gcc/
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob92b4ab00fb4d424ac18401d313df1ee53ba9e5ca
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "alias.h"
25 #include "symtab.h"
26 #include "tree.h"
27 #include "fold-const.h"
28 #include "stor-layout.h"
29 #include "flags.h"
30 #include "tm_p.h"
31 #include "predict.h"
32 #include "hard-reg-set.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "cfganal.h"
37 #include "basic-block.h"
38 #include "tree-ssa-alias.h"
39 #include "internal-fn.h"
40 #include "gimple-expr.h"
41 #include "gimple.h"
42 #include "gimplify.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-ssa.h"
46 #include "tree-cfg.h"
47 #include "tree-phinodes.h"
48 #include "ssa-iterators.h"
49 #include "stringpool.h"
50 #include "tree-ssanames.h"
51 #include "rtl.h"
52 #include "insn-config.h"
53 #include "expmed.h"
54 #include "dojump.h"
55 #include "explow.h"
56 #include "calls.h"
57 #include "emit-rtl.h"
58 #include "varasm.h"
59 #include "stmt.h"
60 #include "expr.h"
61 #include "tree-dfa.h"
62 #include "tree-pass.h"
63 #include "langhooks.h"
64 #include "domwalk.h"
65 #include "cfgloop.h"
66 #include "tree-data-ref.h"
67 #include "gimple-pretty-print.h"
68 #include "insn-codes.h"
69 #include "optabs.h"
70 #include "tree-scalar-evolution.h"
71 #include "tree-inline.h"
73 static unsigned int tree_ssa_phiopt_worker (bool, bool);
74 static bool conditional_replacement (basic_block, basic_block,
75 edge, edge, gphi *, tree, tree);
76 static int value_replacement (basic_block, basic_block,
77 edge, edge, gimple, tree, tree);
78 static bool minmax_replacement (basic_block, basic_block,
79 edge, edge, gimple, tree, tree);
80 static bool abs_replacement (basic_block, basic_block,
81 edge, edge, gimple, tree, tree);
82 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
83 hash_set<tree> *);
84 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
85 static hash_set<tree> * get_non_trapping ();
86 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
87 static void hoist_adjacent_loads (basic_block, basic_block,
88 basic_block, basic_block);
89 static bool gate_hoist_loads (void);
91 /* This pass tries to transform conditional stores into unconditional
92 ones, enabling further simplifications with the simpler then and else
93 blocks. In particular it replaces this:
95 bb0:
96 if (cond) goto bb2; else goto bb1;
97 bb1:
98 *p = RHS;
99 bb2:
101 with
103 bb0:
104 if (cond) goto bb1; else goto bb2;
105 bb1:
106 condtmp' = *p;
107 bb2:
108 condtmp = PHI <RHS, condtmp'>
109 *p = condtmp;
111 This transformation can only be done under several constraints,
112 documented below. It also replaces:
114 bb0:
115 if (cond) goto bb2; else goto bb1;
116 bb1:
117 *p = RHS1;
118 goto bb3;
119 bb2:
120 *p = RHS2;
121 bb3:
123 with
125 bb0:
126 if (cond) goto bb3; else goto bb1;
127 bb1:
128 bb3:
129 condtmp = PHI <RHS1, RHS2>
130 *p = condtmp; */
132 static unsigned int
133 tree_ssa_cs_elim (void)
135 unsigned todo;
136 /* ??? We are not interested in loop related info, but the following
137 will create it, ICEing as we didn't init loops with pre-headers.
138 An interfacing issue of find_data_references_in_bb. */
139 loop_optimizer_init (LOOPS_NORMAL);
140 scev_initialize ();
141 todo = tree_ssa_phiopt_worker (true, false);
142 scev_finalize ();
143 loop_optimizer_finalize ();
144 return todo;
147 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
149 static gphi *
150 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
152 gimple_stmt_iterator i;
153 gphi *phi = NULL;
154 if (gimple_seq_singleton_p (seq))
155 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
156 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
158 gphi *p = as_a <gphi *> (gsi_stmt (i));
159 /* If the PHI arguments are equal then we can skip this PHI. */
160 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
161 gimple_phi_arg_def (p, e1->dest_idx)))
162 continue;
164 /* If we already have a PHI that has the two edge arguments are
165 different, then return it is not a singleton for these PHIs. */
166 if (phi)
167 return NULL;
169 phi = p;
171 return phi;
174 /* The core routine of conditional store replacement and normal
175 phi optimizations. Both share much of the infrastructure in how
176 to match applicable basic block patterns. DO_STORE_ELIM is true
177 when we want to do conditional store replacement, false otherwise.
178 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
179 of diamond control flow patterns, false otherwise. */
180 static unsigned int
181 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
183 basic_block bb;
184 basic_block *bb_order;
185 unsigned n, i;
186 bool cfgchanged = false;
187 hash_set<tree> *nontrap = 0;
189 if (do_store_elim)
190 /* Calculate the set of non-trapping memory accesses. */
191 nontrap = get_non_trapping ();
193 /* Search every basic block for COND_EXPR we may be able to optimize.
195 We walk the blocks in order that guarantees that a block with
196 a single predecessor is processed before the predecessor.
197 This ensures that we collapse inner ifs before visiting the
198 outer ones, and also that we do not try to visit a removed
199 block. */
200 bb_order = single_pred_before_succ_order ();
201 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
203 for (i = 0; i < n; i++)
205 gimple cond_stmt;
206 gphi *phi;
207 basic_block bb1, bb2;
208 edge e1, e2;
209 tree arg0, arg1;
211 bb = bb_order[i];
213 cond_stmt = last_stmt (bb);
214 /* Check to see if the last statement is a GIMPLE_COND. */
215 if (!cond_stmt
216 || gimple_code (cond_stmt) != GIMPLE_COND)
217 continue;
219 e1 = EDGE_SUCC (bb, 0);
220 bb1 = e1->dest;
221 e2 = EDGE_SUCC (bb, 1);
222 bb2 = e2->dest;
224 /* We cannot do the optimization on abnormal edges. */
225 if ((e1->flags & EDGE_ABNORMAL) != 0
226 || (e2->flags & EDGE_ABNORMAL) != 0)
227 continue;
229 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
230 if (EDGE_COUNT (bb1->succs) == 0
231 || bb2 == NULL
232 || EDGE_COUNT (bb2->succs) == 0)
233 continue;
235 /* Find the bb which is the fall through to the other. */
236 if (EDGE_SUCC (bb1, 0)->dest == bb2)
238 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
240 std::swap (bb1, bb2);
241 std::swap (e1, e2);
243 else if (do_store_elim
244 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
246 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
248 if (!single_succ_p (bb1)
249 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
250 || !single_succ_p (bb2)
251 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
252 || EDGE_COUNT (bb3->preds) != 2)
253 continue;
254 if (cond_if_else_store_replacement (bb1, bb2, bb3))
255 cfgchanged = true;
256 continue;
258 else if (do_hoist_loads
259 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
261 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
263 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
264 && single_succ_p (bb1)
265 && single_succ_p (bb2)
266 && single_pred_p (bb1)
267 && single_pred_p (bb2)
268 && EDGE_COUNT (bb->succs) == 2
269 && EDGE_COUNT (bb3->preds) == 2
270 /* If one edge or the other is dominant, a conditional move
271 is likely to perform worse than the well-predicted branch. */
272 && !predictable_edge_p (EDGE_SUCC (bb, 0))
273 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
274 hoist_adjacent_loads (bb, bb1, bb2, bb3);
275 continue;
277 else
278 continue;
280 e1 = EDGE_SUCC (bb1, 0);
282 /* Make sure that bb1 is just a fall through. */
283 if (!single_succ_p (bb1)
284 || (e1->flags & EDGE_FALLTHRU) == 0)
285 continue;
287 /* Also make sure that bb1 only have one predecessor and that it
288 is bb. */
289 if (!single_pred_p (bb1)
290 || single_pred (bb1) != bb)
291 continue;
293 if (do_store_elim)
295 /* bb1 is the middle block, bb2 the join block, bb the split block,
296 e1 the fallthrough edge from bb1 to bb2. We can't do the
297 optimization if the join block has more than two predecessors. */
298 if (EDGE_COUNT (bb2->preds) > 2)
299 continue;
300 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
301 cfgchanged = true;
303 else
305 gimple_seq phis = phi_nodes (bb2);
306 gimple_stmt_iterator gsi;
307 bool candorest = true;
309 /* Value replacement can work with more than one PHI
310 so try that first. */
311 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
313 phi = as_a <gphi *> (gsi_stmt (gsi));
314 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
315 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
316 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
318 candorest = false;
319 cfgchanged = true;
320 break;
324 if (!candorest)
325 continue;
327 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
328 if (!phi)
329 continue;
331 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
332 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
334 /* Something is wrong if we cannot find the arguments in the PHI
335 node. */
336 gcc_assert (arg0 != NULL && arg1 != NULL);
338 /* Do the replacement of conditional if it can be done. */
339 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
340 cfgchanged = true;
341 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
342 cfgchanged = true;
343 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
344 cfgchanged = true;
348 free (bb_order);
350 if (do_store_elim)
351 delete nontrap;
352 /* If the CFG has changed, we should cleanup the CFG. */
353 if (cfgchanged && do_store_elim)
355 /* In cond-store replacement we have added some loads on edges
356 and new VOPS (as we moved the store, and created a load). */
357 gsi_commit_edge_inserts ();
358 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
360 else if (cfgchanged)
361 return TODO_cleanup_cfg;
362 return 0;
365 /* Replace PHI node element whose edge is E in block BB with variable NEW.
366 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
367 is known to have two edges, one of which must reach BB). */
369 static void
370 replace_phi_edge_with_variable (basic_block cond_block,
371 edge e, gimple phi, tree new_tree)
373 basic_block bb = gimple_bb (phi);
374 basic_block block_to_remove;
375 gimple_stmt_iterator gsi;
377 /* Change the PHI argument to new. */
378 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
380 /* Remove the empty basic block. */
381 if (EDGE_SUCC (cond_block, 0)->dest == bb)
383 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
384 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
385 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
386 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
388 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
390 else
392 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
393 EDGE_SUCC (cond_block, 1)->flags
394 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
395 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
396 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
398 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
400 delete_basic_block (block_to_remove);
402 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
403 gsi = gsi_last_bb (cond_block);
404 gsi_remove (&gsi, true);
406 if (dump_file && (dump_flags & TDF_DETAILS))
407 fprintf (dump_file,
408 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
409 cond_block->index,
410 bb->index);
413 /* The function conditional_replacement does the main work of doing the
414 conditional replacement. Return true if the replacement is done.
415 Otherwise return false.
416 BB is the basic block where the replacement is going to be done on. ARG0
417 is argument 0 from PHI. Likewise for ARG1. */
419 static bool
420 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
421 edge e0, edge e1, gphi *phi,
422 tree arg0, tree arg1)
424 tree result;
425 gimple stmt;
426 gassign *new_stmt;
427 tree cond;
428 gimple_stmt_iterator gsi;
429 edge true_edge, false_edge;
430 tree new_var, new_var2;
431 bool neg;
433 /* FIXME: Gimplification of complex type is too hard for now. */
434 /* We aren't prepared to handle vectors either (and it is a question
435 if it would be worthwhile anyway). */
436 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
437 || POINTER_TYPE_P (TREE_TYPE (arg0)))
438 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
439 || POINTER_TYPE_P (TREE_TYPE (arg1))))
440 return false;
442 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
443 convert it to the conditional. */
444 if ((integer_zerop (arg0) && integer_onep (arg1))
445 || (integer_zerop (arg1) && integer_onep (arg0)))
446 neg = false;
447 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
448 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
449 neg = true;
450 else
451 return false;
453 if (!empty_block_p (middle_bb))
454 return false;
456 /* At this point we know we have a GIMPLE_COND with two successors.
457 One successor is BB, the other successor is an empty block which
458 falls through into BB.
460 There is a single PHI node at the join point (BB) and its arguments
461 are constants (0, 1) or (0, -1).
463 So, given the condition COND, and the two PHI arguments, we can
464 rewrite this PHI into non-branching code:
466 dest = (COND) or dest = COND'
468 We use the condition as-is if the argument associated with the
469 true edge has the value one or the argument associated with the
470 false edge as the value zero. Note that those conditions are not
471 the same since only one of the outgoing edges from the GIMPLE_COND
472 will directly reach BB and thus be associated with an argument. */
474 stmt = last_stmt (cond_bb);
475 result = PHI_RESULT (phi);
477 /* To handle special cases like floating point comparison, it is easier and
478 less error-prone to build a tree and gimplify it on the fly though it is
479 less efficient. */
480 cond = fold_build2_loc (gimple_location (stmt),
481 gimple_cond_code (stmt), boolean_type_node,
482 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
484 /* We need to know which is the true edge and which is the false
485 edge so that we know when to invert the condition below. */
486 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
487 if ((e0 == true_edge && integer_zerop (arg0))
488 || (e0 == false_edge && !integer_zerop (arg0))
489 || (e1 == true_edge && integer_zerop (arg1))
490 || (e1 == false_edge && !integer_zerop (arg1)))
491 cond = fold_build1_loc (gimple_location (stmt),
492 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
494 if (neg)
496 cond = fold_convert_loc (gimple_location (stmt),
497 TREE_TYPE (result), cond);
498 cond = fold_build1_loc (gimple_location (stmt),
499 NEGATE_EXPR, TREE_TYPE (cond), cond);
502 /* Insert our new statements at the end of conditional block before the
503 COND_STMT. */
504 gsi = gsi_for_stmt (stmt);
505 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
506 GSI_SAME_STMT);
508 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
510 source_location locus_0, locus_1;
512 new_var2 = make_ssa_name (TREE_TYPE (result));
513 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
514 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
515 new_var = new_var2;
517 /* Set the locus to the first argument, unless is doesn't have one. */
518 locus_0 = gimple_phi_arg_location (phi, 0);
519 locus_1 = gimple_phi_arg_location (phi, 1);
520 if (locus_0 == UNKNOWN_LOCATION)
521 locus_0 = locus_1;
522 gimple_set_location (new_stmt, locus_0);
525 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
527 /* Note that we optimized this PHI. */
528 return true;
531 /* Update *ARG which is defined in STMT so that it contains the
532 computed value if that seems profitable. Return true if the
533 statement is made dead by that rewriting. */
535 static bool
536 jump_function_from_stmt (tree *arg, gimple stmt)
538 enum tree_code code = gimple_assign_rhs_code (stmt);
539 if (code == ADDR_EXPR)
541 /* For arg = &p->i transform it to p, if possible. */
542 tree rhs1 = gimple_assign_rhs1 (stmt);
543 HOST_WIDE_INT offset;
544 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
545 &offset);
546 if (tem
547 && TREE_CODE (tem) == MEM_REF
548 && (mem_ref_offset (tem) + offset) == 0)
550 *arg = TREE_OPERAND (tem, 0);
551 return true;
554 /* TODO: Much like IPA-CP jump-functions we want to handle constant
555 additions symbolically here, and we'd need to update the comparison
556 code that compares the arg + cst tuples in our caller. For now the
557 code above exactly handles the VEC_BASE pattern from vec.h. */
558 return false;
561 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
562 of the form SSA_NAME NE 0.
564 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
565 the two input values of the EQ_EXPR match arg0 and arg1.
567 If so update *code and return TRUE. Otherwise return FALSE. */
569 static bool
570 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
571 enum tree_code *code, const_tree rhs)
573 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
574 statement. */
575 if (TREE_CODE (rhs) == SSA_NAME)
577 gimple def1 = SSA_NAME_DEF_STMT (rhs);
579 /* Verify the defining statement has an EQ_EXPR on the RHS. */
580 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
582 /* Finally verify the source operands of the EQ_EXPR are equal
583 to arg0 and arg1. */
584 tree op0 = gimple_assign_rhs1 (def1);
585 tree op1 = gimple_assign_rhs2 (def1);
586 if ((operand_equal_for_phi_arg_p (arg0, op0)
587 && operand_equal_for_phi_arg_p (arg1, op1))
588 || (operand_equal_for_phi_arg_p (arg0, op1)
589 && operand_equal_for_phi_arg_p (arg1, op0)))
591 /* We will perform the optimization. */
592 *code = gimple_assign_rhs_code (def1);
593 return true;
597 return false;
600 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
602 Also return TRUE if arg0/arg1 are equal to the source arguments of a
603 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
605 Return FALSE otherwise. */
607 static bool
608 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
609 enum tree_code *code, gimple cond)
611 gimple def;
612 tree lhs = gimple_cond_lhs (cond);
613 tree rhs = gimple_cond_rhs (cond);
615 if ((operand_equal_for_phi_arg_p (arg0, lhs)
616 && operand_equal_for_phi_arg_p (arg1, rhs))
617 || (operand_equal_for_phi_arg_p (arg1, lhs)
618 && operand_equal_for_phi_arg_p (arg0, rhs)))
619 return true;
621 /* Now handle more complex case where we have an EQ comparison
622 which feeds a BIT_AND_EXPR which feeds COND.
624 First verify that COND is of the form SSA_NAME NE 0. */
625 if (*code != NE_EXPR || !integer_zerop (rhs)
626 || TREE_CODE (lhs) != SSA_NAME)
627 return false;
629 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
630 def = SSA_NAME_DEF_STMT (lhs);
631 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
632 return false;
634 /* Now verify arg0/arg1 correspond to the source arguments of an
635 EQ comparison feeding the BIT_AND_EXPR. */
637 tree tmp = gimple_assign_rhs1 (def);
638 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
639 return true;
641 tmp = gimple_assign_rhs2 (def);
642 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
643 return true;
645 return false;
648 /* Returns true if ARG is a neutral element for operation CODE
649 on the RIGHT side. */
651 static bool
652 neutral_element_p (tree_code code, tree arg, bool right)
654 switch (code)
656 case PLUS_EXPR:
657 case BIT_IOR_EXPR:
658 case BIT_XOR_EXPR:
659 return integer_zerop (arg);
661 case LROTATE_EXPR:
662 case RROTATE_EXPR:
663 case LSHIFT_EXPR:
664 case RSHIFT_EXPR:
665 case MINUS_EXPR:
666 case POINTER_PLUS_EXPR:
667 return right && integer_zerop (arg);
669 case MULT_EXPR:
670 return integer_onep (arg);
672 case TRUNC_DIV_EXPR:
673 case CEIL_DIV_EXPR:
674 case FLOOR_DIV_EXPR:
675 case ROUND_DIV_EXPR:
676 case EXACT_DIV_EXPR:
677 return right && integer_onep (arg);
679 case BIT_AND_EXPR:
680 return integer_all_onesp (arg);
682 default:
683 return false;
687 /* Returns true if ARG is an absorbing element for operation CODE. */
689 static bool
690 absorbing_element_p (tree_code code, tree arg)
692 switch (code)
694 case BIT_IOR_EXPR:
695 return integer_all_onesp (arg);
697 case MULT_EXPR:
698 case BIT_AND_EXPR:
699 return integer_zerop (arg);
701 default:
702 return false;
706 /* The function value_replacement does the main work of doing the value
707 replacement. Return non-zero if the replacement is done. Otherwise return
708 0. If we remove the middle basic block, return 2.
709 BB is the basic block where the replacement is going to be done on. ARG0
710 is argument 0 from the PHI. Likewise for ARG1. */
712 static int
713 value_replacement (basic_block cond_bb, basic_block middle_bb,
714 edge e0, edge e1, gimple phi,
715 tree arg0, tree arg1)
717 gimple_stmt_iterator gsi;
718 gimple cond;
719 edge true_edge, false_edge;
720 enum tree_code code;
721 bool emtpy_or_with_defined_p = true;
723 /* If the type says honor signed zeros we cannot do this
724 optimization. */
725 if (HONOR_SIGNED_ZEROS (arg1))
726 return 0;
728 /* If there is a statement in MIDDLE_BB that defines one of the PHI
729 arguments, then adjust arg0 or arg1. */
730 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
731 while (!gsi_end_p (gsi))
733 gimple stmt = gsi_stmt (gsi);
734 tree lhs;
735 gsi_next_nondebug (&gsi);
736 if (!is_gimple_assign (stmt))
738 emtpy_or_with_defined_p = false;
739 continue;
741 /* Now try to adjust arg0 or arg1 according to the computation
742 in the statement. */
743 lhs = gimple_assign_lhs (stmt);
744 if (!(lhs == arg0
745 && jump_function_from_stmt (&arg0, stmt))
746 || (lhs == arg1
747 && jump_function_from_stmt (&arg1, stmt)))
748 emtpy_or_with_defined_p = false;
751 cond = last_stmt (cond_bb);
752 code = gimple_cond_code (cond);
754 /* This transformation is only valid for equality comparisons. */
755 if (code != NE_EXPR && code != EQ_EXPR)
756 return 0;
758 /* We need to know which is the true edge and which is the false
759 edge so that we know if have abs or negative abs. */
760 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
762 /* At this point we know we have a COND_EXPR with two successors.
763 One successor is BB, the other successor is an empty block which
764 falls through into BB.
766 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
768 There is a single PHI node at the join point (BB) with two arguments.
770 We now need to verify that the two arguments in the PHI node match
771 the two arguments to the equality comparison. */
773 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
775 edge e;
776 tree arg;
778 /* For NE_EXPR, we want to build an assignment result = arg where
779 arg is the PHI argument associated with the true edge. For
780 EQ_EXPR we want the PHI argument associated with the false edge. */
781 e = (code == NE_EXPR ? true_edge : false_edge);
783 /* Unfortunately, E may not reach BB (it may instead have gone to
784 OTHER_BLOCK). If that is the case, then we want the single outgoing
785 edge from OTHER_BLOCK which reaches BB and represents the desired
786 path from COND_BLOCK. */
787 if (e->dest == middle_bb)
788 e = single_succ_edge (e->dest);
790 /* Now we know the incoming edge to BB that has the argument for the
791 RHS of our new assignment statement. */
792 if (e0 == e)
793 arg = arg0;
794 else
795 arg = arg1;
797 /* If the middle basic block was empty or is defining the
798 PHI arguments and this is a single phi where the args are different
799 for the edges e0 and e1 then we can remove the middle basic block. */
800 if (emtpy_or_with_defined_p
801 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
802 e0, e1) == phi)
804 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
805 /* Note that we optimized this PHI. */
806 return 2;
808 else
810 /* Replace the PHI arguments with arg. */
811 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
812 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
813 if (dump_file && (dump_flags & TDF_DETAILS))
815 fprintf (dump_file, "PHI ");
816 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
817 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
818 cond_bb->index);
819 print_generic_expr (dump_file, arg, 0);
820 fprintf (dump_file, ".\n");
822 return 1;
827 /* Now optimize (x != 0) ? x + y : y to just y.
828 The following condition is too restrictive, there can easily be another
829 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
830 gimple assign = last_and_only_stmt (middle_bb);
831 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
832 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
833 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
834 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
835 return 0;
837 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
838 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
839 return 0;
841 /* Only transform if it removes the condition. */
842 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
843 return 0;
845 /* Size-wise, this is always profitable. */
846 if (optimize_bb_for_speed_p (cond_bb)
847 /* The special case is useless if it has a low probability. */
848 && profile_status_for_fn (cfun) != PROFILE_ABSENT
849 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
850 /* If assign is cheap, there is no point avoiding it. */
851 && estimate_num_insns (assign, &eni_time_weights)
852 >= 3 * estimate_num_insns (cond, &eni_time_weights))
853 return 0;
855 tree lhs = gimple_assign_lhs (assign);
856 tree rhs1 = gimple_assign_rhs1 (assign);
857 tree rhs2 = gimple_assign_rhs2 (assign);
858 enum tree_code code_def = gimple_assign_rhs_code (assign);
859 tree cond_lhs = gimple_cond_lhs (cond);
860 tree cond_rhs = gimple_cond_rhs (cond);
862 if (((code == NE_EXPR && e1 == false_edge)
863 || (code == EQ_EXPR && e1 == true_edge))
864 && arg0 == lhs
865 && ((arg1 == rhs1
866 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
867 && neutral_element_p (code_def, cond_rhs, true))
868 || (arg1 == rhs2
869 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
870 && neutral_element_p (code_def, cond_rhs, false))
871 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
872 && (operand_equal_for_phi_arg_p (rhs2, cond_lhs)
873 || operand_equal_for_phi_arg_p (rhs1, cond_lhs))
874 && absorbing_element_p (code_def, cond_rhs))))
876 gsi = gsi_for_stmt (cond);
877 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
879 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
880 def-stmt in:
881 if (n_5 != 0)
882 goto <bb 3>;
883 else
884 goto <bb 4>;
886 <bb 3>:
887 # RANGE [0, 4294967294]
888 u_6 = n_5 + 4294967295;
890 <bb 4>:
891 # u_3 = PHI <u_6(3), 4294967295(2)> */
892 SSA_NAME_RANGE_INFO (lhs) = NULL;
893 SSA_NAME_ANTI_RANGE_P (lhs) = 0;
894 /* If available, we can use VR of phi result at least. */
895 tree phires = gimple_phi_result (phi);
896 struct range_info_def *phires_range_info
897 = SSA_NAME_RANGE_INFO (phires);
898 if (phires_range_info)
899 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
900 phires_range_info);
902 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
903 gsi_move_before (&gsi_from, &gsi);
904 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
905 return 2;
908 return 0;
911 /* The function minmax_replacement does the main work of doing the minmax
912 replacement. Return true if the replacement is done. Otherwise return
913 false.
914 BB is the basic block where the replacement is going to be done on. ARG0
915 is argument 0 from the PHI. Likewise for ARG1. */
917 static bool
918 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
919 edge e0, edge e1, gimple phi,
920 tree arg0, tree arg1)
922 tree result, type;
923 gcond *cond;
924 gassign *new_stmt;
925 edge true_edge, false_edge;
926 enum tree_code cmp, minmax, ass_code;
927 tree smaller, larger, arg_true, arg_false;
928 gimple_stmt_iterator gsi, gsi_from;
930 type = TREE_TYPE (PHI_RESULT (phi));
932 /* The optimization may be unsafe due to NaNs. */
933 if (HONOR_NANS (type))
934 return false;
936 cond = as_a <gcond *> (last_stmt (cond_bb));
937 cmp = gimple_cond_code (cond);
939 /* This transformation is only valid for order comparisons. Record which
940 operand is smaller/larger if the result of the comparison is true. */
941 if (cmp == LT_EXPR || cmp == LE_EXPR)
943 smaller = gimple_cond_lhs (cond);
944 larger = gimple_cond_rhs (cond);
946 else if (cmp == GT_EXPR || cmp == GE_EXPR)
948 smaller = gimple_cond_rhs (cond);
949 larger = gimple_cond_lhs (cond);
951 else
952 return false;
954 /* We need to know which is the true edge and which is the false
955 edge so that we know if have abs or negative abs. */
956 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
958 /* Forward the edges over the middle basic block. */
959 if (true_edge->dest == middle_bb)
960 true_edge = EDGE_SUCC (true_edge->dest, 0);
961 if (false_edge->dest == middle_bb)
962 false_edge = EDGE_SUCC (false_edge->dest, 0);
964 if (true_edge == e0)
966 gcc_assert (false_edge == e1);
967 arg_true = arg0;
968 arg_false = arg1;
970 else
972 gcc_assert (false_edge == e0);
973 gcc_assert (true_edge == e1);
974 arg_true = arg1;
975 arg_false = arg0;
978 if (empty_block_p (middle_bb))
980 if (operand_equal_for_phi_arg_p (arg_true, smaller)
981 && operand_equal_for_phi_arg_p (arg_false, larger))
983 /* Case
985 if (smaller < larger)
986 rslt = smaller;
987 else
988 rslt = larger; */
989 minmax = MIN_EXPR;
991 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
992 && operand_equal_for_phi_arg_p (arg_true, larger))
993 minmax = MAX_EXPR;
994 else
995 return false;
997 else
999 /* Recognize the following case, assuming d <= u:
1001 if (a <= u)
1002 b = MAX (a, d);
1003 x = PHI <b, u>
1005 This is equivalent to
1007 b = MAX (a, d);
1008 x = MIN (b, u); */
1010 gimple assign = last_and_only_stmt (middle_bb);
1011 tree lhs, op0, op1, bound;
1013 if (!assign
1014 || gimple_code (assign) != GIMPLE_ASSIGN)
1015 return false;
1017 lhs = gimple_assign_lhs (assign);
1018 ass_code = gimple_assign_rhs_code (assign);
1019 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1020 return false;
1021 op0 = gimple_assign_rhs1 (assign);
1022 op1 = gimple_assign_rhs2 (assign);
1024 if (true_edge->src == middle_bb)
1026 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1027 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1028 return false;
1030 if (operand_equal_for_phi_arg_p (arg_false, larger))
1032 /* Case
1034 if (smaller < larger)
1036 r' = MAX_EXPR (smaller, bound)
1038 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1039 if (ass_code != MAX_EXPR)
1040 return false;
1042 minmax = MIN_EXPR;
1043 if (operand_equal_for_phi_arg_p (op0, smaller))
1044 bound = op1;
1045 else if (operand_equal_for_phi_arg_p (op1, smaller))
1046 bound = op0;
1047 else
1048 return false;
1050 /* We need BOUND <= LARGER. */
1051 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1052 bound, larger)))
1053 return false;
1055 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1057 /* Case
1059 if (smaller < larger)
1061 r' = MIN_EXPR (larger, bound)
1063 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1064 if (ass_code != MIN_EXPR)
1065 return false;
1067 minmax = MAX_EXPR;
1068 if (operand_equal_for_phi_arg_p (op0, larger))
1069 bound = op1;
1070 else if (operand_equal_for_phi_arg_p (op1, larger))
1071 bound = op0;
1072 else
1073 return false;
1075 /* We need BOUND >= SMALLER. */
1076 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1077 bound, smaller)))
1078 return false;
1080 else
1081 return false;
1083 else
1085 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1086 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1087 return false;
1089 if (operand_equal_for_phi_arg_p (arg_true, larger))
1091 /* Case
1093 if (smaller > larger)
1095 r' = MIN_EXPR (smaller, bound)
1097 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1098 if (ass_code != MIN_EXPR)
1099 return false;
1101 minmax = MAX_EXPR;
1102 if (operand_equal_for_phi_arg_p (op0, smaller))
1103 bound = op1;
1104 else if (operand_equal_for_phi_arg_p (op1, smaller))
1105 bound = op0;
1106 else
1107 return false;
1109 /* We need BOUND >= LARGER. */
1110 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1111 bound, larger)))
1112 return false;
1114 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1116 /* Case
1118 if (smaller > larger)
1120 r' = MAX_EXPR (larger, bound)
1122 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1123 if (ass_code != MAX_EXPR)
1124 return false;
1126 minmax = MIN_EXPR;
1127 if (operand_equal_for_phi_arg_p (op0, larger))
1128 bound = op1;
1129 else if (operand_equal_for_phi_arg_p (op1, larger))
1130 bound = op0;
1131 else
1132 return false;
1134 /* We need BOUND <= SMALLER. */
1135 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1136 bound, smaller)))
1137 return false;
1139 else
1140 return false;
1143 /* Move the statement from the middle block. */
1144 gsi = gsi_last_bb (cond_bb);
1145 gsi_from = gsi_last_nondebug_bb (middle_bb);
1146 gsi_move_before (&gsi_from, &gsi);
1149 /* Emit the statement to compute min/max. */
1150 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1151 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1152 gsi = gsi_last_bb (cond_bb);
1153 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1155 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1156 return true;
1159 /* The function absolute_replacement does the main work of doing the absolute
1160 replacement. Return true if the replacement is done. Otherwise return
1161 false.
1162 bb is the basic block where the replacement is going to be done on. arg0
1163 is argument 0 from the phi. Likewise for arg1. */
1165 static bool
1166 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1167 edge e0 ATTRIBUTE_UNUSED, edge e1,
1168 gimple phi, tree arg0, tree arg1)
1170 tree result;
1171 gassign *new_stmt;
1172 gimple cond;
1173 gimple_stmt_iterator gsi;
1174 edge true_edge, false_edge;
1175 gimple assign;
1176 edge e;
1177 tree rhs, lhs;
1178 bool negate;
1179 enum tree_code cond_code;
1181 /* If the type says honor signed zeros we cannot do this
1182 optimization. */
1183 if (HONOR_SIGNED_ZEROS (arg1))
1184 return false;
1186 /* OTHER_BLOCK must have only one executable statement which must have the
1187 form arg0 = -arg1 or arg1 = -arg0. */
1189 assign = last_and_only_stmt (middle_bb);
1190 /* If we did not find the proper negation assignment, then we can not
1191 optimize. */
1192 if (assign == NULL)
1193 return false;
1195 /* If we got here, then we have found the only executable statement
1196 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1197 arg1 = -arg0, then we can not optimize. */
1198 if (gimple_code (assign) != GIMPLE_ASSIGN)
1199 return false;
1201 lhs = gimple_assign_lhs (assign);
1203 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1204 return false;
1206 rhs = gimple_assign_rhs1 (assign);
1208 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1209 if (!(lhs == arg0 && rhs == arg1)
1210 && !(lhs == arg1 && rhs == arg0))
1211 return false;
1213 cond = last_stmt (cond_bb);
1214 result = PHI_RESULT (phi);
1216 /* Only relationals comparing arg[01] against zero are interesting. */
1217 cond_code = gimple_cond_code (cond);
1218 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1219 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1220 return false;
1222 /* Make sure the conditional is arg[01] OP y. */
1223 if (gimple_cond_lhs (cond) != rhs)
1224 return false;
1226 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1227 ? real_zerop (gimple_cond_rhs (cond))
1228 : integer_zerop (gimple_cond_rhs (cond)))
1230 else
1231 return false;
1233 /* We need to know which is the true edge and which is the false
1234 edge so that we know if have abs or negative abs. */
1235 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1237 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1238 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1239 the false edge goes to OTHER_BLOCK. */
1240 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1241 e = true_edge;
1242 else
1243 e = false_edge;
1245 if (e->dest == middle_bb)
1246 negate = true;
1247 else
1248 negate = false;
1250 result = duplicate_ssa_name (result, NULL);
1252 if (negate)
1253 lhs = make_ssa_name (TREE_TYPE (result));
1254 else
1255 lhs = result;
1257 /* Build the modify expression with abs expression. */
1258 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1260 gsi = gsi_last_bb (cond_bb);
1261 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1263 if (negate)
1265 /* Get the right GSI. We want to insert after the recently
1266 added ABS_EXPR statement (which we know is the first statement
1267 in the block. */
1268 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1270 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1273 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1275 /* Note that we optimized this PHI. */
1276 return true;
1279 /* Auxiliary functions to determine the set of memory accesses which
1280 can't trap because they are preceded by accesses to the same memory
1281 portion. We do that for MEM_REFs, so we only need to track
1282 the SSA_NAME of the pointer indirectly referenced. The algorithm
1283 simply is a walk over all instructions in dominator order. When
1284 we see an MEM_REF we determine if we've already seen a same
1285 ref anywhere up to the root of the dominator tree. If we do the
1286 current access can't trap. If we don't see any dominating access
1287 the current access might trap, but might also make later accesses
1288 non-trapping, so we remember it. We need to be careful with loads
1289 or stores, for instance a load might not trap, while a store would,
1290 so if we see a dominating read access this doesn't mean that a later
1291 write access would not trap. Hence we also need to differentiate the
1292 type of access(es) seen.
1294 ??? We currently are very conservative and assume that a load might
1295 trap even if a store doesn't (write-only memory). This probably is
1296 overly conservative. */
1298 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1299 through it was seen, which would constitute a no-trap region for
1300 same accesses. */
1301 struct name_to_bb
1303 unsigned int ssa_name_ver;
1304 unsigned int phase;
1305 bool store;
1306 HOST_WIDE_INT offset, size;
1307 basic_block bb;
1310 /* Hashtable helpers. */
1312 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1314 static inline hashval_t hash (const name_to_bb *);
1315 static inline bool equal (const name_to_bb *, const name_to_bb *);
1318 /* Used for quick clearing of the hash-table when we see calls.
1319 Hash entries with phase < nt_call_phase are invalid. */
1320 static unsigned int nt_call_phase;
1322 /* The hash function. */
1324 inline hashval_t
1325 ssa_names_hasher::hash (const name_to_bb *n)
1327 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1328 ^ (n->offset << 6) ^ (n->size << 3);
1331 /* The equality function of *P1 and *P2. */
1333 inline bool
1334 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1336 return n1->ssa_name_ver == n2->ssa_name_ver
1337 && n1->store == n2->store
1338 && n1->offset == n2->offset
1339 && n1->size == n2->size;
1342 class nontrapping_dom_walker : public dom_walker
1344 public:
1345 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1346 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1348 virtual void before_dom_children (basic_block);
1349 virtual void after_dom_children (basic_block);
1351 private:
1353 /* We see the expression EXP in basic block BB. If it's an interesting
1354 expression (an MEM_REF through an SSA_NAME) possibly insert the
1355 expression into the set NONTRAP or the hash table of seen expressions.
1356 STORE is true if this expression is on the LHS, otherwise it's on
1357 the RHS. */
1358 void add_or_mark_expr (basic_block, tree, bool);
1360 hash_set<tree> *m_nontrapping;
1362 /* The hash table for remembering what we've seen. */
1363 hash_table<ssa_names_hasher> m_seen_ssa_names;
1366 /* Called by walk_dominator_tree, when entering the block BB. */
1367 void
1368 nontrapping_dom_walker::before_dom_children (basic_block bb)
1370 edge e;
1371 edge_iterator ei;
1372 gimple_stmt_iterator gsi;
1374 /* If we haven't seen all our predecessors, clear the hash-table. */
1375 FOR_EACH_EDGE (e, ei, bb->preds)
1376 if ((((size_t)e->src->aux) & 2) == 0)
1378 nt_call_phase++;
1379 break;
1382 /* Mark this BB as being on the path to dominator root and as visited. */
1383 bb->aux = (void*)(1 | 2);
1385 /* And walk the statements in order. */
1386 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1388 gimple stmt = gsi_stmt (gsi);
1390 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1391 nt_call_phase++;
1392 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1394 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1395 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1400 /* Called by walk_dominator_tree, when basic block BB is exited. */
1401 void
1402 nontrapping_dom_walker::after_dom_children (basic_block bb)
1404 /* This BB isn't on the path to dominator root anymore. */
1405 bb->aux = (void*)2;
1408 /* We see the expression EXP in basic block BB. If it's an interesting
1409 expression (an MEM_REF through an SSA_NAME) possibly insert the
1410 expression into the set NONTRAP or the hash table of seen expressions.
1411 STORE is true if this expression is on the LHS, otherwise it's on
1412 the RHS. */
1413 void
1414 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1416 HOST_WIDE_INT size;
1418 if (TREE_CODE (exp) == MEM_REF
1419 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1420 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1421 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1423 tree name = TREE_OPERAND (exp, 0);
1424 struct name_to_bb map;
1425 name_to_bb **slot;
1426 struct name_to_bb *n2bb;
1427 basic_block found_bb = 0;
1429 /* Try to find the last seen MEM_REF through the same
1430 SSA_NAME, which can trap. */
1431 map.ssa_name_ver = SSA_NAME_VERSION (name);
1432 map.phase = 0;
1433 map.bb = 0;
1434 map.store = store;
1435 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1436 map.size = size;
1438 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1439 n2bb = *slot;
1440 if (n2bb && n2bb->phase >= nt_call_phase)
1441 found_bb = n2bb->bb;
1443 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1444 (it's in a basic block on the path from us to the dominator root)
1445 then we can't trap. */
1446 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1448 m_nontrapping->add (exp);
1450 else
1452 /* EXP might trap, so insert it into the hash table. */
1453 if (n2bb)
1455 n2bb->phase = nt_call_phase;
1456 n2bb->bb = bb;
1458 else
1460 n2bb = XNEW (struct name_to_bb);
1461 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1462 n2bb->phase = nt_call_phase;
1463 n2bb->bb = bb;
1464 n2bb->store = store;
1465 n2bb->offset = map.offset;
1466 n2bb->size = size;
1467 *slot = n2bb;
1473 /* This is the entry point of gathering non trapping memory accesses.
1474 It will do a dominator walk over the whole function, and it will
1475 make use of the bb->aux pointers. It returns a set of trees
1476 (the MEM_REFs itself) which can't trap. */
1477 static hash_set<tree> *
1478 get_non_trapping (void)
1480 nt_call_phase = 0;
1481 hash_set<tree> *nontrap = new hash_set<tree>;
1482 /* We're going to do a dominator walk, so ensure that we have
1483 dominance information. */
1484 calculate_dominance_info (CDI_DOMINATORS);
1486 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1487 .walk (cfun->cfg->x_entry_block_ptr);
1489 clear_aux_for_blocks ();
1490 return nontrap;
1493 /* Do the main work of conditional store replacement. We already know
1494 that the recognized pattern looks like so:
1496 split:
1497 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1498 MIDDLE_BB:
1499 something
1500 fallthrough (edge E0)
1501 JOIN_BB:
1502 some more
1504 We check that MIDDLE_BB contains only one store, that that store
1505 doesn't trap (not via NOTRAP, but via checking if an access to the same
1506 memory location dominates us) and that the store has a "simple" RHS. */
1508 static bool
1509 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1510 edge e0, edge e1, hash_set<tree> *nontrap)
1512 gimple assign = last_and_only_stmt (middle_bb);
1513 tree lhs, rhs, name, name2;
1514 gphi *newphi;
1515 gassign *new_stmt;
1516 gimple_stmt_iterator gsi;
1517 source_location locus;
1519 /* Check if middle_bb contains of only one store. */
1520 if (!assign
1521 || !gimple_assign_single_p (assign)
1522 || gimple_has_volatile_ops (assign))
1523 return false;
1525 locus = gimple_location (assign);
1526 lhs = gimple_assign_lhs (assign);
1527 rhs = gimple_assign_rhs1 (assign);
1528 if (TREE_CODE (lhs) != MEM_REF
1529 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1530 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1531 return false;
1533 /* Prove that we can move the store down. We could also check
1534 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1535 whose value is not available readily, which we want to avoid. */
1536 if (!nontrap->contains (lhs))
1537 return false;
1539 /* Now we've checked the constraints, so do the transformation:
1540 1) Remove the single store. */
1541 gsi = gsi_for_stmt (assign);
1542 unlink_stmt_vdef (assign);
1543 gsi_remove (&gsi, true);
1544 release_defs (assign);
1546 /* 2) Insert a load from the memory of the store to the temporary
1547 on the edge which did not contain the store. */
1548 lhs = unshare_expr (lhs);
1549 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1550 new_stmt = gimple_build_assign (name, lhs);
1551 gimple_set_location (new_stmt, locus);
1552 gsi_insert_on_edge (e1, new_stmt);
1554 /* 3) Create a PHI node at the join block, with one argument
1555 holding the old RHS, and the other holding the temporary
1556 where we stored the old memory contents. */
1557 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1558 newphi = create_phi_node (name2, join_bb);
1559 add_phi_arg (newphi, rhs, e0, locus);
1560 add_phi_arg (newphi, name, e1, locus);
1562 lhs = unshare_expr (lhs);
1563 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1565 /* 4) Insert that PHI node. */
1566 gsi = gsi_after_labels (join_bb);
1567 if (gsi_end_p (gsi))
1569 gsi = gsi_last_bb (join_bb);
1570 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1572 else
1573 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1575 return true;
1578 /* Do the main work of conditional store replacement. */
1580 static bool
1581 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1582 basic_block join_bb, gimple then_assign,
1583 gimple else_assign)
1585 tree lhs_base, lhs, then_rhs, else_rhs, name;
1586 source_location then_locus, else_locus;
1587 gimple_stmt_iterator gsi;
1588 gphi *newphi;
1589 gassign *new_stmt;
1591 if (then_assign == NULL
1592 || !gimple_assign_single_p (then_assign)
1593 || gimple_clobber_p (then_assign)
1594 || gimple_has_volatile_ops (then_assign)
1595 || else_assign == NULL
1596 || !gimple_assign_single_p (else_assign)
1597 || gimple_clobber_p (else_assign)
1598 || gimple_has_volatile_ops (else_assign))
1599 return false;
1601 lhs = gimple_assign_lhs (then_assign);
1602 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1603 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1604 return false;
1606 lhs_base = get_base_address (lhs);
1607 if (lhs_base == NULL_TREE
1608 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1609 return false;
1611 then_rhs = gimple_assign_rhs1 (then_assign);
1612 else_rhs = gimple_assign_rhs1 (else_assign);
1613 then_locus = gimple_location (then_assign);
1614 else_locus = gimple_location (else_assign);
1616 /* Now we've checked the constraints, so do the transformation:
1617 1) Remove the stores. */
1618 gsi = gsi_for_stmt (then_assign);
1619 unlink_stmt_vdef (then_assign);
1620 gsi_remove (&gsi, true);
1621 release_defs (then_assign);
1623 gsi = gsi_for_stmt (else_assign);
1624 unlink_stmt_vdef (else_assign);
1625 gsi_remove (&gsi, true);
1626 release_defs (else_assign);
1628 /* 2) Create a PHI node at the join block, with one argument
1629 holding the old RHS, and the other holding the temporary
1630 where we stored the old memory contents. */
1631 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1632 newphi = create_phi_node (name, join_bb);
1633 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1634 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1636 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1638 /* 3) Insert that PHI node. */
1639 gsi = gsi_after_labels (join_bb);
1640 if (gsi_end_p (gsi))
1642 gsi = gsi_last_bb (join_bb);
1643 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1645 else
1646 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1648 return true;
1651 /* Conditional store replacement. We already know
1652 that the recognized pattern looks like so:
1654 split:
1655 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1656 THEN_BB:
1658 X = Y;
1660 goto JOIN_BB;
1661 ELSE_BB:
1663 X = Z;
1665 fallthrough (edge E0)
1666 JOIN_BB:
1667 some more
1669 We check that it is safe to sink the store to JOIN_BB by verifying that
1670 there are no read-after-write or write-after-write dependencies in
1671 THEN_BB and ELSE_BB. */
1673 static bool
1674 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1675 basic_block join_bb)
1677 gimple then_assign = last_and_only_stmt (then_bb);
1678 gimple else_assign = last_and_only_stmt (else_bb);
1679 vec<data_reference_p> then_datarefs, else_datarefs;
1680 vec<ddr_p> then_ddrs, else_ddrs;
1681 gimple then_store, else_store;
1682 bool found, ok = false, res;
1683 struct data_dependence_relation *ddr;
1684 data_reference_p then_dr, else_dr;
1685 int i, j;
1686 tree then_lhs, else_lhs;
1687 basic_block blocks[3];
1689 if (MAX_STORES_TO_SINK == 0)
1690 return false;
1692 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1693 if (then_assign && else_assign)
1694 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1695 then_assign, else_assign);
1697 /* Find data references. */
1698 then_datarefs.create (1);
1699 else_datarefs.create (1);
1700 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1701 == chrec_dont_know)
1702 || !then_datarefs.length ()
1703 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1704 == chrec_dont_know)
1705 || !else_datarefs.length ())
1707 free_data_refs (then_datarefs);
1708 free_data_refs (else_datarefs);
1709 return false;
1712 /* Find pairs of stores with equal LHS. */
1713 auto_vec<gimple, 1> then_stores, else_stores;
1714 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1716 if (DR_IS_READ (then_dr))
1717 continue;
1719 then_store = DR_STMT (then_dr);
1720 then_lhs = gimple_get_lhs (then_store);
1721 if (then_lhs == NULL_TREE)
1722 continue;
1723 found = false;
1725 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1727 if (DR_IS_READ (else_dr))
1728 continue;
1730 else_store = DR_STMT (else_dr);
1731 else_lhs = gimple_get_lhs (else_store);
1732 if (else_lhs == NULL_TREE)
1733 continue;
1735 if (operand_equal_p (then_lhs, else_lhs, 0))
1737 found = true;
1738 break;
1742 if (!found)
1743 continue;
1745 then_stores.safe_push (then_store);
1746 else_stores.safe_push (else_store);
1749 /* No pairs of stores found. */
1750 if (!then_stores.length ()
1751 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1753 free_data_refs (then_datarefs);
1754 free_data_refs (else_datarefs);
1755 return false;
1758 /* Compute and check data dependencies in both basic blocks. */
1759 then_ddrs.create (1);
1760 else_ddrs.create (1);
1761 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1762 vNULL, false)
1763 || !compute_all_dependences (else_datarefs, &else_ddrs,
1764 vNULL, false))
1766 free_dependence_relations (then_ddrs);
1767 free_dependence_relations (else_ddrs);
1768 free_data_refs (then_datarefs);
1769 free_data_refs (else_datarefs);
1770 return false;
1772 blocks[0] = then_bb;
1773 blocks[1] = else_bb;
1774 blocks[2] = join_bb;
1775 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1777 /* Check that there are no read-after-write or write-after-write dependencies
1778 in THEN_BB. */
1779 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1781 struct data_reference *dra = DDR_A (ddr);
1782 struct data_reference *drb = DDR_B (ddr);
1784 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1785 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1786 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1787 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1788 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1789 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1791 free_dependence_relations (then_ddrs);
1792 free_dependence_relations (else_ddrs);
1793 free_data_refs (then_datarefs);
1794 free_data_refs (else_datarefs);
1795 return false;
1799 /* Check that there are no read-after-write or write-after-write dependencies
1800 in ELSE_BB. */
1801 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1803 struct data_reference *dra = DDR_A (ddr);
1804 struct data_reference *drb = DDR_B (ddr);
1806 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1807 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1808 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1809 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1810 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1811 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1813 free_dependence_relations (then_ddrs);
1814 free_dependence_relations (else_ddrs);
1815 free_data_refs (then_datarefs);
1816 free_data_refs (else_datarefs);
1817 return false;
1821 /* Sink stores with same LHS. */
1822 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1824 else_store = else_stores[i];
1825 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1826 then_store, else_store);
1827 ok = ok || res;
1830 free_dependence_relations (then_ddrs);
1831 free_dependence_relations (else_ddrs);
1832 free_data_refs (then_datarefs);
1833 free_data_refs (else_datarefs);
1835 return ok;
1838 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1840 static bool
1841 local_mem_dependence (gimple stmt, basic_block bb)
1843 tree vuse = gimple_vuse (stmt);
1844 gimple def;
1846 if (!vuse)
1847 return false;
1849 def = SSA_NAME_DEF_STMT (vuse);
1850 return (def && gimple_bb (def) == bb);
1853 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1854 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1855 and BB3 rejoins control flow following BB1 and BB2, look for
1856 opportunities to hoist loads as follows. If BB3 contains a PHI of
1857 two loads, one each occurring in BB1 and BB2, and the loads are
1858 provably of adjacent fields in the same structure, then move both
1859 loads into BB0. Of course this can only be done if there are no
1860 dependencies preventing such motion.
1862 One of the hoisted loads will always be speculative, so the
1863 transformation is currently conservative:
1865 - The fields must be strictly adjacent.
1866 - The two fields must occupy a single memory block that is
1867 guaranteed to not cross a page boundary.
1869 The last is difficult to prove, as such memory blocks should be
1870 aligned on the minimum of the stack alignment boundary and the
1871 alignment guaranteed by heap allocation interfaces. Thus we rely
1872 on a parameter for the alignment value.
1874 Provided a good value is used for the last case, the first
1875 restriction could possibly be relaxed. */
1877 static void
1878 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1879 basic_block bb2, basic_block bb3)
1881 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1882 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1883 gphi_iterator gsi;
1885 /* Walk the phis in bb3 looking for an opportunity. We are looking
1886 for phis of two SSA names, one each of which is defined in bb1 and
1887 bb2. */
1888 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1890 gphi *phi_stmt = gsi.phi ();
1891 gimple def1, def2;
1892 tree arg1, arg2, ref1, ref2, field1, field2;
1893 tree tree_offset1, tree_offset2, tree_size2, next;
1894 int offset1, offset2, size2;
1895 unsigned align1;
1896 gimple_stmt_iterator gsi2;
1897 basic_block bb_for_def1, bb_for_def2;
1899 if (gimple_phi_num_args (phi_stmt) != 2
1900 || virtual_operand_p (gimple_phi_result (phi_stmt)))
1901 continue;
1903 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1904 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1906 if (TREE_CODE (arg1) != SSA_NAME
1907 || TREE_CODE (arg2) != SSA_NAME
1908 || SSA_NAME_IS_DEFAULT_DEF (arg1)
1909 || SSA_NAME_IS_DEFAULT_DEF (arg2))
1910 continue;
1912 def1 = SSA_NAME_DEF_STMT (arg1);
1913 def2 = SSA_NAME_DEF_STMT (arg2);
1915 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1916 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1917 continue;
1919 /* Check the mode of the arguments to be sure a conditional move
1920 can be generated for it. */
1921 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1922 == CODE_FOR_nothing)
1923 continue;
1925 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1926 if (!gimple_assign_single_p (def1)
1927 || !gimple_assign_single_p (def2)
1928 || gimple_has_volatile_ops (def1)
1929 || gimple_has_volatile_ops (def2))
1930 continue;
1932 ref1 = gimple_assign_rhs1 (def1);
1933 ref2 = gimple_assign_rhs1 (def2);
1935 if (TREE_CODE (ref1) != COMPONENT_REF
1936 || TREE_CODE (ref2) != COMPONENT_REF)
1937 continue;
1939 /* The zeroth operand of the two component references must be
1940 identical. It is not sufficient to compare get_base_address of
1941 the two references, because this could allow for different
1942 elements of the same array in the two trees. It is not safe to
1943 assume that the existence of one array element implies the
1944 existence of a different one. */
1945 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1946 continue;
1948 field1 = TREE_OPERAND (ref1, 1);
1949 field2 = TREE_OPERAND (ref2, 1);
1951 /* Check for field adjacency, and ensure field1 comes first. */
1952 for (next = DECL_CHAIN (field1);
1953 next && TREE_CODE (next) != FIELD_DECL;
1954 next = DECL_CHAIN (next))
1957 if (next != field2)
1959 for (next = DECL_CHAIN (field2);
1960 next && TREE_CODE (next) != FIELD_DECL;
1961 next = DECL_CHAIN (next))
1964 if (next != field1)
1965 continue;
1967 std::swap (field1, field2);
1968 std::swap (def1, def2);
1971 bb_for_def1 = gimple_bb (def1);
1972 bb_for_def2 = gimple_bb (def2);
1974 /* Check for proper alignment of the first field. */
1975 tree_offset1 = bit_position (field1);
1976 tree_offset2 = bit_position (field2);
1977 tree_size2 = DECL_SIZE (field2);
1979 if (!tree_fits_uhwi_p (tree_offset1)
1980 || !tree_fits_uhwi_p (tree_offset2)
1981 || !tree_fits_uhwi_p (tree_size2))
1982 continue;
1984 offset1 = tree_to_uhwi (tree_offset1);
1985 offset2 = tree_to_uhwi (tree_offset2);
1986 size2 = tree_to_uhwi (tree_size2);
1987 align1 = DECL_ALIGN (field1) % param_align_bits;
1989 if (offset1 % BITS_PER_UNIT != 0)
1990 continue;
1992 /* For profitability, the two field references should fit within
1993 a single cache line. */
1994 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1995 continue;
1997 /* The two expressions cannot be dependent upon vdefs defined
1998 in bb1/bb2. */
1999 if (local_mem_dependence (def1, bb_for_def1)
2000 || local_mem_dependence (def2, bb_for_def2))
2001 continue;
2003 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2004 bb0. We hoist the first one first so that a cache miss is handled
2005 efficiently regardless of hardware cache-fill policy. */
2006 gsi2 = gsi_for_stmt (def1);
2007 gsi_move_to_bb_end (&gsi2, bb0);
2008 gsi2 = gsi_for_stmt (def2);
2009 gsi_move_to_bb_end (&gsi2, bb0);
2011 if (dump_file && (dump_flags & TDF_DETAILS))
2013 fprintf (dump_file,
2014 "\nHoisting adjacent loads from %d and %d into %d: \n",
2015 bb_for_def1->index, bb_for_def2->index, bb0->index);
2016 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2017 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2022 /* Determine whether we should attempt to hoist adjacent loads out of
2023 diamond patterns in pass_phiopt. Always hoist loads if
2024 -fhoist-adjacent-loads is specified and the target machine has
2025 both a conditional move instruction and a defined cache line size. */
2027 static bool
2028 gate_hoist_loads (void)
2030 return (flag_hoist_adjacent_loads == 1
2031 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2032 && HAVE_conditional_move);
2035 /* This pass tries to replaces an if-then-else block with an
2036 assignment. We have four kinds of transformations. Some of these
2037 transformations are also performed by the ifcvt RTL optimizer.
2039 Conditional Replacement
2040 -----------------------
2042 This transformation, implemented in conditional_replacement,
2043 replaces
2045 bb0:
2046 if (cond) goto bb2; else goto bb1;
2047 bb1:
2048 bb2:
2049 x = PHI <0 (bb1), 1 (bb0), ...>;
2051 with
2053 bb0:
2054 x' = cond;
2055 goto bb2;
2056 bb2:
2057 x = PHI <x' (bb0), ...>;
2059 We remove bb1 as it becomes unreachable. This occurs often due to
2060 gimplification of conditionals.
2062 Value Replacement
2063 -----------------
2065 This transformation, implemented in value_replacement, replaces
2067 bb0:
2068 if (a != b) goto bb2; else goto bb1;
2069 bb1:
2070 bb2:
2071 x = PHI <a (bb1), b (bb0), ...>;
2073 with
2075 bb0:
2076 bb2:
2077 x = PHI <b (bb0), ...>;
2079 This opportunity can sometimes occur as a result of other
2080 optimizations.
2083 Another case caught by value replacement looks like this:
2085 bb0:
2086 t1 = a == CONST;
2087 t2 = b > c;
2088 t3 = t1 & t2;
2089 if (t3 != 0) goto bb1; else goto bb2;
2090 bb1:
2091 bb2:
2092 x = PHI (CONST, a)
2094 Gets replaced with:
2095 bb0:
2096 bb2:
2097 t1 = a == CONST;
2098 t2 = b > c;
2099 t3 = t1 & t2;
2100 x = a;
2102 ABS Replacement
2103 ---------------
2105 This transformation, implemented in abs_replacement, replaces
2107 bb0:
2108 if (a >= 0) goto bb2; else goto bb1;
2109 bb1:
2110 x = -a;
2111 bb2:
2112 x = PHI <x (bb1), a (bb0), ...>;
2114 with
2116 bb0:
2117 x' = ABS_EXPR< a >;
2118 bb2:
2119 x = PHI <x' (bb0), ...>;
2121 MIN/MAX Replacement
2122 -------------------
2124 This transformation, minmax_replacement replaces
2126 bb0:
2127 if (a <= b) goto bb2; else goto bb1;
2128 bb1:
2129 bb2:
2130 x = PHI <b (bb1), a (bb0), ...>;
2132 with
2134 bb0:
2135 x' = MIN_EXPR (a, b)
2136 bb2:
2137 x = PHI <x' (bb0), ...>;
2139 A similar transformation is done for MAX_EXPR.
2142 This pass also performs a fifth transformation of a slightly different
2143 flavor.
2145 Adjacent Load Hoisting
2146 ----------------------
2148 This transformation replaces
2150 bb0:
2151 if (...) goto bb2; else goto bb1;
2152 bb1:
2153 x1 = (<expr>).field1;
2154 goto bb3;
2155 bb2:
2156 x2 = (<expr>).field2;
2157 bb3:
2158 # x = PHI <x1, x2>;
2160 with
2162 bb0:
2163 x1 = (<expr>).field1;
2164 x2 = (<expr>).field2;
2165 if (...) goto bb2; else goto bb1;
2166 bb1:
2167 goto bb3;
2168 bb2:
2169 bb3:
2170 # x = PHI <x1, x2>;
2172 The purpose of this transformation is to enable generation of conditional
2173 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2174 the loads is speculative, the transformation is restricted to very
2175 specific cases to avoid introducing a page fault. We are looking for
2176 the common idiom:
2178 if (...)
2179 x = y->left;
2180 else
2181 x = y->right;
2183 where left and right are typically adjacent pointers in a tree structure. */
2185 namespace {
2187 const pass_data pass_data_phiopt =
2189 GIMPLE_PASS, /* type */
2190 "phiopt", /* name */
2191 OPTGROUP_NONE, /* optinfo_flags */
2192 TV_TREE_PHIOPT, /* tv_id */
2193 ( PROP_cfg | PROP_ssa ), /* properties_required */
2194 0, /* properties_provided */
2195 0, /* properties_destroyed */
2196 0, /* todo_flags_start */
2197 0, /* todo_flags_finish */
2200 class pass_phiopt : public gimple_opt_pass
2202 public:
2203 pass_phiopt (gcc::context *ctxt)
2204 : gimple_opt_pass (pass_data_phiopt, ctxt)
2207 /* opt_pass methods: */
2208 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2209 virtual bool gate (function *) { return flag_ssa_phiopt; }
2210 virtual unsigned int execute (function *)
2212 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2215 }; // class pass_phiopt
2217 } // anon namespace
2219 gimple_opt_pass *
2220 make_pass_phiopt (gcc::context *ctxt)
2222 return new pass_phiopt (ctxt);
2225 namespace {
2227 const pass_data pass_data_cselim =
2229 GIMPLE_PASS, /* type */
2230 "cselim", /* name */
2231 OPTGROUP_NONE, /* optinfo_flags */
2232 TV_TREE_PHIOPT, /* tv_id */
2233 ( PROP_cfg | PROP_ssa ), /* properties_required */
2234 0, /* properties_provided */
2235 0, /* properties_destroyed */
2236 0, /* todo_flags_start */
2237 0, /* todo_flags_finish */
2240 class pass_cselim : public gimple_opt_pass
2242 public:
2243 pass_cselim (gcc::context *ctxt)
2244 : gimple_opt_pass (pass_data_cselim, ctxt)
2247 /* opt_pass methods: */
2248 virtual bool gate (function *) { return flag_tree_cselim; }
2249 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2251 }; // class pass_cselim
2253 } // anon namespace
2255 gimple_opt_pass *
2256 make_pass_cselim (gcc::context *ctxt)
2258 return new pass_cselim (ctxt);