1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
118 - pre/post modify transformation
123 #include "coretypes.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
134 #include "function.h"
143 #include "splay-tree.h"
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
164 #define LOCAL_REGNO(REGNO) 0
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
170 #define EH_USES(REGNO) 0
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
179 /* Nonzero if the second flow pass has completed. */
182 /* Maximum register number used in this function, plus one. */
186 /* Indexed by n, giving various register information */
188 varray_type reg_n_info
;
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199 regset regs_live_at_setjmp
;
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p
) PARAMS ((tree
));
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
214 static HARD_REG_SET elim_reg_set
;
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
219 /* A boolean expression of conditions under which a register is dead. */
221 /* Conditions under which a register is dead at the basic block end. */
224 /* A boolean expression of conditions under which a register has been
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
235 struct propagate_block_info
237 /* The basic block we're considering. */
240 /* Bit N is set if register N is conditionally or unconditionally live. */
243 /* Bit N is set if register N is set this insn. */
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
250 /* Contains a list of all the MEMs we are tracking for dead store
254 /* If non-null, record the set of registers set unconditionally in the
258 /* If non-null, record the set of registers set conditionally in the
260 regset cond_local_set
;
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead
;
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
271 /* The length of mem_set_list. */
272 int mem_set_list_len
;
274 /* Nonzero if the value of CC0 is live. */
277 /* Flags controlling the set of information propagate_block collects. */
281 /* Number of dead insns removed. */
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
288 /* Forward declarations */
289 static int verify_wide_reg_1
PARAMS ((rtx
*, void *));
290 static void verify_wide_reg
PARAMS ((int, basic_block
));
291 static void verify_local_live_at_start
PARAMS ((regset
, basic_block
));
292 static void notice_stack_pointer_modification_1
PARAMS ((rtx
, rtx
, void *));
293 static void notice_stack_pointer_modification
PARAMS ((rtx
));
294 static void mark_reg
PARAMS ((rtx
, void *));
295 static void mark_regs_live_at_end
PARAMS ((regset
));
296 static int set_phi_alternative_reg
PARAMS ((rtx
, int, int, void *));
297 static void calculate_global_regs_live
PARAMS ((sbitmap
, sbitmap
, int));
298 static void propagate_block_delete_insn
PARAMS ((rtx
));
299 static rtx propagate_block_delete_libcall
PARAMS ((rtx
, rtx
));
300 static int insn_dead_p
PARAMS ((struct propagate_block_info
*,
302 static int libcall_dead_p
PARAMS ((struct propagate_block_info
*,
304 static void mark_set_regs
PARAMS ((struct propagate_block_info
*,
306 static void mark_set_1
PARAMS ((struct propagate_block_info
*,
307 enum rtx_code
, rtx
, rtx
,
309 static int find_regno_partial
PARAMS ((rtx
*, void *));
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead
PARAMS ((struct propagate_block_info
*,
314 static void free_reg_cond_life_info
PARAMS ((splay_tree_value
));
315 static int flush_reg_cond_reg_1
PARAMS ((splay_tree_node
, void *));
316 static void flush_reg_cond_reg
PARAMS ((struct propagate_block_info
*,
318 static rtx elim_reg_cond
PARAMS ((rtx
, unsigned int));
319 static rtx ior_reg_cond
PARAMS ((rtx
, rtx
, int));
320 static rtx not_reg_cond
PARAMS ((rtx
));
321 static rtx and_reg_cond
PARAMS ((rtx
, rtx
, int));
324 static void attempt_auto_inc
PARAMS ((struct propagate_block_info
*,
325 rtx
, rtx
, rtx
, rtx
, rtx
));
326 static void find_auto_inc
PARAMS ((struct propagate_block_info
*,
328 static int try_pre_increment_1
PARAMS ((struct propagate_block_info
*,
330 static int try_pre_increment
PARAMS ((rtx
, rtx
, HOST_WIDE_INT
));
332 static void mark_used_reg
PARAMS ((struct propagate_block_info
*,
334 static void mark_used_regs
PARAMS ((struct propagate_block_info
*,
336 void dump_flow_info
PARAMS ((FILE *));
337 void debug_flow_info
PARAMS ((void));
338 static void add_to_mem_set_list
PARAMS ((struct propagate_block_info
*,
340 static int invalidate_mems_from_autoinc
PARAMS ((rtx
*, void *));
341 static void invalidate_mems_from_set
PARAMS ((struct propagate_block_info
*,
343 static void clear_log_links
PARAMS ((sbitmap
));
347 check_function_return_warnings ()
349 if (warn_missing_noreturn
350 && !TREE_THIS_VOLATILE (cfun
->decl
)
351 && EXIT_BLOCK_PTR
->pred
== NULL
352 && (lang_missing_noreturn_ok_p
353 && !lang_missing_noreturn_ok_p (cfun
->decl
)))
354 warning ("function might be possible candidate for attribute `noreturn'");
356 /* If we have a path to EXIT, then we do return. */
357 if (TREE_THIS_VOLATILE (cfun
->decl
)
358 && EXIT_BLOCK_PTR
->pred
!= NULL
)
359 warning ("`noreturn' function does return");
361 /* If the clobber_return_insn appears in some basic block, then we
362 do reach the end without returning a value. */
363 else if (warn_return_type
364 && cfun
->x_clobber_return_insn
!= NULL
365 && EXIT_BLOCK_PTR
->pred
!= NULL
)
367 int max_uid
= get_max_uid ();
369 /* If clobber_return_insn was excised by jump1, then renumber_insns
370 can make max_uid smaller than the number still recorded in our rtx.
371 That's fine, since this is a quick way of verifying that the insn
372 is no longer in the chain. */
373 if (INSN_UID (cfun
->x_clobber_return_insn
) < max_uid
)
377 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
378 if (insn
== cfun
->x_clobber_return_insn
)
380 warning ("control reaches end of non-void function");
387 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
388 note associated with the BLOCK. */
391 first_insn_after_basic_block_note (block
)
396 /* Get the first instruction in the block. */
399 if (insn
== NULL_RTX
)
401 if (GET_CODE (insn
) == CODE_LABEL
)
402 insn
= NEXT_INSN (insn
);
403 if (!NOTE_INSN_BASIC_BLOCK_P (insn
))
406 return NEXT_INSN (insn
);
409 /* Perform data flow analysis.
410 F is the first insn of the function; FLAGS is a set of PROP_* flags
411 to be used in accumulating flow info. */
414 life_analysis (f
, file
, flags
)
419 #ifdef ELIMINABLE_REGS
421 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
424 /* Record which registers will be eliminated. We use this in
427 CLEAR_HARD_REG_SET (elim_reg_set
);
429 #ifdef ELIMINABLE_REGS
430 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
431 SET_HARD_REG_BIT (elim_reg_set
, eliminables
[i
].from
);
433 SET_HARD_REG_BIT (elim_reg_set
, FRAME_POINTER_REGNUM
);
437 #ifdef CANNOT_CHANGE_MODE_CLASS
438 if (flags
& PROP_REG_INFO
)
439 bitmap_initialize (&subregs_of_mode
, 1);
443 flags
&= ~(PROP_LOG_LINKS
| PROP_AUTOINC
| PROP_ALLOW_CFG_CHANGES
);
445 /* The post-reload life analysis have (on a global basis) the same
446 registers live as was computed by reload itself. elimination
447 Otherwise offsets and such may be incorrect.
449 Reload will make some registers as live even though they do not
452 We don't want to create new auto-incs after reload, since they
453 are unlikely to be useful and can cause problems with shared
455 if (reload_completed
)
456 flags
&= ~(PROP_REG_INFO
| PROP_AUTOINC
);
458 /* We want alias analysis information for local dead store elimination. */
459 if (optimize
&& (flags
& PROP_SCAN_DEAD_STORES
))
460 init_alias_analysis ();
462 /* Always remove no-op moves. Do this before other processing so
463 that we don't have to keep re-scanning them. */
464 delete_noop_moves (f
);
466 /* Some targets can emit simpler epilogues if they know that sp was
467 not ever modified during the function. After reload, of course,
468 we've already emitted the epilogue so there's no sense searching. */
469 if (! reload_completed
)
470 notice_stack_pointer_modification (f
);
472 /* Allocate and zero out data structures that will record the
473 data from lifetime analysis. */
474 allocate_reg_life_data ();
475 allocate_bb_life_data ();
477 /* Find the set of registers live on function exit. */
478 mark_regs_live_at_end (EXIT_BLOCK_PTR
->global_live_at_start
);
480 /* "Update" life info from zero. It'd be nice to begin the
481 relaxation with just the exit and noreturn blocks, but that set
482 is not immediately handy. */
484 if (flags
& PROP_REG_INFO
)
485 memset (regs_ever_live
, 0, sizeof (regs_ever_live
));
486 update_life_info (NULL
, UPDATE_LIFE_GLOBAL
, flags
);
489 if (optimize
&& (flags
& PROP_SCAN_DEAD_STORES
))
490 end_alias_analysis ();
493 dump_flow_info (file
);
495 free_basic_block_vars (1);
497 /* Removing dead insns should've made jumptables really dead. */
498 delete_dead_jumptables ();
501 /* A subroutine of verify_wide_reg, called through for_each_rtx.
502 Search for REGNO. If found, return 2 if it is not wider than
506 verify_wide_reg_1 (px
, pregno
)
511 unsigned int regno
= *(int *) pregno
;
513 if (GET_CODE (x
) == REG
&& REGNO (x
) == regno
)
515 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
)
522 /* A subroutine of verify_local_live_at_start. Search through insns
523 of BB looking for register REGNO. */
526 verify_wide_reg (regno
, bb
)
530 rtx head
= bb
->head
, end
= bb
->end
;
536 int r
= for_each_rtx (&PATTERN (head
), verify_wide_reg_1
, ®no
);
544 head
= NEXT_INSN (head
);
549 fprintf (rtl_dump_file
, "Register %d died unexpectedly.\n", regno
);
550 dump_bb (bb
, rtl_dump_file
);
555 /* A subroutine of update_life_info. Verify that there are no untoward
556 changes in live_at_start during a local update. */
559 verify_local_live_at_start (new_live_at_start
, bb
)
560 regset new_live_at_start
;
563 if (reload_completed
)
565 /* After reload, there are no pseudos, nor subregs of multi-word
566 registers. The regsets should exactly match. */
567 if (! REG_SET_EQUAL_P (new_live_at_start
, bb
->global_live_at_start
))
571 fprintf (rtl_dump_file
,
572 "live_at_start mismatch in bb %d, aborting\nNew:\n",
574 debug_bitmap_file (rtl_dump_file
, new_live_at_start
);
575 fputs ("Old:\n", rtl_dump_file
);
576 dump_bb (bb
, rtl_dump_file
);
585 /* Find the set of changed registers. */
586 XOR_REG_SET (new_live_at_start
, bb
->global_live_at_start
);
588 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start
, 0, i
,
590 /* No registers should die. */
591 if (REGNO_REG_SET_P (bb
->global_live_at_start
, i
))
595 fprintf (rtl_dump_file
,
596 "Register %d died unexpectedly.\n", i
);
597 dump_bb (bb
, rtl_dump_file
);
602 /* Verify that the now-live register is wider than word_mode. */
603 verify_wide_reg (i
, bb
);
608 /* Updates life information starting with the basic blocks set in BLOCKS.
609 If BLOCKS is null, consider it to be the universal set.
611 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
612 we are only expecting local modifications to basic blocks. If we find
613 extra registers live at the beginning of a block, then we either killed
614 useful data, or we have a broken split that wants data not provided.
615 If we find registers removed from live_at_start, that means we have
616 a broken peephole that is killing a register it shouldn't.
618 ??? This is not true in one situation -- when a pre-reload splitter
619 generates subregs of a multi-word pseudo, current life analysis will
620 lose the kill. So we _can_ have a pseudo go live. How irritating.
622 Including PROP_REG_INFO does not properly refresh regs_ever_live
623 unless the caller resets it to zero. */
626 update_life_info (blocks
, extent
, prop_flags
)
628 enum update_life_extent extent
;
632 regset_head tmp_head
;
634 int stabilized_prop_flags
= prop_flags
;
637 tmp
= INITIALIZE_REG_SET (tmp_head
);
640 timevar_push ((extent
== UPDATE_LIFE_LOCAL
|| blocks
)
641 ? TV_LIFE_UPDATE
: TV_LIFE
);
643 /* Changes to the CFG are only allowed when
644 doing a global update for the entire CFG. */
645 if ((prop_flags
& PROP_ALLOW_CFG_CHANGES
)
646 && (extent
== UPDATE_LIFE_LOCAL
|| blocks
))
649 /* For a global update, we go through the relaxation process again. */
650 if (extent
!= UPDATE_LIFE_LOCAL
)
656 calculate_global_regs_live (blocks
, blocks
,
657 prop_flags
& (PROP_SCAN_DEAD_CODE
658 | PROP_SCAN_DEAD_STORES
659 | PROP_ALLOW_CFG_CHANGES
));
661 if ((prop_flags
& (PROP_KILL_DEAD_CODE
| PROP_ALLOW_CFG_CHANGES
))
662 != (PROP_KILL_DEAD_CODE
| PROP_ALLOW_CFG_CHANGES
))
665 /* Removing dead code may allow the CFG to be simplified which
666 in turn may allow for further dead code detection / removal. */
667 FOR_EACH_BB_REVERSE (bb
)
669 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
670 changed
|= propagate_block (bb
, tmp
, NULL
, NULL
,
671 prop_flags
& (PROP_SCAN_DEAD_CODE
672 | PROP_SCAN_DEAD_STORES
673 | PROP_KILL_DEAD_CODE
));
676 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
677 subsequent propagate_block calls, since removing or acting as
678 removing dead code can affect global register liveness, which
679 is supposed to be finalized for this call after this loop. */
680 stabilized_prop_flags
681 &= ~(PROP_SCAN_DEAD_CODE
| PROP_SCAN_DEAD_STORES
682 | PROP_KILL_DEAD_CODE
);
687 /* We repeat regardless of what cleanup_cfg says. If there were
688 instructions deleted above, that might have been only a
689 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
690 Further improvement may be possible. */
691 cleanup_cfg (CLEANUP_EXPENSIVE
);
693 /* Zap the life information from the last round. If we don't
694 do this, we can wind up with registers that no longer appear
695 in the code being marked live at entry, which twiggs bogus
696 warnings from regno_uninitialized. */
699 CLEAR_REG_SET (bb
->global_live_at_start
);
700 CLEAR_REG_SET (bb
->global_live_at_end
);
704 /* If asked, remove notes from the blocks we'll update. */
705 if (extent
== UPDATE_LIFE_GLOBAL_RM_NOTES
)
706 count_or_remove_death_notes (blocks
, 1);
709 /* Clear log links in case we are asked to (re)compute them. */
710 if (prop_flags
& PROP_LOG_LINKS
)
711 clear_log_links (blocks
);
715 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
717 bb
= BASIC_BLOCK (i
);
719 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
720 propagate_block (bb
, tmp
, NULL
, NULL
, stabilized_prop_flags
);
722 if (extent
== UPDATE_LIFE_LOCAL
)
723 verify_local_live_at_start (tmp
, bb
);
728 FOR_EACH_BB_REVERSE (bb
)
730 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
732 propagate_block (bb
, tmp
, NULL
, NULL
, stabilized_prop_flags
);
734 if (extent
== UPDATE_LIFE_LOCAL
)
735 verify_local_live_at_start (tmp
, bb
);
741 if (prop_flags
& PROP_REG_INFO
)
743 /* The only pseudos that are live at the beginning of the function
744 are those that were not set anywhere in the function. local-alloc
745 doesn't know how to handle these correctly, so mark them as not
746 local to any one basic block. */
747 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR
->global_live_at_end
,
748 FIRST_PSEUDO_REGISTER
, i
,
749 { REG_BASIC_BLOCK (i
) = REG_BLOCK_GLOBAL
; });
751 /* We have a problem with any pseudoreg that lives across the setjmp.
752 ANSI says that if a user variable does not change in value between
753 the setjmp and the longjmp, then the longjmp preserves it. This
754 includes longjmp from a place where the pseudo appears dead.
755 (In principle, the value still exists if it is in scope.)
756 If the pseudo goes in a hard reg, some other value may occupy
757 that hard reg where this pseudo is dead, thus clobbering the pseudo.
758 Conclusion: such a pseudo must not go in a hard reg. */
759 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp
,
760 FIRST_PSEUDO_REGISTER
, i
,
762 if (regno_reg_rtx
[i
] != 0)
764 REG_LIVE_LENGTH (i
) = -1;
765 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
769 timevar_pop ((extent
== UPDATE_LIFE_LOCAL
|| blocks
)
770 ? TV_LIFE_UPDATE
: TV_LIFE
);
771 if (ndead
&& rtl_dump_file
)
772 fprintf (rtl_dump_file
, "deleted %i dead insns\n", ndead
);
776 /* Update life information in all blocks where BB_DIRTY is set. */
779 update_life_info_in_dirty_blocks (extent
, prop_flags
)
780 enum update_life_extent extent
;
783 sbitmap update_life_blocks
= sbitmap_alloc (last_basic_block
);
788 sbitmap_zero (update_life_blocks
);
791 if (extent
== UPDATE_LIFE_LOCAL
)
793 if (bb
->flags
& BB_DIRTY
)
795 SET_BIT (update_life_blocks
, bb
->index
);
801 /* ??? Bootstrap with -march=pentium4 fails to terminate
802 with only a partial life update. */
803 SET_BIT (update_life_blocks
, bb
->index
);
804 if (bb
->flags
& BB_DIRTY
)
810 retval
= update_life_info (update_life_blocks
, extent
, prop_flags
);
812 sbitmap_free (update_life_blocks
);
816 /* Free the variables allocated by find_basic_blocks.
818 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
821 free_basic_block_vars (keep_head_end_p
)
824 if (! keep_head_end_p
)
826 if (basic_block_info
)
829 VARRAY_FREE (basic_block_info
);
832 last_basic_block
= 0;
834 ENTRY_BLOCK_PTR
->aux
= NULL
;
835 ENTRY_BLOCK_PTR
->global_live_at_end
= NULL
;
836 EXIT_BLOCK_PTR
->aux
= NULL
;
837 EXIT_BLOCK_PTR
->global_live_at_start
= NULL
;
841 /* Delete any insns that copy a register to itself. */
844 delete_noop_moves (f
)
845 rtx f ATTRIBUTE_UNUSED
;
853 for (insn
= bb
->head
; insn
!= NEXT_INSN (bb
->end
); insn
= next
)
855 next
= NEXT_INSN (insn
);
856 if (INSN_P (insn
) && noop_move_p (insn
))
860 /* If we're about to remove the first insn of a libcall
861 then move the libcall note to the next real insn and
862 update the retval note. */
863 if ((note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
864 && XEXP (note
, 0) != insn
)
866 rtx new_libcall_insn
= next_real_insn (insn
);
867 rtx retval_note
= find_reg_note (XEXP (note
, 0),
868 REG_RETVAL
, NULL_RTX
);
869 REG_NOTES (new_libcall_insn
)
870 = gen_rtx_INSN_LIST (REG_LIBCALL
, XEXP (note
, 0),
871 REG_NOTES (new_libcall_insn
));
872 XEXP (retval_note
, 0) = new_libcall_insn
;
875 delete_insn_and_edges (insn
);
880 if (nnoops
&& rtl_dump_file
)
881 fprintf (rtl_dump_file
, "deleted %i noop moves", nnoops
);
885 /* Delete any jump tables never referenced. We can't delete them at the
886 time of removing tablejump insn as they are referenced by the preceding
887 insns computing the destination, so we delay deleting and garbagecollect
888 them once life information is computed. */
890 delete_dead_jumptables ()
893 for (insn
= get_insns (); insn
; insn
= next
)
895 next
= NEXT_INSN (insn
);
896 if (GET_CODE (insn
) == CODE_LABEL
897 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
898 && GET_CODE (next
) == JUMP_INSN
899 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
900 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
903 fprintf (rtl_dump_file
, "Dead jumptable %i removed\n", INSN_UID (insn
));
904 delete_insn (NEXT_INSN (insn
));
906 next
= NEXT_INSN (next
);
911 /* Determine if the stack pointer is constant over the life of the function.
912 Only useful before prologues have been emitted. */
915 notice_stack_pointer_modification_1 (x
, pat
, data
)
917 rtx pat ATTRIBUTE_UNUSED
;
918 void *data ATTRIBUTE_UNUSED
;
920 if (x
== stack_pointer_rtx
921 /* The stack pointer is only modified indirectly as the result
922 of a push until later in flow. See the comments in rtl.texi
923 regarding Embedded Side-Effects on Addresses. */
924 || (GET_CODE (x
) == MEM
925 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == 'a'
926 && XEXP (XEXP (x
, 0), 0) == stack_pointer_rtx
))
927 current_function_sp_is_unchanging
= 0;
931 notice_stack_pointer_modification (f
)
936 /* Assume that the stack pointer is unchanging if alloca hasn't
938 current_function_sp_is_unchanging
= !current_function_calls_alloca
;
939 if (! current_function_sp_is_unchanging
)
942 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
946 /* Check if insn modifies the stack pointer. */
947 note_stores (PATTERN (insn
), notice_stack_pointer_modification_1
,
949 if (! current_function_sp_is_unchanging
)
955 /* Mark a register in SET. Hard registers in large modes get all
956 of their component registers set as well. */
963 regset set
= (regset
) xset
;
964 int regno
= REGNO (reg
);
966 if (GET_MODE (reg
) == BLKmode
)
969 SET_REGNO_REG_SET (set
, regno
);
970 if (regno
< FIRST_PSEUDO_REGISTER
)
972 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
974 SET_REGNO_REG_SET (set
, regno
+ n
);
978 /* Mark those regs which are needed at the end of the function as live
979 at the end of the last basic block. */
982 mark_regs_live_at_end (set
)
987 /* If exiting needs the right stack value, consider the stack pointer
988 live at the end of the function. */
989 if ((HAVE_epilogue
&& reload_completed
)
990 || ! EXIT_IGNORE_STACK
991 || (! FRAME_POINTER_REQUIRED
992 && ! current_function_calls_alloca
993 && flag_omit_frame_pointer
)
994 || current_function_sp_is_unchanging
)
996 SET_REGNO_REG_SET (set
, STACK_POINTER_REGNUM
);
999 /* Mark the frame pointer if needed at the end of the function. If
1000 we end up eliminating it, it will be removed from the live list
1001 of each basic block by reload. */
1003 if (! reload_completed
|| frame_pointer_needed
)
1005 SET_REGNO_REG_SET (set
, FRAME_POINTER_REGNUM
);
1006 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1007 /* If they are different, also mark the hard frame pointer as live. */
1008 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM
))
1009 SET_REGNO_REG_SET (set
, HARD_FRAME_POINTER_REGNUM
);
1013 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1014 /* Many architectures have a GP register even without flag_pic.
1015 Assume the pic register is not in use, or will be handled by
1016 other means, if it is not fixed. */
1017 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
1018 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
1019 SET_REGNO_REG_SET (set
, PIC_OFFSET_TABLE_REGNUM
);
1022 /* Mark all global registers, and all registers used by the epilogue
1023 as being live at the end of the function since they may be
1024 referenced by our caller. */
1025 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1026 if (global_regs
[i
] || EPILOGUE_USES (i
))
1027 SET_REGNO_REG_SET (set
, i
);
1029 if (HAVE_epilogue
&& reload_completed
)
1031 /* Mark all call-saved registers that we actually used. */
1032 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1033 if (regs_ever_live
[i
] && ! LOCAL_REGNO (i
)
1034 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1035 SET_REGNO_REG_SET (set
, i
);
1038 #ifdef EH_RETURN_DATA_REGNO
1039 /* Mark the registers that will contain data for the handler. */
1040 if (reload_completed
&& current_function_calls_eh_return
)
1043 unsigned regno
= EH_RETURN_DATA_REGNO(i
);
1044 if (regno
== INVALID_REGNUM
)
1046 SET_REGNO_REG_SET (set
, regno
);
1049 #ifdef EH_RETURN_STACKADJ_RTX
1050 if ((! HAVE_epilogue
|| ! reload_completed
)
1051 && current_function_calls_eh_return
)
1053 rtx tmp
= EH_RETURN_STACKADJ_RTX
;
1054 if (tmp
&& REG_P (tmp
))
1055 mark_reg (tmp
, set
);
1058 #ifdef EH_RETURN_HANDLER_RTX
1059 if ((! HAVE_epilogue
|| ! reload_completed
)
1060 && current_function_calls_eh_return
)
1062 rtx tmp
= EH_RETURN_HANDLER_RTX
;
1063 if (tmp
&& REG_P (tmp
))
1064 mark_reg (tmp
, set
);
1068 /* Mark function return value. */
1069 diddle_return_value (mark_reg
, set
);
1072 /* Callback function for for_each_successor_phi. DATA is a regset.
1073 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1074 INSN, in the regset. */
1077 set_phi_alternative_reg (insn
, dest_regno
, src_regno
, data
)
1078 rtx insn ATTRIBUTE_UNUSED
;
1079 int dest_regno ATTRIBUTE_UNUSED
;
1083 regset live
= (regset
) data
;
1084 SET_REGNO_REG_SET (live
, src_regno
);
1088 /* Propagate global life info around the graph of basic blocks. Begin
1089 considering blocks with their corresponding bit set in BLOCKS_IN.
1090 If BLOCKS_IN is null, consider it the universal set.
1092 BLOCKS_OUT is set for every block that was changed. */
1095 calculate_global_regs_live (blocks_in
, blocks_out
, flags
)
1096 sbitmap blocks_in
, blocks_out
;
1099 basic_block
*queue
, *qhead
, *qtail
, *qend
, bb
;
1100 regset tmp
, new_live_at_end
, invalidated_by_call
;
1101 regset_head tmp_head
, invalidated_by_call_head
;
1102 regset_head new_live_at_end_head
;
1105 /* Some passes used to forget clear aux field of basic block causing
1106 sick behavior here. */
1107 #ifdef ENABLE_CHECKING
1108 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
1113 tmp
= INITIALIZE_REG_SET (tmp_head
);
1114 new_live_at_end
= INITIALIZE_REG_SET (new_live_at_end_head
);
1115 invalidated_by_call
= INITIALIZE_REG_SET (invalidated_by_call_head
);
1117 /* Inconveniently, this is only readily available in hard reg set form. */
1118 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1119 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1120 SET_REGNO_REG_SET (invalidated_by_call
, i
);
1122 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1123 because the `head == tail' style test for an empty queue doesn't
1124 work with a full queue. */
1125 queue
= (basic_block
*) xmalloc ((n_basic_blocks
+ 2) * sizeof (*queue
));
1127 qhead
= qend
= queue
+ n_basic_blocks
+ 2;
1129 /* Queue the blocks set in the initial mask. Do this in reverse block
1130 number order so that we are more likely for the first round to do
1131 useful work. We use AUX non-null to flag that the block is queued. */
1135 if (TEST_BIT (blocks_in
, bb
->index
))
1150 /* We clean aux when we remove the initially-enqueued bbs, but we
1151 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1153 ENTRY_BLOCK_PTR
->aux
= EXIT_BLOCK_PTR
->aux
= NULL
;
1156 sbitmap_zero (blocks_out
);
1158 /* We work through the queue until there are no more blocks. What
1159 is live at the end of this block is precisely the union of what
1160 is live at the beginning of all its successors. So, we set its
1161 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1162 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1163 this block by walking through the instructions in this block in
1164 reverse order and updating as we go. If that changed
1165 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1166 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1168 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1169 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1170 must either be live at the end of the block, or used within the
1171 block. In the latter case, it will certainly never disappear
1172 from GLOBAL_LIVE_AT_START. In the former case, the register
1173 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1174 for one of the successor blocks. By induction, that cannot
1176 while (qhead
!= qtail
)
1178 int rescan
, changed
;
1187 /* Begin by propagating live_at_start from the successor blocks. */
1188 CLEAR_REG_SET (new_live_at_end
);
1191 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
1193 basic_block sb
= e
->dest
;
1195 /* Call-clobbered registers die across exception and
1197 /* ??? Abnormal call edges ignored for the moment, as this gets
1198 confused by sibling call edges, which crashes reg-stack. */
1199 if (e
->flags
& EDGE_EH
)
1201 bitmap_operation (tmp
, sb
->global_live_at_start
,
1202 invalidated_by_call
, BITMAP_AND_COMPL
);
1203 IOR_REG_SET (new_live_at_end
, tmp
);
1206 IOR_REG_SET (new_live_at_end
, sb
->global_live_at_start
);
1208 /* If a target saves one register in another (instead of on
1209 the stack) the save register will need to be live for EH. */
1210 if (e
->flags
& EDGE_EH
)
1211 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1213 SET_REGNO_REG_SET (new_live_at_end
, i
);
1217 /* This might be a noreturn function that throws. And
1218 even if it isn't, getting the unwind info right helps
1220 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1222 SET_REGNO_REG_SET (new_live_at_end
, i
);
1225 /* The all-important stack pointer must always be live. */
1226 SET_REGNO_REG_SET (new_live_at_end
, STACK_POINTER_REGNUM
);
1228 /* Before reload, there are a few registers that must be forced
1229 live everywhere -- which might not already be the case for
1230 blocks within infinite loops. */
1231 if (! reload_completed
)
1233 /* Any reference to any pseudo before reload is a potential
1234 reference of the frame pointer. */
1235 SET_REGNO_REG_SET (new_live_at_end
, FRAME_POINTER_REGNUM
);
1237 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1238 /* Pseudos with argument area equivalences may require
1239 reloading via the argument pointer. */
1240 if (fixed_regs
[ARG_POINTER_REGNUM
])
1241 SET_REGNO_REG_SET (new_live_at_end
, ARG_POINTER_REGNUM
);
1244 /* Any constant, or pseudo with constant equivalences, may
1245 require reloading from memory using the pic register. */
1246 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
1247 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
1248 SET_REGNO_REG_SET (new_live_at_end
, PIC_OFFSET_TABLE_REGNUM
);
1251 /* Regs used in phi nodes are not included in
1252 global_live_at_start, since they are live only along a
1253 particular edge. Set those regs that are live because of a
1254 phi node alternative corresponding to this particular block. */
1256 for_each_successor_phi (bb
, &set_phi_alternative_reg
,
1259 if (bb
== ENTRY_BLOCK_PTR
)
1261 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1265 /* On our first pass through this block, we'll go ahead and continue.
1266 Recognize first pass by local_set NULL. On subsequent passes, we
1267 get to skip out early if live_at_end wouldn't have changed. */
1269 if (bb
->local_set
== NULL
)
1271 bb
->local_set
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1272 bb
->cond_local_set
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1277 /* If any bits were removed from live_at_end, we'll have to
1278 rescan the block. This wouldn't be necessary if we had
1279 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1280 local_live is really dependent on live_at_end. */
1281 CLEAR_REG_SET (tmp
);
1282 rescan
= bitmap_operation (tmp
, bb
->global_live_at_end
,
1283 new_live_at_end
, BITMAP_AND_COMPL
);
1287 /* If any of the registers in the new live_at_end set are
1288 conditionally set in this basic block, we must rescan.
1289 This is because conditional lifetimes at the end of the
1290 block do not just take the live_at_end set into account,
1291 but also the liveness at the start of each successor
1292 block. We can miss changes in those sets if we only
1293 compare the new live_at_end against the previous one. */
1294 CLEAR_REG_SET (tmp
);
1295 rescan
= bitmap_operation (tmp
, new_live_at_end
,
1296 bb
->cond_local_set
, BITMAP_AND
);
1301 /* Find the set of changed bits. Take this opportunity
1302 to notice that this set is empty and early out. */
1303 CLEAR_REG_SET (tmp
);
1304 changed
= bitmap_operation (tmp
, bb
->global_live_at_end
,
1305 new_live_at_end
, BITMAP_XOR
);
1309 /* If any of the changed bits overlap with local_set,
1310 we'll have to rescan the block. Detect overlap by
1311 the AND with ~local_set turning off bits. */
1312 rescan
= bitmap_operation (tmp
, tmp
, bb
->local_set
,
1317 /* Let our caller know that BB changed enough to require its
1318 death notes updated. */
1320 SET_BIT (blocks_out
, bb
->index
);
1324 /* Add to live_at_start the set of all registers in
1325 new_live_at_end that aren't in the old live_at_end. */
1327 bitmap_operation (tmp
, new_live_at_end
, bb
->global_live_at_end
,
1329 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1331 changed
= bitmap_operation (bb
->global_live_at_start
,
1332 bb
->global_live_at_start
,
1339 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1341 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1342 into live_at_start. */
1343 propagate_block (bb
, new_live_at_end
, bb
->local_set
,
1344 bb
->cond_local_set
, flags
);
1346 /* If live_at start didn't change, no need to go farther. */
1347 if (REG_SET_EQUAL_P (bb
->global_live_at_start
, new_live_at_end
))
1350 COPY_REG_SET (bb
->global_live_at_start
, new_live_at_end
);
1353 /* Queue all predecessors of BB so that we may re-examine
1354 their live_at_end. */
1355 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
1357 basic_block pb
= e
->src
;
1358 if (pb
->aux
== NULL
)
1369 FREE_REG_SET (new_live_at_end
);
1370 FREE_REG_SET (invalidated_by_call
);
1374 EXECUTE_IF_SET_IN_SBITMAP (blocks_out
, 0, i
,
1376 basic_block bb
= BASIC_BLOCK (i
);
1377 FREE_REG_SET (bb
->local_set
);
1378 FREE_REG_SET (bb
->cond_local_set
);
1385 FREE_REG_SET (bb
->local_set
);
1386 FREE_REG_SET (bb
->cond_local_set
);
1394 /* This structure is used to pass parameters to and from the
1395 the function find_regno_partial(). It is used to pass in the
1396 register number we are looking, as well as to return any rtx
1400 unsigned regno_to_find
;
1402 } find_regno_partial_param
;
1405 /* Find the rtx for the reg numbers specified in 'data' if it is
1406 part of an expression which only uses part of the register. Return
1407 it in the structure passed in. */
1409 find_regno_partial (ptr
, data
)
1413 find_regno_partial_param
*param
= (find_regno_partial_param
*)data
;
1414 unsigned reg
= param
->regno_to_find
;
1415 param
->retval
= NULL_RTX
;
1417 if (*ptr
== NULL_RTX
)
1420 switch (GET_CODE (*ptr
))
1424 case STRICT_LOW_PART
:
1425 if (GET_CODE (XEXP (*ptr
, 0)) == REG
&& REGNO (XEXP (*ptr
, 0)) == reg
)
1427 param
->retval
= XEXP (*ptr
, 0);
1433 if (GET_CODE (SUBREG_REG (*ptr
)) == REG
1434 && REGNO (SUBREG_REG (*ptr
)) == reg
)
1436 param
->retval
= SUBREG_REG (*ptr
);
1448 /* Process all immediate successors of the entry block looking for pseudo
1449 registers which are live on entry. Find all of those whose first
1450 instance is a partial register reference of some kind, and initialize
1451 them to 0 after the entry block. This will prevent bit sets within
1452 registers whose value is unknown, and may contain some kind of sticky
1453 bits we don't want. */
1456 initialize_uninitialized_subregs ()
1460 int reg
, did_something
= 0;
1461 find_regno_partial_param param
;
1463 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
1465 basic_block bb
= e
->dest
;
1466 regset map
= bb
->global_live_at_start
;
1467 EXECUTE_IF_SET_IN_REG_SET (map
,
1468 FIRST_PSEUDO_REGISTER
, reg
,
1470 int uid
= REGNO_FIRST_UID (reg
);
1473 /* Find an insn which mentions the register we are looking for.
1474 Its preferable to have an instance of the register's rtl since
1475 there may be various flags set which we need to duplicate.
1476 If we can't find it, its probably an automatic whose initial
1477 value doesn't matter, or hopefully something we don't care about. */
1478 for (i
= get_insns (); i
&& INSN_UID (i
) != uid
; i
= NEXT_INSN (i
))
1482 /* Found the insn, now get the REG rtx, if we can. */
1483 param
.regno_to_find
= reg
;
1484 for_each_rtx (&i
, find_regno_partial
, ¶m
);
1485 if (param
.retval
!= NULL_RTX
)
1487 insn
= gen_move_insn (param
.retval
,
1488 CONST0_RTX (GET_MODE (param
.retval
)));
1489 insert_insn_on_edge (insn
, e
);
1497 commit_edge_insertions ();
1498 return did_something
;
1502 /* Subroutines of life analysis. */
1504 /* Allocate the permanent data structures that represent the results
1505 of life analysis. Not static since used also for stupid life analysis. */
1508 allocate_bb_life_data ()
1512 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
1514 bb
->global_live_at_start
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1515 bb
->global_live_at_end
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1518 regs_live_at_setjmp
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1522 allocate_reg_life_data ()
1526 max_regno
= max_reg_num ();
1528 /* Recalculate the register space, in case it has grown. Old style
1529 vector oriented regsets would set regset_{size,bytes} here also. */
1530 allocate_reg_info (max_regno
, FALSE
, FALSE
);
1532 /* Reset all the data we'll collect in propagate_block and its
1534 for (i
= 0; i
< max_regno
; i
++)
1538 REG_N_DEATHS (i
) = 0;
1539 REG_N_CALLS_CROSSED (i
) = 0;
1540 REG_LIVE_LENGTH (i
) = 0;
1542 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
1546 /* Delete dead instructions for propagate_block. */
1549 propagate_block_delete_insn (insn
)
1552 rtx inote
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
1554 /* If the insn referred to a label, and that label was attached to
1555 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1556 pretty much mandatory to delete it, because the ADDR_VEC may be
1557 referencing labels that no longer exist.
1559 INSN may reference a deleted label, particularly when a jump
1560 table has been optimized into a direct jump. There's no
1561 real good way to fix up the reference to the deleted label
1562 when the label is deleted, so we just allow it here. */
1564 if (inote
&& GET_CODE (inote
) == CODE_LABEL
)
1566 rtx label
= XEXP (inote
, 0);
1569 /* The label may be forced if it has been put in the constant
1570 pool. If that is the only use we must discard the table
1571 jump following it, but not the label itself. */
1572 if (LABEL_NUSES (label
) == 1 + LABEL_PRESERVE_P (label
)
1573 && (next
= next_nonnote_insn (label
)) != NULL
1574 && GET_CODE (next
) == JUMP_INSN
1575 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
1576 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
1578 rtx pat
= PATTERN (next
);
1579 int diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1580 int len
= XVECLEN (pat
, diff_vec_p
);
1583 for (i
= 0; i
< len
; i
++)
1584 LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0))--;
1586 delete_insn_and_edges (next
);
1591 delete_insn_and_edges (insn
);
1595 /* Delete dead libcalls for propagate_block. Return the insn
1596 before the libcall. */
1599 propagate_block_delete_libcall ( insn
, note
)
1602 rtx first
= XEXP (note
, 0);
1603 rtx before
= PREV_INSN (first
);
1605 delete_insn_chain_and_edges (first
, insn
);
1610 /* Update the life-status of regs for one insn. Return the previous insn. */
1613 propagate_one_insn (pbi
, insn
)
1614 struct propagate_block_info
*pbi
;
1617 rtx prev
= PREV_INSN (insn
);
1618 int flags
= pbi
->flags
;
1619 int insn_is_dead
= 0;
1620 int libcall_is_dead
= 0;
1624 if (! INSN_P (insn
))
1627 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
1628 if (flags
& PROP_SCAN_DEAD_CODE
)
1630 insn_is_dead
= insn_dead_p (pbi
, PATTERN (insn
), 0, REG_NOTES (insn
));
1631 libcall_is_dead
= (insn_is_dead
&& note
!= 0
1632 && libcall_dead_p (pbi
, note
, insn
));
1635 /* If an instruction consists of just dead store(s) on final pass,
1637 if ((flags
& PROP_KILL_DEAD_CODE
) && insn_is_dead
)
1639 /* If we're trying to delete a prologue or epilogue instruction
1640 that isn't flagged as possibly being dead, something is wrong.
1641 But if we are keeping the stack pointer depressed, we might well
1642 be deleting insns that are used to compute the amount to update
1643 it by, so they are fine. */
1644 if (reload_completed
1645 && !(TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
1646 && (TYPE_RETURNS_STACK_DEPRESSED
1647 (TREE_TYPE (current_function_decl
))))
1648 && (((HAVE_epilogue
|| HAVE_prologue
)
1649 && prologue_epilogue_contains (insn
))
1650 || (HAVE_sibcall_epilogue
1651 && sibcall_epilogue_contains (insn
)))
1652 && find_reg_note (insn
, REG_MAYBE_DEAD
, NULL_RTX
) == 0)
1653 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn
);
1655 /* Record sets. Do this even for dead instructions, since they
1656 would have killed the values if they hadn't been deleted. */
1657 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1659 /* CC0 is now known to be dead. Either this insn used it,
1660 in which case it doesn't anymore, or clobbered it,
1661 so the next insn can't use it. */
1664 if (libcall_is_dead
)
1665 prev
= propagate_block_delete_libcall ( insn
, note
);
1669 /* If INSN contains a RETVAL note and is dead, but the libcall
1670 as a whole is not dead, then we want to remove INSN, but
1671 not the whole libcall sequence.
1673 However, we need to also remove the dangling REG_LIBCALL
1674 note so that we do not have mis-matched LIBCALL/RETVAL
1675 notes. In theory we could find a new location for the
1676 REG_RETVAL note, but it hardly seems worth the effort.
1678 NOTE at this point will be the RETVAL note if it exists. */
1684 = find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
1685 remove_note (XEXP (note
, 0), libcall_note
);
1688 /* Similarly if INSN contains a LIBCALL note, remove the
1689 dangling REG_RETVAL note. */
1690 note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
1696 = find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
1697 remove_note (XEXP (note
, 0), retval_note
);
1700 /* Now delete INSN. */
1701 propagate_block_delete_insn (insn
);
1707 /* See if this is an increment or decrement that can be merged into
1708 a following memory address. */
1711 rtx x
= single_set (insn
);
1713 /* Does this instruction increment or decrement a register? */
1714 if ((flags
& PROP_AUTOINC
)
1716 && GET_CODE (SET_DEST (x
)) == REG
1717 && (GET_CODE (SET_SRC (x
)) == PLUS
1718 || GET_CODE (SET_SRC (x
)) == MINUS
)
1719 && XEXP (SET_SRC (x
), 0) == SET_DEST (x
)
1720 && GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
1721 /* Ok, look for a following memory ref we can combine with.
1722 If one is found, change the memory ref to a PRE_INC
1723 or PRE_DEC, cancel this insn, and return 1.
1724 Return 0 if nothing has been done. */
1725 && try_pre_increment_1 (pbi
, insn
))
1728 #endif /* AUTO_INC_DEC */
1730 CLEAR_REG_SET (pbi
->new_set
);
1732 /* If this is not the final pass, and this insn is copying the value of
1733 a library call and it's dead, don't scan the insns that perform the
1734 library call, so that the call's arguments are not marked live. */
1735 if (libcall_is_dead
)
1737 /* Record the death of the dest reg. */
1738 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1740 insn
= XEXP (note
, 0);
1741 return PREV_INSN (insn
);
1743 else if (GET_CODE (PATTERN (insn
)) == SET
1744 && SET_DEST (PATTERN (insn
)) == stack_pointer_rtx
1745 && GET_CODE (SET_SRC (PATTERN (insn
))) == PLUS
1746 && XEXP (SET_SRC (PATTERN (insn
)), 0) == stack_pointer_rtx
1747 && GET_CODE (XEXP (SET_SRC (PATTERN (insn
)), 1)) == CONST_INT
)
1748 /* We have an insn to pop a constant amount off the stack.
1749 (Such insns use PLUS regardless of the direction of the stack,
1750 and any insn to adjust the stack by a constant is always a pop.)
1751 These insns, if not dead stores, have no effect on life, though
1752 they do have an effect on the memory stores we are tracking. */
1753 invalidate_mems_from_set (pbi
, stack_pointer_rtx
);
1757 /* Any regs live at the time of a call instruction must not go
1758 in a register clobbered by calls. Find all regs now live and
1759 record this for them. */
1761 if (GET_CODE (insn
) == CALL_INSN
&& (flags
& PROP_REG_INFO
))
1762 EXECUTE_IF_SET_IN_REG_SET (pbi
->reg_live
, 0, i
,
1763 { REG_N_CALLS_CROSSED (i
)++; });
1765 /* Record sets. Do this even for dead instructions, since they
1766 would have killed the values if they hadn't been deleted. */
1767 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1769 if (GET_CODE (insn
) == CALL_INSN
)
1775 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
1776 cond
= COND_EXEC_TEST (PATTERN (insn
));
1778 /* Non-constant calls clobber memory, constant calls do not
1779 clobber memory, though they may clobber outgoing arguments
1781 if (! CONST_OR_PURE_CALL_P (insn
))
1783 free_EXPR_LIST_list (&pbi
->mem_set_list
);
1784 pbi
->mem_set_list_len
= 0;
1787 invalidate_mems_from_set (pbi
, stack_pointer_rtx
);
1789 /* There may be extra registers to be clobbered. */
1790 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1792 note
= XEXP (note
, 1))
1793 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
1794 mark_set_1 (pbi
, CLOBBER
, XEXP (XEXP (note
, 0), 0),
1795 cond
, insn
, pbi
->flags
);
1797 /* Calls change all call-used and global registers. */
1798 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1799 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1801 /* We do not want REG_UNUSED notes for these registers. */
1802 mark_set_1 (pbi
, CLOBBER
, regno_reg_rtx
[i
], cond
, insn
,
1803 pbi
->flags
& ~(PROP_DEATH_NOTES
| PROP_REG_INFO
));
1807 /* If an insn doesn't use CC0, it becomes dead since we assume
1808 that every insn clobbers it. So show it dead here;
1809 mark_used_regs will set it live if it is referenced. */
1814 mark_used_regs (pbi
, PATTERN (insn
), NULL_RTX
, insn
);
1815 if ((flags
& PROP_EQUAL_NOTES
)
1816 && ((note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1817 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
))))
1818 mark_used_regs (pbi
, XEXP (note
, 0), NULL_RTX
, insn
);
1820 /* Sometimes we may have inserted something before INSN (such as a move)
1821 when we make an auto-inc. So ensure we will scan those insns. */
1823 prev
= PREV_INSN (insn
);
1826 if (! insn_is_dead
&& GET_CODE (insn
) == CALL_INSN
)
1832 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
1833 cond
= COND_EXEC_TEST (PATTERN (insn
));
1835 /* Calls use their arguments, and may clobber memory which
1836 address involves some register. */
1837 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1839 note
= XEXP (note
, 1))
1840 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1841 of which mark_used_regs knows how to handle. */
1842 mark_used_regs (pbi
, XEXP (XEXP (note
, 0), 0), cond
, insn
);
1844 /* The stack ptr is used (honorarily) by a CALL insn. */
1845 SET_REGNO_REG_SET (pbi
->reg_live
, STACK_POINTER_REGNUM
);
1847 /* Calls may also reference any of the global registers,
1848 so they are made live. */
1849 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1851 mark_used_reg (pbi
, regno_reg_rtx
[i
], cond
, insn
);
1855 /* On final pass, update counts of how many insns in which each reg
1857 if (flags
& PROP_REG_INFO
)
1858 EXECUTE_IF_SET_IN_REG_SET (pbi
->reg_live
, 0, i
,
1859 { REG_LIVE_LENGTH (i
)++; });
1864 /* Initialize a propagate_block_info struct for public consumption.
1865 Note that the structure itself is opaque to this file, but that
1866 the user can use the regsets provided here. */
1868 struct propagate_block_info
*
1869 init_propagate_block_info (bb
, live
, local_set
, cond_local_set
, flags
)
1871 regset live
, local_set
, cond_local_set
;
1874 struct propagate_block_info
*pbi
= xmalloc (sizeof (*pbi
));
1877 pbi
->reg_live
= live
;
1878 pbi
->mem_set_list
= NULL_RTX
;
1879 pbi
->mem_set_list_len
= 0;
1880 pbi
->local_set
= local_set
;
1881 pbi
->cond_local_set
= cond_local_set
;
1885 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
1886 pbi
->reg_next_use
= (rtx
*) xcalloc (max_reg_num (), sizeof (rtx
));
1888 pbi
->reg_next_use
= NULL
;
1890 pbi
->new_set
= BITMAP_XMALLOC ();
1892 #ifdef HAVE_conditional_execution
1893 pbi
->reg_cond_dead
= splay_tree_new (splay_tree_compare_ints
, NULL
,
1894 free_reg_cond_life_info
);
1895 pbi
->reg_cond_reg
= BITMAP_XMALLOC ();
1897 /* If this block ends in a conditional branch, for each register live
1898 from one side of the branch and not the other, record the register
1899 as conditionally dead. */
1900 if (GET_CODE (bb
->end
) == JUMP_INSN
1901 && any_condjump_p (bb
->end
))
1903 regset_head diff_head
;
1904 regset diff
= INITIALIZE_REG_SET (diff_head
);
1905 basic_block bb_true
, bb_false
;
1906 rtx cond_true
, cond_false
, set_src
;
1909 /* Identify the successor blocks. */
1910 bb_true
= bb
->succ
->dest
;
1911 if (bb
->succ
->succ_next
!= NULL
)
1913 bb_false
= bb
->succ
->succ_next
->dest
;
1915 if (bb
->succ
->flags
& EDGE_FALLTHRU
)
1917 basic_block t
= bb_false
;
1921 else if (! (bb
->succ
->succ_next
->flags
& EDGE_FALLTHRU
))
1926 /* This can happen with a conditional jump to the next insn. */
1927 if (JUMP_LABEL (bb
->end
) != bb_true
->head
)
1930 /* Simplest way to do nothing. */
1934 /* Extract the condition from the branch. */
1935 set_src
= SET_SRC (pc_set (bb
->end
));
1936 cond_true
= XEXP (set_src
, 0);
1937 cond_false
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true
)),
1938 GET_MODE (cond_true
), XEXP (cond_true
, 0),
1939 XEXP (cond_true
, 1));
1940 if (GET_CODE (XEXP (set_src
, 1)) == PC
)
1943 cond_false
= cond_true
;
1947 /* Compute which register lead different lives in the successors. */
1948 if (bitmap_operation (diff
, bb_true
->global_live_at_start
,
1949 bb_false
->global_live_at_start
, BITMAP_XOR
))
1951 rtx reg
= XEXP (cond_true
, 0);
1953 if (GET_CODE (reg
) == SUBREG
)
1954 reg
= SUBREG_REG (reg
);
1956 if (GET_CODE (reg
) != REG
)
1959 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (reg
));
1961 /* For each such register, mark it conditionally dead. */
1962 EXECUTE_IF_SET_IN_REG_SET
1965 struct reg_cond_life_info
*rcli
;
1968 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
1970 if (REGNO_REG_SET_P (bb_true
->global_live_at_start
, i
))
1974 rcli
->condition
= cond
;
1975 rcli
->stores
= const0_rtx
;
1976 rcli
->orig_condition
= cond
;
1978 splay_tree_insert (pbi
->reg_cond_dead
, i
,
1979 (splay_tree_value
) rcli
);
1983 FREE_REG_SET (diff
);
1987 /* If this block has no successors, any stores to the frame that aren't
1988 used later in the block are dead. So make a pass over the block
1989 recording any such that are made and show them dead at the end. We do
1990 a very conservative and simple job here. */
1992 && ! (TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
1993 && (TYPE_RETURNS_STACK_DEPRESSED
1994 (TREE_TYPE (current_function_decl
))))
1995 && (flags
& PROP_SCAN_DEAD_STORES
)
1996 && (bb
->succ
== NULL
1997 || (bb
->succ
->succ_next
== NULL
1998 && bb
->succ
->dest
== EXIT_BLOCK_PTR
1999 && ! current_function_calls_eh_return
)))
2002 for (insn
= bb
->end
; insn
!= bb
->head
; insn
= PREV_INSN (insn
))
2003 if (GET_CODE (insn
) == INSN
2004 && (set
= single_set (insn
))
2005 && GET_CODE (SET_DEST (set
)) == MEM
)
2007 rtx mem
= SET_DEST (set
);
2008 rtx canon_mem
= canon_rtx (mem
);
2010 /* This optimization is performed by faking a store to the
2011 memory at the end of the block. This doesn't work for
2012 unchanging memories because multiple stores to unchanging
2013 memory is illegal and alias analysis doesn't consider it. */
2014 if (RTX_UNCHANGING_P (canon_mem
))
2017 if (XEXP (canon_mem
, 0) == frame_pointer_rtx
2018 || (GET_CODE (XEXP (canon_mem
, 0)) == PLUS
2019 && XEXP (XEXP (canon_mem
, 0), 0) == frame_pointer_rtx
2020 && GET_CODE (XEXP (XEXP (canon_mem
, 0), 1)) == CONST_INT
))
2021 add_to_mem_set_list (pbi
, canon_mem
);
2028 /* Release a propagate_block_info struct. */
2031 free_propagate_block_info (pbi
)
2032 struct propagate_block_info
*pbi
;
2034 free_EXPR_LIST_list (&pbi
->mem_set_list
);
2036 BITMAP_XFREE (pbi
->new_set
);
2038 #ifdef HAVE_conditional_execution
2039 splay_tree_delete (pbi
->reg_cond_dead
);
2040 BITMAP_XFREE (pbi
->reg_cond_reg
);
2043 if (pbi
->reg_next_use
)
2044 free (pbi
->reg_next_use
);
2049 /* Compute the registers live at the beginning of a basic block BB from
2050 those live at the end.
2052 When called, REG_LIVE contains those live at the end. On return, it
2053 contains those live at the beginning.
2055 LOCAL_SET, if non-null, will be set with all registers killed
2056 unconditionally by this basic block.
2057 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2058 killed conditionally by this basic block. If there is any unconditional
2059 set of a register, then the corresponding bit will be set in LOCAL_SET
2060 and cleared in COND_LOCAL_SET.
2061 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2062 case, the resulting set will be equal to the union of the two sets that
2063 would otherwise be computed.
2065 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2068 propagate_block (bb
, live
, local_set
, cond_local_set
, flags
)
2072 regset cond_local_set
;
2075 struct propagate_block_info
*pbi
;
2079 pbi
= init_propagate_block_info (bb
, live
, local_set
, cond_local_set
, flags
);
2081 if (flags
& PROP_REG_INFO
)
2085 /* Process the regs live at the end of the block.
2086 Mark them as not local to any one basic block. */
2087 EXECUTE_IF_SET_IN_REG_SET (live
, 0, i
,
2088 { REG_BASIC_BLOCK (i
) = REG_BLOCK_GLOBAL
; });
2091 /* Scan the block an insn at a time from end to beginning. */
2094 for (insn
= bb
->end
;; insn
= prev
)
2096 /* If this is a call to `setjmp' et al, warn if any
2097 non-volatile datum is live. */
2098 if ((flags
& PROP_REG_INFO
)
2099 && GET_CODE (insn
) == CALL_INSN
2100 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2101 IOR_REG_SET (regs_live_at_setjmp
, pbi
->reg_live
);
2103 prev
= propagate_one_insn (pbi
, insn
);
2104 changed
|= NEXT_INSN (prev
) != insn
;
2106 if (insn
== bb
->head
)
2110 free_propagate_block_info (pbi
);
2115 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2116 (SET expressions whose destinations are registers dead after the insn).
2117 NEEDED is the regset that says which regs are alive after the insn.
2119 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2121 If X is the entire body of an insn, NOTES contains the reg notes
2122 pertaining to the insn. */
2125 insn_dead_p (pbi
, x
, call_ok
, notes
)
2126 struct propagate_block_info
*pbi
;
2129 rtx notes ATTRIBUTE_UNUSED
;
2131 enum rtx_code code
= GET_CODE (x
);
2133 /* Don't eliminate insns that may trap. */
2134 if (flag_non_call_exceptions
&& may_trap_p (x
))
2138 /* As flow is invoked after combine, we must take existing AUTO_INC
2139 expressions into account. */
2140 for (; notes
; notes
= XEXP (notes
, 1))
2142 if (REG_NOTE_KIND (notes
) == REG_INC
)
2144 int regno
= REGNO (XEXP (notes
, 0));
2146 /* Don't delete insns to set global regs. */
2147 if ((regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2148 || REGNO_REG_SET_P (pbi
->reg_live
, regno
))
2154 /* If setting something that's a reg or part of one,
2155 see if that register's altered value will be live. */
2159 rtx r
= SET_DEST (x
);
2162 if (GET_CODE (r
) == CC0
)
2163 return ! pbi
->cc0_live
;
2166 /* A SET that is a subroutine call cannot be dead. */
2167 if (GET_CODE (SET_SRC (x
)) == CALL
)
2173 /* Don't eliminate loads from volatile memory or volatile asms. */
2174 else if (volatile_refs_p (SET_SRC (x
)))
2177 if (GET_CODE (r
) == MEM
)
2181 if (MEM_VOLATILE_P (r
) || GET_MODE (r
) == BLKmode
)
2184 canon_r
= canon_rtx (r
);
2186 /* Walk the set of memory locations we are currently tracking
2187 and see if one is an identical match to this memory location.
2188 If so, this memory write is dead (remember, we're walking
2189 backwards from the end of the block to the start). Since
2190 rtx_equal_p does not check the alias set or flags, we also
2191 must have the potential for them to conflict (anti_dependence). */
2192 for (temp
= pbi
->mem_set_list
; temp
!= 0; temp
= XEXP (temp
, 1))
2193 if (anti_dependence (r
, XEXP (temp
, 0)))
2195 rtx mem
= XEXP (temp
, 0);
2197 if (rtx_equal_p (XEXP (canon_r
, 0), XEXP (mem
, 0))
2198 && (GET_MODE_SIZE (GET_MODE (canon_r
))
2199 <= GET_MODE_SIZE (GET_MODE (mem
))))
2203 /* Check if memory reference matches an auto increment. Only
2204 post increment/decrement or modify are valid. */
2205 if (GET_MODE (mem
) == GET_MODE (r
)
2206 && (GET_CODE (XEXP (mem
, 0)) == POST_DEC
2207 || GET_CODE (XEXP (mem
, 0)) == POST_INC
2208 || GET_CODE (XEXP (mem
, 0)) == POST_MODIFY
)
2209 && GET_MODE (XEXP (mem
, 0)) == GET_MODE (r
)
2210 && rtx_equal_p (XEXP (XEXP (mem
, 0), 0), XEXP (r
, 0)))
2217 while (GET_CODE (r
) == SUBREG
2218 || GET_CODE (r
) == STRICT_LOW_PART
2219 || GET_CODE (r
) == ZERO_EXTRACT
)
2222 if (GET_CODE (r
) == REG
)
2224 int regno
= REGNO (r
);
2227 if (REGNO_REG_SET_P (pbi
->reg_live
, regno
))
2230 /* If this is a hard register, verify that subsequent
2231 words are not needed. */
2232 if (regno
< FIRST_PSEUDO_REGISTER
)
2234 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (r
));
2237 if (REGNO_REG_SET_P (pbi
->reg_live
, regno
+n
))
2241 /* Don't delete insns to set global regs. */
2242 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2245 /* Make sure insns to set the stack pointer aren't deleted. */
2246 if (regno
== STACK_POINTER_REGNUM
)
2249 /* ??? These bits might be redundant with the force live bits
2250 in calculate_global_regs_live. We would delete from
2251 sequential sets; whether this actually affects real code
2252 for anything but the stack pointer I don't know. */
2253 /* Make sure insns to set the frame pointer aren't deleted. */
2254 if (regno
== FRAME_POINTER_REGNUM
2255 && (! reload_completed
|| frame_pointer_needed
))
2257 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2258 if (regno
== HARD_FRAME_POINTER_REGNUM
2259 && (! reload_completed
|| frame_pointer_needed
))
2263 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2264 /* Make sure insns to set arg pointer are never deleted
2265 (if the arg pointer isn't fixed, there will be a USE
2266 for it, so we can treat it normally). */
2267 if (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
2271 /* Otherwise, the set is dead. */
2277 /* If performing several activities, insn is dead if each activity
2278 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2279 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2281 else if (code
== PARALLEL
)
2283 int i
= XVECLEN (x
, 0);
2285 for (i
--; i
>= 0; i
--)
2286 if (GET_CODE (XVECEXP (x
, 0, i
)) != CLOBBER
2287 && GET_CODE (XVECEXP (x
, 0, i
)) != USE
2288 && ! insn_dead_p (pbi
, XVECEXP (x
, 0, i
), call_ok
, NULL_RTX
))
2294 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2295 is not necessarily true for hard registers. */
2296 else if (code
== CLOBBER
&& GET_CODE (XEXP (x
, 0)) == REG
2297 && REGNO (XEXP (x
, 0)) >= FIRST_PSEUDO_REGISTER
2298 && ! REGNO_REG_SET_P (pbi
->reg_live
, REGNO (XEXP (x
, 0))))
2301 /* We do not check other CLOBBER or USE here. An insn consisting of just
2302 a CLOBBER or just a USE should not be deleted. */
2306 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2307 return 1 if the entire library call is dead.
2308 This is true if INSN copies a register (hard or pseudo)
2309 and if the hard return reg of the call insn is dead.
2310 (The caller should have tested the destination of the SET inside
2311 INSN already for death.)
2313 If this insn doesn't just copy a register, then we don't
2314 have an ordinary libcall. In that case, cse could not have
2315 managed to substitute the source for the dest later on,
2316 so we can assume the libcall is dead.
2318 PBI is the block info giving pseudoregs live before this insn.
2319 NOTE is the REG_RETVAL note of the insn. */
2322 libcall_dead_p (pbi
, note
, insn
)
2323 struct propagate_block_info
*pbi
;
2327 rtx x
= single_set (insn
);
2331 rtx r
= SET_SRC (x
);
2333 if (GET_CODE (r
) == REG
)
2335 rtx call
= XEXP (note
, 0);
2339 /* Find the call insn. */
2340 while (call
!= insn
&& GET_CODE (call
) != CALL_INSN
)
2341 call
= NEXT_INSN (call
);
2343 /* If there is none, do nothing special,
2344 since ordinary death handling can understand these insns. */
2348 /* See if the hard reg holding the value is dead.
2349 If this is a PARALLEL, find the call within it. */
2350 call_pat
= PATTERN (call
);
2351 if (GET_CODE (call_pat
) == PARALLEL
)
2353 for (i
= XVECLEN (call_pat
, 0) - 1; i
>= 0; i
--)
2354 if (GET_CODE (XVECEXP (call_pat
, 0, i
)) == SET
2355 && GET_CODE (SET_SRC (XVECEXP (call_pat
, 0, i
))) == CALL
)
2358 /* This may be a library call that is returning a value
2359 via invisible pointer. Do nothing special, since
2360 ordinary death handling can understand these insns. */
2364 call_pat
= XVECEXP (call_pat
, 0, i
);
2367 return insn_dead_p (pbi
, call_pat
, 1, REG_NOTES (call
));
2373 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2374 live at function entry. Don't count global register variables, variables
2375 in registers that can be used for function arg passing, or variables in
2376 fixed hard registers. */
2379 regno_uninitialized (regno
)
2382 if (n_basic_blocks
== 0
2383 || (regno
< FIRST_PSEUDO_REGISTER
2384 && (global_regs
[regno
]
2385 || fixed_regs
[regno
]
2386 || FUNCTION_ARG_REGNO_P (regno
))))
2389 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->global_live_at_end
, regno
);
2392 /* 1 if register REGNO was alive at a place where `setjmp' was called
2393 and was set more than once or is an argument.
2394 Such regs may be clobbered by `longjmp'. */
2397 regno_clobbered_at_setjmp (regno
)
2400 if (n_basic_blocks
== 0)
2403 return ((REG_N_SETS (regno
) > 1
2404 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->global_live_at_end
, regno
))
2405 && REGNO_REG_SET_P (regs_live_at_setjmp
, regno
));
2408 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2409 maximal list size; look for overlaps in mode and select the largest. */
2411 add_to_mem_set_list (pbi
, mem
)
2412 struct propagate_block_info
*pbi
;
2417 /* We don't know how large a BLKmode store is, so we must not
2418 take them into consideration. */
2419 if (GET_MODE (mem
) == BLKmode
)
2422 for (i
= pbi
->mem_set_list
; i
; i
= XEXP (i
, 1))
2424 rtx e
= XEXP (i
, 0);
2425 if (rtx_equal_p (XEXP (mem
, 0), XEXP (e
, 0)))
2427 if (GET_MODE_SIZE (GET_MODE (mem
)) > GET_MODE_SIZE (GET_MODE (e
)))
2430 /* If we must store a copy of the mem, we can just modify
2431 the mode of the stored copy. */
2432 if (pbi
->flags
& PROP_AUTOINC
)
2433 PUT_MODE (e
, GET_MODE (mem
));
2442 if (pbi
->mem_set_list_len
< MAX_MEM_SET_LIST_LEN
)
2445 /* Store a copy of mem, otherwise the address may be
2446 scrogged by find_auto_inc. */
2447 if (pbi
->flags
& PROP_AUTOINC
)
2448 mem
= shallow_copy_rtx (mem
);
2450 pbi
->mem_set_list
= alloc_EXPR_LIST (0, mem
, pbi
->mem_set_list
);
2451 pbi
->mem_set_list_len
++;
2455 /* INSN references memory, possibly using autoincrement addressing modes.
2456 Find any entries on the mem_set_list that need to be invalidated due
2457 to an address change. */
2460 invalidate_mems_from_autoinc (px
, data
)
2465 struct propagate_block_info
*pbi
= data
;
2467 if (GET_RTX_CLASS (GET_CODE (x
)) == 'a')
2469 invalidate_mems_from_set (pbi
, XEXP (x
, 0));
2476 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2479 invalidate_mems_from_set (pbi
, exp
)
2480 struct propagate_block_info
*pbi
;
2483 rtx temp
= pbi
->mem_set_list
;
2484 rtx prev
= NULL_RTX
;
2489 next
= XEXP (temp
, 1);
2490 if (reg_overlap_mentioned_p (exp
, XEXP (temp
, 0)))
2492 /* Splice this entry out of the list. */
2494 XEXP (prev
, 1) = next
;
2496 pbi
->mem_set_list
= next
;
2497 free_EXPR_LIST_node (temp
);
2498 pbi
->mem_set_list_len
--;
2506 /* Process the registers that are set within X. Their bits are set to
2507 1 in the regset DEAD, because they are dead prior to this insn.
2509 If INSN is nonzero, it is the insn being processed.
2511 FLAGS is the set of operations to perform. */
2514 mark_set_regs (pbi
, x
, insn
)
2515 struct propagate_block_info
*pbi
;
2518 rtx cond
= NULL_RTX
;
2523 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2525 if (REG_NOTE_KIND (link
) == REG_INC
)
2526 mark_set_1 (pbi
, SET
, XEXP (link
, 0),
2527 (GET_CODE (x
) == COND_EXEC
2528 ? COND_EXEC_TEST (x
) : NULL_RTX
),
2532 switch (code
= GET_CODE (x
))
2536 mark_set_1 (pbi
, code
, SET_DEST (x
), cond
, insn
, pbi
->flags
);
2540 cond
= COND_EXEC_TEST (x
);
2541 x
= COND_EXEC_CODE (x
);
2548 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
2550 rtx sub
= XVECEXP (x
, 0, i
);
2551 switch (code
= GET_CODE (sub
))
2554 if (cond
!= NULL_RTX
)
2557 cond
= COND_EXEC_TEST (sub
);
2558 sub
= COND_EXEC_CODE (sub
);
2559 if (GET_CODE (sub
) != SET
&& GET_CODE (sub
) != CLOBBER
)
2565 mark_set_1 (pbi
, code
, SET_DEST (sub
), cond
, insn
, pbi
->flags
);
2580 /* Process a single set, which appears in INSN. REG (which may not
2581 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2582 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2583 If the set is conditional (because it appear in a COND_EXEC), COND
2584 will be the condition. */
2587 mark_set_1 (pbi
, code
, reg
, cond
, insn
, flags
)
2588 struct propagate_block_info
*pbi
;
2590 rtx reg
, cond
, insn
;
2593 int regno_first
= -1, regno_last
= -1;
2594 unsigned long not_dead
= 0;
2597 /* Modifying just one hardware register of a multi-reg value or just a
2598 byte field of a register does not mean the value from before this insn
2599 is now dead. Of course, if it was dead after it's unused now. */
2601 switch (GET_CODE (reg
))
2604 /* Some targets place small structures in registers for return values of
2605 functions. We have to detect this case specially here to get correct
2606 flow information. */
2607 for (i
= XVECLEN (reg
, 0) - 1; i
>= 0; i
--)
2608 if (XEXP (XVECEXP (reg
, 0, i
), 0) != 0)
2609 mark_set_1 (pbi
, code
, XEXP (XVECEXP (reg
, 0, i
), 0), cond
, insn
,
2615 case STRICT_LOW_PART
:
2616 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2618 reg
= XEXP (reg
, 0);
2619 while (GET_CODE (reg
) == SUBREG
2620 || GET_CODE (reg
) == ZERO_EXTRACT
2621 || GET_CODE (reg
) == SIGN_EXTRACT
2622 || GET_CODE (reg
) == STRICT_LOW_PART
);
2623 if (GET_CODE (reg
) == MEM
)
2625 not_dead
= (unsigned long) REGNO_REG_SET_P (pbi
->reg_live
, REGNO (reg
));
2629 regno_last
= regno_first
= REGNO (reg
);
2630 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2631 regno_last
+= HARD_REGNO_NREGS (regno_first
, GET_MODE (reg
)) - 1;
2635 if (GET_CODE (SUBREG_REG (reg
)) == REG
)
2637 enum machine_mode outer_mode
= GET_MODE (reg
);
2638 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (reg
));
2640 /* Identify the range of registers affected. This is moderately
2641 tricky for hard registers. See alter_subreg. */
2643 regno_last
= regno_first
= REGNO (SUBREG_REG (reg
));
2644 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2646 regno_first
+= subreg_regno_offset (regno_first
, inner_mode
,
2649 regno_last
= (regno_first
2650 + HARD_REGNO_NREGS (regno_first
, outer_mode
) - 1);
2652 /* Since we've just adjusted the register number ranges, make
2653 sure REG matches. Otherwise some_was_live will be clear
2654 when it shouldn't have been, and we'll create incorrect
2655 REG_UNUSED notes. */
2656 reg
= gen_rtx_REG (outer_mode
, regno_first
);
2660 /* If the number of words in the subreg is less than the number
2661 of words in the full register, we have a well-defined partial
2662 set. Otherwise the high bits are undefined.
2664 This is only really applicable to pseudos, since we just took
2665 care of multi-word hard registers. */
2666 if (((GET_MODE_SIZE (outer_mode
)
2667 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
2668 < ((GET_MODE_SIZE (inner_mode
)
2669 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))
2670 not_dead
= (unsigned long) REGNO_REG_SET_P (pbi
->reg_live
,
2673 reg
= SUBREG_REG (reg
);
2677 reg
= SUBREG_REG (reg
);
2684 /* If this set is a MEM, then it kills any aliased writes.
2685 If this set is a REG, then it kills any MEMs which use the reg. */
2686 if (optimize
&& (flags
& PROP_SCAN_DEAD_STORES
))
2688 if (GET_CODE (reg
) == REG
)
2689 invalidate_mems_from_set (pbi
, reg
);
2691 /* If the memory reference had embedded side effects (autoincrement
2692 address modes. Then we may need to kill some entries on the
2694 if (insn
&& GET_CODE (reg
) == MEM
)
2695 for_each_rtx (&PATTERN (insn
), invalidate_mems_from_autoinc
, pbi
);
2697 if (GET_CODE (reg
) == MEM
&& ! side_effects_p (reg
)
2698 /* ??? With more effort we could track conditional memory life. */
2700 add_to_mem_set_list (pbi
, canon_rtx (reg
));
2703 if (GET_CODE (reg
) == REG
2704 && ! (regno_first
== FRAME_POINTER_REGNUM
2705 && (! reload_completed
|| frame_pointer_needed
))
2706 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2707 && ! (regno_first
== HARD_FRAME_POINTER_REGNUM
2708 && (! reload_completed
|| frame_pointer_needed
))
2710 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2711 && ! (regno_first
== ARG_POINTER_REGNUM
&& fixed_regs
[regno_first
])
2715 int some_was_live
= 0, some_was_dead
= 0;
2717 for (i
= regno_first
; i
<= regno_last
; ++i
)
2719 int needed_regno
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
2722 /* Order of the set operation matters here since both
2723 sets may be the same. */
2724 CLEAR_REGNO_REG_SET (pbi
->cond_local_set
, i
);
2725 if (cond
!= NULL_RTX
2726 && ! REGNO_REG_SET_P (pbi
->local_set
, i
))
2727 SET_REGNO_REG_SET (pbi
->cond_local_set
, i
);
2729 SET_REGNO_REG_SET (pbi
->local_set
, i
);
2731 if (code
!= CLOBBER
)
2732 SET_REGNO_REG_SET (pbi
->new_set
, i
);
2734 some_was_live
|= needed_regno
;
2735 some_was_dead
|= ! needed_regno
;
2738 #ifdef HAVE_conditional_execution
2739 /* Consider conditional death in deciding that the register needs
2741 if (some_was_live
&& ! not_dead
2742 /* The stack pointer is never dead. Well, not strictly true,
2743 but it's very difficult to tell from here. Hopefully
2744 combine_stack_adjustments will fix up the most egregious
2746 && regno_first
!= STACK_POINTER_REGNUM
)
2748 for (i
= regno_first
; i
<= regno_last
; ++i
)
2749 if (! mark_regno_cond_dead (pbi
, i
, cond
))
2750 not_dead
|= ((unsigned long) 1) << (i
- regno_first
);
2754 /* Additional data to record if this is the final pass. */
2755 if (flags
& (PROP_LOG_LINKS
| PROP_REG_INFO
2756 | PROP_DEATH_NOTES
| PROP_AUTOINC
))
2759 int blocknum
= pbi
->bb
->index
;
2762 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
2764 y
= pbi
->reg_next_use
[regno_first
];
2766 /* The next use is no longer next, since a store intervenes. */
2767 for (i
= regno_first
; i
<= regno_last
; ++i
)
2768 pbi
->reg_next_use
[i
] = 0;
2771 if (flags
& PROP_REG_INFO
)
2773 for (i
= regno_first
; i
<= regno_last
; ++i
)
2775 /* Count (weighted) references, stores, etc. This counts a
2776 register twice if it is modified, but that is correct. */
2777 REG_N_SETS (i
) += 1;
2778 REG_N_REFS (i
) += 1;
2779 REG_FREQ (i
) += REG_FREQ_FROM_BB (pbi
->bb
);
2781 /* The insns where a reg is live are normally counted
2782 elsewhere, but we want the count to include the insn
2783 where the reg is set, and the normal counting mechanism
2784 would not count it. */
2785 REG_LIVE_LENGTH (i
) += 1;
2788 /* If this is a hard reg, record this function uses the reg. */
2789 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2791 for (i
= regno_first
; i
<= regno_last
; i
++)
2792 regs_ever_live
[i
] = 1;
2796 /* Keep track of which basic blocks each reg appears in. */
2797 if (REG_BASIC_BLOCK (regno_first
) == REG_BLOCK_UNKNOWN
)
2798 REG_BASIC_BLOCK (regno_first
) = blocknum
;
2799 else if (REG_BASIC_BLOCK (regno_first
) != blocknum
)
2800 REG_BASIC_BLOCK (regno_first
) = REG_BLOCK_GLOBAL
;
2804 if (! some_was_dead
)
2806 if (flags
& PROP_LOG_LINKS
)
2808 /* Make a logical link from the next following insn
2809 that uses this register, back to this insn.
2810 The following insns have already been processed.
2812 We don't build a LOG_LINK for hard registers containing
2813 in ASM_OPERANDs. If these registers get replaced,
2814 we might wind up changing the semantics of the insn,
2815 even if reload can make what appear to be valid
2816 assignments later. */
2817 if (y
&& (BLOCK_NUM (y
) == blocknum
)
2818 && (regno_first
>= FIRST_PSEUDO_REGISTER
2819 || asm_noperands (PATTERN (y
)) < 0))
2820 LOG_LINKS (y
) = alloc_INSN_LIST (insn
, LOG_LINKS (y
));
2825 else if (! some_was_live
)
2827 if (flags
& PROP_REG_INFO
)
2828 REG_N_DEATHS (regno_first
) += 1;
2830 if (flags
& PROP_DEATH_NOTES
)
2832 /* Note that dead stores have already been deleted
2833 when possible. If we get here, we have found a
2834 dead store that cannot be eliminated (because the
2835 same insn does something useful). Indicate this
2836 by marking the reg being set as dying here. */
2838 = alloc_EXPR_LIST (REG_UNUSED
, reg
, REG_NOTES (insn
));
2843 if (flags
& PROP_DEATH_NOTES
)
2845 /* This is a case where we have a multi-word hard register
2846 and some, but not all, of the words of the register are
2847 needed in subsequent insns. Write REG_UNUSED notes
2848 for those parts that were not needed. This case should
2851 for (i
= regno_first
; i
<= regno_last
; ++i
)
2852 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
))
2854 = alloc_EXPR_LIST (REG_UNUSED
,
2861 /* Mark the register as being dead. */
2863 /* The stack pointer is never dead. Well, not strictly true,
2864 but it's very difficult to tell from here. Hopefully
2865 combine_stack_adjustments will fix up the most egregious
2867 && regno_first
!= STACK_POINTER_REGNUM
)
2869 for (i
= regno_first
; i
<= regno_last
; ++i
)
2870 if (!(not_dead
& (((unsigned long) 1) << (i
- regno_first
))))
2871 CLEAR_REGNO_REG_SET (pbi
->reg_live
, i
);
2874 else if (GET_CODE (reg
) == REG
)
2876 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
2877 pbi
->reg_next_use
[regno_first
] = 0;
2880 /* If this is the last pass and this is a SCRATCH, show it will be dying
2881 here and count it. */
2882 else if (GET_CODE (reg
) == SCRATCH
)
2884 if (flags
& PROP_DEATH_NOTES
)
2886 = alloc_EXPR_LIST (REG_UNUSED
, reg
, REG_NOTES (insn
));
2890 #ifdef HAVE_conditional_execution
2891 /* Mark REGNO conditionally dead.
2892 Return true if the register is now unconditionally dead. */
2895 mark_regno_cond_dead (pbi
, regno
, cond
)
2896 struct propagate_block_info
*pbi
;
2900 /* If this is a store to a predicate register, the value of the
2901 predicate is changing, we don't know that the predicate as seen
2902 before is the same as that seen after. Flush all dependent
2903 conditions from reg_cond_dead. This will make all such
2904 conditionally live registers unconditionally live. */
2905 if (REGNO_REG_SET_P (pbi
->reg_cond_reg
, regno
))
2906 flush_reg_cond_reg (pbi
, regno
);
2908 /* If this is an unconditional store, remove any conditional
2909 life that may have existed. */
2910 if (cond
== NULL_RTX
)
2911 splay_tree_remove (pbi
->reg_cond_dead
, regno
);
2914 splay_tree_node node
;
2915 struct reg_cond_life_info
*rcli
;
2918 /* Otherwise this is a conditional set. Record that fact.
2919 It may have been conditionally used, or there may be a
2920 subsequent set with a complimentary condition. */
2922 node
= splay_tree_lookup (pbi
->reg_cond_dead
, regno
);
2925 /* The register was unconditionally live previously.
2926 Record the current condition as the condition under
2927 which it is dead. */
2928 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
2929 rcli
->condition
= cond
;
2930 rcli
->stores
= cond
;
2931 rcli
->orig_condition
= const0_rtx
;
2932 splay_tree_insert (pbi
->reg_cond_dead
, regno
,
2933 (splay_tree_value
) rcli
);
2935 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
2937 /* Not unconditionally dead. */
2942 /* The register was conditionally live previously.
2943 Add the new condition to the old. */
2944 rcli
= (struct reg_cond_life_info
*) node
->value
;
2945 ncond
= rcli
->condition
;
2946 ncond
= ior_reg_cond (ncond
, cond
, 1);
2947 if (rcli
->stores
== const0_rtx
)
2948 rcli
->stores
= cond
;
2949 else if (rcli
->stores
!= const1_rtx
)
2950 rcli
->stores
= ior_reg_cond (rcli
->stores
, cond
, 1);
2952 /* If the register is now unconditionally dead, remove the entry
2953 in the splay_tree. A register is unconditionally dead if the
2954 dead condition ncond is true. A register is also unconditionally
2955 dead if the sum of all conditional stores is an unconditional
2956 store (stores is true), and the dead condition is identically the
2957 same as the original dead condition initialized at the end of
2958 the block. This is a pointer compare, not an rtx_equal_p
2960 if (ncond
== const1_rtx
2961 || (ncond
== rcli
->orig_condition
&& rcli
->stores
== const1_rtx
))
2962 splay_tree_remove (pbi
->reg_cond_dead
, regno
);
2965 rcli
->condition
= ncond
;
2967 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
2969 /* Not unconditionally dead. */
2978 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2981 free_reg_cond_life_info (value
)
2982 splay_tree_value value
;
2984 struct reg_cond_life_info
*rcli
= (struct reg_cond_life_info
*) value
;
2988 /* Helper function for flush_reg_cond_reg. */
2991 flush_reg_cond_reg_1 (node
, data
)
2992 splay_tree_node node
;
2995 struct reg_cond_life_info
*rcli
;
2996 int *xdata
= (int *) data
;
2997 unsigned int regno
= xdata
[0];
2999 /* Don't need to search if last flushed value was farther on in
3000 the in-order traversal. */
3001 if (xdata
[1] >= (int) node
->key
)
3004 /* Splice out portions of the expression that refer to regno. */
3005 rcli
= (struct reg_cond_life_info
*) node
->value
;
3006 rcli
->condition
= elim_reg_cond (rcli
->condition
, regno
);
3007 if (rcli
->stores
!= const0_rtx
&& rcli
->stores
!= const1_rtx
)
3008 rcli
->stores
= elim_reg_cond (rcli
->stores
, regno
);
3010 /* If the entire condition is now false, signal the node to be removed. */
3011 if (rcli
->condition
== const0_rtx
)
3013 xdata
[1] = node
->key
;
3016 else if (rcli
->condition
== const1_rtx
)
3022 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3025 flush_reg_cond_reg (pbi
, regno
)
3026 struct propagate_block_info
*pbi
;
3033 while (splay_tree_foreach (pbi
->reg_cond_dead
,
3034 flush_reg_cond_reg_1
, pair
) == -1)
3035 splay_tree_remove (pbi
->reg_cond_dead
, pair
[1]);
3037 CLEAR_REGNO_REG_SET (pbi
->reg_cond_reg
, regno
);
3040 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3041 For ior/and, the ADD flag determines whether we want to add the new
3042 condition X to the old one unconditionally. If it is zero, we will
3043 only return a new expression if X allows us to simplify part of
3044 OLD, otherwise we return NULL to the caller.
3045 If ADD is nonzero, we will return a new condition in all cases. The
3046 toplevel caller of one of these functions should always pass 1 for
3050 ior_reg_cond (old
, x
, add
)
3056 if (GET_RTX_CLASS (GET_CODE (old
)) == '<')
3058 if (GET_RTX_CLASS (GET_CODE (x
)) == '<'
3059 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x
), GET_CODE (old
))
3060 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3062 if (GET_CODE (x
) == GET_CODE (old
)
3063 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3067 return gen_rtx_IOR (0, old
, x
);
3070 switch (GET_CODE (old
))
3073 op0
= ior_reg_cond (XEXP (old
, 0), x
, 0);
3074 op1
= ior_reg_cond (XEXP (old
, 1), x
, 0);
3075 if (op0
!= NULL
|| op1
!= NULL
)
3077 if (op0
== const0_rtx
)
3078 return op1
? op1
: gen_rtx_IOR (0, XEXP (old
, 1), x
);
3079 if (op1
== const0_rtx
)
3080 return op0
? op0
: gen_rtx_IOR (0, XEXP (old
, 0), x
);
3081 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3084 op0
= gen_rtx_IOR (0, XEXP (old
, 0), x
);
3085 else if (rtx_equal_p (x
, op0
))
3086 /* (x | A) | x ~ (x | A). */
3089 op1
= gen_rtx_IOR (0, XEXP (old
, 1), x
);
3090 else if (rtx_equal_p (x
, op1
))
3091 /* (A | x) | x ~ (A | x). */
3093 return gen_rtx_IOR (0, op0
, op1
);
3097 return gen_rtx_IOR (0, old
, x
);
3100 op0
= ior_reg_cond (XEXP (old
, 0), x
, 0);
3101 op1
= ior_reg_cond (XEXP (old
, 1), x
, 0);
3102 if (op0
!= NULL
|| op1
!= NULL
)
3104 if (op0
== const1_rtx
)
3105 return op1
? op1
: gen_rtx_IOR (0, XEXP (old
, 1), x
);
3106 if (op1
== const1_rtx
)
3107 return op0
? op0
: gen_rtx_IOR (0, XEXP (old
, 0), x
);
3108 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3111 op0
= gen_rtx_IOR (0, XEXP (old
, 0), x
);
3112 else if (rtx_equal_p (x
, op0
))
3113 /* (x & A) | x ~ x. */
3116 op1
= gen_rtx_IOR (0, XEXP (old
, 1), x
);
3117 else if (rtx_equal_p (x
, op1
))
3118 /* (A & x) | x ~ x. */
3120 return gen_rtx_AND (0, op0
, op1
);
3124 return gen_rtx_IOR (0, old
, x
);
3127 op0
= and_reg_cond (XEXP (old
, 0), not_reg_cond (x
), 0);
3129 return not_reg_cond (op0
);
3132 return gen_rtx_IOR (0, old
, x
);
3143 enum rtx_code x_code
;
3145 if (x
== const0_rtx
)
3147 else if (x
== const1_rtx
)
3149 x_code
= GET_CODE (x
);
3152 if (GET_RTX_CLASS (x_code
) == '<'
3153 && GET_CODE (XEXP (x
, 0)) == REG
)
3155 if (XEXP (x
, 1) != const0_rtx
)
3158 return gen_rtx_fmt_ee (reverse_condition (x_code
),
3159 VOIDmode
, XEXP (x
, 0), const0_rtx
);
3161 return gen_rtx_NOT (0, x
);
3165 and_reg_cond (old
, x
, add
)
3171 if (GET_RTX_CLASS (GET_CODE (old
)) == '<')
3173 if (GET_RTX_CLASS (GET_CODE (x
)) == '<'
3174 && GET_CODE (x
) == reverse_condition (GET_CODE (old
))
3175 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3177 if (GET_CODE (x
) == GET_CODE (old
)
3178 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3182 return gen_rtx_AND (0, old
, x
);
3185 switch (GET_CODE (old
))
3188 op0
= and_reg_cond (XEXP (old
, 0), x
, 0);
3189 op1
= and_reg_cond (XEXP (old
, 1), x
, 0);
3190 if (op0
!= NULL
|| op1
!= NULL
)
3192 if (op0
== const0_rtx
)
3193 return op1
? op1
: gen_rtx_AND (0, XEXP (old
, 1), x
);
3194 if (op1
== const0_rtx
)
3195 return op0
? op0
: gen_rtx_AND (0, XEXP (old
, 0), x
);
3196 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3199 op0
= gen_rtx_AND (0, XEXP (old
, 0), x
);
3200 else if (rtx_equal_p (x
, op0
))
3201 /* (x | A) & x ~ x. */
3204 op1
= gen_rtx_AND (0, XEXP (old
, 1), x
);
3205 else if (rtx_equal_p (x
, op1
))
3206 /* (A | x) & x ~ x. */
3208 return gen_rtx_IOR (0, op0
, op1
);
3212 return gen_rtx_AND (0, old
, x
);
3215 op0
= and_reg_cond (XEXP (old
, 0), x
, 0);
3216 op1
= and_reg_cond (XEXP (old
, 1), x
, 0);
3217 if (op0
!= NULL
|| op1
!= NULL
)
3219 if (op0
== const1_rtx
)
3220 return op1
? op1
: gen_rtx_AND (0, XEXP (old
, 1), x
);
3221 if (op1
== const1_rtx
)
3222 return op0
? op0
: gen_rtx_AND (0, XEXP (old
, 0), x
);
3223 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3226 op0
= gen_rtx_AND (0, XEXP (old
, 0), x
);
3227 else if (rtx_equal_p (x
, op0
))
3228 /* (x & A) & x ~ (x & A). */
3231 op1
= gen_rtx_AND (0, XEXP (old
, 1), x
);
3232 else if (rtx_equal_p (x
, op1
))
3233 /* (A & x) & x ~ (A & x). */
3235 return gen_rtx_AND (0, op0
, op1
);
3239 return gen_rtx_AND (0, old
, x
);
3242 op0
= ior_reg_cond (XEXP (old
, 0), not_reg_cond (x
), 0);
3244 return not_reg_cond (op0
);
3247 return gen_rtx_AND (0, old
, x
);
3254 /* Given a condition X, remove references to reg REGNO and return the
3255 new condition. The removal will be done so that all conditions
3256 involving REGNO are considered to evaluate to false. This function
3257 is used when the value of REGNO changes. */
3260 elim_reg_cond (x
, regno
)
3266 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
3268 if (REGNO (XEXP (x
, 0)) == regno
)
3273 switch (GET_CODE (x
))
3276 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3277 op1
= elim_reg_cond (XEXP (x
, 1), regno
);
3278 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3280 if (op0
== const1_rtx
)
3282 if (op1
== const1_rtx
)
3284 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
3286 return gen_rtx_AND (0, op0
, op1
);
3289 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3290 op1
= elim_reg_cond (XEXP (x
, 1), regno
);
3291 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3293 if (op0
== const0_rtx
)
3295 if (op1
== const0_rtx
)
3297 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
3299 return gen_rtx_IOR (0, op0
, op1
);
3302 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3303 if (op0
== const0_rtx
)
3305 if (op0
== const1_rtx
)
3307 if (op0
!= XEXP (x
, 0))
3308 return not_reg_cond (op0
);
3315 #endif /* HAVE_conditional_execution */
3319 /* Try to substitute the auto-inc expression INC as the address inside
3320 MEM which occurs in INSN. Currently, the address of MEM is an expression
3321 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3322 that has a single set whose source is a PLUS of INCR_REG and something
3326 attempt_auto_inc (pbi
, inc
, insn
, mem
, incr
, incr_reg
)
3327 struct propagate_block_info
*pbi
;
3328 rtx inc
, insn
, mem
, incr
, incr_reg
;
3330 int regno
= REGNO (incr_reg
);
3331 rtx set
= single_set (incr
);
3332 rtx q
= SET_DEST (set
);
3333 rtx y
= SET_SRC (set
);
3334 int opnum
= XEXP (y
, 0) == incr_reg
? 0 : 1;
3336 /* Make sure this reg appears only once in this insn. */
3337 if (count_occurrences (PATTERN (insn
), incr_reg
, 1) != 1)
3340 if (dead_or_set_p (incr
, incr_reg
)
3341 /* Mustn't autoinc an eliminable register. */
3342 && (regno
>= FIRST_PSEUDO_REGISTER
3343 || ! TEST_HARD_REG_BIT (elim_reg_set
, regno
)))
3345 /* This is the simple case. Try to make the auto-inc. If
3346 we can't, we are done. Otherwise, we will do any
3347 needed updates below. */
3348 if (! validate_change (insn
, &XEXP (mem
, 0), inc
, 0))
3351 else if (GET_CODE (q
) == REG
3352 /* PREV_INSN used here to check the semi-open interval
3354 && ! reg_used_between_p (q
, PREV_INSN (insn
), incr
)
3355 /* We must also check for sets of q as q may be
3356 a call clobbered hard register and there may
3357 be a call between PREV_INSN (insn) and incr. */
3358 && ! reg_set_between_p (q
, PREV_INSN (insn
), incr
))
3360 /* We have *p followed sometime later by q = p+size.
3361 Both p and q must be live afterward,
3362 and q is not used between INSN and its assignment.
3363 Change it to q = p, ...*q..., q = q+size.
3364 Then fall into the usual case. */
3368 emit_move_insn (q
, incr_reg
);
3369 insns
= get_insns ();
3372 /* If we can't make the auto-inc, or can't make the
3373 replacement into Y, exit. There's no point in making
3374 the change below if we can't do the auto-inc and doing
3375 so is not correct in the pre-inc case. */
3378 validate_change (insn
, &XEXP (mem
, 0), inc
, 1);
3379 validate_change (incr
, &XEXP (y
, opnum
), q
, 1);
3380 if (! apply_change_group ())
3383 /* We now know we'll be doing this change, so emit the
3384 new insn(s) and do the updates. */
3385 emit_insn_before (insns
, insn
);
3387 if (pbi
->bb
->head
== insn
)
3388 pbi
->bb
->head
= insns
;
3390 /* INCR will become a NOTE and INSN won't contain a
3391 use of INCR_REG. If a use of INCR_REG was just placed in
3392 the insn before INSN, make that the next use.
3393 Otherwise, invalidate it. */
3394 if (GET_CODE (PREV_INSN (insn
)) == INSN
3395 && GET_CODE (PATTERN (PREV_INSN (insn
))) == SET
3396 && SET_SRC (PATTERN (PREV_INSN (insn
))) == incr_reg
)
3397 pbi
->reg_next_use
[regno
] = PREV_INSN (insn
);
3399 pbi
->reg_next_use
[regno
] = 0;
3404 /* REGNO is now used in INCR which is below INSN, but
3405 it previously wasn't live here. If we don't mark
3406 it as live, we'll put a REG_DEAD note for it
3407 on this insn, which is incorrect. */
3408 SET_REGNO_REG_SET (pbi
->reg_live
, regno
);
3410 /* If there are any calls between INSN and INCR, show
3411 that REGNO now crosses them. */
3412 for (temp
= insn
; temp
!= incr
; temp
= NEXT_INSN (temp
))
3413 if (GET_CODE (temp
) == CALL_INSN
)
3414 REG_N_CALLS_CROSSED (regno
)++;
3416 /* Invalidate alias info for Q since we just changed its value. */
3417 clear_reg_alias_info (q
);
3422 /* If we haven't returned, it means we were able to make the
3423 auto-inc, so update the status. First, record that this insn
3424 has an implicit side effect. */
3426 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_INC
, incr_reg
, REG_NOTES (insn
));
3428 /* Modify the old increment-insn to simply copy
3429 the already-incremented value of our register. */
3430 if (! validate_change (incr
, &SET_SRC (set
), incr_reg
, 0))
3433 /* If that makes it a no-op (copying the register into itself) delete
3434 it so it won't appear to be a "use" and a "set" of this
3436 if (REGNO (SET_DEST (set
)) == REGNO (incr_reg
))
3438 /* If the original source was dead, it's dead now. */
3441 while ((note
= find_reg_note (incr
, REG_DEAD
, NULL_RTX
)) != NULL_RTX
)
3443 remove_note (incr
, note
);
3444 if (XEXP (note
, 0) != incr_reg
)
3445 CLEAR_REGNO_REG_SET (pbi
->reg_live
, REGNO (XEXP (note
, 0)));
3448 PUT_CODE (incr
, NOTE
);
3449 NOTE_LINE_NUMBER (incr
) = NOTE_INSN_DELETED
;
3450 NOTE_SOURCE_FILE (incr
) = 0;
3453 if (regno
>= FIRST_PSEUDO_REGISTER
)
3455 /* Count an extra reference to the reg. When a reg is
3456 incremented, spilling it is worse, so we want to make
3457 that less likely. */
3458 REG_FREQ (regno
) += REG_FREQ_FROM_BB (pbi
->bb
);
3460 /* Count the increment as a setting of the register,
3461 even though it isn't a SET in rtl. */
3462 REG_N_SETS (regno
)++;
3466 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3470 find_auto_inc (pbi
, x
, insn
)
3471 struct propagate_block_info
*pbi
;
3475 rtx addr
= XEXP (x
, 0);
3476 HOST_WIDE_INT offset
= 0;
3477 rtx set
, y
, incr
, inc_val
;
3479 int size
= GET_MODE_SIZE (GET_MODE (x
));
3481 if (GET_CODE (insn
) == JUMP_INSN
)
3484 /* Here we detect use of an index register which might be good for
3485 postincrement, postdecrement, preincrement, or predecrement. */
3487 if (GET_CODE (addr
) == PLUS
&& GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
3488 offset
= INTVAL (XEXP (addr
, 1)), addr
= XEXP (addr
, 0);
3490 if (GET_CODE (addr
) != REG
)
3493 regno
= REGNO (addr
);
3495 /* Is the next use an increment that might make auto-increment? */
3496 incr
= pbi
->reg_next_use
[regno
];
3497 if (incr
== 0 || BLOCK_NUM (incr
) != BLOCK_NUM (insn
))
3499 set
= single_set (incr
);
3500 if (set
== 0 || GET_CODE (set
) != SET
)
3504 if (GET_CODE (y
) != PLUS
)
3507 if (REG_P (XEXP (y
, 0)) && REGNO (XEXP (y
, 0)) == REGNO (addr
))
3508 inc_val
= XEXP (y
, 1);
3509 else if (REG_P (XEXP (y
, 1)) && REGNO (XEXP (y
, 1)) == REGNO (addr
))
3510 inc_val
= XEXP (y
, 0);
3514 if (GET_CODE (inc_val
) == CONST_INT
)
3516 if (HAVE_POST_INCREMENT
3517 && (INTVAL (inc_val
) == size
&& offset
== 0))
3518 attempt_auto_inc (pbi
, gen_rtx_POST_INC (Pmode
, addr
), insn
, x
,
3520 else if (HAVE_POST_DECREMENT
3521 && (INTVAL (inc_val
) == -size
&& offset
== 0))
3522 attempt_auto_inc (pbi
, gen_rtx_POST_DEC (Pmode
, addr
), insn
, x
,
3524 else if (HAVE_PRE_INCREMENT
3525 && (INTVAL (inc_val
) == size
&& offset
== size
))
3526 attempt_auto_inc (pbi
, gen_rtx_PRE_INC (Pmode
, addr
), insn
, x
,
3528 else if (HAVE_PRE_DECREMENT
3529 && (INTVAL (inc_val
) == -size
&& offset
== -size
))
3530 attempt_auto_inc (pbi
, gen_rtx_PRE_DEC (Pmode
, addr
), insn
, x
,
3532 else if (HAVE_POST_MODIFY_DISP
&& offset
== 0)
3533 attempt_auto_inc (pbi
, gen_rtx_POST_MODIFY (Pmode
, addr
,
3534 gen_rtx_PLUS (Pmode
,
3537 insn
, x
, incr
, addr
);
3538 else if (HAVE_PRE_MODIFY_DISP
&& offset
== INTVAL (inc_val
))
3539 attempt_auto_inc (pbi
, gen_rtx_PRE_MODIFY (Pmode
, addr
,
3540 gen_rtx_PLUS (Pmode
,
3543 insn
, x
, incr
, addr
);
3545 else if (GET_CODE (inc_val
) == REG
3546 && ! reg_set_between_p (inc_val
, PREV_INSN (insn
),
3550 if (HAVE_POST_MODIFY_REG
&& offset
== 0)
3551 attempt_auto_inc (pbi
, gen_rtx_POST_MODIFY (Pmode
, addr
,
3552 gen_rtx_PLUS (Pmode
,
3555 insn
, x
, incr
, addr
);
3559 #endif /* AUTO_INC_DEC */
3562 mark_used_reg (pbi
, reg
, cond
, insn
)
3563 struct propagate_block_info
*pbi
;
3565 rtx cond ATTRIBUTE_UNUSED
;
3568 unsigned int regno_first
, regno_last
, i
;
3569 int some_was_live
, some_was_dead
, some_not_set
;
3571 regno_last
= regno_first
= REGNO (reg
);
3572 if (regno_first
< FIRST_PSEUDO_REGISTER
)
3573 regno_last
+= HARD_REGNO_NREGS (regno_first
, GET_MODE (reg
)) - 1;
3575 /* Find out if any of this register is live after this instruction. */
3576 some_was_live
= some_was_dead
= 0;
3577 for (i
= regno_first
; i
<= regno_last
; ++i
)
3579 int needed_regno
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
3580 some_was_live
|= needed_regno
;
3581 some_was_dead
|= ! needed_regno
;
3584 /* Find out if any of the register was set this insn. */
3586 for (i
= regno_first
; i
<= regno_last
; ++i
)
3587 some_not_set
|= ! REGNO_REG_SET_P (pbi
->new_set
, i
);
3589 if (pbi
->flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
3591 /* Record where each reg is used, so when the reg is set we know
3592 the next insn that uses it. */
3593 pbi
->reg_next_use
[regno_first
] = insn
;
3596 if (pbi
->flags
& PROP_REG_INFO
)
3598 if (regno_first
< FIRST_PSEUDO_REGISTER
)
3600 /* If this is a register we are going to try to eliminate,
3601 don't mark it live here. If we are successful in
3602 eliminating it, it need not be live unless it is used for
3603 pseudos, in which case it will have been set live when it
3604 was allocated to the pseudos. If the register will not
3605 be eliminated, reload will set it live at that point.
3607 Otherwise, record that this function uses this register. */
3608 /* ??? The PPC backend tries to "eliminate" on the pic
3609 register to itself. This should be fixed. In the mean
3610 time, hack around it. */
3612 if (! (TEST_HARD_REG_BIT (elim_reg_set
, regno_first
)
3613 && (regno_first
== FRAME_POINTER_REGNUM
3614 || regno_first
== ARG_POINTER_REGNUM
)))
3615 for (i
= regno_first
; i
<= regno_last
; ++i
)
3616 regs_ever_live
[i
] = 1;
3620 /* Keep track of which basic block each reg appears in. */
3622 int blocknum
= pbi
->bb
->index
;
3623 if (REG_BASIC_BLOCK (regno_first
) == REG_BLOCK_UNKNOWN
)
3624 REG_BASIC_BLOCK (regno_first
) = blocknum
;
3625 else if (REG_BASIC_BLOCK (regno_first
) != blocknum
)
3626 REG_BASIC_BLOCK (regno_first
) = REG_BLOCK_GLOBAL
;
3628 /* Count (weighted) number of uses of each reg. */
3629 REG_FREQ (regno_first
) += REG_FREQ_FROM_BB (pbi
->bb
);
3630 REG_N_REFS (regno_first
)++;
3634 /* Record and count the insns in which a reg dies. If it is used in
3635 this insn and was dead below the insn then it dies in this insn.
3636 If it was set in this insn, we do not make a REG_DEAD note;
3637 likewise if we already made such a note. */
3638 if ((pbi
->flags
& (PROP_DEATH_NOTES
| PROP_REG_INFO
))
3642 /* Check for the case where the register dying partially
3643 overlaps the register set by this insn. */
3644 if (regno_first
!= regno_last
)
3645 for (i
= regno_first
; i
<= regno_last
; ++i
)
3646 some_was_live
|= REGNO_REG_SET_P (pbi
->new_set
, i
);
3648 /* If none of the words in X is needed, make a REG_DEAD note.
3649 Otherwise, we must make partial REG_DEAD notes. */
3650 if (! some_was_live
)
3652 if ((pbi
->flags
& PROP_DEATH_NOTES
)
3653 && ! find_regno_note (insn
, REG_DEAD
, regno_first
))
3655 = alloc_EXPR_LIST (REG_DEAD
, reg
, REG_NOTES (insn
));
3657 if (pbi
->flags
& PROP_REG_INFO
)
3658 REG_N_DEATHS (regno_first
)++;
3662 /* Don't make a REG_DEAD note for a part of a register
3663 that is set in the insn. */
3664 for (i
= regno_first
; i
<= regno_last
; ++i
)
3665 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
)
3666 && ! dead_or_set_regno_p (insn
, i
))
3668 = alloc_EXPR_LIST (REG_DEAD
,
3674 /* Mark the register as being live. */
3675 for (i
= regno_first
; i
<= regno_last
; ++i
)
3677 #ifdef HAVE_conditional_execution
3678 int this_was_live
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
3681 SET_REGNO_REG_SET (pbi
->reg_live
, i
);
3683 #ifdef HAVE_conditional_execution
3684 /* If this is a conditional use, record that fact. If it is later
3685 conditionally set, we'll know to kill the register. */
3686 if (cond
!= NULL_RTX
)
3688 splay_tree_node node
;
3689 struct reg_cond_life_info
*rcli
;
3694 node
= splay_tree_lookup (pbi
->reg_cond_dead
, i
);
3697 /* The register was unconditionally live previously.
3698 No need to do anything. */
3702 /* The register was conditionally live previously.
3703 Subtract the new life cond from the old death cond. */
3704 rcli
= (struct reg_cond_life_info
*) node
->value
;
3705 ncond
= rcli
->condition
;
3706 ncond
= and_reg_cond (ncond
, not_reg_cond (cond
), 1);
3708 /* If the register is now unconditionally live,
3709 remove the entry in the splay_tree. */
3710 if (ncond
== const0_rtx
)
3711 splay_tree_remove (pbi
->reg_cond_dead
, i
);
3714 rcli
->condition
= ncond
;
3715 SET_REGNO_REG_SET (pbi
->reg_cond_reg
,
3716 REGNO (XEXP (cond
, 0)));
3722 /* The register was not previously live at all. Record
3723 the condition under which it is still dead. */
3724 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
3725 rcli
->condition
= not_reg_cond (cond
);
3726 rcli
->stores
= const0_rtx
;
3727 rcli
->orig_condition
= const0_rtx
;
3728 splay_tree_insert (pbi
->reg_cond_dead
, i
,
3729 (splay_tree_value
) rcli
);
3731 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
3734 else if (this_was_live
)
3736 /* The register may have been conditionally live previously, but
3737 is now unconditionally live. Remove it from the conditionally
3738 dead list, so that a conditional set won't cause us to think
3740 splay_tree_remove (pbi
->reg_cond_dead
, i
);
3746 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3747 This is done assuming the registers needed from X are those that
3748 have 1-bits in PBI->REG_LIVE.
3750 INSN is the containing instruction. If INSN is dead, this function
3754 mark_used_regs (pbi
, x
, cond
, insn
)
3755 struct propagate_block_info
*pbi
;
3760 int flags
= pbi
->flags
;
3765 code
= GET_CODE (x
);
3786 /* If we are clobbering a MEM, mark any registers inside the address
3788 if (GET_CODE (XEXP (x
, 0)) == MEM
)
3789 mark_used_regs (pbi
, XEXP (XEXP (x
, 0), 0), cond
, insn
);
3793 /* Don't bother watching stores to mems if this is not the
3794 final pass. We'll not be deleting dead stores this round. */
3795 if (optimize
&& (flags
& PROP_SCAN_DEAD_STORES
))
3797 /* Invalidate the data for the last MEM stored, but only if MEM is
3798 something that can be stored into. */
3799 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
3800 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
3801 /* Needn't clear the memory set list. */
3805 rtx temp
= pbi
->mem_set_list
;
3806 rtx prev
= NULL_RTX
;
3811 next
= XEXP (temp
, 1);
3812 if (anti_dependence (XEXP (temp
, 0), x
))
3814 /* Splice temp out of the list. */
3816 XEXP (prev
, 1) = next
;
3818 pbi
->mem_set_list
= next
;
3819 free_EXPR_LIST_node (temp
);
3820 pbi
->mem_set_list_len
--;
3828 /* If the memory reference had embedded side effects (autoincrement
3829 address modes. Then we may need to kill some entries on the
3832 for_each_rtx (&PATTERN (insn
), invalidate_mems_from_autoinc
, pbi
);
3836 if (flags
& PROP_AUTOINC
)
3837 find_auto_inc (pbi
, x
, insn
);
3842 #ifdef CANNOT_CHANGE_MODE_CLASS
3843 if (GET_CODE (SUBREG_REG (x
)) == REG
3844 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
)
3845 bitmap_set_bit (&subregs_of_mode
, REGNO (SUBREG_REG (x
))
3850 /* While we're here, optimize this case. */
3852 if (GET_CODE (x
) != REG
)
3857 /* See a register other than being set => mark it as needed. */
3858 mark_used_reg (pbi
, x
, cond
, insn
);
3863 rtx testreg
= SET_DEST (x
);
3866 /* If storing into MEM, don't show it as being used. But do
3867 show the address as being used. */
3868 if (GET_CODE (testreg
) == MEM
)
3871 if (flags
& PROP_AUTOINC
)
3872 find_auto_inc (pbi
, testreg
, insn
);
3874 mark_used_regs (pbi
, XEXP (testreg
, 0), cond
, insn
);
3875 mark_used_regs (pbi
, SET_SRC (x
), cond
, insn
);
3879 /* Storing in STRICT_LOW_PART is like storing in a reg
3880 in that this SET might be dead, so ignore it in TESTREG.
3881 but in some other ways it is like using the reg.
3883 Storing in a SUBREG or a bit field is like storing the entire
3884 register in that if the register's value is not used
3885 then this SET is not needed. */
3886 while (GET_CODE (testreg
) == STRICT_LOW_PART
3887 || GET_CODE (testreg
) == ZERO_EXTRACT
3888 || GET_CODE (testreg
) == SIGN_EXTRACT
3889 || GET_CODE (testreg
) == SUBREG
)
3891 #ifdef CANNOT_CHANGE_MODE_CLASS
3892 if (GET_CODE (testreg
) == SUBREG
3893 && GET_CODE (SUBREG_REG (testreg
)) == REG
3894 && REGNO (SUBREG_REG (testreg
)) >= FIRST_PSEUDO_REGISTER
)
3895 bitmap_set_bit (&subregs_of_mode
, REGNO (SUBREG_REG (testreg
))
3897 + GET_MODE (testreg
));
3900 /* Modifying a single register in an alternate mode
3901 does not use any of the old value. But these other
3902 ways of storing in a register do use the old value. */
3903 if (GET_CODE (testreg
) == SUBREG
3904 && !((REG_BYTES (SUBREG_REG (testreg
))
3905 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
3906 > (REG_BYTES (testreg
)
3907 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))
3912 testreg
= XEXP (testreg
, 0);
3915 /* If this is a store into a register or group of registers,
3916 recursively scan the value being stored. */
3918 if ((GET_CODE (testreg
) == PARALLEL
3919 && GET_MODE (testreg
) == BLKmode
)
3920 || (GET_CODE (testreg
) == REG
3921 && (regno
= REGNO (testreg
),
3922 ! (regno
== FRAME_POINTER_REGNUM
3923 && (! reload_completed
|| frame_pointer_needed
)))
3924 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3925 && ! (regno
== HARD_FRAME_POINTER_REGNUM
3926 && (! reload_completed
|| frame_pointer_needed
))
3928 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3929 && ! (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
3934 mark_used_regs (pbi
, SET_DEST (x
), cond
, insn
);
3935 mark_used_regs (pbi
, SET_SRC (x
), cond
, insn
);
3942 case UNSPEC_VOLATILE
:
3946 /* Traditional and volatile asm instructions must be considered to use
3947 and clobber all hard registers, all pseudo-registers and all of
3948 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3950 Consider for instance a volatile asm that changes the fpu rounding
3951 mode. An insn should not be moved across this even if it only uses
3952 pseudo-regs because it might give an incorrectly rounded result.
3954 ?!? Unfortunately, marking all hard registers as live causes massive
3955 problems for the register allocator and marking all pseudos as live
3956 creates mountains of uninitialized variable warnings.
3958 So for now, just clear the memory set list and mark any regs
3959 we can find in ASM_OPERANDS as used. */
3960 if (code
!= ASM_OPERANDS
|| MEM_VOLATILE_P (x
))
3962 free_EXPR_LIST_list (&pbi
->mem_set_list
);
3963 pbi
->mem_set_list_len
= 0;
3966 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3967 We can not just fall through here since then we would be confused
3968 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3969 traditional asms unlike their normal usage. */
3970 if (code
== ASM_OPERANDS
)
3974 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
3975 mark_used_regs (pbi
, ASM_OPERANDS_INPUT (x
, j
), cond
, insn
);
3981 if (cond
!= NULL_RTX
)
3984 mark_used_regs (pbi
, COND_EXEC_TEST (x
), NULL_RTX
, insn
);
3986 cond
= COND_EXEC_TEST (x
);
3987 x
= COND_EXEC_CODE (x
);
3991 /* We _do_not_ want to scan operands of phi nodes. Operands of
3992 a phi function are evaluated only when control reaches this
3993 block along a particular edge. Therefore, regs that appear
3994 as arguments to phi should not be added to the global live at
4002 /* Recursively scan the operands of this expression. */
4005 const char * const fmt
= GET_RTX_FORMAT (code
);
4008 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4012 /* Tail recursive case: save a function call level. */
4018 mark_used_regs (pbi
, XEXP (x
, i
), cond
, insn
);
4020 else if (fmt
[i
] == 'E')
4023 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4024 mark_used_regs (pbi
, XVECEXP (x
, i
, j
), cond
, insn
);
4033 try_pre_increment_1 (pbi
, insn
)
4034 struct propagate_block_info
*pbi
;
4037 /* Find the next use of this reg. If in same basic block,
4038 make it do pre-increment or pre-decrement if appropriate. */
4039 rtx x
= single_set (insn
);
4040 HOST_WIDE_INT amount
= ((GET_CODE (SET_SRC (x
)) == PLUS
? 1 : -1)
4041 * INTVAL (XEXP (SET_SRC (x
), 1)));
4042 int regno
= REGNO (SET_DEST (x
));
4043 rtx y
= pbi
->reg_next_use
[regno
];
4045 && SET_DEST (x
) != stack_pointer_rtx
4046 && BLOCK_NUM (y
) == BLOCK_NUM (insn
)
4047 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4048 mode would be better. */
4049 && ! dead_or_set_p (y
, SET_DEST (x
))
4050 && try_pre_increment (y
, SET_DEST (x
), amount
))
4052 /* We have found a suitable auto-increment and already changed
4053 insn Y to do it. So flush this increment instruction. */
4054 propagate_block_delete_insn (insn
);
4056 /* Count a reference to this reg for the increment insn we are
4057 deleting. When a reg is incremented, spilling it is worse,
4058 so we want to make that less likely. */
4059 if (regno
>= FIRST_PSEUDO_REGISTER
)
4061 REG_FREQ (regno
) += REG_FREQ_FROM_BB (pbi
->bb
);
4062 REG_N_SETS (regno
)++;
4065 /* Flush any remembered memories depending on the value of
4066 the incremented register. */
4067 invalidate_mems_from_set (pbi
, SET_DEST (x
));
4074 /* Try to change INSN so that it does pre-increment or pre-decrement
4075 addressing on register REG in order to add AMOUNT to REG.
4076 AMOUNT is negative for pre-decrement.
4077 Returns 1 if the change could be made.
4078 This checks all about the validity of the result of modifying INSN. */
4081 try_pre_increment (insn
, reg
, amount
)
4083 HOST_WIDE_INT amount
;
4087 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4088 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4090 /* Nonzero if we can try to make a post-increment or post-decrement.
4091 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4092 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4093 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4096 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4099 /* From the sign of increment, see which possibilities are conceivable
4100 on this target machine. */
4101 if (HAVE_PRE_INCREMENT
&& amount
> 0)
4103 if (HAVE_POST_INCREMENT
&& amount
> 0)
4106 if (HAVE_PRE_DECREMENT
&& amount
< 0)
4108 if (HAVE_POST_DECREMENT
&& amount
< 0)
4111 if (! (pre_ok
|| post_ok
))
4114 /* It is not safe to add a side effect to a jump insn
4115 because if the incremented register is spilled and must be reloaded
4116 there would be no way to store the incremented value back in memory. */
4118 if (GET_CODE (insn
) == JUMP_INSN
)
4123 use
= find_use_as_address (PATTERN (insn
), reg
, 0);
4124 if (post_ok
&& (use
== 0 || use
== (rtx
) (size_t) 1))
4126 use
= find_use_as_address (PATTERN (insn
), reg
, -amount
);
4130 if (use
== 0 || use
== (rtx
) (size_t) 1)
4133 if (GET_MODE_SIZE (GET_MODE (use
)) != (amount
> 0 ? amount
: - amount
))
4136 /* See if this combination of instruction and addressing mode exists. */
4137 if (! validate_change (insn
, &XEXP (use
, 0),
4138 gen_rtx_fmt_e (amount
> 0
4139 ? (do_post
? POST_INC
: PRE_INC
)
4140 : (do_post
? POST_DEC
: PRE_DEC
),
4144 /* Record that this insn now has an implicit side effect on X. */
4145 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_INC
, reg
, REG_NOTES (insn
));
4149 #endif /* AUTO_INC_DEC */
4151 /* Find the place in the rtx X where REG is used as a memory address.
4152 Return the MEM rtx that so uses it.
4153 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4154 (plus REG (const_int PLUSCONST)).
4156 If such an address does not appear, return 0.
4157 If REG appears more than once, or is used other than in such an address,
4161 find_use_as_address (x
, reg
, plusconst
)
4164 HOST_WIDE_INT plusconst
;
4166 enum rtx_code code
= GET_CODE (x
);
4167 const char * const fmt
= GET_RTX_FORMAT (code
);
4172 if (code
== MEM
&& XEXP (x
, 0) == reg
&& plusconst
== 0)
4175 if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == PLUS
4176 && XEXP (XEXP (x
, 0), 0) == reg
4177 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4178 && INTVAL (XEXP (XEXP (x
, 0), 1)) == plusconst
)
4181 if (code
== SIGN_EXTRACT
|| code
== ZERO_EXTRACT
)
4183 /* If REG occurs inside a MEM used in a bit-field reference,
4184 that is unacceptable. */
4185 if (find_use_as_address (XEXP (x
, 0), reg
, 0) != 0)
4186 return (rtx
) (size_t) 1;
4190 return (rtx
) (size_t) 1;
4192 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4196 tem
= find_use_as_address (XEXP (x
, i
), reg
, plusconst
);
4200 return (rtx
) (size_t) 1;
4202 else if (fmt
[i
] == 'E')
4205 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4207 tem
= find_use_as_address (XVECEXP (x
, i
, j
), reg
, plusconst
);
4211 return (rtx
) (size_t) 1;
4219 /* Write information about registers and basic blocks into FILE.
4220 This is part of making a debugging dump. */
4223 dump_regset (r
, outf
)
4230 fputs (" (nil)", outf
);
4234 EXECUTE_IF_SET_IN_REG_SET (r
, 0, i
,
4236 fprintf (outf
, " %d", i
);
4237 if (i
< FIRST_PSEUDO_REGISTER
)
4238 fprintf (outf
, " [%s]",
4243 /* Print a human-readable representation of R on the standard error
4244 stream. This function is designed to be used from within the
4251 dump_regset (r
, stderr
);
4252 putc ('\n', stderr
);
4255 /* Recompute register set/reference counts immediately prior to register
4258 This avoids problems with set/reference counts changing to/from values
4259 which have special meanings to the register allocators.
4261 Additionally, the reference counts are the primary component used by the
4262 register allocators to prioritize pseudos for allocation to hard regs.
4263 More accurate reference counts generally lead to better register allocation.
4265 F is the first insn to be scanned.
4267 LOOP_STEP denotes how much loop_depth should be incremented per
4268 loop nesting level in order to increase the ref count more for
4269 references in a loop.
4271 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4272 possibly other information which is used by the register allocators. */
4275 recompute_reg_usage (f
, loop_step
)
4276 rtx f ATTRIBUTE_UNUSED
;
4277 int loop_step ATTRIBUTE_UNUSED
;
4279 allocate_reg_life_data ();
4280 update_life_info (NULL
, UPDATE_LIFE_LOCAL
, PROP_REG_INFO
);
4283 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4284 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4285 of the number of registers that died. */
4288 count_or_remove_death_notes (blocks
, kill
)
4295 FOR_EACH_BB_REVERSE (bb
)
4299 if (blocks
&& ! TEST_BIT (blocks
, bb
->index
))
4302 for (insn
= bb
->head
;; insn
= NEXT_INSN (insn
))
4306 rtx
*pprev
= ®_NOTES (insn
);
4311 switch (REG_NOTE_KIND (link
))
4314 if (GET_CODE (XEXP (link
, 0)) == REG
)
4316 rtx reg
= XEXP (link
, 0);
4319 if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
4322 n
= HARD_REGNO_NREGS (REGNO (reg
), GET_MODE (reg
));
4330 rtx next
= XEXP (link
, 1);
4331 free_EXPR_LIST_node (link
);
4332 *pprev
= link
= next
;
4338 pprev
= &XEXP (link
, 1);
4345 if (insn
== bb
->end
)
4352 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4353 if blocks is NULL. */
4356 clear_log_links (blocks
)
4364 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4366 free_INSN_LIST_list (&LOG_LINKS (insn
));
4369 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
4371 basic_block bb
= BASIC_BLOCK (i
);
4373 for (insn
= bb
->head
; insn
!= NEXT_INSN (bb
->end
);
4374 insn
= NEXT_INSN (insn
))
4376 free_INSN_LIST_list (&LOG_LINKS (insn
));
4380 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4381 correspond to the hard registers, if any, set in that map. This
4382 could be done far more efficiently by having all sorts of special-cases
4383 with moving single words, but probably isn't worth the trouble. */
4386 reg_set_to_hard_reg_set (to
, from
)
4392 EXECUTE_IF_SET_IN_BITMAP
4395 if (i
>= FIRST_PSEUDO_REGISTER
)
4397 SET_HARD_REG_BIT (*to
, i
);