label;
1199 if (lab)
1200 r->u.allowed.label = main_block_label (lab);
1201 break;
1206 /* Cleanup redundant labels. This is a three-step process:
1207 1) Find the leading label for each block.
1208 2) Redirect all references to labels to the leading labels.
1209 3) Cleanup all useless labels. */
1211 void
1212 cleanup_dead_labels (void)
1214 basic_block bb;
1215 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1217 /* Find a suitable label for each block. We use the first user-defined
1218 label if there is one, or otherwise just the first label we see. */
1219 FOR_EACH_BB (bb)
1221 gimple_stmt_iterator i;
1223 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1225 tree label;
1226 gimple stmt = gsi_stmt (i);
1228 if (gimple_code (stmt) != GIMPLE_LABEL)
1229 break;
1231 label = gimple_label_label (stmt);
1233 /* If we have not yet seen a label for the current block,
1234 remember this one and see if there are more labels. */
1235 if (!label_for_bb[bb->index].label)
1237 label_for_bb[bb->index].label = label;
1238 continue;
1241 /* If we did see a label for the current block already, but it
1242 is an artificially created label, replace it if the current
1243 label is a user defined label. */
1244 if (!DECL_ARTIFICIAL (label)
1245 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1247 label_for_bb[bb->index].label = label;
1248 break;
1253 /* Now redirect all jumps/branches to the selected label.
1254 First do so for each block ending in a control statement. */
1255 FOR_EACH_BB (bb)
1257 gimple stmt = last_stmt (bb);
1258 tree label, new_label;
1260 if (!stmt)
1261 continue;
1263 switch (gimple_code (stmt))
1265 case GIMPLE_COND:
1266 label = gimple_cond_true_label (stmt);
1267 if (label)
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_cond_set_true_label (stmt, new_label);
1274 label = gimple_cond_false_label (stmt);
1275 if (label)
1277 new_label = main_block_label (label);
1278 if (new_label != label)
1279 gimple_cond_set_false_label (stmt, new_label);
1281 break;
1283 case GIMPLE_SWITCH:
1285 size_t i, n = gimple_switch_num_labels (stmt);
1287 /* Replace all destination labels. */
1288 for (i = 0; i < n; ++i)
1290 tree case_label = gimple_switch_label (stmt, i);
1291 label = CASE_LABEL (case_label);
1292 new_label = main_block_label (label);
1293 if (new_label != label)
1294 CASE_LABEL (case_label) = new_label;
1296 break;
1299 case GIMPLE_ASM:
1301 int i, n = gimple_asm_nlabels (stmt);
1303 for (i = 0; i < n; ++i)
1305 tree cons = gimple_asm_label_op (stmt, i);
1306 tree label = main_block_label (TREE_VALUE (cons));
1307 TREE_VALUE (cons) = label;
1309 break;
1312 /* We have to handle gotos until they're removed, and we don't
1313 remove them until after we've created the CFG edges. */
1314 case GIMPLE_GOTO:
1315 if (!computed_goto_p (stmt))
1317 label = gimple_goto_dest (stmt);
1318 new_label = main_block_label (label);
1319 if (new_label != label)
1320 gimple_goto_set_dest (stmt, new_label);
1322 break;
1324 case GIMPLE_TRANSACTION:
1326 tree label = gimple_transaction_label (stmt);
1327 if (label)
1329 tree new_label = main_block_label (label);
1330 if (new_label != label)
1331 gimple_transaction_set_label (stmt, new_label);
1334 break;
1336 default:
1337 break;
1341 /* Do the same for the exception region tree labels. */
1342 cleanup_dead_labels_eh ();
1344 /* Finally, purge dead labels. All user-defined labels and labels that
1345 can be the target of non-local gotos and labels which have their
1346 address taken are preserved. */
1347 FOR_EACH_BB (bb)
1349 gimple_stmt_iterator i;
1350 tree label_for_this_bb = label_for_bb[bb->index].label;
1352 if (!label_for_this_bb)
1353 continue;
1355 /* If the main label of the block is unused, we may still remove it. */
1356 if (!label_for_bb[bb->index].used)
1357 label_for_this_bb = NULL;
1359 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1361 tree label;
1362 gimple stmt = gsi_stmt (i);
1364 if (gimple_code (stmt) != GIMPLE_LABEL)
1365 break;
1367 label = gimple_label_label (stmt);
1369 if (label == label_for_this_bb
1370 || !DECL_ARTIFICIAL (label)
1371 || DECL_NONLOCAL (label)
1372 || FORCED_LABEL (label))
1373 gsi_next (&i);
1374 else
1375 gsi_remove (&i, true);
1379 free (label_for_bb);
1382 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1383 the ones jumping to the same label.
1384 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1386 void
1387 group_case_labels_stmt (gimple stmt)
1389 int old_size = gimple_switch_num_labels (stmt);
1390 int i, j, new_size = old_size;
1391 basic_block default_bb = NULL;
1393 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1395 /* Look for possible opportunities to merge cases. */
1396 i = 1;
1397 while (i < old_size)
1399 tree base_case, base_high;
1400 basic_block base_bb;
1402 base_case = gimple_switch_label (stmt, i);
1404 gcc_assert (base_case);
1405 base_bb = label_to_block (CASE_LABEL (base_case));
1407 /* Discard cases that have the same destination as the
1408 default case. */
1409 if (base_bb == default_bb)
1411 gimple_switch_set_label (stmt, i, NULL_TREE);
1412 i++;
1413 new_size--;
1414 continue;
1417 base_high = CASE_HIGH (base_case)
1418 ? CASE_HIGH (base_case)
1419 : CASE_LOW (base_case);
1420 i++;
1422 /* Try to merge case labels. Break out when we reach the end
1423 of the label vector or when we cannot merge the next case
1424 label with the current one. */
1425 while (i < old_size)
1427 tree merge_case = gimple_switch_label (stmt, i);
1428 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1429 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1431 /* Merge the cases if they jump to the same place,
1432 and their ranges are consecutive. */
1433 if (merge_bb == base_bb
1434 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1436 base_high = CASE_HIGH (merge_case) ?
1437 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1438 CASE_HIGH (base_case) = base_high;
1439 gimple_switch_set_label (stmt, i, NULL_TREE);
1440 new_size--;
1441 i++;
1443 else
1444 break;
1448 /* Compress the case labels in the label vector, and adjust the
1449 length of the vector. */
1450 for (i = 0, j = 0; i < new_size; i++)
1452 while (! gimple_switch_label (stmt, j))
1453 j++;
1454 gimple_switch_set_label (stmt, i,
1455 gimple_switch_label (stmt, j++));
1458 gcc_assert (new_size <= old_size);
1459 gimple_switch_set_num_labels (stmt, new_size);
1462 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1463 and scan the sorted vector of cases. Combine the ones jumping to the
1464 same label. */
1466 void
1467 group_case_labels (void)
1469 basic_block bb;
1471 FOR_EACH_BB (bb)
1473 gimple stmt = last_stmt (bb);
1474 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1475 group_case_labels_stmt (stmt);
1479 /* Checks whether we can merge block B into block A. */
1481 static bool
1482 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1484 gimple stmt;
1485 gimple_stmt_iterator gsi;
1487 if (!single_succ_p (a))
1488 return false;
1490 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1491 return false;
1493 if (single_succ (a) != b)
1494 return false;
1496 if (!single_pred_p (b))
1497 return false;
1499 if (b == EXIT_BLOCK_PTR)
1500 return false;
1502 /* If A ends by a statement causing exceptions or something similar, we
1503 cannot merge the blocks. */
1504 stmt = last_stmt (a);
1505 if (stmt && stmt_ends_bb_p (stmt))
1506 return false;
1508 /* Do not allow a block with only a non-local label to be merged. */
1509 if (stmt
1510 && gimple_code (stmt) == GIMPLE_LABEL
1511 && DECL_NONLOCAL (gimple_label_label (stmt)))
1512 return false;
1514 /* Examine the labels at the beginning of B. */
1515 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1517 tree lab;
1518 stmt = gsi_stmt (gsi);
1519 if (gimple_code (stmt) != GIMPLE_LABEL)
1520 break;
1521 lab = gimple_label_label (stmt);
1523 /* Do not remove user forced labels or for -O0 any user labels. */
1524 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1525 return false;
1528 /* Protect the loop latches. */
1529 if (current_loops && b->loop_father->latch == b)
1530 return false;
1532 /* It must be possible to eliminate all phi nodes in B. If ssa form
1533 is not up-to-date and a name-mapping is registered, we cannot eliminate
1534 any phis. Symbols marked for renaming are never a problem though. */
1535 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1537 gimple phi = gsi_stmt (gsi);
1538 /* Technically only new names matter. */
1539 if (name_registered_for_update_p (PHI_RESULT (phi)))
1540 return false;
1543 /* When not optimizing, don't merge if we'd lose goto_locus. */
1544 if (!optimize
1545 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1547 location_t goto_locus = single_succ_edge (a)->goto_locus;
1548 gimple_stmt_iterator prev, next;
1549 prev = gsi_last_nondebug_bb (a);
1550 next = gsi_after_labels (b);
1551 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1552 gsi_next_nondebug (&next);
1553 if ((gsi_end_p (prev)
1554 || gimple_location (gsi_stmt (prev)) != goto_locus)
1555 && (gsi_end_p (next)
1556 || gimple_location (gsi_stmt (next)) != goto_locus))
1557 return false;
1560 return true;
1563 /* Replaces all uses of NAME by VAL. */
1565 void
1566 replace_uses_by (tree name, tree val)
1568 imm_use_iterator imm_iter;
1569 use_operand_p use;
1570 gimple stmt;
1571 edge e;
1573 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1575 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1577 replace_exp (use, val);
1579 if (gimple_code (stmt) == GIMPLE_PHI)
1581 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1582 if (e->flags & EDGE_ABNORMAL)
1584 /* This can only occur for virtual operands, since
1585 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1586 would prevent replacement. */
1587 gcc_checking_assert (virtual_operand_p (name));
1588 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1593 if (gimple_code (stmt) != GIMPLE_PHI)
1595 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1596 gimple orig_stmt = stmt;
1597 size_t i;
1599 /* Mark the block if we changed the last stmt in it. */
1600 if (cfgcleanup_altered_bbs
1601 && stmt_ends_bb_p (stmt))
1602 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1604 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1605 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1606 only change sth from non-invariant to invariant, and only
1607 when propagating constants. */
1608 if (is_gimple_min_invariant (val))
1609 for (i = 0; i < gimple_num_ops (stmt); i++)
1611 tree op = gimple_op (stmt, i);
1612 /* Operands may be empty here. For example, the labels
1613 of a GIMPLE_COND are nulled out following the creation
1614 of the corresponding CFG edges. */
1615 if (op && TREE_CODE (op) == ADDR_EXPR)
1616 recompute_tree_invariant_for_addr_expr (op);
1619 if (fold_stmt (&gsi))
1620 stmt = gsi_stmt (gsi);
1622 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1623 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1625 update_stmt (stmt);
1629 gcc_checking_assert (has_zero_uses (name));
1631 /* Also update the trees stored in loop structures. */
1632 if (current_loops)
1634 struct loop *loop;
1635 loop_iterator li;
1637 FOR_EACH_LOOP (li, loop, 0)
1639 substitute_in_loop_info (loop, name, val);
1644 /* Merge block B into block A. */
1646 static void
1647 gimple_merge_blocks (basic_block a, basic_block b)
1649 gimple_stmt_iterator last, gsi, psi;
1651 if (dump_file)
1652 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1654 /* Remove all single-valued PHI nodes from block B of the form
1655 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1656 gsi = gsi_last_bb (a);
1657 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1659 gimple phi = gsi_stmt (psi);
1660 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1661 gimple copy;
1662 bool may_replace_uses = (virtual_operand_p (def)
1663 || may_propagate_copy (def, use));
1665 /* In case we maintain loop closed ssa form, do not propagate arguments
1666 of loop exit phi nodes. */
1667 if (current_loops
1668 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1669 && !virtual_operand_p (def)
1670 && TREE_CODE (use) == SSA_NAME
1671 && a->loop_father != b->loop_father)
1672 may_replace_uses = false;
1674 if (!may_replace_uses)
1676 gcc_assert (!virtual_operand_p (def));
1678 /* Note that just emitting the copies is fine -- there is no problem
1679 with ordering of phi nodes. This is because A is the single
1680 predecessor of B, therefore results of the phi nodes cannot
1681 appear as arguments of the phi nodes. */
1682 copy = gimple_build_assign (def, use);
1683 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1684 remove_phi_node (&psi, false);
1686 else
1688 /* If we deal with a PHI for virtual operands, we can simply
1689 propagate these without fussing with folding or updating
1690 the stmt. */
1691 if (virtual_operand_p (def))
1693 imm_use_iterator iter;
1694 use_operand_p use_p;
1695 gimple stmt;
1697 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1698 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1699 SET_USE (use_p, use);
1701 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1702 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1704 else
1705 replace_uses_by (def, use);
1707 remove_phi_node (&psi, true);
1711 /* Ensure that B follows A. */
1712 move_block_after (b, a);
1714 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1715 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1717 /* Remove labels from B and set gimple_bb to A for other statements. */
1718 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1720 gimple stmt = gsi_stmt (gsi);
1721 if (gimple_code (stmt) == GIMPLE_LABEL)
1723 tree label = gimple_label_label (stmt);
1724 int lp_nr;
1726 gsi_remove (&gsi, false);
1728 /* Now that we can thread computed gotos, we might have
1729 a situation where we have a forced label in block B
1730 However, the label at the start of block B might still be
1731 used in other ways (think about the runtime checking for
1732 Fortran assigned gotos). So we can not just delete the
1733 label. Instead we move the label to the start of block A. */
1734 if (FORCED_LABEL (label))
1736 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1737 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1739 /* Other user labels keep around in a form of a debug stmt. */
1740 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1742 gimple dbg = gimple_build_debug_bind (label,
1743 integer_zero_node,
1744 stmt);
1745 gimple_debug_bind_reset_value (dbg);
1746 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1749 lp_nr = EH_LANDING_PAD_NR (label);
1750 if (lp_nr)
1752 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1753 lp->post_landing_pad = NULL;
1756 else
1758 gimple_set_bb (stmt, a);
1759 gsi_next (&gsi);
1763 /* Merge the sequences. */
1764 last = gsi_last_bb (a);
1765 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1766 set_bb_seq (b, NULL);
1768 if (cfgcleanup_altered_bbs)
1769 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1773 /* Return the one of two successors of BB that is not reachable by a
1774 complex edge, if there is one. Else, return BB. We use
1775 this in optimizations that use post-dominators for their heuristics,
1776 to catch the cases in C++ where function calls are involved. */
1778 basic_block
1779 single_noncomplex_succ (basic_block bb)
1781 edge e0, e1;
1782 if (EDGE_COUNT (bb->succs) != 2)
1783 return bb;
1785 e0 = EDGE_SUCC (bb, 0);
1786 e1 = EDGE_SUCC (bb, 1);
1787 if (e0->flags & EDGE_COMPLEX)
1788 return e1->dest;
1789 if (e1->flags & EDGE_COMPLEX)
1790 return e0->dest;
1792 return bb;
1795 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1797 void
1798 notice_special_calls (gimple call)
1800 int flags = gimple_call_flags (call);
1802 if (flags & ECF_MAY_BE_ALLOCA)
1803 cfun->calls_alloca = true;
1804 if (flags & ECF_RETURNS_TWICE)
1805 cfun->calls_setjmp = true;
1809 /* Clear flags set by notice_special_calls. Used by dead code removal
1810 to update the flags. */
1812 void
1813 clear_special_calls (void)
1815 cfun->calls_alloca = false;
1816 cfun->calls_setjmp = false;
1819 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1821 static void
1822 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1824 /* Since this block is no longer reachable, we can just delete all
1825 of its PHI nodes. */
1826 remove_phi_nodes (bb);
1828 /* Remove edges to BB's successors. */
1829 while (EDGE_COUNT (bb->succs) > 0)
1830 remove_edge (EDGE_SUCC (bb, 0));
1834 /* Remove statements of basic block BB. */
1836 static void
1837 remove_bb (basic_block bb)
1839 gimple_stmt_iterator i;
1841 if (dump_file)
1843 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1844 if (dump_flags & TDF_DETAILS)
1846 dump_bb (dump_file, bb, 0, dump_flags);
1847 fprintf (dump_file, "\n");
1851 if (current_loops)
1853 struct loop *loop = bb->loop_father;
1855 /* If a loop gets removed, clean up the information associated
1856 with it. */
1857 if (loop->latch == bb
1858 || loop->header == bb)
1859 free_numbers_of_iterations_estimates_loop (loop);
1862 /* Remove all the instructions in the block. */
1863 if (bb_seq (bb) != NULL)
1865 /* Walk backwards so as to get a chance to substitute all
1866 released DEFs into debug stmts. See
1867 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1868 details. */
1869 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1871 gimple stmt = gsi_stmt (i);
1872 if (gimple_code (stmt) == GIMPLE_LABEL
1873 && (FORCED_LABEL (gimple_label_label (stmt))
1874 || DECL_NONLOCAL (gimple_label_label (stmt))))
1876 basic_block new_bb;
1877 gimple_stmt_iterator new_gsi;
1879 /* A non-reachable non-local label may still be referenced.
1880 But it no longer needs to carry the extra semantics of
1881 non-locality. */
1882 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1884 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1885 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1888 new_bb = bb->prev_bb;
1889 new_gsi = gsi_start_bb (new_bb);
1890 gsi_remove (&i, false);
1891 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1893 else
1895 /* Release SSA definitions if we are in SSA. Note that we
1896 may be called when not in SSA. For example,
1897 final_cleanup calls this function via
1898 cleanup_tree_cfg. */
1899 if (gimple_in_ssa_p (cfun))
1900 release_defs (stmt);
1902 gsi_remove (&i, true);
1905 if (gsi_end_p (i))
1906 i = gsi_last_bb (bb);
1907 else
1908 gsi_prev (&i);
1912 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1913 bb->il.gimple.seq = NULL;
1914 bb->il.gimple.phi_nodes = NULL;
1918 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1919 predicate VAL, return the edge that will be taken out of the block.
1920 If VAL does not match a unique edge, NULL is returned. */
1922 edge
1923 find_taken_edge (basic_block bb, tree val)
1925 gimple stmt;
1927 stmt = last_stmt (bb);
1929 gcc_assert (stmt);
1930 gcc_assert (is_ctrl_stmt (stmt));
1932 if (val == NULL)
1933 return NULL;
1935 if (!is_gimple_min_invariant (val))
1936 return NULL;
1938 if (gimple_code (stmt) == GIMPLE_COND)
1939 return find_taken_edge_cond_expr (bb, val);
1941 if (gimple_code (stmt) == GIMPLE_SWITCH)
1942 return find_taken_edge_switch_expr (bb, val);
1944 if (computed_goto_p (stmt))
1946 /* Only optimize if the argument is a label, if the argument is
1947 not a label then we can not construct a proper CFG.
1949 It may be the case that we only need to allow the LABEL_REF to
1950 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1951 appear inside a LABEL_EXPR just to be safe. */
1952 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1953 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1954 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1955 return NULL;
1958 gcc_unreachable ();
1961 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1962 statement, determine which of the outgoing edges will be taken out of the
1963 block. Return NULL if either edge may be taken. */
1965 static edge
1966 find_taken_edge_computed_goto (basic_block bb, tree val)
1968 basic_block dest;
1969 edge e = NULL;
1971 dest = label_to_block (val);
1972 if (dest)
1974 e = find_edge (bb, dest);
1975 gcc_assert (e != NULL);
1978 return e;
1981 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1982 statement, determine which of the two edges will be taken out of the
1983 block. Return NULL if either edge may be taken. */
1985 static edge
1986 find_taken_edge_cond_expr (basic_block bb, tree val)
1988 edge true_edge, false_edge;
1990 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1992 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1993 return (integer_zerop (val) ? false_edge : true_edge);
1996 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1997 statement, determine which edge will be taken out of the block. Return
1998 NULL if any edge may be taken. */
2000 static edge
2001 find_taken_edge_switch_expr (basic_block bb, tree val)
2003 basic_block dest_bb;
2004 edge e;
2005 gimple switch_stmt;
2006 tree taken_case;
2008 switch_stmt = last_stmt (bb);
2009 taken_case = find_case_label_for_value (switch_stmt, val);
2010 dest_bb = label_to_block (CASE_LABEL (taken_case));
2012 e = find_edge (bb, dest_bb);
2013 gcc_assert (e);
2014 return e;
2018 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2019 We can make optimal use here of the fact that the case labels are
2020 sorted: We can do a binary search for a case matching VAL. */
2022 static tree
2023 find_case_label_for_value (gimple switch_stmt, tree val)
2025 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2026 tree default_case = gimple_switch_default_label (switch_stmt);
2028 for (low = 0, high = n; high - low > 1; )
2030 size_t i = (high + low) / 2;
2031 tree t = gimple_switch_label (switch_stmt, i);
2032 int cmp;
2034 /* Cache the result of comparing CASE_LOW and val. */
2035 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2037 if (cmp > 0)
2038 high = i;
2039 else
2040 low = i;
2042 if (CASE_HIGH (t) == NULL)
2044 /* A singe-valued case label. */
2045 if (cmp == 0)
2046 return t;
2048 else
2050 /* A case range. We can only handle integer ranges. */
2051 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2052 return t;
2056 return default_case;
2060 /* Dump a basic block on stderr. */
2062 void
2063 gimple_debug_bb (basic_block bb)
2065 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2069 /* Dump basic block with index N on stderr. */
2071 basic_block
2072 gimple_debug_bb_n (int n)
2074 gimple_debug_bb (BASIC_BLOCK (n));
2075 return BASIC_BLOCK (n);
2079 /* Dump the CFG on stderr.
2081 FLAGS are the same used by the tree dumping functions
2082 (see TDF_* in dumpfile.h). */
2084 void
2085 gimple_debug_cfg (int flags)
2087 gimple_dump_cfg (stderr, flags);
2091 /* Dump the program showing basic block boundaries on the given FILE.
2093 FLAGS are the same used by the tree dumping functions (see TDF_* in
2094 tree.h). */
2096 void
2097 gimple_dump_cfg (FILE *file, int flags)
2099 if (flags & TDF_DETAILS)
2101 dump_function_header (file, current_function_decl, flags);
2102 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2103 n_basic_blocks, n_edges, last_basic_block);
2105 brief_dump_cfg (file, flags | TDF_COMMENT);
2106 fprintf (file, "\n");
2109 if (flags & TDF_STATS)
2110 dump_cfg_stats (file);
2112 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2116 /* Dump CFG statistics on FILE. */
2118 void
2119 dump_cfg_stats (FILE *file)
2121 static long max_num_merged_labels = 0;
2122 unsigned long size, total = 0;
2123 long num_edges;
2124 basic_block bb;
2125 const char * const fmt_str = "%-30s%-13s%12s\n";
2126 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2127 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2128 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2129 const char *funcname = current_function_name ();
2131 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2133 fprintf (file, "---------------------------------------------------------\n");
2134 fprintf (file, fmt_str, "", " Number of ", "Memory");
2135 fprintf (file, fmt_str, "", " instances ", "used ");
2136 fprintf (file, "---------------------------------------------------------\n");
2138 size = n_basic_blocks * sizeof (struct basic_block_def);
2139 total += size;
2140 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2141 SCALE (size), LABEL (size));
2143 num_edges = 0;
2144 FOR_EACH_BB (bb)
2145 num_edges += EDGE_COUNT (bb->succs);
2146 size = num_edges * sizeof (struct edge_def);
2147 total += size;
2148 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2150 fprintf (file, "---------------------------------------------------------\n");
2151 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2152 LABEL (total));
2153 fprintf (file, "---------------------------------------------------------\n");
2154 fprintf (file, "\n");
2156 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2157 max_num_merged_labels = cfg_stats.num_merged_labels;
2159 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2160 cfg_stats.num_merged_labels, max_num_merged_labels);
2162 fprintf (file, "\n");
2166 /* Dump CFG statistics on stderr. Keep extern so that it's always
2167 linked in the final executable. */
2169 DEBUG_FUNCTION void
2170 debug_cfg_stats (void)
2172 dump_cfg_stats (stderr);
2175 /*---------------------------------------------------------------------------
2176 Miscellaneous helpers
2177 ---------------------------------------------------------------------------*/
2179 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2180 flow. Transfers of control flow associated with EH are excluded. */
2182 static bool
2183 call_can_make_abnormal_goto (gimple t)
2185 /* If the function has no non-local labels, then a call cannot make an
2186 abnormal transfer of control. */
2187 if (!cfun->has_nonlocal_label
2188 && !cfun->calls_setjmp)
2189 return false;
2191 /* Likewise if the call has no side effects. */
2192 if (!gimple_has_side_effects (t))
2193 return false;
2195 /* Likewise if the called function is leaf. */
2196 if (gimple_call_flags (t) & ECF_LEAF)
2197 return false;
2199 return true;
2203 /* Return true if T can make an abnormal transfer of control flow.
2204 Transfers of control flow associated with EH are excluded. */
2206 bool
2207 stmt_can_make_abnormal_goto (gimple t)
2209 if (computed_goto_p (t))
2210 return true;
2211 if (is_gimple_call (t))
2212 return call_can_make_abnormal_goto (t);
2213 return false;
2217 /* Return true if T represents a stmt that always transfers control. */
2219 bool
2220 is_ctrl_stmt (gimple t)
2222 switch (gimple_code (t))
2224 case GIMPLE_COND:
2225 case GIMPLE_SWITCH:
2226 case GIMPLE_GOTO:
2227 case GIMPLE_RETURN:
2228 case GIMPLE_RESX:
2229 return true;
2230 default:
2231 return false;
2236 /* Return true if T is a statement that may alter the flow of control
2237 (e.g., a call to a non-returning function). */
2239 bool
2240 is_ctrl_altering_stmt (gimple t)
2242 gcc_assert (t);
2244 switch (gimple_code (t))
2246 case GIMPLE_CALL:
2248 int flags = gimple_call_flags (t);
2250 /* A call alters control flow if it can make an abnormal goto. */
2251 if (call_can_make_abnormal_goto (t))
2252 return true;
2254 /* A call also alters control flow if it does not return. */
2255 if (flags & ECF_NORETURN)
2256 return true;
2258 /* TM ending statements have backedges out of the transaction.
2259 Return true so we split the basic block containing them.
2260 Note that the TM_BUILTIN test is merely an optimization. */
2261 if ((flags & ECF_TM_BUILTIN)
2262 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2263 return true;
2265 /* BUILT_IN_RETURN call is same as return statement. */
2266 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2267 return true;
2269 break;
2271 case GIMPLE_EH_DISPATCH:
2272 /* EH_DISPATCH branches to the individual catch handlers at
2273 this level of a try or allowed-exceptions region. It can
2274 fallthru to the next statement as well. */
2275 return true;
2277 case GIMPLE_ASM:
2278 if (gimple_asm_nlabels (t) > 0)
2279 return true;
2280 break;
2282 CASE_GIMPLE_OMP:
2283 /* OpenMP directives alter control flow. */
2284 return true;
2286 case GIMPLE_TRANSACTION:
2287 /* A transaction start alters control flow. */
2288 return true;
2290 default:
2291 break;
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2299 /* Return true if T is a simple local goto. */
2301 bool
2302 simple_goto_p (gimple t)
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2309 /* Return true if STMT should start a new basic block. PREV_STMT is
2310 the statement preceding STMT. It is used when STMT is a label or a
2311 case label. Labels should only start a new basic block if their
2312 previous statement wasn't a label. Otherwise, sequence of labels
2313 would generate unnecessary basic blocks that only contain a single
2314 label. */
2316 static inline bool
2317 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2319 if (stmt == NULL)
2320 return false;
2322 /* Labels start a new basic block only if the preceding statement
2323 wasn't a label of the same type. This prevents the creation of
2324 consecutive blocks that have nothing but a single label. */
2325 if (gimple_code (stmt) == GIMPLE_LABEL)
2327 /* Nonlocal and computed GOTO targets always start a new block. */
2328 if (DECL_NONLOCAL (gimple_label_label (stmt))
2329 || FORCED_LABEL (gimple_label_label (stmt)))
2330 return true;
2332 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2334 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2335 return true;
2337 cfg_stats.num_merged_labels++;
2338 return false;
2340 else
2341 return true;
2343 else if (gimple_code (stmt) == GIMPLE_CALL
2344 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2345 /* setjmp acts similar to a nonlocal GOTO target and thus should
2346 start a new block. */
2347 return true;
2349 return false;
2353 /* Return true if T should end a basic block. */
2355 bool
2356 stmt_ends_bb_p (gimple t)
2358 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2361 /* Remove block annotations and other data structures. */
2363 void
2364 delete_tree_cfg_annotations (void)
2366 vec_free (label_to_block_map);
2370 /* Return the first statement in basic block BB. */
2372 gimple
2373 first_stmt (basic_block bb)
2375 gimple_stmt_iterator i = gsi_start_bb (bb);
2376 gimple stmt = NULL;
2378 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2380 gsi_next (&i);
2381 stmt = NULL;
2383 return stmt;
2386 /* Return the first non-label statement in basic block BB. */
2388 static gimple
2389 first_non_label_stmt (basic_block bb)
2391 gimple_stmt_iterator i = gsi_start_bb (bb);
2392 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2393 gsi_next (&i);
2394 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2397 /* Return the last statement in basic block BB. */
2399 gimple
2400 last_stmt (basic_block bb)
2402 gimple_stmt_iterator i = gsi_last_bb (bb);
2403 gimple stmt = NULL;
2405 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2407 gsi_prev (&i);
2408 stmt = NULL;
2410 return stmt;
2413 /* Return the last statement of an otherwise empty block. Return NULL
2414 if the block is totally empty, or if it contains more than one
2415 statement. */
2417 gimple
2418 last_and_only_stmt (basic_block bb)
2420 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2421 gimple last, prev;
2423 if (gsi_end_p (i))
2424 return NULL;
2426 last = gsi_stmt (i);
2427 gsi_prev_nondebug (&i);
2428 if (gsi_end_p (i))
2429 return last;
2431 /* Empty statements should no longer appear in the instruction stream.
2432 Everything that might have appeared before should be deleted by
2433 remove_useless_stmts, and the optimizers should just gsi_remove
2434 instead of smashing with build_empty_stmt.
2436 Thus the only thing that should appear here in a block containing
2437 one executable statement is a label. */
2438 prev = gsi_stmt (i);
2439 if (gimple_code (prev) == GIMPLE_LABEL)
2440 return last;
2441 else
2442 return NULL;
2445 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2447 static void
2448 reinstall_phi_args (edge new_edge, edge old_edge)
2450 edge_var_map_vector *v;
2451 edge_var_map *vm;
2452 int i;
2453 gimple_stmt_iterator phis;
2455 v = redirect_edge_var_map_vector (old_edge);
2456 if (!v)
2457 return;
2459 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2460 v->iterate (i, &vm) && !gsi_end_p (phis);
2461 i++, gsi_next (&phis))
2463 gimple phi = gsi_stmt (phis);
2464 tree result = redirect_edge_var_map_result (vm);
2465 tree arg = redirect_edge_var_map_def (vm);
2467 gcc_assert (result == gimple_phi_result (phi));
2469 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2472 redirect_edge_var_map_clear (old_edge);
2475 /* Returns the basic block after which the new basic block created
2476 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2477 near its "logical" location. This is of most help to humans looking
2478 at debugging dumps. */
2480 static basic_block
2481 split_edge_bb_loc (edge edge_in)
2483 basic_block dest = edge_in->dest;
2484 basic_block dest_prev = dest->prev_bb;
2486 if (dest_prev)
2488 edge e = find_edge (dest_prev, dest);
2489 if (e && !(e->flags & EDGE_COMPLEX))
2490 return edge_in->src;
2492 return dest_prev;
2495 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2496 Abort on abnormal edges. */
2498 static basic_block
2499 gimple_split_edge (edge edge_in)
2501 basic_block new_bb, after_bb, dest;
2502 edge new_edge, e;
2504 /* Abnormal edges cannot be split. */
2505 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2507 dest = edge_in->dest;
2509 after_bb = split_edge_bb_loc (edge_in);
2511 new_bb = create_empty_bb (after_bb);
2512 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2513 new_bb->count = edge_in->count;
2514 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2515 new_edge->probability = REG_BR_PROB_BASE;
2516 new_edge->count = edge_in->count;
2518 e = redirect_edge_and_branch (edge_in, new_bb);
2519 gcc_assert (e == edge_in);
2520 reinstall_phi_args (new_edge, e);
2522 return new_bb;
2526 /* Verify properties of the address expression T with base object BASE. */
2528 static tree
2529 verify_address (tree t, tree base)
2531 bool old_constant;
2532 bool old_side_effects;
2533 bool new_constant;
2534 bool new_side_effects;
2536 old_constant = TREE_CONSTANT (t);
2537 old_side_effects = TREE_SIDE_EFFECTS (t);
2539 recompute_tree_invariant_for_addr_expr (t);
2540 new_side_effects = TREE_SIDE_EFFECTS (t);
2541 new_constant = TREE_CONSTANT (t);
2543 if (old_constant != new_constant)
2545 error ("constant not recomputed when ADDR_EXPR changed");
2546 return t;
2548 if (old_side_effects != new_side_effects)
2550 error ("side effects not recomputed when ADDR_EXPR changed");
2551 return t;
2554 if (!(TREE_CODE (base) == VAR_DECL
2555 || TREE_CODE (base) == PARM_DECL
2556 || TREE_CODE (base) == RESULT_DECL))
2557 return NULL_TREE;
2559 if (DECL_GIMPLE_REG_P (base))
2561 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2562 return base;
2565 return NULL_TREE;
2568 /* Callback for walk_tree, check that all elements with address taken are
2569 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2570 inside a PHI node. */
2572 static tree
2573 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2575 tree t = *tp, x;
2577 if (TYPE_P (t))
2578 *walk_subtrees = 0;
2580 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2581 #define CHECK_OP(N, MSG) \
2582 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2583 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2585 switch (TREE_CODE (t))
2587 case SSA_NAME:
2588 if (SSA_NAME_IN_FREE_LIST (t))
2590 error ("SSA name in freelist but still referenced");
2591 return *tp;
2593 break;
2595 case INDIRECT_REF:
2596 error ("INDIRECT_REF in gimple IL");
2597 return t;
2599 case MEM_REF:
2600 x = TREE_OPERAND (t, 0);
2601 if (!POINTER_TYPE_P (TREE_TYPE (x))
2602 || !is_gimple_mem_ref_addr (x))
2604 error ("invalid first operand of MEM_REF");
2605 return x;
2607 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2608 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2610 error ("invalid offset operand of MEM_REF");
2611 return TREE_OPERAND (t, 1);
2613 if (TREE_CODE (x) == ADDR_EXPR
2614 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2615 return x;
2616 *walk_subtrees = 0;
2617 break;
2619 case ASSERT_EXPR:
2620 x = fold (ASSERT_EXPR_COND (t));
2621 if (x == boolean_false_node)
2623 error ("ASSERT_EXPR with an always-false condition");
2624 return *tp;
2626 break;
2628 case MODIFY_EXPR:
2629 error ("MODIFY_EXPR not expected while having tuples");
2630 return *tp;
2632 case ADDR_EXPR:
2634 tree tem;
2636 gcc_assert (is_gimple_address (t));
2638 /* Skip any references (they will be checked when we recurse down the
2639 tree) and ensure that any variable used as a prefix is marked
2640 addressable. */
2641 for (x = TREE_OPERAND (t, 0);
2642 handled_component_p (x);
2643 x = TREE_OPERAND (x, 0))
2646 if ((tem = verify_address (t, x)))
2647 return tem;
2649 if (!(TREE_CODE (x) == VAR_DECL
2650 || TREE_CODE (x) == PARM_DECL
2651 || TREE_CODE (x) == RESULT_DECL))
2652 return NULL;
2654 if (!TREE_ADDRESSABLE (x))
2656 error ("address taken, but ADDRESSABLE bit not set");
2657 return x;
2660 break;
2663 case COND_EXPR:
2664 x = COND_EXPR_COND (t);
2665 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2667 error ("non-integral used in condition");
2668 return x;
2670 if (!is_gimple_condexpr (x))
2672 error ("invalid conditional operand");
2673 return x;
2675 break;
2677 case NON_LVALUE_EXPR:
2678 case TRUTH_NOT_EXPR:
2679 gcc_unreachable ();
2681 CASE_CONVERT:
2682 case FIX_TRUNC_EXPR:
2683 case FLOAT_EXPR:
2684 case NEGATE_EXPR:
2685 case ABS_EXPR:
2686 case BIT_NOT_EXPR:
2687 CHECK_OP (0, "invalid operand to unary operator");
2688 break;
2690 case REALPART_EXPR:
2691 case IMAGPART_EXPR:
2692 case BIT_FIELD_REF:
2693 if (!is_gimple_reg_type (TREE_TYPE (t)))
2695 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2696 return t;
2699 if (TREE_CODE (t) == BIT_FIELD_REF)
2701 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2702 || !host_integerp (TREE_OPERAND (t, 2), 1))
2704 error ("invalid position or size operand to BIT_FIELD_REF");
2705 return t;
2707 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2708 && (TYPE_PRECISION (TREE_TYPE (t))
2709 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2711 error ("integral result type precision does not match "
2712 "field size of BIT_FIELD_REF");
2713 return t;
2715 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2716 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2717 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2718 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2720 error ("mode precision of non-integral result does not "
2721 "match field size of BIT_FIELD_REF");
2722 return t;
2725 t = TREE_OPERAND (t, 0);
2727 /* Fall-through. */
2728 case COMPONENT_REF:
2729 case ARRAY_REF:
2730 case ARRAY_RANGE_REF:
2731 case VIEW_CONVERT_EXPR:
2732 /* We have a nest of references. Verify that each of the operands
2733 that determine where to reference is either a constant or a variable,
2734 verify that the base is valid, and then show we've already checked
2735 the subtrees. */
2736 while (handled_component_p (t))
2738 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2739 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2740 else if (TREE_CODE (t) == ARRAY_REF
2741 || TREE_CODE (t) == ARRAY_RANGE_REF)
2743 CHECK_OP (1, "invalid array index");
2744 if (TREE_OPERAND (t, 2))
2745 CHECK_OP (2, "invalid array lower bound");
2746 if (TREE_OPERAND (t, 3))
2747 CHECK_OP (3, "invalid array stride");
2749 else if (TREE_CODE (t) == BIT_FIELD_REF
2750 || TREE_CODE (t) == REALPART_EXPR
2751 || TREE_CODE (t) == IMAGPART_EXPR)
2753 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2754 "REALPART_EXPR");
2755 return t;
2758 t = TREE_OPERAND (t, 0);
2761 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2763 error ("invalid reference prefix");
2764 return t;
2766 *walk_subtrees = 0;
2767 break;
2768 case PLUS_EXPR:
2769 case MINUS_EXPR:
2770 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2771 POINTER_PLUS_EXPR. */
2772 if (POINTER_TYPE_P (TREE_TYPE (t)))
2774 error ("invalid operand to plus/minus, type is a pointer");
2775 return t;
2777 CHECK_OP (0, "invalid operand to binary operator");
2778 CHECK_OP (1, "invalid operand to binary operator");
2779 break;
2781 case POINTER_PLUS_EXPR:
2782 /* Check to make sure the first operand is a pointer or reference type. */
2783 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2785 error ("invalid operand to pointer plus, first operand is not a pointer");
2786 return t;
2788 /* Check to make sure the second operand is a ptrofftype. */
2789 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2791 error ("invalid operand to pointer plus, second operand is not an "
2792 "integer type of appropriate width");
2793 return t;
2795 /* FALLTHROUGH */
2796 case LT_EXPR:
2797 case LE_EXPR:
2798 case GT_EXPR:
2799 case GE_EXPR:
2800 case EQ_EXPR:
2801 case NE_EXPR:
2802 case UNORDERED_EXPR:
2803 case ORDERED_EXPR:
2804 case UNLT_EXPR:
2805 case UNLE_EXPR:
2806 case UNGT_EXPR:
2807 case UNGE_EXPR:
2808 case UNEQ_EXPR:
2809 case LTGT_EXPR:
2810 case MULT_EXPR:
2811 case TRUNC_DIV_EXPR:
2812 case CEIL_DIV_EXPR:
2813 case FLOOR_DIV_EXPR:
2814 case ROUND_DIV_EXPR:
2815 case TRUNC_MOD_EXPR:
2816 case CEIL_MOD_EXPR:
2817 case FLOOR_MOD_EXPR:
2818 case ROUND_MOD_EXPR:
2819 case RDIV_EXPR:
2820 case EXACT_DIV_EXPR:
2821 case MIN_EXPR:
2822 case MAX_EXPR:
2823 case LSHIFT_EXPR:
2824 case RSHIFT_EXPR:
2825 case LROTATE_EXPR:
2826 case RROTATE_EXPR:
2827 case BIT_IOR_EXPR:
2828 case BIT_XOR_EXPR:
2829 case BIT_AND_EXPR:
2830 CHECK_OP (0, "invalid operand to binary operator");
2831 CHECK_OP (1, "invalid operand to binary operator");
2832 break;
2834 case CONSTRUCTOR:
2835 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2836 *walk_subtrees = 0;
2837 break;
2839 case CASE_LABEL_EXPR:
2840 if (CASE_CHAIN (t))
2842 error ("invalid CASE_CHAIN");
2843 return t;
2845 break;
2847 default:
2848 break;
2850 return NULL;
2852 #undef CHECK_OP
2856 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2857 Returns true if there is an error, otherwise false. */
2859 static bool
2860 verify_types_in_gimple_min_lval (tree expr)
2862 tree op;
2864 if (is_gimple_id (expr))
2865 return false;
2867 if (TREE_CODE (expr) != TARGET_MEM_REF
2868 && TREE_CODE (expr) != MEM_REF)
2870 error ("invalid expression for min lvalue");
2871 return true;
2874 /* TARGET_MEM_REFs are strange beasts. */
2875 if (TREE_CODE (expr) == TARGET_MEM_REF)
2876 return false;
2878 op = TREE_OPERAND (expr, 0);
2879 if (!is_gimple_val (op))
2881 error ("invalid operand in indirect reference");
2882 debug_generic_stmt (op);
2883 return true;
2885 /* Memory references now generally can involve a value conversion. */
2887 return false;
2890 /* Verify if EXPR is a valid GIMPLE reference expression. If
2891 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2892 if there is an error, otherwise false. */
2894 static bool
2895 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2897 while (handled_component_p (expr))
2899 tree op = TREE_OPERAND (expr, 0);
2901 if (TREE_CODE (expr) == ARRAY_REF
2902 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2904 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2905 || (TREE_OPERAND (expr, 2)
2906 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2907 || (TREE_OPERAND (expr, 3)
2908 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2910 error ("invalid operands to array reference");
2911 debug_generic_stmt (expr);
2912 return true;
2916 /* Verify if the reference array element types are compatible. */
2917 if (TREE_CODE (expr) == ARRAY_REF
2918 && !useless_type_conversion_p (TREE_TYPE (expr),
2919 TREE_TYPE (TREE_TYPE (op))))
2921 error ("type mismatch in array reference");
2922 debug_generic_stmt (TREE_TYPE (expr));
2923 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2924 return true;
2926 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2927 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2928 TREE_TYPE (TREE_TYPE (op))))
2930 error ("type mismatch in array range reference");
2931 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2932 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2933 return true;
2936 if ((TREE_CODE (expr) == REALPART_EXPR
2937 || TREE_CODE (expr) == IMAGPART_EXPR)
2938 && !useless_type_conversion_p (TREE_TYPE (expr),
2939 TREE_TYPE (TREE_TYPE (op))))
2941 error ("type mismatch in real/imagpart reference");
2942 debug_generic_stmt (TREE_TYPE (expr));
2943 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2944 return true;
2947 if (TREE_CODE (expr) == COMPONENT_REF
2948 && !useless_type_conversion_p (TREE_TYPE (expr),
2949 TREE_TYPE (TREE_OPERAND (expr, 1))))
2951 error ("type mismatch in component reference");
2952 debug_generic_stmt (TREE_TYPE (expr));
2953 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2954 return true;
2957 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2959 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2960 that their operand is not an SSA name or an invariant when
2961 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2962 bug). Otherwise there is nothing to verify, gross mismatches at
2963 most invoke undefined behavior. */
2964 if (require_lvalue
2965 && (TREE_CODE (op) == SSA_NAME
2966 || is_gimple_min_invariant (op)))
2968 error ("conversion of an SSA_NAME on the left hand side");
2969 debug_generic_stmt (expr);
2970 return true;
2972 else if (TREE_CODE (op) == SSA_NAME
2973 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2975 error ("conversion of register to a different size");
2976 debug_generic_stmt (expr);
2977 return true;
2979 else if (!handled_component_p (op))
2980 return false;
2983 expr = op;
2986 if (TREE_CODE (expr) == MEM_REF)
2988 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2990 error ("invalid address operand in MEM_REF");
2991 debug_generic_stmt (expr);
2992 return true;
2994 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2995 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2997 error ("invalid offset operand in MEM_REF");
2998 debug_generic_stmt (expr);
2999 return true;
3002 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3004 if (!TMR_BASE (expr)
3005 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3007 error ("invalid address operand in TARGET_MEM_REF");
3008 return true;
3010 if (!TMR_OFFSET (expr)
3011 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3012 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3014 error ("invalid offset operand in TARGET_MEM_REF");
3015 debug_generic_stmt (expr);
3016 return true;
3020 return ((require_lvalue || !is_gimple_min_invariant (expr))
3021 && verify_types_in_gimple_min_lval (expr));
3024 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3025 list of pointer-to types that is trivially convertible to DEST. */
3027 static bool
3028 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3030 tree src;
3032 if (!TYPE_POINTER_TO (src_obj))
3033 return true;
3035 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3036 if (useless_type_conversion_p (dest, src))
3037 return true;
3039 return false;
3042 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3043 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3045 static bool
3046 valid_fixed_convert_types_p (tree type1, tree type2)
3048 return (FIXED_POINT_TYPE_P (type1)
3049 && (INTEGRAL_TYPE_P (type2)
3050 || SCALAR_FLOAT_TYPE_P (type2)
3051 || FIXED_POINT_TYPE_P (type2)));
3054 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3055 is a problem, otherwise false. */
3057 static bool
3058 verify_gimple_call (gimple stmt)
3060 tree fn = gimple_call_fn (stmt);
3061 tree fntype, fndecl;
3062 unsigned i;
3064 if (gimple_call_internal_p (stmt))
3066 if (fn)
3068 error ("gimple call has two targets");
3069 debug_generic_stmt (fn);
3070 return true;
3073 else
3075 if (!fn)
3077 error ("gimple call has no target");
3078 return true;
3082 if (fn && !is_gimple_call_addr (fn))
3084 error ("invalid function in gimple call");
3085 debug_generic_stmt (fn);
3086 return true;
3089 if (fn
3090 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3091 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3092 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3094 error ("non-function in gimple call");
3095 return true;
3098 fndecl = gimple_call_fndecl (stmt);
3099 if (fndecl
3100 && TREE_CODE (fndecl) == FUNCTION_DECL
3101 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3102 && !DECL_PURE_P (fndecl)
3103 && !TREE_READONLY (fndecl))
3105 error ("invalid pure const state for function");
3106 return true;
3109 if (gimple_call_lhs (stmt)
3110 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3111 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3113 error ("invalid LHS in gimple call");
3114 return true;
3117 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3119 error ("LHS in noreturn call");
3120 return true;
3123 fntype = gimple_call_fntype (stmt);
3124 if (fntype
3125 && gimple_call_lhs (stmt)
3126 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3127 TREE_TYPE (fntype))
3128 /* ??? At least C++ misses conversions at assignments from
3129 void * call results.
3130 ??? Java is completely off. Especially with functions
3131 returning java.lang.Object.
3132 For now simply allow arbitrary pointer type conversions. */
3133 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3134 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3136 error ("invalid conversion in gimple call");
3137 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3138 debug_generic_stmt (TREE_TYPE (fntype));
3139 return true;
3142 if (gimple_call_chain (stmt)
3143 && !is_gimple_val (gimple_call_chain (stmt)))
3145 error ("invalid static chain in gimple call");
3146 debug_generic_stmt (gimple_call_chain (stmt));
3147 return true;
3150 /* If there is a static chain argument, this should not be an indirect
3151 call, and the decl should have DECL_STATIC_CHAIN set. */
3152 if (gimple_call_chain (stmt))
3154 if (!gimple_call_fndecl (stmt))
3156 error ("static chain in indirect gimple call");
3157 return true;
3159 fn = TREE_OPERAND (fn, 0);
3161 if (!DECL_STATIC_CHAIN (fn))
3163 error ("static chain with function that doesn%'t use one");
3164 return true;
3168 /* ??? The C frontend passes unpromoted arguments in case it
3169 didn't see a function declaration before the call. So for now
3170 leave the call arguments mostly unverified. Once we gimplify
3171 unit-at-a-time we have a chance to fix this. */
3173 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3175 tree arg = gimple_call_arg (stmt, i);
3176 if ((is_gimple_reg_type (TREE_TYPE (arg))
3177 && !is_gimple_val (arg))
3178 || (!is_gimple_reg_type (TREE_TYPE (arg))
3179 && !is_gimple_lvalue (arg)))
3181 error ("invalid argument to gimple call");
3182 debug_generic_expr (arg);
3183 return true;
3187 return false;
3190 /* Verifies the gimple comparison with the result type TYPE and
3191 the operands OP0 and OP1. */
3193 static bool
3194 verify_gimple_comparison (tree type, tree op0, tree op1)
3196 tree op0_type = TREE_TYPE (op0);
3197 tree op1_type = TREE_TYPE (op1);
3199 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3201 error ("invalid operands in gimple comparison");
3202 return true;
3205 /* For comparisons we do not have the operations type as the
3206 effective type the comparison is carried out in. Instead
3207 we require that either the first operand is trivially
3208 convertible into the second, or the other way around.
3209 Because we special-case pointers to void we allow
3210 comparisons of pointers with the same mode as well. */
3211 if (!useless_type_conversion_p (op0_type, op1_type)
3212 && !useless_type_conversion_p (op1_type, op0_type)
3213 && (!POINTER_TYPE_P (op0_type)
3214 || !POINTER_TYPE_P (op1_type)
3215 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3217 error ("mismatching comparison operand types");
3218 debug_generic_expr (op0_type);
3219 debug_generic_expr (op1_type);
3220 return true;
3223 /* The resulting type of a comparison may be an effective boolean type. */
3224 if (INTEGRAL_TYPE_P (type)
3225 && (TREE_CODE (type) == BOOLEAN_TYPE
3226 || TYPE_PRECISION (type) == 1))
3228 if (TREE_CODE (op0_type) == VECTOR_TYPE
3229 || TREE_CODE (op1_type) == VECTOR_TYPE)
3231 error ("vector comparison returning a boolean");
3232 debug_generic_expr (op0_type);
3233 debug_generic_expr (op1_type);
3234 return true;
3237 /* Or an integer vector type with the same size and element count
3238 as the comparison operand types. */
3239 else if (TREE_CODE (type) == VECTOR_TYPE
3240 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3242 if (TREE_CODE (op0_type) != VECTOR_TYPE
3243 || TREE_CODE (op1_type) != VECTOR_TYPE)
3245 error ("non-vector operands in vector comparison");
3246 debug_generic_expr (op0_type);
3247 debug_generic_expr (op1_type);
3248 return true;
3251 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3252 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3253 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3254 /* The result of a vector comparison is of signed
3255 integral type. */
3256 || TYPE_UNSIGNED (TREE_TYPE (type)))
3258 error ("invalid vector comparison resulting type");
3259 debug_generic_expr (type);
3260 return true;
3263 else
3265 error ("bogus comparison result type");
3266 debug_generic_expr (type);
3267 return true;
3270 return false;
3273 /* Verify a gimple assignment statement STMT with an unary rhs.
3274 Returns true if anything is wrong. */
3276 static bool
3277 verify_gimple_assign_unary (gimple stmt)
3279 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3280 tree lhs = gimple_assign_lhs (stmt);
3281 tree lhs_type = TREE_TYPE (lhs);
3282 tree rhs1 = gimple_assign_rhs1 (stmt);
3283 tree rhs1_type = TREE_TYPE (rhs1);
3285 if (!is_gimple_reg (lhs))
3287 error ("non-register as LHS of unary operation");
3288 return true;
3291 if (!is_gimple_val (rhs1))
3293 error ("invalid operand in unary operation");
3294 return true;
3297 /* First handle conversions. */
3298 switch (rhs_code)
3300 CASE_CONVERT:
3302 /* Allow conversions from pointer type to integral type only if
3303 there is no sign or zero extension involved.
3304 For targets were the precision of ptrofftype doesn't match that
3305 of pointers we need to allow arbitrary conversions to ptrofftype. */
3306 if ((POINTER_TYPE_P (lhs_type)
3307 && INTEGRAL_TYPE_P (rhs1_type))
3308 || (POINTER_TYPE_P (rhs1_type)
3309 && INTEGRAL_TYPE_P (lhs_type)
3310 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3311 || ptrofftype_p (sizetype))))
3312 return false;
3314 /* Allow conversion from integral to offset type and vice versa. */
3315 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3316 && INTEGRAL_TYPE_P (rhs1_type))
3317 || (INTEGRAL_TYPE_P (lhs_type)
3318 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3319 return false;
3321 /* Otherwise assert we are converting between types of the
3322 same kind. */
3323 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3325 error ("invalid types in nop conversion");
3326 debug_generic_expr (lhs_type);
3327 debug_generic_expr (rhs1_type);
3328 return true;
3331 return false;
3334 case ADDR_SPACE_CONVERT_EXPR:
3336 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3337 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3338 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3340 error ("invalid types in address space conversion");
3341 debug_generic_expr (lhs_type);
3342 debug_generic_expr (rhs1_type);
3343 return true;
3346 return false;
3349 case FIXED_CONVERT_EXPR:
3351 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3352 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3354 error ("invalid types in fixed-point conversion");
3355 debug_generic_expr (lhs_type);
3356 debug_generic_expr (rhs1_type);
3357 return true;
3360 return false;
3363 case FLOAT_EXPR:
3365 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3366 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3367 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3369 error ("invalid types in conversion to floating point");
3370 debug_generic_expr (lhs_type);
3371 debug_generic_expr (rhs1_type);
3372 return true;
3375 return false;
3378 case FIX_TRUNC_EXPR:
3380 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3381 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3382 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3384 error ("invalid types in conversion to integer");
3385 debug_generic_expr (lhs_type);
3386 debug_generic_expr (rhs1_type);
3387 return true;
3390 return false;
3393 case VEC_UNPACK_HI_EXPR:
3394 case VEC_UNPACK_LO_EXPR:
3395 case REDUC_MAX_EXPR:
3396 case REDUC_MIN_EXPR:
3397 case REDUC_PLUS_EXPR:
3398 case VEC_UNPACK_FLOAT_HI_EXPR:
3399 case VEC_UNPACK_FLOAT_LO_EXPR:
3400 /* FIXME. */
3401 return false;
3403 case NEGATE_EXPR:
3404 case ABS_EXPR:
3405 case BIT_NOT_EXPR:
3406 case PAREN_EXPR:
3407 case NON_LVALUE_EXPR:
3408 case CONJ_EXPR:
3409 break;
3411 default:
3412 gcc_unreachable ();
3415 /* For the remaining codes assert there is no conversion involved. */
3416 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3418 error ("non-trivial conversion in unary operation");
3419 debug_generic_expr (lhs_type);
3420 debug_generic_expr (rhs1_type);
3421 return true;
3424 return false;
3427 /* Verify a gimple assignment statement STMT with a binary rhs.
3428 Returns true if anything is wrong. */
3430 static bool
3431 verify_gimple_assign_binary (gimple stmt)
3433 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3434 tree lhs = gimple_assign_lhs (stmt);
3435 tree lhs_type = TREE_TYPE (lhs);
3436 tree rhs1 = gimple_assign_rhs1 (stmt);
3437 tree rhs1_type = TREE_TYPE (rhs1);
3438 tree rhs2 = gimple_assign_rhs2 (stmt);
3439 tree rhs2_type = TREE_TYPE (rhs2);
3441 if (!is_gimple_reg (lhs))
3443 error ("non-register as LHS of binary operation");
3444 return true;
3447 if (!is_gimple_val (rhs1)
3448 || !is_gimple_val (rhs2))
3450 error ("invalid operands in binary operation");
3451 return true;
3454 /* First handle operations that involve different types. */
3455 switch (rhs_code)
3457 case COMPLEX_EXPR:
3459 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3460 || !(INTEGRAL_TYPE_P (rhs1_type)
3461 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3462 || !(INTEGRAL_TYPE_P (rhs2_type)
3463 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3465 error ("type mismatch in complex expression");
3466 debug_generic_expr (lhs_type);
3467 debug_generic_expr (rhs1_type);
3468 debug_generic_expr (rhs2_type);
3469 return true;
3472 return false;
3475 case LSHIFT_EXPR:
3476 case RSHIFT_EXPR:
3477 case LROTATE_EXPR:
3478 case RROTATE_EXPR:
3480 /* Shifts and rotates are ok on integral types, fixed point
3481 types and integer vector types. */
3482 if ((!INTEGRAL_TYPE_P (rhs1_type)
3483 && !FIXED_POINT_TYPE_P (rhs1_type)
3484 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3485 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3486 || (!INTEGRAL_TYPE_P (rhs2_type)
3487 /* Vector shifts of vectors are also ok. */
3488 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3489 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3490 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3491 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3492 || !useless_type_conversion_p (lhs_type, rhs1_type))
3494 error ("type mismatch in shift expression");
3495 debug_generic_expr (lhs_type);
3496 debug_generic_expr (rhs1_type);
3497 debug_generic_expr (rhs2_type);
3498 return true;
3501 return false;
3504 case VEC_LSHIFT_EXPR:
3505 case VEC_RSHIFT_EXPR:
3507 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3508 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3509 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3510 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3511 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3512 || (!INTEGRAL_TYPE_P (rhs2_type)
3513 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3514 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3515 || !useless_type_conversion_p (lhs_type, rhs1_type))
3517 error ("type mismatch in vector shift expression");
3518 debug_generic_expr (lhs_type);
3519 debug_generic_expr (rhs1_type);
3520 debug_generic_expr (rhs2_type);
3521 return true;
3523 /* For shifting a vector of non-integral components we
3524 only allow shifting by a constant multiple of the element size. */
3525 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3526 && (TREE_CODE (rhs2) != INTEGER_CST
3527 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3528 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3530 error ("non-element sized vector shift of floating point vector");
3531 return true;
3534 return false;
3537 case WIDEN_LSHIFT_EXPR:
3539 if (!INTEGRAL_TYPE_P (lhs_type)
3540 || !INTEGRAL_TYPE_P (rhs1_type)
3541 || TREE_CODE (rhs2) != INTEGER_CST
3542 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3544 error ("type mismatch in widening vector shift expression");
3545 debug_generic_expr (lhs_type);
3546 debug_generic_expr (rhs1_type);
3547 debug_generic_expr (rhs2_type);
3548 return true;
3551 return false;
3554 case VEC_WIDEN_LSHIFT_HI_EXPR:
3555 case VEC_WIDEN_LSHIFT_LO_EXPR:
3557 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3558 || TREE_CODE (lhs_type) != VECTOR_TYPE
3559 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3560 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3561 || TREE_CODE (rhs2) != INTEGER_CST
3562 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3563 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3565 error ("type mismatch in widening vector shift expression");
3566 debug_generic_expr (lhs_type);
3567 debug_generic_expr (rhs1_type);
3568 debug_generic_expr (rhs2_type);
3569 return true;
3572 return false;
3575 case PLUS_EXPR:
3576 case MINUS_EXPR:
3578 tree lhs_etype = lhs_type;
3579 tree rhs1_etype = rhs1_type;
3580 tree rhs2_etype = rhs2_type;
3581 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3583 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3584 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3586 error ("invalid non-vector operands to vector valued plus");
3587 return true;
3589 lhs_etype = TREE_TYPE (lhs_type);
3590 rhs1_etype = TREE_TYPE (rhs1_type);
3591 rhs2_etype = TREE_TYPE (rhs2_type);
3593 if (POINTER_TYPE_P (lhs_etype)
3594 || POINTER_TYPE_P (rhs1_etype)
3595 || POINTER_TYPE_P (rhs2_etype))
3597 error ("invalid (pointer) operands to plus/minus");
3598 return true;
3601 /* Continue with generic binary expression handling. */
3602 break;
3605 case POINTER_PLUS_EXPR:
3607 if (!POINTER_TYPE_P (rhs1_type)
3608 || !useless_type_conversion_p (lhs_type, rhs1_type)
3609 || !ptrofftype_p (rhs2_type))
3611 error ("type mismatch in pointer plus expression");
3612 debug_generic_stmt (lhs_type);
3613 debug_generic_stmt (rhs1_type);
3614 debug_generic_stmt (rhs2_type);
3615 return true;
3618 return false;
3621 case TRUTH_ANDIF_EXPR:
3622 case TRUTH_ORIF_EXPR:
3623 case TRUTH_AND_EXPR:
3624 case TRUTH_OR_EXPR:
3625 case TRUTH_XOR_EXPR:
3627 gcc_unreachable ();
3629 case LT_EXPR:
3630 case LE_EXPR:
3631 case GT_EXPR:
3632 case GE_EXPR:
3633 case EQ_EXPR:
3634 case NE_EXPR:
3635 case UNORDERED_EXPR:
3636 case ORDERED_EXPR:
3637 case UNLT_EXPR:
3638 case UNLE_EXPR:
3639 case UNGT_EXPR:
3640 case UNGE_EXPR:
3641 case UNEQ_EXPR:
3642 case LTGT_EXPR:
3643 /* Comparisons are also binary, but the result type is not
3644 connected to the operand types. */
3645 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3647 case WIDEN_MULT_EXPR:
3648 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3649 return true;
3650 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3651 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3653 case WIDEN_SUM_EXPR:
3654 case VEC_WIDEN_MULT_HI_EXPR:
3655 case VEC_WIDEN_MULT_LO_EXPR:
3656 case VEC_WIDEN_MULT_EVEN_EXPR:
3657 case VEC_WIDEN_MULT_ODD_EXPR:
3658 case VEC_PACK_TRUNC_EXPR:
3659 case VEC_PACK_SAT_EXPR:
3660 case VEC_PACK_FIX_TRUNC_EXPR:
3661 /* FIXME. */
3662 return false;
3664 case MULT_EXPR:
3665 case MULT_HIGHPART_EXPR:
3666 case TRUNC_DIV_EXPR:
3667 case CEIL_DIV_EXPR:
3668 case FLOOR_DIV_EXPR:
3669 case ROUND_DIV_EXPR:
3670 case TRUNC_MOD_EXPR:
3671 case CEIL_MOD_EXPR:
3672 case FLOOR_MOD_EXPR:
3673 case ROUND_MOD_EXPR:
3674 case RDIV_EXPR:
3675 case EXACT_DIV_EXPR:
3676 case MIN_EXPR:
3677 case MAX_EXPR:
3678 case BIT_IOR_EXPR:
3679 case BIT_XOR_EXPR:
3680 case BIT_AND_EXPR:
3681 /* Continue with generic binary expression handling. */
3682 break;
3684 default:
3685 gcc_unreachable ();
3688 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3689 || !useless_type_conversion_p (lhs_type, rhs2_type))
3691 error ("type mismatch in binary expression");
3692 debug_generic_stmt (lhs_type);
3693 debug_generic_stmt (rhs1_type);
3694 debug_generic_stmt (rhs2_type);
3695 return true;
3698 return false;
3701 /* Verify a gimple assignment statement STMT with a ternary rhs.
3702 Returns true if anything is wrong. */
3704 static bool
3705 verify_gimple_assign_ternary (gimple stmt)
3707 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3708 tree lhs = gimple_assign_lhs (stmt);
3709 tree lhs_type = TREE_TYPE (lhs);
3710 tree rhs1 = gimple_assign_rhs1 (stmt);
3711 tree rhs1_type = TREE_TYPE (rhs1);
3712 tree rhs2 = gimple_assign_rhs2 (stmt);
3713 tree rhs2_type = TREE_TYPE (rhs2);
3714 tree rhs3 = gimple_assign_rhs3 (stmt);
3715 tree rhs3_type = TREE_TYPE (rhs3);
3717 if (!is_gimple_reg (lhs))
3719 error ("non-register as LHS of ternary operation");
3720 return true;
3723 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3724 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3725 || !is_gimple_val (rhs2)
3726 || !is_gimple_val (rhs3))
3728 error ("invalid operands in ternary operation");
3729 return true;
3732 /* First handle operations that involve different types. */
3733 switch (rhs_code)
3735 case WIDEN_MULT_PLUS_EXPR:
3736 case WIDEN_MULT_MINUS_EXPR:
3737 if ((!INTEGRAL_TYPE_P (rhs1_type)
3738 && !FIXED_POINT_TYPE_P (rhs1_type))
3739 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3740 || !useless_type_conversion_p (lhs_type, rhs3_type)
3741 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3742 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3744 error ("type mismatch in widening multiply-accumulate expression");
3745 debug_generic_expr (lhs_type);
3746 debug_generic_expr (rhs1_type);
3747 debug_generic_expr (rhs2_type);
3748 debug_generic_expr (rhs3_type);
3749 return true;
3751 break;
3753 case FMA_EXPR:
3754 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3755 || !useless_type_conversion_p (lhs_type, rhs2_type)
3756 || !useless_type_conversion_p (lhs_type, rhs3_type))
3758 error ("type mismatch in fused multiply-add expression");
3759 debug_generic_expr (lhs_type);
3760 debug_generic_expr (rhs1_type);
3761 debug_generic_expr (rhs2_type);
3762 debug_generic_expr (rhs3_type);
3763 return true;
3765 break;
3767 case COND_EXPR:
3768 case VEC_COND_EXPR:
3769 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3770 || !useless_type_conversion_p (lhs_type, rhs3_type))
3772 error ("type mismatch in conditional expression");
3773 debug_generic_expr (lhs_type);
3774 debug_generic_expr (rhs2_type);
3775 debug_generic_expr (rhs3_type);
3776 return true;
3778 break;
3780 case VEC_PERM_EXPR:
3781 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3782 || !useless_type_conversion_p (lhs_type, rhs2_type))
3784 error ("type mismatch in vector permute expression");
3785 debug_generic_expr (lhs_type);
3786 debug_generic_expr (rhs1_type);
3787 debug_generic_expr (rhs2_type);
3788 debug_generic_expr (rhs3_type);
3789 return true;
3792 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3793 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3794 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3796 error ("vector types expected in vector permute expression");
3797 debug_generic_expr (lhs_type);
3798 debug_generic_expr (rhs1_type);
3799 debug_generic_expr (rhs2_type);
3800 debug_generic_expr (rhs3_type);
3801 return true;
3804 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3805 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3806 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3807 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3808 != TYPE_VECTOR_SUBPARTS (lhs_type))
3810 error ("vectors with different element number found "
3811 "in vector permute expression");
3812 debug_generic_expr (lhs_type);
3813 debug_generic_expr (rhs1_type);
3814 debug_generic_expr (rhs2_type);
3815 debug_generic_expr (rhs3_type);
3816 return true;
3819 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3820 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3821 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3823 error ("invalid mask type in vector permute expression");
3824 debug_generic_expr (lhs_type);
3825 debug_generic_expr (rhs1_type);
3826 debug_generic_expr (rhs2_type);
3827 debug_generic_expr (rhs3_type);
3828 return true;
3831 return false;
3833 case DOT_PROD_EXPR:
3834 case REALIGN_LOAD_EXPR:
3835 /* FIXME. */
3836 return false;
3838 default:
3839 gcc_unreachable ();
3841 return false;
3844 /* Verify a gimple assignment statement STMT with a single rhs.
3845 Returns true if anything is wrong. */
3847 static bool
3848 verify_gimple_assign_single (gimple stmt)
3850 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3851 tree lhs = gimple_assign_lhs (stmt);
3852 tree lhs_type = TREE_TYPE (lhs);
3853 tree rhs1 = gimple_assign_rhs1 (stmt);
3854 tree rhs1_type = TREE_TYPE (rhs1);
3855 bool res = false;
3857 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3859 error ("non-trivial conversion at assignment");
3860 debug_generic_expr (lhs_type);
3861 debug_generic_expr (rhs1_type);
3862 return true;
3865 if (gimple_clobber_p (stmt)
3866 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3868 error ("non-decl/MEM_REF LHS in clobber statement");
3869 debug_generic_expr (lhs);
3870 return true;
3873 if (handled_component_p (lhs))
3874 res |= verify_types_in_gimple_reference (lhs, true);
3876 /* Special codes we cannot handle via their class. */
3877 switch (rhs_code)
3879 case ADDR_EXPR:
3881 tree op = TREE_OPERAND (rhs1, 0);
3882 if (!is_gimple_addressable (op))
3884 error ("invalid operand in unary expression");
3885 return true;
3888 /* Technically there is no longer a need for matching types, but
3889 gimple hygiene asks for this check. In LTO we can end up
3890 combining incompatible units and thus end up with addresses
3891 of globals that change their type to a common one. */
3892 if (!in_lto_p
3893 && !types_compatible_p (TREE_TYPE (op),
3894 TREE_TYPE (TREE_TYPE (rhs1)))
3895 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3896 TREE_TYPE (op)))
3898 error ("type mismatch in address expression");
3899 debug_generic_stmt (TREE_TYPE (rhs1));
3900 debug_generic_stmt (TREE_TYPE (op));
3901 return true;
3904 return verify_types_in_gimple_reference (op, true);
3907 /* tcc_reference */
3908 case INDIRECT_REF:
3909 error ("INDIRECT_REF in gimple IL");
3910 return true;
3912 case COMPONENT_REF:
3913 case BIT_FIELD_REF:
3914 case ARRAY_REF:
3915 case ARRAY_RANGE_REF:
3916 case VIEW_CONVERT_EXPR:
3917 case REALPART_EXPR:
3918 case IMAGPART_EXPR:
3919 case TARGET_MEM_REF:
3920 case MEM_REF:
3921 if (!is_gimple_reg (lhs)
3922 && is_gimple_reg_type (TREE_TYPE (lhs)))
3924 error ("invalid rhs for gimple memory store");
3925 debug_generic_stmt (lhs);
3926 debug_generic_stmt (rhs1);
3927 return true;
3929 return res || verify_types_in_gimple_reference (rhs1, false);
3931 /* tcc_constant */
3932 case SSA_NAME:
3933 case INTEGER_CST:
3934 case REAL_CST:
3935 case FIXED_CST:
3936 case COMPLEX_CST:
3937 case VECTOR_CST:
3938 case STRING_CST:
3939 return res;
3941 /* tcc_declaration */
3942 case CONST_DECL:
3943 return res;
3944 case VAR_DECL:
3945 case PARM_DECL:
3946 if (!is_gimple_reg (lhs)
3947 && !is_gimple_reg (rhs1)
3948 && is_gimple_reg_type (TREE_TYPE (lhs)))
3950 error ("invalid rhs for gimple memory store");
3951 debug_generic_stmt (lhs);
3952 debug_generic_stmt (rhs1);
3953 return true;
3955 return res;
3957 case CONSTRUCTOR:
3958 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3960 unsigned int i;
3961 tree elt_i, elt_v, elt_t = NULL_TREE;
3963 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3964 return res;
3965 /* For vector CONSTRUCTORs we require that either it is empty
3966 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3967 (then the element count must be correct to cover the whole
3968 outer vector and index must be NULL on all elements, or it is
3969 a CONSTRUCTOR of scalar elements, where we as an exception allow
3970 smaller number of elements (assuming zero filling) and
3971 consecutive indexes as compared to NULL indexes (such
3972 CONSTRUCTORs can appear in the IL from FEs). */
3973 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3975 if (elt_t == NULL_TREE)
3977 elt_t = TREE_TYPE (elt_v);
3978 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3980 tree elt_t = TREE_TYPE (elt_v);
3981 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3982 TREE_TYPE (elt_t)))
3984 error ("incorrect type of vector CONSTRUCTOR"
3985 " elements");
3986 debug_generic_stmt (rhs1);
3987 return true;
3989 else if (CONSTRUCTOR_NELTS (rhs1)
3990 * TYPE_VECTOR_SUBPARTS (elt_t)
3991 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3993 error ("incorrect number of vector CONSTRUCTOR"
3994 " elements");
3995 debug_generic_stmt (rhs1);
3996 return true;
3999 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4000 elt_t))
4002 error ("incorrect type of vector CONSTRUCTOR elements");
4003 debug_generic_stmt (rhs1);
4004 return true;
4006 else if (CONSTRUCTOR_NELTS (rhs1)
4007 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4009 error ("incorrect number of vector CONSTRUCTOR elements");
4010 debug_generic_stmt (rhs1);
4011 return true;
4014 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4016 error ("incorrect type of vector CONSTRUCTOR elements");
4017 debug_generic_stmt (rhs1);
4018 return true;
4020 if (elt_i != NULL_TREE
4021 && (TREE_CODE (elt_t) == VECTOR_TYPE
4022 || TREE_CODE (elt_i) != INTEGER_CST
4023 || compare_tree_int (elt_i, i) != 0))
4025 error ("vector CONSTRUCTOR with non-NULL element index");
4026 debug_generic_stmt (rhs1);
4027 return true;
4031 return res;
4032 case OBJ_TYPE_REF:
4033 case ASSERT_EXPR:
4034 case WITH_SIZE_EXPR:
4035 /* FIXME. */
4036 return res;
4038 default:;
4041 return res;
4044 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4045 is a problem, otherwise false. */
4047 static bool
4048 verify_gimple_assign (gimple stmt)
4050 switch (gimple_assign_rhs_class (stmt))
4052 case GIMPLE_SINGLE_RHS:
4053 return verify_gimple_assign_single (stmt);
4055 case GIMPLE_UNARY_RHS:
4056 return verify_gimple_assign_unary (stmt);
4058 case GIMPLE_BINARY_RHS:
4059 return verify_gimple_assign_binary (stmt);
4061 case GIMPLE_TERNARY_RHS:
4062 return verify_gimple_assign_ternary (stmt);
4064 default:
4065 gcc_unreachable ();
4069 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4070 is a problem, otherwise false. */
4072 static bool
4073 verify_gimple_return (gimple stmt)
4075 tree op = gimple_return_retval (stmt);
4076 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4078 /* We cannot test for present return values as we do not fix up missing
4079 return values from the original source. */
4080 if (op == NULL)
4081 return false;
4083 if (!is_gimple_val (op)
4084 && TREE_CODE (op) != RESULT_DECL)
4086 error ("invalid operand in return statement");
4087 debug_generic_stmt (op);
4088 return true;
4091 if ((TREE_CODE (op) == RESULT_DECL
4092 && DECL_BY_REFERENCE (op))
4093 || (TREE_CODE (op) == SSA_NAME
4094 && SSA_NAME_VAR (op)
4095 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4096 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4097 op = TREE_TYPE (op);
4099 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4101 error ("invalid conversion in return statement");
4102 debug_generic_stmt (restype);
4103 debug_generic_stmt (TREE_TYPE (op));
4104 return true;
4107 return false;
4111 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4112 is a problem, otherwise false. */
4114 static bool
4115 verify_gimple_goto (gimple stmt)
4117 tree dest = gimple_goto_dest (stmt);
4119 /* ??? We have two canonical forms of direct goto destinations, a
4120 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4121 if (TREE_CODE (dest) != LABEL_DECL
4122 && (!is_gimple_val (dest)
4123 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4125 error ("goto destination is neither a label nor a pointer");
4126 return true;
4129 return false;
4132 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4133 is a problem, otherwise false. */
4135 static bool
4136 verify_gimple_switch (gimple stmt)
4138 unsigned int i, n;
4139 tree elt, prev_upper_bound = NULL_TREE;
4140 tree index_type, elt_type = NULL_TREE;
4142 if (!is_gimple_val (gimple_switch_index (stmt)))
4144 error ("invalid operand to switch statement");
4145 debug_generic_stmt (gimple_switch_index (stmt));
4146 return true;
4149 index_type = TREE_TYPE (gimple_switch_index (stmt));
4150 if (! INTEGRAL_TYPE_P (index_type))
4152 error ("non-integral type switch statement");
4153 debug_generic_expr (index_type);
4154 return true;
4157 elt = gimple_switch_label (stmt, 0);
4158 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4160 error ("invalid default case label in switch statement");
4161 debug_generic_expr (elt);
4162 return true;
4165 n = gimple_switch_num_labels (stmt);
4166 for (i = 1; i < n; i++)
4168 elt = gimple_switch_label (stmt, i);
4170 if (! CASE_LOW (elt))
4172 error ("invalid case label in switch statement");
4173 debug_generic_expr (elt);
4174 return true;
4176 if (CASE_HIGH (elt)
4177 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4179 error ("invalid case range in switch statement");
4180 debug_generic_expr (elt);
4181 return true;
4184 if (elt_type)
4186 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4187 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4189 error ("type mismatch for case label in switch statement");
4190 debug_generic_expr (elt);
4191 return true;
4194 else
4196 elt_type = TREE_TYPE (CASE_LOW (elt));
4197 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4199 error ("type precision mismatch in switch statement");
4200 return true;
4204 if (prev_upper_bound)
4206 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4208 error ("case labels not sorted in switch statement");
4209 return true;
4213 prev_upper_bound = CASE_HIGH (elt);
4214 if (! prev_upper_bound)
4215 prev_upper_bound = CASE_LOW (elt);
4218 return false;
4221 /* Verify a gimple debug statement STMT.
4222 Returns true if anything is wrong. */
4224 static bool
4225 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4227 /* There isn't much that could be wrong in a gimple debug stmt. A
4228 gimple debug bind stmt, for example, maps a tree, that's usually
4229 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4230 component or member of an aggregate type, to another tree, that
4231 can be an arbitrary expression. These stmts expand into debug
4232 insns, and are converted to debug notes by var-tracking.c. */
4233 return false;
4236 /* Verify a gimple label statement STMT.
4237 Returns true if anything is wrong. */
4239 static bool
4240 verify_gimple_label (gimple stmt)
4242 tree decl = gimple_label_label (stmt);
4243 int uid;
4244 bool err = false;
4246 if (TREE_CODE (decl) != LABEL_DECL)
4247 return true;
4248 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4249 && DECL_CONTEXT (decl) != current_function_decl)
4251 error ("label's context is not the current function decl");
4252 err |= true;
4255 uid = LABEL_DECL_UID (decl);
4256 if (cfun->cfg
4257 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4259 error ("incorrect entry in label_to_block_map");
4260 err |= true;
4263 uid = EH_LANDING_PAD_NR (decl);
4264 if (uid)
4266 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4267 if (decl != lp->post_landing_pad)
4269 error ("incorrect setting of landing pad number");
4270 err |= true;
4274 return err;
4277 /* Verify the GIMPLE statement STMT. Returns true if there is an
4278 error, otherwise false. */
4280 static bool
4281 verify_gimple_stmt (gimple stmt)
4283 switch (gimple_code (stmt))
4285 case GIMPLE_ASSIGN:
4286 return verify_gimple_assign (stmt);
4288 case GIMPLE_LABEL:
4289 return verify_gimple_label (stmt);
4291 case GIMPLE_CALL:
4292 return verify_gimple_call (stmt);
4294 case GIMPLE_COND:
4295 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4297 error ("invalid comparison code in gimple cond");
4298 return true;
4300 if (!(!gimple_cond_true_label (stmt)
4301 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4302 || !(!gimple_cond_false_label (stmt)
4303 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4305 error ("invalid labels in gimple cond");
4306 return true;
4309 return verify_gimple_comparison (boolean_type_node,
4310 gimple_cond_lhs (stmt),
4311 gimple_cond_rhs (stmt));
4313 case GIMPLE_GOTO:
4314 return verify_gimple_goto (stmt);
4316 case GIMPLE_SWITCH:
4317 return verify_gimple_switch (stmt);
4319 case GIMPLE_RETURN:
4320 return verify_gimple_return (stmt);
4322 case GIMPLE_ASM:
4323 return false;
4325 case GIMPLE_TRANSACTION:
4326 return verify_gimple_transaction (stmt);
4328 /* Tuples that do not have tree operands. */
4329 case GIMPLE_NOP:
4330 case GIMPLE_PREDICT:
4331 case GIMPLE_RESX:
4332 case GIMPLE_EH_DISPATCH:
4333 case GIMPLE_EH_MUST_NOT_THROW:
4334 return false;
4336 CASE_GIMPLE_OMP:
4337 /* OpenMP directives are validated by the FE and never operated
4338 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4339 non-gimple expressions when the main index variable has had
4340 its address taken. This does not affect the loop itself
4341 because the header of an GIMPLE_OMP_FOR is merely used to determine
4342 how to setup the parallel iteration. */
4343 return false;
4345 case GIMPLE_DEBUG:
4346 return verify_gimple_debug (stmt);
4348 default:
4349 gcc_unreachable ();
4353 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4354 and false otherwise. */
4356 static bool
4357 verify_gimple_phi (gimple phi)
4359 bool err = false;
4360 unsigned i;
4361 tree phi_result = gimple_phi_result (phi);
4362 bool virtual_p;
4364 if (!phi_result)
4366 error ("invalid PHI result");
4367 return true;
4370 virtual_p = virtual_operand_p (phi_result);
4371 if (TREE_CODE (phi_result) != SSA_NAME
4372 || (virtual_p
4373 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4375 error ("invalid PHI result");
4376 err = true;
4379 for (i = 0; i < gimple_phi_num_args (phi); i++)
4381 tree t = gimple_phi_arg_def (phi, i);
4383 if (!t)
4385 error ("missing PHI def");
4386 err |= true;
4387 continue;
4389 /* Addressable variables do have SSA_NAMEs but they
4390 are not considered gimple values. */
4391 else if ((TREE_CODE (t) == SSA_NAME
4392 && virtual_p != virtual_operand_p (t))
4393 || (virtual_p
4394 && (TREE_CODE (t) != SSA_NAME
4395 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4396 || (!virtual_p
4397 && !is_gimple_val (t)))
4399 error ("invalid PHI argument");
4400 debug_generic_expr (t);
4401 err |= true;
4403 #ifdef ENABLE_TYPES_CHECKING
4404 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4406 error ("incompatible types in PHI argument %u", i);
4407 debug_generic_stmt (TREE_TYPE (phi_result));
4408 debug_generic_stmt (TREE_TYPE (t));
4409 err |= true;
4411 #endif
4414 return err;
4417 /* Verify the GIMPLE statements inside the sequence STMTS. */
4419 static bool
4420 verify_gimple_in_seq_2 (gimple_seq stmts)
4422 gimple_stmt_iterator ittr;
4423 bool err = false;
4425 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4427 gimple stmt = gsi_stmt (ittr);
4429 switch (gimple_code (stmt))
4431 case GIMPLE_BIND:
4432 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4433 break;
4435 case GIMPLE_TRY:
4436 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4437 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4438 break;
4440 case GIMPLE_EH_FILTER:
4441 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4442 break;
4444 case GIMPLE_EH_ELSE:
4445 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4446 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4447 break;
4449 case GIMPLE_CATCH:
4450 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4451 break;
4453 case GIMPLE_TRANSACTION:
4454 err |= verify_gimple_transaction (stmt);
4455 break;
4457 default:
4459 bool err2 = verify_gimple_stmt (stmt);
4460 if (err2)
4461 debug_gimple_stmt (stmt);
4462 err |= err2;
4467 return err;
4470 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4471 is a problem, otherwise false. */
4473 static bool
4474 verify_gimple_transaction (gimple stmt)
4476 tree lab = gimple_transaction_label (stmt);
4477 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4478 return true;
4479 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4483 /* Verify the GIMPLE statements inside the statement list STMTS. */
4485 DEBUG_FUNCTION void
4486 verify_gimple_in_seq (gimple_seq stmts)
4488 timevar_push (TV_TREE_STMT_VERIFY);
4489 if (verify_gimple_in_seq_2 (stmts))
4490 internal_error ("verify_gimple failed");
4491 timevar_pop (TV_TREE_STMT_VERIFY);
4494 /* Return true when the T can be shared. */
4496 static bool
4497 tree_node_can_be_shared (tree t)
4499 if (IS_TYPE_OR_DECL_P (t)
4500 || is_gimple_min_invariant (t)
4501 || TREE_CODE (t) == SSA_NAME
4502 || t == error_mark_node
4503 || TREE_CODE (t) == IDENTIFIER_NODE)
4504 return true;
4506 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4507 return true;
4509 if (DECL_P (t))
4510 return true;
4512 return false;
4515 /* Called via walk_tree. Verify tree sharing. */
4517 static tree
4518 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4520 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4522 if (tree_node_can_be_shared (*tp))
4524 *walk_subtrees = false;
4525 return NULL;
4528 if (pointer_set_insert (visited, *tp))
4529 return *tp;
4531 return NULL;
4534 /* Called via walk_gimple_stmt. Verify tree sharing. */
4536 static tree
4537 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4539 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4540 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4543 static bool eh_error_found;
4544 static int
4545 verify_eh_throw_stmt_node (void **slot, void *data)
4547 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4548 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4550 if (!pointer_set_contains (visited, node->stmt))
4552 error ("dead STMT in EH table");
4553 debug_gimple_stmt (node->stmt);
4554 eh_error_found = true;
4556 return 1;
4559 /* Verify if the location LOCs block is in BLOCKS. */
4561 static bool
4562 verify_location (pointer_set_t *blocks, location_t loc)
4564 tree block = LOCATION_BLOCK (loc);
4565 if (block != NULL_TREE
4566 && !pointer_set_contains (blocks, block))
4568 error ("location references block not in block tree");
4569 return true;
4571 if (block != NULL_TREE)
4572 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4573 return false;
4576 /* Called via walk_tree. Verify that expressions have no blocks. */
4578 static tree
4579 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4581 if (!EXPR_P (*tp))
4583 *walk_subtrees = false;
4584 return NULL;
4587 location_t loc = EXPR_LOCATION (*tp);
4588 if (LOCATION_BLOCK (loc) != NULL)
4589 return *tp;
4591 return NULL;
4594 /* Called via walk_tree. Verify locations of expressions. */
4596 static tree
4597 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4599 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4601 if (TREE_CODE (*tp) == VAR_DECL
4602 && DECL_HAS_DEBUG_EXPR_P (*tp))
4604 tree t = DECL_DEBUG_EXPR (*tp);
4605 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4606 if (addr)
4607 return addr;
4609 if ((TREE_CODE (*tp) == VAR_DECL
4610 || TREE_CODE (*tp) == PARM_DECL
4611 || TREE_CODE (*tp) == RESULT_DECL)
4612 && DECL_HAS_VALUE_EXPR_P (*tp))
4614 tree t = DECL_VALUE_EXPR (*tp);
4615 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4616 if (addr)
4617 return addr;
4620 if (!EXPR_P (*tp))
4622 *walk_subtrees = false;
4623 return NULL;
4626 location_t loc = EXPR_LOCATION (*tp);
4627 if (verify_location (blocks, loc))
4628 return *tp;
4630 return NULL;
4633 /* Called via walk_gimple_op. Verify locations of expressions. */
4635 static tree
4636 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4638 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4639 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4642 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4644 static void
4645 collect_subblocks (pointer_set_t *blocks, tree block)
4647 tree t;
4648 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4650 pointer_set_insert (blocks, t);
4651 collect_subblocks (blocks, t);
4655 /* Verify the GIMPLE statements in the CFG of FN. */
4657 DEBUG_FUNCTION void
4658 verify_gimple_in_cfg (struct function *fn)
4660 basic_block bb;
4661 bool err = false;
4662 struct pointer_set_t *visited, *visited_stmts, *blocks;
4664 timevar_push (TV_TREE_STMT_VERIFY);
4665 visited = pointer_set_create ();
4666 visited_stmts = pointer_set_create ();
4668 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4669 blocks = pointer_set_create ();
4670 if (DECL_INITIAL (fn->decl))
4672 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4673 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4676 FOR_EACH_BB_FN (bb, fn)
4678 gimple_stmt_iterator gsi;
4680 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4682 gimple phi = gsi_stmt (gsi);
4683 bool err2 = false;
4684 unsigned i;
4686 pointer_set_insert (visited_stmts, phi);
4688 if (gimple_bb (phi) != bb)
4690 error ("gimple_bb (phi) is set to a wrong basic block");
4691 err2 = true;
4694 err2 |= verify_gimple_phi (phi);
4696 /* Only PHI arguments have locations. */
4697 if (gimple_location (phi) != UNKNOWN_LOCATION)
4699 error ("PHI node with location");
4700 err2 = true;
4703 for (i = 0; i < gimple_phi_num_args (phi); i++)
4705 tree arg = gimple_phi_arg_def (phi, i);
4706 tree addr = walk_tree (&arg, verify_node_sharing_1,
4707 visited, NULL);
4708 if (addr)
4710 error ("incorrect sharing of tree nodes");
4711 debug_generic_expr (addr);
4712 err2 |= true;
4714 location_t loc = gimple_phi_arg_location (phi, i);
4715 if (virtual_operand_p (gimple_phi_result (phi))
4716 && loc != UNKNOWN_LOCATION)
4718 error ("virtual PHI with argument locations");
4719 err2 = true;
4721 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4722 if (addr)
4724 debug_generic_expr (addr);
4725 err2 = true;
4727 err2 |= verify_location (blocks, loc);
4730 if (err2)
4731 debug_gimple_stmt (phi);
4732 err |= err2;
4735 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4737 gimple stmt = gsi_stmt (gsi);
4738 bool err2 = false;
4739 struct walk_stmt_info wi;
4740 tree addr;
4741 int lp_nr;
4743 pointer_set_insert (visited_stmts, stmt);
4745 if (gimple_bb (stmt) != bb)
4747 error ("gimple_bb (stmt) is set to a wrong basic block");
4748 err2 = true;
4751 err2 |= verify_gimple_stmt (stmt);
4752 err2 |= verify_location (blocks, gimple_location (stmt));
4754 memset (&wi, 0, sizeof (wi));
4755 wi.info = (void *) visited;
4756 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4757 if (addr)
4759 error ("incorrect sharing of tree nodes");
4760 debug_generic_expr (addr);
4761 err2 |= true;
4764 memset (&wi, 0, sizeof (wi));
4765 wi.info = (void *) blocks;
4766 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4767 if (addr)
4769 debug_generic_expr (addr);
4770 err2 |= true;
4773 /* ??? Instead of not checking these stmts at all the walker
4774 should know its context via wi. */
4775 if (!is_gimple_debug (stmt)
4776 && !is_gimple_omp (stmt))
4778 memset (&wi, 0, sizeof (wi));
4779 addr = walk_gimple_op (stmt, verify_expr, &wi);
4780 if (addr)
4782 debug_generic_expr (addr);
4783 inform (gimple_location (stmt), "in statement");
4784 err2 |= true;
4788 /* If the statement is marked as part of an EH region, then it is
4789 expected that the statement could throw. Verify that when we
4790 have optimizations that simplify statements such that we prove
4791 that they cannot throw, that we update other data structures
4792 to match. */
4793 lp_nr = lookup_stmt_eh_lp (stmt);
4794 if (lp_nr != 0)
4796 if (!stmt_could_throw_p (stmt))
4798 error ("statement marked for throw, but doesn%'t");
4799 err2 |= true;
4801 else if (lp_nr > 0
4802 && !gsi_one_before_end_p (gsi)
4803 && stmt_can_throw_internal (stmt))
4805 error ("statement marked for throw in middle of block");
4806 err2 |= true;
4810 if (err2)
4811 debug_gimple_stmt (stmt);
4812 err |= err2;
4816 eh_error_found = false;
4817 if (get_eh_throw_stmt_table (cfun))
4818 htab_traverse (get_eh_throw_stmt_table (cfun),
4819 verify_eh_throw_stmt_node,
4820 visited_stmts);
4822 if (err || eh_error_found)
4823 internal_error ("verify_gimple failed");
4825 pointer_set_destroy (visited);
4826 pointer_set_destroy (visited_stmts);
4827 pointer_set_destroy (blocks);
4828 verify_histograms ();
4829 timevar_pop (TV_TREE_STMT_VERIFY);
4833 /* Verifies that the flow information is OK. */
4835 static int
4836 gimple_verify_flow_info (void)
4838 int err = 0;
4839 basic_block bb;
4840 gimple_stmt_iterator gsi;
4841 gimple stmt;
4842 edge e;
4843 edge_iterator ei;
4845 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4847 error ("ENTRY_BLOCK has IL associated with it");
4848 err = 1;
4851 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4853 error ("EXIT_BLOCK has IL associated with it");
4854 err = 1;
4857 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4858 if (e->flags & EDGE_FALLTHRU)
4860 error ("fallthru to exit from bb %d", e->src->index);
4861 err = 1;
4864 FOR_EACH_BB (bb)
4866 bool found_ctrl_stmt = false;
4868 stmt = NULL;
4870 /* Skip labels on the start of basic block. */
4871 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4873 tree label;
4874 gimple prev_stmt = stmt;
4876 stmt = gsi_stmt (gsi);
4878 if (gimple_code (stmt) != GIMPLE_LABEL)
4879 break;
4881 label = gimple_label_label (stmt);
4882 if (prev_stmt && DECL_NONLOCAL (label))
4884 error ("nonlocal label ");
4885 print_generic_expr (stderr, label, 0);
4886 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4887 bb->index);
4888 err = 1;
4891 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4893 error ("EH landing pad label ");
4894 print_generic_expr (stderr, label, 0);
4895 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4896 bb->index);
4897 err = 1;
4900 if (label_to_block (label) != bb)
4902 error ("label ");
4903 print_generic_expr (stderr, label, 0);
4904 fprintf (stderr, " to block does not match in bb %d",
4905 bb->index);
4906 err = 1;
4909 if (decl_function_context (label) != current_function_decl)
4911 error ("label ");
4912 print_generic_expr (stderr, label, 0);
4913 fprintf (stderr, " has incorrect context in bb %d",
4914 bb->index);
4915 err = 1;
4919 /* Verify that body of basic block BB is free of control flow. */
4920 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4922 gimple stmt = gsi_stmt (gsi);
4924 if (found_ctrl_stmt)
4926 error ("control flow in the middle of basic block %d",
4927 bb->index);
4928 err = 1;
4931 if (stmt_ends_bb_p (stmt))
4932 found_ctrl_stmt = true;
4934 if (gimple_code (stmt) == GIMPLE_LABEL)
4936 error ("label ");
4937 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4938 fprintf (stderr, " in the middle of basic block %d", bb->index);
4939 err = 1;
4943 gsi = gsi_last_bb (bb);
4944 if (gsi_end_p (gsi))
4945 continue;
4947 stmt = gsi_stmt (gsi);
4949 if (gimple_code (stmt) == GIMPLE_LABEL)
4950 continue;
4952 err |= verify_eh_edges (stmt);
4954 if (is_ctrl_stmt (stmt))
4956 FOR_EACH_EDGE (e, ei, bb->succs)
4957 if (e->flags & EDGE_FALLTHRU)
4959 error ("fallthru edge after a control statement in bb %d",
4960 bb->index);
4961 err = 1;
4965 if (gimple_code (stmt) != GIMPLE_COND)
4967 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4968 after anything else but if statement. */
4969 FOR_EACH_EDGE (e, ei, bb->succs)
4970 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4972 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4973 bb->index);
4974 err = 1;
4978 switch (gimple_code (stmt))
4980 case GIMPLE_COND:
4982 edge true_edge;
4983 edge false_edge;
4985 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4987 if (!true_edge
4988 || !false_edge
4989 || !(true_edge->flags & EDGE_TRUE_VALUE)
4990 || !(false_edge->flags & EDGE_FALSE_VALUE)
4991 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4992 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4993 || EDGE_COUNT (bb->succs) >= 3)
4995 error ("wrong outgoing edge flags at end of bb %d",
4996 bb->index);
4997 err = 1;
5000 break;
5002 case GIMPLE_GOTO:
5003 if (simple_goto_p (stmt))
5005 error ("explicit goto at end of bb %d", bb->index);
5006 err = 1;
5008 else
5010 /* FIXME. We should double check that the labels in the
5011 destination blocks have their address taken. */
5012 FOR_EACH_EDGE (e, ei, bb->succs)
5013 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5014 | EDGE_FALSE_VALUE))
5015 || !(e->flags & EDGE_ABNORMAL))
5017 error ("wrong outgoing edge flags at end of bb %d",
5018 bb->index);
5019 err = 1;
5022 break;
5024 case GIMPLE_CALL:
5025 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5026 break;
5027 /* ... fallthru ... */
5028 case GIMPLE_RETURN:
5029 if (!single_succ_p (bb)
5030 || (single_succ_edge (bb)->flags
5031 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5032 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5034 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5035 err = 1;
5037 if (single_succ (bb) != EXIT_BLOCK_PTR)
5039 error ("return edge does not point to exit in bb %d",
5040 bb->index);
5041 err = 1;
5043 break;
5045 case GIMPLE_SWITCH:
5047 tree prev;
5048 edge e;
5049 size_t i, n;
5051 n = gimple_switch_num_labels (stmt);
5053 /* Mark all the destination basic blocks. */
5054 for (i = 0; i < n; ++i)
5056 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5057 basic_block label_bb = label_to_block (lab);
5058 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5059 label_bb->aux = (void *)1;
5062 /* Verify that the case labels are sorted. */
5063 prev = gimple_switch_label (stmt, 0);
5064 for (i = 1; i < n; ++i)
5066 tree c = gimple_switch_label (stmt, i);
5067 if (!CASE_LOW (c))
5069 error ("found default case not at the start of "
5070 "case vector");
5071 err = 1;
5072 continue;
5074 if (CASE_LOW (prev)
5075 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5077 error ("case labels not sorted: ");
5078 print_generic_expr (stderr, prev, 0);
5079 fprintf (stderr," is greater than ");
5080 print_generic_expr (stderr, c, 0);
5081 fprintf (stderr," but comes before it.\n");
5082 err = 1;
5084 prev = c;
5086 /* VRP will remove the default case if it can prove it will
5087 never be executed. So do not verify there always exists
5088 a default case here. */
5090 FOR_EACH_EDGE (e, ei, bb->succs)
5092 if (!e->dest->aux)
5094 error ("extra outgoing edge %d->%d",
5095 bb->index, e->dest->index);
5096 err = 1;
5099 e->dest->aux = (void *)2;
5100 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5101 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5103 error ("wrong outgoing edge flags at end of bb %d",
5104 bb->index);
5105 err = 1;
5109 /* Check that we have all of them. */
5110 for (i = 0; i < n; ++i)
5112 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5113 basic_block label_bb = label_to_block (lab);
5115 if (label_bb->aux != (void *)2)
5117 error ("missing edge %i->%i", bb->index, label_bb->index);
5118 err = 1;
5122 FOR_EACH_EDGE (e, ei, bb->succs)
5123 e->dest->aux = (void *)0;
5125 break;
5127 case GIMPLE_EH_DISPATCH:
5128 err |= verify_eh_dispatch_edge (stmt);
5129 break;
5131 default:
5132 break;
5136 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5137 verify_dominators (CDI_DOMINATORS);
5139 return err;
5143 /* Updates phi nodes after creating a forwarder block joined
5144 by edge FALLTHRU. */
5146 static void
5147 gimple_make_forwarder_block (edge fallthru)
5149 edge e;
5150 edge_iterator ei;
5151 basic_block dummy, bb;
5152 tree var;
5153 gimple_stmt_iterator gsi;
5155 dummy = fallthru->src;
5156 bb = fallthru->dest;
5158 if (single_pred_p (bb))
5159 return;
5161 /* If we redirected a branch we must create new PHI nodes at the
5162 start of BB. */
5163 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5165 gimple phi, new_phi;
5167 phi = gsi_stmt (gsi);
5168 var = gimple_phi_result (phi);
5169 new_phi = create_phi_node (var, bb);
5170 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5171 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5172 UNKNOWN_LOCATION);
5175 /* Add the arguments we have stored on edges. */
5176 FOR_EACH_EDGE (e, ei, bb->preds)
5178 if (e == fallthru)
5179 continue;
5181 flush_pending_stmts (e);
5186 /* Return a non-special label in the head of basic block BLOCK.
5187 Create one if it doesn't exist. */
5189 tree
5190 gimple_block_label (basic_block bb)
5192 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5193 bool first = true;
5194 tree label;
5195 gimple stmt;
5197 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5199 stmt = gsi_stmt (i);
5200 if (gimple_code (stmt) != GIMPLE_LABEL)
5201 break;
5202 label = gimple_label_label (stmt);
5203 if (!DECL_NONLOCAL (label))
5205 if (!first)
5206 gsi_move_before (&i, &s);
5207 return label;
5211 label = create_artificial_label (UNKNOWN_LOCATION);
5212 stmt = gimple_build_label (label);
5213 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5214 return label;
5218 /* Attempt to perform edge redirection by replacing a possibly complex
5219 jump instruction by a goto or by removing the jump completely.
5220 This can apply only if all edges now point to the same block. The
5221 parameters and return values are equivalent to
5222 redirect_edge_and_branch. */
5224 static edge
5225 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5227 basic_block src = e->src;
5228 gimple_stmt_iterator i;
5229 gimple stmt;
5231 /* We can replace or remove a complex jump only when we have exactly
5232 two edges. */
5233 if (EDGE_COUNT (src->succs) != 2
5234 /* Verify that all targets will be TARGET. Specifically, the
5235 edge that is not E must also go to TARGET. */
5236 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5237 return NULL;
5239 i = gsi_last_bb (src);
5240 if (gsi_end_p (i))
5241 return NULL;
5243 stmt = gsi_stmt (i);
5245 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5247 gsi_remove (&i, true);
5248 e = ssa_redirect_edge (e, target);
5249 e->flags = EDGE_FALLTHRU;
5250 return e;
5253 return NULL;
5257 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5258 edge representing the redirected branch. */
5260 static edge
5261 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5263 basic_block bb = e->src;
5264 gimple_stmt_iterator gsi;
5265 edge ret;
5266 gimple stmt;
5268 if (e->flags & EDGE_ABNORMAL)
5269 return NULL;
5271 if (e->dest == dest)
5272 return NULL;
5274 if (e->flags & EDGE_EH)
5275 return redirect_eh_edge (e, dest);
5277 if (e->src != ENTRY_BLOCK_PTR)
5279 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5280 if (ret)
5281 return ret;
5284 gsi = gsi_last_bb (bb);
5285 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5287 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5289 case GIMPLE_COND:
5290 /* For COND_EXPR, we only need to redirect the edge. */
5291 break;
5293 case GIMPLE_GOTO:
5294 /* No non-abnormal edges should lead from a non-simple goto, and
5295 simple ones should be represented implicitly. */
5296 gcc_unreachable ();
5298 case GIMPLE_SWITCH:
5300 tree label = gimple_block_label (dest);
5301 tree cases = get_cases_for_edge (e, stmt);
5303 /* If we have a list of cases associated with E, then use it
5304 as it's a lot faster than walking the entire case vector. */
5305 if (cases)
5307 edge e2 = find_edge (e->src, dest);
5308 tree last, first;
5310 first = cases;
5311 while (cases)
5313 last = cases;
5314 CASE_LABEL (cases) = label;
5315 cases = CASE_CHAIN (cases);
5318 /* If there was already an edge in the CFG, then we need
5319 to move all the cases associated with E to E2. */
5320 if (e2)
5322 tree cases2 = get_cases_for_edge (e2, stmt);
5324 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5325 CASE_CHAIN (cases2) = first;
5327 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5329 else
5331 size_t i, n = gimple_switch_num_labels (stmt);
5333 for (i = 0; i < n; i++)
5335 tree elt = gimple_switch_label (stmt, i);
5336 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5337 CASE_LABEL (elt) = label;
5341 break;
5343 case GIMPLE_ASM:
5345 int i, n = gimple_asm_nlabels (stmt);
5346 tree label = NULL;
5348 for (i = 0; i < n; ++i)
5350 tree cons = gimple_asm_label_op (stmt, i);
5351 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5353 if (!label)
5354 label = gimple_block_label (dest);
5355 TREE_VALUE (cons) = label;
5359 /* If we didn't find any label matching the former edge in the
5360 asm labels, we must be redirecting the fallthrough
5361 edge. */
5362 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5364 break;
5366 case GIMPLE_RETURN:
5367 gsi_remove (&gsi, true);
5368 e->flags |= EDGE_FALLTHRU;
5369 break;
5371 case GIMPLE_OMP_RETURN:
5372 case GIMPLE_OMP_CONTINUE:
5373 case GIMPLE_OMP_SECTIONS_SWITCH:
5374 case GIMPLE_OMP_FOR:
5375 /* The edges from OMP constructs can be simply redirected. */
5376 break;
5378 case GIMPLE_EH_DISPATCH:
5379 if (!(e->flags & EDGE_FALLTHRU))
5380 redirect_eh_dispatch_edge (stmt, e, dest);
5381 break;
5383 case GIMPLE_TRANSACTION:
5384 /* The ABORT edge has a stored label associated with it, otherwise
5385 the edges are simply redirectable. */
5386 if (e->flags == 0)
5387 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5388 break;
5390 default:
5391 /* Otherwise it must be a fallthru edge, and we don't need to
5392 do anything besides redirecting it. */
5393 gcc_assert (e->flags & EDGE_FALLTHRU);
5394 break;
5397 /* Update/insert PHI nodes as necessary. */
5399 /* Now update the edges in the CFG. */
5400 e = ssa_redirect_edge (e, dest);
5402 return e;
5405 /* Returns true if it is possible to remove edge E by redirecting
5406 it to the destination of the other edge from E->src. */
5408 static bool
5409 gimple_can_remove_branch_p (const_edge e)
5411 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5412 return false;
5414 return true;
5417 /* Simple wrapper, as we can always redirect fallthru edges. */
5419 static basic_block
5420 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5422 e = gimple_redirect_edge_and_branch (e, dest);
5423 gcc_assert (e);
5425 return NULL;
5429 /* Splits basic block BB after statement STMT (but at least after the
5430 labels). If STMT is NULL, BB is split just after the labels. */
5432 static basic_block
5433 gimple_split_block (basic_block bb, void *stmt)
5435 gimple_stmt_iterator gsi;
5436 gimple_stmt_iterator gsi_tgt;
5437 gimple act;
5438 gimple_seq list;
5439 basic_block new_bb;
5440 edge e;
5441 edge_iterator ei;
5443 new_bb = create_empty_bb (bb);
5445 /* Redirect the outgoing edges. */
5446 new_bb->succs = bb->succs;
5447 bb->succs = NULL;
5448 FOR_EACH_EDGE (e, ei, new_bb->succs)
5449 e->src = new_bb;
5451 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5452 stmt = NULL;
5454 /* Move everything from GSI to the new basic block. */
5455 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5457 act = gsi_stmt (gsi);
5458 if (gimple_code (act) == GIMPLE_LABEL)
5459 continue;
5461 if (!stmt)
5462 break;
5464 if (stmt == act)
5466 gsi_next (&gsi);
5467 break;
5471 if (gsi_end_p (gsi))
5472 return new_bb;
5474 /* Split the statement list - avoid re-creating new containers as this
5475 brings ugly quadratic memory consumption in the inliner.
5476 (We are still quadratic since we need to update stmt BB pointers,
5477 sadly.) */
5478 gsi_split_seq_before (&gsi, &list);
5479 set_bb_seq (new_bb, list);
5480 for (gsi_tgt = gsi_start (list);
5481 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5482 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5484 return new_bb;
5488 /* Moves basic block BB after block AFTER. */
5490 static bool
5491 gimple_move_block_after (basic_block bb, basic_block after)
5493 if (bb->prev_bb == after)
5494 return true;
5496 unlink_block (bb);
5497 link_block (bb, after);
5499 return true;
5503 /* Return TRUE if block BB has no executable statements, otherwise return
5504 FALSE. */
5506 static bool
5507 gimple_empty_block_p (basic_block bb)
5509 /* BB must have no executable statements. */
5510 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5511 if (phi_nodes (bb))
5512 return false;
5513 if (gsi_end_p (gsi))
5514 return true;
5515 if (is_gimple_debug (gsi_stmt (gsi)))
5516 gsi_next_nondebug (&gsi);
5517 return gsi_end_p (gsi);
5521 /* Split a basic block if it ends with a conditional branch and if the
5522 other part of the block is not empty. */
5524 static basic_block
5525 gimple_split_block_before_cond_jump (basic_block bb)
5527 gimple last, split_point;
5528 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5529 if (gsi_end_p (gsi))
5530 return NULL;
5531 last = gsi_stmt (gsi);
5532 if (gimple_code (last) != GIMPLE_COND
5533 && gimple_code (last) != GIMPLE_SWITCH)
5534 return NULL;
5535 gsi_prev_nondebug (&gsi);
5536 split_point = gsi_stmt (gsi);
5537 return split_block (bb, split_point)->dest;
5541 /* Return true if basic_block can be duplicated. */
5543 static bool
5544 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5546 return true;
5549 /* Create a duplicate of the basic block BB. NOTE: This does not
5550 preserve SSA form. */
5552 static basic_block
5553 gimple_duplicate_bb (basic_block bb)
5555 basic_block new_bb;
5556 gimple_stmt_iterator gsi, gsi_tgt;
5557 gimple_seq phis = phi_nodes (bb);
5558 gimple phi, stmt, copy;
5560 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5562 /* Copy the PHI nodes. We ignore PHI node arguments here because
5563 the incoming edges have not been setup yet. */
5564 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5566 phi = gsi_stmt (gsi);
5567 copy = create_phi_node (NULL_TREE, new_bb);
5568 create_new_def_for (gimple_phi_result (phi), copy,
5569 gimple_phi_result_ptr (copy));
5570 gimple_set_uid (copy, gimple_uid (phi));
5573 gsi_tgt = gsi_start_bb (new_bb);
5574 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5576 def_operand_p def_p;
5577 ssa_op_iter op_iter;
5578 tree lhs;
5580 stmt = gsi_stmt (gsi);
5581 if (gimple_code (stmt) == GIMPLE_LABEL)
5582 continue;
5584 /* Don't duplicate label debug stmts. */
5585 if (gimple_debug_bind_p (stmt)
5586 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5587 == LABEL_DECL)
5588 continue;
5590 /* Create a new copy of STMT and duplicate STMT's virtual
5591 operands. */
5592 copy = gimple_copy (stmt);
5593 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5595 maybe_duplicate_eh_stmt (copy, stmt);
5596 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5598 /* When copying around a stmt writing into a local non-user
5599 aggregate, make sure it won't share stack slot with other
5600 vars. */
5601 lhs = gimple_get_lhs (stmt);
5602 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5604 tree base = get_base_address (lhs);
5605 if (base
5606 && (TREE_CODE (base) == VAR_DECL
5607 || TREE_CODE (base) == RESULT_DECL)
5608 && DECL_IGNORED_P (base)
5609 && !TREE_STATIC (base)
5610 && !DECL_EXTERNAL (base)
5611 && (TREE_CODE (base) != VAR_DECL
5612 || !DECL_HAS_VALUE_EXPR_P (base)))
5613 DECL_NONSHAREABLE (base) = 1;
5616 /* Create new names for all the definitions created by COPY and
5617 add replacement mappings for each new name. */
5618 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5619 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5622 return new_bb;
5625 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5627 static void
5628 add_phi_args_after_copy_edge (edge e_copy)
5630 basic_block bb, bb_copy = e_copy->src, dest;
5631 edge e;
5632 edge_iterator ei;
5633 gimple phi, phi_copy;
5634 tree def;
5635 gimple_stmt_iterator psi, psi_copy;
5637 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5638 return;
5640 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5642 if (e_copy->dest->flags & BB_DUPLICATED)
5643 dest = get_bb_original (e_copy->dest);
5644 else
5645 dest = e_copy->dest;
5647 e = find_edge (bb, dest);
5648 if (!e)
5650 /* During loop unrolling the target of the latch edge is copied.
5651 In this case we are not looking for edge to dest, but to
5652 duplicated block whose original was dest. */
5653 FOR_EACH_EDGE (e, ei, bb->succs)
5655 if ((e->dest->flags & BB_DUPLICATED)
5656 && get_bb_original (e->dest) == dest)
5657 break;
5660 gcc_assert (e != NULL);
5663 for (psi = gsi_start_phis (e->dest),
5664 psi_copy = gsi_start_phis (e_copy->dest);
5665 !gsi_end_p (psi);
5666 gsi_next (&psi), gsi_next (&psi_copy))
5668 phi = gsi_stmt (psi);
5669 phi_copy = gsi_stmt (psi_copy);
5670 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5671 add_phi_arg (phi_copy, def, e_copy,
5672 gimple_phi_arg_location_from_edge (phi, e));
5677 /* Basic block BB_COPY was created by code duplication. Add phi node
5678 arguments for edges going out of BB_COPY. The blocks that were
5679 duplicated have BB_DUPLICATED set. */
5681 void
5682 add_phi_args_after_copy_bb (basic_block bb_copy)
5684 edge e_copy;
5685 edge_iterator ei;
5687 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5689 add_phi_args_after_copy_edge (e_copy);
5693 /* Blocks in REGION_COPY array of length N_REGION were created by
5694 duplication of basic blocks. Add phi node arguments for edges
5695 going from these blocks. If E_COPY is not NULL, also add
5696 phi node arguments for its destination.*/
5698 void
5699 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5700 edge e_copy)
5702 unsigned i;
5704 for (i = 0; i < n_region; i++)
5705 region_copy[i]->flags |= BB_DUPLICATED;
5707 for (i = 0; i < n_region; i++)
5708 add_phi_args_after_copy_bb (region_copy[i]);
5709 if (e_copy)
5710 add_phi_args_after_copy_edge (e_copy);
5712 for (i = 0; i < n_region; i++)
5713 region_copy[i]->flags &= ~BB_DUPLICATED;
5716 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5717 important exit edge EXIT. By important we mean that no SSA name defined
5718 inside region is live over the other exit edges of the region. All entry
5719 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5720 to the duplicate of the region. Dominance and loop information is
5721 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5722 UPDATE_DOMINANCE is false then we assume that the caller will update the
5723 dominance information after calling this function. The new basic
5724 blocks are stored to REGION_COPY in the same order as they had in REGION,
5725 provided that REGION_COPY is not NULL.
5726 The function returns false if it is unable to copy the region,
5727 true otherwise. */
5729 bool
5730 gimple_duplicate_sese_region (edge entry, edge exit,
5731 basic_block *region, unsigned n_region,
5732 basic_block *region_copy,
5733 bool update_dominance)
5735 unsigned i;
5736 bool free_region_copy = false, copying_header = false;
5737 struct loop *loop = entry->dest->loop_father;
5738 edge exit_copy;
5739 vec<basic_block> doms;
5740 edge redirected;
5741 int total_freq = 0, entry_freq = 0;
5742 gcov_type total_count = 0, entry_count = 0;
5744 if (!can_copy_bbs_p (region, n_region))
5745 return false;
5747 /* Some sanity checking. Note that we do not check for all possible
5748 missuses of the functions. I.e. if you ask to copy something weird,
5749 it will work, but the state of structures probably will not be
5750 correct. */
5751 for (i = 0; i < n_region; i++)
5753 /* We do not handle subloops, i.e. all the blocks must belong to the
5754 same loop. */
5755 if (region[i]->loop_father != loop)
5756 return false;
5758 if (region[i] != entry->dest
5759 && region[i] == loop->header)
5760 return false;
5763 set_loop_copy (loop, loop);
5765 /* In case the function is used for loop header copying (which is the primary
5766 use), ensure that EXIT and its copy will be new latch and entry edges. */
5767 if (loop->header == entry->dest)
5769 copying_header = true;
5770 set_loop_copy (loop, loop_outer (loop));
5772 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5773 return false;
5775 for (i = 0; i < n_region; i++)
5776 if (region[i] != exit->src
5777 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5778 return false;
5781 if (!region_copy)
5783 region_copy = XNEWVEC (basic_block, n_region);
5784 free_region_copy = true;
5787 initialize_original_copy_tables ();
5789 /* Record blocks outside the region that are dominated by something
5790 inside. */
5791 if (update_dominance)
5793 doms.create (0);
5794 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5797 if (entry->dest->count)
5799 total_count = entry->dest->count;
5800 entry_count = entry->count;
5801 /* Fix up corner cases, to avoid division by zero or creation of negative
5802 frequencies. */
5803 if (entry_count > total_count)
5804 entry_count = total_count;
5806 else
5808 total_freq = entry->dest->frequency;
5809 entry_freq = EDGE_FREQUENCY (entry);
5810 /* Fix up corner cases, to avoid division by zero or creation of negative
5811 frequencies. */
5812 if (total_freq == 0)
5813 total_freq = 1;
5814 else if (entry_freq > total_freq)
5815 entry_freq = total_freq;
5818 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5819 split_edge_bb_loc (entry), update_dominance);
5820 if (total_count)
5822 scale_bbs_frequencies_gcov_type (region, n_region,
5823 total_count - entry_count,
5824 total_count);
5825 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5826 total_count);
5828 else
5830 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5831 total_freq);
5832 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5835 if (copying_header)
5837 loop->header = exit->dest;
5838 loop->latch = exit->src;
5841 /* Redirect the entry and add the phi node arguments. */
5842 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5843 gcc_assert (redirected != NULL);
5844 flush_pending_stmts (entry);
5846 /* Concerning updating of dominators: We must recount dominators
5847 for entry block and its copy. Anything that is outside of the
5848 region, but was dominated by something inside needs recounting as
5849 well. */
5850 if (update_dominance)
5852 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5853 doms.safe_push (get_bb_original (entry->dest));
5854 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5855 doms.release ();
5858 /* Add the other PHI node arguments. */
5859 add_phi_args_after_copy (region_copy, n_region, NULL);
5861 if (free_region_copy)
5862 free (region_copy);
5864 free_original_copy_tables ();
5865 return true;
5868 /* Checks if BB is part of the region defined by N_REGION BBS. */
5869 static bool
5870 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5872 unsigned int n;
5874 for (n = 0; n < n_region; n++)
5876 if (bb == bbs[n])
5877 return true;
5879 return false;
5882 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5883 are stored to REGION_COPY in the same order in that they appear
5884 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5885 the region, EXIT an exit from it. The condition guarding EXIT
5886 is moved to ENTRY. Returns true if duplication succeeds, false
5887 otherwise.
5889 For example,
5891 some_code;
5892 if (cond)
5894 else
5897 is transformed to
5899 if (cond)
5901 some_code;
5904 else
5906 some_code;
5911 bool
5912 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5913 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5914 basic_block *region_copy ATTRIBUTE_UNUSED)
5916 unsigned i;
5917 bool free_region_copy = false;
5918 struct loop *loop = exit->dest->loop_father;
5919 struct loop *orig_loop = entry->dest->loop_father;
5920 basic_block switch_bb, entry_bb, nentry_bb;
5921 vec<basic_block> doms;
5922 int total_freq = 0, exit_freq = 0;
5923 gcov_type total_count = 0, exit_count = 0;
5924 edge exits[2], nexits[2], e;
5925 gimple_stmt_iterator gsi;
5926 gimple cond_stmt;
5927 edge sorig, snew;
5928 basic_block exit_bb;
5929 gimple_stmt_iterator psi;
5930 gimple phi;
5931 tree def;
5932 struct loop *target, *aloop, *cloop;
5934 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5935 exits[0] = exit;
5936 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5938 if (!can_copy_bbs_p (region, n_region))
5939 return false;
5941 initialize_original_copy_tables ();
5942 set_loop_copy (orig_loop, loop);
5944 target= loop;
5945 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5947 if (bb_part_of_region_p (aloop->header, region, n_region))
5949 cloop = duplicate_loop (aloop, target);
5950 duplicate_subloops (aloop, cloop);
5954 if (!region_copy)
5956 region_copy = XNEWVEC (basic_block, n_region);
5957 free_region_copy = true;
5960 gcc_assert (!need_ssa_update_p (cfun));
5962 /* Record blocks outside the region that are dominated by something
5963 inside. */
5964 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5966 if (exit->src->count)
5968 total_count = exit->src->count;
5969 exit_count = exit->count;
5970 /* Fix up corner cases, to avoid division by zero or creation of negative
5971 frequencies. */
5972 if (exit_count > total_count)
5973 exit_count = total_count;
5975 else
5977 total_freq = exit->src->frequency;
5978 exit_freq = EDGE_FREQUENCY (exit);
5979 /* Fix up corner cases, to avoid division by zero or creation of negative
5980 frequencies. */
5981 if (total_freq == 0)
5982 total_freq = 1;
5983 if (exit_freq > total_freq)
5984 exit_freq = total_freq;
5987 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5988 split_edge_bb_loc (exit), true);
5989 if (total_count)
5991 scale_bbs_frequencies_gcov_type (region, n_region,
5992 total_count - exit_count,
5993 total_count);
5994 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5995 total_count);
5997 else
5999 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6000 total_freq);
6001 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6004 /* Create the switch block, and put the exit condition to it. */
6005 entry_bb = entry->dest;
6006 nentry_bb = get_bb_copy (entry_bb);
6007 if (!last_stmt (entry->src)
6008 || !stmt_ends_bb_p (last_stmt (entry->src)))
6009 switch_bb = entry->src;
6010 else
6011 switch_bb = split_edge (entry);
6012 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6014 gsi = gsi_last_bb (switch_bb);
6015 cond_stmt = last_stmt (exit->src);
6016 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6017 cond_stmt = gimple_copy (cond_stmt);
6019 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6021 sorig = single_succ_edge (switch_bb);
6022 sorig->flags = exits[1]->flags;
6023 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6025 /* Register the new edge from SWITCH_BB in loop exit lists. */
6026 rescan_loop_exit (snew, true, false);
6028 /* Add the PHI node arguments. */
6029 add_phi_args_after_copy (region_copy, n_region, snew);
6031 /* Get rid of now superfluous conditions and associated edges (and phi node
6032 arguments). */
6033 exit_bb = exit->dest;
6035 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6036 PENDING_STMT (e) = NULL;
6038 /* The latch of ORIG_LOOP was copied, and so was the backedge
6039 to the original header. We redirect this backedge to EXIT_BB. */
6040 for (i = 0; i < n_region; i++)
6041 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6043 gcc_assert (single_succ_edge (region_copy[i]));
6044 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6045 PENDING_STMT (e) = NULL;
6046 for (psi = gsi_start_phis (exit_bb);
6047 !gsi_end_p (psi);
6048 gsi_next (&psi))
6050 phi = gsi_stmt (psi);
6051 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6052 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6055 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6056 PENDING_STMT (e) = NULL;
6058 /* Anything that is outside of the region, but was dominated by something
6059 inside needs to update dominance info. */
6060 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6061 doms.release ();
6062 /* Update the SSA web. */
6063 update_ssa (TODO_update_ssa);
6065 if (free_region_copy)
6066 free (region_copy);
6068 free_original_copy_tables ();
6069 return true;
6072 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6073 adding blocks when the dominator traversal reaches EXIT. This
6074 function silently assumes that ENTRY strictly dominates EXIT. */
6076 void
6077 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6078 vec<basic_block> *bbs_p)
6080 basic_block son;
6082 for (son = first_dom_son (CDI_DOMINATORS, entry);
6083 son;
6084 son = next_dom_son (CDI_DOMINATORS, son))
6086 bbs_p->safe_push (son);
6087 if (son != exit)
6088 gather_blocks_in_sese_region (son, exit, bbs_p);
6092 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6093 The duplicates are recorded in VARS_MAP. */
6095 static void
6096 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6097 tree to_context)
6099 tree t = *tp, new_t;
6100 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6101 void **loc;
6103 if (DECL_CONTEXT (t) == to_context)
6104 return;
6106 loc = pointer_map_contains (vars_map, t);
6108 if (!loc)
6110 loc = pointer_map_insert (vars_map, t);
6112 if (SSA_VAR_P (t))
6114 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6115 add_local_decl (f, new_t);
6117 else
6119 gcc_assert (TREE_CODE (t) == CONST_DECL);
6120 new_t = copy_node (t);
6122 DECL_CONTEXT (new_t) = to_context;
6124 *loc = new_t;
6126 else
6127 new_t = (tree) *loc;
6129 *tp = new_t;
6133 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6134 VARS_MAP maps old ssa names and var_decls to the new ones. */
6136 static tree
6137 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6138 tree to_context)
6140 void **loc;
6141 tree new_name;
6143 gcc_assert (!virtual_operand_p (name));
6145 loc = pointer_map_contains (vars_map, name);
6147 if (!loc)
6149 tree decl = SSA_NAME_VAR (name);
6150 if (decl)
6152 replace_by_duplicate_decl (&decl, vars_map, to_context);
6153 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6154 decl, SSA_NAME_DEF_STMT (name));
6155 if (SSA_NAME_IS_DEFAULT_DEF (name))
6156 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6157 decl, new_name);
6159 else
6160 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6161 name, SSA_NAME_DEF_STMT (name));
6163 loc = pointer_map_insert (vars_map, name);
6164 *loc = new_name;
6166 else
6167 new_name = (tree) *loc;
6169 return new_name;
6172 struct move_stmt_d
6174 tree orig_block;
6175 tree new_block;
6176 tree from_context;
6177 tree to_context;
6178 struct pointer_map_t *vars_map;
6179 htab_t new_label_map;
6180 struct pointer_map_t *eh_map;
6181 bool remap_decls_p;
6184 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6185 contained in *TP if it has been ORIG_BLOCK previously and change the
6186 DECL_CONTEXT of every local variable referenced in *TP. */
6188 static tree
6189 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6191 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6192 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6193 tree t = *tp;
6195 if (EXPR_P (t))
6197 tree block = TREE_BLOCK (t);
6198 if (block == p->orig_block
6199 || (p->orig_block == NULL_TREE
6200 && block != NULL_TREE))
6201 TREE_SET_BLOCK (t, p->new_block);
6202 #ifdef ENABLE_CHECKING
6203 else if (block != NULL_TREE)
6205 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6206 block = BLOCK_SUPERCONTEXT (block);
6207 gcc_assert (block == p->orig_block);
6209 #endif
6211 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6213 if (TREE_CODE (t) == SSA_NAME)
6214 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6215 else if (TREE_CODE (t) == LABEL_DECL)
6217 if (p->new_label_map)
6219 struct tree_map in, *out;
6220 in.base.from = t;
6221 out = (struct tree_map *)
6222 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6223 if (out)
6224 *tp = t = out->to;
6227 DECL_CONTEXT (t) = p->to_context;
6229 else if (p->remap_decls_p)
6231 /* Replace T with its duplicate. T should no longer appear in the
6232 parent function, so this looks wasteful; however, it may appear
6233 in referenced_vars, and more importantly, as virtual operands of
6234 statements, and in alias lists of other variables. It would be
6235 quite difficult to expunge it from all those places. ??? It might
6236 suffice to do this for addressable variables. */
6237 if ((TREE_CODE (t) == VAR_DECL
6238 && !is_global_var (t))
6239 || TREE_CODE (t) == CONST_DECL)
6240 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6242 *walk_subtrees = 0;
6244 else if (TYPE_P (t))
6245 *walk_subtrees = 0;
6247 return NULL_TREE;
6250 /* Helper for move_stmt_r. Given an EH region number for the source
6251 function, map that to the duplicate EH regio number in the dest. */
6253 static int
6254 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6256 eh_region old_r, new_r;
6257 void **slot;
6259 old_r = get_eh_region_from_number (old_nr);
6260 slot = pointer_map_contains (p->eh_map, old_r);
6261 new_r = (eh_region) *slot;
6263 return new_r->index;
6266 /* Similar, but operate on INTEGER_CSTs. */
6268 static tree
6269 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6271 int old_nr, new_nr;
6273 old_nr = tree_low_cst (old_t_nr, 0);
6274 new_nr = move_stmt_eh_region_nr (old_nr, p);
6276 return build_int_cst (integer_type_node, new_nr);
6279 /* Like move_stmt_op, but for gimple statements.
6281 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6282 contained in the current statement in *GSI_P and change the
6283 DECL_CONTEXT of every local variable referenced in the current
6284 statement. */
6286 static tree
6287 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6288 struct walk_stmt_info *wi)
6290 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6291 gimple stmt = gsi_stmt (*gsi_p);
6292 tree block = gimple_block (stmt);
6294 if (block == p->orig_block
6295 || (p->orig_block == NULL_TREE
6296 && block != NULL_TREE))
6297 gimple_set_block (stmt, p->new_block);
6299 switch (gimple_code (stmt))
6301 case GIMPLE_CALL:
6302 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6304 tree r, fndecl = gimple_call_fndecl (stmt);
6305 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6306 switch (DECL_FUNCTION_CODE (fndecl))
6308 case BUILT_IN_EH_COPY_VALUES:
6309 r = gimple_call_arg (stmt, 1);
6310 r = move_stmt_eh_region_tree_nr (r, p);
6311 gimple_call_set_arg (stmt, 1, r);
6312 /* FALLTHRU */
6314 case BUILT_IN_EH_POINTER:
6315 case BUILT_IN_EH_FILTER:
6316 r = gimple_call_arg (stmt, 0);
6317 r = move_stmt_eh_region_tree_nr (r, p);
6318 gimple_call_set_arg (stmt, 0, r);
6319 break;
6321 default:
6322 break;
6325 break;
6327 case GIMPLE_RESX:
6329 int r = gimple_resx_region (stmt);
6330 r = move_stmt_eh_region_nr (r, p);
6331 gimple_resx_set_region (stmt, r);
6333 break;
6335 case GIMPLE_EH_DISPATCH:
6337 int r = gimple_eh_dispatch_region (stmt);
6338 r = move_stmt_eh_region_nr (r, p);
6339 gimple_eh_dispatch_set_region (stmt, r);
6341 break;
6343 case GIMPLE_OMP_RETURN:
6344 case GIMPLE_OMP_CONTINUE:
6345 break;
6346 default:
6347 if (is_gimple_omp (stmt))
6349 /* Do not remap variables inside OMP directives. Variables
6350 referenced in clauses and directive header belong to the
6351 parent function and should not be moved into the child
6352 function. */
6353 bool save_remap_decls_p = p->remap_decls_p;
6354 p->remap_decls_p = false;
6355 *handled_ops_p = true;
6357 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6358 move_stmt_op, wi);
6360 p->remap_decls_p = save_remap_decls_p;
6362 break;
6365 return NULL_TREE;
6368 /* Move basic block BB from function CFUN to function DEST_FN. The
6369 block is moved out of the original linked list and placed after
6370 block AFTER in the new list. Also, the block is removed from the
6371 original array of blocks and placed in DEST_FN's array of blocks.
6372 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6373 updated to reflect the moved edges.
6375 The local variables are remapped to new instances, VARS_MAP is used
6376 to record the mapping. */
6378 static void
6379 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6380 basic_block after, bool update_edge_count_p,
6381 struct move_stmt_d *d)
6383 struct control_flow_graph *cfg;
6384 edge_iterator ei;
6385 edge e;
6386 gimple_stmt_iterator si;
6387 unsigned old_len, new_len;
6389 /* Remove BB from dominance structures. */
6390 delete_from_dominance_info (CDI_DOMINATORS, bb);
6392 /* Move BB from its current loop to the copy in the new function. */
6393 if (current_loops)
6395 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6396 if (new_loop)
6397 bb->loop_father = new_loop;
6400 /* Link BB to the new linked list. */
6401 move_block_after (bb, after);
6403 /* Update the edge count in the corresponding flowgraphs. */
6404 if (update_edge_count_p)
6405 FOR_EACH_EDGE (e, ei, bb->succs)
6407 cfun->cfg->x_n_edges--;
6408 dest_cfun->cfg->x_n_edges++;
6411 /* Remove BB from the original basic block array. */
6412 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6413 cfun->cfg->x_n_basic_blocks--;
6415 /* Grow DEST_CFUN's basic block array if needed. */
6416 cfg = dest_cfun->cfg;
6417 cfg->x_n_basic_blocks++;
6418 if (bb->index >= cfg->x_last_basic_block)
6419 cfg->x_last_basic_block = bb->index + 1;
6421 old_len = vec_safe_length (cfg->x_basic_block_info);
6422 if ((unsigned) cfg->x_last_basic_block >= old_len)
6424 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6425 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6428 (*cfg->x_basic_block_info)[bb->index] = bb;
6430 /* Remap the variables in phi nodes. */
6431 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6433 gimple phi = gsi_stmt (si);
6434 use_operand_p use;
6435 tree op = PHI_RESULT (phi);
6436 ssa_op_iter oi;
6437 unsigned i;
6439 if (virtual_operand_p (op))
6441 /* Remove the phi nodes for virtual operands (alias analysis will be
6442 run for the new function, anyway). */
6443 remove_phi_node (&si, true);
6444 continue;
6447 SET_PHI_RESULT (phi,
6448 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6449 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6451 op = USE_FROM_PTR (use);
6452 if (TREE_CODE (op) == SSA_NAME)
6453 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6456 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6458 location_t locus = gimple_phi_arg_location (phi, i);
6459 tree block = LOCATION_BLOCK (locus);
6461 if (locus == UNKNOWN_LOCATION)
6462 continue;
6463 if (d->orig_block == NULL_TREE || block == d->orig_block)
6465 if (d->new_block == NULL_TREE)
6466 locus = LOCATION_LOCUS (locus);
6467 else
6468 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6469 gimple_phi_arg_set_location (phi, i, locus);
6473 gsi_next (&si);
6476 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6478 gimple stmt = gsi_stmt (si);
6479 struct walk_stmt_info wi;
6481 memset (&wi, 0, sizeof (wi));
6482 wi.info = d;
6483 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6485 if (gimple_code (stmt) == GIMPLE_LABEL)
6487 tree label = gimple_label_label (stmt);
6488 int uid = LABEL_DECL_UID (label);
6490 gcc_assert (uid > -1);
6492 old_len = vec_safe_length (cfg->x_label_to_block_map);
6493 if (old_len <= (unsigned) uid)
6495 new_len = 3 * uid / 2 + 1;
6496 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6499 (*cfg->x_label_to_block_map)[uid] = bb;
6500 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6502 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6504 if (uid >= dest_cfun->cfg->last_label_uid)
6505 dest_cfun->cfg->last_label_uid = uid + 1;
6508 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6509 remove_stmt_from_eh_lp_fn (cfun, stmt);
6511 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6512 gimple_remove_stmt_histograms (cfun, stmt);
6514 /* We cannot leave any operands allocated from the operand caches of
6515 the current function. */
6516 free_stmt_operands (stmt);
6517 push_cfun (dest_cfun);
6518 update_stmt (stmt);
6519 pop_cfun ();
6522 FOR_EACH_EDGE (e, ei, bb->succs)
6523 if (e->goto_locus != UNKNOWN_LOCATION)
6525 tree block = LOCATION_BLOCK (e->goto_locus);
6526 if (d->orig_block == NULL_TREE
6527 || block == d->orig_block)
6528 e->goto_locus = d->new_block ?
6529 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6530 LOCATION_LOCUS (e->goto_locus);
6534 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6535 the outermost EH region. Use REGION as the incoming base EH region. */
6537 static eh_region
6538 find_outermost_region_in_block (struct function *src_cfun,
6539 basic_block bb, eh_region region)
6541 gimple_stmt_iterator si;
6543 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6545 gimple stmt = gsi_stmt (si);
6546 eh_region stmt_region;
6547 int lp_nr;
6549 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6550 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6551 if (stmt_region)
6553 if (region == NULL)
6554 region = stmt_region;
6555 else if (stmt_region != region)
6557 region = eh_region_outermost (src_cfun, stmt_region, region);
6558 gcc_assert (region != NULL);
6563 return region;
6566 static tree
6567 new_label_mapper (tree decl, void *data)
6569 htab_t hash = (htab_t) data;
6570 struct tree_map *m;
6571 void **slot;
6573 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6575 m = XNEW (struct tree_map);
6576 m->hash = DECL_UID (decl);
6577 m->base.from = decl;
6578 m->to = create_artificial_label (UNKNOWN_LOCATION);
6579 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6580 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6581 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6583 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6584 gcc_assert (*slot == NULL);
6586 *slot = m;
6588 return m->to;
6591 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6592 subblocks. */
6594 static void
6595 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6596 tree to_context)
6598 tree *tp, t;
6600 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6602 t = *tp;
6603 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6604 continue;
6605 replace_by_duplicate_decl (&t, vars_map, to_context);
6606 if (t != *tp)
6608 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6610 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6611 DECL_HAS_VALUE_EXPR_P (t) = 1;
6613 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6614 *tp = t;
6618 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6619 replace_block_vars_by_duplicates (block, vars_map, to_context);
6622 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6623 from FN1 to FN2. */
6625 static void
6626 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6627 struct loop *loop)
6629 /* Discard it from the old loop array. */
6630 (*get_loops (fn1))[loop->num] = NULL;
6632 /* Place it in the new loop array, assigning it a new number. */
6633 loop->num = number_of_loops (fn2);
6634 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6636 /* Recurse to children. */
6637 for (loop = loop->inner; loop; loop = loop->next)
6638 fixup_loop_arrays_after_move (fn1, fn2, loop);
6641 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6642 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6643 single basic block in the original CFG and the new basic block is
6644 returned. DEST_CFUN must not have a CFG yet.
6646 Note that the region need not be a pure SESE region. Blocks inside
6647 the region may contain calls to abort/exit. The only restriction
6648 is that ENTRY_BB should be the only entry point and it must
6649 dominate EXIT_BB.
6651 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6652 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6653 to the new function.
6655 All local variables referenced in the region are assumed to be in
6656 the corresponding BLOCK_VARS and unexpanded variable lists
6657 associated with DEST_CFUN. */
6659 basic_block
6660 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6661 basic_block exit_bb, tree orig_block)
6663 vec<basic_block> bbs, dom_bbs;
6664 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6665 basic_block after, bb, *entry_pred, *exit_succ, abb;
6666 struct function *saved_cfun = cfun;
6667 int *entry_flag, *exit_flag;
6668 unsigned *entry_prob, *exit_prob;
6669 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6670 edge e;
6671 edge_iterator ei;
6672 htab_t new_label_map;
6673 struct pointer_map_t *vars_map, *eh_map;
6674 struct loop *loop = entry_bb->loop_father;
6675 struct loop *loop0 = get_loop (saved_cfun, 0);
6676 struct move_stmt_d d;
6678 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6679 region. */
6680 gcc_assert (entry_bb != exit_bb
6681 && (!exit_bb
6682 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6684 /* Collect all the blocks in the region. Manually add ENTRY_BB
6685 because it won't be added by dfs_enumerate_from. */
6686 bbs.create (0);
6687 bbs.safe_push (entry_bb);
6688 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6690 /* The blocks that used to be dominated by something in BBS will now be
6691 dominated by the new block. */
6692 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6693 bbs.address (),
6694 bbs.length ());
6696 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6697 the predecessor edges to ENTRY_BB and the successor edges to
6698 EXIT_BB so that we can re-attach them to the new basic block that
6699 will replace the region. */
6700 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6701 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6702 entry_flag = XNEWVEC (int, num_entry_edges);
6703 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6704 i = 0;
6705 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6707 entry_prob[i] = e->probability;
6708 entry_flag[i] = e->flags;
6709 entry_pred[i++] = e->src;
6710 remove_edge (e);
6713 if (exit_bb)
6715 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6716 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6717 exit_flag = XNEWVEC (int, num_exit_edges);
6718 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6719 i = 0;
6720 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6722 exit_prob[i] = e->probability;
6723 exit_flag[i] = e->flags;
6724 exit_succ[i++] = e->dest;
6725 remove_edge (e);
6728 else
6730 num_exit_edges = 0;
6731 exit_succ = NULL;
6732 exit_flag = NULL;
6733 exit_prob = NULL;
6736 /* Switch context to the child function to initialize DEST_FN's CFG. */
6737 gcc_assert (dest_cfun->cfg == NULL);
6738 push_cfun (dest_cfun);
6740 init_empty_tree_cfg ();
6742 /* Initialize EH information for the new function. */
6743 eh_map = NULL;
6744 new_label_map = NULL;
6745 if (saved_cfun->eh)
6747 eh_region region = NULL;
6749 FOR_EACH_VEC_ELT (bbs, i, bb)
6750 region = find_outermost_region_in_block (saved_cfun, bb, region);
6752 init_eh_for_function ();
6753 if (region != NULL)
6755 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6756 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6757 new_label_mapper, new_label_map);
6761 /* Initialize an empty loop tree. */
6762 struct loops *loops = ggc_alloc_cleared_loops ();
6763 init_loops_structure (dest_cfun, loops, 1);
6764 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6765 set_loops_for_fn (dest_cfun, loops);
6767 /* Move the outlined loop tree part. */
6768 num_nodes = bbs.length ();
6769 FOR_EACH_VEC_ELT (bbs, i, bb)
6771 if (bb->loop_father->header == bb)
6773 struct loop *this_loop = bb->loop_father;
6774 struct loop *outer = loop_outer (this_loop);
6775 if (outer == loop
6776 /* If the SESE region contains some bbs ending with
6777 a noreturn call, those are considered to belong
6778 to the outermost loop in saved_cfun, rather than
6779 the entry_bb's loop_father. */
6780 || outer == loop0)
6782 if (outer != loop)
6783 num_nodes -= this_loop->num_nodes;
6784 flow_loop_tree_node_remove (bb->loop_father);
6785 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6786 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6789 else if (bb->loop_father == loop0 && loop0 != loop)
6790 num_nodes--;
6792 /* Remove loop exits from the outlined region. */
6793 if (loops_for_fn (saved_cfun)->exits)
6794 FOR_EACH_EDGE (e, ei, bb->succs)
6796 void **slot = htab_find_slot_with_hash
6797 (loops_for_fn (saved_cfun)->exits, e,
6798 htab_hash_pointer (e), NO_INSERT);
6799 if (slot)
6800 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6805 /* Adjust the number of blocks in the tree root of the outlined part. */
6806 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6808 /* Setup a mapping to be used by move_block_to_fn. */
6809 loop->aux = current_loops->tree_root;
6810 loop0->aux = current_loops->tree_root;
6812 pop_cfun ();
6814 /* Move blocks from BBS into DEST_CFUN. */
6815 gcc_assert (bbs.length () >= 2);
6816 after = dest_cfun->cfg->x_entry_block_ptr;
6817 vars_map = pointer_map_create ();
6819 memset (&d, 0, sizeof (d));
6820 d.orig_block = orig_block;
6821 d.new_block = DECL_INITIAL (dest_cfun->decl);
6822 d.from_context = cfun->decl;
6823 d.to_context = dest_cfun->decl;
6824 d.vars_map = vars_map;
6825 d.new_label_map = new_label_map;
6826 d.eh_map = eh_map;
6827 d.remap_decls_p = true;
6829 FOR_EACH_VEC_ELT (bbs, i, bb)
6831 /* No need to update edge counts on the last block. It has
6832 already been updated earlier when we detached the region from
6833 the original CFG. */
6834 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6835 after = bb;
6838 loop->aux = NULL;
6839 loop0->aux = NULL;
6840 /* Loop sizes are no longer correct, fix them up. */
6841 loop->num_nodes -= num_nodes;
6842 for (struct loop *outer = loop_outer (loop);
6843 outer; outer = loop_outer (outer))
6844 outer->num_nodes -= num_nodes;
6845 loop0->num_nodes -= bbs.length () - num_nodes;
6847 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6849 struct loop *aloop;
6850 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6851 if (aloop != NULL)
6853 if (aloop->simduid)
6855 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6856 d.to_context);
6857 dest_cfun->has_simduid_loops = true;
6859 if (aloop->force_vect)
6860 dest_cfun->has_force_vect_loops = true;
6864 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6865 if (orig_block)
6867 tree block;
6868 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6869 == NULL_TREE);
6870 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6871 = BLOCK_SUBBLOCKS (orig_block);
6872 for (block = BLOCK_SUBBLOCKS (orig_block);
6873 block; block = BLOCK_CHAIN (block))
6874 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6875 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6878 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6879 vars_map, dest_cfun->decl);
6881 if (new_label_map)
6882 htab_delete (new_label_map);
6883 if (eh_map)
6884 pointer_map_destroy (eh_map);
6885 pointer_map_destroy (vars_map);
6887 /* Rewire the entry and exit blocks. The successor to the entry
6888 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6889 the child function. Similarly, the predecessor of DEST_FN's
6890 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6891 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6892 various CFG manipulation function get to the right CFG.
6894 FIXME, this is silly. The CFG ought to become a parameter to
6895 these helpers. */
6896 push_cfun (dest_cfun);
6897 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6898 if (exit_bb)
6899 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6900 pop_cfun ();
6902 /* Back in the original function, the SESE region has disappeared,
6903 create a new basic block in its place. */
6904 bb = create_empty_bb (entry_pred[0]);
6905 if (current_loops)
6906 add_bb_to_loop (bb, loop);
6907 for (i = 0; i < num_entry_edges; i++)
6909 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6910 e->probability = entry_prob[i];
6913 for (i = 0; i < num_exit_edges; i++)
6915 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6916 e->probability = exit_prob[i];
6919 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6920 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6921 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6922 dom_bbs.release ();
6924 if (exit_bb)
6926 free (exit_prob);
6927 free (exit_flag);
6928 free (exit_succ);
6930 free (entry_prob);
6931 free (entry_flag);
6932 free (entry_pred);
6933 bbs.release ();
6935 return bb;
6939 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6942 void
6943 dump_function_to_file (tree fndecl, FILE *file, int flags)
6945 tree arg, var, old_current_fndecl = current_function_decl;
6946 struct function *dsf;
6947 bool ignore_topmost_bind = false, any_var = false;
6948 basic_block bb;
6949 tree chain;
6950 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6951 && decl_is_tm_clone (fndecl));
6952 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6954 current_function_decl = fndecl;
6955 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6957 arg = DECL_ARGUMENTS (fndecl);
6958 while (arg)
6960 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6961 fprintf (file, " ");
6962 print_generic_expr (file, arg, dump_flags);
6963 if (flags & TDF_VERBOSE)
6964 print_node (file, "", arg, 4);
6965 if (DECL_CHAIN (arg))
6966 fprintf (file, ", ");
6967 arg = DECL_CHAIN (arg);
6969 fprintf (file, ")\n");
6971 if (flags & TDF_VERBOSE)
6972 print_node (file, "", fndecl, 2);
6974 dsf = DECL_STRUCT_FUNCTION (fndecl);
6975 if (dsf && (flags & TDF_EH))
6976 dump_eh_tree (file, dsf);
6978 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6980 dump_node (fndecl, TDF_SLIM | flags, file);
6981 current_function_decl = old_current_fndecl;
6982 return;
6985 /* When GIMPLE is lowered, the variables are no longer available in
6986 BIND_EXPRs, so display them separately. */
6987 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6989 unsigned ix;
6990 ignore_topmost_bind = true;
6992 fprintf (file, "{\n");
6993 if (!vec_safe_is_empty (fun->local_decls))
6994 FOR_EACH_LOCAL_DECL (fun, ix, var)
6996 print_generic_decl (file, var, flags);
6997 if (flags & TDF_VERBOSE)
6998 print_node (file, "", var, 4);
6999 fprintf (file, "\n");
7001 any_var = true;
7003 if (gimple_in_ssa_p (cfun))
7004 for (ix = 1; ix < num_ssa_names; ++ix)
7006 tree name = ssa_name (ix);
7007 if (name && !SSA_NAME_VAR (name))
7009 fprintf (file, " ");
7010 print_generic_expr (file, TREE_TYPE (name), flags);
7011 fprintf (file, " ");
7012 print_generic_expr (file, name, flags);
7013 fprintf (file, ";\n");
7015 any_var = true;
7020 if (fun && fun->decl == fndecl
7021 && fun->cfg
7022 && basic_block_info_for_function (fun))
7024 /* If the CFG has been built, emit a CFG-based dump. */
7025 if (!ignore_topmost_bind)
7026 fprintf (file, "{\n");
7028 if (any_var && n_basic_blocks_for_function (fun))
7029 fprintf (file, "\n");
7031 FOR_EACH_BB_FN (bb, fun)
7032 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7034 fprintf (file, "}\n");
7036 else if (DECL_SAVED_TREE (fndecl) == NULL)
7038 /* The function is now in GIMPLE form but the CFG has not been
7039 built yet. Emit the single sequence of GIMPLE statements
7040 that make up its body. */
7041 gimple_seq body = gimple_body (fndecl);
7043 if (gimple_seq_first_stmt (body)
7044 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7045 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7046 print_gimple_seq (file, body, 0, flags);
7047 else
7049 if (!ignore_topmost_bind)
7050 fprintf (file, "{\n");
7052 if (any_var)
7053 fprintf (file, "\n");
7055 print_gimple_seq (file, body, 2, flags);
7056 fprintf (file, "}\n");
7059 else
7061 int indent;
7063 /* Make a tree based dump. */
7064 chain = DECL_SAVED_TREE (fndecl);
7065 if (chain && TREE_CODE (chain) == BIND_EXPR)
7067 if (ignore_topmost_bind)
7069 chain = BIND_EXPR_BODY (chain);
7070 indent = 2;
7072 else
7073 indent = 0;
7075 else
7077 if (!ignore_topmost_bind)
7078 fprintf (file, "{\n");
7079 indent = 2;
7082 if (any_var)
7083 fprintf (file, "\n");
7085 print_generic_stmt_indented (file, chain, flags, indent);
7086 if (ignore_topmost_bind)
7087 fprintf (file, "}\n");
7090 if (flags & TDF_ENUMERATE_LOCALS)
7091 dump_enumerated_decls (file, flags);
7092 fprintf (file, "\n\n");
7094 current_function_decl = old_current_fndecl;
7097 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7099 DEBUG_FUNCTION void
7100 debug_function (tree fn, int flags)
7102 dump_function_to_file (fn, stderr, flags);
7106 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7108 static void
7109 print_pred_bbs (FILE *file, basic_block bb)
7111 edge e;
7112 edge_iterator ei;
7114 FOR_EACH_EDGE (e, ei, bb->preds)
7115 fprintf (file, "bb_%d ", e->src->index);
7119 /* Print on FILE the indexes for the successors of basic_block BB. */
7121 static void
7122 print_succ_bbs (FILE *file, basic_block bb)
7124 edge e;
7125 edge_iterator ei;
7127 FOR_EACH_EDGE (e, ei, bb->succs)
7128 fprintf (file, "bb_%d ", e->dest->index);
7131 /* Print to FILE the basic block BB following the VERBOSITY level. */
7133 void
7134 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7136 char *s_indent = (char *) alloca ((size_t) indent + 1);
7137 memset ((void *) s_indent, ' ', (size_t) indent);
7138 s_indent[indent] = '\0';
7140 /* Print basic_block's header. */
7141 if (verbosity >= 2)
7143 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7144 print_pred_bbs (file, bb);
7145 fprintf (file, "}, succs = {");
7146 print_succ_bbs (file, bb);
7147 fprintf (file, "})\n");
7150 /* Print basic_block's body. */
7151 if (verbosity >= 3)
7153 fprintf (file, "%s {\n", s_indent);
7154 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7155 fprintf (file, "%s }\n", s_indent);
7159 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7161 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7162 VERBOSITY level this outputs the contents of the loop, or just its
7163 structure. */
7165 static void
7166 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7168 char *s_indent;
7169 basic_block bb;
7171 if (loop == NULL)
7172 return;
7174 s_indent = (char *) alloca ((size_t) indent + 1);
7175 memset ((void *) s_indent, ' ', (size_t) indent);
7176 s_indent[indent] = '\0';
7178 /* Print loop's header. */
7179 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7180 if (loop->header)
7181 fprintf (file, "header = %d", loop->header->index);
7182 else
7184 fprintf (file, "deleted)\n");
7185 return;
7187 if (loop->latch)
7188 fprintf (file, ", latch = %d", loop->latch->index);
7189 else
7190 fprintf (file, ", multiple latches");
7191 fprintf (file, ", niter = ");
7192 print_generic_expr (file, loop->nb_iterations, 0);
7194 if (loop->any_upper_bound)
7196 fprintf (file, ", upper_bound = ");
7197 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7200 if (loop->any_estimate)
7202 fprintf (file, ", estimate = ");
7203 dump_double_int (file, loop->nb_iterations_estimate, true);
7205 fprintf (file, ")\n");
7207 /* Print loop's body. */
7208 if (verbosity >= 1)
7210 fprintf (file, "%s{\n", s_indent);
7211 FOR_EACH_BB (bb)
7212 if (bb->loop_father == loop)
7213 print_loops_bb (file, bb, indent, verbosity);
7215 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7216 fprintf (file, "%s}\n", s_indent);
7220 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7221 spaces. Following VERBOSITY level this outputs the contents of the
7222 loop, or just its structure. */
7224 static void
7225 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7226 int verbosity)
7228 if (loop == NULL)
7229 return;
7231 print_loop (file, loop, indent, verbosity);
7232 print_loop_and_siblings (file, loop->next, indent, verbosity);
7235 /* Follow a CFG edge from the entry point of the program, and on entry
7236 of a loop, pretty print the loop structure on FILE. */
7238 void
7239 print_loops (FILE *file, int verbosity)
7241 basic_block bb;
7243 bb = ENTRY_BLOCK_PTR;
7244 if (bb && bb->loop_father)
7245 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7248 /* Dump a loop. */
7250 DEBUG_FUNCTION void
7251 debug (struct loop &ref)
7253 print_loop (stderr, &ref, 0, /*verbosity*/0);
7256 DEBUG_FUNCTION void
7257 debug (struct loop *ptr)
7259 if (ptr)
7260 debug (*ptr);
7261 else
7262 fprintf (stderr, "<nil>\n");
7265 /* Dump a loop verbosely. */
7267 DEBUG_FUNCTION void
7268 debug_verbose (struct loop &ref)
7270 print_loop (stderr, &ref, 0, /*verbosity*/3);
7273 DEBUG_FUNCTION void
7274 debug_verbose (struct loop *ptr)
7276 if (ptr)
7277 debug (*ptr);
7278 else
7279 fprintf (stderr, "<nil>\n");
7283 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7285 DEBUG_FUNCTION void
7286 debug_loops (int verbosity)
7288 print_loops (stderr, verbosity);
7291 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7293 DEBUG_FUNCTION void
7294 debug_loop (struct loop *loop, int verbosity)
7296 print_loop (stderr, loop, 0, verbosity);
7299 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7300 level. */
7302 DEBUG_FUNCTION void
7303 debug_loop_num (unsigned num, int verbosity)
7305 debug_loop (get_loop (cfun, num), verbosity);
7308 /* Return true if BB ends with a call, possibly followed by some
7309 instructions that must stay with the call. Return false,
7310 otherwise. */
7312 static bool
7313 gimple_block_ends_with_call_p (basic_block bb)
7315 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7316 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7320 /* Return true if BB ends with a conditional branch. Return false,
7321 otherwise. */
7323 static bool
7324 gimple_block_ends_with_condjump_p (const_basic_block bb)
7326 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7327 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7331 /* Return true if we need to add fake edge to exit at statement T.
7332 Helper function for gimple_flow_call_edges_add. */
7334 static bool
7335 need_fake_edge_p (gimple t)
7337 tree fndecl = NULL_TREE;
7338 int call_flags = 0;
7340 /* NORETURN and LONGJMP calls already have an edge to exit.
7341 CONST and PURE calls do not need one.
7342 We don't currently check for CONST and PURE here, although
7343 it would be a good idea, because those attributes are
7344 figured out from the RTL in mark_constant_function, and
7345 the counter incrementation code from -fprofile-arcs
7346 leads to different results from -fbranch-probabilities. */
7347 if (is_gimple_call (t))
7349 fndecl = gimple_call_fndecl (t);
7350 call_flags = gimple_call_flags (t);
7353 if (is_gimple_call (t)
7354 && fndecl
7355 && DECL_BUILT_IN (fndecl)
7356 && (call_flags & ECF_NOTHROW)
7357 && !(call_flags & ECF_RETURNS_TWICE)
7358 /* fork() doesn't really return twice, but the effect of
7359 wrapping it in __gcov_fork() which calls __gcov_flush()
7360 and clears the counters before forking has the same
7361 effect as returning twice. Force a fake edge. */
7362 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7363 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7364 return false;
7366 if (is_gimple_call (t))
7368 edge_iterator ei;
7369 edge e;
7370 basic_block bb;
7372 if (!(call_flags & ECF_NORETURN))
7373 return true;
7375 bb = gimple_bb (t);
7376 FOR_EACH_EDGE (e, ei, bb->succs)
7377 if ((e->flags & EDGE_FAKE) == 0)
7378 return true;
7381 if (gimple_code (t) == GIMPLE_ASM
7382 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7383 return true;
7385 return false;
7389 /* Add fake edges to the function exit for any non constant and non
7390 noreturn calls (or noreturn calls with EH/abnormal edges),
7391 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7392 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7393 that were split.
7395 The goal is to expose cases in which entering a basic block does
7396 not imply that all subsequent instructions must be executed. */
7398 static int
7399 gimple_flow_call_edges_add (sbitmap blocks)
7401 int i;
7402 int blocks_split = 0;
7403 int last_bb = last_basic_block;
7404 bool check_last_block = false;
7406 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7407 return 0;
7409 if (! blocks)
7410 check_last_block = true;
7411 else
7412 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7414 /* In the last basic block, before epilogue generation, there will be
7415 a fallthru edge to EXIT. Special care is required if the last insn
7416 of the last basic block is a call because make_edge folds duplicate
7417 edges, which would result in the fallthru edge also being marked
7418 fake, which would result in the fallthru edge being removed by
7419 remove_fake_edges, which would result in an invalid CFG.
7421 Moreover, we can't elide the outgoing fake edge, since the block
7422 profiler needs to take this into account in order to solve the minimal
7423 spanning tree in the case that the call doesn't return.
7425 Handle this by adding a dummy instruction in a new last basic block. */
7426 if (check_last_block)
7428 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7429 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7430 gimple t = NULL;
7432 if (!gsi_end_p (gsi))
7433 t = gsi_stmt (gsi);
7435 if (t && need_fake_edge_p (t))
7437 edge e;
7439 e = find_edge (bb, EXIT_BLOCK_PTR);
7440 if (e)
7442 gsi_insert_on_edge (e, gimple_build_nop ());
7443 gsi_commit_edge_inserts ();
7448 /* Now add fake edges to the function exit for any non constant
7449 calls since there is no way that we can determine if they will
7450 return or not... */
7451 for (i = 0; i < last_bb; i++)
7453 basic_block bb = BASIC_BLOCK (i);
7454 gimple_stmt_iterator gsi;
7455 gimple stmt, last_stmt;
7457 if (!bb)
7458 continue;
7460 if (blocks && !bitmap_bit_p (blocks, i))
7461 continue;
7463 gsi = gsi_last_nondebug_bb (bb);
7464 if (!gsi_end_p (gsi))
7466 last_stmt = gsi_stmt (gsi);
7469 stmt = gsi_stmt (gsi);
7470 if (need_fake_edge_p (stmt))
7472 edge e;
7474 /* The handling above of the final block before the
7475 epilogue should be enough to verify that there is
7476 no edge to the exit block in CFG already.
7477 Calling make_edge in such case would cause us to
7478 mark that edge as fake and remove it later. */
7479 #ifdef ENABLE_CHECKING
7480 if (stmt == last_stmt)
7482 e = find_edge (bb, EXIT_BLOCK_PTR);
7483 gcc_assert (e == NULL);
7485 #endif
7487 /* Note that the following may create a new basic block
7488 and renumber the existing basic blocks. */
7489 if (stmt != last_stmt)
7491 e = split_block (bb, stmt);
7492 if (e)
7493 blocks_split++;
7495 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7497 gsi_prev (&gsi);
7499 while (!gsi_end_p (gsi));
7503 if (blocks_split)
7504 verify_flow_info ();
7506 return blocks_split;
7509 /* Removes edge E and all the blocks dominated by it, and updates dominance
7510 information. The IL in E->src needs to be updated separately.
7511 If dominance info is not available, only the edge E is removed.*/
7513 void
7514 remove_edge_and_dominated_blocks (edge e)
7516 vec<basic_block> bbs_to_remove = vNULL;
7517 vec<basic_block> bbs_to_fix_dom = vNULL;
7518 bitmap df, df_idom;
7519 edge f;
7520 edge_iterator ei;
7521 bool none_removed = false;
7522 unsigned i;
7523 basic_block bb, dbb;
7524 bitmap_iterator bi;
7526 if (!dom_info_available_p (CDI_DOMINATORS))
7528 remove_edge (e);
7529 return;
7532 /* No updating is needed for edges to exit. */
7533 if (e->dest == EXIT_BLOCK_PTR)
7535 if (cfgcleanup_altered_bbs)
7536 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7537 remove_edge (e);
7538 return;
7541 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7542 that is not dominated by E->dest, then this set is empty. Otherwise,
7543 all the basic blocks dominated by E->dest are removed.
7545 Also, to DF_IDOM we store the immediate dominators of the blocks in
7546 the dominance frontier of E (i.e., of the successors of the
7547 removed blocks, if there are any, and of E->dest otherwise). */
7548 FOR_EACH_EDGE (f, ei, e->dest->preds)
7550 if (f == e)
7551 continue;
7553 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7555 none_removed = true;
7556 break;
7560 df = BITMAP_ALLOC (NULL);
7561 df_idom = BITMAP_ALLOC (NULL);
7563 if (none_removed)
7564 bitmap_set_bit (df_idom,
7565 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7566 else
7568 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7569 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7571 FOR_EACH_EDGE (f, ei, bb->succs)
7573 if (f->dest != EXIT_BLOCK_PTR)
7574 bitmap_set_bit (df, f->dest->index);
7577 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7578 bitmap_clear_bit (df, bb->index);
7580 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7582 bb = BASIC_BLOCK (i);
7583 bitmap_set_bit (df_idom,
7584 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7588 if (cfgcleanup_altered_bbs)
7590 /* Record the set of the altered basic blocks. */
7591 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7592 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7595 /* Remove E and the cancelled blocks. */
7596 if (none_removed)
7597 remove_edge (e);
7598 else
7600 /* Walk backwards so as to get a chance to substitute all
7601 released DEFs into debug stmts. See
7602 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7603 details. */
7604 for (i = bbs_to_remove.length (); i-- > 0; )
7605 delete_basic_block (bbs_to_remove[i]);
7608 /* Update the dominance information. The immediate dominator may change only
7609 for blocks whose immediate dominator belongs to DF_IDOM:
7611 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7612 removal. Let Z the arbitrary block such that idom(Z) = Y and
7613 Z dominates X after the removal. Before removal, there exists a path P
7614 from Y to X that avoids Z. Let F be the last edge on P that is
7615 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7616 dominates W, and because of P, Z does not dominate W), and W belongs to
7617 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7618 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7620 bb = BASIC_BLOCK (i);
7621 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7622 dbb;
7623 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7624 bbs_to_fix_dom.safe_push (dbb);
7627 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7629 BITMAP_FREE (df);
7630 BITMAP_FREE (df_idom);
7631 bbs_to_remove.release ();
7632 bbs_to_fix_dom.release ();
7635 /* Purge dead EH edges from basic block BB. */
7637 bool
7638 gimple_purge_dead_eh_edges (basic_block bb)
7640 bool changed = false;
7641 edge e;
7642 edge_iterator ei;
7643 gimple stmt = last_stmt (bb);
7645 if (stmt && stmt_can_throw_internal (stmt))
7646 return false;
7648 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7650 if (e->flags & EDGE_EH)
7652 remove_edge_and_dominated_blocks (e);
7653 changed = true;
7655 else
7656 ei_next (&ei);
7659 return changed;
7662 /* Purge dead EH edges from basic block listed in BLOCKS. */
7664 bool
7665 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7667 bool changed = false;
7668 unsigned i;
7669 bitmap_iterator bi;
7671 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7673 basic_block bb = BASIC_BLOCK (i);
7675 /* Earlier gimple_purge_dead_eh_edges could have removed
7676 this basic block already. */
7677 gcc_assert (bb || changed);
7678 if (bb != NULL)
7679 changed |= gimple_purge_dead_eh_edges (bb);
7682 return changed;
7685 /* Purge dead abnormal call edges from basic block BB. */
7687 bool
7688 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7690 bool changed = false;
7691 edge e;
7692 edge_iterator ei;
7693 gimple stmt = last_stmt (bb);
7695 if (!cfun->has_nonlocal_label
7696 && !cfun->calls_setjmp)
7697 return false;
7699 if (stmt && stmt_can_make_abnormal_goto (stmt))
7700 return false;
7702 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7704 if (e->flags & EDGE_ABNORMAL)
7706 if (e->flags & EDGE_FALLTHRU)
7707 e->flags &= ~EDGE_ABNORMAL;
7708 else
7709 remove_edge_and_dominated_blocks (e);
7710 changed = true;
7712 else
7713 ei_next (&ei);
7716 return changed;
7719 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7721 bool
7722 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7724 bool changed = false;
7725 unsigned i;
7726 bitmap_iterator bi;
7728 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7730 basic_block bb = BASIC_BLOCK (i);
7732 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7733 this basic block already. */
7734 gcc_assert (bb || changed);
7735 if (bb != NULL)
7736 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7739 return changed;
7742 /* This function is called whenever a new edge is created or
7743 redirected. */
7745 static void
7746 gimple_execute_on_growing_pred (edge e)
7748 basic_block bb = e->dest;
7750 if (!gimple_seq_empty_p (phi_nodes (bb)))
7751 reserve_phi_args_for_new_edge (bb);
7754 /* This function is called immediately before edge E is removed from
7755 the edge vector E->dest->preds. */
7757 static void
7758 gimple_execute_on_shrinking_pred (edge e)
7760 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7761 remove_phi_args (e);
7764 /*---------------------------------------------------------------------------
7765 Helper functions for Loop versioning
7766 ---------------------------------------------------------------------------*/
7768 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7769 of 'first'. Both of them are dominated by 'new_head' basic block. When
7770 'new_head' was created by 'second's incoming edge it received phi arguments
7771 on the edge by split_edge(). Later, additional edge 'e' was created to
7772 connect 'new_head' and 'first'. Now this routine adds phi args on this
7773 additional edge 'e' that new_head to second edge received as part of edge
7774 splitting. */
7776 static void
7777 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7778 basic_block new_head, edge e)
7780 gimple phi1, phi2;
7781 gimple_stmt_iterator psi1, psi2;
7782 tree def;
7783 edge e2 = find_edge (new_head, second);
7785 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7786 edge, we should always have an edge from NEW_HEAD to SECOND. */
7787 gcc_assert (e2 != NULL);
7789 /* Browse all 'second' basic block phi nodes and add phi args to
7790 edge 'e' for 'first' head. PHI args are always in correct order. */
7792 for (psi2 = gsi_start_phis (second),
7793 psi1 = gsi_start_phis (first);
7794 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7795 gsi_next (&psi2), gsi_next (&psi1))
7797 phi1 = gsi_stmt (psi1);
7798 phi2 = gsi_stmt (psi2);
7799 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7800 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7805 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7806 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7807 the destination of the ELSE part. */
7809 static void
7810 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7811 basic_block second_head ATTRIBUTE_UNUSED,
7812 basic_block cond_bb, void *cond_e)
7814 gimple_stmt_iterator gsi;
7815 gimple new_cond_expr;
7816 tree cond_expr = (tree) cond_e;
7817 edge e0;
7819 /* Build new conditional expr */
7820 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7821 NULL_TREE, NULL_TREE);
7823 /* Add new cond in cond_bb. */
7824 gsi = gsi_last_bb (cond_bb);
7825 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7827 /* Adjust edges appropriately to connect new head with first head
7828 as well as second head. */
7829 e0 = single_succ_edge (cond_bb);
7830 e0->flags &= ~EDGE_FALLTHRU;
7831 e0->flags |= EDGE_FALSE_VALUE;
7835 /* Do book-keeping of basic block BB for the profile consistency checker.
7836 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7837 then do post-pass accounting. Store the counting in RECORD. */
7838 static void
7839 gimple_account_profile_record (basic_block bb, int after_pass,
7840 struct profile_record *record)
7842 gimple_stmt_iterator i;
7843 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7845 record->size[after_pass]
7846 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7847 if (profile_status == PROFILE_READ)
7848 record->time[after_pass]
7849 += estimate_num_insns (gsi_stmt (i),
7850 &eni_time_weights) * bb->count;
7851 else if (profile_status == PROFILE_GUESSED)
7852 record->time[after_pass]
7853 += estimate_num_insns (gsi_stmt (i),
7854 &eni_time_weights) * bb->frequency;
7858 struct cfg_hooks gimple_cfg_hooks = {
7859 "gimple",
7860 gimple_verify_flow_info,
7861 gimple_dump_bb, /* dump_bb */
7862 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7863 create_bb, /* create_basic_block */
7864 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7865 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7866 gimple_can_remove_branch_p, /* can_remove_branch_p */
7867 remove_bb, /* delete_basic_block */
7868 gimple_split_block, /* split_block */
7869 gimple_move_block_after, /* move_block_after */
7870 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7871 gimple_merge_blocks, /* merge_blocks */
7872 gimple_predict_edge, /* predict_edge */
7873 gimple_predicted_by_p, /* predicted_by_p */
7874 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7875 gimple_duplicate_bb, /* duplicate_block */
7876 gimple_split_edge, /* split_edge */
7877 gimple_make_forwarder_block, /* make_forward_block */
7878 NULL, /* tidy_fallthru_edge */
7879 NULL, /* force_nonfallthru */
7880 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7881 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7882 gimple_flow_call_edges_add, /* flow_call_edges_add */
7883 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7884 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7885 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7886 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7887 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7888 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7889 flush_pending_stmts, /* flush_pending_stmts */
7890 gimple_empty_block_p, /* block_empty_p */
7891 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7892 gimple_account_profile_record,
7896 /* Split all critical edges. */
7898 static unsigned int
7899 split_critical_edges (void)
7901 basic_block bb;
7902 edge e;
7903 edge_iterator ei;
7905 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7906 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7907 mappings around the calls to split_edge. */
7908 start_recording_case_labels ();
7909 FOR_ALL_BB (bb)
7911 FOR_EACH_EDGE (e, ei, bb->succs)
7913 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7914 split_edge (e);
7915 /* PRE inserts statements to edges and expects that
7916 since split_critical_edges was done beforehand, committing edge
7917 insertions will not split more edges. In addition to critical
7918 edges we must split edges that have multiple successors and
7919 end by control flow statements, such as RESX.
7920 Go ahead and split them too. This matches the logic in
7921 gimple_find_edge_insert_loc. */
7922 else if ((!single_pred_p (e->dest)
7923 || !gimple_seq_empty_p (phi_nodes (e->dest))
7924 || e->dest == EXIT_BLOCK_PTR)
7925 && e->src != ENTRY_BLOCK_PTR
7926 && !(e->flags & EDGE_ABNORMAL))
7928 gimple_stmt_iterator gsi;
7930 gsi = gsi_last_bb (e->src);
7931 if (!gsi_end_p (gsi)
7932 && stmt_ends_bb_p (gsi_stmt (gsi))
7933 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7934 && !gimple_call_builtin_p (gsi_stmt (gsi),
7935 BUILT_IN_RETURN)))
7936 split_edge (e);
7940 end_recording_case_labels ();
7941 return 0;
7944 namespace {
7946 const pass_data pass_data_split_crit_edges =
7948 GIMPLE_PASS, /* type */
7949 "crited", /* name */
7950 OPTGROUP_NONE, /* optinfo_flags */
7951 false, /* has_gate */
7952 true, /* has_execute */
7953 TV_TREE_SPLIT_EDGES, /* tv_id */
7954 PROP_cfg, /* properties_required */
7955 PROP_no_crit_edges, /* properties_provided */
7956 0, /* properties_destroyed */
7957 0, /* todo_flags_start */
7958 TODO_verify_flow, /* todo_flags_finish */
7961 class pass_split_crit_edges : public gimple_opt_pass
7963 public:
7964 pass_split_crit_edges (gcc::context *ctxt)
7965 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
7968 /* opt_pass methods: */
7969 unsigned int execute () { return split_critical_edges (); }
7971 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
7972 }; // class pass_split_crit_edges
7974 } // anon namespace
7976 gimple_opt_pass *
7977 make_pass_split_crit_edges (gcc::context *ctxt)
7979 return new pass_split_crit_edges (ctxt);
7983 /* Build a ternary operation and gimplify it. Emit code before GSI.
7984 Return the gimple_val holding the result. */
7986 tree
7987 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7988 tree type, tree a, tree b, tree c)
7990 tree ret;
7991 location_t loc = gimple_location (gsi_stmt (*gsi));
7993 ret = fold_build3_loc (loc, code, type, a, b, c);
7994 STRIP_NOPS (ret);
7996 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7997 GSI_SAME_STMT);
8000 /* Build a binary operation and gimplify it. Emit code before GSI.
8001 Return the gimple_val holding the result. */
8003 tree
8004 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8005 tree type, tree a, tree b)
8007 tree ret;
8009 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8010 STRIP_NOPS (ret);
8012 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8013 GSI_SAME_STMT);
8016 /* Build a unary operation and gimplify it. Emit code before GSI.
8017 Return the gimple_val holding the result. */
8019 tree
8020 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8021 tree a)
8023 tree ret;
8025 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8026 STRIP_NOPS (ret);
8028 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8029 GSI_SAME_STMT);
8034 /* Emit return warnings. */
8036 static unsigned int
8037 execute_warn_function_return (void)
8039 source_location location;
8040 gimple last;
8041 edge e;
8042 edge_iterator ei;
8044 if (!targetm.warn_func_return (cfun->decl))
8045 return 0;
8047 /* If we have a path to EXIT, then we do return. */
8048 if (TREE_THIS_VOLATILE (cfun->decl)
8049 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
8051 location = UNKNOWN_LOCATION;
8052 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8054 last = last_stmt (e->src);
8055 if ((gimple_code (last) == GIMPLE_RETURN
8056 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8057 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8058 break;
8060 if (location == UNKNOWN_LOCATION)
8061 location = cfun->function_end_locus;
8062 warning_at (location, 0, "%<noreturn%> function does return");
8065 /* If we see "return;" in some basic block, then we do reach the end
8066 without returning a value. */
8067 else if (warn_return_type
8068 && !TREE_NO_WARNING (cfun->decl)
8069 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
8070 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8072 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8074 gimple last = last_stmt (e->src);
8075 if (gimple_code (last) == GIMPLE_RETURN
8076 && gimple_return_retval (last) == NULL
8077 && !gimple_no_warning_p (last))
8079 location = gimple_location (last);
8080 if (location == UNKNOWN_LOCATION)
8081 location = cfun->function_end_locus;
8082 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8083 TREE_NO_WARNING (cfun->decl) = 1;
8084 break;
8088 return 0;
8092 /* Given a basic block B which ends with a conditional and has
8093 precisely two successors, determine which of the edges is taken if
8094 the conditional is true and which is taken if the conditional is
8095 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8097 void
8098 extract_true_false_edges_from_block (basic_block b,
8099 edge *true_edge,
8100 edge *false_edge)
8102 edge e = EDGE_SUCC (b, 0);
8104 if (e->flags & EDGE_TRUE_VALUE)
8106 *true_edge = e;
8107 *false_edge = EDGE_SUCC (b, 1);
8109 else
8111 *false_edge = e;
8112 *true_edge = EDGE_SUCC (b, 1);
8116 namespace {
8118 const pass_data pass_data_warn_function_return =
8120 GIMPLE_PASS, /* type */
8121 "*warn_function_return", /* name */
8122 OPTGROUP_NONE, /* optinfo_flags */
8123 false, /* has_gate */
8124 true, /* has_execute */
8125 TV_NONE, /* tv_id */
8126 PROP_cfg, /* properties_required */
8127 0, /* properties_provided */
8128 0, /* properties_destroyed */
8129 0, /* todo_flags_start */
8130 0, /* todo_flags_finish */
8133 class pass_warn_function_return : public gimple_opt_pass
8135 public:
8136 pass_warn_function_return (gcc::context *ctxt)
8137 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8140 /* opt_pass methods: */
8141 unsigned int execute () { return execute_warn_function_return (); }
8143 }; // class pass_warn_function_return
8145 } // anon namespace
8147 gimple_opt_pass *
8148 make_pass_warn_function_return (gcc::context *ctxt)
8150 return new pass_warn_function_return (ctxt);
8153 /* Walk a gimplified function and warn for functions whose return value is
8154 ignored and attribute((warn_unused_result)) is set. This is done before
8155 inlining, so we don't have to worry about that. */
8157 static void
8158 do_warn_unused_result (gimple_seq seq)
8160 tree fdecl, ftype;
8161 gimple_stmt_iterator i;
8163 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8165 gimple g = gsi_stmt (i);
8167 switch (gimple_code (g))
8169 case GIMPLE_BIND:
8170 do_warn_unused_result (gimple_bind_body (g));
8171 break;
8172 case GIMPLE_TRY:
8173 do_warn_unused_result (gimple_try_eval (g));
8174 do_warn_unused_result (gimple_try_cleanup (g));
8175 break;
8176 case GIMPLE_CATCH:
8177 do_warn_unused_result (gimple_catch_handler (g));
8178 break;
8179 case GIMPLE_EH_FILTER:
8180 do_warn_unused_result (gimple_eh_filter_failure (g));
8181 break;
8183 case GIMPLE_CALL:
8184 if (gimple_call_lhs (g))
8185 break;
8186 if (gimple_call_internal_p (g))
8187 break;
8189 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8190 LHS. All calls whose value is ignored should be
8191 represented like this. Look for the attribute. */
8192 fdecl = gimple_call_fndecl (g);
8193 ftype = gimple_call_fntype (g);
8195 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8197 location_t loc = gimple_location (g);
8199 if (fdecl)
8200 warning_at (loc, OPT_Wunused_result,
8201 "ignoring return value of %qD, "
8202 "declared with attribute warn_unused_result",
8203 fdecl);
8204 else
8205 warning_at (loc, OPT_Wunused_result,
8206 "ignoring return value of function "
8207 "declared with attribute warn_unused_result");
8209 break;
8211 default:
8212 /* Not a container, not a call, or a call whose value is used. */
8213 break;
8218 static unsigned int
8219 run_warn_unused_result (void)
8221 do_warn_unused_result (gimple_body (current_function_decl));
8222 return 0;
8225 static bool
8226 gate_warn_unused_result (void)
8228 return flag_warn_unused_result;
8231 namespace {
8233 const pass_data pass_data_warn_unused_result =
8235 GIMPLE_PASS, /* type */
8236 "*warn_unused_result", /* name */
8237 OPTGROUP_NONE, /* optinfo_flags */
8238 true, /* has_gate */
8239 true, /* has_execute */
8240 TV_NONE, /* tv_id */
8241 PROP_gimple_any, /* properties_required */
8242 0, /* properties_provided */
8243 0, /* properties_destroyed */
8244 0, /* todo_flags_start */
8245 0, /* todo_flags_finish */
8248 class pass_warn_unused_result : public gimple_opt_pass
8250 public:
8251 pass_warn_unused_result (gcc::context *ctxt)
8252 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8255 /* opt_pass methods: */
8256 bool gate () { return gate_warn_unused_result (); }
8257 unsigned int execute () { return run_warn_unused_result (); }
8259 }; // class pass_warn_unused_result
8261 } // anon namespace
8263 gimple_opt_pass *
8264 make_pass_warn_unused_result (gcc::context *ctxt)
8266 return new pass_warn_unused_result (ctxt);
8269 /* IPA passes, compilation of earlier functions or inlining
8270 might have changed some properties, such as marked functions nothrow,
8271 pure, const or noreturn.
8272 Remove redundant edges and basic blocks, and create new ones if necessary.
8274 This pass can't be executed as stand alone pass from pass manager, because
8275 in between inlining and this fixup the verify_flow_info would fail. */
8277 unsigned int
8278 execute_fixup_cfg (void)
8280 basic_block bb;
8281 gimple_stmt_iterator gsi;
8282 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8283 gcov_type count_scale;
8284 edge e;
8285 edge_iterator ei;
8287 count_scale
8288 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8289 ENTRY_BLOCK_PTR->count);
8291 ENTRY_BLOCK_PTR->count = cgraph_get_node (current_function_decl)->count;
8292 EXIT_BLOCK_PTR->count = apply_scale (EXIT_BLOCK_PTR->count,
8293 count_scale);
8295 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
8296 e->count = apply_scale (e->count, count_scale);
8298 FOR_EACH_BB (bb)
8300 bb->count = apply_scale (bb->count, count_scale);
8301 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8303 gimple stmt = gsi_stmt (gsi);
8304 tree decl = is_gimple_call (stmt)
8305 ? gimple_call_fndecl (stmt)
8306 : NULL;
8307 if (decl)
8309 int flags = gimple_call_flags (stmt);
8310 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8312 if (gimple_purge_dead_abnormal_call_edges (bb))
8313 todo |= TODO_cleanup_cfg;
8315 if (gimple_in_ssa_p (cfun))
8317 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8318 update_stmt (stmt);
8322 if (flags & ECF_NORETURN
8323 && fixup_noreturn_call (stmt))
8324 todo |= TODO_cleanup_cfg;
8327 if (maybe_clean_eh_stmt (stmt)
8328 && gimple_purge_dead_eh_edges (bb))
8329 todo |= TODO_cleanup_cfg;
8332 FOR_EACH_EDGE (e, ei, bb->succs)
8333 e->count = apply_scale (e->count, count_scale);
8335 /* If we have a basic block with no successors that does not
8336 end with a control statement or a noreturn call end it with
8337 a call to __builtin_unreachable. This situation can occur
8338 when inlining a noreturn call that does in fact return. */
8339 if (EDGE_COUNT (bb->succs) == 0)
8341 gimple stmt = last_stmt (bb);
8342 if (!stmt
8343 || (!is_ctrl_stmt (stmt)
8344 && (!is_gimple_call (stmt)
8345 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8347 stmt = gimple_build_call
8348 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8349 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8350 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8354 if (count_scale != REG_BR_PROB_BASE)
8355 compute_function_frequency ();
8357 /* We just processed all calls. */
8358 if (cfun->gimple_df)
8359 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8361 /* Dump a textual representation of the flowgraph. */
8362 if (dump_file)
8363 gimple_dump_cfg (dump_file, dump_flags);
8365 if (current_loops
8366 && (todo & TODO_cleanup_cfg))
8367 loops_state_set (LOOPS_NEED_FIXUP);
8369 return todo;
8372 namespace {
8374 const pass_data pass_data_fixup_cfg =
8376 GIMPLE_PASS, /* type */
8377 "*free_cfg_annotations", /* name */
8378 OPTGROUP_NONE, /* optinfo_flags */
8379 false, /* has_gate */
8380 true, /* has_execute */
8381 TV_NONE, /* tv_id */
8382 PROP_cfg, /* properties_required */
8383 0, /* properties_provided */
8384 0, /* properties_destroyed */
8385 0, /* todo_flags_start */
8386 0, /* todo_flags_finish */
8389 class pass_fixup_cfg : public gimple_opt_pass
8391 public:
8392 pass_fixup_cfg (gcc::context *ctxt)
8393 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8396 /* opt_pass methods: */
8397 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8398 unsigned int execute () { return execute_fixup_cfg (); }
8400 }; // class pass_fixup_cfg
8402 } // anon namespace
8404 gimple_opt_pass *
8405 make_pass_fixup_cfg (gcc::context *ctxt)
8407 return new pass_fixup_cfg (ctxt);
8410 /* Garbage collection support for edge_def. */
8412 extern void gt_ggc_mx (tree&);
8413 extern void gt_ggc_mx (gimple&);
8414 extern void gt_ggc_mx (rtx&);
8415 extern void gt_ggc_mx (basic_block&);
8417 void
8418 gt_ggc_mx (edge_def *e)
8420 tree block = LOCATION_BLOCK (e->goto_locus);
8421 gt_ggc_mx (e->src);
8422 gt_ggc_mx (e->dest);
8423 if (current_ir_type () == IR_GIMPLE)
8424 gt_ggc_mx (e->insns.g);
8425 else
8426 gt_ggc_mx (e->insns.r);
8427 gt_ggc_mx (block);
8430 /* PCH support for edge_def. */
8432 extern void gt_pch_nx (tree&);
8433 extern void gt_pch_nx (gimple&);
8434 extern void gt_pch_nx (rtx&);
8435 extern void gt_pch_nx (basic_block&);
8437 void
8438 gt_pch_nx (edge_def *e)
8440 tree block = LOCATION_BLOCK (e->goto_locus);
8441 gt_pch_nx (e->src);
8442 gt_pch_nx (e->dest);
8443 if (current_ir_type () == IR_GIMPLE)
8444 gt_pch_nx (e->insns.g);
8445 else
8446 gt_pch_nx (e->insns.r);
8447 gt_pch_nx (block);
8450 void
8451 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8453 tree block = LOCATION_BLOCK (e->goto_locus);
8454 op (&(e->src), cookie);
8455 op (&(e->dest), cookie);
8456 if (current_ir_type () == IR_GIMPLE)
8457 op (&(e->insns.g), cookie);
8458 else
8459 op (&(e->insns.r), cookie);
8460 op (&(block), cookie);