1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
27 #include "coretypes.h"
34 #include "alloc-pool.h"
39 #include "pretty-print.h"
40 #include "diagnostic-core.h"
42 #include "fold-const.h"
44 #include "stor-layout.h"
49 #include "langhooks.h"
56 /* Functions and data structures for expanding case statements. */
58 /* Case label structure, used to hold info on labels within case
59 statements. We handle "range" labels; for a single-value label
60 as in C, the high and low limits are the same.
62 We start with a vector of case nodes sorted in ascending order, and
63 the default label as the last element in the vector. Before expanding
64 to RTL, we transform this vector into a list linked via the RIGHT
65 fields in the case_node struct. Nodes with higher case values are
68 Switch statements can be output in three forms. A branch table is
69 used if there are more than a few labels and the labels are dense
70 within the range between the smallest and largest case value. If a
71 branch table is used, no further manipulations are done with the case
74 The alternative to the use of a branch table is to generate a series
75 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
76 and PARENT fields to hold a binary tree. Initially the tree is
77 totally unbalanced, with everything on the right. We balance the tree
78 with nodes on the left having lower case values than the parent
79 and nodes on the right having higher values. We then output the tree
82 For very small, suitable switch statements, we can generate a series
83 of simple bit test and branches instead. */
87 struct case_node
*left
; /* Left son in binary tree */
88 struct case_node
*right
; /* Right son in binary tree; also node chain */
89 struct case_node
*parent
; /* Parent of node in binary tree */
90 tree low
; /* Lowest index value for this label */
91 tree high
; /* Highest index value for this label */
92 tree code_label
; /* Label to jump to when node matches */
93 int prob
; /* Probability of taking this case. */
94 /* Probability of reaching subtree rooted at this node */
98 typedef struct case_node
*case_node_ptr
;
100 extern basic_block
label_to_block_fn (struct function
*, tree
);
102 static bool check_unique_operand_names (tree
, tree
, tree
);
103 static char *resolve_operand_name_1 (char *, tree
, tree
, tree
);
104 static void balance_case_nodes (case_node_ptr
*, case_node_ptr
);
105 static int node_has_low_bound (case_node_ptr
, tree
);
106 static int node_has_high_bound (case_node_ptr
, tree
);
107 static int node_is_bounded (case_node_ptr
, tree
);
108 static void emit_case_nodes (rtx
, case_node_ptr
, rtx_code_label
*, int, tree
);
110 /* Return the rtx-label that corresponds to a LABEL_DECL,
111 creating it if necessary. */
114 label_rtx (tree label
)
116 gcc_assert (TREE_CODE (label
) == LABEL_DECL
);
118 if (!DECL_RTL_SET_P (label
))
120 rtx_code_label
*r
= gen_label_rtx ();
121 SET_DECL_RTL (label
, r
);
122 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
123 LABEL_PRESERVE_P (r
) = 1;
126 return as_a
<rtx_insn
*> (DECL_RTL (label
));
129 /* As above, but also put it on the forced-reference list of the
130 function that contains it. */
132 force_label_rtx (tree label
)
134 rtx_insn
*ref
= label_rtx (label
);
135 tree function
= decl_function_context (label
);
137 gcc_assert (function
);
139 forced_labels
= gen_rtx_INSN_LIST (VOIDmode
, ref
, forced_labels
);
143 /* As label_rtx, but ensures (in check build), that returned value is
144 an existing label (i.e. rtx with code CODE_LABEL). */
146 jump_target_rtx (tree label
)
148 return as_a
<rtx_code_label
*> (label_rtx (label
));
151 /* Add an unconditional jump to LABEL as the next sequential instruction. */
154 emit_jump (rtx label
)
156 do_pending_stack_adjust ();
157 emit_jump_insn (targetm
.gen_jump (label
));
161 /* Handle goto statements and the labels that they can go to. */
163 /* Specify the location in the RTL code of a label LABEL,
164 which is a LABEL_DECL tree node.
166 This is used for the kind of label that the user can jump to with a
167 goto statement, and for alternatives of a switch or case statement.
168 RTL labels generated for loops and conditionals don't go through here;
169 they are generated directly at the RTL level, by other functions below.
171 Note that this has nothing to do with defining label *names*.
172 Languages vary in how they do that and what that even means. */
175 expand_label (tree label
)
177 rtx_code_label
*label_r
= jump_target_rtx (label
);
179 do_pending_stack_adjust ();
180 emit_label (label_r
);
181 if (DECL_NAME (label
))
182 LABEL_NAME (DECL_RTL (label
)) = IDENTIFIER_POINTER (DECL_NAME (label
));
184 if (DECL_NONLOCAL (label
))
186 expand_builtin_setjmp_receiver (NULL
);
187 nonlocal_goto_handler_labels
188 = gen_rtx_INSN_LIST (VOIDmode
, label_r
,
189 nonlocal_goto_handler_labels
);
192 if (FORCED_LABEL (label
))
193 forced_labels
= gen_rtx_INSN_LIST (VOIDmode
, label_r
, forced_labels
);
195 if (DECL_NONLOCAL (label
) || FORCED_LABEL (label
))
196 maybe_set_first_label_num (label_r
);
199 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
200 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
201 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
202 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
203 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
204 constraint allows the use of a register operand. And, *IS_INOUT
205 will be true if the operand is read-write, i.e., if it is used as
206 an input as well as an output. If *CONSTRAINT_P is not in
207 canonical form, it will be made canonical. (Note that `+' will be
208 replaced with `=' as part of this process.)
210 Returns TRUE if all went well; FALSE if an error occurred. */
213 parse_output_constraint (const char **constraint_p
, int operand_num
,
214 int ninputs
, int noutputs
, bool *allows_mem
,
215 bool *allows_reg
, bool *is_inout
)
217 const char *constraint
= *constraint_p
;
220 /* Assume the constraint doesn't allow the use of either a register
225 /* Allow the `=' or `+' to not be at the beginning of the string,
226 since it wasn't explicitly documented that way, and there is a
227 large body of code that puts it last. Swap the character to
228 the front, so as not to uglify any place else. */
229 p
= strchr (constraint
, '=');
231 p
= strchr (constraint
, '+');
233 /* If the string doesn't contain an `=', issue an error
237 error ("output operand constraint lacks %<=%>");
241 /* If the constraint begins with `+', then the operand is both read
242 from and written to. */
243 *is_inout
= (*p
== '+');
245 /* Canonicalize the output constraint so that it begins with `='. */
246 if (p
!= constraint
|| *is_inout
)
249 size_t c_len
= strlen (constraint
);
252 warning (0, "output constraint %qc for operand %d "
253 "is not at the beginning",
256 /* Make a copy of the constraint. */
257 buf
= XALLOCAVEC (char, c_len
+ 1);
258 strcpy (buf
, constraint
);
259 /* Swap the first character and the `=' or `+'. */
260 buf
[p
- constraint
] = buf
[0];
261 /* Make sure the first character is an `='. (Until we do this,
262 it might be a `+'.) */
264 /* Replace the constraint with the canonicalized string. */
265 *constraint_p
= ggc_alloc_string (buf
, c_len
);
266 constraint
= *constraint_p
;
269 /* Loop through the constraint string. */
270 for (p
= constraint
+ 1; *p
; p
+= CONSTRAINT_LEN (*p
, p
))
275 error ("operand constraint contains incorrectly positioned "
280 if (operand_num
+ 1 == ninputs
+ noutputs
)
282 error ("%<%%%> constraint used with last operand");
287 case '?': case '!': case '*': case '&': case '#':
289 case 'E': case 'F': case 'G': case 'H':
290 case 's': case 'i': case 'n':
291 case 'I': case 'J': case 'K': case 'L': case 'M':
292 case 'N': case 'O': case 'P': case ',':
295 case '0': case '1': case '2': case '3': case '4':
296 case '5': case '6': case '7': case '8': case '9':
298 error ("matching constraint not valid in output operand");
302 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
303 excepting those that expand_call created. So match memory
316 enum constraint_num cn
= lookup_constraint (p
);
317 if (reg_class_for_constraint (cn
) != NO_REGS
318 || insn_extra_address_constraint (cn
))
320 else if (insn_extra_memory_constraint (cn
))
323 insn_extra_constraint_allows_reg_mem (cn
, allows_reg
, allows_mem
);
330 /* Similar, but for input constraints. */
333 parse_input_constraint (const char **constraint_p
, int input_num
,
334 int ninputs
, int noutputs
, int ninout
,
335 const char * const * constraints
,
336 bool *allows_mem
, bool *allows_reg
)
338 const char *constraint
= *constraint_p
;
339 const char *orig_constraint
= constraint
;
340 size_t c_len
= strlen (constraint
);
342 bool saw_match
= false;
344 /* Assume the constraint doesn't allow the use of either
345 a register or memory. */
349 /* Make sure constraint has neither `=', `+', nor '&'. */
351 for (j
= 0; j
< c_len
; j
+= CONSTRAINT_LEN (constraint
[j
], constraint
+j
))
352 switch (constraint
[j
])
354 case '+': case '=': case '&':
355 if (constraint
== orig_constraint
)
357 error ("input operand constraint contains %qc", constraint
[j
]);
363 if (constraint
== orig_constraint
364 && input_num
+ 1 == ninputs
- ninout
)
366 error ("%<%%%> constraint used with last operand");
372 case '?': case '!': case '*': case '#':
374 case 'E': case 'F': case 'G': case 'H':
375 case 's': case 'i': case 'n':
376 case 'I': case 'J': case 'K': case 'L': case 'M':
377 case 'N': case 'O': case 'P': case ',':
380 /* Whether or not a numeric constraint allows a register is
381 decided by the matching constraint, and so there is no need
382 to do anything special with them. We must handle them in
383 the default case, so that we don't unnecessarily force
384 operands to memory. */
385 case '0': case '1': case '2': case '3': case '4':
386 case '5': case '6': case '7': case '8': case '9':
393 match
= strtoul (constraint
+ j
, &end
, 10);
394 if (match
>= (unsigned long) noutputs
)
396 error ("matching constraint references invalid operand number");
400 /* Try and find the real constraint for this dup. Only do this
401 if the matching constraint is the only alternative. */
403 && (j
== 0 || (j
== 1 && constraint
[0] == '%')))
405 constraint
= constraints
[match
];
406 *constraint_p
= constraint
;
407 c_len
= strlen (constraint
);
409 /* ??? At the end of the loop, we will skip the first part of
410 the matched constraint. This assumes not only that the
411 other constraint is an output constraint, but also that
412 the '=' or '+' come first. */
416 j
= end
- constraint
;
417 /* Anticipate increment at end of loop. */
428 if (! ISALPHA (constraint
[j
]))
430 error ("invalid punctuation %qc in constraint", constraint
[j
]);
433 enum constraint_num cn
= lookup_constraint (constraint
+ j
);
434 if (reg_class_for_constraint (cn
) != NO_REGS
435 || insn_extra_address_constraint (cn
))
437 else if (insn_extra_memory_constraint (cn
))
440 insn_extra_constraint_allows_reg_mem (cn
, allows_reg
, allows_mem
);
444 if (saw_match
&& !*allows_reg
)
445 warning (0, "matching constraint does not allow a register");
450 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
451 can be an asm-declared register. Called via walk_tree. */
454 decl_overlaps_hard_reg_set_p (tree
*declp
, int *walk_subtrees ATTRIBUTE_UNUSED
,
458 const HARD_REG_SET
*const regs
= (const HARD_REG_SET
*) data
;
460 if (TREE_CODE (decl
) == VAR_DECL
)
462 if (DECL_HARD_REGISTER (decl
)
463 && REG_P (DECL_RTL (decl
))
464 && REGNO (DECL_RTL (decl
)) < FIRST_PSEUDO_REGISTER
)
466 rtx reg
= DECL_RTL (decl
);
468 if (overlaps_hard_reg_set_p (*regs
, GET_MODE (reg
), REGNO (reg
)))
473 else if (TYPE_P (decl
) || TREE_CODE (decl
) == PARM_DECL
)
478 /* If there is an overlap between *REGS and DECL, return the first overlap
481 tree_overlaps_hard_reg_set (tree decl
, HARD_REG_SET
*regs
)
483 return walk_tree (&decl
, decl_overlaps_hard_reg_set_p
, regs
, NULL
);
487 /* A subroutine of expand_asm_operands. Check that all operand names
488 are unique. Return true if so. We rely on the fact that these names
489 are identifiers, and so have been canonicalized by get_identifier,
490 so all we need are pointer comparisons. */
493 check_unique_operand_names (tree outputs
, tree inputs
, tree labels
)
495 tree i
, j
, i_name
= NULL_TREE
;
497 for (i
= outputs
; i
; i
= TREE_CHAIN (i
))
499 i_name
= TREE_PURPOSE (TREE_PURPOSE (i
));
503 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
504 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
508 for (i
= inputs
; i
; i
= TREE_CHAIN (i
))
510 i_name
= TREE_PURPOSE (TREE_PURPOSE (i
));
514 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
515 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
517 for (j
= outputs
; j
; j
= TREE_CHAIN (j
))
518 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
522 for (i
= labels
; i
; i
= TREE_CHAIN (i
))
524 i_name
= TREE_PURPOSE (i
);
528 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
529 if (simple_cst_equal (i_name
, TREE_PURPOSE (j
)))
531 for (j
= inputs
; j
; j
= TREE_CHAIN (j
))
532 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
539 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name
));
543 /* Resolve the names of the operands in *POUTPUTS and *PINPUTS to numbers,
544 and replace the name expansions in STRING and in the constraints to
545 those numbers. This is generally done in the front end while creating
546 the ASM_EXPR generic tree that eventually becomes the GIMPLE_ASM. */
549 resolve_asm_operand_names (tree string
, tree outputs
, tree inputs
, tree labels
)
556 check_unique_operand_names (outputs
, inputs
, labels
);
558 /* Substitute [<name>] in input constraint strings. There should be no
559 named operands in output constraints. */
560 for (t
= inputs
; t
; t
= TREE_CHAIN (t
))
562 c
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t
)));
563 if (strchr (c
, '[') != NULL
)
565 p
= buffer
= xstrdup (c
);
566 while ((p
= strchr (p
, '[')) != NULL
)
567 p
= resolve_operand_name_1 (p
, outputs
, inputs
, NULL
);
568 TREE_VALUE (TREE_PURPOSE (t
))
569 = build_string (strlen (buffer
), buffer
);
574 /* Now check for any needed substitutions in the template. */
575 c
= TREE_STRING_POINTER (string
);
576 while ((c
= strchr (c
, '%')) != NULL
)
580 else if (ISALPHA (c
[1]) && c
[2] == '[')
584 c
+= 1 + (c
[1] == '%');
591 /* OK, we need to make a copy so we can perform the substitutions.
592 Assume that we will not need extra space--we get to remove '['
593 and ']', which means we cannot have a problem until we have more
594 than 999 operands. */
595 buffer
= xstrdup (TREE_STRING_POINTER (string
));
596 p
= buffer
+ (c
- TREE_STRING_POINTER (string
));
598 while ((p
= strchr (p
, '%')) != NULL
)
602 else if (ISALPHA (p
[1]) && p
[2] == '[')
606 p
+= 1 + (p
[1] == '%');
610 p
= resolve_operand_name_1 (p
, outputs
, inputs
, labels
);
613 string
= build_string (strlen (buffer
), buffer
);
620 /* A subroutine of resolve_operand_names. P points to the '[' for a
621 potential named operand of the form [<name>]. In place, replace
622 the name and brackets with a number. Return a pointer to the
623 balance of the string after substitution. */
626 resolve_operand_name_1 (char *p
, tree outputs
, tree inputs
, tree labels
)
632 /* Collect the operand name. */
633 q
= strchr (++p
, ']');
636 error ("missing close brace for named operand");
637 return strchr (p
, '\0');
641 /* Resolve the name to a number. */
642 for (op
= 0, t
= outputs
; t
; t
= TREE_CHAIN (t
), op
++)
644 tree name
= TREE_PURPOSE (TREE_PURPOSE (t
));
645 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
648 for (t
= inputs
; t
; t
= TREE_CHAIN (t
), op
++)
650 tree name
= TREE_PURPOSE (TREE_PURPOSE (t
));
651 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
654 for (t
= labels
; t
; t
= TREE_CHAIN (t
), op
++)
656 tree name
= TREE_PURPOSE (t
);
657 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
661 error ("undefined named operand %qs", identifier_to_locale (p
));
665 /* Replace the name with the number. Unfortunately, not all libraries
666 get the return value of sprintf correct, so search for the end of the
667 generated string by hand. */
668 sprintf (--p
, "%d", op
);
669 p
= strchr (p
, '\0');
671 /* Verify the no extra buffer space assumption. */
674 /* Shift the rest of the buffer down to fill the gap. */
675 memmove (p
, q
+ 1, strlen (q
+ 1) + 1);
681 /* Generate RTL to return directly from the current function.
682 (That is, we bypass any return value.) */
685 expand_naked_return (void)
687 rtx_code_label
*end_label
;
689 clear_pending_stack_adjust ();
690 do_pending_stack_adjust ();
692 end_label
= naked_return_label
;
694 end_label
= naked_return_label
= gen_label_rtx ();
696 emit_jump (end_label
);
699 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
700 is the probability of jumping to LABEL. */
702 do_jump_if_equal (machine_mode mode
, rtx op0
, rtx op1
, rtx_code_label
*label
,
703 int unsignedp
, int prob
)
705 gcc_assert (prob
<= REG_BR_PROB_BASE
);
706 do_compare_rtx_and_jump (op0
, op1
, EQ
, unsignedp
, mode
,
707 NULL_RTX
, NULL
, label
, prob
);
710 /* Do the insertion of a case label into case_list. The labels are
711 fed to us in descending order from the sorted vector of case labels used
712 in the tree part of the middle end. So the list we construct is
713 sorted in ascending order.
715 LABEL is the case label to be inserted. LOW and HIGH are the bounds
716 against which the index is compared to jump to LABEL and PROB is the
717 estimated probability LABEL is reached from the switch statement. */
719 static struct case_node
*
720 add_case_node (struct case_node
*head
, tree low
, tree high
,
721 tree label
, int prob
,
722 object_allocator
<case_node
> &case_node_pool
)
726 gcc_checking_assert (low
);
727 gcc_checking_assert (high
&& (TREE_TYPE (low
) == TREE_TYPE (high
)));
729 /* Add this label to the chain. */
730 r
= case_node_pool
.allocate ();
733 r
->code_label
= label
;
734 r
->parent
= r
->left
= NULL
;
736 r
->subtree_prob
= prob
;
741 /* Dump ROOT, a list or tree of case nodes, to file. */
744 dump_case_nodes (FILE *f
, struct case_node
*root
,
745 int indent_step
, int indent_level
)
751 dump_case_nodes (f
, root
->left
, indent_step
, indent_level
);
754 fprintf (f
, "%*s", indent_step
* indent_level
, "");
755 print_dec (root
->low
, f
, TYPE_SIGN (TREE_TYPE (root
->low
)));
756 if (!tree_int_cst_equal (root
->low
, root
->high
))
758 fprintf (f
, " ... ");
759 print_dec (root
->high
, f
, TYPE_SIGN (TREE_TYPE (root
->high
)));
763 dump_case_nodes (f
, root
->right
, indent_step
, indent_level
);
766 /* Return the smallest number of different values for which it is best to use a
767 jump-table instead of a tree of conditional branches. */
770 case_values_threshold (void)
772 unsigned int threshold
= PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD
);
775 threshold
= targetm
.case_values_threshold ();
780 /* Return true if a switch should be expanded as a decision tree.
781 RANGE is the difference between highest and lowest case.
782 UNIQ is number of unique case node targets, not counting the default case.
783 COUNT is the number of comparisons needed, not counting the default case. */
786 expand_switch_as_decision_tree_p (tree range
,
787 unsigned int uniq ATTRIBUTE_UNUSED
,
792 /* If neither casesi or tablejump is available, or flag_jump_tables
793 over-ruled us, we really have no choice. */
794 if (!targetm
.have_casesi () && !targetm
.have_tablejump ())
796 if (!flag_jump_tables
)
798 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
803 /* If the switch is relatively small such that the cost of one
804 indirect jump on the target are higher than the cost of a
805 decision tree, go with the decision tree.
807 If range of values is much bigger than number of values,
808 or if it is too large to represent in a HOST_WIDE_INT,
809 make a sequence of conditional branches instead of a dispatch.
811 The definition of "much bigger" depends on whether we are
812 optimizing for size or for speed. If the former, the maximum
813 ratio range/count = 3, because this was found to be the optimal
814 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
815 10 is much older, and was probably selected after an extensive
816 benchmarking investigation on numerous platforms. Or maybe it
817 just made sense to someone at some point in the history of GCC,
819 max_ratio
= optimize_insn_for_size_p () ? 3 : 10;
820 if (count
< case_values_threshold ()
821 || ! tree_fits_uhwi_p (range
)
822 || compare_tree_int (range
, max_ratio
* count
) > 0)
828 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
829 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
830 DEFAULT_PROB is the estimated probability that it jumps to
833 We generate a binary decision tree to select the appropriate target
834 code. This is done as follows:
836 If the index is a short or char that we do not have
837 an insn to handle comparisons directly, convert it to
838 a full integer now, rather than letting each comparison
839 generate the conversion.
841 Load the index into a register.
843 The list of cases is rearranged into a binary tree,
844 nearly optimal assuming equal probability for each case.
846 The tree is transformed into RTL, eliminating redundant
847 test conditions at the same time.
849 If program flow could reach the end of the decision tree
850 an unconditional jump to the default code is emitted.
852 The above process is unaware of the CFG. The caller has to fix up
853 the CFG itself. This is done in cfgexpand.c. */
856 emit_case_decision_tree (tree index_expr
, tree index_type
,
857 case_node_ptr case_list
, rtx_code_label
*default_label
,
860 rtx index
= expand_normal (index_expr
);
862 if (GET_MODE_CLASS (GET_MODE (index
)) == MODE_INT
863 && ! have_insn_for (COMPARE
, GET_MODE (index
)))
865 int unsignedp
= TYPE_UNSIGNED (index_type
);
866 machine_mode wider_mode
;
867 for (wider_mode
= GET_MODE (index
); wider_mode
!= VOIDmode
;
868 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
869 if (have_insn_for (COMPARE
, wider_mode
))
871 index
= convert_to_mode (wider_mode
, index
, unsignedp
);
876 do_pending_stack_adjust ();
880 index
= copy_to_reg (index
);
881 if (TREE_CODE (index_expr
) == SSA_NAME
)
882 set_reg_attrs_for_decl_rtl (index_expr
, index
);
885 balance_case_nodes (&case_list
, NULL
);
887 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
889 int indent_step
= ceil_log2 (TYPE_PRECISION (index_type
)) + 2;
890 fprintf (dump_file
, ";; Expanding GIMPLE switch as decision tree:\n");
891 dump_case_nodes (dump_file
, case_list
, indent_step
, 0);
894 emit_case_nodes (index
, case_list
, default_label
, default_prob
, index_type
);
896 emit_jump (default_label
);
899 /* Return the sum of probabilities of outgoing edges of basic block BB. */
902 get_outgoing_edge_probs (basic_block bb
)
909 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
910 prob_sum
+= e
->probability
;
914 /* Computes the conditional probability of jumping to a target if the branch
915 instruction is executed.
916 TARGET_PROB is the estimated probability of jumping to a target relative
917 to some basic block BB.
918 BASE_PROB is the probability of reaching the branch instruction relative
919 to the same basic block BB. */
922 conditional_probability (int target_prob
, int base_prob
)
926 gcc_assert (target_prob
>= 0);
927 gcc_assert (target_prob
<= base_prob
);
928 return GCOV_COMPUTE_SCALE (target_prob
, base_prob
);
933 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
934 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
935 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
936 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
938 First, a jump insn is emitted. First we try "casesi". If that
939 fails, try "tablejump". A target *must* have one of them (or both).
941 Then, a table with the target labels is emitted.
943 The process is unaware of the CFG. The caller has to fix up
944 the CFG itself. This is done in cfgexpand.c. */
947 emit_case_dispatch_table (tree index_expr
, tree index_type
,
948 struct case_node
*case_list
, rtx default_label
,
949 tree minval
, tree maxval
, tree range
,
955 rtx_insn
*fallback_label
= label_rtx (case_list
->code_label
);
956 rtx_code_label
*table_label
= gen_label_rtx ();
957 bool has_gaps
= false;
958 edge default_edge
= stmt_bb
? EDGE_SUCC (stmt_bb
, 0) : NULL
;
959 int default_prob
= default_edge
? default_edge
->probability
: 0;
960 int base
= get_outgoing_edge_probs (stmt_bb
);
961 bool try_with_tablejump
= false;
963 int new_default_prob
= conditional_probability (default_prob
,
966 if (! try_casesi (index_type
, index_expr
, minval
, range
,
967 table_label
, default_label
, fallback_label
,
970 /* Index jumptables from zero for suitable values of minval to avoid
971 a subtraction. For the rationale see:
972 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
973 if (optimize_insn_for_speed_p ()
974 && compare_tree_int (minval
, 0) > 0
975 && compare_tree_int (minval
, 3) < 0)
977 minval
= build_int_cst (index_type
, 0);
981 try_with_tablejump
= true;
984 /* Get table of labels to jump to, in order of case index. */
986 ncases
= tree_to_shwi (range
) + 1;
987 labelvec
= XALLOCAVEC (rtx
, ncases
);
988 memset (labelvec
, 0, ncases
* sizeof (rtx
));
990 for (n
= case_list
; n
; n
= n
->right
)
992 /* Compute the low and high bounds relative to the minimum
993 value since that should fit in a HOST_WIDE_INT while the
994 actual values may not. */
996 = tree_to_uhwi (fold_build2 (MINUS_EXPR
, index_type
,
999 = tree_to_uhwi (fold_build2 (MINUS_EXPR
, index_type
,
1003 for (i
= i_low
; i
<= i_high
; i
++)
1005 = gen_rtx_LABEL_REF (Pmode
, label_rtx (n
->code_label
));
1008 /* Fill in the gaps with the default. We may have gaps at
1009 the beginning if we tried to avoid the minval subtraction,
1010 so substitute some label even if the default label was
1011 deemed unreachable. */
1013 default_label
= fallback_label
;
1014 for (i
= 0; i
< ncases
; i
++)
1015 if (labelvec
[i
] == 0)
1018 labelvec
[i
] = gen_rtx_LABEL_REF (Pmode
, default_label
);
1023 /* There is at least one entry in the jump table that jumps
1024 to default label. The default label can either be reached
1025 through the indirect jump or the direct conditional jump
1026 before that. Split the probability of reaching the
1027 default label among these two jumps. */
1028 new_default_prob
= conditional_probability (default_prob
/2,
1031 base
-= default_prob
;
1035 base
-= default_prob
;
1040 default_edge
->probability
= default_prob
;
1042 /* We have altered the probability of the default edge. So the probabilities
1043 of all other edges need to be adjusted so that it sums up to
1044 REG_BR_PROB_BASE. */
1049 FOR_EACH_EDGE (e
, ei
, stmt_bb
->succs
)
1050 e
->probability
= GCOV_COMPUTE_SCALE (e
->probability
, base
);
1053 if (try_with_tablejump
)
1055 bool ok
= try_tablejump (index_type
, index_expr
, minval
, range
,
1056 table_label
, default_label
, new_default_prob
);
1059 /* Output the table. */
1060 emit_label (table_label
);
1062 if (CASE_VECTOR_PC_RELATIVE
|| flag_pic
)
1063 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE
,
1064 gen_rtx_LABEL_REF (Pmode
,
1066 gen_rtvec_v (ncases
, labelvec
),
1067 const0_rtx
, const0_rtx
));
1069 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE
,
1070 gen_rtvec_v (ncases
, labelvec
)));
1072 /* Record no drop-through after the table. */
1076 /* Reset the aux field of all outgoing edges of basic block BB. */
1079 reset_out_edges_aux (basic_block bb
)
1083 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1087 /* Compute the number of case labels that correspond to each outgoing edge of
1088 STMT. Record this information in the aux field of the edge. */
1091 compute_cases_per_edge (gswitch
*stmt
)
1093 basic_block bb
= gimple_bb (stmt
);
1094 reset_out_edges_aux (bb
);
1095 int ncases
= gimple_switch_num_labels (stmt
);
1096 for (int i
= ncases
- 1; i
>= 1; --i
)
1098 tree elt
= gimple_switch_label (stmt
, i
);
1099 tree lab
= CASE_LABEL (elt
);
1100 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1101 edge case_edge
= find_edge (bb
, case_bb
);
1102 case_edge
->aux
= (void *)((intptr_t)(case_edge
->aux
) + 1);
1106 /* Terminate a case (Pascal/Ada) or switch (C) statement
1107 in which ORIG_INDEX is the expression to be tested.
1108 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1109 type as given in the source before any compiler conversions.
1110 Generate the code to test it and jump to the right place. */
1113 expand_case (gswitch
*stmt
)
1115 tree minval
= NULL_TREE
, maxval
= NULL_TREE
, range
= NULL_TREE
;
1116 rtx_code_label
*default_label
= NULL
;
1117 unsigned int count
, uniq
;
1119 int ncases
= gimple_switch_num_labels (stmt
);
1120 tree index_expr
= gimple_switch_index (stmt
);
1121 tree index_type
= TREE_TYPE (index_expr
);
1123 basic_block bb
= gimple_bb (stmt
);
1125 /* A list of case labels; it is first built as a list and it may then
1126 be rearranged into a nearly balanced binary tree. */
1127 struct case_node
*case_list
= 0;
1129 /* A pool for case nodes. */
1130 object_allocator
<case_node
> case_node_pool ("struct case_node pool");
1132 /* An ERROR_MARK occurs for various reasons including invalid data type.
1133 ??? Can this still happen, with GIMPLE and all? */
1134 if (index_type
== error_mark_node
)
1137 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1138 expressions being INTEGER_CST. */
1139 gcc_assert (TREE_CODE (index_expr
) != INTEGER_CST
);
1142 do_pending_stack_adjust ();
1144 /* Find the default case target label. */
1145 default_label
= jump_target_rtx
1146 (CASE_LABEL (gimple_switch_default_label (stmt
)));
1147 edge default_edge
= EDGE_SUCC (bb
, 0);
1148 int default_prob
= default_edge
->probability
;
1150 /* Get upper and lower bounds of case values. */
1151 elt
= gimple_switch_label (stmt
, 1);
1152 minval
= fold_convert (index_type
, CASE_LOW (elt
));
1153 elt
= gimple_switch_label (stmt
, ncases
- 1);
1154 if (CASE_HIGH (elt
))
1155 maxval
= fold_convert (index_type
, CASE_HIGH (elt
));
1157 maxval
= fold_convert (index_type
, CASE_LOW (elt
));
1159 /* Compute span of values. */
1160 range
= fold_build2 (MINUS_EXPR
, index_type
, maxval
, minval
);
1162 /* Listify the labels queue and gather some numbers to decide
1163 how to expand this switch(). */
1166 hash_set
<tree
> seen_labels
;
1167 compute_cases_per_edge (stmt
);
1169 for (i
= ncases
- 1; i
>= 1; --i
)
1171 elt
= gimple_switch_label (stmt
, i
);
1172 tree low
= CASE_LOW (elt
);
1174 tree high
= CASE_HIGH (elt
);
1175 gcc_assert (! high
|| tree_int_cst_lt (low
, high
));
1176 tree lab
= CASE_LABEL (elt
);
1178 /* Count the elements.
1179 A range counts double, since it requires two compares. */
1184 /* If we have not seen this label yet, then increase the
1185 number of unique case node targets seen. */
1186 if (!seen_labels
.add (lab
))
1189 /* The bounds on the case range, LOW and HIGH, have to be converted
1190 to case's index type TYPE. Note that the original type of the
1191 case index in the source code is usually "lost" during
1192 gimplification due to type promotion, but the case labels retain the
1193 original type. Make sure to drop overflow flags. */
1194 low
= fold_convert (index_type
, low
);
1195 if (TREE_OVERFLOW (low
))
1196 low
= wide_int_to_tree (index_type
, low
);
1198 /* The canonical from of a case label in GIMPLE is that a simple case
1199 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1200 the back ends want simple cases to have high == low. */
1203 high
= fold_convert (index_type
, high
);
1204 if (TREE_OVERFLOW (high
))
1205 high
= wide_int_to_tree (index_type
, high
);
1207 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1208 edge case_edge
= find_edge (bb
, case_bb
);
1209 case_list
= add_case_node (
1210 case_list
, low
, high
, lab
,
1211 case_edge
->probability
/ (intptr_t)(case_edge
->aux
),
1214 reset_out_edges_aux (bb
);
1216 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1217 destination, such as one with a default case only.
1218 It also removes cases that are out of range for the switch
1219 type, so we should never get a zero here. */
1220 gcc_assert (count
> 0);
1222 rtx_insn
*before_case
= get_last_insn ();
1224 /* Decide how to expand this switch.
1225 The two options at this point are a dispatch table (casesi or
1226 tablejump) or a decision tree. */
1228 if (expand_switch_as_decision_tree_p (range
, uniq
, count
))
1229 emit_case_decision_tree (index_expr
, index_type
,
1230 case_list
, default_label
,
1233 emit_case_dispatch_table (index_expr
, index_type
,
1234 case_list
, default_label
,
1235 minval
, maxval
, range
, bb
);
1237 reorder_insns (NEXT_INSN (before_case
), get_last_insn (), before_case
);
1242 /* Expand the dispatch to a short decrement chain if there are few cases
1243 to dispatch to. Likewise if neither casesi nor tablejump is available,
1244 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1245 tablejump. The index mode is always the mode of integer_type_node.
1246 Trap if no case matches the index.
1248 DISPATCH_INDEX is the index expression to switch on. It should be a
1249 memory or register operand.
1251 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1252 ascending order, be contiguous, starting with value 0, and contain only
1253 single-valued case labels. */
1256 expand_sjlj_dispatch_table (rtx dispatch_index
,
1257 vec
<tree
> dispatch_table
)
1259 tree index_type
= integer_type_node
;
1260 machine_mode index_mode
= TYPE_MODE (index_type
);
1262 int ncases
= dispatch_table
.length ();
1264 do_pending_stack_adjust ();
1265 rtx_insn
*before_case
= get_last_insn ();
1267 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1268 labels. This covers more than 98% of the cases in libjava,
1269 and seems to be a reasonable compromise between the "old way"
1270 of expanding as a decision tree or dispatch table vs. the "new
1271 way" with decrement chain or dispatch table. */
1272 if (dispatch_table
.length () <= 5
1273 || (!targetm
.have_casesi () && !targetm
.have_tablejump ())
1274 || !flag_jump_tables
)
1276 /* Expand the dispatch as a decrement chain:
1278 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1282 if (index == 0) do_0; else index--;
1283 if (index == 0) do_1; else index--;
1285 if (index == 0) do_N; else index--;
1287 This is more efficient than a dispatch table on most machines.
1288 The last "index--" is redundant but the code is trivially dead
1289 and will be cleaned up by later passes. */
1290 rtx index
= copy_to_mode_reg (index_mode
, dispatch_index
);
1291 rtx zero
= CONST0_RTX (index_mode
);
1292 for (int i
= 0; i
< ncases
; i
++)
1294 tree elt
= dispatch_table
[i
];
1295 rtx_code_label
*lab
= jump_target_rtx (CASE_LABEL (elt
));
1296 do_jump_if_equal (index_mode
, index
, zero
, lab
, 0, -1);
1297 force_expand_binop (index_mode
, sub_optab
,
1298 index
, CONST1_RTX (index_mode
),
1299 index
, 0, OPTAB_DIRECT
);
1304 /* Similar to expand_case, but much simpler. */
1305 struct case_node
*case_list
= 0;
1306 object_allocator
<case_node
> case_node_pool ("struct sjlj_case pool");
1307 tree index_expr
= make_tree (index_type
, dispatch_index
);
1308 tree minval
= build_int_cst (index_type
, 0);
1309 tree maxval
= CASE_LOW (dispatch_table
.last ());
1310 tree range
= maxval
;
1311 rtx_code_label
*default_label
= gen_label_rtx ();
1313 for (int i
= ncases
- 1; i
>= 0; --i
)
1315 tree elt
= dispatch_table
[i
];
1316 tree low
= CASE_LOW (elt
);
1317 tree lab
= CASE_LABEL (elt
);
1318 case_list
= add_case_node (case_list
, low
, low
, lab
, 0, case_node_pool
);
1321 emit_case_dispatch_table (index_expr
, index_type
,
1322 case_list
, default_label
,
1323 minval
, maxval
, range
,
1324 BLOCK_FOR_INSN (before_case
));
1325 emit_label (default_label
);
1328 /* Dispatching something not handled? Trap! */
1329 expand_builtin_trap ();
1331 reorder_insns (NEXT_INSN (before_case
), get_last_insn (), before_case
);
1337 /* Take an ordered list of case nodes
1338 and transform them into a near optimal binary tree,
1339 on the assumption that any target code selection value is as
1340 likely as any other.
1342 The transformation is performed by splitting the ordered
1343 list into two equal sections plus a pivot. The parts are
1344 then attached to the pivot as left and right branches. Each
1345 branch is then transformed recursively. */
1348 balance_case_nodes (case_node_ptr
*head
, case_node_ptr parent
)
1360 /* Count the number of entries on branch. Also count the ranges. */
1364 if (!tree_int_cst_equal (np
->low
, np
->high
))
1373 /* Split this list if it is long enough for that to help. */
1377 /* If there are just three nodes, split at the middle one. */
1379 npp
= &(*npp
)->right
;
1382 /* Find the place in the list that bisects the list's total cost,
1383 where ranges count as 2.
1384 Here I gets half the total cost. */
1385 i
= (i
+ ranges
+ 1) / 2;
1388 /* Skip nodes while their cost does not reach that amount. */
1389 if (!tree_int_cst_equal ((*npp
)->low
, (*npp
)->high
))
1394 npp
= &(*npp
)->right
;
1399 np
->parent
= parent
;
1402 /* Optimize each of the two split parts. */
1403 balance_case_nodes (&np
->left
, np
);
1404 balance_case_nodes (&np
->right
, np
);
1405 np
->subtree_prob
= np
->prob
;
1406 np
->subtree_prob
+= np
->left
->subtree_prob
;
1407 np
->subtree_prob
+= np
->right
->subtree_prob
;
1411 /* Else leave this branch as one level,
1412 but fill in `parent' fields. */
1414 np
->parent
= parent
;
1415 np
->subtree_prob
= np
->prob
;
1416 for (; np
->right
; np
= np
->right
)
1418 np
->right
->parent
= np
;
1419 (*head
)->subtree_prob
+= np
->right
->subtree_prob
;
1425 /* Search the parent sections of the case node tree
1426 to see if a test for the lower bound of NODE would be redundant.
1427 INDEX_TYPE is the type of the index expression.
1429 The instructions to generate the case decision tree are
1430 output in the same order as nodes are processed so it is
1431 known that if a parent node checks the range of the current
1432 node minus one that the current node is bounded at its lower
1433 span. Thus the test would be redundant. */
1436 node_has_low_bound (case_node_ptr node
, tree index_type
)
1439 case_node_ptr pnode
;
1441 /* If the lower bound of this node is the lowest value in the index type,
1442 we need not test it. */
1444 if (tree_int_cst_equal (node
->low
, TYPE_MIN_VALUE (index_type
)))
1447 /* If this node has a left branch, the value at the left must be less
1448 than that at this node, so it cannot be bounded at the bottom and
1449 we need not bother testing any further. */
1454 low_minus_one
= fold_build2 (MINUS_EXPR
, TREE_TYPE (node
->low
),
1456 build_int_cst (TREE_TYPE (node
->low
), 1));
1458 /* If the subtraction above overflowed, we can't verify anything.
1459 Otherwise, look for a parent that tests our value - 1. */
1461 if (! tree_int_cst_lt (low_minus_one
, node
->low
))
1464 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
1465 if (tree_int_cst_equal (low_minus_one
, pnode
->high
))
1471 /* Search the parent sections of the case node tree
1472 to see if a test for the upper bound of NODE would be redundant.
1473 INDEX_TYPE is the type of the index expression.
1475 The instructions to generate the case decision tree are
1476 output in the same order as nodes are processed so it is
1477 known that if a parent node checks the range of the current
1478 node plus one that the current node is bounded at its upper
1479 span. Thus the test would be redundant. */
1482 node_has_high_bound (case_node_ptr node
, tree index_type
)
1485 case_node_ptr pnode
;
1487 /* If there is no upper bound, obviously no test is needed. */
1489 if (TYPE_MAX_VALUE (index_type
) == NULL
)
1492 /* If the upper bound of this node is the highest value in the type
1493 of the index expression, we need not test against it. */
1495 if (tree_int_cst_equal (node
->high
, TYPE_MAX_VALUE (index_type
)))
1498 /* If this node has a right branch, the value at the right must be greater
1499 than that at this node, so it cannot be bounded at the top and
1500 we need not bother testing any further. */
1505 high_plus_one
= fold_build2 (PLUS_EXPR
, TREE_TYPE (node
->high
),
1507 build_int_cst (TREE_TYPE (node
->high
), 1));
1509 /* If the addition above overflowed, we can't verify anything.
1510 Otherwise, look for a parent that tests our value + 1. */
1512 if (! tree_int_cst_lt (node
->high
, high_plus_one
))
1515 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
1516 if (tree_int_cst_equal (high_plus_one
, pnode
->low
))
1522 /* Search the parent sections of the
1523 case node tree to see if both tests for the upper and lower
1524 bounds of NODE would be redundant. */
1527 node_is_bounded (case_node_ptr node
, tree index_type
)
1529 return (node_has_low_bound (node
, index_type
)
1530 && node_has_high_bound (node
, index_type
));
1534 /* Emit step-by-step code to select a case for the value of INDEX.
1535 The thus generated decision tree follows the form of the
1536 case-node binary tree NODE, whose nodes represent test conditions.
1537 INDEX_TYPE is the type of the index of the switch.
1539 Care is taken to prune redundant tests from the decision tree
1540 by detecting any boundary conditions already checked by
1541 emitted rtx. (See node_has_high_bound, node_has_low_bound
1542 and node_is_bounded, above.)
1544 Where the test conditions can be shown to be redundant we emit
1545 an unconditional jump to the target code. As a further
1546 optimization, the subordinates of a tree node are examined to
1547 check for bounded nodes. In this case conditional and/or
1548 unconditional jumps as a result of the boundary check for the
1549 current node are arranged to target the subordinates associated
1550 code for out of bound conditions on the current node.
1552 We can assume that when control reaches the code generated here,
1553 the index value has already been compared with the parents
1554 of this node, and determined to be on the same side of each parent
1555 as this node is. Thus, if this node tests for the value 51,
1556 and a parent tested for 52, we don't need to consider
1557 the possibility of a value greater than 51. If another parent
1558 tests for the value 50, then this node need not test anything. */
1561 emit_case_nodes (rtx index
, case_node_ptr node
, rtx_code_label
*default_label
,
1562 int default_prob
, tree index_type
)
1564 /* If INDEX has an unsigned type, we must make unsigned branches. */
1565 int unsignedp
= TYPE_UNSIGNED (index_type
);
1567 int prob
= node
->prob
, subtree_prob
= node
->subtree_prob
;
1568 machine_mode mode
= GET_MODE (index
);
1569 machine_mode imode
= TYPE_MODE (index_type
);
1571 /* Handle indices detected as constant during RTL expansion. */
1572 if (mode
== VOIDmode
)
1575 /* See if our parents have already tested everything for us.
1576 If they have, emit an unconditional jump for this node. */
1577 if (node_is_bounded (node
, index_type
))
1578 emit_jump (label_rtx (node
->code_label
));
1580 else if (tree_int_cst_equal (node
->low
, node
->high
))
1582 probability
= conditional_probability (prob
, subtree_prob
+ default_prob
);
1583 /* Node is single valued. First see if the index expression matches
1584 this node and then check our children, if any. */
1585 do_jump_if_equal (mode
, index
,
1586 convert_modes (mode
, imode
,
1587 expand_normal (node
->low
),
1589 jump_target_rtx (node
->code_label
),
1590 unsignedp
, probability
);
1591 /* Since this case is taken at this point, reduce its weight from
1593 subtree_prob
-= prob
;
1594 if (node
->right
!= 0 && node
->left
!= 0)
1596 /* This node has children on both sides.
1597 Dispatch to one side or the other
1598 by comparing the index value with this node's value.
1599 If one subtree is bounded, check that one first,
1600 so we can avoid real branches in the tree. */
1602 if (node_is_bounded (node
->right
, index_type
))
1604 probability
= conditional_probability (
1606 subtree_prob
+ default_prob
);
1607 emit_cmp_and_jump_insns (index
,
1610 expand_normal (node
->high
),
1612 GT
, NULL_RTX
, mode
, unsignedp
,
1613 label_rtx (node
->right
->code_label
),
1615 emit_case_nodes (index
, node
->left
, default_label
, default_prob
,
1619 else if (node_is_bounded (node
->left
, index_type
))
1621 probability
= conditional_probability (
1623 subtree_prob
+ default_prob
);
1624 emit_cmp_and_jump_insns (index
,
1627 expand_normal (node
->high
),
1629 LT
, NULL_RTX
, mode
, unsignedp
,
1630 label_rtx (node
->left
->code_label
),
1632 emit_case_nodes (index
, node
->right
, default_label
, default_prob
,
1636 /* If both children are single-valued cases with no
1637 children, finish up all the work. This way, we can save
1638 one ordered comparison. */
1639 else if (tree_int_cst_equal (node
->right
->low
, node
->right
->high
)
1640 && node
->right
->left
== 0
1641 && node
->right
->right
== 0
1642 && tree_int_cst_equal (node
->left
->low
, node
->left
->high
)
1643 && node
->left
->left
== 0
1644 && node
->left
->right
== 0)
1646 /* Neither node is bounded. First distinguish the two sides;
1647 then emit the code for one side at a time. */
1649 /* See if the value matches what the right hand side
1651 probability
= conditional_probability (
1653 subtree_prob
+ default_prob
);
1654 do_jump_if_equal (mode
, index
,
1655 convert_modes (mode
, imode
,
1656 expand_normal (node
->right
->low
),
1658 jump_target_rtx (node
->right
->code_label
),
1659 unsignedp
, probability
);
1661 /* See if the value matches what the left hand side
1663 probability
= conditional_probability (
1665 subtree_prob
+ default_prob
);
1666 do_jump_if_equal (mode
, index
,
1667 convert_modes (mode
, imode
,
1668 expand_normal (node
->left
->low
),
1670 jump_target_rtx (node
->left
->code_label
),
1671 unsignedp
, probability
);
1676 /* Neither node is bounded. First distinguish the two sides;
1677 then emit the code for one side at a time. */
1680 = build_decl (curr_insn_location (),
1681 LABEL_DECL
, NULL_TREE
, void_type_node
);
1683 /* The default label could be reached either through the right
1684 subtree or the left subtree. Divide the probability
1686 probability
= conditional_probability (
1687 node
->right
->subtree_prob
+ default_prob
/2,
1688 subtree_prob
+ default_prob
);
1689 /* See if the value is on the right. */
1690 emit_cmp_and_jump_insns (index
,
1693 expand_normal (node
->high
),
1695 GT
, NULL_RTX
, mode
, unsignedp
,
1696 label_rtx (test_label
),
1700 /* Value must be on the left.
1701 Handle the left-hand subtree. */
1702 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1703 /* If left-hand subtree does nothing,
1706 emit_jump (default_label
);
1708 /* Code branches here for the right-hand subtree. */
1709 expand_label (test_label
);
1710 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1714 else if (node
->right
!= 0 && node
->left
== 0)
1716 /* Here we have a right child but no left so we issue a conditional
1717 branch to default and process the right child.
1719 Omit the conditional branch to default if the right child
1720 does not have any children and is single valued; it would
1721 cost too much space to save so little time. */
1723 if (node
->right
->right
|| node
->right
->left
1724 || !tree_int_cst_equal (node
->right
->low
, node
->right
->high
))
1726 if (!node_has_low_bound (node
, index_type
))
1728 probability
= conditional_probability (
1730 subtree_prob
+ default_prob
);
1731 emit_cmp_and_jump_insns (index
,
1734 expand_normal (node
->high
),
1736 LT
, NULL_RTX
, mode
, unsignedp
,
1742 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1746 probability
= conditional_probability (
1747 node
->right
->subtree_prob
,
1748 subtree_prob
+ default_prob
);
1749 /* We cannot process node->right normally
1750 since we haven't ruled out the numbers less than
1751 this node's value. So handle node->right explicitly. */
1752 do_jump_if_equal (mode
, index
,
1755 expand_normal (node
->right
->low
),
1757 jump_target_rtx (node
->right
->code_label
),
1758 unsignedp
, probability
);
1762 else if (node
->right
== 0 && node
->left
!= 0)
1764 /* Just one subtree, on the left. */
1765 if (node
->left
->left
|| node
->left
->right
1766 || !tree_int_cst_equal (node
->left
->low
, node
->left
->high
))
1768 if (!node_has_high_bound (node
, index_type
))
1770 probability
= conditional_probability (
1772 subtree_prob
+ default_prob
);
1773 emit_cmp_and_jump_insns (index
,
1776 expand_normal (node
->high
),
1778 GT
, NULL_RTX
, mode
, unsignedp
,
1784 emit_case_nodes (index
, node
->left
, default_label
,
1785 default_prob
, index_type
);
1789 probability
= conditional_probability (
1790 node
->left
->subtree_prob
,
1791 subtree_prob
+ default_prob
);
1792 /* We cannot process node->left normally
1793 since we haven't ruled out the numbers less than
1794 this node's value. So handle node->left explicitly. */
1795 do_jump_if_equal (mode
, index
,
1798 expand_normal (node
->left
->low
),
1800 jump_target_rtx (node
->left
->code_label
),
1801 unsignedp
, probability
);
1807 /* Node is a range. These cases are very similar to those for a single
1808 value, except that we do not start by testing whether this node
1809 is the one to branch to. */
1811 if (node
->right
!= 0 && node
->left
!= 0)
1813 /* Node has subtrees on both sides.
1814 If the right-hand subtree is bounded,
1815 test for it first, since we can go straight there.
1816 Otherwise, we need to make a branch in the control structure,
1817 then handle the two subtrees. */
1818 tree test_label
= 0;
1820 if (node_is_bounded (node
->right
, index_type
))
1822 /* Right hand node is fully bounded so we can eliminate any
1823 testing and branch directly to the target code. */
1824 probability
= conditional_probability (
1825 node
->right
->subtree_prob
,
1826 subtree_prob
+ default_prob
);
1827 emit_cmp_and_jump_insns (index
,
1830 expand_normal (node
->high
),
1832 GT
, NULL_RTX
, mode
, unsignedp
,
1833 label_rtx (node
->right
->code_label
),
1838 /* Right hand node requires testing.
1839 Branch to a label where we will handle it later. */
1841 test_label
= build_decl (curr_insn_location (),
1842 LABEL_DECL
, NULL_TREE
, void_type_node
);
1843 probability
= conditional_probability (
1844 node
->right
->subtree_prob
+ default_prob
/2,
1845 subtree_prob
+ default_prob
);
1846 emit_cmp_and_jump_insns (index
,
1849 expand_normal (node
->high
),
1851 GT
, NULL_RTX
, mode
, unsignedp
,
1852 label_rtx (test_label
),
1857 /* Value belongs to this node or to the left-hand subtree. */
1859 probability
= conditional_probability (
1861 subtree_prob
+ default_prob
);
1862 emit_cmp_and_jump_insns (index
,
1865 expand_normal (node
->low
),
1867 GE
, NULL_RTX
, mode
, unsignedp
,
1868 label_rtx (node
->code_label
),
1871 /* Handle the left-hand subtree. */
1872 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1874 /* If right node had to be handled later, do that now. */
1878 /* If the left-hand subtree fell through,
1879 don't let it fall into the right-hand subtree. */
1881 emit_jump (default_label
);
1883 expand_label (test_label
);
1884 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1888 else if (node
->right
!= 0 && node
->left
== 0)
1890 /* Deal with values to the left of this node,
1891 if they are possible. */
1892 if (!node_has_low_bound (node
, index_type
))
1894 probability
= conditional_probability (
1896 subtree_prob
+ default_prob
);
1897 emit_cmp_and_jump_insns (index
,
1900 expand_normal (node
->low
),
1902 LT
, NULL_RTX
, mode
, unsignedp
,
1908 /* Value belongs to this node or to the right-hand subtree. */
1910 probability
= conditional_probability (
1912 subtree_prob
+ default_prob
);
1913 emit_cmp_and_jump_insns (index
,
1916 expand_normal (node
->high
),
1918 LE
, NULL_RTX
, mode
, unsignedp
,
1919 label_rtx (node
->code_label
),
1922 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1925 else if (node
->right
== 0 && node
->left
!= 0)
1927 /* Deal with values to the right of this node,
1928 if they are possible. */
1929 if (!node_has_high_bound (node
, index_type
))
1931 probability
= conditional_probability (
1933 subtree_prob
+ default_prob
);
1934 emit_cmp_and_jump_insns (index
,
1937 expand_normal (node
->high
),
1939 GT
, NULL_RTX
, mode
, unsignedp
,
1945 /* Value belongs to this node or to the left-hand subtree. */
1947 probability
= conditional_probability (
1949 subtree_prob
+ default_prob
);
1950 emit_cmp_and_jump_insns (index
,
1953 expand_normal (node
->low
),
1955 GE
, NULL_RTX
, mode
, unsignedp
,
1956 label_rtx (node
->code_label
),
1959 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1964 /* Node has no children so we check low and high bounds to remove
1965 redundant tests. Only one of the bounds can exist,
1966 since otherwise this node is bounded--a case tested already. */
1967 int high_bound
= node_has_high_bound (node
, index_type
);
1968 int low_bound
= node_has_low_bound (node
, index_type
);
1970 if (!high_bound
&& low_bound
)
1972 probability
= conditional_probability (
1974 subtree_prob
+ default_prob
);
1975 emit_cmp_and_jump_insns (index
,
1978 expand_normal (node
->high
),
1980 GT
, NULL_RTX
, mode
, unsignedp
,
1985 else if (!low_bound
&& high_bound
)
1987 probability
= conditional_probability (
1989 subtree_prob
+ default_prob
);
1990 emit_cmp_and_jump_insns (index
,
1993 expand_normal (node
->low
),
1995 LT
, NULL_RTX
, mode
, unsignedp
,
1999 else if (!low_bound
&& !high_bound
)
2001 /* Widen LOW and HIGH to the same width as INDEX. */
2002 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
2003 tree low
= build1 (CONVERT_EXPR
, type
, node
->low
);
2004 tree high
= build1 (CONVERT_EXPR
, type
, node
->high
);
2005 rtx low_rtx
, new_index
, new_bound
;
2007 /* Instead of doing two branches, emit one unsigned branch for
2008 (index-low) > (high-low). */
2009 low_rtx
= expand_expr (low
, NULL_RTX
, mode
, EXPAND_NORMAL
);
2010 new_index
= expand_simple_binop (mode
, MINUS
, index
, low_rtx
,
2011 NULL_RTX
, unsignedp
,
2013 new_bound
= expand_expr (fold_build2 (MINUS_EXPR
, type
,
2015 NULL_RTX
, mode
, EXPAND_NORMAL
);
2017 probability
= conditional_probability (
2019 subtree_prob
+ default_prob
);
2020 emit_cmp_and_jump_insns (new_index
, new_bound
, GT
, NULL_RTX
,
2021 mode
, 1, default_label
, probability
);
2024 emit_jump (jump_target_rtx (node
->code_label
));