1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "rtl-error.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
34 #include "addresses.h"
38 #include "basic-block.h"
43 #include "tree-pass.h"
46 #ifndef STACK_PUSH_CODE
47 #ifdef STACK_GROWS_DOWNWARD
48 #define STACK_PUSH_CODE PRE_DEC
50 #define STACK_PUSH_CODE PRE_INC
54 #ifndef STACK_POP_CODE
55 #ifdef STACK_GROWS_DOWNWARD
56 #define STACK_POP_CODE POST_INC
58 #define STACK_POP_CODE POST_DEC
62 #ifndef HAVE_ATTR_enabled
64 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED
)
70 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
, bool);
71 static void validate_replace_src_1 (rtx
*, void *);
72 static rtx
split_insn (rtx
);
74 /* Nonzero means allow operands to be volatile.
75 This should be 0 if you are generating rtl, such as if you are calling
76 the functions in optabs.c and expmed.c (most of the time).
77 This should be 1 if all valid insns need to be recognized,
78 such as in reginfo.c and final.c and reload.c.
80 init_recog and init_recog_no_volatile are responsible for setting this. */
84 struct recog_data recog_data
;
86 /* Contains a vector of operand_alternative structures for every operand.
87 Set up by preprocess_constraints. */
88 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
90 /* On return from `constrain_operands', indicate which alternative
93 int which_alternative
;
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed
;
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
109 init_recog_no_volatile (void)
121 /* Check that X is an insn-body for an `asm' with operands
122 and that the operands mentioned in it are legitimate. */
125 check_asm_operands (rtx x
)
129 const char **constraints
;
132 /* Post-reload, be more strict with things. */
133 if (reload_completed
)
135 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
136 extract_insn (make_insn_raw (x
));
137 constrain_operands (1);
138 return which_alternative
>= 0;
141 noperands
= asm_noperands (x
);
147 operands
= XALLOCAVEC (rtx
, noperands
);
148 constraints
= XALLOCAVEC (const char *, noperands
);
150 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
152 for (i
= 0; i
< noperands
; i
++)
154 const char *c
= constraints
[i
];
157 if (! asm_operand_ok (operands
[i
], c
, constraints
))
164 /* Static data for the next two routines. */
166 typedef struct change_t
175 static change_t
*changes
;
176 static int changes_allocated
;
178 static int num_changes
= 0;
180 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
181 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
182 the change is simply made.
184 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
185 will be called with the address and mode as parameters. If OBJECT is
186 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
189 IN_GROUP is nonzero if this is part of a group of changes that must be
190 performed as a group. In that case, the changes will be stored. The
191 function `apply_change_group' will validate and apply the changes.
193 If IN_GROUP is zero, this is a single change. Try to recognize the insn
194 or validate the memory reference with the change applied. If the result
195 is not valid for the machine, suppress the change and return zero.
196 Otherwise, perform the change and return 1. */
199 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
203 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
206 gcc_assert (in_group
!= 0 || num_changes
== 0);
210 /* Save the information describing this change. */
211 if (num_changes
>= changes_allocated
)
213 if (changes_allocated
== 0)
214 /* This value allows for repeated substitutions inside complex
215 indexed addresses, or changes in up to 5 insns. */
216 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
218 changes_allocated
*= 2;
220 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
223 changes
[num_changes
].object
= object
;
224 changes
[num_changes
].loc
= loc
;
225 changes
[num_changes
].old
= old
;
226 changes
[num_changes
].unshare
= unshare
;
228 if (object
&& !MEM_P (object
))
230 /* Set INSN_CODE to force rerecognition of insn. Save old code in
232 changes
[num_changes
].old_code
= INSN_CODE (object
);
233 INSN_CODE (object
) = -1;
238 /* If we are making a group of changes, return 1. Otherwise, validate the
239 change group we made. */
244 return apply_change_group ();
247 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
251 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
253 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
256 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
260 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
262 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
266 /* Keep X canonicalized if some changes have made it non-canonical; only
267 modifies the operands of X, not (for example) its code. Simplifications
268 are not the job of this routine.
270 Return true if anything was changed. */
272 canonicalize_change_group (rtx insn
, rtx x
)
274 if (COMMUTATIVE_P (x
)
275 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
277 /* Oops, the caller has made X no longer canonical.
278 Let's redo the changes in the correct order. */
279 rtx tem
= XEXP (x
, 0);
280 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
281 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
289 /* This subroutine of apply_change_group verifies whether the changes to INSN
290 were valid; i.e. whether INSN can still be recognized. */
293 insn_invalid_p (rtx insn
)
295 rtx pat
= PATTERN (insn
);
296 int num_clobbers
= 0;
297 /* If we are before reload and the pattern is a SET, see if we can add
299 int icode
= recog (pat
, insn
,
300 (GET_CODE (pat
) == SET
301 && ! reload_completed
&& ! reload_in_progress
)
302 ? &num_clobbers
: 0);
303 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
306 /* If this is an asm and the operand aren't legal, then fail. Likewise if
307 this is not an asm and the insn wasn't recognized. */
308 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
309 || (!is_asm
&& icode
< 0))
312 /* If we have to add CLOBBERs, fail if we have to add ones that reference
313 hard registers since our callers can't know if they are live or not.
314 Otherwise, add them. */
315 if (num_clobbers
> 0)
319 if (added_clobbers_hard_reg_p (icode
))
322 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
323 XVECEXP (newpat
, 0, 0) = pat
;
324 add_clobbers (newpat
, icode
);
325 PATTERN (insn
) = pat
= newpat
;
328 /* After reload, verify that all constraints are satisfied. */
329 if (reload_completed
)
333 if (! constrain_operands (1))
337 INSN_CODE (insn
) = icode
;
341 /* Return number of changes made and not validated yet. */
343 num_changes_pending (void)
348 /* Tentatively apply the changes numbered NUM and up.
349 Return 1 if all changes are valid, zero otherwise. */
352 verify_changes (int num
)
355 rtx last_validated
= NULL_RTX
;
357 /* The changes have been applied and all INSN_CODEs have been reset to force
360 The changes are valid if we aren't given an object, or if we are
361 given a MEM and it still is a valid address, or if this is in insn
362 and it is recognized. In the latter case, if reload has completed,
363 we also require that the operands meet the constraints for
366 for (i
= num
; i
< num_changes
; i
++)
368 rtx object
= changes
[i
].object
;
370 /* If there is no object to test or if it is the same as the one we
371 already tested, ignore it. */
372 if (object
== 0 || object
== last_validated
)
377 if (! memory_address_addr_space_p (GET_MODE (object
),
379 MEM_ADDR_SPACE (object
)))
382 else if (REG_P (changes
[i
].old
)
383 && asm_noperands (PATTERN (object
)) > 0
384 && REG_EXPR (changes
[i
].old
) != NULL_TREE
385 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
386 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
388 /* Don't allow changes of hard register operands to inline
389 assemblies if they have been defined as register asm ("x"). */
392 else if (DEBUG_INSN_P (object
))
394 else if (insn_invalid_p (object
))
396 rtx pat
= PATTERN (object
);
398 /* Perhaps we couldn't recognize the insn because there were
399 extra CLOBBERs at the end. If so, try to re-recognize
400 without the last CLOBBER (later iterations will cause each of
401 them to be eliminated, in turn). But don't do this if we
402 have an ASM_OPERAND. */
403 if (GET_CODE (pat
) == PARALLEL
404 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
405 && asm_noperands (PATTERN (object
)) < 0)
409 if (XVECLEN (pat
, 0) == 2)
410 newpat
= XVECEXP (pat
, 0, 0);
416 = gen_rtx_PARALLEL (VOIDmode
,
417 rtvec_alloc (XVECLEN (pat
, 0) - 1));
418 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
419 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
422 /* Add a new change to this group to replace the pattern
423 with this new pattern. Then consider this change
424 as having succeeded. The change we added will
425 cause the entire call to fail if things remain invalid.
427 Note that this can lose if a later change than the one
428 we are processing specified &XVECEXP (PATTERN (object), 0, X)
429 but this shouldn't occur. */
431 validate_change (object
, &PATTERN (object
), newpat
, 1);
434 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
435 || GET_CODE (pat
) == VAR_LOCATION
)
436 /* If this insn is a CLOBBER or USE, it is always valid, but is
442 last_validated
= object
;
445 return (i
== num_changes
);
448 /* A group of changes has previously been issued with validate_change
449 and verified with verify_changes. Call df_insn_rescan for each of
450 the insn changed and clear num_changes. */
453 confirm_change_group (void)
456 rtx last_object
= NULL
;
458 for (i
= 0; i
< num_changes
; i
++)
460 rtx object
= changes
[i
].object
;
462 if (changes
[i
].unshare
)
463 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
465 /* Avoid unnecessary rescanning when multiple changes to same instruction
469 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
470 df_insn_rescan (last_object
);
471 last_object
= object
;
475 if (last_object
&& INSN_P (last_object
))
476 df_insn_rescan (last_object
);
480 /* Apply a group of changes previously issued with `validate_change'.
481 If all changes are valid, call confirm_change_group and return 1,
482 otherwise, call cancel_changes and return 0. */
485 apply_change_group (void)
487 if (verify_changes (0))
489 confirm_change_group ();
500 /* Return the number of changes so far in the current group. */
503 num_validated_changes (void)
508 /* Retract the changes numbered NUM and up. */
511 cancel_changes (int num
)
515 /* Back out all the changes. Do this in the opposite order in which
517 for (i
= num_changes
- 1; i
>= num
; i
--)
519 *changes
[i
].loc
= changes
[i
].old
;
520 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
521 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
526 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
530 simplify_while_replacing (rtx
*loc
, rtx to
, rtx object
,
531 enum machine_mode op0_mode
)
534 enum rtx_code code
= GET_CODE (x
);
537 if (SWAPPABLE_OPERANDS_P (x
)
538 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
540 validate_unshare_change (object
, loc
,
541 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
542 : swap_condition (code
),
543 GET_MODE (x
), XEXP (x
, 1),
552 /* If we have a PLUS whose second operand is now a CONST_INT, use
553 simplify_gen_binary to try to simplify it.
554 ??? We may want later to remove this, once simplification is
555 separated from this function. */
556 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
557 validate_change (object
, loc
,
559 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
562 if (CONST_INT_P (XEXP (x
, 1))
563 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
564 validate_change (object
, loc
,
566 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
567 simplify_gen_unary (NEG
,
568 GET_MODE (x
), XEXP (x
, 1),
573 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
575 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
577 /* If any of the above failed, substitute in something that
578 we know won't be recognized. */
580 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
581 validate_change (object
, loc
, new_rtx
, 1);
585 /* All subregs possible to simplify should be simplified. */
586 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
589 /* Subregs of VOIDmode operands are incorrect. */
590 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
591 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
593 validate_change (object
, loc
, new_rtx
, 1);
597 /* If we are replacing a register with memory, try to change the memory
598 to be the mode required for memory in extract operations (this isn't
599 likely to be an insertion operation; if it was, nothing bad will
600 happen, we might just fail in some cases). */
602 if (MEM_P (XEXP (x
, 0))
603 && CONST_INT_P (XEXP (x
, 1))
604 && CONST_INT_P (XEXP (x
, 2))
605 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
606 && !MEM_VOLATILE_P (XEXP (x
, 0)))
608 enum machine_mode wanted_mode
= VOIDmode
;
609 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
610 int pos
= INTVAL (XEXP (x
, 2));
612 if (GET_CODE (x
) == ZERO_EXTRACT
)
614 enum machine_mode new_mode
615 = mode_for_extraction (EP_extzv
, 1);
616 if (new_mode
!= MAX_MACHINE_MODE
)
617 wanted_mode
= new_mode
;
619 else if (GET_CODE (x
) == SIGN_EXTRACT
)
621 enum machine_mode new_mode
622 = mode_for_extraction (EP_extv
, 1);
623 if (new_mode
!= MAX_MACHINE_MODE
)
624 wanted_mode
= new_mode
;
627 /* If we have a narrower mode, we can do something. */
628 if (wanted_mode
!= VOIDmode
629 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
631 int offset
= pos
/ BITS_PER_UNIT
;
634 /* If the bytes and bits are counted differently, we
635 must adjust the offset. */
636 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
638 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
641 pos
%= GET_MODE_BITSIZE (wanted_mode
);
643 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
645 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
646 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
657 /* Replace every occurrence of FROM in X with TO. Mark each change with
658 validate_change passing OBJECT. */
661 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
,
668 enum machine_mode op0_mode
= VOIDmode
;
669 int prev_changes
= num_changes
;
675 fmt
= GET_RTX_FORMAT (code
);
677 op0_mode
= GET_MODE (XEXP (x
, 0));
679 /* X matches FROM if it is the same rtx or they are both referring to the
680 same register in the same mode. Avoid calling rtx_equal_p unless the
681 operands look similar. */
684 || (REG_P (x
) && REG_P (from
)
685 && GET_MODE (x
) == GET_MODE (from
)
686 && REGNO (x
) == REGNO (from
))
687 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
688 && rtx_equal_p (x
, from
)))
690 validate_unshare_change (object
, loc
, to
, 1);
694 /* Call ourself recursively to perform the replacements.
695 We must not replace inside already replaced expression, otherwise we
696 get infinite recursion for replacements like (reg X)->(subreg (reg X))
697 done by regmove, so we must special case shared ASM_OPERANDS. */
699 if (GET_CODE (x
) == PARALLEL
)
701 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
703 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
704 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
706 /* Verify that operands are really shared. */
707 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
708 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
710 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
711 from
, to
, object
, simplify
);
714 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
719 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
722 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
723 else if (fmt
[i
] == 'E')
724 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
725 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
729 /* If we didn't substitute, there is nothing more to do. */
730 if (num_changes
== prev_changes
)
733 /* Allow substituted expression to have different mode. This is used by
734 regmove to change mode of pseudo register. */
735 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
736 op0_mode
= GET_MODE (XEXP (x
, 0));
738 /* Do changes needed to keep rtx consistent. Don't do any other
739 simplifications, as it is not our job. */
741 simplify_while_replacing (loc
, to
, object
, op0_mode
);
744 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
745 with TO. After all changes have been made, validate by seeing
746 if INSN is still valid. */
749 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
751 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
752 return apply_change_group ();
755 /* Try replacing every occurrence of FROM in INSN with TO. After all
756 changes have been made, validate by seeing if INSN is still valid. */
759 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
761 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
762 return apply_change_group ();
765 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
766 is a part of INSN. After all changes have been made, validate by seeing if
768 validate_replace_rtx (from, to, insn) is equivalent to
769 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
772 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx insn
)
774 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
775 return apply_change_group ();
778 /* Same as above, but do not simplify rtx afterwards. */
780 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
783 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
784 return apply_change_group ();
788 /* Try replacing every occurrence of FROM in INSN with TO. This also
789 will replace in REG_EQUAL and REG_EQUIV notes. */
792 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
795 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
796 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
797 if (REG_NOTE_KIND (note
) == REG_EQUAL
798 || REG_NOTE_KIND (note
) == REG_EQUIV
)
799 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
802 /* Function called by note_uses to replace used subexpressions. */
803 struct validate_replace_src_data
805 rtx from
; /* Old RTX */
806 rtx to
; /* New RTX */
807 rtx insn
; /* Insn in which substitution is occurring. */
811 validate_replace_src_1 (rtx
*x
, void *data
)
813 struct validate_replace_src_data
*d
814 = (struct validate_replace_src_data
*) data
;
816 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
819 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
823 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
825 struct validate_replace_src_data d
;
830 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
833 /* Try simplify INSN.
834 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
835 pattern and return true if something was simplified. */
838 validate_simplify_insn (rtx insn
)
844 pat
= PATTERN (insn
);
846 if (GET_CODE (pat
) == SET
)
848 newpat
= simplify_rtx (SET_SRC (pat
));
849 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
850 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
851 newpat
= simplify_rtx (SET_DEST (pat
));
852 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
853 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
855 else if (GET_CODE (pat
) == PARALLEL
)
856 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
858 rtx s
= XVECEXP (pat
, 0, i
);
860 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
862 newpat
= simplify_rtx (SET_SRC (s
));
863 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
864 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
865 newpat
= simplify_rtx (SET_DEST (s
));
866 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
867 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
870 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
874 /* Return 1 if the insn using CC0 set by INSN does not contain
875 any ordered tests applied to the condition codes.
876 EQ and NE tests do not count. */
879 next_insn_tests_no_inequality (rtx insn
)
881 rtx next
= next_cc0_user (insn
);
883 /* If there is no next insn, we have to take the conservative choice. */
887 return (INSN_P (next
)
888 && ! inequality_comparisons_p (PATTERN (next
)));
892 /* Return 1 if OP is a valid general operand for machine mode MODE.
893 This is either a register reference, a memory reference,
894 or a constant. In the case of a memory reference, the address
895 is checked for general validity for the target machine.
897 Register and memory references must have mode MODE in order to be valid,
898 but some constants have no machine mode and are valid for any mode.
900 If MODE is VOIDmode, OP is checked for validity for whatever mode
903 The main use of this function is as a predicate in match_operand
904 expressions in the machine description.
906 For an explanation of this function's behavior for registers of
907 class NO_REGS, see the comment for `register_operand'. */
910 general_operand (rtx op
, enum machine_mode mode
)
912 enum rtx_code code
= GET_CODE (op
);
914 if (mode
== VOIDmode
)
915 mode
= GET_MODE (op
);
917 /* Don't accept CONST_INT or anything similar
918 if the caller wants something floating. */
919 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
920 && GET_MODE_CLASS (mode
) != MODE_INT
921 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
926 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
930 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
932 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
933 && LEGITIMATE_CONSTANT_P (op
));
935 /* Except for certain constants with VOIDmode, already checked for,
936 OP's mode must match MODE if MODE specifies a mode. */
938 if (GET_MODE (op
) != mode
)
943 rtx sub
= SUBREG_REG (op
);
945 #ifdef INSN_SCHEDULING
946 /* On machines that have insn scheduling, we want all memory
947 reference to be explicit, so outlaw paradoxical SUBREGs.
948 However, we must allow them after reload so that they can
949 get cleaned up by cleanup_subreg_operands. */
950 if (!reload_completed
&& MEM_P (sub
)
951 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
954 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
955 may result in incorrect reference. We should simplify all valid
956 subregs of MEM anyway. But allow this after reload because we
957 might be called from cleanup_subreg_operands.
959 ??? This is a kludge. */
960 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
964 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
965 create such rtl, and we must reject it. */
966 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
967 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
971 code
= GET_CODE (op
);
975 /* A register whose class is NO_REGS is not a general operand. */
976 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
977 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
981 rtx y
= XEXP (op
, 0);
983 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
986 /* Use the mem's mode, since it will be reloaded thus. */
987 if (memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
994 /* Return 1 if OP is a valid memory address for a memory reference
997 The main use of this function is as a predicate in match_operand
998 expressions in the machine description. */
1001 address_operand (rtx op
, enum machine_mode mode
)
1003 return memory_address_p (mode
, op
);
1006 /* Return 1 if OP is a register reference of mode MODE.
1007 If MODE is VOIDmode, accept a register in any mode.
1009 The main use of this function is as a predicate in match_operand
1010 expressions in the machine description.
1012 As a special exception, registers whose class is NO_REGS are
1013 not accepted by `register_operand'. The reason for this change
1014 is to allow the representation of special architecture artifacts
1015 (such as a condition code register) without extending the rtl
1016 definitions. Since registers of class NO_REGS cannot be used
1017 as registers in any case where register classes are examined,
1018 it is most consistent to keep this function from accepting them. */
1021 register_operand (rtx op
, enum machine_mode mode
)
1023 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1026 if (GET_CODE (op
) == SUBREG
)
1028 rtx sub
= SUBREG_REG (op
);
1030 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1031 because it is guaranteed to be reloaded into one.
1032 Just make sure the MEM is valid in itself.
1033 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1034 but currently it does result from (SUBREG (REG)...) where the
1035 reg went on the stack.) */
1036 if (! reload_completed
&& MEM_P (sub
))
1037 return general_operand (op
, mode
);
1039 #ifdef CANNOT_CHANGE_MODE_CLASS
1041 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1042 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1043 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1044 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1048 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1049 create such rtl, and we must reject it. */
1050 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1051 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1057 /* We don't consider registers whose class is NO_REGS
1058 to be a register operand. */
1060 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1061 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1064 /* Return 1 for a register in Pmode; ignore the tested mode. */
1067 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1069 return register_operand (op
, Pmode
);
1072 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1073 or a hard register. */
1076 scratch_operand (rtx op
, enum machine_mode mode
)
1078 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1081 return (GET_CODE (op
) == SCRATCH
1083 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1086 /* Return 1 if OP is a valid immediate operand for mode MODE.
1088 The main use of this function is as a predicate in match_operand
1089 expressions in the machine description. */
1092 immediate_operand (rtx op
, enum machine_mode mode
)
1094 /* Don't accept CONST_INT or anything similar
1095 if the caller wants something floating. */
1096 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1097 && GET_MODE_CLASS (mode
) != MODE_INT
1098 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1101 if (CONST_INT_P (op
)
1103 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1106 return (CONSTANT_P (op
)
1107 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1108 || GET_MODE (op
) == VOIDmode
)
1109 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1110 && LEGITIMATE_CONSTANT_P (op
));
1113 /* Returns 1 if OP is an operand that is a CONST_INT. */
1116 const_int_operand (rtx op
, enum machine_mode mode
)
1118 if (!CONST_INT_P (op
))
1121 if (mode
!= VOIDmode
1122 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1128 /* Returns 1 if OP is an operand that is a constant integer or constant
1129 floating-point number. */
1132 const_double_operand (rtx op
, enum machine_mode mode
)
1134 /* Don't accept CONST_INT or anything similar
1135 if the caller wants something floating. */
1136 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1137 && GET_MODE_CLASS (mode
) != MODE_INT
1138 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1141 return ((GET_CODE (op
) == CONST_DOUBLE
|| CONST_INT_P (op
))
1142 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1143 || GET_MODE (op
) == VOIDmode
));
1146 /* Return 1 if OP is a general operand that is not an immediate operand. */
1149 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1151 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1154 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1157 nonmemory_operand (rtx op
, enum machine_mode mode
)
1159 if (CONSTANT_P (op
))
1160 return immediate_operand (op
, mode
);
1162 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1165 if (GET_CODE (op
) == SUBREG
)
1167 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1168 because it is guaranteed to be reloaded into one.
1169 Just make sure the MEM is valid in itself.
1170 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1171 but currently it does result from (SUBREG (REG)...) where the
1172 reg went on the stack.) */
1173 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1174 return general_operand (op
, mode
);
1175 op
= SUBREG_REG (op
);
1178 /* We don't consider registers whose class is NO_REGS
1179 to be a register operand. */
1181 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1182 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1185 /* Return 1 if OP is a valid operand that stands for pushing a
1186 value of mode MODE onto the stack.
1188 The main use of this function is as a predicate in match_operand
1189 expressions in the machine description. */
1192 push_operand (rtx op
, enum machine_mode mode
)
1194 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1196 #ifdef PUSH_ROUNDING
1197 rounded_size
= PUSH_ROUNDING (rounded_size
);
1203 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1208 if (rounded_size
== GET_MODE_SIZE (mode
))
1210 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1215 if (GET_CODE (op
) != PRE_MODIFY
1216 || GET_CODE (XEXP (op
, 1)) != PLUS
1217 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1218 || !CONST_INT_P (XEXP (XEXP (op
, 1), 1))
1219 #ifdef STACK_GROWS_DOWNWARD
1220 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1222 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1228 return XEXP (op
, 0) == stack_pointer_rtx
;
1231 /* Return 1 if OP is a valid operand that stands for popping a
1232 value of mode MODE off the stack.
1234 The main use of this function is as a predicate in match_operand
1235 expressions in the machine description. */
1238 pop_operand (rtx op
, enum machine_mode mode
)
1243 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1248 if (GET_CODE (op
) != STACK_POP_CODE
)
1251 return XEXP (op
, 0) == stack_pointer_rtx
;
1254 /* Return 1 if ADDR is a valid memory address
1255 for mode MODE in address space AS. */
1258 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED
,
1259 rtx addr
, addr_space_t as
)
1261 #ifdef GO_IF_LEGITIMATE_ADDRESS
1262 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1263 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1269 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1273 /* Return 1 if OP is a valid memory reference with mode MODE,
1274 including a valid address.
1276 The main use of this function is as a predicate in match_operand
1277 expressions in the machine description. */
1280 memory_operand (rtx op
, enum machine_mode mode
)
1284 if (! reload_completed
)
1285 /* Note that no SUBREG is a memory operand before end of reload pass,
1286 because (SUBREG (MEM...)) forces reloading into a register. */
1287 return MEM_P (op
) && general_operand (op
, mode
);
1289 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1293 if (GET_CODE (inner
) == SUBREG
)
1294 inner
= SUBREG_REG (inner
);
1296 return (MEM_P (inner
) && general_operand (op
, mode
));
1299 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1300 that is, a memory reference whose address is a general_operand. */
1303 indirect_operand (rtx op
, enum machine_mode mode
)
1305 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1306 if (! reload_completed
1307 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1309 int offset
= SUBREG_BYTE (op
);
1310 rtx inner
= SUBREG_REG (op
);
1312 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1315 /* The only way that we can have a general_operand as the resulting
1316 address is if OFFSET is zero and the address already is an operand
1317 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1320 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1321 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1322 && CONST_INT_P (XEXP (XEXP (inner
, 0), 1))
1323 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1324 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1328 && memory_operand (op
, mode
)
1329 && general_operand (XEXP (op
, 0), Pmode
));
1332 /* Return 1 if this is an ordered comparison operator (not including
1333 ORDERED and UNORDERED). */
1336 ordered_comparison_operator (rtx op
, enum machine_mode mode
)
1338 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1340 switch (GET_CODE (op
))
1358 /* Return 1 if this is a comparison operator. This allows the use of
1359 MATCH_OPERATOR to recognize all the branch insns. */
1362 comparison_operator (rtx op
, enum machine_mode mode
)
1364 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1365 && COMPARISON_P (op
));
1368 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1371 extract_asm_operands (rtx body
)
1374 switch (GET_CODE (body
))
1380 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1381 tmp
= SET_SRC (body
);
1382 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1387 tmp
= XVECEXP (body
, 0, 0);
1388 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1390 if (GET_CODE (tmp
) == SET
)
1392 tmp
= SET_SRC (tmp
);
1393 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1404 /* If BODY is an insn body that uses ASM_OPERANDS,
1405 return the number of operands (both input and output) in the insn.
1406 Otherwise return -1. */
1409 asm_noperands (const_rtx body
)
1411 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1417 if (GET_CODE (body
) == SET
)
1419 else if (GET_CODE (body
) == PARALLEL
)
1422 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1424 /* Multiple output operands, or 1 output plus some clobbers:
1426 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1427 /* Count backwards through CLOBBERs to determine number of SETs. */
1428 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1430 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1432 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1436 /* N_SETS is now number of output operands. */
1439 /* Verify that all the SETs we have
1440 came from a single original asm_operands insn
1441 (so that invalid combinations are blocked). */
1442 for (i
= 0; i
< n_sets
; i
++)
1444 rtx elt
= XVECEXP (body
, 0, i
);
1445 if (GET_CODE (elt
) != SET
)
1447 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1449 /* If these ASM_OPERANDS rtx's came from different original insns
1450 then they aren't allowed together. */
1451 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1452 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1458 /* 0 outputs, but some clobbers:
1459 body is [(asm_operands ...) (clobber (reg ...))...]. */
1460 /* Make sure all the other parallel things really are clobbers. */
1461 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1462 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1467 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1468 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1471 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1472 copy its operands (both input and output) into the vector OPERANDS,
1473 the locations of the operands within the insn into the vector OPERAND_LOCS,
1474 and the constraints for the operands into CONSTRAINTS.
1475 Write the modes of the operands into MODES.
1476 Return the assembler-template.
1478 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1479 we don't store that info. */
1482 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1483 const char **constraints
, enum machine_mode
*modes
,
1486 int nbase
= 0, n
, i
;
1489 switch (GET_CODE (body
))
1492 /* Zero output asm: BODY is (asm_operands ...). */
1497 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1498 asmop
= SET_SRC (body
);
1500 /* The output is in the SET.
1501 Its constraint is in the ASM_OPERANDS itself. */
1503 operands
[0] = SET_DEST (body
);
1505 operand_locs
[0] = &SET_DEST (body
);
1507 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1509 modes
[0] = GET_MODE (SET_DEST (body
));
1515 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1517 asmop
= XVECEXP (body
, 0, 0);
1518 if (GET_CODE (asmop
) == SET
)
1520 asmop
= SET_SRC (asmop
);
1522 /* At least one output, plus some CLOBBERs. The outputs are in
1523 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1524 for (i
= 0; i
< nparallel
; i
++)
1526 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1527 break; /* Past last SET */
1529 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1531 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1533 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1535 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1546 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1547 for (i
= 0; i
< n
; i
++)
1550 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1552 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1554 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1556 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1560 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1561 for (i
= 0; i
< n
; i
++)
1564 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1566 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1568 constraints
[nbase
+ i
] = "";
1570 modes
[nbase
+ i
] = Pmode
;
1574 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1576 return ASM_OPERANDS_TEMPLATE (asmop
);
1579 /* Check if an asm_operand matches its constraints.
1580 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1583 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1587 bool incdec_ok
= false;
1590 /* Use constrain_operands after reload. */
1591 gcc_assert (!reload_completed
);
1593 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1594 many alternatives as required to match the other operands. */
1595 if (*constraint
== '\0')
1600 char c
= *constraint
;
1617 case '0': case '1': case '2': case '3': case '4':
1618 case '5': case '6': case '7': case '8': case '9':
1619 /* If caller provided constraints pointer, look up
1620 the maching constraint. Otherwise, our caller should have
1621 given us the proper matching constraint, but we can't
1622 actually fail the check if they didn't. Indicate that
1623 results are inconclusive. */
1627 unsigned long match
;
1629 match
= strtoul (constraint
, &end
, 10);
1631 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1632 constraint
= (const char *) end
;
1638 while (ISDIGIT (*constraint
));
1645 if (address_operand (op
, VOIDmode
))
1649 case TARGET_MEM_CONSTRAINT
:
1650 case 'V': /* non-offsettable */
1651 if (memory_operand (op
, VOIDmode
))
1655 case 'o': /* offsettable */
1656 if (offsettable_nonstrict_memref_p (op
))
1661 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1662 excepting those that expand_call created. Further, on some
1663 machines which do not have generalized auto inc/dec, an inc/dec
1664 is not a memory_operand.
1666 Match any memory and hope things are resolved after reload. */
1670 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1671 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1681 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1682 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1691 if (GET_CODE (op
) == CONST_DOUBLE
1692 || (GET_CODE (op
) == CONST_VECTOR
1693 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1698 if (GET_CODE (op
) == CONST_DOUBLE
1699 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1703 if (GET_CODE (op
) == CONST_DOUBLE
1704 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1709 if (CONST_INT_P (op
)
1710 || (GET_CODE (op
) == CONST_DOUBLE
1711 && GET_MODE (op
) == VOIDmode
))
1716 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1721 if (CONST_INT_P (op
)
1722 || (GET_CODE (op
) == CONST_DOUBLE
1723 && GET_MODE (op
) == VOIDmode
))
1728 if (CONST_INT_P (op
)
1729 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1733 if (CONST_INT_P (op
)
1734 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1738 if (CONST_INT_P (op
)
1739 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1743 if (CONST_INT_P (op
)
1744 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1748 if (CONST_INT_P (op
)
1749 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1753 if (CONST_INT_P (op
)
1754 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1758 if (CONST_INT_P (op
)
1759 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1763 if (CONST_INT_P (op
)
1764 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1773 if (general_operand (op
, VOIDmode
))
1778 /* For all other letters, we first check for a register class,
1779 otherwise it is an EXTRA_CONSTRAINT. */
1780 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1783 if (GET_MODE (op
) == BLKmode
)
1785 if (register_operand (op
, VOIDmode
))
1788 #ifdef EXTRA_CONSTRAINT_STR
1789 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
1790 /* Every memory operand can be reloaded to fit. */
1791 result
= result
|| memory_operand (op
, VOIDmode
);
1792 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
))
1793 /* Every address operand can be reloaded to fit. */
1794 result
= result
|| address_operand (op
, VOIDmode
);
1795 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1800 len
= CONSTRAINT_LEN (c
, constraint
);
1803 while (--len
&& *constraint
);
1809 /* For operands without < or > constraints reject side-effects. */
1810 if (!incdec_ok
&& result
&& MEM_P (op
))
1811 switch (GET_CODE (XEXP (op
, 0)))
1828 /* Given an rtx *P, if it is a sum containing an integer constant term,
1829 return the location (type rtx *) of the pointer to that constant term.
1830 Otherwise, return a null pointer. */
1833 find_constant_term_loc (rtx
*p
)
1836 enum rtx_code code
= GET_CODE (*p
);
1838 /* If *P IS such a constant term, P is its location. */
1840 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1844 /* Otherwise, if not a sum, it has no constant term. */
1846 if (GET_CODE (*p
) != PLUS
)
1849 /* If one of the summands is constant, return its location. */
1851 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1852 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1855 /* Otherwise, check each summand for containing a constant term. */
1857 if (XEXP (*p
, 0) != 0)
1859 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1864 if (XEXP (*p
, 1) != 0)
1866 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1874 /* Return 1 if OP is a memory reference
1875 whose address contains no side effects
1876 and remains valid after the addition
1877 of a positive integer less than the
1878 size of the object being referenced.
1880 We assume that the original address is valid and do not check it.
1882 This uses strict_memory_address_p as a subroutine, so
1883 don't use it before reload. */
1886 offsettable_memref_p (rtx op
)
1888 return ((MEM_P (op
))
1889 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1890 MEM_ADDR_SPACE (op
)));
1893 /* Similar, but don't require a strictly valid mem ref:
1894 consider pseudo-regs valid as index or base regs. */
1897 offsettable_nonstrict_memref_p (rtx op
)
1899 return ((MEM_P (op
))
1900 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1901 MEM_ADDR_SPACE (op
)));
1904 /* Return 1 if Y is a memory address which contains no side effects
1905 and would remain valid for address space AS after the addition of
1906 a positive integer less than the size of that mode.
1908 We assume that the original address is valid and do not check it.
1909 We do check that it is valid for narrower modes.
1911 If STRICTP is nonzero, we require a strictly valid address,
1912 for the sake of use in reload.c. */
1915 offsettable_address_addr_space_p (int strictp
, enum machine_mode mode
, rtx y
,
1918 enum rtx_code ycode
= GET_CODE (y
);
1922 int (*addressp
) (enum machine_mode
, rtx
, addr_space_t
) =
1923 (strictp
? strict_memory_address_addr_space_p
1924 : memory_address_addr_space_p
);
1925 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1927 if (CONSTANT_ADDRESS_P (y
))
1930 /* Adjusting an offsettable address involves changing to a narrower mode.
1931 Make sure that's OK. */
1933 if (mode_dependent_address_p (y
))
1936 /* ??? How much offset does an offsettable BLKmode reference need?
1937 Clearly that depends on the situation in which it's being used.
1938 However, the current situation in which we test 0xffffffff is
1939 less than ideal. Caveat user. */
1941 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1943 /* If the expression contains a constant term,
1944 see if it remains valid when max possible offset is added. */
1946 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1951 *y2
= plus_constant (*y2
, mode_sz
- 1);
1952 /* Use QImode because an odd displacement may be automatically invalid
1953 for any wider mode. But it should be valid for a single byte. */
1954 good
= (*addressp
) (QImode
, y
, as
);
1956 /* In any case, restore old contents of memory. */
1961 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1964 /* The offset added here is chosen as the maximum offset that
1965 any instruction could need to add when operating on something
1966 of the specified mode. We assume that if Y and Y+c are
1967 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1968 go inside a LO_SUM here, so we do so as well. */
1969 if (GET_CODE (y
) == LO_SUM
1971 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1972 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1973 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1975 z
= plus_constant (y
, mode_sz
- 1);
1977 /* Use QImode because an odd displacement may be automatically invalid
1978 for any wider mode. But it should be valid for a single byte. */
1979 return (*addressp
) (QImode
, z
, as
);
1982 /* Return 1 if ADDR is an address-expression whose effect depends
1983 on the mode of the memory reference it is used in.
1985 Autoincrement addressing is a typical example of mode-dependence
1986 because the amount of the increment depends on the mode. */
1989 mode_dependent_address_p (rtx addr
)
1991 /* Auto-increment addressing with anything other than post_modify
1992 or pre_modify always introduces a mode dependency. Catch such
1993 cases now instead of deferring to the target. */
1994 if (GET_CODE (addr
) == PRE_INC
1995 || GET_CODE (addr
) == POST_INC
1996 || GET_CODE (addr
) == PRE_DEC
1997 || GET_CODE (addr
) == POST_DEC
)
2000 return targetm
.mode_dependent_address_p (addr
);
2003 /* Like extract_insn, but save insn extracted and don't extract again, when
2004 called again for the same insn expecting that recog_data still contain the
2005 valid information. This is used primary by gen_attr infrastructure that
2006 often does extract insn again and again. */
2008 extract_insn_cached (rtx insn
)
2010 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2012 extract_insn (insn
);
2013 recog_data
.insn
= insn
;
2016 /* Do cached extract_insn, constrain_operands and complain about failures.
2017 Used by insn_attrtab. */
2019 extract_constrain_insn_cached (rtx insn
)
2021 extract_insn_cached (insn
);
2022 if (which_alternative
== -1
2023 && !constrain_operands (reload_completed
))
2024 fatal_insn_not_found (insn
);
2027 /* Do cached constrain_operands and complain about failures. */
2029 constrain_operands_cached (int strict
)
2031 if (which_alternative
== -1)
2032 return constrain_operands (strict
);
2037 /* Analyze INSN and fill in recog_data. */
2040 extract_insn (rtx insn
)
2045 rtx body
= PATTERN (insn
);
2047 recog_data
.n_operands
= 0;
2048 recog_data
.n_alternatives
= 0;
2049 recog_data
.n_dups
= 0;
2050 recog_data
.is_asm
= false;
2052 switch (GET_CODE (body
))
2063 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2068 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2069 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2070 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2076 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2079 /* This insn is an `asm' with operands. */
2081 /* expand_asm_operands makes sure there aren't too many operands. */
2082 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2084 /* Now get the operand values and constraints out of the insn. */
2085 decode_asm_operands (body
, recog_data
.operand
,
2086 recog_data
.operand_loc
,
2087 recog_data
.constraints
,
2088 recog_data
.operand_mode
, NULL
);
2089 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2092 const char *p
= recog_data
.constraints
[0];
2093 recog_data
.n_alternatives
= 1;
2095 recog_data
.n_alternatives
+= (*p
++ == ',');
2097 recog_data
.is_asm
= true;
2100 fatal_insn_not_found (insn
);
2104 /* Ordinary insn: recognize it, get the operands via insn_extract
2105 and get the constraints. */
2107 icode
= recog_memoized (insn
);
2109 fatal_insn_not_found (insn
);
2111 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2112 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2113 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2115 insn_extract (insn
);
2117 for (i
= 0; i
< noperands
; i
++)
2119 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2120 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2121 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2122 /* VOIDmode match_operands gets mode from their real operand. */
2123 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2124 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2127 for (i
= 0; i
< noperands
; i
++)
2128 recog_data
.operand_type
[i
]
2129 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2130 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2133 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2135 if (INSN_CODE (insn
) < 0)
2136 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2137 recog_data
.alternative_enabled_p
[i
] = true;
2140 recog_data
.insn
= insn
;
2141 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2143 which_alternative
= i
;
2144 recog_data
.alternative_enabled_p
[i
] = get_attr_enabled (insn
);
2148 recog_data
.insn
= NULL
;
2149 which_alternative
= -1;
2152 /* After calling extract_insn, you can use this function to extract some
2153 information from the constraint strings into a more usable form.
2154 The collected data is stored in recog_op_alt. */
2156 preprocess_constraints (void)
2160 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2161 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2162 * sizeof (struct operand_alternative
)));
2164 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2167 struct operand_alternative
*op_alt
;
2168 const char *p
= recog_data
.constraints
[i
];
2170 op_alt
= recog_op_alt
[i
];
2172 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2174 op_alt
[j
].cl
= NO_REGS
;
2175 op_alt
[j
].constraint
= p
;
2176 op_alt
[j
].matches
= -1;
2177 op_alt
[j
].matched
= -1;
2179 if (!recog_data
.alternative_enabled_p
[j
])
2181 p
= skip_alternative (p
);
2185 if (*p
== '\0' || *p
== ',')
2187 op_alt
[j
].anything_ok
= 1;
2197 while (c
!= ',' && c
!= '\0');
2198 if (c
== ',' || c
== '\0')
2206 case '=': case '+': case '*': case '%':
2207 case 'E': case 'F': case 'G': case 'H':
2208 case 's': case 'i': case 'n':
2209 case 'I': case 'J': case 'K': case 'L':
2210 case 'M': case 'N': case 'O': case 'P':
2211 /* These don't say anything we care about. */
2215 op_alt
[j
].reject
+= 6;
2218 op_alt
[j
].reject
+= 600;
2221 op_alt
[j
].earlyclobber
= 1;
2224 case '0': case '1': case '2': case '3': case '4':
2225 case '5': case '6': case '7': case '8': case '9':
2228 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2229 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2234 case TARGET_MEM_CONSTRAINT
:
2235 op_alt
[j
].memory_ok
= 1;
2238 op_alt
[j
].decmem_ok
= 1;
2241 op_alt
[j
].incmem_ok
= 1;
2244 op_alt
[j
].nonoffmem_ok
= 1;
2247 op_alt
[j
].offmem_ok
= 1;
2250 op_alt
[j
].anything_ok
= 1;
2254 op_alt
[j
].is_address
= 1;
2255 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2256 [(int) base_reg_class (VOIDmode
, ADDRESS
, SCRATCH
)];
2262 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2266 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2268 op_alt
[j
].memory_ok
= 1;
2271 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2273 op_alt
[j
].is_address
= 1;
2275 = (reg_class_subunion
2276 [(int) op_alt
[j
].cl
]
2277 [(int) base_reg_class (VOIDmode
, ADDRESS
,
2283 = (reg_class_subunion
2284 [(int) op_alt
[j
].cl
]
2285 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2288 p
+= CONSTRAINT_LEN (c
, p
);
2294 /* Check the operands of an insn against the insn's operand constraints
2295 and return 1 if they are valid.
2296 The information about the insn's operands, constraints, operand modes
2297 etc. is obtained from the global variables set up by extract_insn.
2299 WHICH_ALTERNATIVE is set to a number which indicates which
2300 alternative of constraints was matched: 0 for the first alternative,
2301 1 for the next, etc.
2303 In addition, when two operands are required to match
2304 and it happens that the output operand is (reg) while the
2305 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2306 make the output operand look like the input.
2307 This is because the output operand is the one the template will print.
2309 This is used in final, just before printing the assembler code and by
2310 the routines that determine an insn's attribute.
2312 If STRICT is a positive nonzero value, it means that we have been
2313 called after reload has been completed. In that case, we must
2314 do all checks strictly. If it is zero, it means that we have been called
2315 before reload has completed. In that case, we first try to see if we can
2316 find an alternative that matches strictly. If not, we try again, this
2317 time assuming that reload will fix up the insn. This provides a "best
2318 guess" for the alternative and is used to compute attributes of insns prior
2319 to reload. A negative value of STRICT is used for this internal call. */
2327 constrain_operands (int strict
)
2329 const char *constraints
[MAX_RECOG_OPERANDS
];
2330 int matching_operands
[MAX_RECOG_OPERANDS
];
2331 int earlyclobber
[MAX_RECOG_OPERANDS
];
2334 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2335 int funny_match_index
;
2337 which_alternative
= 0;
2338 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2341 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2343 constraints
[c
] = recog_data
.constraints
[c
];
2344 matching_operands
[c
] = -1;
2349 int seen_earlyclobber_at
= -1;
2352 funny_match_index
= 0;
2354 if (!recog_data
.alternative_enabled_p
[which_alternative
])
2358 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2359 constraints
[i
] = skip_alternative (constraints
[i
]);
2361 which_alternative
++;
2365 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2367 rtx op
= recog_data
.operand
[opno
];
2368 enum machine_mode mode
= GET_MODE (op
);
2369 const char *p
= constraints
[opno
];
2375 earlyclobber
[opno
] = 0;
2377 /* A unary operator may be accepted by the predicate, but it
2378 is irrelevant for matching constraints. */
2382 if (GET_CODE (op
) == SUBREG
)
2384 if (REG_P (SUBREG_REG (op
))
2385 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2386 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2387 GET_MODE (SUBREG_REG (op
)),
2390 op
= SUBREG_REG (op
);
2393 /* An empty constraint or empty alternative
2394 allows anything which matched the pattern. */
2395 if (*p
== 0 || *p
== ',')
2399 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2408 case '?': case '!': case '*': case '%':
2413 /* Ignore rest of this alternative as far as
2414 constraint checking is concerned. */
2417 while (*p
&& *p
!= ',');
2422 earlyclobber
[opno
] = 1;
2423 if (seen_earlyclobber_at
< 0)
2424 seen_earlyclobber_at
= opno
;
2427 case '0': case '1': case '2': case '3': case '4':
2428 case '5': case '6': case '7': case '8': case '9':
2430 /* This operand must be the same as a previous one.
2431 This kind of constraint is used for instructions such
2432 as add when they take only two operands.
2434 Note that the lower-numbered operand is passed first.
2436 If we are not testing strictly, assume that this
2437 constraint will be satisfied. */
2442 match
= strtoul (p
, &end
, 10);
2449 rtx op1
= recog_data
.operand
[match
];
2450 rtx op2
= recog_data
.operand
[opno
];
2452 /* A unary operator may be accepted by the predicate,
2453 but it is irrelevant for matching constraints. */
2455 op1
= XEXP (op1
, 0);
2457 op2
= XEXP (op2
, 0);
2459 val
= operands_match_p (op1
, op2
);
2462 matching_operands
[opno
] = match
;
2463 matching_operands
[match
] = opno
;
2468 /* If output is *x and input is *--x, arrange later
2469 to change the output to *--x as well, since the
2470 output op is the one that will be printed. */
2471 if (val
== 2 && strict
> 0)
2473 funny_match
[funny_match_index
].this_op
= opno
;
2474 funny_match
[funny_match_index
++].other
= match
;
2481 /* p is used for address_operands. When we are called by
2482 gen_reload, no one will have checked that the address is
2483 strictly valid, i.e., that all pseudos requiring hard regs
2484 have gotten them. */
2486 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2491 /* No need to check general_operand again;
2492 it was done in insn-recog.c. Well, except that reload
2493 doesn't check the validity of its replacements, but
2494 that should only matter when there's a bug. */
2496 /* Anything goes unless it is a REG and really has a hard reg
2497 but the hard reg is not in the class GENERAL_REGS. */
2501 || GENERAL_REGS
== ALL_REGS
2502 || (reload_in_progress
2503 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2504 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2507 else if (strict
< 0 || general_operand (op
, mode
))
2512 /* This is used for a MATCH_SCRATCH in the cases when
2513 we don't actually need anything. So anything goes
2518 case TARGET_MEM_CONSTRAINT
:
2519 /* Memory operands must be valid, to the extent
2520 required by STRICT. */
2524 && !strict_memory_address_addr_space_p
2525 (GET_MODE (op
), XEXP (op
, 0),
2526 MEM_ADDR_SPACE (op
)))
2529 && !memory_address_addr_space_p
2530 (GET_MODE (op
), XEXP (op
, 0),
2531 MEM_ADDR_SPACE (op
)))
2535 /* Before reload, accept what reload can turn into mem. */
2536 else if (strict
< 0 && CONSTANT_P (op
))
2538 /* During reload, accept a pseudo */
2539 else if (reload_in_progress
&& REG_P (op
)
2540 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2546 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2547 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2553 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2554 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2560 if (GET_CODE (op
) == CONST_DOUBLE
2561 || (GET_CODE (op
) == CONST_VECTOR
2562 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2568 if (GET_CODE (op
) == CONST_DOUBLE
2569 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2574 if (CONST_INT_P (op
)
2575 || (GET_CODE (op
) == CONST_DOUBLE
2576 && GET_MODE (op
) == VOIDmode
))
2579 if (CONSTANT_P (op
))
2584 if (CONST_INT_P (op
)
2585 || (GET_CODE (op
) == CONST_DOUBLE
2586 && GET_MODE (op
) == VOIDmode
))
2598 if (CONST_INT_P (op
)
2599 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2605 && ((strict
> 0 && ! offsettable_memref_p (op
))
2607 && !(CONSTANT_P (op
) || MEM_P (op
)))
2608 || (reload_in_progress
2610 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2615 if ((strict
> 0 && offsettable_memref_p (op
))
2616 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2617 /* Before reload, accept what reload can handle. */
2619 && (CONSTANT_P (op
) || MEM_P (op
)))
2620 /* During reload, accept a pseudo */
2621 || (reload_in_progress
&& REG_P (op
)
2622 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2631 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2637 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2638 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2640 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2643 #ifdef EXTRA_CONSTRAINT_STR
2644 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2647 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2648 /* Every memory operand can be reloaded to fit. */
2649 && ((strict
< 0 && MEM_P (op
))
2650 /* Before reload, accept what reload can turn
2652 || (strict
< 0 && CONSTANT_P (op
))
2653 /* During reload, accept a pseudo */
2654 || (reload_in_progress
&& REG_P (op
)
2655 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2657 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2658 /* Every address operand can be reloaded to fit. */
2665 while (p
+= len
, c
);
2667 constraints
[opno
] = p
;
2668 /* If this operand did not win somehow,
2669 this alternative loses. */
2673 /* This alternative won; the operands are ok.
2674 Change whichever operands this alternative says to change. */
2679 /* See if any earlyclobber operand conflicts with some other
2682 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2683 for (eopno
= seen_earlyclobber_at
;
2684 eopno
< recog_data
.n_operands
;
2686 /* Ignore earlyclobber operands now in memory,
2687 because we would often report failure when we have
2688 two memory operands, one of which was formerly a REG. */
2689 if (earlyclobber
[eopno
]
2690 && REG_P (recog_data
.operand
[eopno
]))
2691 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2692 if ((MEM_P (recog_data
.operand
[opno
])
2693 || recog_data
.operand_type
[opno
] != OP_OUT
)
2695 /* Ignore things like match_operator operands. */
2696 && *recog_data
.constraints
[opno
] != 0
2697 && ! (matching_operands
[opno
] == eopno
2698 && operands_match_p (recog_data
.operand
[opno
],
2699 recog_data
.operand
[eopno
]))
2700 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2701 recog_data
.operand
[eopno
]))
2706 while (--funny_match_index
>= 0)
2708 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2709 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2713 /* For operands without < or > constraints reject side-effects. */
2714 if (recog_data
.is_asm
)
2716 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2717 if (MEM_P (recog_data
.operand
[opno
]))
2718 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2726 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2727 && strchr (recog_data
.constraints
[opno
], '>')
2740 which_alternative
++;
2742 while (which_alternative
< recog_data
.n_alternatives
);
2744 which_alternative
= -1;
2745 /* If we are about to reject this, but we are not to test strictly,
2746 try a very loose test. Only return failure if it fails also. */
2748 return constrain_operands (-1);
2753 /* Return true iff OPERAND (assumed to be a REG rtx)
2754 is a hard reg in class CLASS when its regno is offset by OFFSET
2755 and changed to mode MODE.
2756 If REG occupies multiple hard regs, all of them must be in CLASS. */
2759 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2760 enum machine_mode mode
)
2762 int regno
= REGNO (operand
);
2767 return (HARD_REGISTER_NUM_P (regno
)
2768 && in_hard_reg_set_p (reg_class_contents
[(int) cl
],
2769 mode
, regno
+ offset
));
2772 /* Split single instruction. Helper function for split_all_insns and
2773 split_all_insns_noflow. Return last insn in the sequence if successful,
2774 or NULL if unsuccessful. */
2777 split_insn (rtx insn
)
2779 /* Split insns here to get max fine-grain parallelism. */
2780 rtx first
= PREV_INSN (insn
);
2781 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2782 rtx insn_set
, last_set
, note
;
2787 /* If the original instruction was a single set that was known to be
2788 equivalent to a constant, see if we can say the same about the last
2789 instruction in the split sequence. The two instructions must set
2790 the same destination. */
2791 insn_set
= single_set (insn
);
2794 last_set
= single_set (last
);
2795 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2797 note
= find_reg_equal_equiv_note (insn
);
2798 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2799 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2800 else if (CONSTANT_P (SET_SRC (insn_set
)))
2801 set_unique_reg_note (last
, REG_EQUAL
, SET_SRC (insn_set
));
2805 /* try_split returns the NOTE that INSN became. */
2806 SET_INSN_DELETED (insn
);
2808 /* ??? Coddle to md files that generate subregs in post-reload
2809 splitters instead of computing the proper hard register. */
2810 if (reload_completed
&& first
!= last
)
2812 first
= NEXT_INSN (first
);
2816 cleanup_subreg_operands (first
);
2819 first
= NEXT_INSN (first
);
2826 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2829 split_all_insns (void)
2835 blocks
= sbitmap_alloc (last_basic_block
);
2836 sbitmap_zero (blocks
);
2839 FOR_EACH_BB_REVERSE (bb
)
2842 bool finish
= false;
2844 rtl_profile_for_bb (bb
);
2845 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2847 /* Can't use `next_real_insn' because that might go across
2848 CODE_LABELS and short-out basic blocks. */
2849 next
= NEXT_INSN (insn
);
2850 finish
= (insn
== BB_END (bb
));
2853 rtx set
= single_set (insn
);
2855 /* Don't split no-op move insns. These should silently
2856 disappear later in final. Splitting such insns would
2857 break the code that handles LIBCALL blocks. */
2858 if (set
&& set_noop_p (set
))
2860 /* Nops get in the way while scheduling, so delete them
2861 now if register allocation has already been done. It
2862 is too risky to try to do this before register
2863 allocation, and there are unlikely to be very many
2864 nops then anyways. */
2865 if (reload_completed
)
2866 delete_insn_and_edges (insn
);
2870 if (split_insn (insn
))
2872 SET_BIT (blocks
, bb
->index
);
2880 default_rtl_profile ();
2882 find_many_sub_basic_blocks (blocks
);
2884 #ifdef ENABLE_CHECKING
2885 verify_flow_info ();
2888 sbitmap_free (blocks
);
2891 /* Same as split_all_insns, but do not expect CFG to be available.
2892 Used by machine dependent reorg passes. */
2895 split_all_insns_noflow (void)
2899 for (insn
= get_insns (); insn
; insn
= next
)
2901 next
= NEXT_INSN (insn
);
2904 /* Don't split no-op move insns. These should silently
2905 disappear later in final. Splitting such insns would
2906 break the code that handles LIBCALL blocks. */
2907 rtx set
= single_set (insn
);
2908 if (set
&& set_noop_p (set
))
2910 /* Nops get in the way while scheduling, so delete them
2911 now if register allocation has already been done. It
2912 is too risky to try to do this before register
2913 allocation, and there are unlikely to be very many
2916 ??? Should we use delete_insn when the CFG isn't valid? */
2917 if (reload_completed
)
2918 delete_insn_and_edges (insn
);
2927 #ifdef HAVE_peephole2
2928 struct peep2_insn_data
2934 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2935 static int peep2_current
;
2937 static bool peep2_do_rebuild_jump_labels
;
2938 static bool peep2_do_cleanup_cfg
;
2940 /* The number of instructions available to match a peep2. */
2941 int peep2_current_count
;
2943 /* A non-insn marker indicating the last insn of the block.
2944 The live_before regset for this element is correct, indicating
2945 DF_LIVE_OUT for the block. */
2946 #define PEEP2_EOB pc_rtx
2948 /* Wrap N to fit into the peep2_insn_data buffer. */
2951 peep2_buf_position (int n
)
2953 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2954 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2958 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2959 does not exist. Used by the recognizer to find the next insn to match
2960 in a multi-insn pattern. */
2963 peep2_next_insn (int n
)
2965 gcc_assert (n
<= peep2_current_count
);
2967 n
= peep2_buf_position (peep2_current
+ n
);
2969 return peep2_insn_data
[n
].insn
;
2972 /* Return true if REGNO is dead before the Nth non-note insn
2976 peep2_regno_dead_p (int ofs
, int regno
)
2978 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2980 ofs
= peep2_buf_position (peep2_current
+ ofs
);
2982 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2984 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2987 /* Similarly for a REG. */
2990 peep2_reg_dead_p (int ofs
, rtx reg
)
2994 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2996 ofs
= peep2_buf_position (peep2_current
+ ofs
);
2998 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3000 regno
= REGNO (reg
);
3001 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
3003 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
3008 /* Try to find a hard register of mode MODE, matching the register class in
3009 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3010 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3011 in which case the only condition is that the register must be available
3012 before CURRENT_INSN.
3013 Registers that already have bits set in REG_SET will not be considered.
3015 If an appropriate register is available, it will be returned and the
3016 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3020 peep2_find_free_register (int from
, int to
, const char *class_str
,
3021 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
3023 static int search_ofs
;
3028 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3029 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3031 from
= peep2_buf_position (peep2_current
+ from
);
3032 to
= peep2_buf_position (peep2_current
+ to
);
3034 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3035 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3039 HARD_REG_SET this_live
;
3041 from
= peep2_buf_position (from
+ 1);
3042 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3043 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
3044 IOR_HARD_REG_SET (live
, this_live
);
3047 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
3048 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
3050 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3052 int raw_regno
, regno
, success
, j
;
3054 /* Distribute the free registers as much as possible. */
3055 raw_regno
= search_ofs
+ i
;
3056 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3057 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3058 #ifdef REG_ALLOC_ORDER
3059 regno
= reg_alloc_order
[raw_regno
];
3064 /* Don't allocate fixed registers. */
3065 if (fixed_regs
[regno
])
3067 /* Don't allocate global registers. */
3068 if (global_regs
[regno
])
3070 /* Make sure the register is of the right class. */
3071 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
))
3073 /* And can support the mode we need. */
3074 if (! HARD_REGNO_MODE_OK (regno
, mode
))
3076 /* And that we don't create an extra save/restore. */
3077 if (! call_used_regs
[regno
] && ! df_regs_ever_live_p (regno
))
3079 if (! targetm
.hard_regno_scratch_ok (regno
))
3082 /* And we don't clobber traceback for noreturn functions. */
3083 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
3084 && (! reload_completed
|| frame_pointer_needed
))
3088 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
3090 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3091 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3099 add_to_hard_reg_set (reg_set
, mode
, regno
);
3101 /* Start the next search with the next register. */
3102 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3104 search_ofs
= raw_regno
;
3106 return gen_rtx_REG (mode
, regno
);
3114 /* Forget all currently tracked instructions, only remember current
3118 peep2_reinit_state (regset live
)
3122 /* Indicate that all slots except the last holds invalid data. */
3123 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3124 peep2_insn_data
[i
].insn
= NULL_RTX
;
3125 peep2_current_count
= 0;
3127 /* Indicate that the last slot contains live_after data. */
3128 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3129 peep2_current
= MAX_INSNS_PER_PEEP2
;
3131 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3134 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3135 starting at INSN. Perform the replacement, removing the old insns and
3136 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3137 if the replacement is rejected. */
3140 peep2_attempt (basic_block bb
, rtx insn
, int match_len
, rtx attempt
)
3143 rtx last
, note
, before_try
, x
;
3144 rtx old_insn
, new_insn
;
3145 bool was_call
= false;
3147 /* If we are splittind an RTX_FRAME_RELATED_P insn, do not allow it to
3148 match more than one insn, or to be split into more than one insn. */
3149 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3150 if (RTX_FRAME_RELATED_P (old_insn
))
3152 bool any_note
= false;
3157 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3158 may be in the stream for the purpose of register allocation. */
3159 if (active_insn_p (attempt
))
3162 new_insn
= next_active_insn (attempt
);
3163 if (next_active_insn (new_insn
))
3166 /* We have a 1-1 replacement. Copy over any frame-related info. */
3167 RTX_FRAME_RELATED_P (new_insn
) = 1;
3169 /* Allow the backend to fill in a note during the split. */
3170 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3171 switch (REG_NOTE_KIND (note
))
3173 case REG_FRAME_RELATED_EXPR
:
3174 case REG_CFA_DEF_CFA
:
3175 case REG_CFA_ADJUST_CFA
:
3176 case REG_CFA_OFFSET
:
3177 case REG_CFA_REGISTER
:
3178 case REG_CFA_EXPRESSION
:
3179 case REG_CFA_RESTORE
:
3180 case REG_CFA_SET_VDRAP
:
3187 /* If the backend didn't supply a note, copy one over. */
3189 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3190 switch (REG_NOTE_KIND (note
))
3192 case REG_FRAME_RELATED_EXPR
:
3193 case REG_CFA_DEF_CFA
:
3194 case REG_CFA_ADJUST_CFA
:
3195 case REG_CFA_OFFSET
:
3196 case REG_CFA_REGISTER
:
3197 case REG_CFA_EXPRESSION
:
3198 case REG_CFA_RESTORE
:
3199 case REG_CFA_SET_VDRAP
:
3200 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3207 /* If there still isn't a note, make sure the unwind info sees the
3208 same expression as before the split. */
3211 rtx old_set
, new_set
;
3213 /* The old insn had better have been simple, or annotated. */
3214 old_set
= single_set (old_insn
);
3215 gcc_assert (old_set
!= NULL
);
3217 new_set
= single_set (new_insn
);
3218 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3219 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3222 /* Copy prologue/epilogue status. This is required in order to keep
3223 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3224 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3227 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3228 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3229 cfg-related call notes. */
3230 for (i
= 0; i
<= match_len
; ++i
)
3234 j
= peep2_buf_position (peep2_current
+ i
);
3235 old_insn
= peep2_insn_data
[j
].insn
;
3236 if (!CALL_P (old_insn
))
3241 while (new_insn
!= NULL_RTX
)
3243 if (CALL_P (new_insn
))
3245 new_insn
= NEXT_INSN (new_insn
);
3248 gcc_assert (new_insn
!= NULL_RTX
);
3250 CALL_INSN_FUNCTION_USAGE (new_insn
)
3251 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3253 for (note
= REG_NOTES (old_insn
);
3255 note
= XEXP (note
, 1))
3256 switch (REG_NOTE_KIND (note
))
3260 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3264 /* Discard all other reg notes. */
3268 /* Croak if there is another call in the sequence. */
3269 while (++i
<= match_len
)
3271 j
= peep2_buf_position (peep2_current
+ i
);
3272 old_insn
= peep2_insn_data
[j
].insn
;
3273 gcc_assert (!CALL_P (old_insn
));
3278 i
= peep2_buf_position (peep2_current
+ match_len
);
3280 note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3282 /* Replace the old sequence with the new. */
3283 last
= emit_insn_after_setloc (attempt
,
3284 peep2_insn_data
[i
].insn
,
3285 INSN_LOCATOR (peep2_insn_data
[i
].insn
));
3286 before_try
= PREV_INSN (insn
);
3287 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3289 /* Re-insert the EH_REGION notes. */
3290 if (note
|| (was_call
&& nonlocal_goto_handler_labels
))
3295 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3296 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3300 copy_reg_eh_region_note_backward (note
, last
, before_try
);
3303 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3304 if (x
!= BB_END (bb
)
3305 && (can_throw_internal (x
)
3306 || can_nonlocal_goto (x
)))
3311 nfte
= split_block (bb
, x
);
3312 flags
= (eh_edge
->flags
3313 & (EDGE_EH
| EDGE_ABNORMAL
));
3315 flags
|= EDGE_ABNORMAL_CALL
;
3316 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3319 nehe
->probability
= eh_edge
->probability
;
3321 = REG_BR_PROB_BASE
- nehe
->probability
;
3323 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3328 /* Converting possibly trapping insn to non-trapping is
3329 possible. Zap dummy outgoing edges. */
3330 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3333 /* If we generated a jump instruction, it won't have
3334 JUMP_LABEL set. Recompute after we're done. */
3335 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3338 peep2_do_rebuild_jump_labels
= true;
3345 /* After performing a replacement in basic block BB, fix up the life
3346 information in our buffer. LAST is the last of the insns that we
3347 emitted as a replacement. PREV is the insn before the start of
3348 the replacement. MATCH_LEN is the number of instructions that were
3349 matched, and which now need to be replaced in the buffer. */
3352 peep2_update_life (basic_block bb
, int match_len
, rtx last
, rtx prev
)
3354 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3358 INIT_REG_SET (&live
);
3359 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3361 gcc_assert (peep2_current_count
>= match_len
+ 1);
3362 peep2_current_count
-= match_len
+ 1;
3370 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3372 peep2_current_count
++;
3374 i
= MAX_INSNS_PER_PEEP2
;
3375 peep2_insn_data
[i
].insn
= x
;
3376 df_simulate_one_insn_backwards (bb
, x
, &live
);
3377 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3383 CLEAR_REG_SET (&live
);
3388 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3389 Return true if we added it, false otherwise. The caller will try to match
3390 peepholes against the buffer if we return false; otherwise it will try to
3391 add more instructions to the buffer. */
3394 peep2_fill_buffer (basic_block bb
, rtx insn
, regset live
)
3398 /* Once we have filled the maximum number of insns the buffer can hold,
3399 allow the caller to match the insns against peepholes. We wait until
3400 the buffer is full in case the target has similar peepholes of different
3401 length; we always want to match the longest if possible. */
3402 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3405 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3406 any other pattern, lest it change the semantics of the frame info. */
3407 if (RTX_FRAME_RELATED_P (insn
))
3409 /* Let the buffer drain first. */
3410 if (peep2_current_count
> 0)
3412 /* Now the insn will be the only thing in the buffer. */
3415 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3416 peep2_insn_data
[pos
].insn
= insn
;
3417 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3418 peep2_current_count
++;
3420 df_simulate_one_insn_forwards (bb
, insn
, live
);
3424 /* Perform the peephole2 optimization pass. */
3427 peephole2_optimize (void)
3434 peep2_do_cleanup_cfg
= false;
3435 peep2_do_rebuild_jump_labels
= false;
3437 df_set_flags (DF_LR_RUN_DCE
);
3438 df_note_add_problem ();
3441 /* Initialize the regsets we're going to use. */
3442 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3443 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3444 live
= BITMAP_ALLOC (®_obstack
);
3446 FOR_EACH_BB_REVERSE (bb
)
3448 bool past_end
= false;
3451 rtl_profile_for_bb (bb
);
3453 /* Start up propagation. */
3454 bitmap_copy (live
, DF_LR_IN (bb
));
3455 df_simulate_initialize_forwards (bb
, live
);
3456 peep2_reinit_state (live
);
3458 insn
= BB_HEAD (bb
);
3464 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3467 insn
= NEXT_INSN (insn
);
3468 if (insn
== NEXT_INSN (BB_END (bb
)))
3472 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3475 /* If we did not fill an empty buffer, it signals the end of the
3477 if (peep2_current_count
== 0)
3480 /* The buffer filled to the current maximum, so try to match. */
3482 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3483 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3484 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3486 /* Match the peephole. */
3487 head
= peep2_insn_data
[peep2_current
].insn
;
3488 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
3489 if (attempt
!= NULL
)
3491 rtx last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3494 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3499 /* No match: advance the buffer by one insn. */
3500 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3501 peep2_current_count
--;
3505 default_rtl_profile ();
3506 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3507 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3509 if (peep2_do_rebuild_jump_labels
)
3510 rebuild_jump_labels (get_insns ());
3512 #endif /* HAVE_peephole2 */
3514 /* Common predicates for use with define_bypass. */
3516 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3517 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3518 must be either a single_set or a PARALLEL with SETs inside. */
3521 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3523 rtx out_set
, in_set
;
3524 rtx out_pat
, in_pat
;
3525 rtx out_exp
, in_exp
;
3528 in_set
= single_set (in_insn
);
3531 if (!MEM_P (SET_DEST (in_set
)))
3534 out_set
= single_set (out_insn
);
3537 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3542 out_pat
= PATTERN (out_insn
);
3544 if (GET_CODE (out_pat
) != PARALLEL
)
3547 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3549 out_exp
= XVECEXP (out_pat
, 0, i
);
3551 if (GET_CODE (out_exp
) == CLOBBER
)
3554 gcc_assert (GET_CODE (out_exp
) == SET
);
3556 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3563 in_pat
= PATTERN (in_insn
);
3564 gcc_assert (GET_CODE (in_pat
) == PARALLEL
);
3566 for (i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3568 in_exp
= XVECEXP (in_pat
, 0, i
);
3570 if (GET_CODE (in_exp
) == CLOBBER
)
3573 gcc_assert (GET_CODE (in_exp
) == SET
);
3575 if (!MEM_P (SET_DEST (in_exp
)))
3578 out_set
= single_set (out_insn
);
3581 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_exp
)))
3586 out_pat
= PATTERN (out_insn
);
3587 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3589 for (j
= 0; j
< XVECLEN (out_pat
, 0); j
++)
3591 out_exp
= XVECEXP (out_pat
, 0, j
);
3593 if (GET_CODE (out_exp
) == CLOBBER
)
3596 gcc_assert (GET_CODE (out_exp
) == SET
);
3598 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_exp
)))
3608 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3609 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3610 or multiple set; IN_INSN should be single_set for truth, but for convenience
3611 of insn categorization may be any JUMP or CALL insn. */
3614 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3616 rtx out_set
, in_set
;
3618 in_set
= single_set (in_insn
);
3621 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3625 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3627 in_set
= SET_SRC (in_set
);
3629 out_set
= single_set (out_insn
);
3632 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3633 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3641 out_pat
= PATTERN (out_insn
);
3642 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3644 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3646 rtx exp
= XVECEXP (out_pat
, 0, i
);
3648 if (GET_CODE (exp
) == CLOBBER
)
3651 gcc_assert (GET_CODE (exp
) == SET
);
3653 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3654 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3663 gate_handle_peephole2 (void)
3665 return (optimize
> 0 && flag_peephole2
);
3669 rest_of_handle_peephole2 (void)
3671 #ifdef HAVE_peephole2
3672 peephole2_optimize ();
3677 struct rtl_opt_pass pass_peephole2
=
3681 "peephole2", /* name */
3682 gate_handle_peephole2
, /* gate */
3683 rest_of_handle_peephole2
, /* execute */
3686 0, /* static_pass_number */
3687 TV_PEEPHOLE2
, /* tv_id */
3688 0, /* properties_required */
3689 0, /* properties_provided */
3690 0, /* properties_destroyed */
3691 0, /* todo_flags_start */
3692 TODO_df_finish
| TODO_verify_rtl_sharing
|
3693 TODO_dump_func
/* todo_flags_finish */
3698 rest_of_handle_split_all_insns (void)
3704 struct rtl_opt_pass pass_split_all_insns
=
3708 "split1", /* name */
3710 rest_of_handle_split_all_insns
, /* execute */
3713 0, /* static_pass_number */
3714 TV_NONE
, /* tv_id */
3715 0, /* properties_required */
3716 0, /* properties_provided */
3717 0, /* properties_destroyed */
3718 0, /* todo_flags_start */
3719 TODO_dump_func
/* todo_flags_finish */
3724 rest_of_handle_split_after_reload (void)
3726 /* If optimizing, then go ahead and split insns now. */
3734 struct rtl_opt_pass pass_split_after_reload
=
3738 "split2", /* name */
3740 rest_of_handle_split_after_reload
, /* execute */
3743 0, /* static_pass_number */
3744 TV_NONE
, /* tv_id */
3745 0, /* properties_required */
3746 0, /* properties_provided */
3747 0, /* properties_destroyed */
3748 0, /* todo_flags_start */
3749 TODO_dump_func
/* todo_flags_finish */
3754 gate_handle_split_before_regstack (void)
3756 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3757 /* If flow2 creates new instructions which need splitting
3758 and scheduling after reload is not done, they might not be
3759 split until final which doesn't allow splitting
3760 if HAVE_ATTR_length. */
3761 # ifdef INSN_SCHEDULING
3762 return (optimize
&& !flag_schedule_insns_after_reload
);
3772 rest_of_handle_split_before_regstack (void)
3778 struct rtl_opt_pass pass_split_before_regstack
=
3782 "split3", /* name */
3783 gate_handle_split_before_regstack
, /* gate */
3784 rest_of_handle_split_before_regstack
, /* execute */
3787 0, /* static_pass_number */
3788 TV_NONE
, /* tv_id */
3789 0, /* properties_required */
3790 0, /* properties_provided */
3791 0, /* properties_destroyed */
3792 0, /* todo_flags_start */
3793 TODO_dump_func
/* todo_flags_finish */
3798 gate_handle_split_before_sched2 (void)
3800 #ifdef INSN_SCHEDULING
3801 return optimize
> 0 && flag_schedule_insns_after_reload
;
3808 rest_of_handle_split_before_sched2 (void)
3810 #ifdef INSN_SCHEDULING
3816 struct rtl_opt_pass pass_split_before_sched2
=
3820 "split4", /* name */
3821 gate_handle_split_before_sched2
, /* gate */
3822 rest_of_handle_split_before_sched2
, /* execute */
3825 0, /* static_pass_number */
3826 TV_NONE
, /* tv_id */
3827 0, /* properties_required */
3828 0, /* properties_provided */
3829 0, /* properties_destroyed */
3830 0, /* todo_flags_start */
3832 TODO_dump_func
/* todo_flags_finish */
3836 /* The placement of the splitting that we do for shorten_branches
3837 depends on whether regstack is used by the target or not. */
3839 gate_do_final_split (void)
3841 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3848 struct rtl_opt_pass pass_split_for_shorten_branches
=
3852 "split5", /* name */
3853 gate_do_final_split
, /* gate */
3854 split_all_insns_noflow
, /* execute */
3857 0, /* static_pass_number */
3858 TV_NONE
, /* tv_id */
3859 0, /* properties_required */
3860 0, /* properties_provided */
3861 0, /* properties_destroyed */
3862 0, /* todo_flags_start */
3863 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */