Merged r157653 through r157895 into branch.
[official-gcc.git] / gcc / config / i386 / i386.h
blob0f133593ad8ca389b3bbced5289154ab26d8722c
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
42 /* Redefines for option macros. */
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_MMX OPTION_ISA_MMX
46 #define TARGET_3DNOW OPTION_ISA_3DNOW
47 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48 #define TARGET_SSE OPTION_ISA_SSE
49 #define TARGET_SSE2 OPTION_ISA_SSE2
50 #define TARGET_SSE3 OPTION_ISA_SSE3
51 #define TARGET_SSSE3 OPTION_ISA_SSSE3
52 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
53 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
54 #define TARGET_AVX OPTION_ISA_AVX
55 #define TARGET_FMA OPTION_ISA_FMA
56 #define TARGET_SSE4A OPTION_ISA_SSE4A
57 #define TARGET_FMA4 OPTION_ISA_FMA4
58 #define TARGET_XOP OPTION_ISA_XOP
59 #define TARGET_LWP OPTION_ISA_LWP
60 #define TARGET_ROUND OPTION_ISA_ROUND
61 #define TARGET_ABM OPTION_ISA_ABM
62 #define TARGET_POPCNT OPTION_ISA_POPCNT
63 #define TARGET_SAHF OPTION_ISA_SAHF
64 #define TARGET_MOVBE OPTION_ISA_MOVBE
65 #define TARGET_CRC32 OPTION_ISA_CRC32
66 #define TARGET_AES OPTION_ISA_AES
67 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
68 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
71 /* SSE4.1 defines round instructions */
72 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
73 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
75 #include "config/vxworks-dummy.h"
77 /* Algorithm to expand string function with. */
78 enum stringop_alg
80 no_stringop,
81 libcall,
82 rep_prefix_1_byte,
83 rep_prefix_4_byte,
84 rep_prefix_8_byte,
85 loop_1_byte,
86 loop,
87 unrolled_loop
90 #define NAX_STRINGOP_ALGS 4
92 /* Specify what algorithm to use for stringops on known size.
93 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
94 known at compile time or estimated via feedback, the SIZE array
95 is walked in order until MAX is greater then the estimate (or -1
96 means infinity). Corresponding ALG is used then.
97 For example initializer:
98 {{256, loop}, {-1, rep_prefix_4_byte}}
99 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
100 be used otherwise. */
101 struct stringop_algs
103 const enum stringop_alg unknown_size;
104 const struct stringop_strategy {
105 const int max;
106 const enum stringop_alg alg;
107 } size [NAX_STRINGOP_ALGS];
110 /* Define the specific costs for a given cpu */
112 struct processor_costs {
113 const int add; /* cost of an add instruction */
114 const int lea; /* cost of a lea instruction */
115 const int shift_var; /* variable shift costs */
116 const int shift_const; /* constant shift costs */
117 const int mult_init[5]; /* cost of starting a multiply
118 in QImode, HImode, SImode, DImode, TImode*/
119 const int mult_bit; /* cost of multiply per each bit set */
120 const int divide[5]; /* cost of a divide/mod
121 in QImode, HImode, SImode, DImode, TImode*/
122 int movsx; /* The cost of movsx operation. */
123 int movzx; /* The cost of movzx operation. */
124 const int large_insn; /* insns larger than this cost more */
125 const int move_ratio; /* The threshold of number of scalar
126 memory-to-memory move insns. */
127 const int movzbl_load; /* cost of loading using movzbl */
128 const int int_load[3]; /* cost of loading integer registers
129 in QImode, HImode and SImode relative
130 to reg-reg move (2). */
131 const int int_store[3]; /* cost of storing integer register
132 in QImode, HImode and SImode */
133 const int fp_move; /* cost of reg,reg fld/fst */
134 const int fp_load[3]; /* cost of loading FP register
135 in SFmode, DFmode and XFmode */
136 const int fp_store[3]; /* cost of storing FP register
137 in SFmode, DFmode and XFmode */
138 const int mmx_move; /* cost of moving MMX register. */
139 const int mmx_load[2]; /* cost of loading MMX register
140 in SImode and DImode */
141 const int mmx_store[2]; /* cost of storing MMX register
142 in SImode and DImode */
143 const int sse_move; /* cost of moving SSE register. */
144 const int sse_load[3]; /* cost of loading SSE register
145 in SImode, DImode and TImode*/
146 const int sse_store[3]; /* cost of storing SSE register
147 in SImode, DImode and TImode*/
148 const int mmxsse_to_integer; /* cost of moving mmxsse register to
149 integer and vice versa. */
150 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
151 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
152 const int prefetch_block; /* bytes moved to cache for prefetch. */
153 const int simultaneous_prefetches; /* number of parallel prefetch
154 operations. */
155 const int branch_cost; /* Default value for BRANCH_COST. */
156 const int fadd; /* cost of FADD and FSUB instructions. */
157 const int fmul; /* cost of FMUL instruction. */
158 const int fdiv; /* cost of FDIV instruction. */
159 const int fabs; /* cost of FABS instruction. */
160 const int fchs; /* cost of FCHS instruction. */
161 const int fsqrt; /* cost of FSQRT instruction. */
162 /* Specify what algorithm
163 to use for stringops on unknown size. */
164 struct stringop_algs memcpy[2], memset[2];
165 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
166 load and store. */
167 const int scalar_load_cost; /* Cost of scalar load. */
168 const int scalar_store_cost; /* Cost of scalar store. */
169 const int vec_stmt_cost; /* Cost of any vector operation, excluding
170 load, store, vector-to-scalar and
171 scalar-to-vector operation. */
172 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
173 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
174 const int vec_align_load_cost; /* Cost of aligned vector load. */
175 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
176 const int vec_store_cost; /* Cost of vector store. */
177 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
178 cost model. */
179 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
180 vectorizer cost model. */
183 extern const struct processor_costs *ix86_cost;
184 extern const struct processor_costs ix86_size_cost;
186 #define ix86_cur_cost() \
187 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
189 /* Macros used in the machine description to test the flags. */
191 /* configure can arrange to make this 2, to force a 486. */
193 #ifndef TARGET_CPU_DEFAULT
194 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
195 #endif
197 #ifndef TARGET_FPMATH_DEFAULT
198 #define TARGET_FPMATH_DEFAULT \
199 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
200 #endif
202 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
204 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
205 compile-time constant. */
206 #ifdef IN_LIBGCC2
207 #undef TARGET_64BIT
208 #ifdef __x86_64__
209 #define TARGET_64BIT 1
210 #else
211 #define TARGET_64BIT 0
212 #endif
213 #else
214 #ifndef TARGET_BI_ARCH
215 #undef TARGET_64BIT
216 #if TARGET_64BIT_DEFAULT
217 #define TARGET_64BIT 1
218 #else
219 #define TARGET_64BIT 0
220 #endif
221 #endif
222 #endif
224 #define HAS_LONG_COND_BRANCH 1
225 #define HAS_LONG_UNCOND_BRANCH 1
227 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
228 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
229 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
230 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
231 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
232 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
233 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
234 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
235 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
236 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
237 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
238 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
239 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
240 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
241 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
242 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
243 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
245 /* Feature tests against the various tunings. */
246 enum ix86_tune_indices {
247 X86_TUNE_USE_LEAVE,
248 X86_TUNE_PUSH_MEMORY,
249 X86_TUNE_ZERO_EXTEND_WITH_AND,
250 X86_TUNE_UNROLL_STRLEN,
251 X86_TUNE_DEEP_BRANCH_PREDICTION,
252 X86_TUNE_BRANCH_PREDICTION_HINTS,
253 X86_TUNE_DOUBLE_WITH_ADD,
254 X86_TUNE_USE_SAHF,
255 X86_TUNE_MOVX,
256 X86_TUNE_PARTIAL_REG_STALL,
257 X86_TUNE_PARTIAL_FLAG_REG_STALL,
258 X86_TUNE_USE_HIMODE_FIOP,
259 X86_TUNE_USE_SIMODE_FIOP,
260 X86_TUNE_USE_MOV0,
261 X86_TUNE_USE_CLTD,
262 X86_TUNE_USE_XCHGB,
263 X86_TUNE_SPLIT_LONG_MOVES,
264 X86_TUNE_READ_MODIFY_WRITE,
265 X86_TUNE_READ_MODIFY,
266 X86_TUNE_PROMOTE_QIMODE,
267 X86_TUNE_FAST_PREFIX,
268 X86_TUNE_SINGLE_STRINGOP,
269 X86_TUNE_QIMODE_MATH,
270 X86_TUNE_HIMODE_MATH,
271 X86_TUNE_PROMOTE_QI_REGS,
272 X86_TUNE_PROMOTE_HI_REGS,
273 X86_TUNE_ADD_ESP_4,
274 X86_TUNE_ADD_ESP_8,
275 X86_TUNE_SUB_ESP_4,
276 X86_TUNE_SUB_ESP_8,
277 X86_TUNE_INTEGER_DFMODE_MOVES,
278 X86_TUNE_PARTIAL_REG_DEPENDENCY,
279 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
280 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
281 X86_TUNE_SSE_SPLIT_REGS,
282 X86_TUNE_SSE_TYPELESS_STORES,
283 X86_TUNE_SSE_LOAD0_BY_PXOR,
284 X86_TUNE_MEMORY_MISMATCH_STALL,
285 X86_TUNE_PROLOGUE_USING_MOVE,
286 X86_TUNE_EPILOGUE_USING_MOVE,
287 X86_TUNE_SHIFT1,
288 X86_TUNE_USE_FFREEP,
289 X86_TUNE_INTER_UNIT_MOVES,
290 X86_TUNE_INTER_UNIT_CONVERSIONS,
291 X86_TUNE_FOUR_JUMP_LIMIT,
292 X86_TUNE_SCHEDULE,
293 X86_TUNE_USE_BT,
294 X86_TUNE_USE_INCDEC,
295 X86_TUNE_PAD_RETURNS,
296 X86_TUNE_EXT_80387_CONSTANTS,
297 X86_TUNE_SHORTEN_X87_SSE,
298 X86_TUNE_AVOID_VECTOR_DECODE,
299 X86_TUNE_PROMOTE_HIMODE_IMUL,
300 X86_TUNE_SLOW_IMUL_IMM32_MEM,
301 X86_TUNE_SLOW_IMUL_IMM8,
302 X86_TUNE_MOVE_M1_VIA_OR,
303 X86_TUNE_NOT_UNPAIRABLE,
304 X86_TUNE_NOT_VECTORMODE,
305 X86_TUNE_USE_VECTOR_FP_CONVERTS,
306 X86_TUNE_USE_VECTOR_CONVERTS,
307 X86_TUNE_FUSE_CMP_AND_BRANCH,
308 X86_TUNE_OPT_AGU,
310 X86_TUNE_LAST
313 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
315 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
316 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
317 #define TARGET_ZERO_EXTEND_WITH_AND \
318 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
319 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
320 #define TARGET_DEEP_BRANCH_PREDICTION \
321 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
322 #define TARGET_BRANCH_PREDICTION_HINTS \
323 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
324 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
325 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
326 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
327 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
328 #define TARGET_PARTIAL_FLAG_REG_STALL \
329 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
330 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
331 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
332 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
333 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
334 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
335 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
336 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
337 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
338 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
339 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
340 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
341 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
342 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
343 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
344 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
345 #define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
346 #define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
347 #define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
348 #define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
349 #define TARGET_INTEGER_DFMODE_MOVES \
350 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
351 #define TARGET_PARTIAL_REG_DEPENDENCY \
352 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
353 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
354 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
355 #define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
356 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
357 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
358 #define TARGET_SSE_TYPELESS_STORES \
359 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
360 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
361 #define TARGET_MEMORY_MISMATCH_STALL \
362 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
363 #define TARGET_PROLOGUE_USING_MOVE \
364 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
365 #define TARGET_EPILOGUE_USING_MOVE \
366 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
367 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
368 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
369 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
370 #define TARGET_INTER_UNIT_CONVERSIONS\
371 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
372 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
373 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
374 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
375 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
376 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
377 #define TARGET_EXT_80387_CONSTANTS \
378 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
379 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
380 #define TARGET_AVOID_VECTOR_DECODE \
381 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
382 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
383 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
384 #define TARGET_SLOW_IMUL_IMM32_MEM \
385 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
386 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
387 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
388 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
389 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
390 #define TARGET_USE_VECTOR_FP_CONVERTS \
391 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
392 #define TARGET_USE_VECTOR_CONVERTS \
393 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
394 #define TARGET_FUSE_CMP_AND_BRANCH \
395 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
396 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
398 /* Feature tests against the various architecture variations. */
399 enum ix86_arch_indices {
400 X86_ARCH_CMOVE, /* || TARGET_SSE */
401 X86_ARCH_CMPXCHG,
402 X86_ARCH_CMPXCHG8B,
403 X86_ARCH_XADD,
404 X86_ARCH_BSWAP,
406 X86_ARCH_LAST
409 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
411 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
412 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
413 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
414 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
415 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
417 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
419 extern int x86_prefetch_sse;
421 #define TARGET_PREFETCH_SSE x86_prefetch_sse
423 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
425 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
426 #define TARGET_MIX_SSE_I387 \
427 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
429 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
430 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
431 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
432 #define TARGET_SUN_TLS 0
434 extern int ix86_isa_flags;
436 #ifndef TARGET_64BIT_DEFAULT
437 #define TARGET_64BIT_DEFAULT 0
438 #endif
439 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
440 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
441 #endif
443 /* Fence to use after loop using storent. */
445 extern tree x86_mfence;
446 #define FENCE_FOLLOWING_MOVNT x86_mfence
448 /* Once GDB has been enhanced to deal with functions without frame
449 pointers, we can change this to allow for elimination of
450 the frame pointer in leaf functions. */
451 #define TARGET_DEFAULT 0
453 /* Extra bits to force. */
454 #define TARGET_SUBTARGET_DEFAULT 0
455 #define TARGET_SUBTARGET_ISA_DEFAULT 0
457 /* Extra bits to force on w/ 32-bit mode. */
458 #define TARGET_SUBTARGET32_DEFAULT 0
459 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
461 /* Extra bits to force on w/ 64-bit mode. */
462 #define TARGET_SUBTARGET64_DEFAULT 0
463 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
465 /* This is not really a target flag, but is done this way so that
466 it's analogous to similar code for Mach-O on PowerPC. darwin.h
467 redefines this to 1. */
468 #define TARGET_MACHO 0
470 /* Likewise, for the Windows 64-bit ABI. */
471 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
473 /* Available call abi. */
474 enum calling_abi
476 SYSV_ABI = 0,
477 MS_ABI = 1
480 /* The abi used by target. */
481 extern enum calling_abi ix86_abi;
483 /* The default abi used by target. */
484 #define DEFAULT_ABI SYSV_ABI
486 /* Subtargets may reset this to 1 in order to enable 96-bit long double
487 with the rounding mode forced to 53 bits. */
488 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
490 /* Sometimes certain combinations of command options do not make
491 sense on a particular target machine. You can define a macro
492 `OVERRIDE_OPTIONS' to take account of this. This macro, if
493 defined, is executed once just after all the command options have
494 been parsed.
496 Don't use this macro to turn on various extra optimizations for
497 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
499 #define OVERRIDE_OPTIONS override_options (true)
501 /* Define this to change the optimizations performed by default. */
502 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
503 optimization_options ((LEVEL), (SIZE))
505 /* -march=native handling only makes sense with compiler running on
506 an x86 or x86_64 chip. If changing this condition, also change
507 the condition in driver-i386.c. */
508 #if defined(__i386__) || defined(__x86_64__)
509 /* In driver-i386.c. */
510 extern const char *host_detect_local_cpu (int argc, const char **argv);
511 #define EXTRA_SPEC_FUNCTIONS \
512 { "local_cpu_detect", host_detect_local_cpu },
513 #define HAVE_LOCAL_CPU_DETECT
514 #endif
516 #if TARGET_64BIT_DEFAULT
517 #define OPT_ARCH64 "!m32"
518 #define OPT_ARCH32 "m32"
519 #else
520 #define OPT_ARCH64 "m64"
521 #define OPT_ARCH32 "!m64"
522 #endif
524 /* Support for configure-time defaults of some command line options.
525 The order here is important so that -march doesn't squash the
526 tune or cpu values. */
527 #define OPTION_DEFAULT_SPECS \
528 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
529 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
530 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
531 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
532 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
533 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
534 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
535 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
536 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
538 /* Specs for the compiler proper */
540 #ifndef CC1_CPU_SPEC
541 #define CC1_CPU_SPEC_1 "\
542 %{mcpu=*:-mtune=%* \
543 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
544 %<mcpu=* \
545 %{mintel-syntax:-masm=intel \
546 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
547 %{msse5:-mavx \
548 %n'-msse5' was removed.\n} \
549 %{mno-intel-syntax:-masm=att \
550 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
552 #ifndef HAVE_LOCAL_CPU_DETECT
553 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
554 #else
555 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
556 "%{march=native:%<march=native %:local_cpu_detect(arch) \
557 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
558 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
559 #endif
560 #endif
562 /* Target CPU builtins. */
563 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
565 /* Target Pragmas. */
566 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
568 enum target_cpu_default
570 TARGET_CPU_DEFAULT_generic = 0,
572 TARGET_CPU_DEFAULT_i386,
573 TARGET_CPU_DEFAULT_i486,
574 TARGET_CPU_DEFAULT_pentium,
575 TARGET_CPU_DEFAULT_pentium_mmx,
576 TARGET_CPU_DEFAULT_pentiumpro,
577 TARGET_CPU_DEFAULT_pentium2,
578 TARGET_CPU_DEFAULT_pentium3,
579 TARGET_CPU_DEFAULT_pentium4,
580 TARGET_CPU_DEFAULT_pentium_m,
581 TARGET_CPU_DEFAULT_prescott,
582 TARGET_CPU_DEFAULT_nocona,
583 TARGET_CPU_DEFAULT_core2,
584 TARGET_CPU_DEFAULT_atom,
586 TARGET_CPU_DEFAULT_geode,
587 TARGET_CPU_DEFAULT_k6,
588 TARGET_CPU_DEFAULT_k6_2,
589 TARGET_CPU_DEFAULT_k6_3,
590 TARGET_CPU_DEFAULT_athlon,
591 TARGET_CPU_DEFAULT_athlon_sse,
592 TARGET_CPU_DEFAULT_k8,
593 TARGET_CPU_DEFAULT_amdfam10,
595 TARGET_CPU_DEFAULT_max
598 #ifndef CC1_SPEC
599 #define CC1_SPEC "%(cc1_cpu) "
600 #endif
602 /* This macro defines names of additional specifications to put in the
603 specs that can be used in various specifications like CC1_SPEC. Its
604 definition is an initializer with a subgrouping for each command option.
606 Each subgrouping contains a string constant, that defines the
607 specification name, and a string constant that used by the GCC driver
608 program.
610 Do not define this macro if it does not need to do anything. */
612 #ifndef SUBTARGET_EXTRA_SPECS
613 #define SUBTARGET_EXTRA_SPECS
614 #endif
616 #define EXTRA_SPECS \
617 { "cc1_cpu", CC1_CPU_SPEC }, \
618 SUBTARGET_EXTRA_SPECS
621 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
622 FPU, assume that the fpcw is set to extended precision; when using
623 only SSE, rounding is correct; when using both SSE and the FPU,
624 the rounding precision is indeterminate, since either may be chosen
625 apparently at random. */
626 #define TARGET_FLT_EVAL_METHOD \
627 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
629 /* Whether to allow x87 floating-point arithmetic on MODE (one of
630 SFmode, DFmode and XFmode) in the current excess precision
631 configuration. */
632 #define X87_ENABLE_ARITH(MODE) \
633 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
635 /* Likewise, whether to allow direct conversions from integer mode
636 IMODE (HImode, SImode or DImode) to MODE. */
637 #define X87_ENABLE_FLOAT(MODE, IMODE) \
638 (flag_excess_precision == EXCESS_PRECISION_FAST \
639 || (MODE) == XFmode \
640 || ((MODE) == DFmode && (IMODE) == SImode) \
641 || (IMODE) == HImode)
643 /* target machine storage layout */
645 #define SHORT_TYPE_SIZE 16
646 #define INT_TYPE_SIZE 32
647 #define FLOAT_TYPE_SIZE 32
648 #define LONG_TYPE_SIZE BITS_PER_WORD
649 #define DOUBLE_TYPE_SIZE 64
650 #define LONG_LONG_TYPE_SIZE 64
651 #define LONG_DOUBLE_TYPE_SIZE 80
653 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
655 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
656 #define MAX_BITS_PER_WORD 64
657 #else
658 #define MAX_BITS_PER_WORD 32
659 #endif
661 /* Define this if most significant byte of a word is the lowest numbered. */
662 /* That is true on the 80386. */
664 #define BITS_BIG_ENDIAN 0
666 /* Define this if most significant byte of a word is the lowest numbered. */
667 /* That is not true on the 80386. */
668 #define BYTES_BIG_ENDIAN 0
670 /* Define this if most significant word of a multiword number is the lowest
671 numbered. */
672 /* Not true for 80386 */
673 #define WORDS_BIG_ENDIAN 0
675 /* Width of a word, in units (bytes). */
676 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
677 #ifdef IN_LIBGCC2
678 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
679 #else
680 #define MIN_UNITS_PER_WORD 4
681 #endif
683 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
684 #define PARM_BOUNDARY BITS_PER_WORD
686 /* Boundary (in *bits*) on which stack pointer should be aligned. */
687 #define STACK_BOUNDARY \
688 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
690 /* Stack boundary of the main function guaranteed by OS. */
691 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
693 /* Minimum stack boundary. */
694 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
696 /* Boundary (in *bits*) on which the stack pointer prefers to be
697 aligned; the compiler cannot rely on having this alignment. */
698 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
700 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
701 both 32bit and 64bit, to support codes that need 128 bit stack
702 alignment for SSE instructions, but can't realign the stack. */
703 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
705 /* 1 if -mstackrealign should be turned on by default. It will
706 generate an alternate prologue and epilogue that realigns the
707 runtime stack if nessary. This supports mixing codes that keep a
708 4-byte aligned stack, as specified by i386 psABI, with codes that
709 need a 16-byte aligned stack, as required by SSE instructions. */
710 #define STACK_REALIGN_DEFAULT 0
712 /* Boundary (in *bits*) on which the incoming stack is aligned. */
713 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
715 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
716 mandatory for the 64-bit ABI, and may or may not be true for other
717 operating systems. */
718 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
720 /* Minimum allocation boundary for the code of a function. */
721 #define FUNCTION_BOUNDARY 8
723 /* C++ stores the virtual bit in the lowest bit of function pointers. */
724 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
726 /* Alignment of field after `int : 0' in a structure. */
728 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
730 /* Minimum size in bits of the largest boundary to which any
731 and all fundamental data types supported by the hardware
732 might need to be aligned. No data type wants to be aligned
733 rounder than this.
735 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
736 and Pentium Pro XFmode values at 128 bit boundaries. */
738 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
740 /* Maximum stack alignment. */
741 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
743 /* Alignment value for attribute ((aligned)). It is a constant since
744 it is the part of the ABI. We shouldn't change it with -mavx. */
745 #define ATTRIBUTE_ALIGNED_VALUE 128
747 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
748 #define ALIGN_MODE_128(MODE) \
749 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
751 /* The published ABIs say that doubles should be aligned on word
752 boundaries, so lower the alignment for structure fields unless
753 -malign-double is set. */
755 /* ??? Blah -- this macro is used directly by libobjc. Since it
756 supports no vector modes, cut out the complexity and fall back
757 on BIGGEST_FIELD_ALIGNMENT. */
758 #ifdef IN_TARGET_LIBS
759 #ifdef __x86_64__
760 #define BIGGEST_FIELD_ALIGNMENT 128
761 #else
762 #define BIGGEST_FIELD_ALIGNMENT 32
763 #endif
764 #else
765 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
766 x86_field_alignment (FIELD, COMPUTED)
767 #endif
769 /* If defined, a C expression to compute the alignment given to a
770 constant that is being placed in memory. EXP is the constant
771 and ALIGN is the alignment that the object would ordinarily have.
772 The value of this macro is used instead of that alignment to align
773 the object.
775 If this macro is not defined, then ALIGN is used.
777 The typical use of this macro is to increase alignment for string
778 constants to be word aligned so that `strcpy' calls that copy
779 constants can be done inline. */
781 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
783 /* If defined, a C expression to compute the alignment for a static
784 variable. TYPE is the data type, and ALIGN is the alignment that
785 the object would ordinarily have. The value of this macro is used
786 instead of that alignment to align the object.
788 If this macro is not defined, then ALIGN is used.
790 One use of this macro is to increase alignment of medium-size
791 data to make it all fit in fewer cache lines. Another is to
792 cause character arrays to be word-aligned so that `strcpy' calls
793 that copy constants to character arrays can be done inline. */
795 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
797 /* If defined, a C expression to compute the alignment for a local
798 variable. TYPE is the data type, and ALIGN is the alignment that
799 the object would ordinarily have. The value of this macro is used
800 instead of that alignment to align the object.
802 If this macro is not defined, then ALIGN is used.
804 One use of this macro is to increase alignment of medium-size
805 data to make it all fit in fewer cache lines. */
807 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
808 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
810 /* If defined, a C expression to compute the alignment for stack slot.
811 TYPE is the data type, MODE is the widest mode available, and ALIGN
812 is the alignment that the slot would ordinarily have. The value of
813 this macro is used instead of that alignment to align the slot.
815 If this macro is not defined, then ALIGN is used when TYPE is NULL,
816 Otherwise, LOCAL_ALIGNMENT will be used.
818 One use of this macro is to set alignment of stack slot to the
819 maximum alignment of all possible modes which the slot may have. */
821 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
822 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
824 /* If defined, a C expression to compute the alignment for a local
825 variable DECL.
827 If this macro is not defined, then
828 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
830 One use of this macro is to increase alignment of medium-size
831 data to make it all fit in fewer cache lines. */
833 #define LOCAL_DECL_ALIGNMENT(DECL) \
834 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
836 /* If defined, a C expression to compute the minimum required alignment
837 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
838 MODE, assuming normal alignment ALIGN.
840 If this macro is not defined, then (ALIGN) will be used. */
842 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
843 ix86_minimum_alignment (EXP, MODE, ALIGN)
846 /* If defined, a C expression that gives the alignment boundary, in
847 bits, of an argument with the specified mode and type. If it is
848 not defined, `PARM_BOUNDARY' is used for all arguments. */
850 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
851 ix86_function_arg_boundary ((MODE), (TYPE))
853 /* Set this nonzero if move instructions will actually fail to work
854 when given unaligned data. */
855 #define STRICT_ALIGNMENT 0
857 /* If bit field type is int, don't let it cross an int,
858 and give entire struct the alignment of an int. */
859 /* Required on the 386 since it doesn't have bit-field insns. */
860 #define PCC_BITFIELD_TYPE_MATTERS 1
862 /* Standard register usage. */
864 /* This processor has special stack-like registers. See reg-stack.c
865 for details. */
867 #define STACK_REGS
869 #define IS_STACK_MODE(MODE) \
870 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
871 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
872 || (MODE) == XFmode)
874 /* Cover class containing the stack registers. */
875 #define STACK_REG_COVER_CLASS FLOAT_REGS
877 /* Number of actual hardware registers.
878 The hardware registers are assigned numbers for the compiler
879 from 0 to just below FIRST_PSEUDO_REGISTER.
880 All registers that the compiler knows about must be given numbers,
881 even those that are not normally considered general registers.
883 In the 80386 we give the 8 general purpose registers the numbers 0-7.
884 We number the floating point registers 8-15.
885 Note that registers 0-7 can be accessed as a short or int,
886 while only 0-3 may be used with byte `mov' instructions.
888 Reg 16 does not correspond to any hardware register, but instead
889 appears in the RTL as an argument pointer prior to reload, and is
890 eliminated during reloading in favor of either the stack or frame
891 pointer. */
893 #define FIRST_PSEUDO_REGISTER 53
895 /* Number of hardware registers that go into the DWARF-2 unwind info.
896 If not defined, equals FIRST_PSEUDO_REGISTER. */
898 #define DWARF_FRAME_REGISTERS 17
900 /* 1 for registers that have pervasive standard uses
901 and are not available for the register allocator.
902 On the 80386, the stack pointer is such, as is the arg pointer.
904 The value is zero if the register is not fixed on either 32 or
905 64 bit targets, one if the register if fixed on both 32 and 64
906 bit targets, two if it is only fixed on 32bit targets and three
907 if its only fixed on 64bit targets.
908 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
910 #define FIXED_REGISTERS \
911 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
912 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
913 /*arg,flags,fpsr,fpcr,frame*/ \
914 1, 1, 1, 1, 1, \
915 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
916 0, 0, 0, 0, 0, 0, 0, 0, \
917 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
918 0, 0, 0, 0, 0, 0, 0, 0, \
919 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
920 2, 2, 2, 2, 2, 2, 2, 2, \
921 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
922 2, 2, 2, 2, 2, 2, 2, 2 }
925 /* 1 for registers not available across function calls.
926 These must include the FIXED_REGISTERS and also any
927 registers that can be used without being saved.
928 The latter must include the registers where values are returned
929 and the register where structure-value addresses are passed.
930 Aside from that, you can include as many other registers as you like.
932 The value is zero if the register is not call used on either 32 or
933 64 bit targets, one if the register if call used on both 32 and 64
934 bit targets, two if it is only call used on 32bit targets and three
935 if its only call used on 64bit targets.
936 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
938 #define CALL_USED_REGISTERS \
939 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
940 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
941 /*arg,flags,fpsr,fpcr,frame*/ \
942 1, 1, 1, 1, 1, \
943 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
944 1, 1, 1, 1, 1, 1, 1, 1, \
945 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
946 1, 1, 1, 1, 1, 1, 1, 1, \
947 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
948 1, 1, 1, 1, 2, 2, 2, 2, \
949 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
950 1, 1, 1, 1, 1, 1, 1, 1 }
952 /* Order in which to allocate registers. Each register must be
953 listed once, even those in FIXED_REGISTERS. List frame pointer
954 late and fixed registers last. Note that, in general, we prefer
955 registers listed in CALL_USED_REGISTERS, keeping the others
956 available for storage of persistent values.
958 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
959 so this is just empty initializer for array. */
961 #define REG_ALLOC_ORDER \
962 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
963 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
964 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
965 48, 49, 50, 51, 52 }
967 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
968 to be rearranged based on a particular function. When using sse math,
969 we want to allocate SSE before x87 registers and vice versa. */
971 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
974 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
976 /* Macro to conditionally modify fixed_regs/call_used_regs. */
977 #define CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage ()
979 /* Return number of consecutive hard regs needed starting at reg REGNO
980 to hold something of mode MODE.
981 This is ordinarily the length in words of a value of mode MODE
982 but can be less for certain modes in special long registers.
984 Actually there are no two word move instructions for consecutive
985 registers. And only registers 0-3 may have mov byte instructions
986 applied to them.
989 #define HARD_REGNO_NREGS(REGNO, MODE) \
990 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
991 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
992 : ((MODE) == XFmode \
993 ? (TARGET_64BIT ? 2 : 3) \
994 : (MODE) == XCmode \
995 ? (TARGET_64BIT ? 4 : 6) \
996 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
998 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
999 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1000 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1001 ? 0 \
1002 : ((MODE) == XFmode || (MODE) == XCmode)) \
1003 : 0)
1005 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1007 #define VALID_AVX256_REG_MODE(MODE) \
1008 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1009 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1011 #define VALID_SSE2_REG_MODE(MODE) \
1012 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1013 || (MODE) == V2DImode || (MODE) == DFmode)
1015 #define VALID_SSE_REG_MODE(MODE) \
1016 ((MODE) == V1TImode || (MODE) == TImode \
1017 || (MODE) == V4SFmode || (MODE) == V4SImode \
1018 || (MODE) == SFmode || (MODE) == TFmode)
1020 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1021 ((MODE) == V2SFmode || (MODE) == SFmode)
1023 #define VALID_MMX_REG_MODE(MODE) \
1024 ((MODE == V1DImode) || (MODE) == DImode \
1025 || (MODE) == V2SImode || (MODE) == SImode \
1026 || (MODE) == V4HImode || (MODE) == V8QImode)
1028 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
1029 place emms and femms instructions.
1030 FIXME: AVX has 32byte floating point vector operations and 16byte
1031 integer vector operations. But vectorizer doesn't support
1032 different sizes for integer and floating point vectors. We limit
1033 vector size to 16byte. */
1034 #define UNITS_PER_SIMD_WORD(MODE) \
1035 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1036 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
1038 #define VALID_DFP_MODE_P(MODE) \
1039 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1041 #define VALID_FP_MODE_P(MODE) \
1042 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1043 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1045 #define VALID_INT_MODE_P(MODE) \
1046 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1047 || (MODE) == DImode \
1048 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1049 || (MODE) == CDImode \
1050 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1051 || (MODE) == TFmode || (MODE) == TCmode)))
1053 /* Return true for modes passed in SSE registers. */
1054 #define SSE_REG_MODE_P(MODE) \
1055 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1056 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1057 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1058 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1059 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1061 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1063 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1064 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1066 /* Value is 1 if it is a good idea to tie two pseudo registers
1067 when one has mode MODE1 and one has mode MODE2.
1068 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1069 for any hard reg, then this must be 0 for correct output. */
1071 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1073 /* It is possible to write patterns to move flags; but until someone
1074 does it, */
1075 #define AVOID_CCMODE_COPIES
1077 /* Specify the modes required to caller save a given hard regno.
1078 We do this on i386 to prevent flags from being saved at all.
1080 Kill any attempts to combine saving of modes. */
1082 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1083 (CC_REGNO_P (REGNO) ? VOIDmode \
1084 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1085 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1086 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1087 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1088 : (MODE))
1090 /* Specify the registers used for certain standard purposes.
1091 The values of these macros are register numbers. */
1093 /* on the 386 the pc register is %eip, and is not usable as a general
1094 register. The ordinary mov instructions won't work */
1095 /* #define PC_REGNUM */
1097 /* Register to use for pushing function arguments. */
1098 #define STACK_POINTER_REGNUM 7
1100 /* Base register for access to local variables of the function. */
1101 #define HARD_FRAME_POINTER_REGNUM 6
1103 /* Base register for access to local variables of the function. */
1104 #define FRAME_POINTER_REGNUM 20
1106 /* First floating point reg */
1107 #define FIRST_FLOAT_REG 8
1109 /* First & last stack-like regs */
1110 #define FIRST_STACK_REG FIRST_FLOAT_REG
1111 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1113 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1114 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1116 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1117 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1119 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1120 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1122 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1123 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1125 /* Override this in other tm.h files to cope with various OS lossage
1126 requiring a frame pointer. */
1127 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1128 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1129 #endif
1131 /* Make sure we can access arbitrary call frames. */
1132 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1134 /* Base register for access to arguments of the function. */
1135 #define ARG_POINTER_REGNUM 16
1137 /* Register to hold the addressing base for position independent
1138 code access to data items. We don't use PIC pointer for 64bit
1139 mode. Define the regnum to dummy value to prevent gcc from
1140 pessimizing code dealing with EBX.
1142 To avoid clobbering a call-saved register unnecessarily, we renumber
1143 the pic register when possible. The change is visible after the
1144 prologue has been emitted. */
1146 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1148 #define PIC_OFFSET_TABLE_REGNUM \
1149 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1150 || !flag_pic ? INVALID_REGNUM \
1151 : reload_completed ? REGNO (pic_offset_table_rtx) \
1152 : REAL_PIC_OFFSET_TABLE_REGNUM)
1154 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1156 /* This is overridden by <cygwin.h>. */
1157 #define MS_AGGREGATE_RETURN 0
1159 /* This is overridden by <netware.h>. */
1160 #define KEEP_AGGREGATE_RETURN_POINTER 0
1162 /* Define the classes of registers for register constraints in the
1163 machine description. Also define ranges of constants.
1165 One of the classes must always be named ALL_REGS and include all hard regs.
1166 If there is more than one class, another class must be named NO_REGS
1167 and contain no registers.
1169 The name GENERAL_REGS must be the name of a class (or an alias for
1170 another name such as ALL_REGS). This is the class of registers
1171 that is allowed by "g" or "r" in a register constraint.
1172 Also, registers outside this class are allocated only when
1173 instructions express preferences for them.
1175 The classes must be numbered in nondecreasing order; that is,
1176 a larger-numbered class must never be contained completely
1177 in a smaller-numbered class.
1179 For any two classes, it is very desirable that there be another
1180 class that represents their union.
1182 It might seem that class BREG is unnecessary, since no useful 386
1183 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1184 and the "b" register constraint is useful in asms for syscalls.
1186 The flags, fpsr and fpcr registers are in no class. */
1188 enum reg_class
1190 NO_REGS,
1191 AREG, DREG, CREG, BREG, SIREG, DIREG,
1192 AD_REGS, /* %eax/%edx for DImode */
1193 CLOBBERED_REGS, /* call-clobbered integers */
1194 Q_REGS, /* %eax %ebx %ecx %edx */
1195 NON_Q_REGS, /* %esi %edi %ebp %esp */
1196 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1197 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1198 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1199 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1200 FLOAT_REGS,
1201 SSE_FIRST_REG,
1202 SSE_REGS,
1203 MMX_REGS,
1204 FP_TOP_SSE_REGS,
1205 FP_SECOND_SSE_REGS,
1206 FLOAT_SSE_REGS,
1207 FLOAT_INT_REGS,
1208 INT_SSE_REGS,
1209 FLOAT_INT_SSE_REGS,
1210 ALL_REGS, LIM_REG_CLASSES
1213 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1215 #define INTEGER_CLASS_P(CLASS) \
1216 reg_class_subset_p ((CLASS), GENERAL_REGS)
1217 #define FLOAT_CLASS_P(CLASS) \
1218 reg_class_subset_p ((CLASS), FLOAT_REGS)
1219 #define SSE_CLASS_P(CLASS) \
1220 reg_class_subset_p ((CLASS), SSE_REGS)
1221 #define MMX_CLASS_P(CLASS) \
1222 ((CLASS) == MMX_REGS)
1223 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1224 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1225 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1226 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1227 #define MAYBE_SSE_CLASS_P(CLASS) \
1228 reg_classes_intersect_p (SSE_REGS, (CLASS))
1229 #define MAYBE_MMX_CLASS_P(CLASS) \
1230 reg_classes_intersect_p (MMX_REGS, (CLASS))
1232 #define Q_CLASS_P(CLASS) \
1233 reg_class_subset_p ((CLASS), Q_REGS)
1235 /* Give names of register classes as strings for dump file. */
1237 #define REG_CLASS_NAMES \
1238 { "NO_REGS", \
1239 "AREG", "DREG", "CREG", "BREG", \
1240 "SIREG", "DIREG", \
1241 "AD_REGS", \
1242 "CLOBBERED_REGS", \
1243 "Q_REGS", "NON_Q_REGS", \
1244 "INDEX_REGS", \
1245 "LEGACY_REGS", \
1246 "GENERAL_REGS", \
1247 "FP_TOP_REG", "FP_SECOND_REG", \
1248 "FLOAT_REGS", \
1249 "SSE_FIRST_REG", \
1250 "SSE_REGS", \
1251 "MMX_REGS", \
1252 "FP_TOP_SSE_REGS", \
1253 "FP_SECOND_SSE_REGS", \
1254 "FLOAT_SSE_REGS", \
1255 "FLOAT_INT_REGS", \
1256 "INT_SSE_REGS", \
1257 "FLOAT_INT_SSE_REGS", \
1258 "ALL_REGS" }
1260 /* Define which registers fit in which classes. This is an initializer
1261 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1263 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1264 is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect. */
1266 #define REG_CLASS_CONTENTS \
1267 { { 0x00, 0x0 }, \
1268 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1269 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1270 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1271 { 0x03, 0x0 }, /* AD_REGS */ \
1272 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
1273 { 0x0f, 0x0 }, /* Q_REGS */ \
1274 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1275 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1276 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1277 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1278 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1279 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1280 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1281 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1282 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1283 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1284 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1285 { 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1286 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1287 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1288 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1289 { 0xffffffff,0x1fffff } \
1292 /* The same information, inverted:
1293 Return the class number of the smallest class containing
1294 reg number REGNO. This could be a conditional expression
1295 or could index an array. */
1297 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1299 /* When defined, the compiler allows registers explicitly used in the
1300 rtl to be used as spill registers but prevents the compiler from
1301 extending the lifetime of these registers. */
1303 #define SMALL_REGISTER_CLASSES 1
1305 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1307 #define GENERAL_REGNO_P(N) \
1308 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1310 #define GENERAL_REG_P(X) \
1311 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1313 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1315 #define REX_INT_REGNO_P(N) \
1316 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1317 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1319 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1320 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1321 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1322 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1324 #define X87_FLOAT_MODE_P(MODE) \
1325 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1327 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1328 #define SSE_REGNO_P(N) \
1329 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1330 || REX_SSE_REGNO_P (N))
1332 #define REX_SSE_REGNO_P(N) \
1333 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1335 #define SSE_REGNO(N) \
1336 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1338 #define SSE_FLOAT_MODE_P(MODE) \
1339 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1341 #define SSE_VEC_FLOAT_MODE_P(MODE) \
1342 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1344 #define AVX_FLOAT_MODE_P(MODE) \
1345 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1347 #define AVX128_VEC_FLOAT_MODE_P(MODE) \
1348 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1350 #define AVX256_VEC_FLOAT_MODE_P(MODE) \
1351 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1353 #define AVX_VEC_FLOAT_MODE_P(MODE) \
1354 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1355 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1357 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1358 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1359 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1361 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1362 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1364 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1365 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1367 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1369 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1370 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1372 /* The class value for index registers, and the one for base regs. */
1374 #define INDEX_REG_CLASS INDEX_REGS
1375 #define BASE_REG_CLASS GENERAL_REGS
1377 /* Place additional restrictions on the register class to use when it
1378 is necessary to be able to hold a value of mode MODE in a reload
1379 register for which class CLASS would ordinarily be used. */
1381 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1382 ((MODE) == QImode && !TARGET_64BIT \
1383 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1384 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1385 ? Q_REGS : (CLASS))
1387 /* Given an rtx X being reloaded into a reg required to be
1388 in class CLASS, return the class of reg to actually use.
1389 In general this is just CLASS; but on some machines
1390 in some cases it is preferable to use a more restrictive class.
1391 On the 80386 series, we prevent floating constants from being
1392 reloaded into floating registers (since no move-insn can do that)
1393 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1395 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1396 QImode must go into class Q_REGS.
1397 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1398 movdf to do mem-to-mem moves through integer regs. */
1400 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1401 ix86_preferred_reload_class ((X), (CLASS))
1403 /* Discourage putting floating-point values in SSE registers unless
1404 SSE math is being used, and likewise for the 387 registers. */
1406 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1407 ix86_preferred_output_reload_class ((X), (CLASS))
1409 /* If we are copying between general and FP registers, we need a memory
1410 location. The same is true for SSE and MMX registers. */
1411 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1412 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1414 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1415 There is no need to emit full 64 bit move on 64 bit targets
1416 for integral modes that can be moved using 32 bit move. */
1417 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1418 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1419 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1420 : MODE)
1422 /* Return the maximum number of consecutive registers
1423 needed to represent mode MODE in a register of class CLASS. */
1424 /* On the 80386, this is the size of MODE in words,
1425 except in the FP regs, where a single reg is always enough. */
1426 #define CLASS_MAX_NREGS(CLASS, MODE) \
1427 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1428 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1429 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1430 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1432 /* A C expression whose value is nonzero if pseudos that have been
1433 assigned to registers of class CLASS would likely be spilled
1434 because registers of CLASS are needed for spill registers.
1436 The default value of this macro returns 1 if CLASS has exactly one
1437 register and zero otherwise. On most machines, this default
1438 should be used. Only define this macro to some other expression
1439 if pseudo allocated by `local-alloc.c' end up in memory because
1440 their hard registers were needed for spill registers. If this
1441 macro returns nonzero for those classes, those pseudos will only
1442 be allocated by `global.c', which knows how to reallocate the
1443 pseudo to another register. If there would not be another
1444 register available for reallocation, you should not change the
1445 definition of this macro since the only effect of such a
1446 definition would be to slow down register allocation. */
1448 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1449 (((CLASS) == AREG) \
1450 || ((CLASS) == DREG) \
1451 || ((CLASS) == CREG) \
1452 || ((CLASS) == BREG) \
1453 || ((CLASS) == AD_REGS) \
1454 || ((CLASS) == SIREG) \
1455 || ((CLASS) == DIREG) \
1456 || ((CLASS) == SSE_FIRST_REG) \
1457 || ((CLASS) == FP_TOP_REG) \
1458 || ((CLASS) == FP_SECOND_REG))
1460 /* Return a class of registers that cannot change FROM mode to TO mode. */
1462 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1463 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1465 /* Stack layout; function entry, exit and calling. */
1467 /* Define this if pushing a word on the stack
1468 makes the stack pointer a smaller address. */
1469 #define STACK_GROWS_DOWNWARD
1471 /* Define this to nonzero if the nominal address of the stack frame
1472 is at the high-address end of the local variables;
1473 that is, each additional local variable allocated
1474 goes at a more negative offset in the frame. */
1475 #define FRAME_GROWS_DOWNWARD 1
1477 /* Offset within stack frame to start allocating local variables at.
1478 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1479 first local allocated. Otherwise, it is the offset to the BEGINNING
1480 of the first local allocated. */
1481 #define STARTING_FRAME_OFFSET 0
1483 /* If we generate an insn to push BYTES bytes,
1484 this says how many the stack pointer really advances by.
1485 On 386, we have pushw instruction that decrements by exactly 2 no
1486 matter what the position was, there is no pushb.
1487 But as CIE data alignment factor on this arch is -4, we need to make
1488 sure all stack pointer adjustments are in multiple of 4.
1490 For 64bit ABI we round up to 8 bytes.
1493 #define PUSH_ROUNDING(BYTES) \
1494 (TARGET_64BIT \
1495 ? (((BYTES) + 7) & (-8)) \
1496 : (((BYTES) + 3) & (-4)))
1498 /* If defined, the maximum amount of space required for outgoing arguments will
1499 be computed and placed into the variable
1500 `crtl->outgoing_args_size'. No space will be pushed onto the
1501 stack for each call; instead, the function prologue should increase the stack
1502 frame size by this amount.
1504 MS ABI seem to require 16 byte alignment everywhere except for function
1505 prologue and apilogue. This is not possible without
1506 ACCUMULATE_OUTGOING_ARGS. */
1508 #define ACCUMULATE_OUTGOING_ARGS \
1509 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
1511 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1512 instructions to pass outgoing arguments. */
1514 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1516 /* We want the stack and args grow in opposite directions, even if
1517 PUSH_ARGS is 0. */
1518 #define PUSH_ARGS_REVERSED 1
1520 /* Offset of first parameter from the argument pointer register value. */
1521 #define FIRST_PARM_OFFSET(FNDECL) 0
1523 /* Define this macro if functions should assume that stack space has been
1524 allocated for arguments even when their values are passed in registers.
1526 The value of this macro is the size, in bytes, of the area reserved for
1527 arguments passed in registers for the function represented by FNDECL.
1529 This space can be allocated by the caller, or be a part of the
1530 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1531 which. */
1532 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1534 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1535 (ix86_function_type_abi (FNTYPE) == MS_ABI)
1537 /* Value is the number of bytes of arguments automatically
1538 popped when returning from a subroutine call.
1539 FUNDECL is the declaration node of the function (as a tree),
1540 FUNTYPE is the data type of the function (as a tree),
1541 or for a library call it is an identifier node for the subroutine name.
1542 SIZE is the number of bytes of arguments passed on the stack.
1544 On the 80386, the RTD insn may be used to pop them if the number
1545 of args is fixed, but if the number is variable then the caller
1546 must pop them all. RTD can't be used for library calls now
1547 because the library is compiled with the Unix compiler.
1548 Use of RTD is a selectable option, since it is incompatible with
1549 standard Unix calling sequences. If the option is not selected,
1550 the caller must always pop the args.
1552 The attribute stdcall is equivalent to RTD on a per module basis. */
1554 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1555 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1557 #define FUNCTION_VALUE_REGNO_P(N) ix86_function_value_regno_p (N)
1559 /* Define how to find the value returned by a library function
1560 assuming the value has mode MODE. */
1562 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1564 /* Define the size of the result block used for communication between
1565 untyped_call and untyped_return. The block contains a DImode value
1566 followed by the block used by fnsave and frstor. */
1568 #define APPLY_RESULT_SIZE (8+108)
1570 /* 1 if N is a possible register number for function argument passing. */
1571 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1573 /* Define a data type for recording info about an argument list
1574 during the scan of that argument list. This data type should
1575 hold all necessary information about the function itself
1576 and about the args processed so far, enough to enable macros
1577 such as FUNCTION_ARG to determine where the next arg should go. */
1579 typedef struct ix86_args {
1580 int words; /* # words passed so far */
1581 int nregs; /* # registers available for passing */
1582 int regno; /* next available register number */
1583 int fastcall; /* fastcall calling convention is used */
1584 int sse_words; /* # sse words passed so far */
1585 int sse_nregs; /* # sse registers available for passing */
1586 int warn_avx; /* True when we want to warn about AVX ABI. */
1587 int warn_sse; /* True when we want to warn about SSE ABI. */
1588 int warn_mmx; /* True when we want to warn about MMX ABI. */
1589 int sse_regno; /* next available sse register number */
1590 int mmx_words; /* # mmx words passed so far */
1591 int mmx_nregs; /* # mmx registers available for passing */
1592 int mmx_regno; /* next available mmx register number */
1593 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1594 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1595 be passed in SSE registers. Otherwise 0. */
1596 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1597 MS_ABI for ms abi. */
1598 } CUMULATIVE_ARGS;
1600 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1601 for a call to a function whose data type is FNTYPE.
1602 For a library call, FNTYPE is 0. */
1604 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1605 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1607 /* Update the data in CUM to advance over an argument
1608 of mode MODE and data type TYPE.
1609 (TYPE is null for libcalls where that information may not be available.) */
1611 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1612 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1614 /* Define where to put the arguments to a function.
1615 Value is zero to push the argument on the stack,
1616 or a hard register in which to store the argument.
1618 MODE is the argument's machine mode.
1619 TYPE is the data type of the argument (as a tree).
1620 This is null for libcalls where that information may
1621 not be available.
1622 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1623 the preceding args and about the function being called.
1624 NAMED is nonzero if this argument is a named parameter
1625 (otherwise it is an extra parameter matching an ellipsis). */
1627 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1628 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1630 /* Output assembler code to FILE to increment profiler label # LABELNO
1631 for profiling a function entry. */
1633 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1635 #define MCOUNT_NAME "_mcount"
1637 #define PROFILE_COUNT_REGISTER "edx"
1639 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1640 the stack pointer does not matter. The value is tested only in
1641 functions that have frame pointers.
1642 No definition is equivalent to always zero. */
1643 /* Note on the 386 it might be more efficient not to define this since
1644 we have to restore it ourselves from the frame pointer, in order to
1645 use pop */
1647 #define EXIT_IGNORE_STACK 1
1649 /* Output assembler code for a block containing the constant parts
1650 of a trampoline, leaving space for the variable parts. */
1652 /* On the 386, the trampoline contains two instructions:
1653 mov #STATIC,ecx
1654 jmp FUNCTION
1655 The trampoline is generated entirely at runtime. The operand of JMP
1656 is the address of FUNCTION relative to the instruction following the
1657 JMP (which is 5 bytes long). */
1659 /* Length in units of the trampoline for entering a nested function. */
1661 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1663 /* Definitions for register eliminations.
1665 This is an array of structures. Each structure initializes one pair
1666 of eliminable registers. The "from" register number is given first,
1667 followed by "to". Eliminations of the same "from" register are listed
1668 in order of preference.
1670 There are two registers that can always be eliminated on the i386.
1671 The frame pointer and the arg pointer can be replaced by either the
1672 hard frame pointer or to the stack pointer, depending upon the
1673 circumstances. The hard frame pointer is not used before reload and
1674 so it is not eligible for elimination. */
1676 #define ELIMINABLE_REGS \
1677 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1678 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1679 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1680 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1682 /* Define the offset between two registers, one to be eliminated, and the other
1683 its replacement, at the start of a routine. */
1685 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1686 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1688 /* Addressing modes, and classification of registers for them. */
1690 /* Macros to check register numbers against specific register classes. */
1692 /* These assume that REGNO is a hard or pseudo reg number.
1693 They give nonzero only if REGNO is a hard reg of the suitable class
1694 or a pseudo reg currently allocated to a suitable hard reg.
1695 Since they use reg_renumber, they are safe only once reg_renumber
1696 has been allocated, which happens in local-alloc.c. */
1698 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1699 ((REGNO) < STACK_POINTER_REGNUM \
1700 || REX_INT_REGNO_P (REGNO) \
1701 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1702 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1704 #define REGNO_OK_FOR_BASE_P(REGNO) \
1705 (GENERAL_REGNO_P (REGNO) \
1706 || (REGNO) == ARG_POINTER_REGNUM \
1707 || (REGNO) == FRAME_POINTER_REGNUM \
1708 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1710 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1711 and check its validity for a certain class.
1712 We have two alternate definitions for each of them.
1713 The usual definition accepts all pseudo regs; the other rejects
1714 them unless they have been allocated suitable hard regs.
1715 The symbol REG_OK_STRICT causes the latter definition to be used.
1717 Most source files want to accept pseudo regs in the hope that
1718 they will get allocated to the class that the insn wants them to be in.
1719 Source files for reload pass need to be strict.
1720 After reload, it makes no difference, since pseudo regs have
1721 been eliminated by then. */
1724 /* Non strict versions, pseudos are ok. */
1725 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1726 (REGNO (X) < STACK_POINTER_REGNUM \
1727 || REX_INT_REGNO_P (REGNO (X)) \
1728 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1730 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1731 (GENERAL_REGNO_P (REGNO (X)) \
1732 || REGNO (X) == ARG_POINTER_REGNUM \
1733 || REGNO (X) == FRAME_POINTER_REGNUM \
1734 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1736 /* Strict versions, hard registers only */
1737 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1738 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1740 #ifndef REG_OK_STRICT
1741 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1742 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1744 #else
1745 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1746 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1747 #endif
1749 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1750 that is a valid memory address for an instruction.
1751 The MODE argument is the machine mode for the MEM expression
1752 that wants to use this address.
1754 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1755 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1757 See legitimize_pic_address in i386.c for details as to what
1758 constitutes a legitimate address when -fpic is used. */
1760 #define MAX_REGS_PER_ADDRESS 2
1762 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1764 /* Nonzero if the constant value X is a legitimate general operand.
1765 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1767 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1769 /* If defined, a C expression to determine the base term of address X.
1770 This macro is used in only one place: `find_base_term' in alias.c.
1772 It is always safe for this macro to not be defined. It exists so
1773 that alias analysis can understand machine-dependent addresses.
1775 The typical use of this macro is to handle addresses containing
1776 a label_ref or symbol_ref within an UNSPEC. */
1778 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1780 /* Nonzero if the constant value X is a legitimate general operand
1781 when generating PIC code. It is given that flag_pic is on and
1782 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1784 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1786 #define SYMBOLIC_CONST(X) \
1787 (GET_CODE (X) == SYMBOL_REF \
1788 || GET_CODE (X) == LABEL_REF \
1789 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1791 /* Max number of args passed in registers. If this is more than 3, we will
1792 have problems with ebx (register #4), since it is a caller save register and
1793 is also used as the pic register in ELF. So for now, don't allow more than
1794 3 registers to be passed in registers. */
1796 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1797 #define X86_64_REGPARM_MAX 6
1798 #define X86_64_MS_REGPARM_MAX 4
1800 #define X86_32_REGPARM_MAX 3
1802 #define REGPARM_MAX \
1803 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_REGPARM_MAX \
1804 : X86_64_REGPARM_MAX) \
1805 : X86_32_REGPARM_MAX)
1807 #define X86_64_SSE_REGPARM_MAX 8
1808 #define X86_64_MS_SSE_REGPARM_MAX 4
1810 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1812 #define SSE_REGPARM_MAX \
1813 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_SSE_REGPARM_MAX \
1814 : X86_64_SSE_REGPARM_MAX) \
1815 : X86_32_SSE_REGPARM_MAX)
1817 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1820 /* Specify the machine mode that this machine uses
1821 for the index in the tablejump instruction. */
1822 #define CASE_VECTOR_MODE \
1823 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1825 /* Define this as 1 if `char' should by default be signed; else as 0. */
1826 #define DEFAULT_SIGNED_CHAR 1
1828 /* Max number of bytes we can move from memory to memory
1829 in one reasonably fast instruction. */
1830 #define MOVE_MAX 16
1832 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1833 move efficiently, as opposed to MOVE_MAX which is the maximum
1834 number of bytes we can move with a single instruction. */
1835 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1837 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1838 move-instruction pairs, we will do a movmem or libcall instead.
1839 Increasing the value will always make code faster, but eventually
1840 incurs high cost in increased code size.
1842 If you don't define this, a reasonable default is used. */
1844 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1846 /* If a clear memory operation would take CLEAR_RATIO or more simple
1847 move-instruction sequences, we will do a clrmem or libcall instead. */
1849 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1851 /* Define if shifts truncate the shift count
1852 which implies one can omit a sign-extension or zero-extension
1853 of a shift count. */
1854 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1856 /* #define SHIFT_COUNT_TRUNCATED */
1858 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1859 is done just by pretending it is already truncated. */
1860 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1862 /* A macro to update M and UNSIGNEDP when an object whose type is
1863 TYPE and which has the specified mode and signedness is to be
1864 stored in a register. This macro is only called when TYPE is a
1865 scalar type.
1867 On i386 it is sometimes useful to promote HImode and QImode
1868 quantities to SImode. The choice depends on target type. */
1870 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1871 do { \
1872 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1873 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1874 (MODE) = SImode; \
1875 } while (0)
1877 /* Specify the machine mode that pointers have.
1878 After generation of rtl, the compiler makes no further distinction
1879 between pointers and any other objects of this machine mode. */
1880 #define Pmode (TARGET_64BIT ? DImode : SImode)
1882 /* A function address in a call instruction
1883 is a byte address (for indexing purposes)
1884 so give the MEM rtx a byte's mode. */
1885 #define FUNCTION_MODE QImode
1887 /* A C expression for the cost of moving data from a register in class FROM to
1888 one in class TO. The classes are expressed using the enumeration values
1889 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1890 interpreted relative to that.
1892 It is not required that the cost always equal 2 when FROM is the same as TO;
1893 on some machines it is expensive to move between registers if they are not
1894 general registers. */
1896 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1897 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1899 /* A C expression for the cost of moving data of mode M between a
1900 register and memory. A value of 2 is the default; this cost is
1901 relative to those in `REGISTER_MOVE_COST'.
1903 If moving between registers and memory is more expensive than
1904 between two registers, you should define this macro to express the
1905 relative cost. */
1907 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1908 ix86_memory_move_cost ((MODE), (CLASS), (IN))
1910 /* A C expression for the cost of a branch instruction. A value of 1
1911 is the default; other values are interpreted relative to that. */
1913 #define BRANCH_COST(speed_p, predictable_p) \
1914 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1916 /* Define this macro as a C expression which is nonzero if accessing
1917 less than a word of memory (i.e. a `char' or a `short') is no
1918 faster than accessing a word of memory, i.e., if such access
1919 require more than one instruction or if there is no difference in
1920 cost between byte and (aligned) word loads.
1922 When this macro is not defined, the compiler will access a field by
1923 finding the smallest containing object; when it is defined, a
1924 fullword load will be used if alignment permits. Unless bytes
1925 accesses are faster than word accesses, using word accesses is
1926 preferable since it may eliminate subsequent memory access if
1927 subsequent accesses occur to other fields in the same word of the
1928 structure, but to different bytes. */
1930 #define SLOW_BYTE_ACCESS 0
1932 /* Nonzero if access to memory by shorts is slow and undesirable. */
1933 #define SLOW_SHORT_ACCESS 0
1935 /* Define this macro to be the value 1 if unaligned accesses have a
1936 cost many times greater than aligned accesses, for example if they
1937 are emulated in a trap handler.
1939 When this macro is nonzero, the compiler will act as if
1940 `STRICT_ALIGNMENT' were nonzero when generating code for block
1941 moves. This can cause significantly more instructions to be
1942 produced. Therefore, do not set this macro nonzero if unaligned
1943 accesses only add a cycle or two to the time for a memory access.
1945 If the value of this macro is always zero, it need not be defined. */
1947 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1949 /* Define this macro if it is as good or better to call a constant
1950 function address than to call an address kept in a register.
1952 Desirable on the 386 because a CALL with a constant address is
1953 faster than one with a register address. */
1955 #define NO_FUNCTION_CSE
1957 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1958 return the mode to be used for the comparison.
1960 For floating-point equality comparisons, CCFPEQmode should be used.
1961 VOIDmode should be used in all other cases.
1963 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1964 possible, to allow for more combinations. */
1966 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1968 /* Return nonzero if MODE implies a floating point inequality can be
1969 reversed. */
1971 #define REVERSIBLE_CC_MODE(MODE) 1
1973 /* A C expression whose value is reversed condition code of the CODE for
1974 comparison done in CC_MODE mode. */
1975 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1978 /* Control the assembler format that we output, to the extent
1979 this does not vary between assemblers. */
1981 /* How to refer to registers in assembler output.
1982 This sequence is indexed by compiler's hard-register-number (see above). */
1984 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1985 For non floating point regs, the following are the HImode names.
1987 For float regs, the stack top is sometimes referred to as "%st(0)"
1988 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
1990 #define HI_REGISTER_NAMES \
1991 {"ax","dx","cx","bx","si","di","bp","sp", \
1992 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1993 "argp", "flags", "fpsr", "fpcr", "frame", \
1994 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1995 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1996 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1997 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1999 #define REGISTER_NAMES HI_REGISTER_NAMES
2001 /* Table of additional register names to use in user input. */
2003 #define ADDITIONAL_REGISTER_NAMES \
2004 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2005 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2006 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2007 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2008 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2009 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2011 /* Note we are omitting these since currently I don't know how
2012 to get gcc to use these, since they want the same but different
2013 number as al, and ax.
2016 #define QI_REGISTER_NAMES \
2017 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2019 /* These parallel the array above, and can be used to access bits 8:15
2020 of regs 0 through 3. */
2022 #define QI_HIGH_REGISTER_NAMES \
2023 {"ah", "dh", "ch", "bh", }
2025 /* How to renumber registers for dbx and gdb. */
2027 #define DBX_REGISTER_NUMBER(N) \
2028 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2030 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2031 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2032 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2034 /* Before the prologue, RA is at 0(%esp). */
2035 #define INCOMING_RETURN_ADDR_RTX \
2036 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2038 /* After the prologue, RA is at -4(AP) in the current frame. */
2039 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2040 ((COUNT) == 0 \
2041 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2042 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2044 /* PC is dbx register 8; let's use that column for RA. */
2045 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2047 /* Before the prologue, the top of the frame is at 4(%esp). */
2048 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2050 /* Describe how we implement __builtin_eh_return. */
2051 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2052 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2055 /* Select a format to encode pointers in exception handling data. CODE
2056 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2057 true if the symbol may be affected by dynamic relocations.
2059 ??? All x86 object file formats are capable of representing this.
2060 After all, the relocation needed is the same as for the call insn.
2061 Whether or not a particular assembler allows us to enter such, I
2062 guess we'll have to see. */
2063 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2064 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2066 /* This is how to output an insn to push a register on the stack.
2067 It need not be very fast code. */
2069 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2070 do { \
2071 if (TARGET_64BIT) \
2072 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2073 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2074 else \
2075 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2076 } while (0)
2078 /* This is how to output an insn to pop a register from the stack.
2079 It need not be very fast code. */
2081 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2082 do { \
2083 if (TARGET_64BIT) \
2084 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2085 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2086 else \
2087 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2088 } while (0)
2090 /* This is how to output an element of a case-vector that is absolute. */
2092 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2093 ix86_output_addr_vec_elt ((FILE), (VALUE))
2095 /* This is how to output an element of a case-vector that is relative. */
2097 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2098 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2100 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2101 true. */
2103 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2105 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2107 if (TARGET_AVX) \
2108 (PTR) += 1; \
2109 else \
2110 (PTR) += 2; \
2114 /* A C statement or statements which output an assembler instruction
2115 opcode to the stdio stream STREAM. The macro-operand PTR is a
2116 variable of type `char *' which points to the opcode name in
2117 its "internal" form--the form that is written in the machine
2118 description. */
2120 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2121 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2123 /* A C statement to output to the stdio stream FILE an assembler
2124 command to pad the location counter to a multiple of 1<<LOG
2125 bytes if it is within MAX_SKIP bytes. */
2127 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2128 #undef ASM_OUTPUT_MAX_SKIP_PAD
2129 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2130 if ((LOG) != 0) \
2132 if ((MAX_SKIP) == 0) \
2133 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2134 else \
2135 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2137 #endif
2139 /* Under some conditions we need jump tables in the text section,
2140 because the assembler cannot handle label differences between
2141 sections. This is the case for x86_64 on Mach-O for example. */
2143 #define JUMP_TABLES_IN_TEXT_SECTION \
2144 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2145 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2147 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2148 and switch back. For x86 we do this only to save a few bytes that
2149 would otherwise be unused in the text section. */
2150 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2151 asm (SECTION_OP "\n\t" \
2152 "call " USER_LABEL_PREFIX #FUNC "\n" \
2153 TEXT_SECTION_ASM_OP);
2155 /* Print operand X (an rtx) in assembler syntax to file FILE.
2156 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2157 Effect of various CODE letters is described in i386.c near
2158 print_operand function. */
2160 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2161 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
2163 #define PRINT_OPERAND(FILE, X, CODE) \
2164 print_operand ((FILE), (X), (CODE))
2166 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2167 print_operand_address ((FILE), (ADDR))
2169 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2170 do { \
2171 if (! output_addr_const_extra (FILE, (X))) \
2172 goto FAIL; \
2173 } while (0);
2175 /* Which processor to schedule for. The cpu attribute defines a list that
2176 mirrors this list, so changes to i386.md must be made at the same time. */
2178 enum processor_type
2180 PROCESSOR_I386 = 0, /* 80386 */
2181 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2182 PROCESSOR_PENTIUM,
2183 PROCESSOR_PENTIUMPRO,
2184 PROCESSOR_GEODE,
2185 PROCESSOR_K6,
2186 PROCESSOR_ATHLON,
2187 PROCESSOR_PENTIUM4,
2188 PROCESSOR_K8,
2189 PROCESSOR_NOCONA,
2190 PROCESSOR_CORE2,
2191 PROCESSOR_GENERIC32,
2192 PROCESSOR_GENERIC64,
2193 PROCESSOR_AMDFAM10,
2194 PROCESSOR_ATOM,
2195 PROCESSOR_max
2198 extern enum processor_type ix86_tune;
2199 extern enum processor_type ix86_arch;
2201 enum fpmath_unit
2203 FPMATH_387 = 1,
2204 FPMATH_SSE = 2
2207 extern enum fpmath_unit ix86_fpmath;
2209 enum tls_dialect
2211 TLS_DIALECT_GNU,
2212 TLS_DIALECT_GNU2,
2213 TLS_DIALECT_SUN
2216 extern enum tls_dialect ix86_tls_dialect;
2218 enum cmodel {
2219 CM_32, /* The traditional 32-bit ABI. */
2220 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2221 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2222 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2223 CM_LARGE, /* No assumptions. */
2224 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2225 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2226 CM_LARGE_PIC /* No assumptions. */
2229 extern enum cmodel ix86_cmodel;
2231 /* Size of the RED_ZONE area. */
2232 #define RED_ZONE_SIZE 128
2233 /* Reserved area of the red zone for temporaries. */
2234 #define RED_ZONE_RESERVE 8
2236 enum asm_dialect {
2237 ASM_ATT,
2238 ASM_INTEL
2241 extern enum asm_dialect ix86_asm_dialect;
2242 extern unsigned int ix86_preferred_stack_boundary;
2243 extern unsigned int ix86_incoming_stack_boundary;
2244 extern int ix86_branch_cost, ix86_section_threshold;
2246 /* Smallest class containing REGNO. */
2247 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2249 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2250 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2252 enum ix86_fpcmp_strategy {
2253 IX86_FPCMP_SAHF,
2254 IX86_FPCMP_COMI,
2255 IX86_FPCMP_ARITH
2258 /* To properly truncate FP values into integers, we need to set i387 control
2259 word. We can't emit proper mode switching code before reload, as spills
2260 generated by reload may truncate values incorrectly, but we still can avoid
2261 redundant computation of new control word by the mode switching pass.
2262 The fldcw instructions are still emitted redundantly, but this is probably
2263 not going to be noticeable problem, as most CPUs do have fast path for
2264 the sequence.
2266 The machinery is to emit simple truncation instructions and split them
2267 before reload to instructions having USEs of two memory locations that
2268 are filled by this code to old and new control word.
2270 Post-reload pass may be later used to eliminate the redundant fildcw if
2271 needed. */
2273 enum ix86_entity
2275 I387_TRUNC = 0,
2276 I387_FLOOR,
2277 I387_CEIL,
2278 I387_MASK_PM,
2279 MAX_386_ENTITIES
2282 enum ix86_stack_slot
2284 SLOT_VIRTUAL = 0,
2285 SLOT_TEMP,
2286 SLOT_CW_STORED,
2287 SLOT_CW_TRUNC,
2288 SLOT_CW_FLOOR,
2289 SLOT_CW_CEIL,
2290 SLOT_CW_MASK_PM,
2291 MAX_386_STACK_LOCALS
2294 /* Define this macro if the port needs extra instructions inserted
2295 for mode switching in an optimizing compilation. */
2297 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2298 ix86_optimize_mode_switching[(ENTITY)]
2300 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2301 initializer for an array of integers. Each initializer element N
2302 refers to an entity that needs mode switching, and specifies the
2303 number of different modes that might need to be set for this
2304 entity. The position of the initializer in the initializer -
2305 starting counting at zero - determines the integer that is used to
2306 refer to the mode-switched entity in question. */
2308 #define NUM_MODES_FOR_MODE_SWITCHING \
2309 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2311 /* ENTITY is an integer specifying a mode-switched entity. If
2312 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2313 return an integer value not larger than the corresponding element
2314 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2315 must be switched into prior to the execution of INSN. */
2317 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2319 /* This macro specifies the order in which modes for ENTITY are
2320 processed. 0 is the highest priority. */
2322 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2324 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2325 is the set of hard registers live at the point where the insn(s)
2326 are to be inserted. */
2328 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2329 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2330 ? emit_i387_cw_initialization (MODE), 0 \
2331 : 0)
2334 /* Avoid renaming of stack registers, as doing so in combination with
2335 scheduling just increases amount of live registers at time and in
2336 the turn amount of fxch instructions needed.
2338 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2340 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2341 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2344 #define FASTCALL_PREFIX '@'
2346 /* Machine specific CFA tracking during prologue/epilogue generation. */
2348 #ifndef USED_FOR_TARGET
2349 struct GTY(()) machine_cfa_state
2351 rtx reg;
2352 HOST_WIDE_INT offset;
2355 struct GTY(()) machine_function {
2356 struct stack_local_entry *stack_locals;
2357 const char *some_ld_name;
2358 int varargs_gpr_size;
2359 int varargs_fpr_size;
2360 int optimize_mode_switching[MAX_386_ENTITIES];
2362 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2363 has been computed for. */
2364 int use_fast_prologue_epilogue_nregs;
2366 /* The CFA state at the end of the prologue. */
2367 struct machine_cfa_state cfa;
2369 /* This value is used for amd64 targets and specifies the current abi
2370 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2371 enum calling_abi call_abi;
2373 /* Nonzero if the function accesses a previous frame. */
2374 BOOL_BITFIELD accesses_prev_frame : 1;
2376 /* Nonzero if the function requires a CLD in the prologue. */
2377 BOOL_BITFIELD needs_cld : 1;
2379 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2380 expander to determine the style used. */
2381 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2383 /* If true, the current function needs the default PIC register, not
2384 an alternate register (on x86) and must not use the red zone (on
2385 x86_64), even if it's a leaf function. We don't want the
2386 function to be regarded as non-leaf because TLS calls need not
2387 affect register allocation. This flag is set when a TLS call
2388 instruction is expanded within a function, and never reset, even
2389 if all such instructions are optimized away. Use the
2390 ix86_current_function_calls_tls_descriptor macro for a better
2391 approximation. */
2392 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2394 /* If true, the current function has a STATIC_CHAIN is placed on the
2395 stack below the return address. */
2396 BOOL_BITFIELD static_chain_on_stack : 1;
2398 #endif
2400 #define ix86_stack_locals (cfun->machine->stack_locals)
2401 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2402 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2403 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2404 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2405 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2406 (cfun->machine->tls_descriptor_call_expanded_p)
2407 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2408 calls are optimized away, we try to detect cases in which it was
2409 optimized away. Since such instructions (use (reg REG_SP)), we can
2410 verify whether there's any such instruction live by testing that
2411 REG_SP is live. */
2412 #define ix86_current_function_calls_tls_descriptor \
2413 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2414 #define ix86_cfa_state (&cfun->machine->cfa)
2415 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2417 /* Control behavior of x86_file_start. */
2418 #define X86_FILE_START_VERSION_DIRECTIVE false
2419 #define X86_FILE_START_FLTUSED false
2421 /* Flag to mark data that is in the large address area. */
2422 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2423 #define SYMBOL_REF_FAR_ADDR_P(X) \
2424 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2426 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2427 have defined always, to avoid ifdefing. */
2428 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2429 #define SYMBOL_REF_DLLIMPORT_P(X) \
2430 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2432 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2433 #define SYMBOL_REF_DLLEXPORT_P(X) \
2434 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2436 /* Model costs for vectorizer. */
2438 /* Cost of conditional branch. */
2439 #undef TARG_COND_BRANCH_COST
2440 #define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2442 /* Enum through the target specific extra va_list types.
2443 Please, do not iterate the base va_list type name. */
2444 #define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
2445 (TARGET_64BIT ? ix86_enum_va_list (IDX, PNAME, PTYPE) : 0)
2447 /* Cost of any scalar operation, excluding load and store. */
2448 #undef TARG_SCALAR_STMT_COST
2449 #define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2451 /* Cost of scalar load. */
2452 #undef TARG_SCALAR_LOAD_COST
2453 #define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2455 /* Cost of scalar store. */
2456 #undef TARG_SCALAR_STORE_COST
2457 #define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2459 /* Cost of any vector operation, excluding load, store or vector to scalar
2460 operation. */
2461 #undef TARG_VEC_STMT_COST
2462 #define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2464 /* Cost of vector to scalar operation. */
2465 #undef TARG_VEC_TO_SCALAR_COST
2466 #define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2468 /* Cost of scalar to vector operation. */
2469 #undef TARG_SCALAR_TO_VEC_COST
2470 #define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2472 /* Cost of aligned vector load. */
2473 #undef TARG_VEC_LOAD_COST
2474 #define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2476 /* Cost of misaligned vector load. */
2477 #undef TARG_VEC_UNALIGNED_LOAD_COST
2478 #define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2480 /* Cost of vector store. */
2481 #undef TARG_VEC_STORE_COST
2482 #define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2484 /* Cost of conditional taken branch for vectorizer cost model. */
2485 #undef TARG_COND_TAKEN_BRANCH_COST
2486 #define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2488 /* Cost of conditional not taken branch for vectorizer cost model. */
2489 #undef TARG_COND_NOT_TAKEN_BRANCH_COST
2490 #define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2493 Local variables:
2494 version-control: t
2495 End: