Merged r157653 through r157895 into branch.
[official-gcc.git] / gcc / expr.c
blobad66d934d2f324532d1e6436a6dace93db132ed3
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
57 #include "ssaexpand.h"
59 /* Decide whether a function's arguments should be processed
60 from first to last or from last to first.
62 They should if the stack and args grow in opposite directions, but
63 only if we have push insns. */
65 #ifdef PUSH_ROUNDING
67 #ifndef PUSH_ARGS_REVERSED
68 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
69 #define PUSH_ARGS_REVERSED /* If it's last to first. */
70 #endif
71 #endif
73 #endif
75 #ifndef STACK_PUSH_CODE
76 #ifdef STACK_GROWS_DOWNWARD
77 #define STACK_PUSH_CODE PRE_DEC
78 #else
79 #define STACK_PUSH_CODE PRE_INC
80 #endif
81 #endif
84 /* If this is nonzero, we do not bother generating VOLATILE
85 around volatile memory references, and we are willing to
86 output indirect addresses. If cse is to follow, we reject
87 indirect addresses so a useful potential cse is generated;
88 if it is used only once, instruction combination will produce
89 the same indirect address eventually. */
90 int cse_not_expected;
92 /* This structure is used by move_by_pieces to describe the move to
93 be performed. */
94 struct move_by_pieces_d
96 rtx to;
97 rtx to_addr;
98 int autinc_to;
99 int explicit_inc_to;
100 rtx from;
101 rtx from_addr;
102 int autinc_from;
103 int explicit_inc_from;
104 unsigned HOST_WIDE_INT len;
105 HOST_WIDE_INT offset;
106 int reverse;
109 /* This structure is used by store_by_pieces to describe the clear to
110 be performed. */
112 struct store_by_pieces_d
114 rtx to;
115 rtx to_addr;
116 int autinc_to;
117 int explicit_inc_to;
118 unsigned HOST_WIDE_INT len;
119 HOST_WIDE_INT offset;
120 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
121 void *constfundata;
122 int reverse;
125 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
126 unsigned int,
127 unsigned int);
128 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
129 struct move_by_pieces_d *);
130 static bool block_move_libcall_safe_for_call_parm (void);
131 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
132 static tree emit_block_move_libcall_fn (int);
133 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
134 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
135 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
136 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
137 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
138 struct store_by_pieces_d *);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, alias_set_type);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, alias_set_type, bool);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
151 static int is_aligning_offset (const_tree, const_tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (sepops, rtx, enum machine_mode);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
180 #endif
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero. */
192 #ifndef SET_BY_PIECES_P
193 #define SET_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
196 #endif
198 /* This macro is used to determine whether store_by_pieces should be
199 called to "memcpy" storage when the source is a constant string. */
200 #ifndef STORE_BY_PIECES_P
201 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
202 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
203 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
204 #endif
206 /* This array records the insn_code of insns to perform block moves. */
207 enum insn_code movmem_optab[NUM_MACHINE_MODES];
209 /* This array records the insn_code of insns to perform block sets. */
210 enum insn_code setmem_optab[NUM_MACHINE_MODES];
212 /* These arrays record the insn_code of three different kinds of insns
213 to perform block compares. */
214 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
216 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
218 /* Synchronization primitives. */
219 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
251 void
252 init_expr_target (void)
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
277 int regno;
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
295 SET_REGNO (reg, regno);
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
328 enum insn_code ic;
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
334 PUT_MODE (mem, srcmode);
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
342 /* This is run at the start of compiling a function. */
344 void
345 init_expr (void)
347 memset (&crtl->expr, 0, sizeof (crtl->expr));
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
395 emit_move_insn (to, from);
396 return;
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
408 emit_move_insn (to, from);
409 return;
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
419 if (to_real)
421 rtx value, insns;
422 convert_optab tab;
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
437 /* Try converting directly if the insn is supported. */
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
491 if (to_mode == full_mode)
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
523 /* Now both modes are integers. */
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
555 rtx word_to = gen_reg_rtx (word_mode);
556 if (REG_P (to))
558 if (reg_overlap_mentioned_p (to, from))
559 from = force_reg (from_mode, from);
560 emit_clobber (to);
562 convert_move (word_to, from, unsignedp);
563 emit_unop_insn (code, to, word_to, equiv_code);
564 return;
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
591 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
592 LT, lowfrom, const0_rtx,
593 VOIDmode, 0, -1);
595 /* Fill the remaining words. */
596 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
598 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
599 rtx subword = operand_subword (to, index, 1, to_mode);
601 gcc_assert (subword);
603 if (fill_value != subword)
604 emit_move_insn (subword, fill_value);
607 insns = get_insns ();
608 end_sequence ();
610 emit_insn (insns);
611 return;
614 /* Truncating multi-word to a word or less. */
615 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
616 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
618 if (!((MEM_P (from)
619 && ! MEM_VOLATILE_P (from)
620 && direct_load[(int) to_mode]
621 && ! mode_dependent_address_p (XEXP (from, 0)))
622 || REG_P (from)
623 || GET_CODE (from) == SUBREG))
624 from = force_reg (from_mode, from);
625 convert_move (to, gen_lowpart (word_mode, from), 0);
626 return;
629 /* Now follow all the conversions between integers
630 no more than a word long. */
632 /* For truncation, usually we can just refer to FROM in a narrower mode. */
633 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
634 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
635 GET_MODE_BITSIZE (from_mode)))
637 if (!((MEM_P (from)
638 && ! MEM_VOLATILE_P (from)
639 && direct_load[(int) to_mode]
640 && ! mode_dependent_address_p (XEXP (from, 0)))
641 || REG_P (from)
642 || GET_CODE (from) == SUBREG))
643 from = force_reg (from_mode, from);
644 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
645 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
646 from = copy_to_reg (from);
647 emit_move_insn (to, gen_lowpart (to_mode, from));
648 return;
651 /* Handle extension. */
652 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
654 /* Convert directly if that works. */
655 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
656 != CODE_FOR_nothing)
658 emit_unop_insn (code, to, from, equiv_code);
659 return;
661 else
663 enum machine_mode intermediate;
664 rtx tmp;
665 tree shift_amount;
667 /* Search for a mode to convert via. */
668 for (intermediate = from_mode; intermediate != VOIDmode;
669 intermediate = GET_MODE_WIDER_MODE (intermediate))
670 if (((can_extend_p (to_mode, intermediate, unsignedp)
671 != CODE_FOR_nothing)
672 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
673 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
674 GET_MODE_BITSIZE (intermediate))))
675 && (can_extend_p (intermediate, from_mode, unsignedp)
676 != CODE_FOR_nothing))
678 convert_move (to, convert_to_mode (intermediate, from,
679 unsignedp), unsignedp);
680 return;
683 /* No suitable intermediate mode.
684 Generate what we need with shifts. */
685 shift_amount = build_int_cst (NULL_TREE,
686 GET_MODE_BITSIZE (to_mode)
687 - GET_MODE_BITSIZE (from_mode));
688 from = gen_lowpart (to_mode, force_reg (from_mode, from));
689 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
690 to, unsignedp);
691 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
692 to, unsignedp);
693 if (tmp != to)
694 emit_move_insn (to, tmp);
695 return;
699 /* Support special truncate insns for certain modes. */
700 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
702 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
703 to, from, UNKNOWN);
704 return;
707 /* Handle truncation of volatile memrefs, and so on;
708 the things that couldn't be truncated directly,
709 and for which there was no special instruction.
711 ??? Code above formerly short-circuited this, for most integer
712 mode pairs, with a force_reg in from_mode followed by a recursive
713 call to this routine. Appears always to have been wrong. */
714 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
716 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
717 emit_move_insn (to, temp);
718 return;
721 /* Mode combination is not recognized. */
722 gcc_unreachable ();
725 /* Return an rtx for a value that would result
726 from converting X to mode MODE.
727 Both X and MODE may be floating, or both integer.
728 UNSIGNEDP is nonzero if X is an unsigned value.
729 This can be done by referring to a part of X in place
730 or by copying to a new temporary with conversion. */
733 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
735 return convert_modes (mode, VOIDmode, x, unsignedp);
738 /* Return an rtx for a value that would result
739 from converting X from mode OLDMODE to mode MODE.
740 Both modes may be floating, or both integer.
741 UNSIGNEDP is nonzero if X is an unsigned value.
743 This can be done by referring to a part of X in place
744 or by copying to a new temporary with conversion.
746 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
749 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
751 rtx temp;
753 /* If FROM is a SUBREG that indicates that we have already done at least
754 the required extension, strip it. */
756 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
757 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
758 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
759 x = gen_lowpart (mode, x);
761 if (GET_MODE (x) != VOIDmode)
762 oldmode = GET_MODE (x);
764 if (mode == oldmode)
765 return x;
767 /* There is one case that we must handle specially: If we are converting
768 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
769 we are to interpret the constant as unsigned, gen_lowpart will do
770 the wrong if the constant appears negative. What we want to do is
771 make the high-order word of the constant zero, not all ones. */
773 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
774 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
775 && CONST_INT_P (x) && INTVAL (x) < 0)
777 HOST_WIDE_INT val = INTVAL (x);
779 if (oldmode != VOIDmode
780 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
782 int width = GET_MODE_BITSIZE (oldmode);
784 /* We need to zero extend VAL. */
785 val &= ((HOST_WIDE_INT) 1 << width) - 1;
788 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
791 /* We can do this with a gen_lowpart if both desired and current modes
792 are integer, and this is either a constant integer, a register, or a
793 non-volatile MEM. Except for the constant case where MODE is no
794 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
796 if ((CONST_INT_P (x)
797 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
798 || (GET_MODE_CLASS (mode) == MODE_INT
799 && GET_MODE_CLASS (oldmode) == MODE_INT
800 && (GET_CODE (x) == CONST_DOUBLE
801 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
802 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
803 && direct_load[(int) mode])
804 || (REG_P (x)
805 && (! HARD_REGISTER_P (x)
806 || HARD_REGNO_MODE_OK (REGNO (x), mode))
807 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
808 GET_MODE_BITSIZE (GET_MODE (x)))))))))
810 /* ?? If we don't know OLDMODE, we have to assume here that
811 X does not need sign- or zero-extension. This may not be
812 the case, but it's the best we can do. */
813 if (CONST_INT_P (x) && oldmode != VOIDmode
814 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
816 HOST_WIDE_INT val = INTVAL (x);
817 int width = GET_MODE_BITSIZE (oldmode);
819 /* We must sign or zero-extend in this case. Start by
820 zero-extending, then sign extend if we need to. */
821 val &= ((HOST_WIDE_INT) 1 << width) - 1;
822 if (! unsignedp
823 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
824 val |= (HOST_WIDE_INT) (-1) << width;
826 return gen_int_mode (val, mode);
829 return gen_lowpart (mode, x);
832 /* Converting from integer constant into mode is always equivalent to an
833 subreg operation. */
834 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
836 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
837 return simplify_gen_subreg (mode, x, oldmode, 0);
840 temp = gen_reg_rtx (mode);
841 convert_move (temp, x, unsignedp);
842 return temp;
845 /* STORE_MAX_PIECES is the number of bytes at a time that we can
846 store efficiently. Due to internal GCC limitations, this is
847 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
848 for an immediate constant. */
850 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
852 /* Determine whether the LEN bytes can be moved by using several move
853 instructions. Return nonzero if a call to move_by_pieces should
854 succeed. */
857 can_move_by_pieces (unsigned HOST_WIDE_INT len,
858 unsigned int align ATTRIBUTE_UNUSED)
860 return MOVE_BY_PIECES_P (len, align);
863 /* Generate several move instructions to copy LEN bytes from block FROM to
864 block TO. (These are MEM rtx's with BLKmode).
866 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
867 used to push FROM to the stack.
869 ALIGN is maximum stack alignment we can assume.
871 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
872 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
873 stpcpy. */
876 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
877 unsigned int align, int endp)
879 struct move_by_pieces_d data;
880 enum machine_mode to_addr_mode, from_addr_mode
881 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
882 rtx to_addr, from_addr = XEXP (from, 0);
883 unsigned int max_size = MOVE_MAX_PIECES + 1;
884 enum machine_mode mode = VOIDmode, tmode;
885 enum insn_code icode;
887 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
889 data.offset = 0;
890 data.from_addr = from_addr;
891 if (to)
893 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
894 to_addr = XEXP (to, 0);
895 data.to = to;
896 data.autinc_to
897 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
898 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
899 data.reverse
900 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
902 else
904 to_addr_mode = VOIDmode;
905 to_addr = NULL_RTX;
906 data.to = NULL_RTX;
907 data.autinc_to = 1;
908 #ifdef STACK_GROWS_DOWNWARD
909 data.reverse = 1;
910 #else
911 data.reverse = 0;
912 #endif
914 data.to_addr = to_addr;
915 data.from = from;
916 data.autinc_from
917 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
918 || GET_CODE (from_addr) == POST_INC
919 || GET_CODE (from_addr) == POST_DEC);
921 data.explicit_inc_from = 0;
922 data.explicit_inc_to = 0;
923 if (data.reverse) data.offset = len;
924 data.len = len;
926 /* If copying requires more than two move insns,
927 copy addresses to registers (to make displacements shorter)
928 and use post-increment if available. */
929 if (!(data.autinc_from && data.autinc_to)
930 && move_by_pieces_ninsns (len, align, max_size) > 2)
932 /* Find the mode of the largest move... */
933 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
934 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
935 if (GET_MODE_SIZE (tmode) < max_size)
936 mode = tmode;
938 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode,
941 plus_constant (from_addr, len));
942 data.autinc_from = 1;
943 data.explicit_inc_from = -1;
945 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
947 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
948 data.autinc_from = 1;
949 data.explicit_inc_from = 1;
951 if (!data.autinc_from && CONSTANT_P (from_addr))
952 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
953 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
955 data.to_addr = copy_to_mode_reg (to_addr_mode,
956 plus_constant (to_addr, len));
957 data.autinc_to = 1;
958 data.explicit_inc_to = -1;
960 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
962 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
963 data.autinc_to = 1;
964 data.explicit_inc_to = 1;
966 if (!data.autinc_to && CONSTANT_P (to_addr))
967 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
970 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
971 if (align >= GET_MODE_ALIGNMENT (tmode))
972 align = GET_MODE_ALIGNMENT (tmode);
973 else
975 enum machine_mode xmode;
977 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
978 tmode != VOIDmode;
979 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
980 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
981 || SLOW_UNALIGNED_ACCESS (tmode, align))
982 break;
984 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
987 /* First move what we can in the largest integer mode, then go to
988 successively smaller modes. */
990 while (max_size > 1)
992 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
993 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
994 if (GET_MODE_SIZE (tmode) < max_size)
995 mode = tmode;
997 if (mode == VOIDmode)
998 break;
1000 icode = optab_handler (mov_optab, mode)->insn_code;
1001 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1002 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1004 max_size = GET_MODE_SIZE (mode);
1007 /* The code above should have handled everything. */
1008 gcc_assert (!data.len);
1010 if (endp)
1012 rtx to1;
1014 gcc_assert (!data.reverse);
1015 if (data.autinc_to)
1017 if (endp == 2)
1019 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1020 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1021 else
1022 data.to_addr = copy_to_mode_reg (to_addr_mode,
1023 plus_constant (data.to_addr,
1024 -1));
1026 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1027 data.offset);
1029 else
1031 if (endp == 2)
1032 --data.offset;
1033 to1 = adjust_address (data.to, QImode, data.offset);
1035 return to1;
1037 else
1038 return data.to;
1041 /* Return number of insns required to move L bytes by pieces.
1042 ALIGN (in bits) is maximum alignment we can assume. */
1044 static unsigned HOST_WIDE_INT
1045 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1046 unsigned int max_size)
1048 unsigned HOST_WIDE_INT n_insns = 0;
1049 enum machine_mode tmode;
1051 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1052 if (align >= GET_MODE_ALIGNMENT (tmode))
1053 align = GET_MODE_ALIGNMENT (tmode);
1054 else
1056 enum machine_mode tmode, xmode;
1058 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1059 tmode != VOIDmode;
1060 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1061 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1062 || SLOW_UNALIGNED_ACCESS (tmode, align))
1063 break;
1065 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1068 while (max_size > 1)
1070 enum machine_mode mode = VOIDmode;
1071 enum insn_code icode;
1073 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1074 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1075 if (GET_MODE_SIZE (tmode) < max_size)
1076 mode = tmode;
1078 if (mode == VOIDmode)
1079 break;
1081 icode = optab_handler (mov_optab, mode)->insn_code;
1082 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1083 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1085 max_size = GET_MODE_SIZE (mode);
1088 gcc_assert (!l);
1089 return n_insns;
1092 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1093 with move instructions for mode MODE. GENFUN is the gen_... function
1094 to make a move insn for that mode. DATA has all the other info. */
1096 static void
1097 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1098 struct move_by_pieces_d *data)
1100 unsigned int size = GET_MODE_SIZE (mode);
1101 rtx to1 = NULL_RTX, from1;
1103 while (data->len >= size)
1105 if (data->reverse)
1106 data->offset -= size;
1108 if (data->to)
1110 if (data->autinc_to)
1111 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1112 data->offset);
1113 else
1114 to1 = adjust_address (data->to, mode, data->offset);
1117 if (data->autinc_from)
1118 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1119 data->offset);
1120 else
1121 from1 = adjust_address (data->from, mode, data->offset);
1123 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1124 emit_insn (gen_add2_insn (data->to_addr,
1125 GEN_INT (-(HOST_WIDE_INT)size)));
1126 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1127 emit_insn (gen_add2_insn (data->from_addr,
1128 GEN_INT (-(HOST_WIDE_INT)size)));
1130 if (data->to)
1131 emit_insn ((*genfun) (to1, from1));
1132 else
1134 #ifdef PUSH_ROUNDING
1135 emit_single_push_insn (mode, from1, NULL);
1136 #else
1137 gcc_unreachable ();
1138 #endif
1141 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1142 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1143 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1144 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1146 if (! data->reverse)
1147 data->offset += size;
1149 data->len -= size;
1153 /* Emit code to move a block Y to a block X. This may be done with
1154 string-move instructions, with multiple scalar move instructions,
1155 or with a library call.
1157 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1158 SIZE is an rtx that says how long they are.
1159 ALIGN is the maximum alignment we can assume they have.
1160 METHOD describes what kind of copy this is, and what mechanisms may be used.
1162 Return the address of the new block, if memcpy is called and returns it,
1163 0 otherwise. */
1166 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1167 unsigned int expected_align, HOST_WIDE_INT expected_size)
1169 bool may_use_call;
1170 rtx retval = 0;
1171 unsigned int align;
1173 switch (method)
1175 case BLOCK_OP_NORMAL:
1176 case BLOCK_OP_TAILCALL:
1177 may_use_call = true;
1178 break;
1180 case BLOCK_OP_CALL_PARM:
1181 may_use_call = block_move_libcall_safe_for_call_parm ();
1183 /* Make inhibit_defer_pop nonzero around the library call
1184 to force it to pop the arguments right away. */
1185 NO_DEFER_POP;
1186 break;
1188 case BLOCK_OP_NO_LIBCALL:
1189 may_use_call = false;
1190 break;
1192 default:
1193 gcc_unreachable ();
1196 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1197 gcc_assert (align >= BITS_PER_UNIT);
1199 gcc_assert (MEM_P (x));
1200 gcc_assert (MEM_P (y));
1201 gcc_assert (size);
1203 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1204 block copy is more efficient for other large modes, e.g. DCmode. */
1205 x = adjust_address (x, BLKmode, 0);
1206 y = adjust_address (y, BLKmode, 0);
1208 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1209 can be incorrect is coming from __builtin_memcpy. */
1210 if (CONST_INT_P (size))
1212 if (INTVAL (size) == 0)
1213 return 0;
1215 x = shallow_copy_rtx (x);
1216 y = shallow_copy_rtx (y);
1217 set_mem_size (x, size);
1218 set_mem_size (y, size);
1221 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1222 move_by_pieces (x, y, INTVAL (size), align, 0);
1223 else if (emit_block_move_via_movmem (x, y, size, align,
1224 expected_align, expected_size))
1226 else if (may_use_call
1227 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1228 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1229 retval = emit_block_move_via_libcall (x, y, size,
1230 method == BLOCK_OP_TAILCALL);
1231 else
1232 emit_block_move_via_loop (x, y, size, align);
1234 if (method == BLOCK_OP_CALL_PARM)
1235 OK_DEFER_POP;
1237 return retval;
1241 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1243 return emit_block_move_hints (x, y, size, method, 0, -1);
1246 /* A subroutine of emit_block_move. Returns true if calling the
1247 block move libcall will not clobber any parameters which may have
1248 already been placed on the stack. */
1250 static bool
1251 block_move_libcall_safe_for_call_parm (void)
1253 #if defined (REG_PARM_STACK_SPACE)
1254 tree fn;
1255 #endif
1257 /* If arguments are pushed on the stack, then they're safe. */
1258 if (PUSH_ARGS)
1259 return true;
1261 /* If registers go on the stack anyway, any argument is sure to clobber
1262 an outgoing argument. */
1263 #if defined (REG_PARM_STACK_SPACE)
1264 fn = emit_block_move_libcall_fn (false);
1265 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1266 && REG_PARM_STACK_SPACE (fn) != 0)
1267 return false;
1268 #endif
1270 /* If any argument goes in memory, then it might clobber an outgoing
1271 argument. */
1273 CUMULATIVE_ARGS args_so_far;
1274 tree fn, arg;
1276 fn = emit_block_move_libcall_fn (false);
1277 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1279 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1280 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1282 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1283 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1284 if (!tmp || !REG_P (tmp))
1285 return false;
1286 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1287 return false;
1288 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1291 return true;
1294 /* A subroutine of emit_block_move. Expand a movmem pattern;
1295 return true if successful. */
1297 static bool
1298 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1299 unsigned int expected_align, HOST_WIDE_INT expected_size)
1301 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1302 int save_volatile_ok = volatile_ok;
1303 enum machine_mode mode;
1305 if (expected_align < align)
1306 expected_align = align;
1308 /* Since this is a move insn, we don't care about volatility. */
1309 volatile_ok = 1;
1311 /* Try the most limited insn first, because there's no point
1312 including more than one in the machine description unless
1313 the more limited one has some advantage. */
1315 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1316 mode = GET_MODE_WIDER_MODE (mode))
1318 enum insn_code code = movmem_optab[(int) mode];
1319 insn_operand_predicate_fn pred;
1321 if (code != CODE_FOR_nothing
1322 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1323 here because if SIZE is less than the mode mask, as it is
1324 returned by the macro, it will definitely be less than the
1325 actual mode mask. */
1326 && ((CONST_INT_P (size)
1327 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1328 <= (GET_MODE_MASK (mode) >> 1)))
1329 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1330 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1331 || (*pred) (x, BLKmode))
1332 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1333 || (*pred) (y, BLKmode))
1334 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1335 || (*pred) (opalign, VOIDmode)))
1337 rtx op2;
1338 rtx last = get_last_insn ();
1339 rtx pat;
1341 op2 = convert_to_mode (mode, size, 1);
1342 pred = insn_data[(int) code].operand[2].predicate;
1343 if (pred != 0 && ! (*pred) (op2, mode))
1344 op2 = copy_to_mode_reg (mode, op2);
1346 /* ??? When called via emit_block_move_for_call, it'd be
1347 nice if there were some way to inform the backend, so
1348 that it doesn't fail the expansion because it thinks
1349 emitting the libcall would be more efficient. */
1351 if (insn_data[(int) code].n_operands == 4)
1352 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1353 else
1354 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1355 GEN_INT (expected_align
1356 / BITS_PER_UNIT),
1357 GEN_INT (expected_size));
1358 if (pat)
1360 emit_insn (pat);
1361 volatile_ok = save_volatile_ok;
1362 return true;
1364 else
1365 delete_insns_since (last);
1369 volatile_ok = save_volatile_ok;
1370 return false;
1373 /* A subroutine of emit_block_move. Expand a call to memcpy.
1374 Return the return value from memcpy, 0 otherwise. */
1377 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1379 rtx dst_addr, src_addr;
1380 tree call_expr, fn, src_tree, dst_tree, size_tree;
1381 enum machine_mode size_mode;
1382 rtx retval;
1384 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1385 pseudos. We can then place those new pseudos into a VAR_DECL and
1386 use them later. */
1388 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1389 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1391 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1392 src_addr = convert_memory_address (ptr_mode, src_addr);
1394 dst_tree = make_tree (ptr_type_node, dst_addr);
1395 src_tree = make_tree (ptr_type_node, src_addr);
1397 size_mode = TYPE_MODE (sizetype);
1399 size = convert_to_mode (size_mode, size, 1);
1400 size = copy_to_mode_reg (size_mode, size);
1402 /* It is incorrect to use the libcall calling conventions to call
1403 memcpy in this context. This could be a user call to memcpy and
1404 the user may wish to examine the return value from memcpy. For
1405 targets where libcalls and normal calls have different conventions
1406 for returning pointers, we could end up generating incorrect code. */
1408 size_tree = make_tree (sizetype, size);
1410 fn = emit_block_move_libcall_fn (true);
1411 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1412 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1414 retval = expand_normal (call_expr);
1416 return retval;
1419 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1420 for the function we use for block copies. The first time FOR_CALL
1421 is true, we call assemble_external. */
1423 static GTY(()) tree block_move_fn;
1425 void
1426 init_block_move_fn (const char *asmspec)
1428 if (!block_move_fn)
1430 tree args, fn;
1432 fn = get_identifier ("memcpy");
1433 args = build_function_type_list (ptr_type_node, ptr_type_node,
1434 const_ptr_type_node, sizetype,
1435 NULL_TREE);
1437 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1438 DECL_EXTERNAL (fn) = 1;
1439 TREE_PUBLIC (fn) = 1;
1440 DECL_ARTIFICIAL (fn) = 1;
1441 TREE_NOTHROW (fn) = 1;
1442 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1443 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1445 block_move_fn = fn;
1448 if (asmspec)
1449 set_user_assembler_name (block_move_fn, asmspec);
1452 static tree
1453 emit_block_move_libcall_fn (int for_call)
1455 static bool emitted_extern;
1457 if (!block_move_fn)
1458 init_block_move_fn (NULL);
1460 if (for_call && !emitted_extern)
1462 emitted_extern = true;
1463 make_decl_rtl (block_move_fn);
1464 assemble_external (block_move_fn);
1467 return block_move_fn;
1470 /* A subroutine of emit_block_move. Copy the data via an explicit
1471 loop. This is used only when libcalls are forbidden. */
1472 /* ??? It'd be nice to copy in hunks larger than QImode. */
1474 static void
1475 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1476 unsigned int align ATTRIBUTE_UNUSED)
1478 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1479 enum machine_mode x_addr_mode
1480 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1481 enum machine_mode y_addr_mode
1482 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1483 enum machine_mode iter_mode;
1485 iter_mode = GET_MODE (size);
1486 if (iter_mode == VOIDmode)
1487 iter_mode = word_mode;
1489 top_label = gen_label_rtx ();
1490 cmp_label = gen_label_rtx ();
1491 iter = gen_reg_rtx (iter_mode);
1493 emit_move_insn (iter, const0_rtx);
1495 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1496 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1497 do_pending_stack_adjust ();
1499 emit_jump (cmp_label);
1500 emit_label (top_label);
1502 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1503 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1505 if (x_addr_mode != y_addr_mode)
1506 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1507 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1509 x = change_address (x, QImode, x_addr);
1510 y = change_address (y, QImode, y_addr);
1512 emit_move_insn (x, y);
1514 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1515 true, OPTAB_LIB_WIDEN);
1516 if (tmp != iter)
1517 emit_move_insn (iter, tmp);
1519 emit_label (cmp_label);
1521 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1522 true, top_label);
1525 /* Copy all or part of a value X into registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1528 void
1529 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1531 int i;
1532 #ifdef HAVE_load_multiple
1533 rtx pat;
1534 rtx last;
1535 #endif
1537 if (nregs == 0)
1538 return;
1540 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1541 x = validize_mem (force_const_mem (mode, x));
1543 /* See if the machine can do this with a load multiple insn. */
1544 #ifdef HAVE_load_multiple
1545 if (HAVE_load_multiple)
1547 last = get_last_insn ();
1548 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1549 GEN_INT (nregs));
1550 if (pat)
1552 emit_insn (pat);
1553 return;
1555 else
1556 delete_insns_since (last);
1558 #endif
1560 for (i = 0; i < nregs; i++)
1561 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1562 operand_subword_force (x, i, mode));
1565 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1566 The number of registers to be filled is NREGS. */
1568 void
1569 move_block_from_reg (int regno, rtx x, int nregs)
1571 int i;
1573 if (nregs == 0)
1574 return;
1576 /* See if the machine can do this with a store multiple insn. */
1577 #ifdef HAVE_store_multiple
1578 if (HAVE_store_multiple)
1580 rtx last = get_last_insn ();
1581 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1582 GEN_INT (nregs));
1583 if (pat)
1585 emit_insn (pat);
1586 return;
1588 else
1589 delete_insns_since (last);
1591 #endif
1593 for (i = 0; i < nregs; i++)
1595 rtx tem = operand_subword (x, i, 1, BLKmode);
1597 gcc_assert (tem);
1599 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1603 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1604 ORIG, where ORIG is a non-consecutive group of registers represented by
1605 a PARALLEL. The clone is identical to the original except in that the
1606 original set of registers is replaced by a new set of pseudo registers.
1607 The new set has the same modes as the original set. */
1610 gen_group_rtx (rtx orig)
1612 int i, length;
1613 rtx *tmps;
1615 gcc_assert (GET_CODE (orig) == PARALLEL);
1617 length = XVECLEN (orig, 0);
1618 tmps = XALLOCAVEC (rtx, length);
1620 /* Skip a NULL entry in first slot. */
1621 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1623 if (i)
1624 tmps[0] = 0;
1626 for (; i < length; i++)
1628 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1629 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1631 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1634 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1637 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1638 except that values are placed in TMPS[i], and must later be moved
1639 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1641 static void
1642 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1644 rtx src;
1645 int start, i;
1646 enum machine_mode m = GET_MODE (orig_src);
1648 gcc_assert (GET_CODE (dst) == PARALLEL);
1650 if (m != VOIDmode
1651 && !SCALAR_INT_MODE_P (m)
1652 && !MEM_P (orig_src)
1653 && GET_CODE (orig_src) != CONCAT)
1655 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1656 if (imode == BLKmode)
1657 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1658 else
1659 src = gen_reg_rtx (imode);
1660 if (imode != BLKmode)
1661 src = gen_lowpart (GET_MODE (orig_src), src);
1662 emit_move_insn (src, orig_src);
1663 /* ...and back again. */
1664 if (imode != BLKmode)
1665 src = gen_lowpart (imode, src);
1666 emit_group_load_1 (tmps, dst, src, type, ssize);
1667 return;
1670 /* Check for a NULL entry, used to indicate that the parameter goes
1671 both on the stack and in registers. */
1672 if (XEXP (XVECEXP (dst, 0, 0), 0))
1673 start = 0;
1674 else
1675 start = 1;
1677 /* Process the pieces. */
1678 for (i = start; i < XVECLEN (dst, 0); i++)
1680 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1681 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1682 unsigned int bytelen = GET_MODE_SIZE (mode);
1683 int shift = 0;
1685 /* Handle trailing fragments that run over the size of the struct. */
1686 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1688 /* Arrange to shift the fragment to where it belongs.
1689 extract_bit_field loads to the lsb of the reg. */
1690 if (
1691 #ifdef BLOCK_REG_PADDING
1692 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1693 == (BYTES_BIG_ENDIAN ? upward : downward)
1694 #else
1695 BYTES_BIG_ENDIAN
1696 #endif
1698 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1699 bytelen = ssize - bytepos;
1700 gcc_assert (bytelen > 0);
1703 /* If we won't be loading directly from memory, protect the real source
1704 from strange tricks we might play; but make sure that the source can
1705 be loaded directly into the destination. */
1706 src = orig_src;
1707 if (!MEM_P (orig_src)
1708 && (!CONSTANT_P (orig_src)
1709 || (GET_MODE (orig_src) != mode
1710 && GET_MODE (orig_src) != VOIDmode)))
1712 if (GET_MODE (orig_src) == VOIDmode)
1713 src = gen_reg_rtx (mode);
1714 else
1715 src = gen_reg_rtx (GET_MODE (orig_src));
1717 emit_move_insn (src, orig_src);
1720 /* Optimize the access just a bit. */
1721 if (MEM_P (src)
1722 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1723 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1724 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1725 && bytelen == GET_MODE_SIZE (mode))
1727 tmps[i] = gen_reg_rtx (mode);
1728 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1730 else if (COMPLEX_MODE_P (mode)
1731 && GET_MODE (src) == mode
1732 && bytelen == GET_MODE_SIZE (mode))
1733 /* Let emit_move_complex do the bulk of the work. */
1734 tmps[i] = src;
1735 else if (GET_CODE (src) == CONCAT)
1737 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1738 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1740 if ((bytepos == 0 && bytelen == slen0)
1741 || (bytepos != 0 && bytepos + bytelen <= slen))
1743 /* The following assumes that the concatenated objects all
1744 have the same size. In this case, a simple calculation
1745 can be used to determine the object and the bit field
1746 to be extracted. */
1747 tmps[i] = XEXP (src, bytepos / slen0);
1748 if (! CONSTANT_P (tmps[i])
1749 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1750 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1751 (bytepos % slen0) * BITS_PER_UNIT,
1752 1, NULL_RTX, mode, mode);
1754 else
1756 rtx mem;
1758 gcc_assert (!bytepos);
1759 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1760 emit_move_insn (mem, src);
1761 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1762 0, 1, NULL_RTX, mode, mode);
1765 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1766 SIMD register, which is currently broken. While we get GCC
1767 to emit proper RTL for these cases, let's dump to memory. */
1768 else if (VECTOR_MODE_P (GET_MODE (dst))
1769 && REG_P (src))
1771 int slen = GET_MODE_SIZE (GET_MODE (src));
1772 rtx mem;
1774 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1775 emit_move_insn (mem, src);
1776 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1778 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1779 && XVECLEN (dst, 0) > 1)
1780 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1781 else if (CONSTANT_P (src))
1783 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1785 if (len == ssize)
1786 tmps[i] = src;
1787 else
1789 rtx first, second;
1791 gcc_assert (2 * len == ssize);
1792 split_double (src, &first, &second);
1793 if (i)
1794 tmps[i] = second;
1795 else
1796 tmps[i] = first;
1799 else if (REG_P (src) && GET_MODE (src) == mode)
1800 tmps[i] = src;
1801 else
1802 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1803 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1804 mode, mode);
1806 if (shift)
1807 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1808 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1812 /* Emit code to move a block SRC of type TYPE to a block DST,
1813 where DST is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1815 if not known. */
1817 void
1818 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1820 rtx *tmps;
1821 int i;
1823 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1824 emit_group_load_1 (tmps, dst, src, type, ssize);
1826 /* Copy the extracted pieces into the proper (probable) hard regs. */
1827 for (i = 0; i < XVECLEN (dst, 0); i++)
1829 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1830 if (d == NULL)
1831 continue;
1832 emit_move_insn (d, tmps[i]);
1836 /* Similar, but load SRC into new pseudos in a format that looks like
1837 PARALLEL. This can later be fed to emit_group_move to get things
1838 in the right place. */
1841 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1843 rtvec vec;
1844 int i;
1846 vec = rtvec_alloc (XVECLEN (parallel, 0));
1847 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1849 /* Convert the vector to look just like the original PARALLEL, except
1850 with the computed values. */
1851 for (i = 0; i < XVECLEN (parallel, 0); i++)
1853 rtx e = XVECEXP (parallel, 0, i);
1854 rtx d = XEXP (e, 0);
1856 if (d)
1858 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1859 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1861 RTVEC_ELT (vec, i) = e;
1864 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1867 /* Emit code to move a block SRC to block DST, where SRC and DST are
1868 non-consecutive groups of registers, each represented by a PARALLEL. */
1870 void
1871 emit_group_move (rtx dst, rtx src)
1873 int i;
1875 gcc_assert (GET_CODE (src) == PARALLEL
1876 && GET_CODE (dst) == PARALLEL
1877 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1879 /* Skip first entry if NULL. */
1880 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1881 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1882 XEXP (XVECEXP (src, 0, i), 0));
1885 /* Move a group of registers represented by a PARALLEL into pseudos. */
1888 emit_group_move_into_temps (rtx src)
1890 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1891 int i;
1893 for (i = 0; i < XVECLEN (src, 0); i++)
1895 rtx e = XVECEXP (src, 0, i);
1896 rtx d = XEXP (e, 0);
1898 if (d)
1899 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1900 RTVEC_ELT (vec, i) = e;
1903 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1906 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1907 where SRC is non-consecutive registers represented by a PARALLEL.
1908 SSIZE represents the total size of block ORIG_DST, or -1 if not
1909 known. */
1911 void
1912 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1914 rtx *tmps, dst;
1915 int start, finish, i;
1916 enum machine_mode m = GET_MODE (orig_dst);
1918 gcc_assert (GET_CODE (src) == PARALLEL);
1920 if (!SCALAR_INT_MODE_P (m)
1921 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1923 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1924 if (imode == BLKmode)
1925 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1926 else
1927 dst = gen_reg_rtx (imode);
1928 emit_group_store (dst, src, type, ssize);
1929 if (imode != BLKmode)
1930 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1931 emit_move_insn (orig_dst, dst);
1932 return;
1935 /* Check for a NULL entry, used to indicate that the parameter goes
1936 both on the stack and in registers. */
1937 if (XEXP (XVECEXP (src, 0, 0), 0))
1938 start = 0;
1939 else
1940 start = 1;
1941 finish = XVECLEN (src, 0);
1943 tmps = XALLOCAVEC (rtx, finish);
1945 /* Copy the (probable) hard regs into pseudos. */
1946 for (i = start; i < finish; i++)
1948 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1949 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1951 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1952 emit_move_insn (tmps[i], reg);
1954 else
1955 tmps[i] = reg;
1958 /* If we won't be storing directly into memory, protect the real destination
1959 from strange tricks we might play. */
1960 dst = orig_dst;
1961 if (GET_CODE (dst) == PARALLEL)
1963 rtx temp;
1965 /* We can get a PARALLEL dst if there is a conditional expression in
1966 a return statement. In that case, the dst and src are the same,
1967 so no action is necessary. */
1968 if (rtx_equal_p (dst, src))
1969 return;
1971 /* It is unclear if we can ever reach here, but we may as well handle
1972 it. Allocate a temporary, and split this into a store/load to/from
1973 the temporary. */
1975 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1976 emit_group_store (temp, src, type, ssize);
1977 emit_group_load (dst, temp, type, ssize);
1978 return;
1980 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1982 enum machine_mode outer = GET_MODE (dst);
1983 enum machine_mode inner;
1984 HOST_WIDE_INT bytepos;
1985 bool done = false;
1986 rtx temp;
1988 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1989 dst = gen_reg_rtx (outer);
1991 /* Make life a bit easier for combine. */
1992 /* If the first element of the vector is the low part
1993 of the destination mode, use a paradoxical subreg to
1994 initialize the destination. */
1995 if (start < finish)
1997 inner = GET_MODE (tmps[start]);
1998 bytepos = subreg_lowpart_offset (inner, outer);
1999 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2001 temp = simplify_gen_subreg (outer, tmps[start],
2002 inner, 0);
2003 if (temp)
2005 emit_move_insn (dst, temp);
2006 done = true;
2007 start++;
2012 /* If the first element wasn't the low part, try the last. */
2013 if (!done
2014 && start < finish - 1)
2016 inner = GET_MODE (tmps[finish - 1]);
2017 bytepos = subreg_lowpart_offset (inner, outer);
2018 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2020 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2021 inner, 0);
2022 if (temp)
2024 emit_move_insn (dst, temp);
2025 done = true;
2026 finish--;
2031 /* Otherwise, simply initialize the result to zero. */
2032 if (!done)
2033 emit_move_insn (dst, CONST0_RTX (outer));
2036 /* Process the pieces. */
2037 for (i = start; i < finish; i++)
2039 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2040 enum machine_mode mode = GET_MODE (tmps[i]);
2041 unsigned int bytelen = GET_MODE_SIZE (mode);
2042 unsigned int adj_bytelen = bytelen;
2043 rtx dest = dst;
2045 /* Handle trailing fragments that run over the size of the struct. */
2046 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2047 adj_bytelen = ssize - bytepos;
2049 if (GET_CODE (dst) == CONCAT)
2051 if (bytepos + adj_bytelen
2052 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2053 dest = XEXP (dst, 0);
2054 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2056 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2057 dest = XEXP (dst, 1);
2059 else
2061 enum machine_mode dest_mode = GET_MODE (dest);
2062 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2064 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2066 if (GET_MODE_ALIGNMENT (dest_mode)
2067 >= GET_MODE_ALIGNMENT (tmp_mode))
2069 dest = assign_stack_temp (dest_mode,
2070 GET_MODE_SIZE (dest_mode),
2072 emit_move_insn (adjust_address (dest,
2073 tmp_mode,
2074 bytepos),
2075 tmps[i]);
2076 dst = dest;
2078 else
2080 dest = assign_stack_temp (tmp_mode,
2081 GET_MODE_SIZE (tmp_mode),
2083 emit_move_insn (dest, tmps[i]);
2084 dst = adjust_address (dest, dest_mode, bytepos);
2086 break;
2090 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2092 /* store_bit_field always takes its value from the lsb.
2093 Move the fragment to the lsb if it's not already there. */
2094 if (
2095 #ifdef BLOCK_REG_PADDING
2096 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2097 == (BYTES_BIG_ENDIAN ? upward : downward)
2098 #else
2099 BYTES_BIG_ENDIAN
2100 #endif
2103 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2104 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2105 build_int_cst (NULL_TREE, shift),
2106 tmps[i], 0);
2108 bytelen = adj_bytelen;
2111 /* Optimize the access just a bit. */
2112 if (MEM_P (dest)
2113 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2114 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2115 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2116 && bytelen == GET_MODE_SIZE (mode))
2117 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2118 else
2119 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2120 mode, tmps[i]);
2123 /* Copy from the pseudo into the (probable) hard reg. */
2124 if (orig_dst != dst)
2125 emit_move_insn (orig_dst, dst);
2128 /* Generate code to copy a BLKmode object of TYPE out of a
2129 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2130 is null, a stack temporary is created. TGTBLK is returned.
2132 The purpose of this routine is to handle functions that return
2133 BLKmode structures in registers. Some machines (the PA for example)
2134 want to return all small structures in registers regardless of the
2135 structure's alignment. */
2138 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2140 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2141 rtx src = NULL, dst = NULL;
2142 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2143 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2144 enum machine_mode copy_mode;
2146 if (tgtblk == 0)
2148 tgtblk = assign_temp (build_qualified_type (type,
2149 (TYPE_QUALS (type)
2150 | TYPE_QUAL_CONST)),
2151 0, 1, 1);
2152 preserve_temp_slots (tgtblk);
2155 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2156 into a new pseudo which is a full word. */
2158 if (GET_MODE (srcreg) != BLKmode
2159 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2160 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2162 /* If the structure doesn't take up a whole number of words, see whether
2163 SRCREG is padded on the left or on the right. If it's on the left,
2164 set PADDING_CORRECTION to the number of bits to skip.
2166 In most ABIs, the structure will be returned at the least end of
2167 the register, which translates to right padding on little-endian
2168 targets and left padding on big-endian targets. The opposite
2169 holds if the structure is returned at the most significant
2170 end of the register. */
2171 if (bytes % UNITS_PER_WORD != 0
2172 && (targetm.calls.return_in_msb (type)
2173 ? !BYTES_BIG_ENDIAN
2174 : BYTES_BIG_ENDIAN))
2175 padding_correction
2176 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2178 /* Copy the structure BITSIZE bits at a time. If the target lives in
2179 memory, take care of not reading/writing past its end by selecting
2180 a copy mode suited to BITSIZE. This should always be possible given
2181 how it is computed.
2183 We could probably emit more efficient code for machines which do not use
2184 strict alignment, but it doesn't seem worth the effort at the current
2185 time. */
2187 copy_mode = word_mode;
2188 if (MEM_P (tgtblk))
2190 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2191 if (mem_mode != BLKmode)
2192 copy_mode = mem_mode;
2195 for (bitpos = 0, xbitpos = padding_correction;
2196 bitpos < bytes * BITS_PER_UNIT;
2197 bitpos += bitsize, xbitpos += bitsize)
2199 /* We need a new source operand each time xbitpos is on a
2200 word boundary and when xbitpos == padding_correction
2201 (the first time through). */
2202 if (xbitpos % BITS_PER_WORD == 0
2203 || xbitpos == padding_correction)
2204 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2205 GET_MODE (srcreg));
2207 /* We need a new destination operand each time bitpos is on
2208 a word boundary. */
2209 if (bitpos % BITS_PER_WORD == 0)
2210 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2212 /* Use xbitpos for the source extraction (right justified) and
2213 bitpos for the destination store (left justified). */
2214 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2215 extract_bit_field (src, bitsize,
2216 xbitpos % BITS_PER_WORD, 1,
2217 NULL_RTX, copy_mode, copy_mode));
2220 return tgtblk;
2223 /* Add a USE expression for REG to the (possibly empty) list pointed
2224 to by CALL_FUSAGE. REG must denote a hard register. */
2226 void
2227 use_reg (rtx *call_fusage, rtx reg)
2229 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2231 *call_fusage
2232 = gen_rtx_EXPR_LIST (VOIDmode,
2233 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2236 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2237 starting at REGNO. All of these registers must be hard registers. */
2239 void
2240 use_regs (rtx *call_fusage, int regno, int nregs)
2242 int i;
2244 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2246 for (i = 0; i < nregs; i++)
2247 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2250 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2251 PARALLEL REGS. This is for calls that pass values in multiple
2252 non-contiguous locations. The Irix 6 ABI has examples of this. */
2254 void
2255 use_group_regs (rtx *call_fusage, rtx regs)
2257 int i;
2259 for (i = 0; i < XVECLEN (regs, 0); i++)
2261 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2263 /* A NULL entry means the parameter goes both on the stack and in
2264 registers. This can also be a MEM for targets that pass values
2265 partially on the stack and partially in registers. */
2266 if (reg != 0 && REG_P (reg))
2267 use_reg (call_fusage, reg);
2271 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2272 assigment and the code of the expresion on the RHS is CODE. Return
2273 NULL otherwise. */
2275 static gimple
2276 get_def_for_expr (tree name, enum tree_code code)
2278 gimple def_stmt;
2280 if (TREE_CODE (name) != SSA_NAME)
2281 return NULL;
2283 def_stmt = get_gimple_for_ssa_name (name);
2284 if (!def_stmt
2285 || gimple_assign_rhs_code (def_stmt) != code)
2286 return NULL;
2288 return def_stmt;
2292 /* Determine whether the LEN bytes generated by CONSTFUN can be
2293 stored to memory using several move instructions. CONSTFUNDATA is
2294 a pointer which will be passed as argument in every CONSTFUN call.
2295 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2296 a memset operation and false if it's a copy of a constant string.
2297 Return nonzero if a call to store_by_pieces should succeed. */
2300 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2301 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2302 void *constfundata, unsigned int align, bool memsetp)
2304 unsigned HOST_WIDE_INT l;
2305 unsigned int max_size;
2306 HOST_WIDE_INT offset = 0;
2307 enum machine_mode mode, tmode;
2308 enum insn_code icode;
2309 int reverse;
2310 rtx cst;
2312 if (len == 0)
2313 return 1;
2315 if (! (memsetp
2316 ? SET_BY_PIECES_P (len, align)
2317 : STORE_BY_PIECES_P (len, align)))
2318 return 0;
2320 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2321 if (align >= GET_MODE_ALIGNMENT (tmode))
2322 align = GET_MODE_ALIGNMENT (tmode);
2323 else
2325 enum machine_mode xmode;
2327 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2328 tmode != VOIDmode;
2329 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2330 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2331 || SLOW_UNALIGNED_ACCESS (tmode, align))
2332 break;
2334 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2337 /* We would first store what we can in the largest integer mode, then go to
2338 successively smaller modes. */
2340 for (reverse = 0;
2341 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2342 reverse++)
2344 l = len;
2345 mode = VOIDmode;
2346 max_size = STORE_MAX_PIECES + 1;
2347 while (max_size > 1)
2349 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2350 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2351 if (GET_MODE_SIZE (tmode) < max_size)
2352 mode = tmode;
2354 if (mode == VOIDmode)
2355 break;
2357 icode = optab_handler (mov_optab, mode)->insn_code;
2358 if (icode != CODE_FOR_nothing
2359 && align >= GET_MODE_ALIGNMENT (mode))
2361 unsigned int size = GET_MODE_SIZE (mode);
2363 while (l >= size)
2365 if (reverse)
2366 offset -= size;
2368 cst = (*constfun) (constfundata, offset, mode);
2369 if (!LEGITIMATE_CONSTANT_P (cst))
2370 return 0;
2372 if (!reverse)
2373 offset += size;
2375 l -= size;
2379 max_size = GET_MODE_SIZE (mode);
2382 /* The code above should have handled everything. */
2383 gcc_assert (!l);
2386 return 1;
2389 /* Generate several move instructions to store LEN bytes generated by
2390 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2391 pointer which will be passed as argument in every CONSTFUN call.
2392 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2393 a memset operation and false if it's a copy of a constant string.
2394 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2395 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2396 stpcpy. */
2399 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2400 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2401 void *constfundata, unsigned int align, bool memsetp, int endp)
2403 enum machine_mode to_addr_mode
2404 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2405 struct store_by_pieces_d data;
2407 if (len == 0)
2409 gcc_assert (endp != 2);
2410 return to;
2413 gcc_assert (memsetp
2414 ? SET_BY_PIECES_P (len, align)
2415 : STORE_BY_PIECES_P (len, align));
2416 data.constfun = constfun;
2417 data.constfundata = constfundata;
2418 data.len = len;
2419 data.to = to;
2420 store_by_pieces_1 (&data, align);
2421 if (endp)
2423 rtx to1;
2425 gcc_assert (!data.reverse);
2426 if (data.autinc_to)
2428 if (endp == 2)
2430 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2431 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2432 else
2433 data.to_addr = copy_to_mode_reg (to_addr_mode,
2434 plus_constant (data.to_addr,
2435 -1));
2437 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2438 data.offset);
2440 else
2442 if (endp == 2)
2443 --data.offset;
2444 to1 = adjust_address (data.to, QImode, data.offset);
2446 return to1;
2448 else
2449 return data.to;
2452 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2453 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2455 static void
2456 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2458 struct store_by_pieces_d data;
2460 if (len == 0)
2461 return;
2463 data.constfun = clear_by_pieces_1;
2464 data.constfundata = NULL;
2465 data.len = len;
2466 data.to = to;
2467 store_by_pieces_1 (&data, align);
2470 /* Callback routine for clear_by_pieces.
2471 Return const0_rtx unconditionally. */
2473 static rtx
2474 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2475 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2476 enum machine_mode mode ATTRIBUTE_UNUSED)
2478 return const0_rtx;
2481 /* Subroutine of clear_by_pieces and store_by_pieces.
2482 Generate several move instructions to store LEN bytes of block TO. (A MEM
2483 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2485 static void
2486 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2487 unsigned int align ATTRIBUTE_UNUSED)
2489 enum machine_mode to_addr_mode
2490 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2491 rtx to_addr = XEXP (data->to, 0);
2492 unsigned int max_size = STORE_MAX_PIECES + 1;
2493 enum machine_mode mode = VOIDmode, tmode;
2494 enum insn_code icode;
2496 data->offset = 0;
2497 data->to_addr = to_addr;
2498 data->autinc_to
2499 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2500 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2502 data->explicit_inc_to = 0;
2503 data->reverse
2504 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2505 if (data->reverse)
2506 data->offset = data->len;
2508 /* If storing requires more than two move insns,
2509 copy addresses to registers (to make displacements shorter)
2510 and use post-increment if available. */
2511 if (!data->autinc_to
2512 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2514 /* Determine the main mode we'll be using. */
2515 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2516 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2517 if (GET_MODE_SIZE (tmode) < max_size)
2518 mode = tmode;
2520 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2522 data->to_addr = copy_to_mode_reg (to_addr_mode,
2523 plus_constant (to_addr, data->len));
2524 data->autinc_to = 1;
2525 data->explicit_inc_to = -1;
2528 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2529 && ! data->autinc_to)
2531 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2532 data->autinc_to = 1;
2533 data->explicit_inc_to = 1;
2536 if ( !data->autinc_to && CONSTANT_P (to_addr))
2537 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2540 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2541 if (align >= GET_MODE_ALIGNMENT (tmode))
2542 align = GET_MODE_ALIGNMENT (tmode);
2543 else
2545 enum machine_mode xmode;
2547 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2548 tmode != VOIDmode;
2549 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2550 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2551 || SLOW_UNALIGNED_ACCESS (tmode, align))
2552 break;
2554 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2557 /* First store what we can in the largest integer mode, then go to
2558 successively smaller modes. */
2560 while (max_size > 1)
2562 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2563 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2564 if (GET_MODE_SIZE (tmode) < max_size)
2565 mode = tmode;
2567 if (mode == VOIDmode)
2568 break;
2570 icode = optab_handler (mov_optab, mode)->insn_code;
2571 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2572 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2574 max_size = GET_MODE_SIZE (mode);
2577 /* The code above should have handled everything. */
2578 gcc_assert (!data->len);
2581 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2582 with move instructions for mode MODE. GENFUN is the gen_... function
2583 to make a move insn for that mode. DATA has all the other info. */
2585 static void
2586 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2587 struct store_by_pieces_d *data)
2589 unsigned int size = GET_MODE_SIZE (mode);
2590 rtx to1, cst;
2592 while (data->len >= size)
2594 if (data->reverse)
2595 data->offset -= size;
2597 if (data->autinc_to)
2598 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2599 data->offset);
2600 else
2601 to1 = adjust_address (data->to, mode, data->offset);
2603 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2604 emit_insn (gen_add2_insn (data->to_addr,
2605 GEN_INT (-(HOST_WIDE_INT) size)));
2607 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2608 emit_insn ((*genfun) (to1, cst));
2610 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2611 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2613 if (! data->reverse)
2614 data->offset += size;
2616 data->len -= size;
2620 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2621 its length in bytes. */
2624 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2625 unsigned int expected_align, HOST_WIDE_INT expected_size)
2627 enum machine_mode mode = GET_MODE (object);
2628 unsigned int align;
2630 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2632 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2633 just move a zero. Otherwise, do this a piece at a time. */
2634 if (mode != BLKmode
2635 && CONST_INT_P (size)
2636 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2638 rtx zero = CONST0_RTX (mode);
2639 if (zero != NULL)
2641 emit_move_insn (object, zero);
2642 return NULL;
2645 if (COMPLEX_MODE_P (mode))
2647 zero = CONST0_RTX (GET_MODE_INNER (mode));
2648 if (zero != NULL)
2650 write_complex_part (object, zero, 0);
2651 write_complex_part (object, zero, 1);
2652 return NULL;
2657 if (size == const0_rtx)
2658 return NULL;
2660 align = MEM_ALIGN (object);
2662 if (CONST_INT_P (size)
2663 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2664 clear_by_pieces (object, INTVAL (size), align);
2665 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2666 expected_align, expected_size))
2668 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2669 return set_storage_via_libcall (object, size, const0_rtx,
2670 method == BLOCK_OP_TAILCALL);
2671 else
2672 gcc_unreachable ();
2674 return NULL;
2678 clear_storage (rtx object, rtx size, enum block_op_methods method)
2680 return clear_storage_hints (object, size, method, 0, -1);
2684 /* A subroutine of clear_storage. Expand a call to memset.
2685 Return the return value of memset, 0 otherwise. */
2688 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2690 tree call_expr, fn, object_tree, size_tree, val_tree;
2691 enum machine_mode size_mode;
2692 rtx retval;
2694 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2695 place those into new pseudos into a VAR_DECL and use them later. */
2697 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2699 size_mode = TYPE_MODE (sizetype);
2700 size = convert_to_mode (size_mode, size, 1);
2701 size = copy_to_mode_reg (size_mode, size);
2703 /* It is incorrect to use the libcall calling conventions to call
2704 memset in this context. This could be a user call to memset and
2705 the user may wish to examine the return value from memset. For
2706 targets where libcalls and normal calls have different conventions
2707 for returning pointers, we could end up generating incorrect code. */
2709 object_tree = make_tree (ptr_type_node, object);
2710 if (!CONST_INT_P (val))
2711 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2712 size_tree = make_tree (sizetype, size);
2713 val_tree = make_tree (integer_type_node, val);
2715 fn = clear_storage_libcall_fn (true);
2716 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2717 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2719 retval = expand_normal (call_expr);
2721 return retval;
2724 /* A subroutine of set_storage_via_libcall. Create the tree node
2725 for the function we use for block clears. The first time FOR_CALL
2726 is true, we call assemble_external. */
2728 tree block_clear_fn;
2730 void
2731 init_block_clear_fn (const char *asmspec)
2733 if (!block_clear_fn)
2735 tree fn, args;
2737 fn = get_identifier ("memset");
2738 args = build_function_type_list (ptr_type_node, ptr_type_node,
2739 integer_type_node, sizetype,
2740 NULL_TREE);
2742 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2743 DECL_EXTERNAL (fn) = 1;
2744 TREE_PUBLIC (fn) = 1;
2745 DECL_ARTIFICIAL (fn) = 1;
2746 TREE_NOTHROW (fn) = 1;
2747 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2748 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2750 block_clear_fn = fn;
2753 if (asmspec)
2754 set_user_assembler_name (block_clear_fn, asmspec);
2757 static tree
2758 clear_storage_libcall_fn (int for_call)
2760 static bool emitted_extern;
2762 if (!block_clear_fn)
2763 init_block_clear_fn (NULL);
2765 if (for_call && !emitted_extern)
2767 emitted_extern = true;
2768 make_decl_rtl (block_clear_fn);
2769 assemble_external (block_clear_fn);
2772 return block_clear_fn;
2775 /* Expand a setmem pattern; return true if successful. */
2777 bool
2778 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2779 unsigned int expected_align, HOST_WIDE_INT expected_size)
2781 /* Try the most limited insn first, because there's no point
2782 including more than one in the machine description unless
2783 the more limited one has some advantage. */
2785 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2786 enum machine_mode mode;
2788 if (expected_align < align)
2789 expected_align = align;
2791 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2792 mode = GET_MODE_WIDER_MODE (mode))
2794 enum insn_code code = setmem_optab[(int) mode];
2795 insn_operand_predicate_fn pred;
2797 if (code != CODE_FOR_nothing
2798 /* We don't need MODE to be narrower than
2799 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2800 the mode mask, as it is returned by the macro, it will
2801 definitely be less than the actual mode mask. */
2802 && ((CONST_INT_P (size)
2803 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2804 <= (GET_MODE_MASK (mode) >> 1)))
2805 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2806 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2807 || (*pred) (object, BLKmode))
2808 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2809 || (*pred) (opalign, VOIDmode)))
2811 rtx opsize, opchar;
2812 enum machine_mode char_mode;
2813 rtx last = get_last_insn ();
2814 rtx pat;
2816 opsize = convert_to_mode (mode, size, 1);
2817 pred = insn_data[(int) code].operand[1].predicate;
2818 if (pred != 0 && ! (*pred) (opsize, mode))
2819 opsize = copy_to_mode_reg (mode, opsize);
2821 opchar = val;
2822 char_mode = insn_data[(int) code].operand[2].mode;
2823 if (char_mode != VOIDmode)
2825 opchar = convert_to_mode (char_mode, opchar, 1);
2826 pred = insn_data[(int) code].operand[2].predicate;
2827 if (pred != 0 && ! (*pred) (opchar, char_mode))
2828 opchar = copy_to_mode_reg (char_mode, opchar);
2831 if (insn_data[(int) code].n_operands == 4)
2832 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2833 else
2834 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2835 GEN_INT (expected_align
2836 / BITS_PER_UNIT),
2837 GEN_INT (expected_size));
2838 if (pat)
2840 emit_insn (pat);
2841 return true;
2843 else
2844 delete_insns_since (last);
2848 return false;
2852 /* Write to one of the components of the complex value CPLX. Write VAL to
2853 the real part if IMAG_P is false, and the imaginary part if its true. */
2855 static void
2856 write_complex_part (rtx cplx, rtx val, bool imag_p)
2858 enum machine_mode cmode;
2859 enum machine_mode imode;
2860 unsigned ibitsize;
2862 if (GET_CODE (cplx) == CONCAT)
2864 emit_move_insn (XEXP (cplx, imag_p), val);
2865 return;
2868 cmode = GET_MODE (cplx);
2869 imode = GET_MODE_INNER (cmode);
2870 ibitsize = GET_MODE_BITSIZE (imode);
2872 /* For MEMs simplify_gen_subreg may generate an invalid new address
2873 because, e.g., the original address is considered mode-dependent
2874 by the target, which restricts simplify_subreg from invoking
2875 adjust_address_nv. Instead of preparing fallback support for an
2876 invalid address, we call adjust_address_nv directly. */
2877 if (MEM_P (cplx))
2879 emit_move_insn (adjust_address_nv (cplx, imode,
2880 imag_p ? GET_MODE_SIZE (imode) : 0),
2881 val);
2882 return;
2885 /* If the sub-object is at least word sized, then we know that subregging
2886 will work. This special case is important, since store_bit_field
2887 wants to operate on integer modes, and there's rarely an OImode to
2888 correspond to TCmode. */
2889 if (ibitsize >= BITS_PER_WORD
2890 /* For hard regs we have exact predicates. Assume we can split
2891 the original object if it spans an even number of hard regs.
2892 This special case is important for SCmode on 64-bit platforms
2893 where the natural size of floating-point regs is 32-bit. */
2894 || (REG_P (cplx)
2895 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2896 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2898 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2899 imag_p ? GET_MODE_SIZE (imode) : 0);
2900 if (part)
2902 emit_move_insn (part, val);
2903 return;
2905 else
2906 /* simplify_gen_subreg may fail for sub-word MEMs. */
2907 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2910 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2913 /* Extract one of the components of the complex value CPLX. Extract the
2914 real part if IMAG_P is false, and the imaginary part if it's true. */
2916 static rtx
2917 read_complex_part (rtx cplx, bool imag_p)
2919 enum machine_mode cmode, imode;
2920 unsigned ibitsize;
2922 if (GET_CODE (cplx) == CONCAT)
2923 return XEXP (cplx, imag_p);
2925 cmode = GET_MODE (cplx);
2926 imode = GET_MODE_INNER (cmode);
2927 ibitsize = GET_MODE_BITSIZE (imode);
2929 /* Special case reads from complex constants that got spilled to memory. */
2930 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2932 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2933 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2935 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2936 if (CONSTANT_CLASS_P (part))
2937 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2941 /* For MEMs simplify_gen_subreg may generate an invalid new address
2942 because, e.g., the original address is considered mode-dependent
2943 by the target, which restricts simplify_subreg from invoking
2944 adjust_address_nv. Instead of preparing fallback support for an
2945 invalid address, we call adjust_address_nv directly. */
2946 if (MEM_P (cplx))
2947 return adjust_address_nv (cplx, imode,
2948 imag_p ? GET_MODE_SIZE (imode) : 0);
2950 /* If the sub-object is at least word sized, then we know that subregging
2951 will work. This special case is important, since extract_bit_field
2952 wants to operate on integer modes, and there's rarely an OImode to
2953 correspond to TCmode. */
2954 if (ibitsize >= BITS_PER_WORD
2955 /* For hard regs we have exact predicates. Assume we can split
2956 the original object if it spans an even number of hard regs.
2957 This special case is important for SCmode on 64-bit platforms
2958 where the natural size of floating-point regs is 32-bit. */
2959 || (REG_P (cplx)
2960 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2961 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2963 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2964 imag_p ? GET_MODE_SIZE (imode) : 0);
2965 if (ret)
2966 return ret;
2967 else
2968 /* simplify_gen_subreg may fail for sub-word MEMs. */
2969 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2972 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2973 true, NULL_RTX, imode, imode);
2976 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2977 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2978 represented in NEW_MODE. If FORCE is true, this will never happen, as
2979 we'll force-create a SUBREG if needed. */
2981 static rtx
2982 emit_move_change_mode (enum machine_mode new_mode,
2983 enum machine_mode old_mode, rtx x, bool force)
2985 rtx ret;
2987 if (push_operand (x, GET_MODE (x)))
2989 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2990 MEM_COPY_ATTRIBUTES (ret, x);
2992 else if (MEM_P (x))
2994 /* We don't have to worry about changing the address since the
2995 size in bytes is supposed to be the same. */
2996 if (reload_in_progress)
2998 /* Copy the MEM to change the mode and move any
2999 substitutions from the old MEM to the new one. */
3000 ret = adjust_address_nv (x, new_mode, 0);
3001 copy_replacements (x, ret);
3003 else
3004 ret = adjust_address (x, new_mode, 0);
3006 else
3008 /* Note that we do want simplify_subreg's behavior of validating
3009 that the new mode is ok for a hard register. If we were to use
3010 simplify_gen_subreg, we would create the subreg, but would
3011 probably run into the target not being able to implement it. */
3012 /* Except, of course, when FORCE is true, when this is exactly what
3013 we want. Which is needed for CCmodes on some targets. */
3014 if (force)
3015 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3016 else
3017 ret = simplify_subreg (new_mode, x, old_mode, 0);
3020 return ret;
3023 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3024 an integer mode of the same size as MODE. Returns the instruction
3025 emitted, or NULL if such a move could not be generated. */
3027 static rtx
3028 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3030 enum machine_mode imode;
3031 enum insn_code code;
3033 /* There must exist a mode of the exact size we require. */
3034 imode = int_mode_for_mode (mode);
3035 if (imode == BLKmode)
3036 return NULL_RTX;
3038 /* The target must support moves in this mode. */
3039 code = optab_handler (mov_optab, imode)->insn_code;
3040 if (code == CODE_FOR_nothing)
3041 return NULL_RTX;
3043 x = emit_move_change_mode (imode, mode, x, force);
3044 if (x == NULL_RTX)
3045 return NULL_RTX;
3046 y = emit_move_change_mode (imode, mode, y, force);
3047 if (y == NULL_RTX)
3048 return NULL_RTX;
3049 return emit_insn (GEN_FCN (code) (x, y));
3052 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3053 Return an equivalent MEM that does not use an auto-increment. */
3055 static rtx
3056 emit_move_resolve_push (enum machine_mode mode, rtx x)
3058 enum rtx_code code = GET_CODE (XEXP (x, 0));
3059 HOST_WIDE_INT adjust;
3060 rtx temp;
3062 adjust = GET_MODE_SIZE (mode);
3063 #ifdef PUSH_ROUNDING
3064 adjust = PUSH_ROUNDING (adjust);
3065 #endif
3066 if (code == PRE_DEC || code == POST_DEC)
3067 adjust = -adjust;
3068 else if (code == PRE_MODIFY || code == POST_MODIFY)
3070 rtx expr = XEXP (XEXP (x, 0), 1);
3071 HOST_WIDE_INT val;
3073 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3074 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3075 val = INTVAL (XEXP (expr, 1));
3076 if (GET_CODE (expr) == MINUS)
3077 val = -val;
3078 gcc_assert (adjust == val || adjust == -val);
3079 adjust = val;
3082 /* Do not use anti_adjust_stack, since we don't want to update
3083 stack_pointer_delta. */
3084 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3085 GEN_INT (adjust), stack_pointer_rtx,
3086 0, OPTAB_LIB_WIDEN);
3087 if (temp != stack_pointer_rtx)
3088 emit_move_insn (stack_pointer_rtx, temp);
3090 switch (code)
3092 case PRE_INC:
3093 case PRE_DEC:
3094 case PRE_MODIFY:
3095 temp = stack_pointer_rtx;
3096 break;
3097 case POST_INC:
3098 case POST_DEC:
3099 case POST_MODIFY:
3100 temp = plus_constant (stack_pointer_rtx, -adjust);
3101 break;
3102 default:
3103 gcc_unreachable ();
3106 return replace_equiv_address (x, temp);
3109 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3110 X is known to satisfy push_operand, and MODE is known to be complex.
3111 Returns the last instruction emitted. */
3114 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3116 enum machine_mode submode = GET_MODE_INNER (mode);
3117 bool imag_first;
3119 #ifdef PUSH_ROUNDING
3120 unsigned int submodesize = GET_MODE_SIZE (submode);
3122 /* In case we output to the stack, but the size is smaller than the
3123 machine can push exactly, we need to use move instructions. */
3124 if (PUSH_ROUNDING (submodesize) != submodesize)
3126 x = emit_move_resolve_push (mode, x);
3127 return emit_move_insn (x, y);
3129 #endif
3131 /* Note that the real part always precedes the imag part in memory
3132 regardless of machine's endianness. */
3133 switch (GET_CODE (XEXP (x, 0)))
3135 case PRE_DEC:
3136 case POST_DEC:
3137 imag_first = true;
3138 break;
3139 case PRE_INC:
3140 case POST_INC:
3141 imag_first = false;
3142 break;
3143 default:
3144 gcc_unreachable ();
3147 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3148 read_complex_part (y, imag_first));
3149 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3150 read_complex_part (y, !imag_first));
3153 /* A subroutine of emit_move_complex. Perform the move from Y to X
3154 via two moves of the parts. Returns the last instruction emitted. */
3157 emit_move_complex_parts (rtx x, rtx y)
3159 /* Show the output dies here. This is necessary for SUBREGs
3160 of pseudos since we cannot track their lifetimes correctly;
3161 hard regs shouldn't appear here except as return values. */
3162 if (!reload_completed && !reload_in_progress
3163 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3164 emit_clobber (x);
3166 write_complex_part (x, read_complex_part (y, false), false);
3167 write_complex_part (x, read_complex_part (y, true), true);
3169 return get_last_insn ();
3172 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3173 MODE is known to be complex. Returns the last instruction emitted. */
3175 static rtx
3176 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3178 bool try_int;
3180 /* Need to take special care for pushes, to maintain proper ordering
3181 of the data, and possibly extra padding. */
3182 if (push_operand (x, mode))
3183 return emit_move_complex_push (mode, x, y);
3185 /* See if we can coerce the target into moving both values at once. */
3187 /* Move floating point as parts. */
3188 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3189 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3190 try_int = false;
3191 /* Not possible if the values are inherently not adjacent. */
3192 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3193 try_int = false;
3194 /* Is possible if both are registers (or subregs of registers). */
3195 else if (register_operand (x, mode) && register_operand (y, mode))
3196 try_int = true;
3197 /* If one of the operands is a memory, and alignment constraints
3198 are friendly enough, we may be able to do combined memory operations.
3199 We do not attempt this if Y is a constant because that combination is
3200 usually better with the by-parts thing below. */
3201 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3202 && (!STRICT_ALIGNMENT
3203 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3204 try_int = true;
3205 else
3206 try_int = false;
3208 if (try_int)
3210 rtx ret;
3212 /* For memory to memory moves, optimal behavior can be had with the
3213 existing block move logic. */
3214 if (MEM_P (x) && MEM_P (y))
3216 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3217 BLOCK_OP_NO_LIBCALL);
3218 return get_last_insn ();
3221 ret = emit_move_via_integer (mode, x, y, true);
3222 if (ret)
3223 return ret;
3226 return emit_move_complex_parts (x, y);
3229 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3230 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3232 static rtx
3233 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3235 rtx ret;
3237 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3238 if (mode != CCmode)
3240 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3241 if (code != CODE_FOR_nothing)
3243 x = emit_move_change_mode (CCmode, mode, x, true);
3244 y = emit_move_change_mode (CCmode, mode, y, true);
3245 return emit_insn (GEN_FCN (code) (x, y));
3249 /* Otherwise, find the MODE_INT mode of the same width. */
3250 ret = emit_move_via_integer (mode, x, y, false);
3251 gcc_assert (ret != NULL);
3252 return ret;
3255 /* Return true if word I of OP lies entirely in the
3256 undefined bits of a paradoxical subreg. */
3258 static bool
3259 undefined_operand_subword_p (const_rtx op, int i)
3261 enum machine_mode innermode, innermostmode;
3262 int offset;
3263 if (GET_CODE (op) != SUBREG)
3264 return false;
3265 innermode = GET_MODE (op);
3266 innermostmode = GET_MODE (SUBREG_REG (op));
3267 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3268 /* The SUBREG_BYTE represents offset, as if the value were stored in
3269 memory, except for a paradoxical subreg where we define
3270 SUBREG_BYTE to be 0; undo this exception as in
3271 simplify_subreg. */
3272 if (SUBREG_BYTE (op) == 0
3273 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3275 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3276 if (WORDS_BIG_ENDIAN)
3277 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3278 if (BYTES_BIG_ENDIAN)
3279 offset += difference % UNITS_PER_WORD;
3281 if (offset >= GET_MODE_SIZE (innermostmode)
3282 || offset <= -GET_MODE_SIZE (word_mode))
3283 return true;
3284 return false;
3287 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3288 MODE is any multi-word or full-word mode that lacks a move_insn
3289 pattern. Note that you will get better code if you define such
3290 patterns, even if they must turn into multiple assembler instructions. */
3292 static rtx
3293 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3295 rtx last_insn = 0;
3296 rtx seq, inner;
3297 bool need_clobber;
3298 int i;
3300 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3302 /* If X is a push on the stack, do the push now and replace
3303 X with a reference to the stack pointer. */
3304 if (push_operand (x, mode))
3305 x = emit_move_resolve_push (mode, x);
3307 /* If we are in reload, see if either operand is a MEM whose address
3308 is scheduled for replacement. */
3309 if (reload_in_progress && MEM_P (x)
3310 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3311 x = replace_equiv_address_nv (x, inner);
3312 if (reload_in_progress && MEM_P (y)
3313 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3314 y = replace_equiv_address_nv (y, inner);
3316 start_sequence ();
3318 need_clobber = false;
3319 for (i = 0;
3320 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3321 i++)
3323 rtx xpart = operand_subword (x, i, 1, mode);
3324 rtx ypart;
3326 /* Do not generate code for a move if it would come entirely
3327 from the undefined bits of a paradoxical subreg. */
3328 if (undefined_operand_subword_p (y, i))
3329 continue;
3331 ypart = operand_subword (y, i, 1, mode);
3333 /* If we can't get a part of Y, put Y into memory if it is a
3334 constant. Otherwise, force it into a register. Then we must
3335 be able to get a part of Y. */
3336 if (ypart == 0 && CONSTANT_P (y))
3338 y = use_anchored_address (force_const_mem (mode, y));
3339 ypart = operand_subword (y, i, 1, mode);
3341 else if (ypart == 0)
3342 ypart = operand_subword_force (y, i, mode);
3344 gcc_assert (xpart && ypart);
3346 need_clobber |= (GET_CODE (xpart) == SUBREG);
3348 last_insn = emit_move_insn (xpart, ypart);
3351 seq = get_insns ();
3352 end_sequence ();
3354 /* Show the output dies here. This is necessary for SUBREGs
3355 of pseudos since we cannot track their lifetimes correctly;
3356 hard regs shouldn't appear here except as return values.
3357 We never want to emit such a clobber after reload. */
3358 if (x != y
3359 && ! (reload_in_progress || reload_completed)
3360 && need_clobber != 0)
3361 emit_clobber (x);
3363 emit_insn (seq);
3365 return last_insn;
3368 /* Low level part of emit_move_insn.
3369 Called just like emit_move_insn, but assumes X and Y
3370 are basically valid. */
3373 emit_move_insn_1 (rtx x, rtx y)
3375 enum machine_mode mode = GET_MODE (x);
3376 enum insn_code code;
3378 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3380 code = optab_handler (mov_optab, mode)->insn_code;
3381 if (code != CODE_FOR_nothing)
3382 return emit_insn (GEN_FCN (code) (x, y));
3384 /* Expand complex moves by moving real part and imag part. */
3385 if (COMPLEX_MODE_P (mode))
3386 return emit_move_complex (mode, x, y);
3388 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3389 || ALL_FIXED_POINT_MODE_P (mode))
3391 rtx result = emit_move_via_integer (mode, x, y, true);
3393 /* If we can't find an integer mode, use multi words. */
3394 if (result)
3395 return result;
3396 else
3397 return emit_move_multi_word (mode, x, y);
3400 if (GET_MODE_CLASS (mode) == MODE_CC)
3401 return emit_move_ccmode (mode, x, y);
3403 /* Try using a move pattern for the corresponding integer mode. This is
3404 only safe when simplify_subreg can convert MODE constants into integer
3405 constants. At present, it can only do this reliably if the value
3406 fits within a HOST_WIDE_INT. */
3407 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3409 rtx ret = emit_move_via_integer (mode, x, y, false);
3410 if (ret)
3411 return ret;
3414 return emit_move_multi_word (mode, x, y);
3417 /* Generate code to copy Y into X.
3418 Both Y and X must have the same mode, except that
3419 Y can be a constant with VOIDmode.
3420 This mode cannot be BLKmode; use emit_block_move for that.
3422 Return the last instruction emitted. */
3425 emit_move_insn (rtx x, rtx y)
3427 enum machine_mode mode = GET_MODE (x);
3428 rtx y_cst = NULL_RTX;
3429 rtx last_insn, set;
3431 gcc_assert (mode != BLKmode
3432 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3434 if (CONSTANT_P (y))
3436 if (optimize
3437 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3438 && (last_insn = compress_float_constant (x, y)))
3439 return last_insn;
3441 y_cst = y;
3443 if (!LEGITIMATE_CONSTANT_P (y))
3445 y = force_const_mem (mode, y);
3447 /* If the target's cannot_force_const_mem prevented the spill,
3448 assume that the target's move expanders will also take care
3449 of the non-legitimate constant. */
3450 if (!y)
3451 y = y_cst;
3452 else
3453 y = use_anchored_address (y);
3457 /* If X or Y are memory references, verify that their addresses are valid
3458 for the machine. */
3459 if (MEM_P (x)
3460 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3461 MEM_ADDR_SPACE (x))
3462 && ! push_operand (x, GET_MODE (x))))
3463 x = validize_mem (x);
3465 if (MEM_P (y)
3466 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3467 MEM_ADDR_SPACE (y)))
3468 y = validize_mem (y);
3470 gcc_assert (mode != BLKmode);
3472 last_insn = emit_move_insn_1 (x, y);
3474 if (y_cst && REG_P (x)
3475 && (set = single_set (last_insn)) != NULL_RTX
3476 && SET_DEST (set) == x
3477 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3478 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3480 return last_insn;
3483 /* If Y is representable exactly in a narrower mode, and the target can
3484 perform the extension directly from constant or memory, then emit the
3485 move as an extension. */
3487 static rtx
3488 compress_float_constant (rtx x, rtx y)
3490 enum machine_mode dstmode = GET_MODE (x);
3491 enum machine_mode orig_srcmode = GET_MODE (y);
3492 enum machine_mode srcmode;
3493 REAL_VALUE_TYPE r;
3494 int oldcost, newcost;
3495 bool speed = optimize_insn_for_speed_p ();
3497 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3499 if (LEGITIMATE_CONSTANT_P (y))
3500 oldcost = rtx_cost (y, SET, speed);
3501 else
3502 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3504 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3505 srcmode != orig_srcmode;
3506 srcmode = GET_MODE_WIDER_MODE (srcmode))
3508 enum insn_code ic;
3509 rtx trunc_y, last_insn;
3511 /* Skip if the target can't extend this way. */
3512 ic = can_extend_p (dstmode, srcmode, 0);
3513 if (ic == CODE_FOR_nothing)
3514 continue;
3516 /* Skip if the narrowed value isn't exact. */
3517 if (! exact_real_truncate (srcmode, &r))
3518 continue;
3520 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3522 if (LEGITIMATE_CONSTANT_P (trunc_y))
3524 /* Skip if the target needs extra instructions to perform
3525 the extension. */
3526 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3527 continue;
3528 /* This is valid, but may not be cheaper than the original. */
3529 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3530 if (oldcost < newcost)
3531 continue;
3533 else if (float_extend_from_mem[dstmode][srcmode])
3535 trunc_y = force_const_mem (srcmode, trunc_y);
3536 /* This is valid, but may not be cheaper than the original. */
3537 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3538 if (oldcost < newcost)
3539 continue;
3540 trunc_y = validize_mem (trunc_y);
3542 else
3543 continue;
3545 /* For CSE's benefit, force the compressed constant pool entry
3546 into a new pseudo. This constant may be used in different modes,
3547 and if not, combine will put things back together for us. */
3548 trunc_y = force_reg (srcmode, trunc_y);
3549 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3550 last_insn = get_last_insn ();
3552 if (REG_P (x))
3553 set_unique_reg_note (last_insn, REG_EQUAL, y);
3555 return last_insn;
3558 return NULL_RTX;
3561 /* Pushing data onto the stack. */
3563 /* Push a block of length SIZE (perhaps variable)
3564 and return an rtx to address the beginning of the block.
3565 The value may be virtual_outgoing_args_rtx.
3567 EXTRA is the number of bytes of padding to push in addition to SIZE.
3568 BELOW nonzero means this padding comes at low addresses;
3569 otherwise, the padding comes at high addresses. */
3572 push_block (rtx size, int extra, int below)
3574 rtx temp;
3576 size = convert_modes (Pmode, ptr_mode, size, 1);
3577 if (CONSTANT_P (size))
3578 anti_adjust_stack (plus_constant (size, extra));
3579 else if (REG_P (size) && extra == 0)
3580 anti_adjust_stack (size);
3581 else
3583 temp = copy_to_mode_reg (Pmode, size);
3584 if (extra != 0)
3585 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3586 temp, 0, OPTAB_LIB_WIDEN);
3587 anti_adjust_stack (temp);
3590 #ifndef STACK_GROWS_DOWNWARD
3591 if (0)
3592 #else
3593 if (1)
3594 #endif
3596 temp = virtual_outgoing_args_rtx;
3597 if (extra != 0 && below)
3598 temp = plus_constant (temp, extra);
3600 else
3602 if (CONST_INT_P (size))
3603 temp = plus_constant (virtual_outgoing_args_rtx,
3604 -INTVAL (size) - (below ? 0 : extra));
3605 else if (extra != 0 && !below)
3606 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3607 negate_rtx (Pmode, plus_constant (size, extra)));
3608 else
3609 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3610 negate_rtx (Pmode, size));
3613 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3616 #ifdef PUSH_ROUNDING
3618 /* Emit single push insn. */
3620 static void
3621 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3623 rtx dest_addr;
3624 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3625 rtx dest;
3626 enum insn_code icode;
3627 insn_operand_predicate_fn pred;
3629 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3630 /* If there is push pattern, use it. Otherwise try old way of throwing
3631 MEM representing push operation to move expander. */
3632 icode = optab_handler (push_optab, mode)->insn_code;
3633 if (icode != CODE_FOR_nothing)
3635 if (((pred = insn_data[(int) icode].operand[0].predicate)
3636 && !((*pred) (x, mode))))
3637 x = force_reg (mode, x);
3638 emit_insn (GEN_FCN (icode) (x));
3639 return;
3641 if (GET_MODE_SIZE (mode) == rounded_size)
3642 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3643 /* If we are to pad downward, adjust the stack pointer first and
3644 then store X into the stack location using an offset. This is
3645 because emit_move_insn does not know how to pad; it does not have
3646 access to type. */
3647 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3649 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3650 HOST_WIDE_INT offset;
3652 emit_move_insn (stack_pointer_rtx,
3653 expand_binop (Pmode,
3654 #ifdef STACK_GROWS_DOWNWARD
3655 sub_optab,
3656 #else
3657 add_optab,
3658 #endif
3659 stack_pointer_rtx,
3660 GEN_INT (rounded_size),
3661 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3663 offset = (HOST_WIDE_INT) padding_size;
3664 #ifdef STACK_GROWS_DOWNWARD
3665 if (STACK_PUSH_CODE == POST_DEC)
3666 /* We have already decremented the stack pointer, so get the
3667 previous value. */
3668 offset += (HOST_WIDE_INT) rounded_size;
3669 #else
3670 if (STACK_PUSH_CODE == POST_INC)
3671 /* We have already incremented the stack pointer, so get the
3672 previous value. */
3673 offset -= (HOST_WIDE_INT) rounded_size;
3674 #endif
3675 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3677 else
3679 #ifdef STACK_GROWS_DOWNWARD
3680 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3681 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3682 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3683 #else
3684 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3685 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3686 GEN_INT (rounded_size));
3687 #endif
3688 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3691 dest = gen_rtx_MEM (mode, dest_addr);
3693 if (type != 0)
3695 set_mem_attributes (dest, type, 1);
3697 if (flag_optimize_sibling_calls)
3698 /* Function incoming arguments may overlap with sibling call
3699 outgoing arguments and we cannot allow reordering of reads
3700 from function arguments with stores to outgoing arguments
3701 of sibling calls. */
3702 set_mem_alias_set (dest, 0);
3704 emit_move_insn (dest, x);
3706 #endif
3708 /* Generate code to push X onto the stack, assuming it has mode MODE and
3709 type TYPE.
3710 MODE is redundant except when X is a CONST_INT (since they don't
3711 carry mode info).
3712 SIZE is an rtx for the size of data to be copied (in bytes),
3713 needed only if X is BLKmode.
3715 ALIGN (in bits) is maximum alignment we can assume.
3717 If PARTIAL and REG are both nonzero, then copy that many of the first
3718 bytes of X into registers starting with REG, and push the rest of X.
3719 The amount of space pushed is decreased by PARTIAL bytes.
3720 REG must be a hard register in this case.
3721 If REG is zero but PARTIAL is not, take any all others actions for an
3722 argument partially in registers, but do not actually load any
3723 registers.
3725 EXTRA is the amount in bytes of extra space to leave next to this arg.
3726 This is ignored if an argument block has already been allocated.
3728 On a machine that lacks real push insns, ARGS_ADDR is the address of
3729 the bottom of the argument block for this call. We use indexing off there
3730 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3731 argument block has not been preallocated.
3733 ARGS_SO_FAR is the size of args previously pushed for this call.
3735 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3736 for arguments passed in registers. If nonzero, it will be the number
3737 of bytes required. */
3739 void
3740 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3741 unsigned int align, int partial, rtx reg, int extra,
3742 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3743 rtx alignment_pad)
3745 rtx xinner;
3746 enum direction stack_direction
3747 #ifdef STACK_GROWS_DOWNWARD
3748 = downward;
3749 #else
3750 = upward;
3751 #endif
3753 /* Decide where to pad the argument: `downward' for below,
3754 `upward' for above, or `none' for don't pad it.
3755 Default is below for small data on big-endian machines; else above. */
3756 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3758 /* Invert direction if stack is post-decrement.
3759 FIXME: why? */
3760 if (STACK_PUSH_CODE == POST_DEC)
3761 if (where_pad != none)
3762 where_pad = (where_pad == downward ? upward : downward);
3764 xinner = x;
3766 if (mode == BLKmode
3767 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3769 /* Copy a block into the stack, entirely or partially. */
3771 rtx temp;
3772 int used;
3773 int offset;
3774 int skip;
3776 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3777 used = partial - offset;
3779 if (mode != BLKmode)
3781 /* A value is to be stored in an insufficiently aligned
3782 stack slot; copy via a suitably aligned slot if
3783 necessary. */
3784 size = GEN_INT (GET_MODE_SIZE (mode));
3785 if (!MEM_P (xinner))
3787 temp = assign_temp (type, 0, 1, 1);
3788 emit_move_insn (temp, xinner);
3789 xinner = temp;
3793 gcc_assert (size);
3795 /* USED is now the # of bytes we need not copy to the stack
3796 because registers will take care of them. */
3798 if (partial != 0)
3799 xinner = adjust_address (xinner, BLKmode, used);
3801 /* If the partial register-part of the arg counts in its stack size,
3802 skip the part of stack space corresponding to the registers.
3803 Otherwise, start copying to the beginning of the stack space,
3804 by setting SKIP to 0. */
3805 skip = (reg_parm_stack_space == 0) ? 0 : used;
3807 #ifdef PUSH_ROUNDING
3808 /* Do it with several push insns if that doesn't take lots of insns
3809 and if there is no difficulty with push insns that skip bytes
3810 on the stack for alignment purposes. */
3811 if (args_addr == 0
3812 && PUSH_ARGS
3813 && CONST_INT_P (size)
3814 && skip == 0
3815 && MEM_ALIGN (xinner) >= align
3816 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3817 /* Here we avoid the case of a structure whose weak alignment
3818 forces many pushes of a small amount of data,
3819 and such small pushes do rounding that causes trouble. */
3820 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3821 || align >= BIGGEST_ALIGNMENT
3822 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3823 == (align / BITS_PER_UNIT)))
3824 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3826 /* Push padding now if padding above and stack grows down,
3827 or if padding below and stack grows up.
3828 But if space already allocated, this has already been done. */
3829 if (extra && args_addr == 0
3830 && where_pad != none && where_pad != stack_direction)
3831 anti_adjust_stack (GEN_INT (extra));
3833 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3835 else
3836 #endif /* PUSH_ROUNDING */
3838 rtx target;
3840 /* Otherwise make space on the stack and copy the data
3841 to the address of that space. */
3843 /* Deduct words put into registers from the size we must copy. */
3844 if (partial != 0)
3846 if (CONST_INT_P (size))
3847 size = GEN_INT (INTVAL (size) - used);
3848 else
3849 size = expand_binop (GET_MODE (size), sub_optab, size,
3850 GEN_INT (used), NULL_RTX, 0,
3851 OPTAB_LIB_WIDEN);
3854 /* Get the address of the stack space.
3855 In this case, we do not deal with EXTRA separately.
3856 A single stack adjust will do. */
3857 if (! args_addr)
3859 temp = push_block (size, extra, where_pad == downward);
3860 extra = 0;
3862 else if (CONST_INT_P (args_so_far))
3863 temp = memory_address (BLKmode,
3864 plus_constant (args_addr,
3865 skip + INTVAL (args_so_far)));
3866 else
3867 temp = memory_address (BLKmode,
3868 plus_constant (gen_rtx_PLUS (Pmode,
3869 args_addr,
3870 args_so_far),
3871 skip));
3873 if (!ACCUMULATE_OUTGOING_ARGS)
3875 /* If the source is referenced relative to the stack pointer,
3876 copy it to another register to stabilize it. We do not need
3877 to do this if we know that we won't be changing sp. */
3879 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3880 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3881 temp = copy_to_reg (temp);
3884 target = gen_rtx_MEM (BLKmode, temp);
3886 /* We do *not* set_mem_attributes here, because incoming arguments
3887 may overlap with sibling call outgoing arguments and we cannot
3888 allow reordering of reads from function arguments with stores
3889 to outgoing arguments of sibling calls. We do, however, want
3890 to record the alignment of the stack slot. */
3891 /* ALIGN may well be better aligned than TYPE, e.g. due to
3892 PARM_BOUNDARY. Assume the caller isn't lying. */
3893 set_mem_align (target, align);
3895 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3898 else if (partial > 0)
3900 /* Scalar partly in registers. */
3902 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3903 int i;
3904 int not_stack;
3905 /* # bytes of start of argument
3906 that we must make space for but need not store. */
3907 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3908 int args_offset = INTVAL (args_so_far);
3909 int skip;
3911 /* Push padding now if padding above and stack grows down,
3912 or if padding below and stack grows up.
3913 But if space already allocated, this has already been done. */
3914 if (extra && args_addr == 0
3915 && where_pad != none && where_pad != stack_direction)
3916 anti_adjust_stack (GEN_INT (extra));
3918 /* If we make space by pushing it, we might as well push
3919 the real data. Otherwise, we can leave OFFSET nonzero
3920 and leave the space uninitialized. */
3921 if (args_addr == 0)
3922 offset = 0;
3924 /* Now NOT_STACK gets the number of words that we don't need to
3925 allocate on the stack. Convert OFFSET to words too. */
3926 not_stack = (partial - offset) / UNITS_PER_WORD;
3927 offset /= UNITS_PER_WORD;
3929 /* If the partial register-part of the arg counts in its stack size,
3930 skip the part of stack space corresponding to the registers.
3931 Otherwise, start copying to the beginning of the stack space,
3932 by setting SKIP to 0. */
3933 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3935 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3936 x = validize_mem (force_const_mem (mode, x));
3938 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3939 SUBREGs of such registers are not allowed. */
3940 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3941 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3942 x = copy_to_reg (x);
3944 /* Loop over all the words allocated on the stack for this arg. */
3945 /* We can do it by words, because any scalar bigger than a word
3946 has a size a multiple of a word. */
3947 #ifndef PUSH_ARGS_REVERSED
3948 for (i = not_stack; i < size; i++)
3949 #else
3950 for (i = size - 1; i >= not_stack; i--)
3951 #endif
3952 if (i >= not_stack + offset)
3953 emit_push_insn (operand_subword_force (x, i, mode),
3954 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3955 0, args_addr,
3956 GEN_INT (args_offset + ((i - not_stack + skip)
3957 * UNITS_PER_WORD)),
3958 reg_parm_stack_space, alignment_pad);
3960 else
3962 rtx addr;
3963 rtx dest;
3965 /* Push padding now if padding above and stack grows down,
3966 or if padding below and stack grows up.
3967 But if space already allocated, this has already been done. */
3968 if (extra && args_addr == 0
3969 && where_pad != none && where_pad != stack_direction)
3970 anti_adjust_stack (GEN_INT (extra));
3972 #ifdef PUSH_ROUNDING
3973 if (args_addr == 0 && PUSH_ARGS)
3974 emit_single_push_insn (mode, x, type);
3975 else
3976 #endif
3978 if (CONST_INT_P (args_so_far))
3979 addr
3980 = memory_address (mode,
3981 plus_constant (args_addr,
3982 INTVAL (args_so_far)));
3983 else
3984 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3985 args_so_far));
3986 dest = gen_rtx_MEM (mode, addr);
3988 /* We do *not* set_mem_attributes here, because incoming arguments
3989 may overlap with sibling call outgoing arguments and we cannot
3990 allow reordering of reads from function arguments with stores
3991 to outgoing arguments of sibling calls. We do, however, want
3992 to record the alignment of the stack slot. */
3993 /* ALIGN may well be better aligned than TYPE, e.g. due to
3994 PARM_BOUNDARY. Assume the caller isn't lying. */
3995 set_mem_align (dest, align);
3997 emit_move_insn (dest, x);
4001 /* If part should go in registers, copy that part
4002 into the appropriate registers. Do this now, at the end,
4003 since mem-to-mem copies above may do function calls. */
4004 if (partial > 0 && reg != 0)
4006 /* Handle calls that pass values in multiple non-contiguous locations.
4007 The Irix 6 ABI has examples of this. */
4008 if (GET_CODE (reg) == PARALLEL)
4009 emit_group_load (reg, x, type, -1);
4010 else
4012 gcc_assert (partial % UNITS_PER_WORD == 0);
4013 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4017 if (extra && args_addr == 0 && where_pad == stack_direction)
4018 anti_adjust_stack (GEN_INT (extra));
4020 if (alignment_pad && args_addr == 0)
4021 anti_adjust_stack (alignment_pad);
4024 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4025 operations. */
4027 static rtx
4028 get_subtarget (rtx x)
4030 return (optimize
4031 || x == 0
4032 /* Only registers can be subtargets. */
4033 || !REG_P (x)
4034 /* Don't use hard regs to avoid extending their life. */
4035 || REGNO (x) < FIRST_PSEUDO_REGISTER
4036 ? 0 : x);
4039 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4040 FIELD is a bitfield. Returns true if the optimization was successful,
4041 and there's nothing else to do. */
4043 static bool
4044 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4045 unsigned HOST_WIDE_INT bitpos,
4046 enum machine_mode mode1, rtx str_rtx,
4047 tree to, tree src)
4049 enum machine_mode str_mode = GET_MODE (str_rtx);
4050 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4051 tree op0, op1;
4052 rtx value, result;
4053 optab binop;
4055 if (mode1 != VOIDmode
4056 || bitsize >= BITS_PER_WORD
4057 || str_bitsize > BITS_PER_WORD
4058 || TREE_SIDE_EFFECTS (to)
4059 || TREE_THIS_VOLATILE (to))
4060 return false;
4062 STRIP_NOPS (src);
4063 if (!BINARY_CLASS_P (src)
4064 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4065 return false;
4067 op0 = TREE_OPERAND (src, 0);
4068 op1 = TREE_OPERAND (src, 1);
4069 STRIP_NOPS (op0);
4071 if (!operand_equal_p (to, op0, 0))
4072 return false;
4074 if (MEM_P (str_rtx))
4076 unsigned HOST_WIDE_INT offset1;
4078 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4079 str_mode = word_mode;
4080 str_mode = get_best_mode (bitsize, bitpos,
4081 MEM_ALIGN (str_rtx), str_mode, 0);
4082 if (str_mode == VOIDmode)
4083 return false;
4084 str_bitsize = GET_MODE_BITSIZE (str_mode);
4086 offset1 = bitpos;
4087 bitpos %= str_bitsize;
4088 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4089 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4091 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4092 return false;
4094 /* If the bit field covers the whole REG/MEM, store_field
4095 will likely generate better code. */
4096 if (bitsize >= str_bitsize)
4097 return false;
4099 /* We can't handle fields split across multiple entities. */
4100 if (bitpos + bitsize > str_bitsize)
4101 return false;
4103 if (BYTES_BIG_ENDIAN)
4104 bitpos = str_bitsize - bitpos - bitsize;
4106 switch (TREE_CODE (src))
4108 case PLUS_EXPR:
4109 case MINUS_EXPR:
4110 /* For now, just optimize the case of the topmost bitfield
4111 where we don't need to do any masking and also
4112 1 bit bitfields where xor can be used.
4113 We might win by one instruction for the other bitfields
4114 too if insv/extv instructions aren't used, so that
4115 can be added later. */
4116 if (bitpos + bitsize != str_bitsize
4117 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4118 break;
4120 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4121 value = convert_modes (str_mode,
4122 TYPE_MODE (TREE_TYPE (op1)), value,
4123 TYPE_UNSIGNED (TREE_TYPE (op1)));
4125 /* We may be accessing data outside the field, which means
4126 we can alias adjacent data. */
4127 if (MEM_P (str_rtx))
4129 str_rtx = shallow_copy_rtx (str_rtx);
4130 set_mem_alias_set (str_rtx, 0);
4131 set_mem_expr (str_rtx, 0);
4134 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4135 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4137 value = expand_and (str_mode, value, const1_rtx, NULL);
4138 binop = xor_optab;
4140 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4141 build_int_cst (NULL_TREE, bitpos),
4142 NULL_RTX, 1);
4143 result = expand_binop (str_mode, binop, str_rtx,
4144 value, str_rtx, 1, OPTAB_WIDEN);
4145 if (result != str_rtx)
4146 emit_move_insn (str_rtx, result);
4147 return true;
4149 case BIT_IOR_EXPR:
4150 case BIT_XOR_EXPR:
4151 if (TREE_CODE (op1) != INTEGER_CST)
4152 break;
4153 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4154 value = convert_modes (GET_MODE (str_rtx),
4155 TYPE_MODE (TREE_TYPE (op1)), value,
4156 TYPE_UNSIGNED (TREE_TYPE (op1)));
4158 /* We may be accessing data outside the field, which means
4159 we can alias adjacent data. */
4160 if (MEM_P (str_rtx))
4162 str_rtx = shallow_copy_rtx (str_rtx);
4163 set_mem_alias_set (str_rtx, 0);
4164 set_mem_expr (str_rtx, 0);
4167 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4168 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4170 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4171 - 1);
4172 value = expand_and (GET_MODE (str_rtx), value, mask,
4173 NULL_RTX);
4175 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4176 build_int_cst (NULL_TREE, bitpos),
4177 NULL_RTX, 1);
4178 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4179 value, str_rtx, 1, OPTAB_WIDEN);
4180 if (result != str_rtx)
4181 emit_move_insn (str_rtx, result);
4182 return true;
4184 default:
4185 break;
4188 return false;
4192 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4193 is true, try generating a nontemporal store. */
4195 void
4196 expand_assignment (tree to, tree from, bool nontemporal)
4198 rtx to_rtx = 0;
4199 rtx result;
4201 /* Don't crash if the lhs of the assignment was erroneous. */
4202 if (TREE_CODE (to) == ERROR_MARK)
4204 result = expand_normal (from);
4205 return;
4208 /* Optimize away no-op moves without side-effects. */
4209 if (operand_equal_p (to, from, 0))
4210 return;
4212 /* Assignment of a structure component needs special treatment
4213 if the structure component's rtx is not simply a MEM.
4214 Assignment of an array element at a constant index, and assignment of
4215 an array element in an unaligned packed structure field, has the same
4216 problem. */
4217 if (handled_component_p (to)
4218 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4220 enum machine_mode mode1;
4221 HOST_WIDE_INT bitsize, bitpos;
4222 tree offset;
4223 int unsignedp;
4224 int volatilep = 0;
4225 tree tem;
4227 push_temp_slots ();
4228 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4229 &unsignedp, &volatilep, true);
4231 /* If we are going to use store_bit_field and extract_bit_field,
4232 make sure to_rtx will be safe for multiple use. */
4234 to_rtx = expand_normal (tem);
4236 if (offset != 0)
4238 enum machine_mode address_mode;
4239 rtx offset_rtx;
4241 if (!MEM_P (to_rtx))
4243 /* We can get constant negative offsets into arrays with broken
4244 user code. Translate this to a trap instead of ICEing. */
4245 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4246 expand_builtin_trap ();
4247 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4250 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4251 address_mode
4252 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4253 if (GET_MODE (offset_rtx) != address_mode)
4254 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4256 /* A constant address in TO_RTX can have VOIDmode, we must not try
4257 to call force_reg for that case. Avoid that case. */
4258 if (MEM_P (to_rtx)
4259 && GET_MODE (to_rtx) == BLKmode
4260 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4261 && bitsize > 0
4262 && (bitpos % bitsize) == 0
4263 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4264 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4266 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4267 bitpos = 0;
4270 to_rtx = offset_address (to_rtx, offset_rtx,
4271 highest_pow2_factor_for_target (to,
4272 offset));
4275 /* Handle expand_expr of a complex value returning a CONCAT. */
4276 if (GET_CODE (to_rtx) == CONCAT)
4278 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4280 gcc_assert (bitpos == 0);
4281 result = store_expr (from, to_rtx, false, nontemporal);
4283 else
4285 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4286 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4287 nontemporal);
4290 else
4292 if (MEM_P (to_rtx))
4294 /* If the field is at offset zero, we could have been given the
4295 DECL_RTX of the parent struct. Don't munge it. */
4296 to_rtx = shallow_copy_rtx (to_rtx);
4298 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4300 /* Deal with volatile and readonly fields. The former is only
4301 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4302 if (volatilep)
4303 MEM_VOLATILE_P (to_rtx) = 1;
4304 if (component_uses_parent_alias_set (to))
4305 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4308 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4309 to_rtx, to, from))
4310 result = NULL;
4311 else
4312 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4313 TREE_TYPE (tem), get_alias_set (to),
4314 nontemporal);
4317 if (result)
4318 preserve_temp_slots (result);
4319 free_temp_slots ();
4320 pop_temp_slots ();
4321 return;
4324 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4326 addr_space_t as = ADDR_SPACE_GENERIC;
4327 enum machine_mode mode, op_mode1;
4328 enum insn_code icode;
4329 rtx reg, addr, mem, insn;
4331 if (POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (to, 0))))
4332 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4334 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4335 reg = force_not_mem (reg);
4337 mode = TYPE_MODE (TREE_TYPE (to));
4338 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4339 EXPAND_SUM);
4340 addr = memory_address_addr_space (mode, addr, as);
4341 mem = gen_rtx_MEM (mode, addr);
4343 set_mem_attributes (mem, to, 0);
4344 set_mem_addr_space (mem, as);
4346 icode = movmisalign_optab->handlers[mode].insn_code;
4347 gcc_assert (icode != CODE_FOR_nothing);
4349 op_mode1 = insn_data[icode].operand[1].mode;
4350 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4351 && op_mode1 != VOIDmode)
4352 reg = copy_to_mode_reg (op_mode1, reg);
4354 insn = GEN_FCN (icode) (mem, reg);
4355 emit_insn (insn);
4356 return;
4359 /* If the rhs is a function call and its value is not an aggregate,
4360 call the function before we start to compute the lhs.
4361 This is needed for correct code for cases such as
4362 val = setjmp (buf) on machines where reference to val
4363 requires loading up part of an address in a separate insn.
4365 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4366 since it might be a promoted variable where the zero- or sign- extension
4367 needs to be done. Handling this in the normal way is safe because no
4368 computation is done before the call. The same is true for SSA names. */
4369 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4370 && COMPLETE_TYPE_P (TREE_TYPE (from))
4371 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4372 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4373 && REG_P (DECL_RTL (to)))
4374 || TREE_CODE (to) == SSA_NAME))
4376 rtx value;
4378 push_temp_slots ();
4379 value = expand_normal (from);
4380 if (to_rtx == 0)
4381 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4383 /* Handle calls that return values in multiple non-contiguous locations.
4384 The Irix 6 ABI has examples of this. */
4385 if (GET_CODE (to_rtx) == PARALLEL)
4386 emit_group_load (to_rtx, value, TREE_TYPE (from),
4387 int_size_in_bytes (TREE_TYPE (from)));
4388 else if (GET_MODE (to_rtx) == BLKmode)
4389 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4390 else
4392 if (POINTER_TYPE_P (TREE_TYPE (to)))
4393 value = convert_memory_address_addr_space
4394 (GET_MODE (to_rtx), value,
4395 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4397 emit_move_insn (to_rtx, value);
4399 preserve_temp_slots (to_rtx);
4400 free_temp_slots ();
4401 pop_temp_slots ();
4402 return;
4405 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4406 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4408 if (to_rtx == 0)
4409 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4411 /* Don't move directly into a return register. */
4412 if (TREE_CODE (to) == RESULT_DECL
4413 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4415 rtx temp;
4417 push_temp_slots ();
4418 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4420 if (GET_CODE (to_rtx) == PARALLEL)
4421 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4422 int_size_in_bytes (TREE_TYPE (from)));
4423 else
4424 emit_move_insn (to_rtx, temp);
4426 preserve_temp_slots (to_rtx);
4427 free_temp_slots ();
4428 pop_temp_slots ();
4429 return;
4432 /* In case we are returning the contents of an object which overlaps
4433 the place the value is being stored, use a safe function when copying
4434 a value through a pointer into a structure value return block. */
4435 if (TREE_CODE (to) == RESULT_DECL
4436 && TREE_CODE (from) == INDIRECT_REF
4437 && ADDR_SPACE_GENERIC_P
4438 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4439 && refs_may_alias_p (to, from)
4440 && cfun->returns_struct
4441 && !cfun->returns_pcc_struct)
4443 rtx from_rtx, size;
4445 push_temp_slots ();
4446 size = expr_size (from);
4447 from_rtx = expand_normal (from);
4449 emit_library_call (memmove_libfunc, LCT_NORMAL,
4450 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4451 XEXP (from_rtx, 0), Pmode,
4452 convert_to_mode (TYPE_MODE (sizetype),
4453 size, TYPE_UNSIGNED (sizetype)),
4454 TYPE_MODE (sizetype));
4456 preserve_temp_slots (to_rtx);
4457 free_temp_slots ();
4458 pop_temp_slots ();
4459 return;
4462 /* Compute FROM and store the value in the rtx we got. */
4464 push_temp_slots ();
4465 result = store_expr (from, to_rtx, 0, nontemporal);
4466 preserve_temp_slots (result);
4467 free_temp_slots ();
4468 pop_temp_slots ();
4469 return;
4472 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4473 succeeded, false otherwise. */
4475 bool
4476 emit_storent_insn (rtx to, rtx from)
4478 enum machine_mode mode = GET_MODE (to), imode;
4479 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4480 rtx pattern;
4482 if (code == CODE_FOR_nothing)
4483 return false;
4485 imode = insn_data[code].operand[0].mode;
4486 if (!insn_data[code].operand[0].predicate (to, imode))
4487 return false;
4489 imode = insn_data[code].operand[1].mode;
4490 if (!insn_data[code].operand[1].predicate (from, imode))
4492 from = copy_to_mode_reg (imode, from);
4493 if (!insn_data[code].operand[1].predicate (from, imode))
4494 return false;
4497 pattern = GEN_FCN (code) (to, from);
4498 if (pattern == NULL_RTX)
4499 return false;
4501 emit_insn (pattern);
4502 return true;
4505 /* Generate code for computing expression EXP,
4506 and storing the value into TARGET.
4508 If the mode is BLKmode then we may return TARGET itself.
4509 It turns out that in BLKmode it doesn't cause a problem.
4510 because C has no operators that could combine two different
4511 assignments into the same BLKmode object with different values
4512 with no sequence point. Will other languages need this to
4513 be more thorough?
4515 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4516 stack, and block moves may need to be treated specially.
4518 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4521 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4523 rtx temp;
4524 rtx alt_rtl = NULL_RTX;
4525 location_t loc = EXPR_LOCATION (exp);
4527 if (VOID_TYPE_P (TREE_TYPE (exp)))
4529 /* C++ can generate ?: expressions with a throw expression in one
4530 branch and an rvalue in the other. Here, we resolve attempts to
4531 store the throw expression's nonexistent result. */
4532 gcc_assert (!call_param_p);
4533 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4534 return NULL_RTX;
4536 if (TREE_CODE (exp) == COMPOUND_EXPR)
4538 /* Perform first part of compound expression, then assign from second
4539 part. */
4540 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4541 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4542 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4543 nontemporal);
4545 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4547 /* For conditional expression, get safe form of the target. Then
4548 test the condition, doing the appropriate assignment on either
4549 side. This avoids the creation of unnecessary temporaries.
4550 For non-BLKmode, it is more efficient not to do this. */
4552 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4554 do_pending_stack_adjust ();
4555 NO_DEFER_POP;
4556 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4557 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4558 nontemporal);
4559 emit_jump_insn (gen_jump (lab2));
4560 emit_barrier ();
4561 emit_label (lab1);
4562 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4563 nontemporal);
4564 emit_label (lab2);
4565 OK_DEFER_POP;
4567 return NULL_RTX;
4569 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4570 /* If this is a scalar in a register that is stored in a wider mode
4571 than the declared mode, compute the result into its declared mode
4572 and then convert to the wider mode. Our value is the computed
4573 expression. */
4575 rtx inner_target = 0;
4577 /* We can do the conversion inside EXP, which will often result
4578 in some optimizations. Do the conversion in two steps: first
4579 change the signedness, if needed, then the extend. But don't
4580 do this if the type of EXP is a subtype of something else
4581 since then the conversion might involve more than just
4582 converting modes. */
4583 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4584 && TREE_TYPE (TREE_TYPE (exp)) == 0
4585 && GET_MODE_PRECISION (GET_MODE (target))
4586 == TYPE_PRECISION (TREE_TYPE (exp)))
4588 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4589 != SUBREG_PROMOTED_UNSIGNED_P (target))
4591 /* Some types, e.g. Fortran's logical*4, won't have a signed
4592 version, so use the mode instead. */
4593 tree ntype
4594 = (signed_or_unsigned_type_for
4595 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4596 if (ntype == NULL)
4597 ntype = lang_hooks.types.type_for_mode
4598 (TYPE_MODE (TREE_TYPE (exp)),
4599 SUBREG_PROMOTED_UNSIGNED_P (target));
4601 exp = fold_convert_loc (loc, ntype, exp);
4604 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4605 (GET_MODE (SUBREG_REG (target)),
4606 SUBREG_PROMOTED_UNSIGNED_P (target)),
4607 exp);
4609 inner_target = SUBREG_REG (target);
4612 temp = expand_expr (exp, inner_target, VOIDmode,
4613 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4615 /* If TEMP is a VOIDmode constant, use convert_modes to make
4616 sure that we properly convert it. */
4617 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4619 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4620 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4621 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4622 GET_MODE (target), temp,
4623 SUBREG_PROMOTED_UNSIGNED_P (target));
4626 convert_move (SUBREG_REG (target), temp,
4627 SUBREG_PROMOTED_UNSIGNED_P (target));
4629 return NULL_RTX;
4631 else if (TREE_CODE (exp) == STRING_CST
4632 && !nontemporal && !call_param_p
4633 && TREE_STRING_LENGTH (exp) > 0
4634 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4636 /* Optimize initialization of an array with a STRING_CST. */
4637 HOST_WIDE_INT exp_len, str_copy_len;
4638 rtx dest_mem;
4640 exp_len = int_expr_size (exp);
4641 if (exp_len <= 0)
4642 goto normal_expr;
4644 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4645 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4646 goto normal_expr;
4648 str_copy_len = TREE_STRING_LENGTH (exp);
4649 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4651 str_copy_len += STORE_MAX_PIECES - 1;
4652 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4654 str_copy_len = MIN (str_copy_len, exp_len);
4655 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4656 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4657 MEM_ALIGN (target), false))
4658 goto normal_expr;
4660 dest_mem = target;
4662 dest_mem = store_by_pieces (dest_mem,
4663 str_copy_len, builtin_strncpy_read_str,
4664 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4665 MEM_ALIGN (target), false,
4666 exp_len > str_copy_len ? 1 : 0);
4667 if (exp_len > str_copy_len)
4668 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4669 GEN_INT (exp_len - str_copy_len),
4670 BLOCK_OP_NORMAL);
4671 return NULL_RTX;
4673 else
4675 rtx tmp_target;
4677 normal_expr:
4678 /* If we want to use a nontemporal store, force the value to
4679 register first. */
4680 tmp_target = nontemporal ? NULL_RTX : target;
4681 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4682 (call_param_p
4683 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4684 &alt_rtl);
4687 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4688 the same as that of TARGET, adjust the constant. This is needed, for
4689 example, in case it is a CONST_DOUBLE and we want only a word-sized
4690 value. */
4691 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4692 && TREE_CODE (exp) != ERROR_MARK
4693 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4694 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4695 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4697 /* If value was not generated in the target, store it there.
4698 Convert the value to TARGET's type first if necessary and emit the
4699 pending incrementations that have been queued when expanding EXP.
4700 Note that we cannot emit the whole queue blindly because this will
4701 effectively disable the POST_INC optimization later.
4703 If TEMP and TARGET compare equal according to rtx_equal_p, but
4704 one or both of them are volatile memory refs, we have to distinguish
4705 two cases:
4706 - expand_expr has used TARGET. In this case, we must not generate
4707 another copy. This can be detected by TARGET being equal according
4708 to == .
4709 - expand_expr has not used TARGET - that means that the source just
4710 happens to have the same RTX form. Since temp will have been created
4711 by expand_expr, it will compare unequal according to == .
4712 We must generate a copy in this case, to reach the correct number
4713 of volatile memory references. */
4715 if ((! rtx_equal_p (temp, target)
4716 || (temp != target && (side_effects_p (temp)
4717 || side_effects_p (target))))
4718 && TREE_CODE (exp) != ERROR_MARK
4719 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4720 but TARGET is not valid memory reference, TEMP will differ
4721 from TARGET although it is really the same location. */
4722 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4723 /* If there's nothing to copy, don't bother. Don't call
4724 expr_size unless necessary, because some front-ends (C++)
4725 expr_size-hook must not be given objects that are not
4726 supposed to be bit-copied or bit-initialized. */
4727 && expr_size (exp) != const0_rtx)
4729 if (GET_MODE (temp) != GET_MODE (target)
4730 && GET_MODE (temp) != VOIDmode)
4732 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4733 if (GET_MODE (target) == BLKmode
4734 || GET_MODE (temp) == BLKmode)
4735 emit_block_move (target, temp, expr_size (exp),
4736 (call_param_p
4737 ? BLOCK_OP_CALL_PARM
4738 : BLOCK_OP_NORMAL));
4739 else
4740 convert_move (target, temp, unsignedp);
4743 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4745 /* Handle copying a string constant into an array. The string
4746 constant may be shorter than the array. So copy just the string's
4747 actual length, and clear the rest. First get the size of the data
4748 type of the string, which is actually the size of the target. */
4749 rtx size = expr_size (exp);
4751 if (CONST_INT_P (size)
4752 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4753 emit_block_move (target, temp, size,
4754 (call_param_p
4755 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4756 else
4758 enum machine_mode pointer_mode
4759 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4760 enum machine_mode address_mode
4761 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4763 /* Compute the size of the data to copy from the string. */
4764 tree copy_size
4765 = size_binop_loc (loc, MIN_EXPR,
4766 make_tree (sizetype, size),
4767 size_int (TREE_STRING_LENGTH (exp)));
4768 rtx copy_size_rtx
4769 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4770 (call_param_p
4771 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4772 rtx label = 0;
4774 /* Copy that much. */
4775 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4776 TYPE_UNSIGNED (sizetype));
4777 emit_block_move (target, temp, copy_size_rtx,
4778 (call_param_p
4779 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4781 /* Figure out how much is left in TARGET that we have to clear.
4782 Do all calculations in pointer_mode. */
4783 if (CONST_INT_P (copy_size_rtx))
4785 size = plus_constant (size, -INTVAL (copy_size_rtx));
4786 target = adjust_address (target, BLKmode,
4787 INTVAL (copy_size_rtx));
4789 else
4791 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4792 copy_size_rtx, NULL_RTX, 0,
4793 OPTAB_LIB_WIDEN);
4795 if (GET_MODE (copy_size_rtx) != address_mode)
4796 copy_size_rtx = convert_to_mode (address_mode,
4797 copy_size_rtx,
4798 TYPE_UNSIGNED (sizetype));
4800 target = offset_address (target, copy_size_rtx,
4801 highest_pow2_factor (copy_size));
4802 label = gen_label_rtx ();
4803 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4804 GET_MODE (size), 0, label);
4807 if (size != const0_rtx)
4808 clear_storage (target, size, BLOCK_OP_NORMAL);
4810 if (label)
4811 emit_label (label);
4814 /* Handle calls that return values in multiple non-contiguous locations.
4815 The Irix 6 ABI has examples of this. */
4816 else if (GET_CODE (target) == PARALLEL)
4817 emit_group_load (target, temp, TREE_TYPE (exp),
4818 int_size_in_bytes (TREE_TYPE (exp)));
4819 else if (GET_MODE (temp) == BLKmode)
4820 emit_block_move (target, temp, expr_size (exp),
4821 (call_param_p
4822 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4823 else if (nontemporal
4824 && emit_storent_insn (target, temp))
4825 /* If we managed to emit a nontemporal store, there is nothing else to
4826 do. */
4828 else
4830 temp = force_operand (temp, target);
4831 if (temp != target)
4832 emit_move_insn (target, temp);
4836 return NULL_RTX;
4839 /* Helper for categorize_ctor_elements. Identical interface. */
4841 static bool
4842 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4843 HOST_WIDE_INT *p_elt_count,
4844 bool *p_must_clear)
4846 unsigned HOST_WIDE_INT idx;
4847 HOST_WIDE_INT nz_elts, elt_count;
4848 tree value, purpose;
4850 /* Whether CTOR is a valid constant initializer, in accordance with what
4851 initializer_constant_valid_p does. If inferred from the constructor
4852 elements, true until proven otherwise. */
4853 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4854 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4856 nz_elts = 0;
4857 elt_count = 0;
4859 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4861 HOST_WIDE_INT mult;
4863 mult = 1;
4864 if (TREE_CODE (purpose) == RANGE_EXPR)
4866 tree lo_index = TREE_OPERAND (purpose, 0);
4867 tree hi_index = TREE_OPERAND (purpose, 1);
4869 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4870 mult = (tree_low_cst (hi_index, 1)
4871 - tree_low_cst (lo_index, 1) + 1);
4874 switch (TREE_CODE (value))
4876 case CONSTRUCTOR:
4878 HOST_WIDE_INT nz = 0, ic = 0;
4880 bool const_elt_p
4881 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4883 nz_elts += mult * nz;
4884 elt_count += mult * ic;
4886 if (const_from_elts_p && const_p)
4887 const_p = const_elt_p;
4889 break;
4891 case INTEGER_CST:
4892 case REAL_CST:
4893 case FIXED_CST:
4894 if (!initializer_zerop (value))
4895 nz_elts += mult;
4896 elt_count += mult;
4897 break;
4899 case STRING_CST:
4900 nz_elts += mult * TREE_STRING_LENGTH (value);
4901 elt_count += mult * TREE_STRING_LENGTH (value);
4902 break;
4904 case COMPLEX_CST:
4905 if (!initializer_zerop (TREE_REALPART (value)))
4906 nz_elts += mult;
4907 if (!initializer_zerop (TREE_IMAGPART (value)))
4908 nz_elts += mult;
4909 elt_count += mult;
4910 break;
4912 case VECTOR_CST:
4914 tree v;
4915 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4917 if (!initializer_zerop (TREE_VALUE (v)))
4918 nz_elts += mult;
4919 elt_count += mult;
4922 break;
4924 default:
4925 nz_elts += mult;
4926 elt_count += mult;
4928 if (const_from_elts_p && const_p)
4929 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4930 != NULL_TREE;
4931 break;
4935 if (!*p_must_clear
4936 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4937 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4939 tree init_sub_type;
4940 bool clear_this = true;
4942 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4944 /* We don't expect more than one element of the union to be
4945 initialized. Not sure what we should do otherwise... */
4946 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4947 == 1);
4949 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4950 CONSTRUCTOR_ELTS (ctor),
4951 0)->value);
4953 /* ??? We could look at each element of the union, and find the
4954 largest element. Which would avoid comparing the size of the
4955 initialized element against any tail padding in the union.
4956 Doesn't seem worth the effort... */
4957 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4958 TYPE_SIZE (init_sub_type)) == 1)
4960 /* And now we have to find out if the element itself is fully
4961 constructed. E.g. for union { struct { int a, b; } s; } u
4962 = { .s = { .a = 1 } }. */
4963 if (elt_count == count_type_elements (init_sub_type, false))
4964 clear_this = false;
4968 *p_must_clear = clear_this;
4971 *p_nz_elts += nz_elts;
4972 *p_elt_count += elt_count;
4974 return const_p;
4977 /* Examine CTOR to discover:
4978 * how many scalar fields are set to nonzero values,
4979 and place it in *P_NZ_ELTS;
4980 * how many scalar fields in total are in CTOR,
4981 and place it in *P_ELT_COUNT.
4982 * if a type is a union, and the initializer from the constructor
4983 is not the largest element in the union, then set *p_must_clear.
4985 Return whether or not CTOR is a valid static constant initializer, the same
4986 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4988 bool
4989 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4990 HOST_WIDE_INT *p_elt_count,
4991 bool *p_must_clear)
4993 *p_nz_elts = 0;
4994 *p_elt_count = 0;
4995 *p_must_clear = false;
4997 return
4998 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5001 /* Count the number of scalars in TYPE. Return -1 on overflow or
5002 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5003 array member at the end of the structure. */
5005 HOST_WIDE_INT
5006 count_type_elements (const_tree type, bool allow_flexarr)
5008 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5009 switch (TREE_CODE (type))
5011 case ARRAY_TYPE:
5013 tree telts = array_type_nelts (type);
5014 if (telts && host_integerp (telts, 1))
5016 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5017 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5018 if (n == 0)
5019 return 0;
5020 else if (max / n > m)
5021 return n * m;
5023 return -1;
5026 case RECORD_TYPE:
5028 HOST_WIDE_INT n = 0, t;
5029 tree f;
5031 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5032 if (TREE_CODE (f) == FIELD_DECL)
5034 t = count_type_elements (TREE_TYPE (f), false);
5035 if (t < 0)
5037 /* Check for structures with flexible array member. */
5038 tree tf = TREE_TYPE (f);
5039 if (allow_flexarr
5040 && TREE_CHAIN (f) == NULL
5041 && TREE_CODE (tf) == ARRAY_TYPE
5042 && TYPE_DOMAIN (tf)
5043 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5044 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5045 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5046 && int_size_in_bytes (type) >= 0)
5047 break;
5049 return -1;
5051 n += t;
5054 return n;
5057 case UNION_TYPE:
5058 case QUAL_UNION_TYPE:
5059 return -1;
5061 case COMPLEX_TYPE:
5062 return 2;
5064 case VECTOR_TYPE:
5065 return TYPE_VECTOR_SUBPARTS (type);
5067 case INTEGER_TYPE:
5068 case REAL_TYPE:
5069 case FIXED_POINT_TYPE:
5070 case ENUMERAL_TYPE:
5071 case BOOLEAN_TYPE:
5072 case POINTER_TYPE:
5073 case OFFSET_TYPE:
5074 case REFERENCE_TYPE:
5075 return 1;
5077 case ERROR_MARK:
5078 return 0;
5080 case VOID_TYPE:
5081 case METHOD_TYPE:
5082 case FUNCTION_TYPE:
5083 case LANG_TYPE:
5084 default:
5085 gcc_unreachable ();
5089 /* Return 1 if EXP contains mostly (3/4) zeros. */
5091 static int
5092 mostly_zeros_p (const_tree exp)
5094 if (TREE_CODE (exp) == CONSTRUCTOR)
5097 HOST_WIDE_INT nz_elts, count, elts;
5098 bool must_clear;
5100 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5101 if (must_clear)
5102 return 1;
5104 elts = count_type_elements (TREE_TYPE (exp), false);
5106 return nz_elts < elts / 4;
5109 return initializer_zerop (exp);
5112 /* Return 1 if EXP contains all zeros. */
5114 static int
5115 all_zeros_p (const_tree exp)
5117 if (TREE_CODE (exp) == CONSTRUCTOR)
5120 HOST_WIDE_INT nz_elts, count;
5121 bool must_clear;
5123 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5124 return nz_elts == 0;
5127 return initializer_zerop (exp);
5130 /* Helper function for store_constructor.
5131 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5132 TYPE is the type of the CONSTRUCTOR, not the element type.
5133 CLEARED is as for store_constructor.
5134 ALIAS_SET is the alias set to use for any stores.
5136 This provides a recursive shortcut back to store_constructor when it isn't
5137 necessary to go through store_field. This is so that we can pass through
5138 the cleared field to let store_constructor know that we may not have to
5139 clear a substructure if the outer structure has already been cleared. */
5141 static void
5142 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5143 HOST_WIDE_INT bitpos, enum machine_mode mode,
5144 tree exp, tree type, int cleared,
5145 alias_set_type alias_set)
5147 if (TREE_CODE (exp) == CONSTRUCTOR
5148 /* We can only call store_constructor recursively if the size and
5149 bit position are on a byte boundary. */
5150 && bitpos % BITS_PER_UNIT == 0
5151 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5152 /* If we have a nonzero bitpos for a register target, then we just
5153 let store_field do the bitfield handling. This is unlikely to
5154 generate unnecessary clear instructions anyways. */
5155 && (bitpos == 0 || MEM_P (target)))
5157 if (MEM_P (target))
5158 target
5159 = adjust_address (target,
5160 GET_MODE (target) == BLKmode
5161 || 0 != (bitpos
5162 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5163 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5166 /* Update the alias set, if required. */
5167 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5168 && MEM_ALIAS_SET (target) != 0)
5170 target = copy_rtx (target);
5171 set_mem_alias_set (target, alias_set);
5174 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5176 else
5177 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5180 /* Store the value of constructor EXP into the rtx TARGET.
5181 TARGET is either a REG or a MEM; we know it cannot conflict, since
5182 safe_from_p has been called.
5183 CLEARED is true if TARGET is known to have been zero'd.
5184 SIZE is the number of bytes of TARGET we are allowed to modify: this
5185 may not be the same as the size of EXP if we are assigning to a field
5186 which has been packed to exclude padding bits. */
5188 static void
5189 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5191 tree type = TREE_TYPE (exp);
5192 #ifdef WORD_REGISTER_OPERATIONS
5193 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5194 #endif
5196 switch (TREE_CODE (type))
5198 case RECORD_TYPE:
5199 case UNION_TYPE:
5200 case QUAL_UNION_TYPE:
5202 unsigned HOST_WIDE_INT idx;
5203 tree field, value;
5205 /* If size is zero or the target is already cleared, do nothing. */
5206 if (size == 0 || cleared)
5207 cleared = 1;
5208 /* We either clear the aggregate or indicate the value is dead. */
5209 else if ((TREE_CODE (type) == UNION_TYPE
5210 || TREE_CODE (type) == QUAL_UNION_TYPE)
5211 && ! CONSTRUCTOR_ELTS (exp))
5212 /* If the constructor is empty, clear the union. */
5214 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5215 cleared = 1;
5218 /* If we are building a static constructor into a register,
5219 set the initial value as zero so we can fold the value into
5220 a constant. But if more than one register is involved,
5221 this probably loses. */
5222 else if (REG_P (target) && TREE_STATIC (exp)
5223 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5225 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5226 cleared = 1;
5229 /* If the constructor has fewer fields than the structure or
5230 if we are initializing the structure to mostly zeros, clear
5231 the whole structure first. Don't do this if TARGET is a
5232 register whose mode size isn't equal to SIZE since
5233 clear_storage can't handle this case. */
5234 else if (size > 0
5235 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5236 != fields_length (type))
5237 || mostly_zeros_p (exp))
5238 && (!REG_P (target)
5239 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5240 == size)))
5242 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5243 cleared = 1;
5246 if (REG_P (target) && !cleared)
5247 emit_clobber (target);
5249 /* Store each element of the constructor into the
5250 corresponding field of TARGET. */
5251 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5253 enum machine_mode mode;
5254 HOST_WIDE_INT bitsize;
5255 HOST_WIDE_INT bitpos = 0;
5256 tree offset;
5257 rtx to_rtx = target;
5259 /* Just ignore missing fields. We cleared the whole
5260 structure, above, if any fields are missing. */
5261 if (field == 0)
5262 continue;
5264 if (cleared && initializer_zerop (value))
5265 continue;
5267 if (host_integerp (DECL_SIZE (field), 1))
5268 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5269 else
5270 bitsize = -1;
5272 mode = DECL_MODE (field);
5273 if (DECL_BIT_FIELD (field))
5274 mode = VOIDmode;
5276 offset = DECL_FIELD_OFFSET (field);
5277 if (host_integerp (offset, 0)
5278 && host_integerp (bit_position (field), 0))
5280 bitpos = int_bit_position (field);
5281 offset = 0;
5283 else
5284 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5286 if (offset)
5288 enum machine_mode address_mode;
5289 rtx offset_rtx;
5291 offset
5292 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5293 make_tree (TREE_TYPE (exp),
5294 target));
5296 offset_rtx = expand_normal (offset);
5297 gcc_assert (MEM_P (to_rtx));
5299 address_mode
5300 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5301 if (GET_MODE (offset_rtx) != address_mode)
5302 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5304 to_rtx = offset_address (to_rtx, offset_rtx,
5305 highest_pow2_factor (offset));
5308 #ifdef WORD_REGISTER_OPERATIONS
5309 /* If this initializes a field that is smaller than a
5310 word, at the start of a word, try to widen it to a full
5311 word. This special case allows us to output C++ member
5312 function initializations in a form that the optimizers
5313 can understand. */
5314 if (REG_P (target)
5315 && bitsize < BITS_PER_WORD
5316 && bitpos % BITS_PER_WORD == 0
5317 && GET_MODE_CLASS (mode) == MODE_INT
5318 && TREE_CODE (value) == INTEGER_CST
5319 && exp_size >= 0
5320 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5322 tree type = TREE_TYPE (value);
5324 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5326 type = lang_hooks.types.type_for_size
5327 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5328 value = fold_convert (type, value);
5331 if (BYTES_BIG_ENDIAN)
5332 value
5333 = fold_build2 (LSHIFT_EXPR, type, value,
5334 build_int_cst (type,
5335 BITS_PER_WORD - bitsize));
5336 bitsize = BITS_PER_WORD;
5337 mode = word_mode;
5339 #endif
5341 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5342 && DECL_NONADDRESSABLE_P (field))
5344 to_rtx = copy_rtx (to_rtx);
5345 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5348 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5349 value, type, cleared,
5350 get_alias_set (TREE_TYPE (field)));
5352 break;
5354 case ARRAY_TYPE:
5356 tree value, index;
5357 unsigned HOST_WIDE_INT i;
5358 int need_to_clear;
5359 tree domain;
5360 tree elttype = TREE_TYPE (type);
5361 int const_bounds_p;
5362 HOST_WIDE_INT minelt = 0;
5363 HOST_WIDE_INT maxelt = 0;
5365 domain = TYPE_DOMAIN (type);
5366 const_bounds_p = (TYPE_MIN_VALUE (domain)
5367 && TYPE_MAX_VALUE (domain)
5368 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5369 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5371 /* If we have constant bounds for the range of the type, get them. */
5372 if (const_bounds_p)
5374 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5375 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5378 /* If the constructor has fewer elements than the array, clear
5379 the whole array first. Similarly if this is static
5380 constructor of a non-BLKmode object. */
5381 if (cleared)
5382 need_to_clear = 0;
5383 else if (REG_P (target) && TREE_STATIC (exp))
5384 need_to_clear = 1;
5385 else
5387 unsigned HOST_WIDE_INT idx;
5388 tree index, value;
5389 HOST_WIDE_INT count = 0, zero_count = 0;
5390 need_to_clear = ! const_bounds_p;
5392 /* This loop is a more accurate version of the loop in
5393 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5394 is also needed to check for missing elements. */
5395 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5397 HOST_WIDE_INT this_node_count;
5399 if (need_to_clear)
5400 break;
5402 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5404 tree lo_index = TREE_OPERAND (index, 0);
5405 tree hi_index = TREE_OPERAND (index, 1);
5407 if (! host_integerp (lo_index, 1)
5408 || ! host_integerp (hi_index, 1))
5410 need_to_clear = 1;
5411 break;
5414 this_node_count = (tree_low_cst (hi_index, 1)
5415 - tree_low_cst (lo_index, 1) + 1);
5417 else
5418 this_node_count = 1;
5420 count += this_node_count;
5421 if (mostly_zeros_p (value))
5422 zero_count += this_node_count;
5425 /* Clear the entire array first if there are any missing
5426 elements, or if the incidence of zero elements is >=
5427 75%. */
5428 if (! need_to_clear
5429 && (count < maxelt - minelt + 1
5430 || 4 * zero_count >= 3 * count))
5431 need_to_clear = 1;
5434 if (need_to_clear && size > 0)
5436 if (REG_P (target))
5437 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5438 else
5439 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5440 cleared = 1;
5443 if (!cleared && REG_P (target))
5444 /* Inform later passes that the old value is dead. */
5445 emit_clobber (target);
5447 /* Store each element of the constructor into the
5448 corresponding element of TARGET, determined by counting the
5449 elements. */
5450 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5452 enum machine_mode mode;
5453 HOST_WIDE_INT bitsize;
5454 HOST_WIDE_INT bitpos;
5455 rtx xtarget = target;
5457 if (cleared && initializer_zerop (value))
5458 continue;
5460 mode = TYPE_MODE (elttype);
5461 if (mode == BLKmode)
5462 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5463 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5464 : -1);
5465 else
5466 bitsize = GET_MODE_BITSIZE (mode);
5468 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5470 tree lo_index = TREE_OPERAND (index, 0);
5471 tree hi_index = TREE_OPERAND (index, 1);
5472 rtx index_r, pos_rtx;
5473 HOST_WIDE_INT lo, hi, count;
5474 tree position;
5476 /* If the range is constant and "small", unroll the loop. */
5477 if (const_bounds_p
5478 && host_integerp (lo_index, 0)
5479 && host_integerp (hi_index, 0)
5480 && (lo = tree_low_cst (lo_index, 0),
5481 hi = tree_low_cst (hi_index, 0),
5482 count = hi - lo + 1,
5483 (!MEM_P (target)
5484 || count <= 2
5485 || (host_integerp (TYPE_SIZE (elttype), 1)
5486 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5487 <= 40 * 8)))))
5489 lo -= minelt; hi -= minelt;
5490 for (; lo <= hi; lo++)
5492 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5494 if (MEM_P (target)
5495 && !MEM_KEEP_ALIAS_SET_P (target)
5496 && TREE_CODE (type) == ARRAY_TYPE
5497 && TYPE_NONALIASED_COMPONENT (type))
5499 target = copy_rtx (target);
5500 MEM_KEEP_ALIAS_SET_P (target) = 1;
5503 store_constructor_field
5504 (target, bitsize, bitpos, mode, value, type, cleared,
5505 get_alias_set (elttype));
5508 else
5510 rtx loop_start = gen_label_rtx ();
5511 rtx loop_end = gen_label_rtx ();
5512 tree exit_cond;
5514 expand_normal (hi_index);
5516 index = build_decl (EXPR_LOCATION (exp),
5517 VAR_DECL, NULL_TREE, domain);
5518 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5519 SET_DECL_RTL (index, index_r);
5520 store_expr (lo_index, index_r, 0, false);
5522 /* Build the head of the loop. */
5523 do_pending_stack_adjust ();
5524 emit_label (loop_start);
5526 /* Assign value to element index. */
5527 position =
5528 fold_convert (ssizetype,
5529 fold_build2 (MINUS_EXPR,
5530 TREE_TYPE (index),
5531 index,
5532 TYPE_MIN_VALUE (domain)));
5534 position =
5535 size_binop (MULT_EXPR, position,
5536 fold_convert (ssizetype,
5537 TYPE_SIZE_UNIT (elttype)));
5539 pos_rtx = expand_normal (position);
5540 xtarget = offset_address (target, pos_rtx,
5541 highest_pow2_factor (position));
5542 xtarget = adjust_address (xtarget, mode, 0);
5543 if (TREE_CODE (value) == CONSTRUCTOR)
5544 store_constructor (value, xtarget, cleared,
5545 bitsize / BITS_PER_UNIT);
5546 else
5547 store_expr (value, xtarget, 0, false);
5549 /* Generate a conditional jump to exit the loop. */
5550 exit_cond = build2 (LT_EXPR, integer_type_node,
5551 index, hi_index);
5552 jumpif (exit_cond, loop_end, -1);
5554 /* Update the loop counter, and jump to the head of
5555 the loop. */
5556 expand_assignment (index,
5557 build2 (PLUS_EXPR, TREE_TYPE (index),
5558 index, integer_one_node),
5559 false);
5561 emit_jump (loop_start);
5563 /* Build the end of the loop. */
5564 emit_label (loop_end);
5567 else if ((index != 0 && ! host_integerp (index, 0))
5568 || ! host_integerp (TYPE_SIZE (elttype), 1))
5570 tree position;
5572 if (index == 0)
5573 index = ssize_int (1);
5575 if (minelt)
5576 index = fold_convert (ssizetype,
5577 fold_build2 (MINUS_EXPR,
5578 TREE_TYPE (index),
5579 index,
5580 TYPE_MIN_VALUE (domain)));
5582 position =
5583 size_binop (MULT_EXPR, index,
5584 fold_convert (ssizetype,
5585 TYPE_SIZE_UNIT (elttype)));
5586 xtarget = offset_address (target,
5587 expand_normal (position),
5588 highest_pow2_factor (position));
5589 xtarget = adjust_address (xtarget, mode, 0);
5590 store_expr (value, xtarget, 0, false);
5592 else
5594 if (index != 0)
5595 bitpos = ((tree_low_cst (index, 0) - minelt)
5596 * tree_low_cst (TYPE_SIZE (elttype), 1));
5597 else
5598 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5600 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5601 && TREE_CODE (type) == ARRAY_TYPE
5602 && TYPE_NONALIASED_COMPONENT (type))
5604 target = copy_rtx (target);
5605 MEM_KEEP_ALIAS_SET_P (target) = 1;
5607 store_constructor_field (target, bitsize, bitpos, mode, value,
5608 type, cleared, get_alias_set (elttype));
5611 break;
5614 case VECTOR_TYPE:
5616 unsigned HOST_WIDE_INT idx;
5617 constructor_elt *ce;
5618 int i;
5619 int need_to_clear;
5620 int icode = 0;
5621 tree elttype = TREE_TYPE (type);
5622 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5623 enum machine_mode eltmode = TYPE_MODE (elttype);
5624 HOST_WIDE_INT bitsize;
5625 HOST_WIDE_INT bitpos;
5626 rtvec vector = NULL;
5627 unsigned n_elts;
5628 alias_set_type alias;
5630 gcc_assert (eltmode != BLKmode);
5632 n_elts = TYPE_VECTOR_SUBPARTS (type);
5633 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5635 enum machine_mode mode = GET_MODE (target);
5637 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5638 if (icode != CODE_FOR_nothing)
5640 unsigned int i;
5642 vector = rtvec_alloc (n_elts);
5643 for (i = 0; i < n_elts; i++)
5644 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5648 /* If the constructor has fewer elements than the vector,
5649 clear the whole array first. Similarly if this is static
5650 constructor of a non-BLKmode object. */
5651 if (cleared)
5652 need_to_clear = 0;
5653 else if (REG_P (target) && TREE_STATIC (exp))
5654 need_to_clear = 1;
5655 else
5657 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5658 tree value;
5660 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5662 int n_elts_here = tree_low_cst
5663 (int_const_binop (TRUNC_DIV_EXPR,
5664 TYPE_SIZE (TREE_TYPE (value)),
5665 TYPE_SIZE (elttype), 0), 1);
5667 count += n_elts_here;
5668 if (mostly_zeros_p (value))
5669 zero_count += n_elts_here;
5672 /* Clear the entire vector first if there are any missing elements,
5673 or if the incidence of zero elements is >= 75%. */
5674 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5677 if (need_to_clear && size > 0 && !vector)
5679 if (REG_P (target))
5680 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5681 else
5682 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5683 cleared = 1;
5686 /* Inform later passes that the old value is dead. */
5687 if (!cleared && !vector && REG_P (target))
5688 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5690 if (MEM_P (target))
5691 alias = MEM_ALIAS_SET (target);
5692 else
5693 alias = get_alias_set (elttype);
5695 /* Store each element of the constructor into the corresponding
5696 element of TARGET, determined by counting the elements. */
5697 for (idx = 0, i = 0;
5698 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5699 idx++, i += bitsize / elt_size)
5701 HOST_WIDE_INT eltpos;
5702 tree value = ce->value;
5704 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5705 if (cleared && initializer_zerop (value))
5706 continue;
5708 if (ce->index)
5709 eltpos = tree_low_cst (ce->index, 1);
5710 else
5711 eltpos = i;
5713 if (vector)
5715 /* Vector CONSTRUCTORs should only be built from smaller
5716 vectors in the case of BLKmode vectors. */
5717 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5718 RTVEC_ELT (vector, eltpos)
5719 = expand_normal (value);
5721 else
5723 enum machine_mode value_mode =
5724 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5725 ? TYPE_MODE (TREE_TYPE (value))
5726 : eltmode;
5727 bitpos = eltpos * elt_size;
5728 store_constructor_field (target, bitsize, bitpos,
5729 value_mode, value, type,
5730 cleared, alias);
5734 if (vector)
5735 emit_insn (GEN_FCN (icode)
5736 (target,
5737 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5738 break;
5741 default:
5742 gcc_unreachable ();
5746 /* Store the value of EXP (an expression tree)
5747 into a subfield of TARGET which has mode MODE and occupies
5748 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5749 If MODE is VOIDmode, it means that we are storing into a bit-field.
5751 Always return const0_rtx unless we have something particular to
5752 return.
5754 TYPE is the type of the underlying object,
5756 ALIAS_SET is the alias set for the destination. This value will
5757 (in general) be different from that for TARGET, since TARGET is a
5758 reference to the containing structure.
5760 If NONTEMPORAL is true, try generating a nontemporal store. */
5762 static rtx
5763 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5764 enum machine_mode mode, tree exp, tree type,
5765 alias_set_type alias_set, bool nontemporal)
5767 if (TREE_CODE (exp) == ERROR_MARK)
5768 return const0_rtx;
5770 /* If we have nothing to store, do nothing unless the expression has
5771 side-effects. */
5772 if (bitsize == 0)
5773 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5775 /* If we are storing into an unaligned field of an aligned union that is
5776 in a register, we may have the mode of TARGET being an integer mode but
5777 MODE == BLKmode. In that case, get an aligned object whose size and
5778 alignment are the same as TARGET and store TARGET into it (we can avoid
5779 the store if the field being stored is the entire width of TARGET). Then
5780 call ourselves recursively to store the field into a BLKmode version of
5781 that object. Finally, load from the object into TARGET. This is not
5782 very efficient in general, but should only be slightly more expensive
5783 than the otherwise-required unaligned accesses. Perhaps this can be
5784 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5785 twice, once with emit_move_insn and once via store_field. */
5787 if (mode == BLKmode
5788 && (REG_P (target) || GET_CODE (target) == SUBREG))
5790 rtx object = assign_temp (type, 0, 1, 1);
5791 rtx blk_object = adjust_address (object, BLKmode, 0);
5793 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5794 emit_move_insn (object, target);
5796 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5797 nontemporal);
5799 emit_move_insn (target, object);
5801 /* We want to return the BLKmode version of the data. */
5802 return blk_object;
5805 if (GET_CODE (target) == CONCAT)
5807 /* We're storing into a struct containing a single __complex. */
5809 gcc_assert (!bitpos);
5810 return store_expr (exp, target, 0, nontemporal);
5813 /* If the structure is in a register or if the component
5814 is a bit field, we cannot use addressing to access it.
5815 Use bit-field techniques or SUBREG to store in it. */
5817 if (mode == VOIDmode
5818 || (mode != BLKmode && ! direct_store[(int) mode]
5819 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5820 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5821 || REG_P (target)
5822 || GET_CODE (target) == SUBREG
5823 /* If the field isn't aligned enough to store as an ordinary memref,
5824 store it as a bit field. */
5825 || (mode != BLKmode
5826 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5827 || bitpos % GET_MODE_ALIGNMENT (mode))
5828 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5829 || (bitpos % BITS_PER_UNIT != 0)))
5830 /* If the RHS and field are a constant size and the size of the
5831 RHS isn't the same size as the bitfield, we must use bitfield
5832 operations. */
5833 || (bitsize >= 0
5834 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5835 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5837 rtx temp;
5838 gimple nop_def;
5840 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5841 implies a mask operation. If the precision is the same size as
5842 the field we're storing into, that mask is redundant. This is
5843 particularly common with bit field assignments generated by the
5844 C front end. */
5845 nop_def = get_def_for_expr (exp, NOP_EXPR);
5846 if (nop_def)
5848 tree type = TREE_TYPE (exp);
5849 if (INTEGRAL_TYPE_P (type)
5850 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5851 && bitsize == TYPE_PRECISION (type))
5853 tree op = gimple_assign_rhs1 (nop_def);
5854 type = TREE_TYPE (op);
5855 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5856 exp = op;
5860 temp = expand_normal (exp);
5862 /* If BITSIZE is narrower than the size of the type of EXP
5863 we will be narrowing TEMP. Normally, what's wanted are the
5864 low-order bits. However, if EXP's type is a record and this is
5865 big-endian machine, we want the upper BITSIZE bits. */
5866 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5867 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5868 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5869 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5870 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5871 - bitsize),
5872 NULL_RTX, 1);
5874 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5875 MODE. */
5876 if (mode != VOIDmode && mode != BLKmode
5877 && mode != TYPE_MODE (TREE_TYPE (exp)))
5878 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5880 /* If the modes of TEMP and TARGET are both BLKmode, both
5881 must be in memory and BITPOS must be aligned on a byte
5882 boundary. If so, we simply do a block copy. Likewise
5883 for a BLKmode-like TARGET. */
5884 if (GET_MODE (temp) == BLKmode
5885 && (GET_MODE (target) == BLKmode
5886 || (MEM_P (target)
5887 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5888 && (bitpos % BITS_PER_UNIT) == 0
5889 && (bitsize % BITS_PER_UNIT) == 0)))
5891 gcc_assert (MEM_P (target) && MEM_P (temp)
5892 && (bitpos % BITS_PER_UNIT) == 0);
5894 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5895 emit_block_move (target, temp,
5896 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5897 / BITS_PER_UNIT),
5898 BLOCK_OP_NORMAL);
5900 return const0_rtx;
5903 /* Store the value in the bitfield. */
5904 store_bit_field (target, bitsize, bitpos, mode, temp);
5906 return const0_rtx;
5908 else
5910 /* Now build a reference to just the desired component. */
5911 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5913 if (to_rtx == target)
5914 to_rtx = copy_rtx (to_rtx);
5916 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5917 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5918 set_mem_alias_set (to_rtx, alias_set);
5920 return store_expr (exp, to_rtx, 0, nontemporal);
5924 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5925 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5926 codes and find the ultimate containing object, which we return.
5928 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5929 bit position, and *PUNSIGNEDP to the signedness of the field.
5930 If the position of the field is variable, we store a tree
5931 giving the variable offset (in units) in *POFFSET.
5932 This offset is in addition to the bit position.
5933 If the position is not variable, we store 0 in *POFFSET.
5935 If any of the extraction expressions is volatile,
5936 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5938 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5939 Otherwise, it is a mode that can be used to access the field.
5941 If the field describes a variable-sized object, *PMODE is set to
5942 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5943 this case, but the address of the object can be found.
5945 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5946 look through nodes that serve as markers of a greater alignment than
5947 the one that can be deduced from the expression. These nodes make it
5948 possible for front-ends to prevent temporaries from being created by
5949 the middle-end on alignment considerations. For that purpose, the
5950 normal operating mode at high-level is to always pass FALSE so that
5951 the ultimate containing object is really returned; moreover, the
5952 associated predicate handled_component_p will always return TRUE
5953 on these nodes, thus indicating that they are essentially handled
5954 by get_inner_reference. TRUE should only be passed when the caller
5955 is scanning the expression in order to build another representation
5956 and specifically knows how to handle these nodes; as such, this is
5957 the normal operating mode in the RTL expanders. */
5959 tree
5960 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5961 HOST_WIDE_INT *pbitpos, tree *poffset,
5962 enum machine_mode *pmode, int *punsignedp,
5963 int *pvolatilep, bool keep_aligning)
5965 tree size_tree = 0;
5966 enum machine_mode mode = VOIDmode;
5967 bool blkmode_bitfield = false;
5968 tree offset = size_zero_node;
5969 tree bit_offset = bitsize_zero_node;
5971 /* First get the mode, signedness, and size. We do this from just the
5972 outermost expression. */
5973 *pbitsize = -1;
5974 if (TREE_CODE (exp) == COMPONENT_REF)
5976 tree field = TREE_OPERAND (exp, 1);
5977 size_tree = DECL_SIZE (field);
5978 if (!DECL_BIT_FIELD (field))
5979 mode = DECL_MODE (field);
5980 else if (DECL_MODE (field) == BLKmode)
5981 blkmode_bitfield = true;
5983 *punsignedp = DECL_UNSIGNED (field);
5985 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5987 size_tree = TREE_OPERAND (exp, 1);
5988 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5989 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5991 /* For vector types, with the correct size of access, use the mode of
5992 inner type. */
5993 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5994 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5995 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5996 mode = TYPE_MODE (TREE_TYPE (exp));
5998 else
6000 mode = TYPE_MODE (TREE_TYPE (exp));
6001 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6003 if (mode == BLKmode)
6004 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6005 else
6006 *pbitsize = GET_MODE_BITSIZE (mode);
6009 if (size_tree != 0)
6011 if (! host_integerp (size_tree, 1))
6012 mode = BLKmode, *pbitsize = -1;
6013 else
6014 *pbitsize = tree_low_cst (size_tree, 1);
6017 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6018 and find the ultimate containing object. */
6019 while (1)
6021 switch (TREE_CODE (exp))
6023 case BIT_FIELD_REF:
6024 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6025 TREE_OPERAND (exp, 2));
6026 break;
6028 case COMPONENT_REF:
6030 tree field = TREE_OPERAND (exp, 1);
6031 tree this_offset = component_ref_field_offset (exp);
6033 /* If this field hasn't been filled in yet, don't go past it.
6034 This should only happen when folding expressions made during
6035 type construction. */
6036 if (this_offset == 0)
6037 break;
6039 offset = size_binop (PLUS_EXPR, offset, this_offset);
6040 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6041 DECL_FIELD_BIT_OFFSET (field));
6043 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6045 break;
6047 case ARRAY_REF:
6048 case ARRAY_RANGE_REF:
6050 tree index = TREE_OPERAND (exp, 1);
6051 tree low_bound = array_ref_low_bound (exp);
6052 tree unit_size = array_ref_element_size (exp);
6054 /* We assume all arrays have sizes that are a multiple of a byte.
6055 First subtract the lower bound, if any, in the type of the
6056 index, then convert to sizetype and multiply by the size of
6057 the array element. */
6058 if (! integer_zerop (low_bound))
6059 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6060 index, low_bound);
6062 offset = size_binop (PLUS_EXPR, offset,
6063 size_binop (MULT_EXPR,
6064 fold_convert (sizetype, index),
6065 unit_size));
6067 break;
6069 case REALPART_EXPR:
6070 break;
6072 case IMAGPART_EXPR:
6073 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6074 bitsize_int (*pbitsize));
6075 break;
6077 case VIEW_CONVERT_EXPR:
6078 if (keep_aligning && STRICT_ALIGNMENT
6079 && (TYPE_ALIGN (TREE_TYPE (exp))
6080 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6081 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6082 < BIGGEST_ALIGNMENT)
6083 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6084 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6085 goto done;
6086 break;
6088 default:
6089 goto done;
6092 /* If any reference in the chain is volatile, the effect is volatile. */
6093 if (TREE_THIS_VOLATILE (exp))
6094 *pvolatilep = 1;
6096 exp = TREE_OPERAND (exp, 0);
6098 done:
6100 /* If OFFSET is constant, see if we can return the whole thing as a
6101 constant bit position. Make sure to handle overflow during
6102 this conversion. */
6103 if (host_integerp (offset, 0))
6105 double_int tem = double_int_mul (tree_to_double_int (offset),
6106 uhwi_to_double_int (BITS_PER_UNIT));
6107 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6108 if (double_int_fits_in_shwi_p (tem))
6110 *pbitpos = double_int_to_shwi (tem);
6111 *poffset = offset = NULL_TREE;
6115 /* Otherwise, split it up. */
6116 if (offset)
6118 *pbitpos = tree_low_cst (bit_offset, 0);
6119 *poffset = offset;
6122 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6123 if (mode == VOIDmode
6124 && blkmode_bitfield
6125 && (*pbitpos % BITS_PER_UNIT) == 0
6126 && (*pbitsize % BITS_PER_UNIT) == 0)
6127 *pmode = BLKmode;
6128 else
6129 *pmode = mode;
6131 return exp;
6134 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6135 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6136 EXP is marked as PACKED. */
6138 bool
6139 contains_packed_reference (const_tree exp)
6141 bool packed_p = false;
6143 while (1)
6145 switch (TREE_CODE (exp))
6147 case COMPONENT_REF:
6149 tree field = TREE_OPERAND (exp, 1);
6150 packed_p = DECL_PACKED (field)
6151 || TYPE_PACKED (TREE_TYPE (field))
6152 || TYPE_PACKED (TREE_TYPE (exp));
6153 if (packed_p)
6154 goto done;
6156 break;
6158 case BIT_FIELD_REF:
6159 case ARRAY_REF:
6160 case ARRAY_RANGE_REF:
6161 case REALPART_EXPR:
6162 case IMAGPART_EXPR:
6163 case VIEW_CONVERT_EXPR:
6164 break;
6166 default:
6167 goto done;
6169 exp = TREE_OPERAND (exp, 0);
6171 done:
6172 return packed_p;
6175 /* Return a tree of sizetype representing the size, in bytes, of the element
6176 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6178 tree
6179 array_ref_element_size (tree exp)
6181 tree aligned_size = TREE_OPERAND (exp, 3);
6182 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6183 location_t loc = EXPR_LOCATION (exp);
6185 /* If a size was specified in the ARRAY_REF, it's the size measured
6186 in alignment units of the element type. So multiply by that value. */
6187 if (aligned_size)
6189 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6190 sizetype from another type of the same width and signedness. */
6191 if (TREE_TYPE (aligned_size) != sizetype)
6192 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6193 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6194 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6197 /* Otherwise, take the size from that of the element type. Substitute
6198 any PLACEHOLDER_EXPR that we have. */
6199 else
6200 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6203 /* Return a tree representing the lower bound of the array mentioned in
6204 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6206 tree
6207 array_ref_low_bound (tree exp)
6209 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6211 /* If a lower bound is specified in EXP, use it. */
6212 if (TREE_OPERAND (exp, 2))
6213 return TREE_OPERAND (exp, 2);
6215 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6216 substituting for a PLACEHOLDER_EXPR as needed. */
6217 if (domain_type && TYPE_MIN_VALUE (domain_type))
6218 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6220 /* Otherwise, return a zero of the appropriate type. */
6221 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6224 /* Return a tree representing the upper bound of the array mentioned in
6225 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6227 tree
6228 array_ref_up_bound (tree exp)
6230 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6232 /* If there is a domain type and it has an upper bound, use it, substituting
6233 for a PLACEHOLDER_EXPR as needed. */
6234 if (domain_type && TYPE_MAX_VALUE (domain_type))
6235 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6237 /* Otherwise fail. */
6238 return NULL_TREE;
6241 /* Return a tree representing the offset, in bytes, of the field referenced
6242 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6244 tree
6245 component_ref_field_offset (tree exp)
6247 tree aligned_offset = TREE_OPERAND (exp, 2);
6248 tree field = TREE_OPERAND (exp, 1);
6249 location_t loc = EXPR_LOCATION (exp);
6251 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6252 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6253 value. */
6254 if (aligned_offset)
6256 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6257 sizetype from another type of the same width and signedness. */
6258 if (TREE_TYPE (aligned_offset) != sizetype)
6259 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6260 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6261 size_int (DECL_OFFSET_ALIGN (field)
6262 / BITS_PER_UNIT));
6265 /* Otherwise, take the offset from that of the field. Substitute
6266 any PLACEHOLDER_EXPR that we have. */
6267 else
6268 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6271 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6273 static unsigned HOST_WIDE_INT
6274 target_align (const_tree target)
6276 /* We might have a chain of nested references with intermediate misaligning
6277 bitfields components, so need to recurse to find out. */
6279 unsigned HOST_WIDE_INT this_align, outer_align;
6281 switch (TREE_CODE (target))
6283 case BIT_FIELD_REF:
6284 return 1;
6286 case COMPONENT_REF:
6287 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6288 outer_align = target_align (TREE_OPERAND (target, 0));
6289 return MIN (this_align, outer_align);
6291 case ARRAY_REF:
6292 case ARRAY_RANGE_REF:
6293 this_align = TYPE_ALIGN (TREE_TYPE (target));
6294 outer_align = target_align (TREE_OPERAND (target, 0));
6295 return MIN (this_align, outer_align);
6297 CASE_CONVERT:
6298 case NON_LVALUE_EXPR:
6299 case VIEW_CONVERT_EXPR:
6300 this_align = TYPE_ALIGN (TREE_TYPE (target));
6301 outer_align = target_align (TREE_OPERAND (target, 0));
6302 return MAX (this_align, outer_align);
6304 default:
6305 return TYPE_ALIGN (TREE_TYPE (target));
6310 /* Given an rtx VALUE that may contain additions and multiplications, return
6311 an equivalent value that just refers to a register, memory, or constant.
6312 This is done by generating instructions to perform the arithmetic and
6313 returning a pseudo-register containing the value.
6315 The returned value may be a REG, SUBREG, MEM or constant. */
6318 force_operand (rtx value, rtx target)
6320 rtx op1, op2;
6321 /* Use subtarget as the target for operand 0 of a binary operation. */
6322 rtx subtarget = get_subtarget (target);
6323 enum rtx_code code = GET_CODE (value);
6325 /* Check for subreg applied to an expression produced by loop optimizer. */
6326 if (code == SUBREG
6327 && !REG_P (SUBREG_REG (value))
6328 && !MEM_P (SUBREG_REG (value)))
6330 value
6331 = simplify_gen_subreg (GET_MODE (value),
6332 force_reg (GET_MODE (SUBREG_REG (value)),
6333 force_operand (SUBREG_REG (value),
6334 NULL_RTX)),
6335 GET_MODE (SUBREG_REG (value)),
6336 SUBREG_BYTE (value));
6337 code = GET_CODE (value);
6340 /* Check for a PIC address load. */
6341 if ((code == PLUS || code == MINUS)
6342 && XEXP (value, 0) == pic_offset_table_rtx
6343 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6344 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6345 || GET_CODE (XEXP (value, 1)) == CONST))
6347 if (!subtarget)
6348 subtarget = gen_reg_rtx (GET_MODE (value));
6349 emit_move_insn (subtarget, value);
6350 return subtarget;
6353 if (ARITHMETIC_P (value))
6355 op2 = XEXP (value, 1);
6356 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6357 subtarget = 0;
6358 if (code == MINUS && CONST_INT_P (op2))
6360 code = PLUS;
6361 op2 = negate_rtx (GET_MODE (value), op2);
6364 /* Check for an addition with OP2 a constant integer and our first
6365 operand a PLUS of a virtual register and something else. In that
6366 case, we want to emit the sum of the virtual register and the
6367 constant first and then add the other value. This allows virtual
6368 register instantiation to simply modify the constant rather than
6369 creating another one around this addition. */
6370 if (code == PLUS && CONST_INT_P (op2)
6371 && GET_CODE (XEXP (value, 0)) == PLUS
6372 && REG_P (XEXP (XEXP (value, 0), 0))
6373 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6374 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6376 rtx temp = expand_simple_binop (GET_MODE (value), code,
6377 XEXP (XEXP (value, 0), 0), op2,
6378 subtarget, 0, OPTAB_LIB_WIDEN);
6379 return expand_simple_binop (GET_MODE (value), code, temp,
6380 force_operand (XEXP (XEXP (value,
6381 0), 1), 0),
6382 target, 0, OPTAB_LIB_WIDEN);
6385 op1 = force_operand (XEXP (value, 0), subtarget);
6386 op2 = force_operand (op2, NULL_RTX);
6387 switch (code)
6389 case MULT:
6390 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6391 case DIV:
6392 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6393 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6394 target, 1, OPTAB_LIB_WIDEN);
6395 else
6396 return expand_divmod (0,
6397 FLOAT_MODE_P (GET_MODE (value))
6398 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6399 GET_MODE (value), op1, op2, target, 0);
6400 case MOD:
6401 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6402 target, 0);
6403 case UDIV:
6404 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6405 target, 1);
6406 case UMOD:
6407 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6408 target, 1);
6409 case ASHIFTRT:
6410 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6411 target, 0, OPTAB_LIB_WIDEN);
6412 default:
6413 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6414 target, 1, OPTAB_LIB_WIDEN);
6417 if (UNARY_P (value))
6419 if (!target)
6420 target = gen_reg_rtx (GET_MODE (value));
6421 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6422 switch (code)
6424 case ZERO_EXTEND:
6425 case SIGN_EXTEND:
6426 case TRUNCATE:
6427 case FLOAT_EXTEND:
6428 case FLOAT_TRUNCATE:
6429 convert_move (target, op1, code == ZERO_EXTEND);
6430 return target;
6432 case FIX:
6433 case UNSIGNED_FIX:
6434 expand_fix (target, op1, code == UNSIGNED_FIX);
6435 return target;
6437 case FLOAT:
6438 case UNSIGNED_FLOAT:
6439 expand_float (target, op1, code == UNSIGNED_FLOAT);
6440 return target;
6442 default:
6443 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6447 #ifdef INSN_SCHEDULING
6448 /* On machines that have insn scheduling, we want all memory reference to be
6449 explicit, so we need to deal with such paradoxical SUBREGs. */
6450 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6451 && (GET_MODE_SIZE (GET_MODE (value))
6452 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6453 value
6454 = simplify_gen_subreg (GET_MODE (value),
6455 force_reg (GET_MODE (SUBREG_REG (value)),
6456 force_operand (SUBREG_REG (value),
6457 NULL_RTX)),
6458 GET_MODE (SUBREG_REG (value)),
6459 SUBREG_BYTE (value));
6460 #endif
6462 return value;
6465 /* Subroutine of expand_expr: return nonzero iff there is no way that
6466 EXP can reference X, which is being modified. TOP_P is nonzero if this
6467 call is going to be used to determine whether we need a temporary
6468 for EXP, as opposed to a recursive call to this function.
6470 It is always safe for this routine to return zero since it merely
6471 searches for optimization opportunities. */
6474 safe_from_p (const_rtx x, tree exp, int top_p)
6476 rtx exp_rtl = 0;
6477 int i, nops;
6479 if (x == 0
6480 /* If EXP has varying size, we MUST use a target since we currently
6481 have no way of allocating temporaries of variable size
6482 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6483 So we assume here that something at a higher level has prevented a
6484 clash. This is somewhat bogus, but the best we can do. Only
6485 do this when X is BLKmode and when we are at the top level. */
6486 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6487 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6488 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6489 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6490 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6491 != INTEGER_CST)
6492 && GET_MODE (x) == BLKmode)
6493 /* If X is in the outgoing argument area, it is always safe. */
6494 || (MEM_P (x)
6495 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6496 || (GET_CODE (XEXP (x, 0)) == PLUS
6497 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6498 return 1;
6500 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6501 find the underlying pseudo. */
6502 if (GET_CODE (x) == SUBREG)
6504 x = SUBREG_REG (x);
6505 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6506 return 0;
6509 /* Now look at our tree code and possibly recurse. */
6510 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6512 case tcc_declaration:
6513 exp_rtl = DECL_RTL_IF_SET (exp);
6514 break;
6516 case tcc_constant:
6517 return 1;
6519 case tcc_exceptional:
6520 if (TREE_CODE (exp) == TREE_LIST)
6522 while (1)
6524 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6525 return 0;
6526 exp = TREE_CHAIN (exp);
6527 if (!exp)
6528 return 1;
6529 if (TREE_CODE (exp) != TREE_LIST)
6530 return safe_from_p (x, exp, 0);
6533 else if (TREE_CODE (exp) == CONSTRUCTOR)
6535 constructor_elt *ce;
6536 unsigned HOST_WIDE_INT idx;
6538 for (idx = 0;
6539 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6540 idx++)
6541 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6542 || !safe_from_p (x, ce->value, 0))
6543 return 0;
6544 return 1;
6546 else if (TREE_CODE (exp) == ERROR_MARK)
6547 return 1; /* An already-visited SAVE_EXPR? */
6548 else
6549 return 0;
6551 case tcc_statement:
6552 /* The only case we look at here is the DECL_INITIAL inside a
6553 DECL_EXPR. */
6554 return (TREE_CODE (exp) != DECL_EXPR
6555 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6556 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6557 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6559 case tcc_binary:
6560 case tcc_comparison:
6561 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6562 return 0;
6563 /* Fall through. */
6565 case tcc_unary:
6566 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6568 case tcc_expression:
6569 case tcc_reference:
6570 case tcc_vl_exp:
6571 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6572 the expression. If it is set, we conflict iff we are that rtx or
6573 both are in memory. Otherwise, we check all operands of the
6574 expression recursively. */
6576 switch (TREE_CODE (exp))
6578 case ADDR_EXPR:
6579 /* If the operand is static or we are static, we can't conflict.
6580 Likewise if we don't conflict with the operand at all. */
6581 if (staticp (TREE_OPERAND (exp, 0))
6582 || TREE_STATIC (exp)
6583 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6584 return 1;
6586 /* Otherwise, the only way this can conflict is if we are taking
6587 the address of a DECL a that address if part of X, which is
6588 very rare. */
6589 exp = TREE_OPERAND (exp, 0);
6590 if (DECL_P (exp))
6592 if (!DECL_RTL_SET_P (exp)
6593 || !MEM_P (DECL_RTL (exp)))
6594 return 0;
6595 else
6596 exp_rtl = XEXP (DECL_RTL (exp), 0);
6598 break;
6600 case MISALIGNED_INDIRECT_REF:
6601 case ALIGN_INDIRECT_REF:
6602 case INDIRECT_REF:
6603 if (MEM_P (x)
6604 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6605 get_alias_set (exp)))
6606 return 0;
6607 break;
6609 case CALL_EXPR:
6610 /* Assume that the call will clobber all hard registers and
6611 all of memory. */
6612 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6613 || MEM_P (x))
6614 return 0;
6615 break;
6617 case WITH_CLEANUP_EXPR:
6618 case CLEANUP_POINT_EXPR:
6619 /* Lowered by gimplify.c. */
6620 gcc_unreachable ();
6622 case SAVE_EXPR:
6623 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6625 default:
6626 break;
6629 /* If we have an rtx, we do not need to scan our operands. */
6630 if (exp_rtl)
6631 break;
6633 nops = TREE_OPERAND_LENGTH (exp);
6634 for (i = 0; i < nops; i++)
6635 if (TREE_OPERAND (exp, i) != 0
6636 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6637 return 0;
6639 break;
6641 case tcc_type:
6642 /* Should never get a type here. */
6643 gcc_unreachable ();
6646 /* If we have an rtl, find any enclosed object. Then see if we conflict
6647 with it. */
6648 if (exp_rtl)
6650 if (GET_CODE (exp_rtl) == SUBREG)
6652 exp_rtl = SUBREG_REG (exp_rtl);
6653 if (REG_P (exp_rtl)
6654 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6655 return 0;
6658 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6659 are memory and they conflict. */
6660 return ! (rtx_equal_p (x, exp_rtl)
6661 || (MEM_P (x) && MEM_P (exp_rtl)
6662 && true_dependence (exp_rtl, VOIDmode, x,
6663 rtx_addr_varies_p)));
6666 /* If we reach here, it is safe. */
6667 return 1;
6671 /* Return the highest power of two that EXP is known to be a multiple of.
6672 This is used in updating alignment of MEMs in array references. */
6674 unsigned HOST_WIDE_INT
6675 highest_pow2_factor (const_tree exp)
6677 unsigned HOST_WIDE_INT c0, c1;
6679 switch (TREE_CODE (exp))
6681 case INTEGER_CST:
6682 /* We can find the lowest bit that's a one. If the low
6683 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6684 We need to handle this case since we can find it in a COND_EXPR,
6685 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6686 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6687 later ICE. */
6688 if (TREE_OVERFLOW (exp))
6689 return BIGGEST_ALIGNMENT;
6690 else
6692 /* Note: tree_low_cst is intentionally not used here,
6693 we don't care about the upper bits. */
6694 c0 = TREE_INT_CST_LOW (exp);
6695 c0 &= -c0;
6696 return c0 ? c0 : BIGGEST_ALIGNMENT;
6698 break;
6700 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6701 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6702 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6703 return MIN (c0, c1);
6705 case MULT_EXPR:
6706 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6707 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6708 return c0 * c1;
6710 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6711 case CEIL_DIV_EXPR:
6712 if (integer_pow2p (TREE_OPERAND (exp, 1))
6713 && host_integerp (TREE_OPERAND (exp, 1), 1))
6715 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6716 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6717 return MAX (1, c0 / c1);
6719 break;
6721 case BIT_AND_EXPR:
6722 /* The highest power of two of a bit-and expression is the maximum of
6723 that of its operands. We typically get here for a complex LHS and
6724 a constant negative power of two on the RHS to force an explicit
6725 alignment, so don't bother looking at the LHS. */
6726 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6728 CASE_CONVERT:
6729 case SAVE_EXPR:
6730 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6732 case COMPOUND_EXPR:
6733 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6735 case COND_EXPR:
6736 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6737 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6738 return MIN (c0, c1);
6740 default:
6741 break;
6744 return 1;
6747 /* Similar, except that the alignment requirements of TARGET are
6748 taken into account. Assume it is at least as aligned as its
6749 type, unless it is a COMPONENT_REF in which case the layout of
6750 the structure gives the alignment. */
6752 static unsigned HOST_WIDE_INT
6753 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6755 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6756 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6758 return MAX (factor, talign);
6761 /* Return &VAR expression for emulated thread local VAR. */
6763 static tree
6764 emutls_var_address (tree var)
6766 tree emuvar = emutls_decl (var);
6767 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6768 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6769 tree arglist = build_tree_list (NULL_TREE, arg);
6770 tree call = build_function_call_expr (UNKNOWN_LOCATION, fn, arglist);
6771 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6775 /* Subroutine of expand_expr. Expand the two operands of a binary
6776 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6777 The value may be stored in TARGET if TARGET is nonzero. The
6778 MODIFIER argument is as documented by expand_expr. */
6780 static void
6781 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6782 enum expand_modifier modifier)
6784 if (! safe_from_p (target, exp1, 1))
6785 target = 0;
6786 if (operand_equal_p (exp0, exp1, 0))
6788 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6789 *op1 = copy_rtx (*op0);
6791 else
6793 /* If we need to preserve evaluation order, copy exp0 into its own
6794 temporary variable so that it can't be clobbered by exp1. */
6795 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6796 exp0 = save_expr (exp0);
6797 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6798 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6803 /* Return a MEM that contains constant EXP. DEFER is as for
6804 output_constant_def and MODIFIER is as for expand_expr. */
6806 static rtx
6807 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6809 rtx mem;
6811 mem = output_constant_def (exp, defer);
6812 if (modifier != EXPAND_INITIALIZER)
6813 mem = use_anchored_address (mem);
6814 return mem;
6817 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6818 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6820 static rtx
6821 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6822 enum expand_modifier modifier, addr_space_t as)
6824 rtx result, subtarget;
6825 tree inner, offset;
6826 HOST_WIDE_INT bitsize, bitpos;
6827 int volatilep, unsignedp;
6828 enum machine_mode mode1;
6830 /* If we are taking the address of a constant and are at the top level,
6831 we have to use output_constant_def since we can't call force_const_mem
6832 at top level. */
6833 /* ??? This should be considered a front-end bug. We should not be
6834 generating ADDR_EXPR of something that isn't an LVALUE. The only
6835 exception here is STRING_CST. */
6836 if (CONSTANT_CLASS_P (exp))
6837 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6839 /* Everything must be something allowed by is_gimple_addressable. */
6840 switch (TREE_CODE (exp))
6842 case INDIRECT_REF:
6843 /* This case will happen via recursion for &a->b. */
6844 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6846 case CONST_DECL:
6847 /* Expand the initializer like constants above. */
6848 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6850 case REALPART_EXPR:
6851 /* The real part of the complex number is always first, therefore
6852 the address is the same as the address of the parent object. */
6853 offset = 0;
6854 bitpos = 0;
6855 inner = TREE_OPERAND (exp, 0);
6856 break;
6858 case IMAGPART_EXPR:
6859 /* The imaginary part of the complex number is always second.
6860 The expression is therefore always offset by the size of the
6861 scalar type. */
6862 offset = 0;
6863 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6864 inner = TREE_OPERAND (exp, 0);
6865 break;
6867 case VAR_DECL:
6868 /* TLS emulation hook - replace __thread VAR's &VAR with
6869 __emutls_get_address (&_emutls.VAR). */
6870 if (! targetm.have_tls
6871 && TREE_CODE (exp) == VAR_DECL
6872 && DECL_THREAD_LOCAL_P (exp))
6874 exp = emutls_var_address (exp);
6875 return expand_expr (exp, target, tmode, modifier);
6877 /* Fall through. */
6879 default:
6880 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6881 expand_expr, as that can have various side effects; LABEL_DECLs for
6882 example, may not have their DECL_RTL set yet. Expand the rtl of
6883 CONSTRUCTORs too, which should yield a memory reference for the
6884 constructor's contents. Assume language specific tree nodes can
6885 be expanded in some interesting way. */
6886 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6887 if (DECL_P (exp)
6888 || TREE_CODE (exp) == CONSTRUCTOR
6889 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6891 result = expand_expr (exp, target, tmode,
6892 modifier == EXPAND_INITIALIZER
6893 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6895 /* If the DECL isn't in memory, then the DECL wasn't properly
6896 marked TREE_ADDRESSABLE, which will be either a front-end
6897 or a tree optimizer bug. */
6898 gcc_assert (MEM_P (result));
6899 result = XEXP (result, 0);
6901 /* ??? Is this needed anymore? */
6902 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6904 assemble_external (exp);
6905 TREE_USED (exp) = 1;
6908 if (modifier != EXPAND_INITIALIZER
6909 && modifier != EXPAND_CONST_ADDRESS)
6910 result = force_operand (result, target);
6911 return result;
6914 /* Pass FALSE as the last argument to get_inner_reference although
6915 we are expanding to RTL. The rationale is that we know how to
6916 handle "aligning nodes" here: we can just bypass them because
6917 they won't change the final object whose address will be returned
6918 (they actually exist only for that purpose). */
6919 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6920 &mode1, &unsignedp, &volatilep, false);
6921 break;
6924 /* We must have made progress. */
6925 gcc_assert (inner != exp);
6927 subtarget = offset || bitpos ? NULL_RTX : target;
6928 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6929 inner alignment, force the inner to be sufficiently aligned. */
6930 if (CONSTANT_CLASS_P (inner)
6931 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6933 inner = copy_node (inner);
6934 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6935 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6936 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6938 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6940 if (offset)
6942 rtx tmp;
6944 if (modifier != EXPAND_NORMAL)
6945 result = force_operand (result, NULL);
6946 tmp = expand_expr (offset, NULL_RTX, tmode,
6947 modifier == EXPAND_INITIALIZER
6948 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6950 result = convert_memory_address_addr_space (tmode, result, as);
6951 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6953 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6954 result = gen_rtx_PLUS (tmode, result, tmp);
6955 else
6957 subtarget = bitpos ? NULL_RTX : target;
6958 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6959 1, OPTAB_LIB_WIDEN);
6963 if (bitpos)
6965 /* Someone beforehand should have rejected taking the address
6966 of such an object. */
6967 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6969 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6970 if (modifier < EXPAND_SUM)
6971 result = force_operand (result, target);
6974 return result;
6977 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6978 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6980 static rtx
6981 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6982 enum expand_modifier modifier)
6984 addr_space_t as = ADDR_SPACE_GENERIC;
6985 enum machine_mode address_mode = Pmode;
6986 enum machine_mode pointer_mode = ptr_mode;
6987 enum machine_mode rmode;
6988 rtx result;
6990 /* Target mode of VOIDmode says "whatever's natural". */
6991 if (tmode == VOIDmode)
6992 tmode = TYPE_MODE (TREE_TYPE (exp));
6994 if (POINTER_TYPE_P (TREE_TYPE (exp)))
6996 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
6997 address_mode = targetm.addr_space.address_mode (as);
6998 pointer_mode = targetm.addr_space.pointer_mode (as);
7001 /* We can get called with some Weird Things if the user does silliness
7002 like "(short) &a". In that case, convert_memory_address won't do
7003 the right thing, so ignore the given target mode. */
7004 if (tmode != address_mode && tmode != pointer_mode)
7005 tmode = address_mode;
7007 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7008 tmode, modifier, as);
7010 /* Despite expand_expr claims concerning ignoring TMODE when not
7011 strictly convenient, stuff breaks if we don't honor it. Note
7012 that combined with the above, we only do this for pointer modes. */
7013 rmode = GET_MODE (result);
7014 if (rmode == VOIDmode)
7015 rmode = tmode;
7016 if (rmode != tmode)
7017 result = convert_memory_address_addr_space (tmode, result, as);
7019 return result;
7022 /* Generate code for computing CONSTRUCTOR EXP.
7023 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7024 is TRUE, instead of creating a temporary variable in memory
7025 NULL is returned and the caller needs to handle it differently. */
7027 static rtx
7028 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7029 bool avoid_temp_mem)
7031 tree type = TREE_TYPE (exp);
7032 enum machine_mode mode = TYPE_MODE (type);
7034 /* Try to avoid creating a temporary at all. This is possible
7035 if all of the initializer is zero.
7036 FIXME: try to handle all [0..255] initializers we can handle
7037 with memset. */
7038 if (TREE_STATIC (exp)
7039 && !TREE_ADDRESSABLE (exp)
7040 && target != 0 && mode == BLKmode
7041 && all_zeros_p (exp))
7043 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7044 return target;
7047 /* All elts simple constants => refer to a constant in memory. But
7048 if this is a non-BLKmode mode, let it store a field at a time
7049 since that should make a CONST_INT or CONST_DOUBLE when we
7050 fold. Likewise, if we have a target we can use, it is best to
7051 store directly into the target unless the type is large enough
7052 that memcpy will be used. If we are making an initializer and
7053 all operands are constant, put it in memory as well.
7055 FIXME: Avoid trying to fill vector constructors piece-meal.
7056 Output them with output_constant_def below unless we're sure
7057 they're zeros. This should go away when vector initializers
7058 are treated like VECTOR_CST instead of arrays. */
7059 if ((TREE_STATIC (exp)
7060 && ((mode == BLKmode
7061 && ! (target != 0 && safe_from_p (target, exp, 1)))
7062 || TREE_ADDRESSABLE (exp)
7063 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7064 && (! MOVE_BY_PIECES_P
7065 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7066 TYPE_ALIGN (type)))
7067 && ! mostly_zeros_p (exp))))
7068 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7069 && TREE_CONSTANT (exp)))
7071 rtx constructor;
7073 if (avoid_temp_mem)
7074 return NULL_RTX;
7076 constructor = expand_expr_constant (exp, 1, modifier);
7078 if (modifier != EXPAND_CONST_ADDRESS
7079 && modifier != EXPAND_INITIALIZER
7080 && modifier != EXPAND_SUM)
7081 constructor = validize_mem (constructor);
7083 return constructor;
7086 /* Handle calls that pass values in multiple non-contiguous
7087 locations. The Irix 6 ABI has examples of this. */
7088 if (target == 0 || ! safe_from_p (target, exp, 1)
7089 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7091 if (avoid_temp_mem)
7092 return NULL_RTX;
7094 target
7095 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7096 | (TREE_READONLY (exp)
7097 * TYPE_QUAL_CONST))),
7098 0, TREE_ADDRESSABLE (exp), 1);
7101 store_constructor (exp, target, 0, int_expr_size (exp));
7102 return target;
7106 /* expand_expr: generate code for computing expression EXP.
7107 An rtx for the computed value is returned. The value is never null.
7108 In the case of a void EXP, const0_rtx is returned.
7110 The value may be stored in TARGET if TARGET is nonzero.
7111 TARGET is just a suggestion; callers must assume that
7112 the rtx returned may not be the same as TARGET.
7114 If TARGET is CONST0_RTX, it means that the value will be ignored.
7116 If TMODE is not VOIDmode, it suggests generating the
7117 result in mode TMODE. But this is done only when convenient.
7118 Otherwise, TMODE is ignored and the value generated in its natural mode.
7119 TMODE is just a suggestion; callers must assume that
7120 the rtx returned may not have mode TMODE.
7122 Note that TARGET may have neither TMODE nor MODE. In that case, it
7123 probably will not be used.
7125 If MODIFIER is EXPAND_SUM then when EXP is an addition
7126 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7127 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7128 products as above, or REG or MEM, or constant.
7129 Ordinarily in such cases we would output mul or add instructions
7130 and then return a pseudo reg containing the sum.
7132 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7133 it also marks a label as absolutely required (it can't be dead).
7134 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7135 This is used for outputting expressions used in initializers.
7137 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7138 with a constant address even if that address is not normally legitimate.
7139 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7141 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7142 a call parameter. Such targets require special care as we haven't yet
7143 marked TARGET so that it's safe from being trashed by libcalls. We
7144 don't want to use TARGET for anything but the final result;
7145 Intermediate values must go elsewhere. Additionally, calls to
7146 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7148 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7149 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7150 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7151 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7152 recursively. */
7155 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7156 enum expand_modifier modifier, rtx *alt_rtl)
7158 rtx ret;
7160 /* Handle ERROR_MARK before anybody tries to access its type. */
7161 if (TREE_CODE (exp) == ERROR_MARK
7162 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7164 ret = CONST0_RTX (tmode);
7165 return ret ? ret : const0_rtx;
7168 /* If this is an expression of some kind and it has an associated line
7169 number, then emit the line number before expanding the expression.
7171 We need to save and restore the file and line information so that
7172 errors discovered during expansion are emitted with the right
7173 information. It would be better of the diagnostic routines
7174 used the file/line information embedded in the tree nodes rather
7175 than globals. */
7176 if (cfun && EXPR_HAS_LOCATION (exp))
7178 location_t saved_location = input_location;
7179 location_t saved_curr_loc = get_curr_insn_source_location ();
7180 tree saved_block = get_curr_insn_block ();
7181 input_location = EXPR_LOCATION (exp);
7182 set_curr_insn_source_location (input_location);
7184 /* Record where the insns produced belong. */
7185 set_curr_insn_block (TREE_BLOCK (exp));
7187 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7189 input_location = saved_location;
7190 set_curr_insn_block (saved_block);
7191 set_curr_insn_source_location (saved_curr_loc);
7193 else
7195 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7198 return ret;
7202 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7203 enum expand_modifier modifier)
7205 rtx op0, op1, op2, temp;
7206 tree type;
7207 int unsignedp;
7208 enum machine_mode mode;
7209 enum tree_code code = ops->code;
7210 optab this_optab;
7211 rtx subtarget, original_target;
7212 int ignore;
7213 tree subexp0, subexp1;
7214 bool reduce_bit_field;
7215 gimple subexp0_def, subexp1_def;
7216 tree top0, top1;
7217 location_t loc = ops->location;
7218 tree treeop0, treeop1;
7219 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7220 ? reduce_to_bit_field_precision ((expr), \
7221 target, \
7222 type) \
7223 : (expr))
7225 type = ops->type;
7226 mode = TYPE_MODE (type);
7227 unsignedp = TYPE_UNSIGNED (type);
7229 treeop0 = ops->op0;
7230 treeop1 = ops->op1;
7232 /* We should be called only on simple (binary or unary) expressions,
7233 exactly those that are valid in gimple expressions that aren't
7234 GIMPLE_SINGLE_RHS (or invalid). */
7235 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7236 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS);
7238 ignore = (target == const0_rtx
7239 || ((CONVERT_EXPR_CODE_P (code)
7240 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7241 && TREE_CODE (type) == VOID_TYPE));
7243 /* We should be called only if we need the result. */
7244 gcc_assert (!ignore);
7246 /* An operation in what may be a bit-field type needs the
7247 result to be reduced to the precision of the bit-field type,
7248 which is narrower than that of the type's mode. */
7249 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7250 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7252 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7253 target = 0;
7255 /* Use subtarget as the target for operand 0 of a binary operation. */
7256 subtarget = get_subtarget (target);
7257 original_target = target;
7259 switch (code)
7261 case NON_LVALUE_EXPR:
7262 case PAREN_EXPR:
7263 CASE_CONVERT:
7264 if (treeop0 == error_mark_node)
7265 return const0_rtx;
7267 if (TREE_CODE (type) == UNION_TYPE)
7269 tree valtype = TREE_TYPE (treeop0);
7271 /* If both input and output are BLKmode, this conversion isn't doing
7272 anything except possibly changing memory attribute. */
7273 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7275 rtx result = expand_expr (treeop0, target, tmode,
7276 modifier);
7278 result = copy_rtx (result);
7279 set_mem_attributes (result, type, 0);
7280 return result;
7283 if (target == 0)
7285 if (TYPE_MODE (type) != BLKmode)
7286 target = gen_reg_rtx (TYPE_MODE (type));
7287 else
7288 target = assign_temp (type, 0, 1, 1);
7291 if (MEM_P (target))
7292 /* Store data into beginning of memory target. */
7293 store_expr (treeop0,
7294 adjust_address (target, TYPE_MODE (valtype), 0),
7295 modifier == EXPAND_STACK_PARM,
7296 false);
7298 else
7300 gcc_assert (REG_P (target));
7302 /* Store this field into a union of the proper type. */
7303 store_field (target,
7304 MIN ((int_size_in_bytes (TREE_TYPE
7305 (treeop0))
7306 * BITS_PER_UNIT),
7307 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7308 0, TYPE_MODE (valtype), treeop0,
7309 type, 0, false);
7312 /* Return the entire union. */
7313 return target;
7316 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7318 op0 = expand_expr (treeop0, target, VOIDmode,
7319 modifier);
7321 /* If the signedness of the conversion differs and OP0 is
7322 a promoted SUBREG, clear that indication since we now
7323 have to do the proper extension. */
7324 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7325 && GET_CODE (op0) == SUBREG)
7326 SUBREG_PROMOTED_VAR_P (op0) = 0;
7328 return REDUCE_BIT_FIELD (op0);
7331 op0 = expand_expr (treeop0, NULL_RTX, mode,
7332 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7333 if (GET_MODE (op0) == mode)
7336 /* If OP0 is a constant, just convert it into the proper mode. */
7337 else if (CONSTANT_P (op0))
7339 tree inner_type = TREE_TYPE (treeop0);
7340 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7342 if (modifier == EXPAND_INITIALIZER)
7343 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7344 subreg_lowpart_offset (mode,
7345 inner_mode));
7346 else
7347 op0= convert_modes (mode, inner_mode, op0,
7348 TYPE_UNSIGNED (inner_type));
7351 else if (modifier == EXPAND_INITIALIZER)
7352 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7354 else if (target == 0)
7355 op0 = convert_to_mode (mode, op0,
7356 TYPE_UNSIGNED (TREE_TYPE
7357 (treeop0)));
7358 else
7360 convert_move (target, op0,
7361 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7362 op0 = target;
7365 return REDUCE_BIT_FIELD (op0);
7367 case ADDR_SPACE_CONVERT_EXPR:
7369 tree treeop0_type = TREE_TYPE (treeop0);
7370 addr_space_t as_to;
7371 addr_space_t as_from;
7373 gcc_assert (POINTER_TYPE_P (type));
7374 gcc_assert (POINTER_TYPE_P (treeop0_type));
7376 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7377 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7379 /* Conversions between pointers to the same address space should
7380 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7381 gcc_assert (as_to != as_from);
7383 /* Ask target code to handle conversion between pointers
7384 to overlapping address spaces. */
7385 if (targetm.addr_space.subset_p (as_to, as_from)
7386 || targetm.addr_space.subset_p (as_from, as_to))
7388 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7389 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7390 gcc_assert (op0);
7391 return op0;
7394 /* For disjoint address spaces, converting anything but
7395 a null pointer invokes undefined behaviour. We simply
7396 always return a null pointer here. */
7397 return CONST0_RTX (mode);
7400 case POINTER_PLUS_EXPR:
7401 /* Even though the sizetype mode and the pointer's mode can be different
7402 expand is able to handle this correctly and get the correct result out
7403 of the PLUS_EXPR code. */
7404 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7405 if sizetype precision is smaller than pointer precision. */
7406 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7407 treeop1 = fold_convert_loc (loc, type,
7408 fold_convert_loc (loc, ssizetype,
7409 treeop1));
7410 case PLUS_EXPR:
7412 /* Check if this is a case for multiplication and addition. */
7413 if ((TREE_CODE (type) == INTEGER_TYPE
7414 || TREE_CODE (type) == FIXED_POINT_TYPE)
7415 && (subexp0_def = get_def_for_expr (treeop0,
7416 MULT_EXPR)))
7418 tree subsubexp0, subsubexp1;
7419 gimple subsubexp0_def, subsubexp1_def;
7420 enum tree_code this_code;
7422 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7423 : FIXED_CONVERT_EXPR;
7424 subsubexp0 = gimple_assign_rhs1 (subexp0_def);
7425 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7426 subsubexp1 = gimple_assign_rhs2 (subexp0_def);
7427 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7428 if (subsubexp0_def && subsubexp1_def
7429 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7430 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7431 && (TYPE_PRECISION (TREE_TYPE (top0))
7432 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7433 && (TYPE_PRECISION (TREE_TYPE (top0))
7434 == TYPE_PRECISION (TREE_TYPE (top1)))
7435 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7436 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7438 tree op0type = TREE_TYPE (top0);
7439 enum machine_mode innermode = TYPE_MODE (op0type);
7440 bool zextend_p = TYPE_UNSIGNED (op0type);
7441 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7442 if (sat_p == 0)
7443 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
7444 else
7445 this_optab = zextend_p ? usmadd_widen_optab
7446 : ssmadd_widen_optab;
7447 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7448 && (optab_handler (this_optab, mode)->insn_code
7449 != CODE_FOR_nothing))
7451 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7452 EXPAND_NORMAL);
7453 op2 = expand_expr (treeop1, subtarget,
7454 VOIDmode, EXPAND_NORMAL);
7455 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7456 target, unsignedp);
7457 gcc_assert (temp);
7458 return REDUCE_BIT_FIELD (temp);
7463 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7464 something else, make sure we add the register to the constant and
7465 then to the other thing. This case can occur during strength
7466 reduction and doing it this way will produce better code if the
7467 frame pointer or argument pointer is eliminated.
7469 fold-const.c will ensure that the constant is always in the inner
7470 PLUS_EXPR, so the only case we need to do anything about is if
7471 sp, ap, or fp is our second argument, in which case we must swap
7472 the innermost first argument and our second argument. */
7474 if (TREE_CODE (treeop0) == PLUS_EXPR
7475 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7476 && TREE_CODE (treeop1) == VAR_DECL
7477 && (DECL_RTL (treeop1) == frame_pointer_rtx
7478 || DECL_RTL (treeop1) == stack_pointer_rtx
7479 || DECL_RTL (treeop1) == arg_pointer_rtx))
7481 tree t = treeop1;
7483 treeop1 = TREE_OPERAND (treeop0, 0);
7484 TREE_OPERAND (treeop0, 0) = t;
7487 /* If the result is to be ptr_mode and we are adding an integer to
7488 something, we might be forming a constant. So try to use
7489 plus_constant. If it produces a sum and we can't accept it,
7490 use force_operand. This allows P = &ARR[const] to generate
7491 efficient code on machines where a SYMBOL_REF is not a valid
7492 address.
7494 If this is an EXPAND_SUM call, always return the sum. */
7495 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7496 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7498 if (modifier == EXPAND_STACK_PARM)
7499 target = 0;
7500 if (TREE_CODE (treeop0) == INTEGER_CST
7501 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7502 && TREE_CONSTANT (treeop1))
7504 rtx constant_part;
7506 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7507 EXPAND_SUM);
7508 /* Use immed_double_const to ensure that the constant is
7509 truncated according to the mode of OP1, then sign extended
7510 to a HOST_WIDE_INT. Using the constant directly can result
7511 in non-canonical RTL in a 64x32 cross compile. */
7512 constant_part
7513 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7514 (HOST_WIDE_INT) 0,
7515 TYPE_MODE (TREE_TYPE (treeop1)));
7516 op1 = plus_constant (op1, INTVAL (constant_part));
7517 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7518 op1 = force_operand (op1, target);
7519 return REDUCE_BIT_FIELD (op1);
7522 else if (TREE_CODE (treeop1) == INTEGER_CST
7523 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7524 && TREE_CONSTANT (treeop0))
7526 rtx constant_part;
7528 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7529 (modifier == EXPAND_INITIALIZER
7530 ? EXPAND_INITIALIZER : EXPAND_SUM));
7531 if (! CONSTANT_P (op0))
7533 op1 = expand_expr (treeop1, NULL_RTX,
7534 VOIDmode, modifier);
7535 /* Return a PLUS if modifier says it's OK. */
7536 if (modifier == EXPAND_SUM
7537 || modifier == EXPAND_INITIALIZER)
7538 return simplify_gen_binary (PLUS, mode, op0, op1);
7539 goto binop2;
7541 /* Use immed_double_const to ensure that the constant is
7542 truncated according to the mode of OP1, then sign extended
7543 to a HOST_WIDE_INT. Using the constant directly can result
7544 in non-canonical RTL in a 64x32 cross compile. */
7545 constant_part
7546 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7547 (HOST_WIDE_INT) 0,
7548 TYPE_MODE (TREE_TYPE (treeop0)));
7549 op0 = plus_constant (op0, INTVAL (constant_part));
7550 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7551 op0 = force_operand (op0, target);
7552 return REDUCE_BIT_FIELD (op0);
7556 /* No sense saving up arithmetic to be done
7557 if it's all in the wrong mode to form part of an address.
7558 And force_operand won't know whether to sign-extend or
7559 zero-extend. */
7560 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7561 || mode != ptr_mode)
7563 expand_operands (treeop0, treeop1,
7564 subtarget, &op0, &op1, EXPAND_NORMAL);
7565 if (op0 == const0_rtx)
7566 return op1;
7567 if (op1 == const0_rtx)
7568 return op0;
7569 goto binop2;
7572 expand_operands (treeop0, treeop1,
7573 subtarget, &op0, &op1, modifier);
7574 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7576 case MINUS_EXPR:
7577 /* Check if this is a case for multiplication and subtraction. */
7578 if ((TREE_CODE (type) == INTEGER_TYPE
7579 || TREE_CODE (type) == FIXED_POINT_TYPE)
7580 && (subexp1_def = get_def_for_expr (treeop1,
7581 MULT_EXPR)))
7583 tree subsubexp0, subsubexp1;
7584 gimple subsubexp0_def, subsubexp1_def;
7585 enum tree_code this_code;
7587 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7588 : FIXED_CONVERT_EXPR;
7589 subsubexp0 = gimple_assign_rhs1 (subexp1_def);
7590 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7591 subsubexp1 = gimple_assign_rhs2 (subexp1_def);
7592 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7593 if (subsubexp0_def && subsubexp1_def
7594 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7595 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7596 && (TYPE_PRECISION (TREE_TYPE (top0))
7597 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7598 && (TYPE_PRECISION (TREE_TYPE (top0))
7599 == TYPE_PRECISION (TREE_TYPE (top1)))
7600 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7601 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7603 tree op0type = TREE_TYPE (top0);
7604 enum machine_mode innermode = TYPE_MODE (op0type);
7605 bool zextend_p = TYPE_UNSIGNED (op0type);
7606 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7607 if (sat_p == 0)
7608 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
7609 else
7610 this_optab = zextend_p ? usmsub_widen_optab
7611 : ssmsub_widen_optab;
7612 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7613 && (optab_handler (this_optab, mode)->insn_code
7614 != CODE_FOR_nothing))
7616 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7617 EXPAND_NORMAL);
7618 op2 = expand_expr (treeop0, subtarget,
7619 VOIDmode, EXPAND_NORMAL);
7620 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7621 target, unsignedp);
7622 gcc_assert (temp);
7623 return REDUCE_BIT_FIELD (temp);
7628 /* For initializers, we are allowed to return a MINUS of two
7629 symbolic constants. Here we handle all cases when both operands
7630 are constant. */
7631 /* Handle difference of two symbolic constants,
7632 for the sake of an initializer. */
7633 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7634 && really_constant_p (treeop0)
7635 && really_constant_p (treeop1))
7637 expand_operands (treeop0, treeop1,
7638 NULL_RTX, &op0, &op1, modifier);
7640 /* If the last operand is a CONST_INT, use plus_constant of
7641 the negated constant. Else make the MINUS. */
7642 if (CONST_INT_P (op1))
7643 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7644 else
7645 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7648 /* No sense saving up arithmetic to be done
7649 if it's all in the wrong mode to form part of an address.
7650 And force_operand won't know whether to sign-extend or
7651 zero-extend. */
7652 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7653 || mode != ptr_mode)
7654 goto binop;
7656 expand_operands (treeop0, treeop1,
7657 subtarget, &op0, &op1, modifier);
7659 /* Convert A - const to A + (-const). */
7660 if (CONST_INT_P (op1))
7662 op1 = negate_rtx (mode, op1);
7663 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7666 goto binop2;
7668 case MULT_EXPR:
7669 /* If this is a fixed-point operation, then we cannot use the code
7670 below because "expand_mult" doesn't support sat/no-sat fixed-point
7671 multiplications. */
7672 if (ALL_FIXED_POINT_MODE_P (mode))
7673 goto binop;
7675 /* If first operand is constant, swap them.
7676 Thus the following special case checks need only
7677 check the second operand. */
7678 if (TREE_CODE (treeop0) == INTEGER_CST)
7680 tree t1 = treeop0;
7681 treeop0 = treeop1;
7682 treeop1 = t1;
7685 /* Attempt to return something suitable for generating an
7686 indexed address, for machines that support that. */
7688 if (modifier == EXPAND_SUM && mode == ptr_mode
7689 && host_integerp (treeop1, 0))
7691 tree exp1 = treeop1;
7693 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7694 EXPAND_SUM);
7696 if (!REG_P (op0))
7697 op0 = force_operand (op0, NULL_RTX);
7698 if (!REG_P (op0))
7699 op0 = copy_to_mode_reg (mode, op0);
7701 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7702 gen_int_mode (tree_low_cst (exp1, 0),
7703 TYPE_MODE (TREE_TYPE (exp1)))));
7706 if (modifier == EXPAND_STACK_PARM)
7707 target = 0;
7709 /* Check for multiplying things that have been extended
7710 from a narrower type. If this machine supports multiplying
7711 in that narrower type with a result in the desired type,
7712 do it that way, and avoid the explicit type-conversion. */
7714 subexp0 = treeop0;
7715 subexp1 = treeop1;
7716 subexp0_def = get_def_for_expr (subexp0, NOP_EXPR);
7717 subexp1_def = get_def_for_expr (subexp1, NOP_EXPR);
7718 top0 = top1 = NULL_TREE;
7720 /* First, check if we have a multiplication of one signed and one
7721 unsigned operand. */
7722 if (subexp0_def
7723 && (top0 = gimple_assign_rhs1 (subexp0_def))
7724 && subexp1_def
7725 && (top1 = gimple_assign_rhs1 (subexp1_def))
7726 && TREE_CODE (type) == INTEGER_TYPE
7727 && (TYPE_PRECISION (TREE_TYPE (top0))
7728 < TYPE_PRECISION (TREE_TYPE (subexp0)))
7729 && (TYPE_PRECISION (TREE_TYPE (top0))
7730 == TYPE_PRECISION (TREE_TYPE (top1)))
7731 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7732 != TYPE_UNSIGNED (TREE_TYPE (top1))))
7734 enum machine_mode innermode
7735 = TYPE_MODE (TREE_TYPE (top0));
7736 this_optab = usmul_widen_optab;
7737 if (mode == GET_MODE_WIDER_MODE (innermode))
7739 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7741 if (TYPE_UNSIGNED (TREE_TYPE (top0)))
7742 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7743 EXPAND_NORMAL);
7744 else
7745 expand_operands (top0, top1, NULL_RTX, &op1, &op0,
7746 EXPAND_NORMAL);
7748 goto binop3;
7752 /* Check for a multiplication with matching signedness. If
7753 valid, TOP0 and TOP1 were set in the previous if
7754 condition. */
7755 else if (top0
7756 && TREE_CODE (type) == INTEGER_TYPE
7757 && (TYPE_PRECISION (TREE_TYPE (top0))
7758 < TYPE_PRECISION (TREE_TYPE (subexp0)))
7759 && ((TREE_CODE (subexp1) == INTEGER_CST
7760 && int_fits_type_p (subexp1, TREE_TYPE (top0))
7761 /* Don't use a widening multiply if a shift will do. */
7762 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (subexp1)))
7763 > HOST_BITS_PER_WIDE_INT)
7764 || exact_log2 (TREE_INT_CST_LOW (subexp1)) < 0))
7766 (top1
7767 && (TYPE_PRECISION (TREE_TYPE (top1))
7768 == TYPE_PRECISION (TREE_TYPE (top0))
7769 /* If both operands are extended, they must either both
7770 be zero-extended or both be sign-extended. */
7771 && (TYPE_UNSIGNED (TREE_TYPE (top1))
7772 == TYPE_UNSIGNED (TREE_TYPE (top0)))))))
7774 tree op0type = TREE_TYPE (top0);
7775 enum machine_mode innermode = TYPE_MODE (op0type);
7776 bool zextend_p = TYPE_UNSIGNED (op0type);
7777 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7778 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7780 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7782 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7784 if (TREE_CODE (subexp1) == INTEGER_CST)
7785 expand_operands (top0, subexp1, NULL_RTX, &op0, &op1,
7786 EXPAND_NORMAL);
7787 else
7788 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7789 EXPAND_NORMAL);
7790 goto binop3;
7792 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
7793 && innermode == word_mode)
7795 rtx htem, hipart;
7796 op0 = expand_normal (top0);
7797 if (TREE_CODE (subexp1) == INTEGER_CST)
7798 op1 = convert_modes (innermode, mode,
7799 expand_normal (subexp1), unsignedp);
7800 else
7801 op1 = expand_normal (top1);
7802 temp = expand_binop (mode, other_optab, op0, op1, target,
7803 unsignedp, OPTAB_LIB_WIDEN);
7804 hipart = gen_highpart (innermode, temp);
7805 htem = expand_mult_highpart_adjust (innermode, hipart,
7806 op0, op1, hipart,
7807 zextend_p);
7808 if (htem != hipart)
7809 emit_move_insn (hipart, htem);
7810 return REDUCE_BIT_FIELD (temp);
7814 expand_operands (subexp0, subexp1, subtarget, &op0, &op1, EXPAND_NORMAL);
7815 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7817 case TRUNC_DIV_EXPR:
7818 case FLOOR_DIV_EXPR:
7819 case CEIL_DIV_EXPR:
7820 case ROUND_DIV_EXPR:
7821 case EXACT_DIV_EXPR:
7822 /* If this is a fixed-point operation, then we cannot use the code
7823 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7824 divisions. */
7825 if (ALL_FIXED_POINT_MODE_P (mode))
7826 goto binop;
7828 if (modifier == EXPAND_STACK_PARM)
7829 target = 0;
7830 /* Possible optimization: compute the dividend with EXPAND_SUM
7831 then if the divisor is constant can optimize the case
7832 where some terms of the dividend have coeffs divisible by it. */
7833 expand_operands (treeop0, treeop1,
7834 subtarget, &op0, &op1, EXPAND_NORMAL);
7835 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7837 case RDIV_EXPR:
7838 goto binop;
7840 case TRUNC_MOD_EXPR:
7841 case FLOOR_MOD_EXPR:
7842 case CEIL_MOD_EXPR:
7843 case ROUND_MOD_EXPR:
7844 if (modifier == EXPAND_STACK_PARM)
7845 target = 0;
7846 expand_operands (treeop0, treeop1,
7847 subtarget, &op0, &op1, EXPAND_NORMAL);
7848 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7850 case FIXED_CONVERT_EXPR:
7851 op0 = expand_normal (treeop0);
7852 if (target == 0 || modifier == EXPAND_STACK_PARM)
7853 target = gen_reg_rtx (mode);
7855 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7856 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7857 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7858 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7859 else
7860 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7861 return target;
7863 case FIX_TRUNC_EXPR:
7864 op0 = expand_normal (treeop0);
7865 if (target == 0 || modifier == EXPAND_STACK_PARM)
7866 target = gen_reg_rtx (mode);
7867 expand_fix (target, op0, unsignedp);
7868 return target;
7870 case FLOAT_EXPR:
7871 op0 = expand_normal (treeop0);
7872 if (target == 0 || modifier == EXPAND_STACK_PARM)
7873 target = gen_reg_rtx (mode);
7874 /* expand_float can't figure out what to do if FROM has VOIDmode.
7875 So give it the correct mode. With -O, cse will optimize this. */
7876 if (GET_MODE (op0) == VOIDmode)
7877 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7878 op0);
7879 expand_float (target, op0,
7880 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7881 return target;
7883 case NEGATE_EXPR:
7884 op0 = expand_expr (treeop0, subtarget,
7885 VOIDmode, EXPAND_NORMAL);
7886 if (modifier == EXPAND_STACK_PARM)
7887 target = 0;
7888 temp = expand_unop (mode,
7889 optab_for_tree_code (NEGATE_EXPR, type,
7890 optab_default),
7891 op0, target, 0);
7892 gcc_assert (temp);
7893 return REDUCE_BIT_FIELD (temp);
7895 case ABS_EXPR:
7896 op0 = expand_expr (treeop0, subtarget,
7897 VOIDmode, EXPAND_NORMAL);
7898 if (modifier == EXPAND_STACK_PARM)
7899 target = 0;
7901 /* ABS_EXPR is not valid for complex arguments. */
7902 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7903 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7905 /* Unsigned abs is simply the operand. Testing here means we don't
7906 risk generating incorrect code below. */
7907 if (TYPE_UNSIGNED (type))
7908 return op0;
7910 return expand_abs (mode, op0, target, unsignedp,
7911 safe_from_p (target, treeop0, 1));
7913 case MAX_EXPR:
7914 case MIN_EXPR:
7915 target = original_target;
7916 if (target == 0
7917 || modifier == EXPAND_STACK_PARM
7918 || (MEM_P (target) && MEM_VOLATILE_P (target))
7919 || GET_MODE (target) != mode
7920 || (REG_P (target)
7921 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7922 target = gen_reg_rtx (mode);
7923 expand_operands (treeop0, treeop1,
7924 target, &op0, &op1, EXPAND_NORMAL);
7926 /* First try to do it with a special MIN or MAX instruction.
7927 If that does not win, use a conditional jump to select the proper
7928 value. */
7929 this_optab = optab_for_tree_code (code, type, optab_default);
7930 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7931 OPTAB_WIDEN);
7932 if (temp != 0)
7933 return temp;
7935 /* At this point, a MEM target is no longer useful; we will get better
7936 code without it. */
7938 if (! REG_P (target))
7939 target = gen_reg_rtx (mode);
7941 /* If op1 was placed in target, swap op0 and op1. */
7942 if (target != op0 && target == op1)
7944 temp = op0;
7945 op0 = op1;
7946 op1 = temp;
7949 /* We generate better code and avoid problems with op1 mentioning
7950 target by forcing op1 into a pseudo if it isn't a constant. */
7951 if (! CONSTANT_P (op1))
7952 op1 = force_reg (mode, op1);
7955 enum rtx_code comparison_code;
7956 rtx cmpop1 = op1;
7958 if (code == MAX_EXPR)
7959 comparison_code = unsignedp ? GEU : GE;
7960 else
7961 comparison_code = unsignedp ? LEU : LE;
7963 /* Canonicalize to comparisons against 0. */
7964 if (op1 == const1_rtx)
7966 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7967 or (a != 0 ? a : 1) for unsigned.
7968 For MIN we are safe converting (a <= 1 ? a : 1)
7969 into (a <= 0 ? a : 1) */
7970 cmpop1 = const0_rtx;
7971 if (code == MAX_EXPR)
7972 comparison_code = unsignedp ? NE : GT;
7974 if (op1 == constm1_rtx && !unsignedp)
7976 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7977 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7978 cmpop1 = const0_rtx;
7979 if (code == MIN_EXPR)
7980 comparison_code = LT;
7982 #ifdef HAVE_conditional_move
7983 /* Use a conditional move if possible. */
7984 if (can_conditionally_move_p (mode))
7986 rtx insn;
7988 /* ??? Same problem as in expmed.c: emit_conditional_move
7989 forces a stack adjustment via compare_from_rtx, and we
7990 lose the stack adjustment if the sequence we are about
7991 to create is discarded. */
7992 do_pending_stack_adjust ();
7994 start_sequence ();
7996 /* Try to emit the conditional move. */
7997 insn = emit_conditional_move (target, comparison_code,
7998 op0, cmpop1, mode,
7999 op0, op1, mode,
8000 unsignedp);
8002 /* If we could do the conditional move, emit the sequence,
8003 and return. */
8004 if (insn)
8006 rtx seq = get_insns ();
8007 end_sequence ();
8008 emit_insn (seq);
8009 return target;
8012 /* Otherwise discard the sequence and fall back to code with
8013 branches. */
8014 end_sequence ();
8016 #endif
8017 if (target != op0)
8018 emit_move_insn (target, op0);
8020 temp = gen_label_rtx ();
8021 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8022 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8023 -1);
8025 emit_move_insn (target, op1);
8026 emit_label (temp);
8027 return target;
8029 case BIT_NOT_EXPR:
8030 op0 = expand_expr (treeop0, subtarget,
8031 VOIDmode, EXPAND_NORMAL);
8032 if (modifier == EXPAND_STACK_PARM)
8033 target = 0;
8034 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8035 gcc_assert (temp);
8036 return temp;
8038 /* ??? Can optimize bitwise operations with one arg constant.
8039 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8040 and (a bitwise1 b) bitwise2 b (etc)
8041 but that is probably not worth while. */
8043 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8044 boolean values when we want in all cases to compute both of them. In
8045 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8046 as actual zero-or-1 values and then bitwise anding. In cases where
8047 there cannot be any side effects, better code would be made by
8048 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8049 how to recognize those cases. */
8051 case TRUTH_AND_EXPR:
8052 code = BIT_AND_EXPR;
8053 case BIT_AND_EXPR:
8054 goto binop;
8056 case TRUTH_OR_EXPR:
8057 code = BIT_IOR_EXPR;
8058 case BIT_IOR_EXPR:
8059 goto binop;
8061 case TRUTH_XOR_EXPR:
8062 code = BIT_XOR_EXPR;
8063 case BIT_XOR_EXPR:
8064 goto binop;
8066 case LROTATE_EXPR:
8067 case RROTATE_EXPR:
8068 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8069 || (GET_MODE_PRECISION (TYPE_MODE (type))
8070 == TYPE_PRECISION (type)));
8071 /* fall through */
8073 case LSHIFT_EXPR:
8074 case RSHIFT_EXPR:
8075 /* If this is a fixed-point operation, then we cannot use the code
8076 below because "expand_shift" doesn't support sat/no-sat fixed-point
8077 shifts. */
8078 if (ALL_FIXED_POINT_MODE_P (mode))
8079 goto binop;
8081 if (! safe_from_p (subtarget, treeop1, 1))
8082 subtarget = 0;
8083 if (modifier == EXPAND_STACK_PARM)
8084 target = 0;
8085 op0 = expand_expr (treeop0, subtarget,
8086 VOIDmode, EXPAND_NORMAL);
8087 temp = expand_shift (code, mode, op0, treeop1, target,
8088 unsignedp);
8089 if (code == LSHIFT_EXPR)
8090 temp = REDUCE_BIT_FIELD (temp);
8091 return temp;
8093 /* Could determine the answer when only additive constants differ. Also,
8094 the addition of one can be handled by changing the condition. */
8095 case LT_EXPR:
8096 case LE_EXPR:
8097 case GT_EXPR:
8098 case GE_EXPR:
8099 case EQ_EXPR:
8100 case NE_EXPR:
8101 case UNORDERED_EXPR:
8102 case ORDERED_EXPR:
8103 case UNLT_EXPR:
8104 case UNLE_EXPR:
8105 case UNGT_EXPR:
8106 case UNGE_EXPR:
8107 case UNEQ_EXPR:
8108 case LTGT_EXPR:
8109 temp = do_store_flag (ops,
8110 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8111 tmode != VOIDmode ? tmode : mode);
8112 if (temp)
8113 return temp;
8115 /* Use a compare and a jump for BLKmode comparisons, or for function
8116 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8118 if ((target == 0
8119 || modifier == EXPAND_STACK_PARM
8120 || ! safe_from_p (target, treeop0, 1)
8121 || ! safe_from_p (target, treeop1, 1)
8122 /* Make sure we don't have a hard reg (such as function's return
8123 value) live across basic blocks, if not optimizing. */
8124 || (!optimize && REG_P (target)
8125 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8126 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8128 emit_move_insn (target, const0_rtx);
8130 op1 = gen_label_rtx ();
8131 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8133 emit_move_insn (target, const1_rtx);
8135 emit_label (op1);
8136 return target;
8138 case TRUTH_NOT_EXPR:
8139 if (modifier == EXPAND_STACK_PARM)
8140 target = 0;
8141 op0 = expand_expr (treeop0, target,
8142 VOIDmode, EXPAND_NORMAL);
8143 /* The parser is careful to generate TRUTH_NOT_EXPR
8144 only with operands that are always zero or one. */
8145 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8146 target, 1, OPTAB_LIB_WIDEN);
8147 gcc_assert (temp);
8148 return temp;
8150 case COMPLEX_EXPR:
8151 /* Get the rtx code of the operands. */
8152 op0 = expand_normal (treeop0);
8153 op1 = expand_normal (treeop1);
8155 if (!target)
8156 target = gen_reg_rtx (TYPE_MODE (type));
8158 /* Move the real (op0) and imaginary (op1) parts to their location. */
8159 write_complex_part (target, op0, false);
8160 write_complex_part (target, op1, true);
8162 return target;
8164 case WIDEN_SUM_EXPR:
8166 tree oprnd0 = treeop0;
8167 tree oprnd1 = treeop1;
8169 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8170 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8171 target, unsignedp);
8172 return target;
8175 case REDUC_MAX_EXPR:
8176 case REDUC_MIN_EXPR:
8177 case REDUC_PLUS_EXPR:
8179 op0 = expand_normal (treeop0);
8180 this_optab = optab_for_tree_code (code, type, optab_default);
8181 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8182 gcc_assert (temp);
8183 return temp;
8186 case VEC_EXTRACT_EVEN_EXPR:
8187 case VEC_EXTRACT_ODD_EXPR:
8189 expand_operands (treeop0, treeop1,
8190 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8191 this_optab = optab_for_tree_code (code, type, optab_default);
8192 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8193 OPTAB_WIDEN);
8194 gcc_assert (temp);
8195 return temp;
8198 case VEC_INTERLEAVE_HIGH_EXPR:
8199 case VEC_INTERLEAVE_LOW_EXPR:
8201 expand_operands (treeop0, treeop1,
8202 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8203 this_optab = optab_for_tree_code (code, type, optab_default);
8204 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8205 OPTAB_WIDEN);
8206 gcc_assert (temp);
8207 return temp;
8210 case VEC_LSHIFT_EXPR:
8211 case VEC_RSHIFT_EXPR:
8213 target = expand_vec_shift_expr (ops, target);
8214 return target;
8217 case VEC_UNPACK_HI_EXPR:
8218 case VEC_UNPACK_LO_EXPR:
8220 op0 = expand_normal (treeop0);
8221 this_optab = optab_for_tree_code (code, type, optab_default);
8222 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8223 target, unsignedp);
8224 gcc_assert (temp);
8225 return temp;
8228 case VEC_UNPACK_FLOAT_HI_EXPR:
8229 case VEC_UNPACK_FLOAT_LO_EXPR:
8231 op0 = expand_normal (treeop0);
8232 /* The signedness is determined from input operand. */
8233 this_optab = optab_for_tree_code (code,
8234 TREE_TYPE (treeop0),
8235 optab_default);
8236 temp = expand_widen_pattern_expr
8237 (ops, op0, NULL_RTX, NULL_RTX,
8238 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8240 gcc_assert (temp);
8241 return temp;
8244 case VEC_WIDEN_MULT_HI_EXPR:
8245 case VEC_WIDEN_MULT_LO_EXPR:
8247 tree oprnd0 = treeop0;
8248 tree oprnd1 = treeop1;
8250 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8251 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8252 target, unsignedp);
8253 gcc_assert (target);
8254 return target;
8257 case VEC_PACK_TRUNC_EXPR:
8258 case VEC_PACK_SAT_EXPR:
8259 case VEC_PACK_FIX_TRUNC_EXPR:
8260 mode = TYPE_MODE (TREE_TYPE (treeop0));
8261 goto binop;
8263 default:
8264 gcc_unreachable ();
8267 /* Here to do an ordinary binary operator. */
8268 binop:
8269 expand_operands (treeop0, treeop1,
8270 subtarget, &op0, &op1, EXPAND_NORMAL);
8271 binop2:
8272 this_optab = optab_for_tree_code (code, type, optab_default);
8273 binop3:
8274 if (modifier == EXPAND_STACK_PARM)
8275 target = 0;
8276 temp = expand_binop (mode, this_optab, op0, op1, target,
8277 unsignedp, OPTAB_LIB_WIDEN);
8278 gcc_assert (temp);
8279 return REDUCE_BIT_FIELD (temp);
8281 #undef REDUCE_BIT_FIELD
8284 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8285 enum expand_modifier modifier, rtx *alt_rtl)
8287 rtx op0, op1, temp, decl_rtl;
8288 tree type;
8289 int unsignedp;
8290 enum machine_mode mode;
8291 enum tree_code code = TREE_CODE (exp);
8292 optab this_optab;
8293 rtx subtarget, original_target;
8294 int ignore;
8295 tree context;
8296 bool reduce_bit_field;
8297 location_t loc = EXPR_LOCATION (exp);
8298 struct separate_ops ops;
8299 tree treeop0, treeop1, treeop2;
8301 type = TREE_TYPE (exp);
8302 mode = TYPE_MODE (type);
8303 unsignedp = TYPE_UNSIGNED (type);
8305 treeop0 = treeop1 = treeop2 = NULL_TREE;
8306 if (!VL_EXP_CLASS_P (exp))
8307 switch (TREE_CODE_LENGTH (code))
8309 default:
8310 case 3: treeop2 = TREE_OPERAND (exp, 2);
8311 case 2: treeop1 = TREE_OPERAND (exp, 1);
8312 case 1: treeop0 = TREE_OPERAND (exp, 0);
8313 case 0: break;
8315 ops.code = code;
8316 ops.type = type;
8317 ops.op0 = treeop0;
8318 ops.op1 = treeop1;
8319 ops.op2 = treeop2;
8320 ops.location = loc;
8322 ignore = (target == const0_rtx
8323 || ((CONVERT_EXPR_CODE_P (code)
8324 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8325 && TREE_CODE (type) == VOID_TYPE));
8327 /* An operation in what may be a bit-field type needs the
8328 result to be reduced to the precision of the bit-field type,
8329 which is narrower than that of the type's mode. */
8330 reduce_bit_field = (!ignore
8331 && TREE_CODE (type) == INTEGER_TYPE
8332 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8334 /* If we are going to ignore this result, we need only do something
8335 if there is a side-effect somewhere in the expression. If there
8336 is, short-circuit the most common cases here. Note that we must
8337 not call expand_expr with anything but const0_rtx in case this
8338 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8340 if (ignore)
8342 if (! TREE_SIDE_EFFECTS (exp))
8343 return const0_rtx;
8345 /* Ensure we reference a volatile object even if value is ignored, but
8346 don't do this if all we are doing is taking its address. */
8347 if (TREE_THIS_VOLATILE (exp)
8348 && TREE_CODE (exp) != FUNCTION_DECL
8349 && mode != VOIDmode && mode != BLKmode
8350 && modifier != EXPAND_CONST_ADDRESS)
8352 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8353 if (MEM_P (temp))
8354 temp = copy_to_reg (temp);
8355 return const0_rtx;
8358 if (TREE_CODE_CLASS (code) == tcc_unary
8359 || code == COMPONENT_REF || code == INDIRECT_REF)
8360 return expand_expr (treeop0, const0_rtx, VOIDmode,
8361 modifier);
8363 else if (TREE_CODE_CLASS (code) == tcc_binary
8364 || TREE_CODE_CLASS (code) == tcc_comparison
8365 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8367 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8368 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8369 return const0_rtx;
8371 else if (code == BIT_FIELD_REF)
8373 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8374 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8375 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8376 return const0_rtx;
8379 target = 0;
8382 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8383 target = 0;
8385 /* Use subtarget as the target for operand 0 of a binary operation. */
8386 subtarget = get_subtarget (target);
8387 original_target = target;
8389 switch (code)
8391 case LABEL_DECL:
8393 tree function = decl_function_context (exp);
8395 temp = label_rtx (exp);
8396 temp = gen_rtx_LABEL_REF (Pmode, temp);
8398 if (function != current_function_decl
8399 && function != 0)
8400 LABEL_REF_NONLOCAL_P (temp) = 1;
8402 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8403 return temp;
8406 case SSA_NAME:
8407 /* ??? ivopts calls expander, without any preparation from
8408 out-of-ssa. So fake instructions as if this was an access to the
8409 base variable. This unnecessarily allocates a pseudo, see how we can
8410 reuse it, if partition base vars have it set already. */
8411 if (!currently_expanding_to_rtl)
8412 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier, NULL);
8414 gimple g = get_gimple_for_ssa_name (exp);
8415 if (g)
8416 return expand_expr_real (gimple_assign_rhs_to_tree (g), target,
8417 tmode, modifier, NULL);
8419 decl_rtl = get_rtx_for_ssa_name (exp);
8420 exp = SSA_NAME_VAR (exp);
8421 goto expand_decl_rtl;
8423 case PARM_DECL:
8424 case VAR_DECL:
8425 /* If a static var's type was incomplete when the decl was written,
8426 but the type is complete now, lay out the decl now. */
8427 if (DECL_SIZE (exp) == 0
8428 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8429 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8430 layout_decl (exp, 0);
8432 /* TLS emulation hook - replace __thread vars with
8433 *__emutls_get_address (&_emutls.var). */
8434 if (! targetm.have_tls
8435 && TREE_CODE (exp) == VAR_DECL
8436 && DECL_THREAD_LOCAL_P (exp))
8438 exp = build_fold_indirect_ref_loc (loc, emutls_var_address (exp));
8439 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
8442 /* ... fall through ... */
8444 case FUNCTION_DECL:
8445 case RESULT_DECL:
8446 decl_rtl = DECL_RTL (exp);
8447 expand_decl_rtl:
8448 gcc_assert (decl_rtl);
8449 decl_rtl = copy_rtx (decl_rtl);
8451 /* Ensure variable marked as used even if it doesn't go through
8452 a parser. If it hasn't be used yet, write out an external
8453 definition. */
8454 if (! TREE_USED (exp))
8456 assemble_external (exp);
8457 TREE_USED (exp) = 1;
8460 /* Show we haven't gotten RTL for this yet. */
8461 temp = 0;
8463 /* Variables inherited from containing functions should have
8464 been lowered by this point. */
8465 context = decl_function_context (exp);
8466 gcc_assert (!context
8467 || context == current_function_decl
8468 || TREE_STATIC (exp)
8469 /* ??? C++ creates functions that are not TREE_STATIC. */
8470 || TREE_CODE (exp) == FUNCTION_DECL);
8472 /* This is the case of an array whose size is to be determined
8473 from its initializer, while the initializer is still being parsed.
8474 See expand_decl. */
8476 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8477 temp = validize_mem (decl_rtl);
8479 /* If DECL_RTL is memory, we are in the normal case and the
8480 address is not valid, get the address into a register. */
8482 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8484 if (alt_rtl)
8485 *alt_rtl = decl_rtl;
8486 decl_rtl = use_anchored_address (decl_rtl);
8487 if (modifier != EXPAND_CONST_ADDRESS
8488 && modifier != EXPAND_SUM
8489 && !memory_address_addr_space_p (DECL_MODE (exp),
8490 XEXP (decl_rtl, 0),
8491 MEM_ADDR_SPACE (decl_rtl)))
8492 temp = replace_equiv_address (decl_rtl,
8493 copy_rtx (XEXP (decl_rtl, 0)));
8496 /* If we got something, return it. But first, set the alignment
8497 if the address is a register. */
8498 if (temp != 0)
8500 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8501 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8503 return temp;
8506 /* If the mode of DECL_RTL does not match that of the decl, it
8507 must be a promoted value. We return a SUBREG of the wanted mode,
8508 but mark it so that we know that it was already extended. */
8510 if (REG_P (decl_rtl)
8511 && GET_MODE (decl_rtl) != DECL_MODE (exp))
8513 enum machine_mode pmode;
8515 /* Get the signedness used for this variable. Ensure we get the
8516 same mode we got when the variable was declared. */
8517 pmode = promote_decl_mode (exp, &unsignedp);
8518 gcc_assert (GET_MODE (decl_rtl) == pmode);
8520 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8521 SUBREG_PROMOTED_VAR_P (temp) = 1;
8522 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8523 return temp;
8526 return decl_rtl;
8528 case INTEGER_CST:
8529 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8530 TREE_INT_CST_HIGH (exp), mode);
8532 return temp;
8534 case VECTOR_CST:
8536 tree tmp = NULL_TREE;
8537 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8538 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8539 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8540 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8541 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8542 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8543 return const_vector_from_tree (exp);
8544 if (GET_MODE_CLASS (mode) == MODE_INT)
8546 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8547 if (type_for_mode)
8548 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8550 if (!tmp)
8551 tmp = build_constructor_from_list (type,
8552 TREE_VECTOR_CST_ELTS (exp));
8553 return expand_expr (tmp, ignore ? const0_rtx : target,
8554 tmode, modifier);
8557 case CONST_DECL:
8558 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8560 case REAL_CST:
8561 /* If optimized, generate immediate CONST_DOUBLE
8562 which will be turned into memory by reload if necessary.
8564 We used to force a register so that loop.c could see it. But
8565 this does not allow gen_* patterns to perform optimizations with
8566 the constants. It also produces two insns in cases like "x = 1.0;".
8567 On most machines, floating-point constants are not permitted in
8568 many insns, so we'd end up copying it to a register in any case.
8570 Now, we do the copying in expand_binop, if appropriate. */
8571 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8572 TYPE_MODE (TREE_TYPE (exp)));
8574 case FIXED_CST:
8575 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8576 TYPE_MODE (TREE_TYPE (exp)));
8578 case COMPLEX_CST:
8579 /* Handle evaluating a complex constant in a CONCAT target. */
8580 if (original_target && GET_CODE (original_target) == CONCAT)
8582 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8583 rtx rtarg, itarg;
8585 rtarg = XEXP (original_target, 0);
8586 itarg = XEXP (original_target, 1);
8588 /* Move the real and imaginary parts separately. */
8589 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8590 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8592 if (op0 != rtarg)
8593 emit_move_insn (rtarg, op0);
8594 if (op1 != itarg)
8595 emit_move_insn (itarg, op1);
8597 return original_target;
8600 /* ... fall through ... */
8602 case STRING_CST:
8603 temp = expand_expr_constant (exp, 1, modifier);
8605 /* temp contains a constant address.
8606 On RISC machines where a constant address isn't valid,
8607 make some insns to get that address into a register. */
8608 if (modifier != EXPAND_CONST_ADDRESS
8609 && modifier != EXPAND_INITIALIZER
8610 && modifier != EXPAND_SUM
8611 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8612 MEM_ADDR_SPACE (temp)))
8613 return replace_equiv_address (temp,
8614 copy_rtx (XEXP (temp, 0)));
8615 return temp;
8617 case SAVE_EXPR:
8619 tree val = treeop0;
8620 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8622 if (!SAVE_EXPR_RESOLVED_P (exp))
8624 /* We can indeed still hit this case, typically via builtin
8625 expanders calling save_expr immediately before expanding
8626 something. Assume this means that we only have to deal
8627 with non-BLKmode values. */
8628 gcc_assert (GET_MODE (ret) != BLKmode);
8630 val = build_decl (EXPR_LOCATION (exp),
8631 VAR_DECL, NULL, TREE_TYPE (exp));
8632 DECL_ARTIFICIAL (val) = 1;
8633 DECL_IGNORED_P (val) = 1;
8634 treeop0 = val;
8635 TREE_OPERAND (exp, 0) = treeop0;
8636 SAVE_EXPR_RESOLVED_P (exp) = 1;
8638 if (!CONSTANT_P (ret))
8639 ret = copy_to_reg (ret);
8640 SET_DECL_RTL (val, ret);
8643 return ret;
8647 case CONSTRUCTOR:
8648 /* If we don't need the result, just ensure we evaluate any
8649 subexpressions. */
8650 if (ignore)
8652 unsigned HOST_WIDE_INT idx;
8653 tree value;
8655 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8656 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8658 return const0_rtx;
8661 return expand_constructor (exp, target, modifier, false);
8663 case MISALIGNED_INDIRECT_REF:
8664 case ALIGN_INDIRECT_REF:
8665 case INDIRECT_REF:
8667 tree exp1 = treeop0;
8668 addr_space_t as = ADDR_SPACE_GENERIC;
8669 enum machine_mode address_mode = Pmode;
8671 if (modifier != EXPAND_WRITE)
8673 tree t;
8675 t = fold_read_from_constant_string (exp);
8676 if (t)
8677 return expand_expr (t, target, tmode, modifier);
8680 if (POINTER_TYPE_P (TREE_TYPE (exp1)))
8682 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp1)));
8683 address_mode = targetm.addr_space.address_mode (as);
8686 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8687 op0 = memory_address_addr_space (mode, op0, as);
8689 if (code == ALIGN_INDIRECT_REF)
8691 int align = TYPE_ALIGN_UNIT (type);
8692 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
8693 op0 = memory_address_addr_space (mode, op0, as);
8696 temp = gen_rtx_MEM (mode, op0);
8698 set_mem_attributes (temp, exp, 0);
8699 set_mem_addr_space (temp, as);
8701 /* Resolve the misalignment now, so that we don't have to remember
8702 to resolve it later. Of course, this only works for reads. */
8703 if (code == MISALIGNED_INDIRECT_REF)
8705 int icode;
8706 rtx reg, insn;
8708 gcc_assert (modifier == EXPAND_NORMAL
8709 || modifier == EXPAND_STACK_PARM);
8711 /* The vectorizer should have already checked the mode. */
8712 icode = optab_handler (movmisalign_optab, mode)->insn_code;
8713 gcc_assert (icode != CODE_FOR_nothing);
8715 /* We've already validated the memory, and we're creating a
8716 new pseudo destination. The predicates really can't fail. */
8717 reg = gen_reg_rtx (mode);
8719 /* Nor can the insn generator. */
8720 insn = GEN_FCN (icode) (reg, temp);
8721 emit_insn (insn);
8723 return reg;
8726 return temp;
8729 case TARGET_MEM_REF:
8731 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8732 struct mem_address addr;
8734 get_address_description (exp, &addr);
8735 op0 = addr_for_mem_ref (&addr, as, true);
8736 op0 = memory_address_addr_space (mode, op0, as);
8737 temp = gen_rtx_MEM (mode, op0);
8738 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
8739 set_mem_addr_space (temp, as);
8741 return temp;
8743 case ARRAY_REF:
8746 tree array = treeop0;
8747 tree index = treeop1;
8749 /* Fold an expression like: "foo"[2].
8750 This is not done in fold so it won't happen inside &.
8751 Don't fold if this is for wide characters since it's too
8752 difficult to do correctly and this is a very rare case. */
8754 if (modifier != EXPAND_CONST_ADDRESS
8755 && modifier != EXPAND_INITIALIZER
8756 && modifier != EXPAND_MEMORY)
8758 tree t = fold_read_from_constant_string (exp);
8760 if (t)
8761 return expand_expr (t, target, tmode, modifier);
8764 /* If this is a constant index into a constant array,
8765 just get the value from the array. Handle both the cases when
8766 we have an explicit constructor and when our operand is a variable
8767 that was declared const. */
8769 if (modifier != EXPAND_CONST_ADDRESS
8770 && modifier != EXPAND_INITIALIZER
8771 && modifier != EXPAND_MEMORY
8772 && TREE_CODE (array) == CONSTRUCTOR
8773 && ! TREE_SIDE_EFFECTS (array)
8774 && TREE_CODE (index) == INTEGER_CST)
8776 unsigned HOST_WIDE_INT ix;
8777 tree field, value;
8779 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8780 field, value)
8781 if (tree_int_cst_equal (field, index))
8783 if (!TREE_SIDE_EFFECTS (value))
8784 return expand_expr (fold (value), target, tmode, modifier);
8785 break;
8789 else if (optimize >= 1
8790 && modifier != EXPAND_CONST_ADDRESS
8791 && modifier != EXPAND_INITIALIZER
8792 && modifier != EXPAND_MEMORY
8793 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8794 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8795 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8796 && targetm.binds_local_p (array))
8798 if (TREE_CODE (index) == INTEGER_CST)
8800 tree init = DECL_INITIAL (array);
8802 if (TREE_CODE (init) == CONSTRUCTOR)
8804 unsigned HOST_WIDE_INT ix;
8805 tree field, value;
8807 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8808 field, value)
8809 if (tree_int_cst_equal (field, index))
8811 if (TREE_SIDE_EFFECTS (value))
8812 break;
8814 if (TREE_CODE (value) == CONSTRUCTOR)
8816 /* If VALUE is a CONSTRUCTOR, this
8817 optimization is only useful if
8818 this doesn't store the CONSTRUCTOR
8819 into memory. If it does, it is more
8820 efficient to just load the data from
8821 the array directly. */
8822 rtx ret = expand_constructor (value, target,
8823 modifier, true);
8824 if (ret == NULL_RTX)
8825 break;
8828 return expand_expr (fold (value), target, tmode,
8829 modifier);
8832 else if(TREE_CODE (init) == STRING_CST)
8834 tree index1 = index;
8835 tree low_bound = array_ref_low_bound (exp);
8836 index1 = fold_convert_loc (loc, sizetype,
8837 treeop1);
8839 /* Optimize the special-case of a zero lower bound.
8841 We convert the low_bound to sizetype to avoid some problems
8842 with constant folding. (E.g. suppose the lower bound is 1,
8843 and its mode is QI. Without the conversion,l (ARRAY
8844 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8845 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8847 if (! integer_zerop (low_bound))
8848 index1 = size_diffop_loc (loc, index1,
8849 fold_convert_loc (loc, sizetype,
8850 low_bound));
8852 if (0 > compare_tree_int (index1,
8853 TREE_STRING_LENGTH (init)))
8855 tree type = TREE_TYPE (TREE_TYPE (init));
8856 enum machine_mode mode = TYPE_MODE (type);
8858 if (GET_MODE_CLASS (mode) == MODE_INT
8859 && GET_MODE_SIZE (mode) == 1)
8860 return gen_int_mode (TREE_STRING_POINTER (init)
8861 [TREE_INT_CST_LOW (index1)],
8862 mode);
8868 goto normal_inner_ref;
8870 case COMPONENT_REF:
8871 /* If the operand is a CONSTRUCTOR, we can just extract the
8872 appropriate field if it is present. */
8873 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8875 unsigned HOST_WIDE_INT idx;
8876 tree field, value;
8878 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8879 idx, field, value)
8880 if (field == treeop1
8881 /* We can normally use the value of the field in the
8882 CONSTRUCTOR. However, if this is a bitfield in
8883 an integral mode that we can fit in a HOST_WIDE_INT,
8884 we must mask only the number of bits in the bitfield,
8885 since this is done implicitly by the constructor. If
8886 the bitfield does not meet either of those conditions,
8887 we can't do this optimization. */
8888 && (! DECL_BIT_FIELD (field)
8889 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8890 && (GET_MODE_BITSIZE (DECL_MODE (field))
8891 <= HOST_BITS_PER_WIDE_INT))))
8893 if (DECL_BIT_FIELD (field)
8894 && modifier == EXPAND_STACK_PARM)
8895 target = 0;
8896 op0 = expand_expr (value, target, tmode, modifier);
8897 if (DECL_BIT_FIELD (field))
8899 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8900 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8902 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8904 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8905 op0 = expand_and (imode, op0, op1, target);
8907 else
8909 tree count
8910 = build_int_cst (NULL_TREE,
8911 GET_MODE_BITSIZE (imode) - bitsize);
8913 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8914 target, 0);
8915 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8916 target, 0);
8920 return op0;
8923 goto normal_inner_ref;
8925 case BIT_FIELD_REF:
8926 case ARRAY_RANGE_REF:
8927 normal_inner_ref:
8929 enum machine_mode mode1, mode2;
8930 HOST_WIDE_INT bitsize, bitpos;
8931 tree offset;
8932 int volatilep = 0, must_force_mem;
8933 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8934 &mode1, &unsignedp, &volatilep, true);
8935 rtx orig_op0, memloc;
8937 /* If we got back the original object, something is wrong. Perhaps
8938 we are evaluating an expression too early. In any event, don't
8939 infinitely recurse. */
8940 gcc_assert (tem != exp);
8942 /* If TEM's type is a union of variable size, pass TARGET to the inner
8943 computation, since it will need a temporary and TARGET is known
8944 to have to do. This occurs in unchecked conversion in Ada. */
8945 orig_op0 = op0
8946 = expand_expr (tem,
8947 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8948 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8949 != INTEGER_CST)
8950 && modifier != EXPAND_STACK_PARM
8951 ? target : NULL_RTX),
8952 VOIDmode,
8953 (modifier == EXPAND_INITIALIZER
8954 || modifier == EXPAND_CONST_ADDRESS
8955 || modifier == EXPAND_STACK_PARM)
8956 ? modifier : EXPAND_NORMAL);
8958 mode2
8959 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
8961 /* If we have either an offset, a BLKmode result, or a reference
8962 outside the underlying object, we must force it to memory.
8963 Such a case can occur in Ada if we have unchecked conversion
8964 of an expression from a scalar type to an aggregate type or
8965 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
8966 passed a partially uninitialized object or a view-conversion
8967 to a larger size. */
8968 must_force_mem = (offset
8969 || mode1 == BLKmode
8970 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
8972 /* Handle CONCAT first. */
8973 if (GET_CODE (op0) == CONCAT && !must_force_mem)
8975 if (bitpos == 0
8976 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
8977 return op0;
8978 if (bitpos == 0
8979 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8980 && bitsize)
8982 op0 = XEXP (op0, 0);
8983 mode2 = GET_MODE (op0);
8985 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8986 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
8987 && bitpos
8988 && bitsize)
8990 op0 = XEXP (op0, 1);
8991 bitpos = 0;
8992 mode2 = GET_MODE (op0);
8994 else
8995 /* Otherwise force into memory. */
8996 must_force_mem = 1;
8999 /* If this is a constant, put it in a register if it is a legitimate
9000 constant and we don't need a memory reference. */
9001 if (CONSTANT_P (op0)
9002 && mode2 != BLKmode
9003 && LEGITIMATE_CONSTANT_P (op0)
9004 && !must_force_mem)
9005 op0 = force_reg (mode2, op0);
9007 /* Otherwise, if this is a constant, try to force it to the constant
9008 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9009 is a legitimate constant. */
9010 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9011 op0 = validize_mem (memloc);
9013 /* Otherwise, if this is a constant or the object is not in memory
9014 and need be, put it there. */
9015 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9017 tree nt = build_qualified_type (TREE_TYPE (tem),
9018 (TYPE_QUALS (TREE_TYPE (tem))
9019 | TYPE_QUAL_CONST));
9020 memloc = assign_temp (nt, 1, 1, 1);
9021 emit_move_insn (memloc, op0);
9022 op0 = memloc;
9025 if (offset)
9027 enum machine_mode address_mode;
9028 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9029 EXPAND_SUM);
9031 gcc_assert (MEM_P (op0));
9033 address_mode
9034 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9035 if (GET_MODE (offset_rtx) != address_mode)
9036 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9038 if (GET_MODE (op0) == BLKmode
9039 /* A constant address in OP0 can have VOIDmode, we must
9040 not try to call force_reg in that case. */
9041 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9042 && bitsize != 0
9043 && (bitpos % bitsize) == 0
9044 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9045 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9047 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9048 bitpos = 0;
9051 op0 = offset_address (op0, offset_rtx,
9052 highest_pow2_factor (offset));
9055 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9056 record its alignment as BIGGEST_ALIGNMENT. */
9057 if (MEM_P (op0) && bitpos == 0 && offset != 0
9058 && is_aligning_offset (offset, tem))
9059 set_mem_align (op0, BIGGEST_ALIGNMENT);
9061 /* Don't forget about volatility even if this is a bitfield. */
9062 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9064 if (op0 == orig_op0)
9065 op0 = copy_rtx (op0);
9067 MEM_VOLATILE_P (op0) = 1;
9070 /* In cases where an aligned union has an unaligned object
9071 as a field, we might be extracting a BLKmode value from
9072 an integer-mode (e.g., SImode) object. Handle this case
9073 by doing the extract into an object as wide as the field
9074 (which we know to be the width of a basic mode), then
9075 storing into memory, and changing the mode to BLKmode. */
9076 if (mode1 == VOIDmode
9077 || REG_P (op0) || GET_CODE (op0) == SUBREG
9078 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9079 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9080 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9081 && modifier != EXPAND_CONST_ADDRESS
9082 && modifier != EXPAND_INITIALIZER)
9083 /* If the field isn't aligned enough to fetch as a memref,
9084 fetch it as a bit field. */
9085 || (mode1 != BLKmode
9086 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9087 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9088 || (MEM_P (op0)
9089 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9090 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9091 && ((modifier == EXPAND_CONST_ADDRESS
9092 || modifier == EXPAND_INITIALIZER)
9093 ? STRICT_ALIGNMENT
9094 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9095 || (bitpos % BITS_PER_UNIT != 0)))
9096 /* If the type and the field are a constant size and the
9097 size of the type isn't the same size as the bitfield,
9098 we must use bitfield operations. */
9099 || (bitsize >= 0
9100 && TYPE_SIZE (TREE_TYPE (exp))
9101 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9102 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9103 bitsize)))
9105 enum machine_mode ext_mode = mode;
9107 if (ext_mode == BLKmode
9108 && ! (target != 0 && MEM_P (op0)
9109 && MEM_P (target)
9110 && bitpos % BITS_PER_UNIT == 0))
9111 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9113 if (ext_mode == BLKmode)
9115 if (target == 0)
9116 target = assign_temp (type, 0, 1, 1);
9118 if (bitsize == 0)
9119 return target;
9121 /* In this case, BITPOS must start at a byte boundary and
9122 TARGET, if specified, must be a MEM. */
9123 gcc_assert (MEM_P (op0)
9124 && (!target || MEM_P (target))
9125 && !(bitpos % BITS_PER_UNIT));
9127 emit_block_move (target,
9128 adjust_address (op0, VOIDmode,
9129 bitpos / BITS_PER_UNIT),
9130 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9131 / BITS_PER_UNIT),
9132 (modifier == EXPAND_STACK_PARM
9133 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9135 return target;
9138 op0 = validize_mem (op0);
9140 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9141 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9143 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9144 (modifier == EXPAND_STACK_PARM
9145 ? NULL_RTX : target),
9146 ext_mode, ext_mode);
9148 /* If the result is a record type and BITSIZE is narrower than
9149 the mode of OP0, an integral mode, and this is a big endian
9150 machine, we must put the field into the high-order bits. */
9151 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9152 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9153 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9154 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9155 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9156 - bitsize),
9157 op0, 1);
9159 /* If the result type is BLKmode, store the data into a temporary
9160 of the appropriate type, but with the mode corresponding to the
9161 mode for the data we have (op0's mode). It's tempting to make
9162 this a constant type, since we know it's only being stored once,
9163 but that can cause problems if we are taking the address of this
9164 COMPONENT_REF because the MEM of any reference via that address
9165 will have flags corresponding to the type, which will not
9166 necessarily be constant. */
9167 if (mode == BLKmode)
9169 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9170 rtx new_rtx;
9172 /* If the reference doesn't use the alias set of its type,
9173 we cannot create the temporary using that type. */
9174 if (component_uses_parent_alias_set (exp))
9176 new_rtx = assign_stack_local (ext_mode, size, 0);
9177 set_mem_alias_set (new_rtx, get_alias_set (exp));
9179 else
9180 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9182 emit_move_insn (new_rtx, op0);
9183 op0 = copy_rtx (new_rtx);
9184 PUT_MODE (op0, BLKmode);
9185 set_mem_attributes (op0, exp, 1);
9188 return op0;
9191 /* If the result is BLKmode, use that to access the object
9192 now as well. */
9193 if (mode == BLKmode)
9194 mode1 = BLKmode;
9196 /* Get a reference to just this component. */
9197 if (modifier == EXPAND_CONST_ADDRESS
9198 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9199 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9200 else
9201 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9203 if (op0 == orig_op0)
9204 op0 = copy_rtx (op0);
9206 set_mem_attributes (op0, exp, 0);
9207 if (REG_P (XEXP (op0, 0)))
9208 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9210 MEM_VOLATILE_P (op0) |= volatilep;
9211 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9212 || modifier == EXPAND_CONST_ADDRESS
9213 || modifier == EXPAND_INITIALIZER)
9214 return op0;
9215 else if (target == 0)
9216 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9218 convert_move (target, op0, unsignedp);
9219 return target;
9222 case OBJ_TYPE_REF:
9223 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9225 case CALL_EXPR:
9226 /* All valid uses of __builtin_va_arg_pack () are removed during
9227 inlining. */
9228 if (CALL_EXPR_VA_ARG_PACK (exp))
9229 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9231 tree fndecl = get_callee_fndecl (exp), attr;
9233 if (fndecl
9234 && (attr = lookup_attribute ("error",
9235 DECL_ATTRIBUTES (fndecl))) != NULL)
9236 error ("%Kcall to %qs declared with attribute error: %s",
9237 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9238 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9239 if (fndecl
9240 && (attr = lookup_attribute ("warning",
9241 DECL_ATTRIBUTES (fndecl))) != NULL)
9242 warning_at (tree_nonartificial_location (exp),
9243 0, "%Kcall to %qs declared with attribute warning: %s",
9244 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9245 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9247 /* Check for a built-in function. */
9248 if (fndecl && DECL_BUILT_IN (fndecl))
9250 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9251 return expand_builtin (exp, target, subtarget, tmode, ignore);
9254 return expand_call (exp, target, ignore);
9256 case VIEW_CONVERT_EXPR:
9257 op0 = NULL_RTX;
9259 /* If we are converting to BLKmode, try to avoid an intermediate
9260 temporary by fetching an inner memory reference. */
9261 if (mode == BLKmode
9262 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9263 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9264 && handled_component_p (treeop0))
9266 enum machine_mode mode1;
9267 HOST_WIDE_INT bitsize, bitpos;
9268 tree offset;
9269 int unsignedp;
9270 int volatilep = 0;
9271 tree tem
9272 = get_inner_reference (treeop0, &bitsize, &bitpos,
9273 &offset, &mode1, &unsignedp, &volatilep,
9274 true);
9275 rtx orig_op0;
9277 /* ??? We should work harder and deal with non-zero offsets. */
9278 if (!offset
9279 && (bitpos % BITS_PER_UNIT) == 0
9280 && bitsize >= 0
9281 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9283 /* See the normal_inner_ref case for the rationale. */
9284 orig_op0
9285 = expand_expr (tem,
9286 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9287 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9288 != INTEGER_CST)
9289 && modifier != EXPAND_STACK_PARM
9290 ? target : NULL_RTX),
9291 VOIDmode,
9292 (modifier == EXPAND_INITIALIZER
9293 || modifier == EXPAND_CONST_ADDRESS
9294 || modifier == EXPAND_STACK_PARM)
9295 ? modifier : EXPAND_NORMAL);
9297 if (MEM_P (orig_op0))
9299 op0 = orig_op0;
9301 /* Get a reference to just this component. */
9302 if (modifier == EXPAND_CONST_ADDRESS
9303 || modifier == EXPAND_SUM
9304 || modifier == EXPAND_INITIALIZER)
9305 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9306 else
9307 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9309 if (op0 == orig_op0)
9310 op0 = copy_rtx (op0);
9312 set_mem_attributes (op0, treeop0, 0);
9313 if (REG_P (XEXP (op0, 0)))
9314 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9316 MEM_VOLATILE_P (op0) |= volatilep;
9321 if (!op0)
9322 op0 = expand_expr (treeop0,
9323 NULL_RTX, VOIDmode, modifier);
9325 /* If the input and output modes are both the same, we are done. */
9326 if (mode == GET_MODE (op0))
9328 /* If neither mode is BLKmode, and both modes are the same size
9329 then we can use gen_lowpart. */
9330 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9331 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9332 && !COMPLEX_MODE_P (GET_MODE (op0)))
9334 if (GET_CODE (op0) == SUBREG)
9335 op0 = force_reg (GET_MODE (op0), op0);
9336 op0 = gen_lowpart (mode, op0);
9338 /* If both modes are integral, then we can convert from one to the
9339 other. */
9340 else if (SCALAR_INT_MODE_P (GET_MODE (op0)) && SCALAR_INT_MODE_P (mode))
9341 op0 = convert_modes (mode, GET_MODE (op0), op0,
9342 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9343 /* As a last resort, spill op0 to memory, and reload it in a
9344 different mode. */
9345 else if (!MEM_P (op0))
9347 /* If the operand is not a MEM, force it into memory. Since we
9348 are going to be changing the mode of the MEM, don't call
9349 force_const_mem for constants because we don't allow pool
9350 constants to change mode. */
9351 tree inner_type = TREE_TYPE (treeop0);
9353 gcc_assert (!TREE_ADDRESSABLE (exp));
9355 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9356 target
9357 = assign_stack_temp_for_type
9358 (TYPE_MODE (inner_type),
9359 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9361 emit_move_insn (target, op0);
9362 op0 = target;
9365 /* At this point, OP0 is in the correct mode. If the output type is
9366 such that the operand is known to be aligned, indicate that it is.
9367 Otherwise, we need only be concerned about alignment for non-BLKmode
9368 results. */
9369 if (MEM_P (op0))
9371 op0 = copy_rtx (op0);
9373 if (TYPE_ALIGN_OK (type))
9374 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9375 else if (STRICT_ALIGNMENT
9376 && mode != BLKmode
9377 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9379 tree inner_type = TREE_TYPE (treeop0);
9380 HOST_WIDE_INT temp_size
9381 = MAX (int_size_in_bytes (inner_type),
9382 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9383 rtx new_rtx
9384 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9385 rtx new_with_op0_mode
9386 = adjust_address (new_rtx, GET_MODE (op0), 0);
9388 gcc_assert (!TREE_ADDRESSABLE (exp));
9390 if (GET_MODE (op0) == BLKmode)
9391 emit_block_move (new_with_op0_mode, op0,
9392 GEN_INT (GET_MODE_SIZE (mode)),
9393 (modifier == EXPAND_STACK_PARM
9394 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9395 else
9396 emit_move_insn (new_with_op0_mode, op0);
9398 op0 = new_rtx;
9401 op0 = adjust_address (op0, mode, 0);
9404 return op0;
9406 /* Use a compare and a jump for BLKmode comparisons, or for function
9407 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9409 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9410 are occassionally created by folding during expansion. */
9411 case TRUTH_ANDIF_EXPR:
9412 case TRUTH_ORIF_EXPR:
9413 if (! ignore
9414 && (target == 0
9415 || modifier == EXPAND_STACK_PARM
9416 || ! safe_from_p (target, treeop0, 1)
9417 || ! safe_from_p (target, treeop1, 1)
9418 /* Make sure we don't have a hard reg (such as function's return
9419 value) live across basic blocks, if not optimizing. */
9420 || (!optimize && REG_P (target)
9421 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9422 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9424 if (target)
9425 emit_move_insn (target, const0_rtx);
9427 op1 = gen_label_rtx ();
9428 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9430 if (target)
9431 emit_move_insn (target, const1_rtx);
9433 emit_label (op1);
9434 return ignore ? const0_rtx : target;
9436 case STATEMENT_LIST:
9438 tree_stmt_iterator iter;
9440 gcc_assert (ignore);
9442 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9443 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9445 return const0_rtx;
9447 case COND_EXPR:
9448 /* A COND_EXPR with its type being VOID_TYPE represents a
9449 conditional jump and is handled in
9450 expand_gimple_cond_expr. */
9451 gcc_assert (!VOID_TYPE_P (type));
9453 /* Note that COND_EXPRs whose type is a structure or union
9454 are required to be constructed to contain assignments of
9455 a temporary variable, so that we can evaluate them here
9456 for side effect only. If type is void, we must do likewise. */
9458 gcc_assert (!TREE_ADDRESSABLE (type)
9459 && !ignore
9460 && TREE_TYPE (treeop1) != void_type_node
9461 && TREE_TYPE (treeop2) != void_type_node);
9463 /* If we are not to produce a result, we have no target. Otherwise,
9464 if a target was specified use it; it will not be used as an
9465 intermediate target unless it is safe. If no target, use a
9466 temporary. */
9468 if (modifier != EXPAND_STACK_PARM
9469 && original_target
9470 && safe_from_p (original_target, treeop0, 1)
9471 && GET_MODE (original_target) == mode
9472 #ifdef HAVE_conditional_move
9473 && (! can_conditionally_move_p (mode)
9474 || REG_P (original_target))
9475 #endif
9476 && !MEM_P (original_target))
9477 temp = original_target;
9478 else
9479 temp = assign_temp (type, 0, 0, 1);
9481 do_pending_stack_adjust ();
9482 NO_DEFER_POP;
9483 op0 = gen_label_rtx ();
9484 op1 = gen_label_rtx ();
9485 jumpifnot (treeop0, op0, -1);
9486 store_expr (treeop1, temp,
9487 modifier == EXPAND_STACK_PARM,
9488 false);
9490 emit_jump_insn (gen_jump (op1));
9491 emit_barrier ();
9492 emit_label (op0);
9493 store_expr (treeop2, temp,
9494 modifier == EXPAND_STACK_PARM,
9495 false);
9497 emit_label (op1);
9498 OK_DEFER_POP;
9499 return temp;
9501 case VEC_COND_EXPR:
9502 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9503 return target;
9505 case MODIFY_EXPR:
9507 tree lhs = treeop0;
9508 tree rhs = treeop1;
9509 gcc_assert (ignore);
9511 /* Check for |= or &= of a bitfield of size one into another bitfield
9512 of size 1. In this case, (unless we need the result of the
9513 assignment) we can do this more efficiently with a
9514 test followed by an assignment, if necessary.
9516 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9517 things change so we do, this code should be enhanced to
9518 support it. */
9519 if (TREE_CODE (lhs) == COMPONENT_REF
9520 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9521 || TREE_CODE (rhs) == BIT_AND_EXPR)
9522 && TREE_OPERAND (rhs, 0) == lhs
9523 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9524 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9525 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9527 rtx label = gen_label_rtx ();
9528 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9529 do_jump (TREE_OPERAND (rhs, 1),
9530 value ? label : 0,
9531 value ? 0 : label, -1);
9532 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9533 MOVE_NONTEMPORAL (exp));
9534 do_pending_stack_adjust ();
9535 emit_label (label);
9536 return const0_rtx;
9539 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9540 return const0_rtx;
9543 case ADDR_EXPR:
9544 return expand_expr_addr_expr (exp, target, tmode, modifier);
9546 case REALPART_EXPR:
9547 op0 = expand_normal (treeop0);
9548 return read_complex_part (op0, false);
9550 case IMAGPART_EXPR:
9551 op0 = expand_normal (treeop0);
9552 return read_complex_part (op0, true);
9554 case RETURN_EXPR:
9555 case LABEL_EXPR:
9556 case GOTO_EXPR:
9557 case SWITCH_EXPR:
9558 case ASM_EXPR:
9559 /* Expanded in cfgexpand.c. */
9560 gcc_unreachable ();
9562 case TRY_CATCH_EXPR:
9563 case CATCH_EXPR:
9564 case EH_FILTER_EXPR:
9565 case TRY_FINALLY_EXPR:
9566 /* Lowered by tree-eh.c. */
9567 gcc_unreachable ();
9569 case WITH_CLEANUP_EXPR:
9570 case CLEANUP_POINT_EXPR:
9571 case TARGET_EXPR:
9572 case CASE_LABEL_EXPR:
9573 case VA_ARG_EXPR:
9574 case BIND_EXPR:
9575 case INIT_EXPR:
9576 case CONJ_EXPR:
9577 case COMPOUND_EXPR:
9578 case PREINCREMENT_EXPR:
9579 case PREDECREMENT_EXPR:
9580 case POSTINCREMENT_EXPR:
9581 case POSTDECREMENT_EXPR:
9582 case LOOP_EXPR:
9583 case EXIT_EXPR:
9584 /* Lowered by gimplify.c. */
9585 gcc_unreachable ();
9587 case FDESC_EXPR:
9588 /* Function descriptors are not valid except for as
9589 initialization constants, and should not be expanded. */
9590 gcc_unreachable ();
9592 case WITH_SIZE_EXPR:
9593 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9594 have pulled out the size to use in whatever context it needed. */
9595 return expand_expr_real (treeop0, original_target, tmode,
9596 modifier, alt_rtl);
9598 case REALIGN_LOAD_EXPR:
9600 tree oprnd0 = treeop0;
9601 tree oprnd1 = treeop1;
9602 tree oprnd2 = treeop2;
9603 rtx op2;
9605 this_optab = optab_for_tree_code (code, type, optab_default);
9606 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9607 op2 = expand_normal (oprnd2);
9608 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9609 target, unsignedp);
9610 gcc_assert (temp);
9611 return temp;
9614 case DOT_PROD_EXPR:
9616 tree oprnd0 = treeop0;
9617 tree oprnd1 = treeop1;
9618 tree oprnd2 = treeop2;
9619 rtx op2;
9621 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9622 op2 = expand_normal (oprnd2);
9623 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9624 target, unsignedp);
9625 return target;
9628 case COMPOUND_LITERAL_EXPR:
9630 /* Initialize the anonymous variable declared in the compound
9631 literal, then return the variable. */
9632 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9634 /* Create RTL for this variable. */
9635 if (!DECL_RTL_SET_P (decl))
9637 if (DECL_HARD_REGISTER (decl))
9638 /* The user specified an assembler name for this variable.
9639 Set that up now. */
9640 rest_of_decl_compilation (decl, 0, 0);
9641 else
9642 expand_decl (decl);
9645 return expand_expr_real (decl, original_target, tmode,
9646 modifier, alt_rtl);
9649 default:
9650 return expand_expr_real_2 (&ops, target, tmode, modifier);
9654 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9655 signedness of TYPE), possibly returning the result in TARGET. */
9656 static rtx
9657 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9659 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9660 if (target && GET_MODE (target) != GET_MODE (exp))
9661 target = 0;
9662 /* For constant values, reduce using build_int_cst_type. */
9663 if (CONST_INT_P (exp))
9665 HOST_WIDE_INT value = INTVAL (exp);
9666 tree t = build_int_cst_type (type, value);
9667 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9669 else if (TYPE_UNSIGNED (type))
9671 rtx mask;
9672 if (prec < HOST_BITS_PER_WIDE_INT)
9673 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9674 GET_MODE (exp));
9675 else
9676 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9677 ((unsigned HOST_WIDE_INT) 1
9678 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9679 GET_MODE (exp));
9680 return expand_and (GET_MODE (exp), exp, mask, target);
9682 else
9684 tree count = build_int_cst (NULL_TREE,
9685 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9686 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9687 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9691 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9692 when applied to the address of EXP produces an address known to be
9693 aligned more than BIGGEST_ALIGNMENT. */
9695 static int
9696 is_aligning_offset (const_tree offset, const_tree exp)
9698 /* Strip off any conversions. */
9699 while (CONVERT_EXPR_P (offset))
9700 offset = TREE_OPERAND (offset, 0);
9702 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9703 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9704 if (TREE_CODE (offset) != BIT_AND_EXPR
9705 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9706 || compare_tree_int (TREE_OPERAND (offset, 1),
9707 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9708 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9709 return 0;
9711 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9712 It must be NEGATE_EXPR. Then strip any more conversions. */
9713 offset = TREE_OPERAND (offset, 0);
9714 while (CONVERT_EXPR_P (offset))
9715 offset = TREE_OPERAND (offset, 0);
9717 if (TREE_CODE (offset) != NEGATE_EXPR)
9718 return 0;
9720 offset = TREE_OPERAND (offset, 0);
9721 while (CONVERT_EXPR_P (offset))
9722 offset = TREE_OPERAND (offset, 0);
9724 /* This must now be the address of EXP. */
9725 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9728 /* Return the tree node if an ARG corresponds to a string constant or zero
9729 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9730 in bytes within the string that ARG is accessing. The type of the
9731 offset will be `sizetype'. */
9733 tree
9734 string_constant (tree arg, tree *ptr_offset)
9736 tree array, offset, lower_bound;
9737 STRIP_NOPS (arg);
9739 if (TREE_CODE (arg) == ADDR_EXPR)
9741 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9743 *ptr_offset = size_zero_node;
9744 return TREE_OPERAND (arg, 0);
9746 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9748 array = TREE_OPERAND (arg, 0);
9749 offset = size_zero_node;
9751 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9753 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9754 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9755 if (TREE_CODE (array) != STRING_CST
9756 && TREE_CODE (array) != VAR_DECL)
9757 return 0;
9759 /* Check if the array has a nonzero lower bound. */
9760 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9761 if (!integer_zerop (lower_bound))
9763 /* If the offset and base aren't both constants, return 0. */
9764 if (TREE_CODE (lower_bound) != INTEGER_CST)
9765 return 0;
9766 if (TREE_CODE (offset) != INTEGER_CST)
9767 return 0;
9768 /* Adjust offset by the lower bound. */
9769 offset = size_diffop (fold_convert (sizetype, offset),
9770 fold_convert (sizetype, lower_bound));
9773 else
9774 return 0;
9776 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9778 tree arg0 = TREE_OPERAND (arg, 0);
9779 tree arg1 = TREE_OPERAND (arg, 1);
9781 STRIP_NOPS (arg0);
9782 STRIP_NOPS (arg1);
9784 if (TREE_CODE (arg0) == ADDR_EXPR
9785 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9786 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9788 array = TREE_OPERAND (arg0, 0);
9789 offset = arg1;
9791 else if (TREE_CODE (arg1) == ADDR_EXPR
9792 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9793 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9795 array = TREE_OPERAND (arg1, 0);
9796 offset = arg0;
9798 else
9799 return 0;
9801 else
9802 return 0;
9804 if (TREE_CODE (array) == STRING_CST)
9806 *ptr_offset = fold_convert (sizetype, offset);
9807 return array;
9809 else if (TREE_CODE (array) == VAR_DECL)
9811 int length;
9813 /* Variables initialized to string literals can be handled too. */
9814 if (DECL_INITIAL (array) == NULL_TREE
9815 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9816 return 0;
9818 /* If they are read-only, non-volatile and bind locally. */
9819 if (! TREE_READONLY (array)
9820 || TREE_SIDE_EFFECTS (array)
9821 || ! targetm.binds_local_p (array))
9822 return 0;
9824 /* Avoid const char foo[4] = "abcde"; */
9825 if (DECL_SIZE_UNIT (array) == NULL_TREE
9826 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9827 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9828 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9829 return 0;
9831 /* If variable is bigger than the string literal, OFFSET must be constant
9832 and inside of the bounds of the string literal. */
9833 offset = fold_convert (sizetype, offset);
9834 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9835 && (! host_integerp (offset, 1)
9836 || compare_tree_int (offset, length) >= 0))
9837 return 0;
9839 *ptr_offset = offset;
9840 return DECL_INITIAL (array);
9843 return 0;
9846 /* Generate code to calculate OPS, and exploded expression
9847 using a store-flag instruction and return an rtx for the result.
9848 OPS reflects a comparison.
9850 If TARGET is nonzero, store the result there if convenient.
9852 Return zero if there is no suitable set-flag instruction
9853 available on this machine.
9855 Once expand_expr has been called on the arguments of the comparison,
9856 we are committed to doing the store flag, since it is not safe to
9857 re-evaluate the expression. We emit the store-flag insn by calling
9858 emit_store_flag, but only expand the arguments if we have a reason
9859 to believe that emit_store_flag will be successful. If we think that
9860 it will, but it isn't, we have to simulate the store-flag with a
9861 set/jump/set sequence. */
9863 static rtx
9864 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9866 enum rtx_code code;
9867 tree arg0, arg1, type;
9868 tree tem;
9869 enum machine_mode operand_mode;
9870 int unsignedp;
9871 rtx op0, op1;
9872 rtx subtarget = target;
9873 location_t loc = ops->location;
9875 arg0 = ops->op0;
9876 arg1 = ops->op1;
9878 /* Don't crash if the comparison was erroneous. */
9879 if (arg0 == error_mark_node || arg1 == error_mark_node)
9880 return const0_rtx;
9882 type = TREE_TYPE (arg0);
9883 operand_mode = TYPE_MODE (type);
9884 unsignedp = TYPE_UNSIGNED (type);
9886 /* We won't bother with BLKmode store-flag operations because it would mean
9887 passing a lot of information to emit_store_flag. */
9888 if (operand_mode == BLKmode)
9889 return 0;
9891 /* We won't bother with store-flag operations involving function pointers
9892 when function pointers must be canonicalized before comparisons. */
9893 #ifdef HAVE_canonicalize_funcptr_for_compare
9894 if (HAVE_canonicalize_funcptr_for_compare
9895 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9896 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9897 == FUNCTION_TYPE))
9898 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9899 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9900 == FUNCTION_TYPE))))
9901 return 0;
9902 #endif
9904 STRIP_NOPS (arg0);
9905 STRIP_NOPS (arg1);
9907 /* Get the rtx comparison code to use. We know that EXP is a comparison
9908 operation of some type. Some comparisons against 1 and -1 can be
9909 converted to comparisons with zero. Do so here so that the tests
9910 below will be aware that we have a comparison with zero. These
9911 tests will not catch constants in the first operand, but constants
9912 are rarely passed as the first operand. */
9914 switch (ops->code)
9916 case EQ_EXPR:
9917 code = EQ;
9918 break;
9919 case NE_EXPR:
9920 code = NE;
9921 break;
9922 case LT_EXPR:
9923 if (integer_onep (arg1))
9924 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9925 else
9926 code = unsignedp ? LTU : LT;
9927 break;
9928 case LE_EXPR:
9929 if (! unsignedp && integer_all_onesp (arg1))
9930 arg1 = integer_zero_node, code = LT;
9931 else
9932 code = unsignedp ? LEU : LE;
9933 break;
9934 case GT_EXPR:
9935 if (! unsignedp && integer_all_onesp (arg1))
9936 arg1 = integer_zero_node, code = GE;
9937 else
9938 code = unsignedp ? GTU : GT;
9939 break;
9940 case GE_EXPR:
9941 if (integer_onep (arg1))
9942 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9943 else
9944 code = unsignedp ? GEU : GE;
9945 break;
9947 case UNORDERED_EXPR:
9948 code = UNORDERED;
9949 break;
9950 case ORDERED_EXPR:
9951 code = ORDERED;
9952 break;
9953 case UNLT_EXPR:
9954 code = UNLT;
9955 break;
9956 case UNLE_EXPR:
9957 code = UNLE;
9958 break;
9959 case UNGT_EXPR:
9960 code = UNGT;
9961 break;
9962 case UNGE_EXPR:
9963 code = UNGE;
9964 break;
9965 case UNEQ_EXPR:
9966 code = UNEQ;
9967 break;
9968 case LTGT_EXPR:
9969 code = LTGT;
9970 break;
9972 default:
9973 gcc_unreachable ();
9976 /* Put a constant second. */
9977 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9978 || TREE_CODE (arg0) == FIXED_CST)
9980 tem = arg0; arg0 = arg1; arg1 = tem;
9981 code = swap_condition (code);
9984 /* If this is an equality or inequality test of a single bit, we can
9985 do this by shifting the bit being tested to the low-order bit and
9986 masking the result with the constant 1. If the condition was EQ,
9987 we xor it with 1. This does not require an scc insn and is faster
9988 than an scc insn even if we have it.
9990 The code to make this transformation was moved into fold_single_bit_test,
9991 so we just call into the folder and expand its result. */
9993 if ((code == NE || code == EQ)
9994 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9995 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9997 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9998 return expand_expr (fold_single_bit_test (loc,
9999 code == NE ? NE_EXPR : EQ_EXPR,
10000 arg0, arg1, type),
10001 target, VOIDmode, EXPAND_NORMAL);
10004 if (! get_subtarget (target)
10005 || GET_MODE (subtarget) != operand_mode)
10006 subtarget = 0;
10008 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10010 if (target == 0)
10011 target = gen_reg_rtx (mode);
10013 /* Try a cstore if possible. */
10014 return emit_store_flag_force (target, code, op0, op1,
10015 operand_mode, unsignedp, 1);
10019 /* Stubs in case we haven't got a casesi insn. */
10020 #ifndef HAVE_casesi
10021 # define HAVE_casesi 0
10022 # define gen_casesi(a, b, c, d, e) (0)
10023 # define CODE_FOR_casesi CODE_FOR_nothing
10024 #endif
10026 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10027 0 otherwise (i.e. if there is no casesi instruction). */
10029 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10030 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10031 rtx fallback_label ATTRIBUTE_UNUSED)
10033 enum machine_mode index_mode = SImode;
10034 int index_bits = GET_MODE_BITSIZE (index_mode);
10035 rtx op1, op2, index;
10036 enum machine_mode op_mode;
10038 if (! HAVE_casesi)
10039 return 0;
10041 /* Convert the index to SImode. */
10042 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10044 enum machine_mode omode = TYPE_MODE (index_type);
10045 rtx rangertx = expand_normal (range);
10047 /* We must handle the endpoints in the original mode. */
10048 index_expr = build2 (MINUS_EXPR, index_type,
10049 index_expr, minval);
10050 minval = integer_zero_node;
10051 index = expand_normal (index_expr);
10052 if (default_label)
10053 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10054 omode, 1, default_label);
10055 /* Now we can safely truncate. */
10056 index = convert_to_mode (index_mode, index, 0);
10058 else
10060 if (TYPE_MODE (index_type) != index_mode)
10062 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10063 index_expr = fold_convert (index_type, index_expr);
10066 index = expand_normal (index_expr);
10069 do_pending_stack_adjust ();
10071 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10072 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10073 (index, op_mode))
10074 index = copy_to_mode_reg (op_mode, index);
10076 op1 = expand_normal (minval);
10078 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10079 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10080 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10081 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10082 (op1, op_mode))
10083 op1 = copy_to_mode_reg (op_mode, op1);
10085 op2 = expand_normal (range);
10087 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10088 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10089 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10090 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10091 (op2, op_mode))
10092 op2 = copy_to_mode_reg (op_mode, op2);
10094 emit_jump_insn (gen_casesi (index, op1, op2,
10095 table_label, !default_label
10096 ? fallback_label : default_label));
10097 return 1;
10100 /* Attempt to generate a tablejump instruction; same concept. */
10101 #ifndef HAVE_tablejump
10102 #define HAVE_tablejump 0
10103 #define gen_tablejump(x, y) (0)
10104 #endif
10106 /* Subroutine of the next function.
10108 INDEX is the value being switched on, with the lowest value
10109 in the table already subtracted.
10110 MODE is its expected mode (needed if INDEX is constant).
10111 RANGE is the length of the jump table.
10112 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10114 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10115 index value is out of range. */
10117 static void
10118 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10119 rtx default_label)
10121 rtx temp, vector;
10123 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10124 cfun->cfg->max_jumptable_ents = INTVAL (range);
10126 /* Do an unsigned comparison (in the proper mode) between the index
10127 expression and the value which represents the length of the range.
10128 Since we just finished subtracting the lower bound of the range
10129 from the index expression, this comparison allows us to simultaneously
10130 check that the original index expression value is both greater than
10131 or equal to the minimum value of the range and less than or equal to
10132 the maximum value of the range. */
10134 if (default_label)
10135 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10136 default_label);
10138 /* If index is in range, it must fit in Pmode.
10139 Convert to Pmode so we can index with it. */
10140 if (mode != Pmode)
10141 index = convert_to_mode (Pmode, index, 1);
10143 /* Don't let a MEM slip through, because then INDEX that comes
10144 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10145 and break_out_memory_refs will go to work on it and mess it up. */
10146 #ifdef PIC_CASE_VECTOR_ADDRESS
10147 if (flag_pic && !REG_P (index))
10148 index = copy_to_mode_reg (Pmode, index);
10149 #endif
10151 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10152 GET_MODE_SIZE, because this indicates how large insns are. The other
10153 uses should all be Pmode, because they are addresses. This code
10154 could fail if addresses and insns are not the same size. */
10155 index = gen_rtx_PLUS (Pmode,
10156 gen_rtx_MULT (Pmode, index,
10157 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10158 gen_rtx_LABEL_REF (Pmode, table_label));
10159 #ifdef PIC_CASE_VECTOR_ADDRESS
10160 if (flag_pic)
10161 index = PIC_CASE_VECTOR_ADDRESS (index);
10162 else
10163 #endif
10164 index = memory_address (CASE_VECTOR_MODE, index);
10165 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10166 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10167 convert_move (temp, vector, 0);
10169 emit_jump_insn (gen_tablejump (temp, table_label));
10171 /* If we are generating PIC code or if the table is PC-relative, the
10172 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10173 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10174 emit_barrier ();
10178 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10179 rtx table_label, rtx default_label)
10181 rtx index;
10183 if (! HAVE_tablejump)
10184 return 0;
10186 index_expr = fold_build2 (MINUS_EXPR, index_type,
10187 fold_convert (index_type, index_expr),
10188 fold_convert (index_type, minval));
10189 index = expand_normal (index_expr);
10190 do_pending_stack_adjust ();
10192 do_tablejump (index, TYPE_MODE (index_type),
10193 convert_modes (TYPE_MODE (index_type),
10194 TYPE_MODE (TREE_TYPE (range)),
10195 expand_normal (range),
10196 TYPE_UNSIGNED (TREE_TYPE (range))),
10197 table_label, default_label);
10198 return 1;
10201 /* Nonzero if the mode is a valid vector mode for this architecture.
10202 This returns nonzero even if there is no hardware support for the
10203 vector mode, but we can emulate with narrower modes. */
10206 vector_mode_valid_p (enum machine_mode mode)
10208 enum mode_class mclass = GET_MODE_CLASS (mode);
10209 enum machine_mode innermode;
10211 /* Doh! What's going on? */
10212 if (mclass != MODE_VECTOR_INT
10213 && mclass != MODE_VECTOR_FLOAT
10214 && mclass != MODE_VECTOR_FRACT
10215 && mclass != MODE_VECTOR_UFRACT
10216 && mclass != MODE_VECTOR_ACCUM
10217 && mclass != MODE_VECTOR_UACCUM)
10218 return 0;
10220 /* Hardware support. Woo hoo! */
10221 if (targetm.vector_mode_supported_p (mode))
10222 return 1;
10224 innermode = GET_MODE_INNER (mode);
10226 /* We should probably return 1 if requesting V4DI and we have no DI,
10227 but we have V2DI, but this is probably very unlikely. */
10229 /* If we have support for the inner mode, we can safely emulate it.
10230 We may not have V2DI, but me can emulate with a pair of DIs. */
10231 return targetm.scalar_mode_supported_p (innermode);
10234 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10235 static rtx
10236 const_vector_from_tree (tree exp)
10238 rtvec v;
10239 int units, i;
10240 tree link, elt;
10241 enum machine_mode inner, mode;
10243 mode = TYPE_MODE (TREE_TYPE (exp));
10245 if (initializer_zerop (exp))
10246 return CONST0_RTX (mode);
10248 units = GET_MODE_NUNITS (mode);
10249 inner = GET_MODE_INNER (mode);
10251 v = rtvec_alloc (units);
10253 link = TREE_VECTOR_CST_ELTS (exp);
10254 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10256 elt = TREE_VALUE (link);
10258 if (TREE_CODE (elt) == REAL_CST)
10259 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10260 inner);
10261 else if (TREE_CODE (elt) == FIXED_CST)
10262 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10263 inner);
10264 else
10265 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10266 TREE_INT_CST_HIGH (elt),
10267 inner);
10270 /* Initialize remaining elements to 0. */
10271 for (; i < units; ++i)
10272 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10274 return gen_rtx_CONST_VECTOR (mode, v);
10278 /* Build a decl for a EH personality function named NAME. */
10280 tree
10281 build_personality_function (const char *name)
10283 tree decl, type;
10285 type = build_function_type_list (integer_type_node, integer_type_node,
10286 long_long_unsigned_type_node,
10287 ptr_type_node, ptr_type_node, NULL_TREE);
10288 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10289 get_identifier (name), type);
10290 DECL_ARTIFICIAL (decl) = 1;
10291 DECL_EXTERNAL (decl) = 1;
10292 TREE_PUBLIC (decl) = 1;
10294 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10295 are the flags assigned by targetm.encode_section_info. */
10296 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10298 return decl;
10301 /* Extracts the personality function of DECL and returns the corresponding
10302 libfunc. */
10305 get_personality_function (tree decl)
10307 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10308 enum eh_personality_kind pk;
10310 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10311 if (pk == eh_personality_none)
10312 return NULL;
10314 if (!personality
10315 && pk == eh_personality_any)
10316 personality = lang_hooks.eh_personality ();
10318 if (pk == eh_personality_lang)
10319 gcc_assert (personality != NULL_TREE);
10321 return XEXP (DECL_RTL (personality), 0);
10324 #include "gt-expr.h"