Test whitespace handling in std::complex extraction
[official-gcc.git] / gcc / explow.c
blob696f06673eb71f3033d00fac2b529bbfee45cc54
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "profile-count.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
37 #include "except.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "expr.h"
41 #include "common/common-target.h"
42 #include "output.h"
43 #include "params.h"
45 static rtx break_out_memory_refs (rtx);
46 static void anti_adjust_stack_and_probe_stack_clash (rtx);
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
54 /* Not scalar_int_mode because we also allow pointer bound modes. */
55 scalar_mode smode = as_a <scalar_mode> (mode);
56 int width = GET_MODE_PRECISION (smode);
58 /* You want to truncate to a _what_? */
59 gcc_assert (SCALAR_INT_MODE_P (mode)
60 || POINTER_BOUNDS_MODE_P (mode));
62 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
63 if (smode == BImode)
64 return c & 1 ? STORE_FLAG_VALUE : 0;
66 /* Sign-extend for the requested mode. */
68 if (width < HOST_BITS_PER_WIDE_INT)
70 HOST_WIDE_INT sign = 1;
71 sign <<= width - 1;
72 c &= (sign << 1) - 1;
73 c ^= sign;
74 c -= sign;
77 return c;
80 /* Return an rtx for the sum of X and the integer C, given that X has
81 mode MODE. INPLACE is true if X can be modified inplace or false
82 if it must be treated as immutable. */
84 rtx
85 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
86 bool inplace)
88 RTX_CODE code;
89 rtx y;
90 rtx tem;
91 int all_constant = 0;
93 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
95 if (c == 0)
96 return x;
98 restart:
100 code = GET_CODE (x);
101 y = x;
103 switch (code)
105 CASE_CONST_SCALAR_INT:
106 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
107 case MEM:
108 /* If this is a reference to the constant pool, try replacing it with
109 a reference to a new constant. If the resulting address isn't
110 valid, don't return it because we have no way to validize it. */
111 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
112 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
114 rtx cst = get_pool_constant (XEXP (x, 0));
116 if (GET_CODE (cst) == CONST_VECTOR
117 && GET_MODE_INNER (GET_MODE (cst)) == mode)
119 cst = gen_lowpart (mode, cst);
120 gcc_assert (cst);
122 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
124 tem = plus_constant (mode, cst, c);
125 tem = force_const_mem (GET_MODE (x), tem);
126 /* Targets may disallow some constants in the constant pool, thus
127 force_const_mem may return NULL_RTX. */
128 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
129 return tem;
132 break;
134 case CONST:
135 /* If adding to something entirely constant, set a flag
136 so that we can add a CONST around the result. */
137 if (inplace && shared_const_p (x))
138 inplace = false;
139 x = XEXP (x, 0);
140 all_constant = 1;
141 goto restart;
143 case SYMBOL_REF:
144 case LABEL_REF:
145 all_constant = 1;
146 break;
148 case PLUS:
149 /* The interesting case is adding the integer to a sum. Look
150 for constant term in the sum and combine with C. For an
151 integer constant term or a constant term that is not an
152 explicit integer, we combine or group them together anyway.
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
157 if (CONSTANT_P (XEXP (x, 1)))
159 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
160 if (term == const0_rtx)
161 x = XEXP (x, 0);
162 else if (inplace)
163 XEXP (x, 1) = term;
164 else
165 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
166 c = 0;
168 else if (rtx *const_loc = find_constant_term_loc (&y))
170 if (!inplace)
172 /* We need to be careful since X may be shared and we can't
173 modify it in place. */
174 x = copy_rtx (x);
175 const_loc = find_constant_term_loc (&x);
177 *const_loc = plus_constant (mode, *const_loc, c, true);
178 c = 0;
180 break;
182 default:
183 break;
186 if (c != 0)
187 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
189 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
190 return x;
191 else if (all_constant)
192 return gen_rtx_CONST (mode, x);
193 else
194 return x;
197 /* If X is a sum, return a new sum like X but lacking any constant terms.
198 Add all the removed constant terms into *CONSTPTR.
199 X itself is not altered. The result != X if and only if
200 it is not isomorphic to X. */
203 eliminate_constant_term (rtx x, rtx *constptr)
205 rtx x0, x1;
206 rtx tem;
208 if (GET_CODE (x) != PLUS)
209 return x;
211 /* First handle constants appearing at this level explicitly. */
212 if (CONST_INT_P (XEXP (x, 1))
213 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
214 XEXP (x, 1)))
215 && CONST_INT_P (tem))
217 *constptr = tem;
218 return eliminate_constant_term (XEXP (x, 0), constptr);
221 tem = const0_rtx;
222 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
223 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
224 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
225 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
226 *constptr, tem))
227 && CONST_INT_P (tem))
229 *constptr = tem;
230 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 return x;
237 /* Return a copy of X in which all memory references
238 and all constants that involve symbol refs
239 have been replaced with new temporary registers.
240 Also emit code to load the memory locations and constants
241 into those registers.
243 If X contains no such constants or memory references,
244 X itself (not a copy) is returned.
246 If a constant is found in the address that is not a legitimate constant
247 in an insn, it is left alone in the hope that it might be valid in the
248 address.
250 X may contain no arithmetic except addition, subtraction and multiplication.
251 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
253 static rtx
254 break_out_memory_refs (rtx x)
256 if (MEM_P (x)
257 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
258 && GET_MODE (x) != VOIDmode))
259 x = force_reg (GET_MODE (x), x);
260 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
261 || GET_CODE (x) == MULT)
263 rtx op0 = break_out_memory_refs (XEXP (x, 0));
264 rtx op1 = break_out_memory_refs (XEXP (x, 1));
266 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
267 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
270 return x;
273 /* Given X, a memory address in address space AS' pointer mode, convert it to
274 an address in the address space's address mode, or vice versa (TO_MODE says
275 which way). We take advantage of the fact that pointers are not allowed to
276 overflow by commuting arithmetic operations over conversions so that address
277 arithmetic insns can be used. IN_CONST is true if this conversion is inside
278 a CONST. NO_EMIT is true if no insns should be emitted, and instead
279 it should return NULL if it can't be simplified without emitting insns. */
282 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
283 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
284 bool in_const ATTRIBUTE_UNUSED,
285 bool no_emit ATTRIBUTE_UNUSED)
287 #ifndef POINTERS_EXTEND_UNSIGNED
288 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
289 return x;
290 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
291 scalar_int_mode pointer_mode, address_mode, from_mode;
292 rtx temp;
293 enum rtx_code code;
295 /* If X already has the right mode, just return it. */
296 if (GET_MODE (x) == to_mode)
297 return x;
299 pointer_mode = targetm.addr_space.pointer_mode (as);
300 address_mode = targetm.addr_space.address_mode (as);
301 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
303 /* Here we handle some special cases. If none of them apply, fall through
304 to the default case. */
305 switch (GET_CODE (x))
307 CASE_CONST_SCALAR_INT:
308 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
309 code = TRUNCATE;
310 else if (POINTERS_EXTEND_UNSIGNED < 0)
311 break;
312 else if (POINTERS_EXTEND_UNSIGNED > 0)
313 code = ZERO_EXTEND;
314 else
315 code = SIGN_EXTEND;
316 temp = simplify_unary_operation (code, to_mode, x, from_mode);
317 if (temp)
318 return temp;
319 break;
321 case SUBREG:
322 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
323 && GET_MODE (SUBREG_REG (x)) == to_mode)
324 return SUBREG_REG (x);
325 break;
327 case LABEL_REF:
328 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
329 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
330 return temp;
332 case SYMBOL_REF:
333 temp = shallow_copy_rtx (x);
334 PUT_MODE (temp, to_mode);
335 return temp;
337 case CONST:
338 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
339 true, no_emit);
340 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
342 case PLUS:
343 case MULT:
344 /* For addition we can safely permute the conversion and addition
345 operation if one operand is a constant and converting the constant
346 does not change it or if one operand is a constant and we are
347 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
348 We can always safely permute them if we are making the address
349 narrower. Inside a CONST RTL, this is safe for both pointers
350 zero or sign extended as pointers cannot wrap. */
351 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
352 || (GET_CODE (x) == PLUS
353 && CONST_INT_P (XEXP (x, 1))
354 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
355 || XEXP (x, 1) == convert_memory_address_addr_space_1
356 (to_mode, XEXP (x, 1), as, in_const,
357 no_emit)
358 || POINTERS_EXTEND_UNSIGNED < 0)))
360 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
361 as, in_const, no_emit);
362 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
363 temp, XEXP (x, 1))
364 : temp);
366 break;
368 default:
369 break;
372 if (no_emit)
373 return NULL_RTX;
375 return convert_modes (to_mode, from_mode,
376 x, POINTERS_EXTEND_UNSIGNED);
377 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
380 /* Given X, a memory address in address space AS' pointer mode, convert it to
381 an address in the address space's address mode, or vice versa (TO_MODE says
382 which way). We take advantage of the fact that pointers are not allowed to
383 overflow by commuting arithmetic operations over conversions so that address
384 arithmetic insns can be used. */
387 convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
388 addr_space_t as)
390 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
394 /* Return something equivalent to X but valid as a memory address for something
395 of mode MODE in the named address space AS. When X is not itself valid,
396 this works by copying X or subexpressions of it into registers. */
399 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
401 rtx oldx = x;
402 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
404 x = convert_memory_address_addr_space (address_mode, x, as);
406 /* By passing constant addresses through registers
407 we get a chance to cse them. */
408 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
409 x = force_reg (address_mode, x);
411 /* We get better cse by rejecting indirect addressing at this stage.
412 Let the combiner create indirect addresses where appropriate.
413 For now, generate the code so that the subexpressions useful to share
414 are visible. But not if cse won't be done! */
415 else
417 if (! cse_not_expected && !REG_P (x))
418 x = break_out_memory_refs (x);
420 /* At this point, any valid address is accepted. */
421 if (memory_address_addr_space_p (mode, x, as))
422 goto done;
424 /* If it was valid before but breaking out memory refs invalidated it,
425 use it the old way. */
426 if (memory_address_addr_space_p (mode, oldx, as))
428 x = oldx;
429 goto done;
432 /* Perform machine-dependent transformations on X
433 in certain cases. This is not necessary since the code
434 below can handle all possible cases, but machine-dependent
435 transformations can make better code. */
437 rtx orig_x = x;
438 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
439 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
440 goto done;
443 /* PLUS and MULT can appear in special ways
444 as the result of attempts to make an address usable for indexing.
445 Usually they are dealt with by calling force_operand, below.
446 But a sum containing constant terms is special
447 if removing them makes the sum a valid address:
448 then we generate that address in a register
449 and index off of it. We do this because it often makes
450 shorter code, and because the addresses thus generated
451 in registers often become common subexpressions. */
452 if (GET_CODE (x) == PLUS)
454 rtx constant_term = const0_rtx;
455 rtx y = eliminate_constant_term (x, &constant_term);
456 if (constant_term == const0_rtx
457 || ! memory_address_addr_space_p (mode, y, as))
458 x = force_operand (x, NULL_RTX);
459 else
461 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
462 if (! memory_address_addr_space_p (mode, y, as))
463 x = force_operand (x, NULL_RTX);
464 else
465 x = y;
469 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
470 x = force_operand (x, NULL_RTX);
472 /* If we have a register that's an invalid address,
473 it must be a hard reg of the wrong class. Copy it to a pseudo. */
474 else if (REG_P (x))
475 x = copy_to_reg (x);
477 /* Last resort: copy the value to a register, since
478 the register is a valid address. */
479 else
480 x = force_reg (address_mode, x);
483 done:
485 gcc_assert (memory_address_addr_space_p (mode, x, as));
486 /* If we didn't change the address, we are done. Otherwise, mark
487 a reg as a pointer if we have REG or REG + CONST_INT. */
488 if (oldx == x)
489 return x;
490 else if (REG_P (x))
491 mark_reg_pointer (x, BITS_PER_UNIT);
492 else if (GET_CODE (x) == PLUS
493 && REG_P (XEXP (x, 0))
494 && CONST_INT_P (XEXP (x, 1)))
495 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
497 /* OLDX may have been the address on a temporary. Update the address
498 to indicate that X is now used. */
499 update_temp_slot_address (oldx, x);
501 return x;
504 /* Convert a mem ref into one with a valid memory address.
505 Pass through anything else unchanged. */
508 validize_mem (rtx ref)
510 if (!MEM_P (ref))
511 return ref;
512 ref = use_anchored_address (ref);
513 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
514 MEM_ADDR_SPACE (ref)))
515 return ref;
517 /* Don't alter REF itself, since that is probably a stack slot. */
518 return replace_equiv_address (ref, XEXP (ref, 0));
521 /* If X is a memory reference to a member of an object block, try rewriting
522 it to use an anchor instead. Return the new memory reference on success
523 and the old one on failure. */
526 use_anchored_address (rtx x)
528 rtx base;
529 HOST_WIDE_INT offset;
530 machine_mode mode;
532 if (!flag_section_anchors)
533 return x;
535 if (!MEM_P (x))
536 return x;
538 /* Split the address into a base and offset. */
539 base = XEXP (x, 0);
540 offset = 0;
541 if (GET_CODE (base) == CONST
542 && GET_CODE (XEXP (base, 0)) == PLUS
543 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
545 offset += INTVAL (XEXP (XEXP (base, 0), 1));
546 base = XEXP (XEXP (base, 0), 0);
549 /* Check whether BASE is suitable for anchors. */
550 if (GET_CODE (base) != SYMBOL_REF
551 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
552 || SYMBOL_REF_ANCHOR_P (base)
553 || SYMBOL_REF_BLOCK (base) == NULL
554 || !targetm.use_anchors_for_symbol_p (base))
555 return x;
557 /* Decide where BASE is going to be. */
558 place_block_symbol (base);
560 /* Get the anchor we need to use. */
561 offset += SYMBOL_REF_BLOCK_OFFSET (base);
562 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
563 SYMBOL_REF_TLS_MODEL (base));
565 /* Work out the offset from the anchor. */
566 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
568 /* If we're going to run a CSE pass, force the anchor into a register.
569 We will then be able to reuse registers for several accesses, if the
570 target costs say that that's worthwhile. */
571 mode = GET_MODE (base);
572 if (!cse_not_expected)
573 base = force_reg (mode, base);
575 return replace_equiv_address (x, plus_constant (mode, base, offset));
578 /* Copy the value or contents of X to a new temp reg and return that reg. */
581 copy_to_reg (rtx x)
583 rtx temp = gen_reg_rtx (GET_MODE (x));
585 /* If not an operand, must be an address with PLUS and MULT so
586 do the computation. */
587 if (! general_operand (x, VOIDmode))
588 x = force_operand (x, temp);
590 if (x != temp)
591 emit_move_insn (temp, x);
593 return temp;
596 /* Like copy_to_reg but always give the new register mode Pmode
597 in case X is a constant. */
600 copy_addr_to_reg (rtx x)
602 return copy_to_mode_reg (Pmode, x);
605 /* Like copy_to_reg but always give the new register mode MODE
606 in case X is a constant. */
609 copy_to_mode_reg (machine_mode mode, rtx x)
611 rtx temp = gen_reg_rtx (mode);
613 /* If not an operand, must be an address with PLUS and MULT so
614 do the computation. */
615 if (! general_operand (x, VOIDmode))
616 x = force_operand (x, temp);
618 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
619 if (x != temp)
620 emit_move_insn (temp, x);
621 return temp;
624 /* Load X into a register if it is not already one.
625 Use mode MODE for the register.
626 X should be valid for mode MODE, but it may be a constant which
627 is valid for all integer modes; that's why caller must specify MODE.
629 The caller must not alter the value in the register we return,
630 since we mark it as a "constant" register. */
633 force_reg (machine_mode mode, rtx x)
635 rtx temp, set;
636 rtx_insn *insn;
638 if (REG_P (x))
639 return x;
641 if (general_operand (x, mode))
643 temp = gen_reg_rtx (mode);
644 insn = emit_move_insn (temp, x);
646 else
648 temp = force_operand (x, NULL_RTX);
649 if (REG_P (temp))
650 insn = get_last_insn ();
651 else
653 rtx temp2 = gen_reg_rtx (mode);
654 insn = emit_move_insn (temp2, temp);
655 temp = temp2;
659 /* Let optimizers know that TEMP's value never changes
660 and that X can be substituted for it. Don't get confused
661 if INSN set something else (such as a SUBREG of TEMP). */
662 if (CONSTANT_P (x)
663 && (set = single_set (insn)) != 0
664 && SET_DEST (set) == temp
665 && ! rtx_equal_p (x, SET_SRC (set)))
666 set_unique_reg_note (insn, REG_EQUAL, x);
668 /* Let optimizers know that TEMP is a pointer, and if so, the
669 known alignment of that pointer. */
671 unsigned align = 0;
672 if (GET_CODE (x) == SYMBOL_REF)
674 align = BITS_PER_UNIT;
675 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
676 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
678 else if (GET_CODE (x) == LABEL_REF)
679 align = BITS_PER_UNIT;
680 else if (GET_CODE (x) == CONST
681 && GET_CODE (XEXP (x, 0)) == PLUS
682 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
683 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
685 rtx s = XEXP (XEXP (x, 0), 0);
686 rtx c = XEXP (XEXP (x, 0), 1);
687 unsigned sa, ca;
689 sa = BITS_PER_UNIT;
690 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
691 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
693 if (INTVAL (c) == 0)
694 align = sa;
695 else
697 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
698 align = MIN (sa, ca);
702 if (align || (MEM_P (x) && MEM_POINTER (x)))
703 mark_reg_pointer (temp, align);
706 return temp;
709 /* If X is a memory ref, copy its contents to a new temp reg and return
710 that reg. Otherwise, return X. */
713 force_not_mem (rtx x)
715 rtx temp;
717 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
718 return x;
720 temp = gen_reg_rtx (GET_MODE (x));
722 if (MEM_POINTER (x))
723 REG_POINTER (temp) = 1;
725 emit_move_insn (temp, x);
726 return temp;
729 /* Copy X to TARGET (if it's nonzero and a reg)
730 or to a new temp reg and return that reg.
731 MODE is the mode to use for X in case it is a constant. */
734 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
736 rtx temp;
738 if (target && REG_P (target))
739 temp = target;
740 else
741 temp = gen_reg_rtx (mode);
743 emit_move_insn (temp, x);
744 return temp;
747 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
748 PUNSIGNEDP points to the signedness of the type and may be adjusted
749 to show what signedness to use on extension operations.
751 FOR_RETURN is nonzero if the caller is promoting the return value
752 of FNDECL, else it is for promoting args. */
754 machine_mode
755 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
756 const_tree funtype, int for_return)
758 /* Called without a type node for a libcall. */
759 if (type == NULL_TREE)
761 if (INTEGRAL_MODE_P (mode))
762 return targetm.calls.promote_function_mode (NULL_TREE, mode,
763 punsignedp, funtype,
764 for_return);
765 else
766 return mode;
769 switch (TREE_CODE (type))
771 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
772 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
773 case POINTER_TYPE: case REFERENCE_TYPE:
774 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
775 for_return);
777 default:
778 return mode;
781 /* Return the mode to use to store a scalar of TYPE and MODE.
782 PUNSIGNEDP points to the signedness of the type and may be adjusted
783 to show what signedness to use on extension operations. */
785 machine_mode
786 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
787 int *punsignedp ATTRIBUTE_UNUSED)
789 #ifdef PROMOTE_MODE
790 enum tree_code code;
791 int unsignedp;
792 scalar_mode smode;
793 #endif
795 /* For libcalls this is invoked without TYPE from the backends
796 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
797 case. */
798 if (type == NULL_TREE)
799 return mode;
801 /* FIXME: this is the same logic that was there until GCC 4.4, but we
802 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
803 is not defined. The affected targets are M32C, S390, SPARC. */
804 #ifdef PROMOTE_MODE
805 code = TREE_CODE (type);
806 unsignedp = *punsignedp;
808 switch (code)
810 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
811 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
812 /* Values of these types always have scalar mode. */
813 smode = as_a <scalar_mode> (mode);
814 PROMOTE_MODE (smode, unsignedp, type);
815 *punsignedp = unsignedp;
816 return smode;
818 #ifdef POINTERS_EXTEND_UNSIGNED
819 case REFERENCE_TYPE:
820 case POINTER_TYPE:
821 *punsignedp = POINTERS_EXTEND_UNSIGNED;
822 return targetm.addr_space.address_mode
823 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
824 #endif
826 default:
827 return mode;
829 #else
830 return mode;
831 #endif
835 /* Use one of promote_mode or promote_function_mode to find the promoted
836 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
837 of DECL after promotion. */
839 machine_mode
840 promote_decl_mode (const_tree decl, int *punsignedp)
842 tree type = TREE_TYPE (decl);
843 int unsignedp = TYPE_UNSIGNED (type);
844 machine_mode mode = DECL_MODE (decl);
845 machine_mode pmode;
847 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
848 pmode = promote_function_mode (type, mode, &unsignedp,
849 TREE_TYPE (current_function_decl), 1);
850 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
851 pmode = promote_function_mode (type, mode, &unsignedp,
852 TREE_TYPE (current_function_decl), 2);
853 else
854 pmode = promote_mode (type, mode, &unsignedp);
856 if (punsignedp)
857 *punsignedp = unsignedp;
858 return pmode;
861 /* Return the promoted mode for name. If it is a named SSA_NAME, it
862 is the same as promote_decl_mode. Otherwise, it is the promoted
863 mode of a temp decl of same type as the SSA_NAME, if we had created
864 one. */
866 machine_mode
867 promote_ssa_mode (const_tree name, int *punsignedp)
869 gcc_assert (TREE_CODE (name) == SSA_NAME);
871 /* Partitions holding parms and results must be promoted as expected
872 by function.c. */
873 if (SSA_NAME_VAR (name)
874 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
875 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
877 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
878 if (mode != BLKmode)
879 return mode;
882 tree type = TREE_TYPE (name);
883 int unsignedp = TYPE_UNSIGNED (type);
884 machine_mode mode = TYPE_MODE (type);
886 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
887 if (mode == BLKmode)
889 gcc_assert (VECTOR_TYPE_P (type));
890 mode = type->type_common.mode;
893 machine_mode pmode = promote_mode (type, mode, &unsignedp);
894 if (punsignedp)
895 *punsignedp = unsignedp;
897 return pmode;
902 /* Controls the behavior of {anti_,}adjust_stack. */
903 static bool suppress_reg_args_size;
905 /* A helper for adjust_stack and anti_adjust_stack. */
907 static void
908 adjust_stack_1 (rtx adjust, bool anti_p)
910 rtx temp;
911 rtx_insn *insn;
913 /* Hereafter anti_p means subtract_p. */
914 if (!STACK_GROWS_DOWNWARD)
915 anti_p = !anti_p;
917 temp = expand_binop (Pmode,
918 anti_p ? sub_optab : add_optab,
919 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
920 OPTAB_LIB_WIDEN);
922 if (temp != stack_pointer_rtx)
923 insn = emit_move_insn (stack_pointer_rtx, temp);
924 else
926 insn = get_last_insn ();
927 temp = single_set (insn);
928 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
931 if (!suppress_reg_args_size)
932 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
935 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
936 This pops when ADJUST is positive. ADJUST need not be constant. */
938 void
939 adjust_stack (rtx adjust)
941 if (adjust == const0_rtx)
942 return;
944 /* We expect all variable sized adjustments to be multiple of
945 PREFERRED_STACK_BOUNDARY. */
946 if (CONST_INT_P (adjust))
947 stack_pointer_delta -= INTVAL (adjust);
949 adjust_stack_1 (adjust, false);
952 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
953 This pushes when ADJUST is positive. ADJUST need not be constant. */
955 void
956 anti_adjust_stack (rtx adjust)
958 if (adjust == const0_rtx)
959 return;
961 /* We expect all variable sized adjustments to be multiple of
962 PREFERRED_STACK_BOUNDARY. */
963 if (CONST_INT_P (adjust))
964 stack_pointer_delta += INTVAL (adjust);
966 adjust_stack_1 (adjust, true);
969 /* Round the size of a block to be pushed up to the boundary required
970 by this machine. SIZE is the desired size, which need not be constant. */
972 static rtx
973 round_push (rtx size)
975 rtx align_rtx, alignm1_rtx;
977 if (!SUPPORTS_STACK_ALIGNMENT
978 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
980 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
982 if (align == 1)
983 return size;
985 if (CONST_INT_P (size))
987 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
989 if (INTVAL (size) != new_size)
990 size = GEN_INT (new_size);
991 return size;
994 align_rtx = GEN_INT (align);
995 alignm1_rtx = GEN_INT (align - 1);
997 else
999 /* If crtl->preferred_stack_boundary might still grow, use
1000 virtual_preferred_stack_boundary_rtx instead. This will be
1001 substituted by the right value in vregs pass and optimized
1002 during combine. */
1003 align_rtx = virtual_preferred_stack_boundary_rtx;
1004 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
1005 NULL_RTX);
1008 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1009 but we know it can't. So add ourselves and then do
1010 TRUNC_DIV_EXPR. */
1011 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1012 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1013 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1014 NULL_RTX, 1);
1015 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1017 return size;
1020 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1021 to a previously-created save area. If no save area has been allocated,
1022 this function will allocate one. If a save area is specified, it
1023 must be of the proper mode. */
1025 void
1026 emit_stack_save (enum save_level save_level, rtx *psave)
1028 rtx sa = *psave;
1029 /* The default is that we use a move insn and save in a Pmode object. */
1030 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1031 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1033 /* See if this machine has anything special to do for this kind of save. */
1034 switch (save_level)
1036 case SAVE_BLOCK:
1037 if (targetm.have_save_stack_block ())
1038 fcn = targetm.gen_save_stack_block;
1039 break;
1040 case SAVE_FUNCTION:
1041 if (targetm.have_save_stack_function ())
1042 fcn = targetm.gen_save_stack_function;
1043 break;
1044 case SAVE_NONLOCAL:
1045 if (targetm.have_save_stack_nonlocal ())
1046 fcn = targetm.gen_save_stack_nonlocal;
1047 break;
1048 default:
1049 break;
1052 /* If there is no save area and we have to allocate one, do so. Otherwise
1053 verify the save area is the proper mode. */
1055 if (sa == 0)
1057 if (mode != VOIDmode)
1059 if (save_level == SAVE_NONLOCAL)
1060 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1061 else
1062 *psave = sa = gen_reg_rtx (mode);
1066 do_pending_stack_adjust ();
1067 if (sa != 0)
1068 sa = validize_mem (sa);
1069 emit_insn (fcn (sa, stack_pointer_rtx));
1072 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1073 area made by emit_stack_save. If it is zero, we have nothing to do. */
1075 void
1076 emit_stack_restore (enum save_level save_level, rtx sa)
1078 /* The default is that we use a move insn. */
1079 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1081 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1082 STACK_POINTER and HARD_FRAME_POINTER.
1083 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1084 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1085 aligned variables, which is reflected in ix86_can_eliminate.
1086 We normally still have the realigned STACK_POINTER that we can use.
1087 But if there is a stack restore still present at reload, it can trigger
1088 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1089 FRAME_POINTER into a hard reg.
1090 To prevent this situation, we force need_drap if we emit a stack
1091 restore. */
1092 if (SUPPORTS_STACK_ALIGNMENT)
1093 crtl->need_drap = true;
1095 /* See if this machine has anything special to do for this kind of save. */
1096 switch (save_level)
1098 case SAVE_BLOCK:
1099 if (targetm.have_restore_stack_block ())
1100 fcn = targetm.gen_restore_stack_block;
1101 break;
1102 case SAVE_FUNCTION:
1103 if (targetm.have_restore_stack_function ())
1104 fcn = targetm.gen_restore_stack_function;
1105 break;
1106 case SAVE_NONLOCAL:
1107 if (targetm.have_restore_stack_nonlocal ())
1108 fcn = targetm.gen_restore_stack_nonlocal;
1109 break;
1110 default:
1111 break;
1114 if (sa != 0)
1116 sa = validize_mem (sa);
1117 /* These clobbers prevent the scheduler from moving
1118 references to variable arrays below the code
1119 that deletes (pops) the arrays. */
1120 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1121 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1124 discard_pending_stack_adjust ();
1126 emit_insn (fcn (stack_pointer_rtx, sa));
1129 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1130 function. This should be called whenever we allocate or deallocate
1131 dynamic stack space. */
1133 void
1134 update_nonlocal_goto_save_area (void)
1136 tree t_save;
1137 rtx r_save;
1139 /* The nonlocal_goto_save_area object is an array of N pointers. The
1140 first one is used for the frame pointer save; the rest are sized by
1141 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1142 of the stack save area slots. */
1143 t_save = build4 (ARRAY_REF,
1144 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1145 cfun->nonlocal_goto_save_area,
1146 integer_one_node, NULL_TREE, NULL_TREE);
1147 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1149 emit_stack_save (SAVE_NONLOCAL, &r_save);
1152 /* Record a new stack level for the current function. This should be called
1153 whenever we allocate or deallocate dynamic stack space. */
1155 void
1156 record_new_stack_level (void)
1158 /* Record the new stack level for nonlocal gotos. */
1159 if (cfun->nonlocal_goto_save_area)
1160 update_nonlocal_goto_save_area ();
1162 /* Record the new stack level for SJLJ exceptions. */
1163 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1164 update_sjlj_context ();
1167 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1168 static rtx
1169 align_dynamic_address (rtx target, unsigned required_align)
1171 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1172 but we know it can't. So add ourselves and then do
1173 TRUNC_DIV_EXPR. */
1174 target = expand_binop (Pmode, add_optab, target,
1175 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1176 Pmode),
1177 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1178 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1179 gen_int_mode (required_align / BITS_PER_UNIT,
1180 Pmode),
1181 NULL_RTX, 1);
1182 target = expand_mult (Pmode, target,
1183 gen_int_mode (required_align / BITS_PER_UNIT,
1184 Pmode),
1185 NULL_RTX, 1);
1187 return target;
1190 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1191 be dynamically pushed on the stack.
1193 *PSIZE is an rtx representing the size of the area.
1195 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1196 parameter may be zero. If so, a proper value will be extracted
1197 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1199 REQUIRED_ALIGN is the alignment (in bits) required for the region
1200 of memory.
1202 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1203 the additional size returned. */
1204 void
1205 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1206 unsigned required_align,
1207 HOST_WIDE_INT *pstack_usage_size)
1209 rtx size = *psize;
1211 /* Ensure the size is in the proper mode. */
1212 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1213 size = convert_to_mode (Pmode, size, 1);
1215 if (CONST_INT_P (size))
1217 unsigned HOST_WIDE_INT lsb;
1219 lsb = INTVAL (size);
1220 lsb &= -lsb;
1222 /* Watch out for overflow truncating to "unsigned". */
1223 if (lsb > UINT_MAX / BITS_PER_UNIT)
1224 size_align = 1u << (HOST_BITS_PER_INT - 1);
1225 else
1226 size_align = (unsigned)lsb * BITS_PER_UNIT;
1228 else if (size_align < BITS_PER_UNIT)
1229 size_align = BITS_PER_UNIT;
1231 /* We can't attempt to minimize alignment necessary, because we don't
1232 know the final value of preferred_stack_boundary yet while executing
1233 this code. */
1234 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1235 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1237 /* We will need to ensure that the address we return is aligned to
1238 REQUIRED_ALIGN. At this point in the compilation, we don't always
1239 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1240 (it might depend on the size of the outgoing parameter lists, for
1241 example), so we must preventively align the value. We leave space
1242 in SIZE for the hole that might result from the alignment operation. */
1244 unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1245 if (known_align == 0)
1246 known_align = BITS_PER_UNIT;
1247 if (required_align > known_align)
1249 unsigned extra = (required_align - known_align) / BITS_PER_UNIT;
1250 size = plus_constant (Pmode, size, extra);
1251 size = force_operand (size, NULL_RTX);
1252 if (size_align > known_align)
1253 size_align = known_align;
1255 if (flag_stack_usage_info && pstack_usage_size)
1256 *pstack_usage_size += extra;
1259 /* Round the size to a multiple of the required stack alignment.
1260 Since the stack is presumed to be rounded before this allocation,
1261 this will maintain the required alignment.
1263 If the stack grows downward, we could save an insn by subtracting
1264 SIZE from the stack pointer and then aligning the stack pointer.
1265 The problem with this is that the stack pointer may be unaligned
1266 between the execution of the subtraction and alignment insns and
1267 some machines do not allow this. Even on those that do, some
1268 signal handlers malfunction if a signal should occur between those
1269 insns. Since this is an extremely rare event, we have no reliable
1270 way of knowing which systems have this problem. So we avoid even
1271 momentarily mis-aligning the stack. */
1272 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1274 size = round_push (size);
1276 if (flag_stack_usage_info && pstack_usage_size)
1278 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1279 *pstack_usage_size =
1280 (*pstack_usage_size + align - 1) / align * align;
1284 *psize = size;
1287 /* Return the number of bytes to "protect" on the stack for -fstack-check.
1289 "protect" in the context of -fstack-check means how many bytes we
1290 should always ensure are available on the stack. More importantly
1291 this is how many bytes are skipped when probing the stack.
1293 On some targets we want to reuse the -fstack-check prologue support
1294 to give a degree of protection against stack clashing style attacks.
1296 In that scenario we do not want to skip bytes before probing as that
1297 would render the stack clash protections useless.
1299 So we never use STACK_CHECK_PROTECT directly. Instead we indirect though
1300 this helper which allows us to provide different values for
1301 -fstack-check and -fstack-clash-protection. */
1302 HOST_WIDE_INT
1303 get_stack_check_protect (void)
1305 if (flag_stack_clash_protection)
1306 return 0;
1307 return STACK_CHECK_PROTECT;
1310 /* Return an rtx representing the address of an area of memory dynamically
1311 pushed on the stack.
1313 Any required stack pointer alignment is preserved.
1315 SIZE is an rtx representing the size of the area.
1317 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1318 parameter may be zero. If so, a proper value will be extracted
1319 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1321 REQUIRED_ALIGN is the alignment (in bits) required for the region
1322 of memory.
1324 MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1325 no such upper bound is known.
1327 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1328 stack space allocated by the generated code cannot be added with itself
1329 in the course of the execution of the function. It is always safe to
1330 pass FALSE here and the following criterion is sufficient in order to
1331 pass TRUE: every path in the CFG that starts at the allocation point and
1332 loops to it executes the associated deallocation code. */
1335 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1336 unsigned required_align,
1337 HOST_WIDE_INT max_size,
1338 bool cannot_accumulate)
1340 HOST_WIDE_INT stack_usage_size = -1;
1341 rtx_code_label *final_label;
1342 rtx final_target, target;
1344 /* If we're asking for zero bytes, it doesn't matter what we point
1345 to since we can't dereference it. But return a reasonable
1346 address anyway. */
1347 if (size == const0_rtx)
1348 return virtual_stack_dynamic_rtx;
1350 /* Otherwise, show we're calling alloca or equivalent. */
1351 cfun->calls_alloca = 1;
1353 /* If stack usage info is requested, look into the size we are passed.
1354 We need to do so this early to avoid the obfuscation that may be
1355 introduced later by the various alignment operations. */
1356 if (flag_stack_usage_info)
1358 if (CONST_INT_P (size))
1359 stack_usage_size = INTVAL (size);
1360 else if (REG_P (size))
1362 /* Look into the last emitted insn and see if we can deduce
1363 something for the register. */
1364 rtx_insn *insn;
1365 rtx set, note;
1366 insn = get_last_insn ();
1367 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1369 if (CONST_INT_P (SET_SRC (set)))
1370 stack_usage_size = INTVAL (SET_SRC (set));
1371 else if ((note = find_reg_equal_equiv_note (insn))
1372 && CONST_INT_P (XEXP (note, 0)))
1373 stack_usage_size = INTVAL (XEXP (note, 0));
1377 /* If the size is not constant, try the maximum size. */
1378 if (stack_usage_size < 0)
1379 stack_usage_size = max_size;
1381 /* If the size is still not constant, we can't say anything. */
1382 if (stack_usage_size < 0)
1384 current_function_has_unbounded_dynamic_stack_size = 1;
1385 stack_usage_size = 0;
1389 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1391 target = gen_reg_rtx (Pmode);
1393 /* The size is supposed to be fully adjusted at this point so record it
1394 if stack usage info is requested. */
1395 if (flag_stack_usage_info)
1397 current_function_dynamic_stack_size += stack_usage_size;
1399 /* ??? This is gross but the only safe stance in the absence
1400 of stack usage oriented flow analysis. */
1401 if (!cannot_accumulate)
1402 current_function_has_unbounded_dynamic_stack_size = 1;
1405 do_pending_stack_adjust ();
1407 final_label = NULL;
1408 final_target = NULL_RTX;
1410 /* If we are splitting the stack, we need to ask the backend whether
1411 there is enough room on the current stack. If there isn't, or if
1412 the backend doesn't know how to tell is, then we need to call a
1413 function to allocate memory in some other way. This memory will
1414 be released when we release the current stack segment. The
1415 effect is that stack allocation becomes less efficient, but at
1416 least it doesn't cause a stack overflow. */
1417 if (flag_split_stack)
1419 rtx_code_label *available_label;
1420 rtx ask, space, func;
1422 available_label = NULL;
1424 if (targetm.have_split_stack_space_check ())
1426 available_label = gen_label_rtx ();
1428 /* This instruction will branch to AVAILABLE_LABEL if there
1429 are SIZE bytes available on the stack. */
1430 emit_insn (targetm.gen_split_stack_space_check
1431 (size, available_label));
1434 /* The __morestack_allocate_stack_space function will allocate
1435 memory using malloc. If the alignment of the memory returned
1436 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1437 make sure we allocate enough space. */
1438 if (MALLOC_ABI_ALIGNMENT >= required_align)
1439 ask = size;
1440 else
1441 ask = expand_binop (Pmode, add_optab, size,
1442 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1443 Pmode),
1444 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1446 func = init_one_libfunc ("__morestack_allocate_stack_space");
1448 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1449 ask, Pmode);
1451 if (available_label == NULL_RTX)
1452 return space;
1454 final_target = gen_reg_rtx (Pmode);
1456 emit_move_insn (final_target, space);
1458 final_label = gen_label_rtx ();
1459 emit_jump (final_label);
1461 emit_label (available_label);
1464 /* We ought to be called always on the toplevel and stack ought to be aligned
1465 properly. */
1466 gcc_assert (!(stack_pointer_delta
1467 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1469 /* If needed, check that we have the required amount of stack. Take into
1470 account what has already been checked. */
1471 if (STACK_CHECK_MOVING_SP)
1473 else if (flag_stack_check == GENERIC_STACK_CHECK)
1474 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1475 size);
1476 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1477 probe_stack_range (get_stack_check_protect (), size);
1479 /* Don't let anti_adjust_stack emit notes. */
1480 suppress_reg_args_size = true;
1482 /* Perform the required allocation from the stack. Some systems do
1483 this differently than simply incrementing/decrementing from the
1484 stack pointer, such as acquiring the space by calling malloc(). */
1485 if (targetm.have_allocate_stack ())
1487 struct expand_operand ops[2];
1488 /* We don't have to check against the predicate for operand 0 since
1489 TARGET is known to be a pseudo of the proper mode, which must
1490 be valid for the operand. */
1491 create_fixed_operand (&ops[0], target);
1492 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1493 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1495 else
1497 int saved_stack_pointer_delta;
1499 if (!STACK_GROWS_DOWNWARD)
1500 emit_move_insn (target, virtual_stack_dynamic_rtx);
1502 /* Check stack bounds if necessary. */
1503 if (crtl->limit_stack)
1505 rtx available;
1506 rtx_code_label *space_available = gen_label_rtx ();
1507 if (STACK_GROWS_DOWNWARD)
1508 available = expand_binop (Pmode, sub_optab,
1509 stack_pointer_rtx, stack_limit_rtx,
1510 NULL_RTX, 1, OPTAB_WIDEN);
1511 else
1512 available = expand_binop (Pmode, sub_optab,
1513 stack_limit_rtx, stack_pointer_rtx,
1514 NULL_RTX, 1, OPTAB_WIDEN);
1516 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1517 space_available);
1518 if (targetm.have_trap ())
1519 emit_insn (targetm.gen_trap ());
1520 else
1521 error ("stack limits not supported on this target");
1522 emit_barrier ();
1523 emit_label (space_available);
1526 saved_stack_pointer_delta = stack_pointer_delta;
1528 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1529 anti_adjust_stack_and_probe (size, false);
1530 else if (flag_stack_clash_protection)
1531 anti_adjust_stack_and_probe_stack_clash (size);
1532 else
1533 anti_adjust_stack (size);
1535 /* Even if size is constant, don't modify stack_pointer_delta.
1536 The constant size alloca should preserve
1537 crtl->preferred_stack_boundary alignment. */
1538 stack_pointer_delta = saved_stack_pointer_delta;
1540 if (STACK_GROWS_DOWNWARD)
1541 emit_move_insn (target, virtual_stack_dynamic_rtx);
1544 suppress_reg_args_size = false;
1546 /* Finish up the split stack handling. */
1547 if (final_label != NULL_RTX)
1549 gcc_assert (flag_split_stack);
1550 emit_move_insn (final_target, target);
1551 emit_label (final_label);
1552 target = final_target;
1555 target = align_dynamic_address (target, required_align);
1557 /* Now that we've committed to a return value, mark its alignment. */
1558 mark_reg_pointer (target, required_align);
1560 /* Record the new stack level. */
1561 record_new_stack_level ();
1563 return target;
1566 /* Return an rtx representing the address of an area of memory already
1567 statically pushed onto the stack in the virtual stack vars area. (It is
1568 assumed that the area is allocated in the function prologue.)
1570 Any required stack pointer alignment is preserved.
1572 OFFSET is the offset of the area into the virtual stack vars area.
1574 REQUIRED_ALIGN is the alignment (in bits) required for the region
1575 of memory. */
1578 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1580 rtx target;
1582 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1583 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1585 target = gen_reg_rtx (Pmode);
1586 emit_move_insn (target, virtual_stack_vars_rtx);
1587 target = expand_binop (Pmode, add_optab, target,
1588 gen_int_mode (offset, Pmode),
1589 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1590 target = align_dynamic_address (target, required_align);
1592 /* Now that we've committed to a return value, mark its alignment. */
1593 mark_reg_pointer (target, required_align);
1595 return target;
1598 /* A front end may want to override GCC's stack checking by providing a
1599 run-time routine to call to check the stack, so provide a mechanism for
1600 calling that routine. */
1602 static GTY(()) rtx stack_check_libfunc;
1604 void
1605 set_stack_check_libfunc (const char *libfunc_name)
1607 gcc_assert (stack_check_libfunc == NULL_RTX);
1608 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1611 /* Emit one stack probe at ADDRESS, an address within the stack. */
1613 void
1614 emit_stack_probe (rtx address)
1616 if (targetm.have_probe_stack_address ())
1617 emit_insn (targetm.gen_probe_stack_address (address));
1618 else
1620 rtx memref = gen_rtx_MEM (word_mode, address);
1622 MEM_VOLATILE_P (memref) = 1;
1624 /* See if we have an insn to probe the stack. */
1625 if (targetm.have_probe_stack ())
1626 emit_insn (targetm.gen_probe_stack (memref));
1627 else
1628 emit_move_insn (memref, const0_rtx);
1632 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1633 FIRST is a constant and size is a Pmode RTX. These are offsets from
1634 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1635 or subtract them from the stack pointer. */
1637 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1639 #if STACK_GROWS_DOWNWARD
1640 #define STACK_GROW_OP MINUS
1641 #define STACK_GROW_OPTAB sub_optab
1642 #define STACK_GROW_OFF(off) -(off)
1643 #else
1644 #define STACK_GROW_OP PLUS
1645 #define STACK_GROW_OPTAB add_optab
1646 #define STACK_GROW_OFF(off) (off)
1647 #endif
1649 void
1650 probe_stack_range (HOST_WIDE_INT first, rtx size)
1652 /* First ensure SIZE is Pmode. */
1653 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1654 size = convert_to_mode (Pmode, size, 1);
1656 /* Next see if we have a function to check the stack. */
1657 if (stack_check_libfunc)
1659 rtx addr = memory_address (Pmode,
1660 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1661 stack_pointer_rtx,
1662 plus_constant (Pmode,
1663 size, first)));
1664 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
1665 addr, Pmode);
1668 /* Next see if we have an insn to check the stack. */
1669 else if (targetm.have_check_stack ())
1671 struct expand_operand ops[1];
1672 rtx addr = memory_address (Pmode,
1673 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1674 stack_pointer_rtx,
1675 plus_constant (Pmode,
1676 size, first)));
1677 bool success;
1678 create_input_operand (&ops[0], addr, Pmode);
1679 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1680 gcc_assert (success);
1683 /* Otherwise we have to generate explicit probes. If we have a constant
1684 small number of them to generate, that's the easy case. */
1685 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1687 HOST_WIDE_INT isize = INTVAL (size), i;
1688 rtx addr;
1690 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1691 it exceeds SIZE. If only one probe is needed, this will not
1692 generate any code. Then probe at FIRST + SIZE. */
1693 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1695 addr = memory_address (Pmode,
1696 plus_constant (Pmode, stack_pointer_rtx,
1697 STACK_GROW_OFF (first + i)));
1698 emit_stack_probe (addr);
1701 addr = memory_address (Pmode,
1702 plus_constant (Pmode, stack_pointer_rtx,
1703 STACK_GROW_OFF (first + isize)));
1704 emit_stack_probe (addr);
1707 /* In the variable case, do the same as above, but in a loop. Note that we
1708 must be extra careful with variables wrapping around because we might be
1709 at the very top (or the very bottom) of the address space and we have to
1710 be able to handle this case properly; in particular, we use an equality
1711 test for the loop condition. */
1712 else
1714 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1715 rtx_code_label *loop_lab = gen_label_rtx ();
1716 rtx_code_label *end_lab = gen_label_rtx ();
1718 /* Step 1: round SIZE to the previous multiple of the interval. */
1720 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1721 rounded_size
1722 = simplify_gen_binary (AND, Pmode, size,
1723 gen_int_mode (-PROBE_INTERVAL, Pmode));
1724 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1727 /* Step 2: compute initial and final value of the loop counter. */
1729 /* TEST_ADDR = SP + FIRST. */
1730 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1731 stack_pointer_rtx,
1732 gen_int_mode (first, Pmode)),
1733 NULL_RTX);
1735 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1736 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1737 test_addr,
1738 rounded_size_op), NULL_RTX);
1741 /* Step 3: the loop
1743 while (TEST_ADDR != LAST_ADDR)
1745 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1746 probe at TEST_ADDR
1749 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1750 until it is equal to ROUNDED_SIZE. */
1752 emit_label (loop_lab);
1754 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1755 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1756 end_lab);
1758 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1759 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1760 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1761 1, OPTAB_WIDEN);
1763 gcc_assert (temp == test_addr);
1765 /* Probe at TEST_ADDR. */
1766 emit_stack_probe (test_addr);
1768 emit_jump (loop_lab);
1770 emit_label (end_lab);
1773 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1774 that SIZE is equal to ROUNDED_SIZE. */
1776 /* TEMP = SIZE - ROUNDED_SIZE. */
1777 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1778 if (temp != const0_rtx)
1780 rtx addr;
1782 if (CONST_INT_P (temp))
1784 /* Use [base + disp} addressing mode if supported. */
1785 HOST_WIDE_INT offset = INTVAL (temp);
1786 addr = memory_address (Pmode,
1787 plus_constant (Pmode, last_addr,
1788 STACK_GROW_OFF (offset)));
1790 else
1792 /* Manual CSE if the difference is not known at compile-time. */
1793 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1794 addr = memory_address (Pmode,
1795 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1796 last_addr, temp));
1799 emit_stack_probe (addr);
1803 /* Make sure nothing is scheduled before we are done. */
1804 emit_insn (gen_blockage ());
1807 /* Compute parameters for stack clash probing a dynamic stack
1808 allocation of SIZE bytes.
1810 We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1812 Additionally we conditionally dump the type of probing that will
1813 be needed given the values computed. */
1815 void
1816 compute_stack_clash_protection_loop_data (rtx *rounded_size, rtx *last_addr,
1817 rtx *residual,
1818 HOST_WIDE_INT *probe_interval,
1819 rtx size)
1821 /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1822 *probe_interval
1823 = 1 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_PROBE_INTERVAL);
1824 *rounded_size = simplify_gen_binary (AND, Pmode, size,
1825 GEN_INT (-*probe_interval));
1827 /* Compute the value of the stack pointer for the last iteration.
1828 It's just SP + ROUNDED_SIZE. */
1829 rtx rounded_size_op = force_operand (*rounded_size, NULL_RTX);
1830 *last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1831 stack_pointer_rtx,
1832 rounded_size_op),
1833 NULL_RTX);
1835 /* Compute any residuals not allocated by the loop above. Residuals
1836 are just the ROUNDED_SIZE - SIZE. */
1837 *residual = simplify_gen_binary (MINUS, Pmode, size, *rounded_size);
1839 /* Dump key information to make writing tests easy. */
1840 if (dump_file)
1842 if (*rounded_size == CONST0_RTX (Pmode))
1843 fprintf (dump_file,
1844 "Stack clash skipped dynamic allocation and probing loop.\n");
1845 else if (CONST_INT_P (*rounded_size)
1846 && INTVAL (*rounded_size) <= 4 * *probe_interval)
1847 fprintf (dump_file,
1848 "Stack clash dynamic allocation and probing inline.\n");
1849 else if (CONST_INT_P (*rounded_size))
1850 fprintf (dump_file,
1851 "Stack clash dynamic allocation and probing in "
1852 "rotated loop.\n");
1853 else
1854 fprintf (dump_file,
1855 "Stack clash dynamic allocation and probing in loop.\n");
1857 if (*residual != CONST0_RTX (Pmode))
1858 fprintf (dump_file,
1859 "Stack clash dynamic allocation and probing residuals.\n");
1860 else
1861 fprintf (dump_file,
1862 "Stack clash skipped dynamic allocation and "
1863 "probing residuals.\n");
1867 /* Emit the start of an allocate/probe loop for stack
1868 clash protection.
1870 LOOP_LAB and END_LAB are returned for use when we emit the
1871 end of the loop.
1873 LAST addr is the value for SP which stops the loop. */
1874 void
1875 emit_stack_clash_protection_probe_loop_start (rtx *loop_lab,
1876 rtx *end_lab,
1877 rtx last_addr,
1878 bool rotated)
1880 /* Essentially we want to emit any setup code, the top of loop
1881 label and the comparison at the top of the loop. */
1882 *loop_lab = gen_label_rtx ();
1883 *end_lab = gen_label_rtx ();
1885 emit_label (*loop_lab);
1886 if (!rotated)
1887 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1888 Pmode, 1, *end_lab);
1891 /* Emit the end of a stack clash probing loop.
1893 This consists of just the jump back to LOOP_LAB and
1894 emitting END_LOOP after the loop. */
1896 void
1897 emit_stack_clash_protection_probe_loop_end (rtx loop_lab, rtx end_loop,
1898 rtx last_addr, bool rotated)
1900 if (rotated)
1901 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, NE, NULL_RTX,
1902 Pmode, 1, loop_lab);
1903 else
1904 emit_jump (loop_lab);
1906 emit_label (end_loop);
1910 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1911 while probing it. This pushes when SIZE is positive. SIZE need not
1912 be constant.
1914 This is subtly different than anti_adjust_stack_and_probe to try and
1915 prevent stack-clash attacks
1917 1. It must assume no knowledge of the probing state, any allocation
1918 must probe.
1920 Consider the case of a 1 byte alloca in a loop. If the sum of the
1921 allocations is large, then this could be used to jump the guard if
1922 probes were not emitted.
1924 2. It never skips probes, whereas anti_adjust_stack_and_probe will
1925 skip probes on the first couple PROBE_INTERVALs on the assumption
1926 they're done elsewhere.
1928 3. It only allocates and probes SIZE bytes, it does not need to
1929 allocate/probe beyond that because this probing style does not
1930 guarantee signal handling capability if the guard is hit. */
1932 static void
1933 anti_adjust_stack_and_probe_stack_clash (rtx size)
1935 /* First ensure SIZE is Pmode. */
1936 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1937 size = convert_to_mode (Pmode, size, 1);
1939 /* We can get here with a constant size on some targets. */
1940 rtx rounded_size, last_addr, residual;
1941 HOST_WIDE_INT probe_interval;
1942 compute_stack_clash_protection_loop_data (&rounded_size, &last_addr,
1943 &residual, &probe_interval, size);
1945 if (rounded_size != CONST0_RTX (Pmode))
1947 if (CONST_INT_P (rounded_size)
1948 && INTVAL (rounded_size) <= 4 * probe_interval)
1950 for (HOST_WIDE_INT i = 0;
1951 i < INTVAL (rounded_size);
1952 i += probe_interval)
1954 anti_adjust_stack (GEN_INT (probe_interval));
1956 /* The prologue does not probe residuals. Thus the offset
1957 here to probe just beyond what the prologue had already
1958 allocated. */
1959 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1960 (probe_interval
1961 - GET_MODE_SIZE (word_mode))));
1962 emit_insn (gen_blockage ());
1965 else
1967 rtx loop_lab, end_loop;
1968 bool rotate_loop = CONST_INT_P (rounded_size);
1969 emit_stack_clash_protection_probe_loop_start (&loop_lab, &end_loop,
1970 last_addr, rotate_loop);
1972 anti_adjust_stack (GEN_INT (probe_interval));
1974 /* The prologue does not probe residuals. Thus the offset here
1975 to probe just beyond what the prologue had already allocated. */
1976 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1977 (probe_interval
1978 - GET_MODE_SIZE (word_mode))));
1980 emit_stack_clash_protection_probe_loop_end (loop_lab, end_loop,
1981 last_addr, rotate_loop);
1982 emit_insn (gen_blockage ());
1986 if (residual != CONST0_RTX (Pmode))
1988 rtx x = force_reg (Pmode, plus_constant (Pmode, residual,
1989 -GET_MODE_SIZE (word_mode)));
1990 anti_adjust_stack (residual);
1991 emit_stack_probe (gen_rtx_PLUS (Pmode, stack_pointer_rtx, x));
1992 emit_insn (gen_blockage ());
1995 /* Some targets make optimistic assumptions in their prologues about
1996 how the caller may have probed the stack. Make sure we honor
1997 those assumptions when needed. */
1998 if (size != CONST0_RTX (Pmode)
1999 && targetm.stack_clash_protection_final_dynamic_probe (residual))
2001 /* SIZE could be zero at runtime and in that case *sp could hold
2002 live data. Furthermore, we don't want to probe into the red
2003 zone.
2005 Go ahead and just guard a probe at *sp on SIZE != 0 at runtime
2006 if SIZE is not a compile time constant. */
2008 /* Ideally we would just probe at *sp. However, if SIZE is not
2009 a compile-time constant, but is zero at runtime, then *sp
2010 might hold live data. So probe at *sp if we know that
2011 an allocation was made, otherwise probe into the red zone
2012 which is obviously undesirable. */
2013 if (CONST_INT_P (size))
2015 emit_stack_probe (stack_pointer_rtx);
2016 emit_insn (gen_blockage ());
2018 else
2020 rtx label = gen_label_rtx ();
2021 emit_cmp_and_jump_insns (size, CONST0_RTX (GET_MODE (size)),
2022 EQ, NULL_RTX, Pmode, 1, label);
2023 emit_stack_probe (stack_pointer_rtx);
2024 emit_insn (gen_blockage ());
2025 emit_label (label);
2031 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2032 while probing it. This pushes when SIZE is positive. SIZE need not
2033 be constant. If ADJUST_BACK is true, adjust back the stack pointer
2034 by plus SIZE at the end. */
2036 void
2037 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
2039 /* We skip the probe for the first interval + a small dope of 4 words and
2040 probe that many bytes past the specified size to maintain a protection
2041 area at the botton of the stack. */
2042 const int dope = 4 * UNITS_PER_WORD;
2044 /* First ensure SIZE is Pmode. */
2045 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
2046 size = convert_to_mode (Pmode, size, 1);
2048 /* If we have a constant small number of probes to generate, that's the
2049 easy case. */
2050 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
2052 HOST_WIDE_INT isize = INTVAL (size), i;
2053 bool first_probe = true;
2055 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
2056 values of N from 1 until it exceeds SIZE. If only one probe is
2057 needed, this will not generate any code. Then adjust and probe
2058 to PROBE_INTERVAL + SIZE. */
2059 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
2061 if (first_probe)
2063 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
2064 first_probe = false;
2066 else
2067 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2068 emit_stack_probe (stack_pointer_rtx);
2071 if (first_probe)
2072 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2073 else
2074 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
2075 emit_stack_probe (stack_pointer_rtx);
2078 /* In the variable case, do the same as above, but in a loop. Note that we
2079 must be extra careful with variables wrapping around because we might be
2080 at the very top (or the very bottom) of the address space and we have to
2081 be able to handle this case properly; in particular, we use an equality
2082 test for the loop condition. */
2083 else
2085 rtx rounded_size, rounded_size_op, last_addr, temp;
2086 rtx_code_label *loop_lab = gen_label_rtx ();
2087 rtx_code_label *end_lab = gen_label_rtx ();
2090 /* Step 1: round SIZE to the previous multiple of the interval. */
2092 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
2093 rounded_size
2094 = simplify_gen_binary (AND, Pmode, size,
2095 gen_int_mode (-PROBE_INTERVAL, Pmode));
2096 rounded_size_op = force_operand (rounded_size, NULL_RTX);
2099 /* Step 2: compute initial and final value of the loop counter. */
2101 /* SP = SP_0 + PROBE_INTERVAL. */
2102 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2104 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
2105 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
2106 stack_pointer_rtx,
2107 rounded_size_op), NULL_RTX);
2110 /* Step 3: the loop
2112 while (SP != LAST_ADDR)
2114 SP = SP + PROBE_INTERVAL
2115 probe at SP
2118 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
2119 values of N from 1 until it is equal to ROUNDED_SIZE. */
2121 emit_label (loop_lab);
2123 /* Jump to END_LAB if SP == LAST_ADDR. */
2124 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
2125 Pmode, 1, end_lab);
2127 /* SP = SP + PROBE_INTERVAL and probe at SP. */
2128 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2129 emit_stack_probe (stack_pointer_rtx);
2131 emit_jump (loop_lab);
2133 emit_label (end_lab);
2136 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
2137 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
2139 /* TEMP = SIZE - ROUNDED_SIZE. */
2140 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
2141 if (temp != const0_rtx)
2143 /* Manual CSE if the difference is not known at compile-time. */
2144 if (GET_CODE (temp) != CONST_INT)
2145 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
2146 anti_adjust_stack (temp);
2147 emit_stack_probe (stack_pointer_rtx);
2151 /* Adjust back and account for the additional first interval. */
2152 if (adjust_back)
2153 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2154 else
2155 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2158 /* Return an rtx representing the register or memory location
2159 in which a scalar value of data type VALTYPE
2160 was returned by a function call to function FUNC.
2161 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2162 function is known, otherwise 0.
2163 OUTGOING is 1 if on a machine with register windows this function
2164 should return the register in which the function will put its result
2165 and 0 otherwise. */
2168 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
2169 int outgoing ATTRIBUTE_UNUSED)
2171 rtx val;
2173 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
2175 if (REG_P (val)
2176 && GET_MODE (val) == BLKmode)
2178 unsigned HOST_WIDE_INT bytes = arg_int_size_in_bytes (valtype);
2179 opt_scalar_int_mode tmpmode;
2181 /* int_size_in_bytes can return -1. We don't need a check here
2182 since the value of bytes will then be large enough that no
2183 mode will match anyway. */
2185 FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
2187 /* Have we found a large enough mode? */
2188 if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
2189 break;
2192 PUT_MODE (val, tmpmode.require ());
2194 return val;
2197 /* Return an rtx representing the register or memory location
2198 in which a scalar value of mode MODE was returned by a library call. */
2201 hard_libcall_value (machine_mode mode, rtx fun)
2203 return targetm.calls.libcall_value (mode, fun);
2206 /* Look up the tree code for a given rtx code
2207 to provide the arithmetic operation for real_arithmetic.
2208 The function returns an int because the caller may not know
2209 what `enum tree_code' means. */
2212 rtx_to_tree_code (enum rtx_code code)
2214 enum tree_code tcode;
2216 switch (code)
2218 case PLUS:
2219 tcode = PLUS_EXPR;
2220 break;
2221 case MINUS:
2222 tcode = MINUS_EXPR;
2223 break;
2224 case MULT:
2225 tcode = MULT_EXPR;
2226 break;
2227 case DIV:
2228 tcode = RDIV_EXPR;
2229 break;
2230 case SMIN:
2231 tcode = MIN_EXPR;
2232 break;
2233 case SMAX:
2234 tcode = MAX_EXPR;
2235 break;
2236 default:
2237 tcode = LAST_AND_UNUSED_TREE_CODE;
2238 break;
2240 return ((int) tcode);
2243 #include "gt-explow.h"