2015-11-26 Paolo Bonzini <bonzini@gnu.org>
[official-gcc.git] / gcc / stmt.c
blob5acac0cd83bf98b64c1abfcc4b1c7e26f64056b3
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "alloc-pool.h"
35 #include "tm_p.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "emit-rtl.h"
39 #include "pretty-print.h"
40 #include "diagnostic-core.h"
42 #include "fold-const.h"
43 #include "varasm.h"
44 #include "stor-layout.h"
45 #include "dojump.h"
46 #include "explow.h"
47 #include "stmt.h"
48 #include "expr.h"
49 #include "langhooks.h"
50 #include "cfganal.h"
51 #include "params.h"
52 #include "dumpfile.h"
53 #include "builtins.h"
56 /* Functions and data structures for expanding case statements. */
58 /* Case label structure, used to hold info on labels within case
59 statements. We handle "range" labels; for a single-value label
60 as in C, the high and low limits are the same.
62 We start with a vector of case nodes sorted in ascending order, and
63 the default label as the last element in the vector. Before expanding
64 to RTL, we transform this vector into a list linked via the RIGHT
65 fields in the case_node struct. Nodes with higher case values are
66 later in the list.
68 Switch statements can be output in three forms. A branch table is
69 used if there are more than a few labels and the labels are dense
70 within the range between the smallest and largest case value. If a
71 branch table is used, no further manipulations are done with the case
72 node chain.
74 The alternative to the use of a branch table is to generate a series
75 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
76 and PARENT fields to hold a binary tree. Initially the tree is
77 totally unbalanced, with everything on the right. We balance the tree
78 with nodes on the left having lower case values than the parent
79 and nodes on the right having higher values. We then output the tree
80 in order.
82 For very small, suitable switch statements, we can generate a series
83 of simple bit test and branches instead. */
85 struct case_node
87 struct case_node *left; /* Left son in binary tree */
88 struct case_node *right; /* Right son in binary tree; also node chain */
89 struct case_node *parent; /* Parent of node in binary tree */
90 tree low; /* Lowest index value for this label */
91 tree high; /* Highest index value for this label */
92 tree code_label; /* Label to jump to when node matches */
93 int prob; /* Probability of taking this case. */
94 /* Probability of reaching subtree rooted at this node */
95 int subtree_prob;
98 typedef struct case_node *case_node_ptr;
100 extern basic_block label_to_block_fn (struct function *, tree);
102 static bool check_unique_operand_names (tree, tree, tree);
103 static char *resolve_operand_name_1 (char *, tree, tree, tree);
104 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
105 static int node_has_low_bound (case_node_ptr, tree);
106 static int node_has_high_bound (case_node_ptr, tree);
107 static int node_is_bounded (case_node_ptr, tree);
108 static void emit_case_nodes (rtx, case_node_ptr, rtx_code_label *, int, tree);
110 /* Return the rtx-label that corresponds to a LABEL_DECL,
111 creating it if necessary. */
113 rtx_insn *
114 label_rtx (tree label)
116 gcc_assert (TREE_CODE (label) == LABEL_DECL);
118 if (!DECL_RTL_SET_P (label))
120 rtx_code_label *r = gen_label_rtx ();
121 SET_DECL_RTL (label, r);
122 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
123 LABEL_PRESERVE_P (r) = 1;
126 return as_a <rtx_insn *> (DECL_RTL (label));
129 /* As above, but also put it on the forced-reference list of the
130 function that contains it. */
131 rtx_insn *
132 force_label_rtx (tree label)
134 rtx_insn *ref = label_rtx (label);
135 tree function = decl_function_context (label);
137 gcc_assert (function);
139 forced_labels = gen_rtx_INSN_LIST (VOIDmode, ref, forced_labels);
140 return ref;
143 /* As label_rtx, but ensures (in check build), that returned value is
144 an existing label (i.e. rtx with code CODE_LABEL). */
145 rtx_code_label *
146 jump_target_rtx (tree label)
148 return as_a <rtx_code_label *> (label_rtx (label));
151 /* Add an unconditional jump to LABEL as the next sequential instruction. */
153 void
154 emit_jump (rtx label)
156 do_pending_stack_adjust ();
157 emit_jump_insn (targetm.gen_jump (label));
158 emit_barrier ();
161 /* Handle goto statements and the labels that they can go to. */
163 /* Specify the location in the RTL code of a label LABEL,
164 which is a LABEL_DECL tree node.
166 This is used for the kind of label that the user can jump to with a
167 goto statement, and for alternatives of a switch or case statement.
168 RTL labels generated for loops and conditionals don't go through here;
169 they are generated directly at the RTL level, by other functions below.
171 Note that this has nothing to do with defining label *names*.
172 Languages vary in how they do that and what that even means. */
174 void
175 expand_label (tree label)
177 rtx_code_label *label_r = jump_target_rtx (label);
179 do_pending_stack_adjust ();
180 emit_label (label_r);
181 if (DECL_NAME (label))
182 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
184 if (DECL_NONLOCAL (label))
186 expand_builtin_setjmp_receiver (NULL);
187 nonlocal_goto_handler_labels
188 = gen_rtx_INSN_LIST (VOIDmode, label_r,
189 nonlocal_goto_handler_labels);
192 if (FORCED_LABEL (label))
193 forced_labels = gen_rtx_INSN_LIST (VOIDmode, label_r, forced_labels);
195 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
196 maybe_set_first_label_num (label_r);
199 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
200 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
201 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
202 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
203 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
204 constraint allows the use of a register operand. And, *IS_INOUT
205 will be true if the operand is read-write, i.e., if it is used as
206 an input as well as an output. If *CONSTRAINT_P is not in
207 canonical form, it will be made canonical. (Note that `+' will be
208 replaced with `=' as part of this process.)
210 Returns TRUE if all went well; FALSE if an error occurred. */
212 bool
213 parse_output_constraint (const char **constraint_p, int operand_num,
214 int ninputs, int noutputs, bool *allows_mem,
215 bool *allows_reg, bool *is_inout)
217 const char *constraint = *constraint_p;
218 const char *p;
220 /* Assume the constraint doesn't allow the use of either a register
221 or memory. */
222 *allows_mem = false;
223 *allows_reg = false;
225 /* Allow the `=' or `+' to not be at the beginning of the string,
226 since it wasn't explicitly documented that way, and there is a
227 large body of code that puts it last. Swap the character to
228 the front, so as not to uglify any place else. */
229 p = strchr (constraint, '=');
230 if (!p)
231 p = strchr (constraint, '+');
233 /* If the string doesn't contain an `=', issue an error
234 message. */
235 if (!p)
237 error ("output operand constraint lacks %<=%>");
238 return false;
241 /* If the constraint begins with `+', then the operand is both read
242 from and written to. */
243 *is_inout = (*p == '+');
245 /* Canonicalize the output constraint so that it begins with `='. */
246 if (p != constraint || *is_inout)
248 char *buf;
249 size_t c_len = strlen (constraint);
251 if (p != constraint)
252 warning (0, "output constraint %qc for operand %d "
253 "is not at the beginning",
254 *p, operand_num);
256 /* Make a copy of the constraint. */
257 buf = XALLOCAVEC (char, c_len + 1);
258 strcpy (buf, constraint);
259 /* Swap the first character and the `=' or `+'. */
260 buf[p - constraint] = buf[0];
261 /* Make sure the first character is an `='. (Until we do this,
262 it might be a `+'.) */
263 buf[0] = '=';
264 /* Replace the constraint with the canonicalized string. */
265 *constraint_p = ggc_alloc_string (buf, c_len);
266 constraint = *constraint_p;
269 /* Loop through the constraint string. */
270 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
271 switch (*p)
273 case '+':
274 case '=':
275 error ("operand constraint contains incorrectly positioned "
276 "%<+%> or %<=%>");
277 return false;
279 case '%':
280 if (operand_num + 1 == ninputs + noutputs)
282 error ("%<%%%> constraint used with last operand");
283 return false;
285 break;
287 case '?': case '!': case '*': case '&': case '#':
288 case '$': case '^':
289 case 'E': case 'F': case 'G': case 'H':
290 case 's': case 'i': case 'n':
291 case 'I': case 'J': case 'K': case 'L': case 'M':
292 case 'N': case 'O': case 'P': case ',':
293 break;
295 case '0': case '1': case '2': case '3': case '4':
296 case '5': case '6': case '7': case '8': case '9':
297 case '[':
298 error ("matching constraint not valid in output operand");
299 return false;
301 case '<': case '>':
302 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
303 excepting those that expand_call created. So match memory
304 and hope. */
305 *allows_mem = true;
306 break;
308 case 'g': case 'X':
309 *allows_reg = true;
310 *allows_mem = true;
311 break;
313 default:
314 if (!ISALPHA (*p))
315 break;
316 enum constraint_num cn = lookup_constraint (p);
317 if (reg_class_for_constraint (cn) != NO_REGS
318 || insn_extra_address_constraint (cn))
319 *allows_reg = true;
320 else if (insn_extra_memory_constraint (cn))
321 *allows_mem = true;
322 else
323 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
324 break;
327 return true;
330 /* Similar, but for input constraints. */
332 bool
333 parse_input_constraint (const char **constraint_p, int input_num,
334 int ninputs, int noutputs, int ninout,
335 const char * const * constraints,
336 bool *allows_mem, bool *allows_reg)
338 const char *constraint = *constraint_p;
339 const char *orig_constraint = constraint;
340 size_t c_len = strlen (constraint);
341 size_t j;
342 bool saw_match = false;
344 /* Assume the constraint doesn't allow the use of either
345 a register or memory. */
346 *allows_mem = false;
347 *allows_reg = false;
349 /* Make sure constraint has neither `=', `+', nor '&'. */
351 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
352 switch (constraint[j])
354 case '+': case '=': case '&':
355 if (constraint == orig_constraint)
357 error ("input operand constraint contains %qc", constraint[j]);
358 return false;
360 break;
362 case '%':
363 if (constraint == orig_constraint
364 && input_num + 1 == ninputs - ninout)
366 error ("%<%%%> constraint used with last operand");
367 return false;
369 break;
371 case '<': case '>':
372 case '?': case '!': case '*': case '#':
373 case '$': case '^':
374 case 'E': case 'F': case 'G': case 'H':
375 case 's': case 'i': case 'n':
376 case 'I': case 'J': case 'K': case 'L': case 'M':
377 case 'N': case 'O': case 'P': case ',':
378 break;
380 /* Whether or not a numeric constraint allows a register is
381 decided by the matching constraint, and so there is no need
382 to do anything special with them. We must handle them in
383 the default case, so that we don't unnecessarily force
384 operands to memory. */
385 case '0': case '1': case '2': case '3': case '4':
386 case '5': case '6': case '7': case '8': case '9':
388 char *end;
389 unsigned long match;
391 saw_match = true;
393 match = strtoul (constraint + j, &end, 10);
394 if (match >= (unsigned long) noutputs)
396 error ("matching constraint references invalid operand number");
397 return false;
400 /* Try and find the real constraint for this dup. Only do this
401 if the matching constraint is the only alternative. */
402 if (*end == '\0'
403 && (j == 0 || (j == 1 && constraint[0] == '%')))
405 constraint = constraints[match];
406 *constraint_p = constraint;
407 c_len = strlen (constraint);
408 j = 0;
409 /* ??? At the end of the loop, we will skip the first part of
410 the matched constraint. This assumes not only that the
411 other constraint is an output constraint, but also that
412 the '=' or '+' come first. */
413 break;
415 else
416 j = end - constraint;
417 /* Anticipate increment at end of loop. */
418 j--;
420 /* Fall through. */
422 case 'g': case 'X':
423 *allows_reg = true;
424 *allows_mem = true;
425 break;
427 default:
428 if (! ISALPHA (constraint[j]))
430 error ("invalid punctuation %qc in constraint", constraint[j]);
431 return false;
433 enum constraint_num cn = lookup_constraint (constraint + j);
434 if (reg_class_for_constraint (cn) != NO_REGS
435 || insn_extra_address_constraint (cn))
436 *allows_reg = true;
437 else if (insn_extra_memory_constraint (cn))
438 *allows_mem = true;
439 else
440 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
441 break;
444 if (saw_match && !*allows_reg)
445 warning (0, "matching constraint does not allow a register");
447 return true;
450 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
451 can be an asm-declared register. Called via walk_tree. */
453 static tree
454 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
455 void *data)
457 tree decl = *declp;
458 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
460 if (TREE_CODE (decl) == VAR_DECL)
462 if (DECL_HARD_REGISTER (decl)
463 && REG_P (DECL_RTL (decl))
464 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
466 rtx reg = DECL_RTL (decl);
468 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
469 return decl;
471 walk_subtrees = 0;
473 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
474 walk_subtrees = 0;
475 return NULL_TREE;
478 /* If there is an overlap between *REGS and DECL, return the first overlap
479 found. */
480 tree
481 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
483 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
487 /* A subroutine of expand_asm_operands. Check that all operand names
488 are unique. Return true if so. We rely on the fact that these names
489 are identifiers, and so have been canonicalized by get_identifier,
490 so all we need are pointer comparisons. */
492 static bool
493 check_unique_operand_names (tree outputs, tree inputs, tree labels)
495 tree i, j, i_name = NULL_TREE;
497 for (i = outputs; i ; i = TREE_CHAIN (i))
499 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
500 if (! i_name)
501 continue;
503 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
504 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
505 goto failure;
508 for (i = inputs; i ; i = TREE_CHAIN (i))
510 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
511 if (! i_name)
512 continue;
514 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
515 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
516 goto failure;
517 for (j = outputs; j ; j = TREE_CHAIN (j))
518 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
519 goto failure;
522 for (i = labels; i ; i = TREE_CHAIN (i))
524 i_name = TREE_PURPOSE (i);
525 if (! i_name)
526 continue;
528 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
529 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
530 goto failure;
531 for (j = inputs; j ; j = TREE_CHAIN (j))
532 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
533 goto failure;
536 return true;
538 failure:
539 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
540 return false;
543 /* Resolve the names of the operands in *POUTPUTS and *PINPUTS to numbers,
544 and replace the name expansions in STRING and in the constraints to
545 those numbers. This is generally done in the front end while creating
546 the ASM_EXPR generic tree that eventually becomes the GIMPLE_ASM. */
548 tree
549 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
551 char *buffer;
552 char *p;
553 const char *c;
554 tree t;
556 check_unique_operand_names (outputs, inputs, labels);
558 /* Substitute [<name>] in input constraint strings. There should be no
559 named operands in output constraints. */
560 for (t = inputs; t ; t = TREE_CHAIN (t))
562 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
563 if (strchr (c, '[') != NULL)
565 p = buffer = xstrdup (c);
566 while ((p = strchr (p, '[')) != NULL)
567 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
568 TREE_VALUE (TREE_PURPOSE (t))
569 = build_string (strlen (buffer), buffer);
570 free (buffer);
574 /* Now check for any needed substitutions in the template. */
575 c = TREE_STRING_POINTER (string);
576 while ((c = strchr (c, '%')) != NULL)
578 if (c[1] == '[')
579 break;
580 else if (ISALPHA (c[1]) && c[2] == '[')
581 break;
582 else
584 c += 1 + (c[1] == '%');
585 continue;
589 if (c)
591 /* OK, we need to make a copy so we can perform the substitutions.
592 Assume that we will not need extra space--we get to remove '['
593 and ']', which means we cannot have a problem until we have more
594 than 999 operands. */
595 buffer = xstrdup (TREE_STRING_POINTER (string));
596 p = buffer + (c - TREE_STRING_POINTER (string));
598 while ((p = strchr (p, '%')) != NULL)
600 if (p[1] == '[')
601 p += 1;
602 else if (ISALPHA (p[1]) && p[2] == '[')
603 p += 2;
604 else
606 p += 1 + (p[1] == '%');
607 continue;
610 p = resolve_operand_name_1 (p, outputs, inputs, labels);
613 string = build_string (strlen (buffer), buffer);
614 free (buffer);
617 return string;
620 /* A subroutine of resolve_operand_names. P points to the '[' for a
621 potential named operand of the form [<name>]. In place, replace
622 the name and brackets with a number. Return a pointer to the
623 balance of the string after substitution. */
625 static char *
626 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
628 char *q;
629 int op;
630 tree t;
632 /* Collect the operand name. */
633 q = strchr (++p, ']');
634 if (!q)
636 error ("missing close brace for named operand");
637 return strchr (p, '\0');
639 *q = '\0';
641 /* Resolve the name to a number. */
642 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
644 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
645 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
646 goto found;
648 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
650 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
651 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
652 goto found;
654 for (t = labels; t ; t = TREE_CHAIN (t), op++)
656 tree name = TREE_PURPOSE (t);
657 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
658 goto found;
661 error ("undefined named operand %qs", identifier_to_locale (p));
662 op = 0;
664 found:
665 /* Replace the name with the number. Unfortunately, not all libraries
666 get the return value of sprintf correct, so search for the end of the
667 generated string by hand. */
668 sprintf (--p, "%d", op);
669 p = strchr (p, '\0');
671 /* Verify the no extra buffer space assumption. */
672 gcc_assert (p <= q);
674 /* Shift the rest of the buffer down to fill the gap. */
675 memmove (p, q + 1, strlen (q + 1) + 1);
677 return p;
681 /* Generate RTL to return directly from the current function.
682 (That is, we bypass any return value.) */
684 void
685 expand_naked_return (void)
687 rtx_code_label *end_label;
689 clear_pending_stack_adjust ();
690 do_pending_stack_adjust ();
692 end_label = naked_return_label;
693 if (end_label == 0)
694 end_label = naked_return_label = gen_label_rtx ();
696 emit_jump (end_label);
699 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
700 is the probability of jumping to LABEL. */
701 static void
702 do_jump_if_equal (machine_mode mode, rtx op0, rtx op1, rtx_code_label *label,
703 int unsignedp, int prob)
705 gcc_assert (prob <= REG_BR_PROB_BASE);
706 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
707 NULL_RTX, NULL, label, prob);
710 /* Do the insertion of a case label into case_list. The labels are
711 fed to us in descending order from the sorted vector of case labels used
712 in the tree part of the middle end. So the list we construct is
713 sorted in ascending order.
715 LABEL is the case label to be inserted. LOW and HIGH are the bounds
716 against which the index is compared to jump to LABEL and PROB is the
717 estimated probability LABEL is reached from the switch statement. */
719 static struct case_node *
720 add_case_node (struct case_node *head, tree low, tree high,
721 tree label, int prob,
722 object_allocator<case_node> &case_node_pool)
724 struct case_node *r;
726 gcc_checking_assert (low);
727 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
729 /* Add this label to the chain. */
730 r = case_node_pool.allocate ();
731 r->low = low;
732 r->high = high;
733 r->code_label = label;
734 r->parent = r->left = NULL;
735 r->prob = prob;
736 r->subtree_prob = prob;
737 r->right = head;
738 return r;
741 /* Dump ROOT, a list or tree of case nodes, to file. */
743 static void
744 dump_case_nodes (FILE *f, struct case_node *root,
745 int indent_step, int indent_level)
747 if (root == 0)
748 return;
749 indent_level++;
751 dump_case_nodes (f, root->left, indent_step, indent_level);
753 fputs (";; ", f);
754 fprintf (f, "%*s", indent_step * indent_level, "");
755 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
756 if (!tree_int_cst_equal (root->low, root->high))
758 fprintf (f, " ... ");
759 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
761 fputs ("\n", f);
763 dump_case_nodes (f, root->right, indent_step, indent_level);
766 /* Return the smallest number of different values for which it is best to use a
767 jump-table instead of a tree of conditional branches. */
769 static unsigned int
770 case_values_threshold (void)
772 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
774 if (threshold == 0)
775 threshold = targetm.case_values_threshold ();
777 return threshold;
780 /* Return true if a switch should be expanded as a decision tree.
781 RANGE is the difference between highest and lowest case.
782 UNIQ is number of unique case node targets, not counting the default case.
783 COUNT is the number of comparisons needed, not counting the default case. */
785 static bool
786 expand_switch_as_decision_tree_p (tree range,
787 unsigned int uniq ATTRIBUTE_UNUSED,
788 unsigned int count)
790 int max_ratio;
792 /* If neither casesi or tablejump is available, or flag_jump_tables
793 over-ruled us, we really have no choice. */
794 if (!targetm.have_casesi () && !targetm.have_tablejump ())
795 return true;
796 if (!flag_jump_tables)
797 return true;
798 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
799 if (flag_pic)
800 return true;
801 #endif
803 /* If the switch is relatively small such that the cost of one
804 indirect jump on the target are higher than the cost of a
805 decision tree, go with the decision tree.
807 If range of values is much bigger than number of values,
808 or if it is too large to represent in a HOST_WIDE_INT,
809 make a sequence of conditional branches instead of a dispatch.
811 The definition of "much bigger" depends on whether we are
812 optimizing for size or for speed. If the former, the maximum
813 ratio range/count = 3, because this was found to be the optimal
814 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
815 10 is much older, and was probably selected after an extensive
816 benchmarking investigation on numerous platforms. Or maybe it
817 just made sense to someone at some point in the history of GCC,
818 who knows... */
819 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
820 if (count < case_values_threshold ()
821 || ! tree_fits_uhwi_p (range)
822 || compare_tree_int (range, max_ratio * count) > 0)
823 return true;
825 return false;
828 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
829 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
830 DEFAULT_PROB is the estimated probability that it jumps to
831 DEFAULT_LABEL.
833 We generate a binary decision tree to select the appropriate target
834 code. This is done as follows:
836 If the index is a short or char that we do not have
837 an insn to handle comparisons directly, convert it to
838 a full integer now, rather than letting each comparison
839 generate the conversion.
841 Load the index into a register.
843 The list of cases is rearranged into a binary tree,
844 nearly optimal assuming equal probability for each case.
846 The tree is transformed into RTL, eliminating redundant
847 test conditions at the same time.
849 If program flow could reach the end of the decision tree
850 an unconditional jump to the default code is emitted.
852 The above process is unaware of the CFG. The caller has to fix up
853 the CFG itself. This is done in cfgexpand.c. */
855 static void
856 emit_case_decision_tree (tree index_expr, tree index_type,
857 case_node_ptr case_list, rtx_code_label *default_label,
858 int default_prob)
860 rtx index = expand_normal (index_expr);
862 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
863 && ! have_insn_for (COMPARE, GET_MODE (index)))
865 int unsignedp = TYPE_UNSIGNED (index_type);
866 machine_mode wider_mode;
867 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
868 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
869 if (have_insn_for (COMPARE, wider_mode))
871 index = convert_to_mode (wider_mode, index, unsignedp);
872 break;
876 do_pending_stack_adjust ();
878 if (MEM_P (index))
880 index = copy_to_reg (index);
881 if (TREE_CODE (index_expr) == SSA_NAME)
882 set_reg_attrs_for_decl_rtl (index_expr, index);
885 balance_case_nodes (&case_list, NULL);
887 if (dump_file && (dump_flags & TDF_DETAILS))
889 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
890 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
891 dump_case_nodes (dump_file, case_list, indent_step, 0);
894 emit_case_nodes (index, case_list, default_label, default_prob, index_type);
895 if (default_label)
896 emit_jump (default_label);
899 /* Return the sum of probabilities of outgoing edges of basic block BB. */
901 static int
902 get_outgoing_edge_probs (basic_block bb)
904 edge e;
905 edge_iterator ei;
906 int prob_sum = 0;
907 if (!bb)
908 return 0;
909 FOR_EACH_EDGE (e, ei, bb->succs)
910 prob_sum += e->probability;
911 return prob_sum;
914 /* Computes the conditional probability of jumping to a target if the branch
915 instruction is executed.
916 TARGET_PROB is the estimated probability of jumping to a target relative
917 to some basic block BB.
918 BASE_PROB is the probability of reaching the branch instruction relative
919 to the same basic block BB. */
921 static inline int
922 conditional_probability (int target_prob, int base_prob)
924 if (base_prob > 0)
926 gcc_assert (target_prob >= 0);
927 gcc_assert (target_prob <= base_prob);
928 return GCOV_COMPUTE_SCALE (target_prob, base_prob);
930 return -1;
933 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
934 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
935 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
936 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
938 First, a jump insn is emitted. First we try "casesi". If that
939 fails, try "tablejump". A target *must* have one of them (or both).
941 Then, a table with the target labels is emitted.
943 The process is unaware of the CFG. The caller has to fix up
944 the CFG itself. This is done in cfgexpand.c. */
946 static void
947 emit_case_dispatch_table (tree index_expr, tree index_type,
948 struct case_node *case_list, rtx default_label,
949 tree minval, tree maxval, tree range,
950 basic_block stmt_bb)
952 int i, ncases;
953 struct case_node *n;
954 rtx *labelvec;
955 rtx_insn *fallback_label = label_rtx (case_list->code_label);
956 rtx_code_label *table_label = gen_label_rtx ();
957 bool has_gaps = false;
958 edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
959 int default_prob = default_edge ? default_edge->probability : 0;
960 int base = get_outgoing_edge_probs (stmt_bb);
961 bool try_with_tablejump = false;
963 int new_default_prob = conditional_probability (default_prob,
964 base);
966 if (! try_casesi (index_type, index_expr, minval, range,
967 table_label, default_label, fallback_label,
968 new_default_prob))
970 /* Index jumptables from zero for suitable values of minval to avoid
971 a subtraction. For the rationale see:
972 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
973 if (optimize_insn_for_speed_p ()
974 && compare_tree_int (minval, 0) > 0
975 && compare_tree_int (minval, 3) < 0)
977 minval = build_int_cst (index_type, 0);
978 range = maxval;
979 has_gaps = true;
981 try_with_tablejump = true;
984 /* Get table of labels to jump to, in order of case index. */
986 ncases = tree_to_shwi (range) + 1;
987 labelvec = XALLOCAVEC (rtx, ncases);
988 memset (labelvec, 0, ncases * sizeof (rtx));
990 for (n = case_list; n; n = n->right)
992 /* Compute the low and high bounds relative to the minimum
993 value since that should fit in a HOST_WIDE_INT while the
994 actual values may not. */
995 HOST_WIDE_INT i_low
996 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
997 n->low, minval));
998 HOST_WIDE_INT i_high
999 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1000 n->high, minval));
1001 HOST_WIDE_INT i;
1003 for (i = i_low; i <= i_high; i ++)
1004 labelvec[i]
1005 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1008 /* Fill in the gaps with the default. We may have gaps at
1009 the beginning if we tried to avoid the minval subtraction,
1010 so substitute some label even if the default label was
1011 deemed unreachable. */
1012 if (!default_label)
1013 default_label = fallback_label;
1014 for (i = 0; i < ncases; i++)
1015 if (labelvec[i] == 0)
1017 has_gaps = true;
1018 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1021 if (has_gaps)
1023 /* There is at least one entry in the jump table that jumps
1024 to default label. The default label can either be reached
1025 through the indirect jump or the direct conditional jump
1026 before that. Split the probability of reaching the
1027 default label among these two jumps. */
1028 new_default_prob = conditional_probability (default_prob/2,
1029 base);
1030 default_prob /= 2;
1031 base -= default_prob;
1033 else
1035 base -= default_prob;
1036 default_prob = 0;
1039 if (default_edge)
1040 default_edge->probability = default_prob;
1042 /* We have altered the probability of the default edge. So the probabilities
1043 of all other edges need to be adjusted so that it sums up to
1044 REG_BR_PROB_BASE. */
1045 if (base)
1047 edge e;
1048 edge_iterator ei;
1049 FOR_EACH_EDGE (e, ei, stmt_bb->succs)
1050 e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
1053 if (try_with_tablejump)
1055 bool ok = try_tablejump (index_type, index_expr, minval, range,
1056 table_label, default_label, new_default_prob);
1057 gcc_assert (ok);
1059 /* Output the table. */
1060 emit_label (table_label);
1062 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1063 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1064 gen_rtx_LABEL_REF (Pmode,
1065 table_label),
1066 gen_rtvec_v (ncases, labelvec),
1067 const0_rtx, const0_rtx));
1068 else
1069 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1070 gen_rtvec_v (ncases, labelvec)));
1072 /* Record no drop-through after the table. */
1073 emit_barrier ();
1076 /* Reset the aux field of all outgoing edges of basic block BB. */
1078 static inline void
1079 reset_out_edges_aux (basic_block bb)
1081 edge e;
1082 edge_iterator ei;
1083 FOR_EACH_EDGE (e, ei, bb->succs)
1084 e->aux = (void *)0;
1087 /* Compute the number of case labels that correspond to each outgoing edge of
1088 STMT. Record this information in the aux field of the edge. */
1090 static inline void
1091 compute_cases_per_edge (gswitch *stmt)
1093 basic_block bb = gimple_bb (stmt);
1094 reset_out_edges_aux (bb);
1095 int ncases = gimple_switch_num_labels (stmt);
1096 for (int i = ncases - 1; i >= 1; --i)
1098 tree elt = gimple_switch_label (stmt, i);
1099 tree lab = CASE_LABEL (elt);
1100 basic_block case_bb = label_to_block_fn (cfun, lab);
1101 edge case_edge = find_edge (bb, case_bb);
1102 case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
1106 /* Terminate a case (Pascal/Ada) or switch (C) statement
1107 in which ORIG_INDEX is the expression to be tested.
1108 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1109 type as given in the source before any compiler conversions.
1110 Generate the code to test it and jump to the right place. */
1112 void
1113 expand_case (gswitch *stmt)
1115 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1116 rtx_code_label *default_label = NULL;
1117 unsigned int count, uniq;
1118 int i;
1119 int ncases = gimple_switch_num_labels (stmt);
1120 tree index_expr = gimple_switch_index (stmt);
1121 tree index_type = TREE_TYPE (index_expr);
1122 tree elt;
1123 basic_block bb = gimple_bb (stmt);
1125 /* A list of case labels; it is first built as a list and it may then
1126 be rearranged into a nearly balanced binary tree. */
1127 struct case_node *case_list = 0;
1129 /* A pool for case nodes. */
1130 object_allocator<case_node> case_node_pool ("struct case_node pool");
1132 /* An ERROR_MARK occurs for various reasons including invalid data type.
1133 ??? Can this still happen, with GIMPLE and all? */
1134 if (index_type == error_mark_node)
1135 return;
1137 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1138 expressions being INTEGER_CST. */
1139 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
1142 do_pending_stack_adjust ();
1144 /* Find the default case target label. */
1145 default_label = jump_target_rtx
1146 (CASE_LABEL (gimple_switch_default_label (stmt)));
1147 edge default_edge = EDGE_SUCC (bb, 0);
1148 int default_prob = default_edge->probability;
1150 /* Get upper and lower bounds of case values. */
1151 elt = gimple_switch_label (stmt, 1);
1152 minval = fold_convert (index_type, CASE_LOW (elt));
1153 elt = gimple_switch_label (stmt, ncases - 1);
1154 if (CASE_HIGH (elt))
1155 maxval = fold_convert (index_type, CASE_HIGH (elt));
1156 else
1157 maxval = fold_convert (index_type, CASE_LOW (elt));
1159 /* Compute span of values. */
1160 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
1162 /* Listify the labels queue and gather some numbers to decide
1163 how to expand this switch(). */
1164 uniq = 0;
1165 count = 0;
1166 hash_set<tree> seen_labels;
1167 compute_cases_per_edge (stmt);
1169 for (i = ncases - 1; i >= 1; --i)
1171 elt = gimple_switch_label (stmt, i);
1172 tree low = CASE_LOW (elt);
1173 gcc_assert (low);
1174 tree high = CASE_HIGH (elt);
1175 gcc_assert (! high || tree_int_cst_lt (low, high));
1176 tree lab = CASE_LABEL (elt);
1178 /* Count the elements.
1179 A range counts double, since it requires two compares. */
1180 count++;
1181 if (high)
1182 count++;
1184 /* If we have not seen this label yet, then increase the
1185 number of unique case node targets seen. */
1186 if (!seen_labels.add (lab))
1187 uniq++;
1189 /* The bounds on the case range, LOW and HIGH, have to be converted
1190 to case's index type TYPE. Note that the original type of the
1191 case index in the source code is usually "lost" during
1192 gimplification due to type promotion, but the case labels retain the
1193 original type. Make sure to drop overflow flags. */
1194 low = fold_convert (index_type, low);
1195 if (TREE_OVERFLOW (low))
1196 low = wide_int_to_tree (index_type, low);
1198 /* The canonical from of a case label in GIMPLE is that a simple case
1199 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1200 the back ends want simple cases to have high == low. */
1201 if (! high)
1202 high = low;
1203 high = fold_convert (index_type, high);
1204 if (TREE_OVERFLOW (high))
1205 high = wide_int_to_tree (index_type, high);
1207 basic_block case_bb = label_to_block_fn (cfun, lab);
1208 edge case_edge = find_edge (bb, case_bb);
1209 case_list = add_case_node (
1210 case_list, low, high, lab,
1211 case_edge->probability / (intptr_t)(case_edge->aux),
1212 case_node_pool);
1214 reset_out_edges_aux (bb);
1216 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1217 destination, such as one with a default case only.
1218 It also removes cases that are out of range for the switch
1219 type, so we should never get a zero here. */
1220 gcc_assert (count > 0);
1222 rtx_insn *before_case = get_last_insn ();
1224 /* Decide how to expand this switch.
1225 The two options at this point are a dispatch table (casesi or
1226 tablejump) or a decision tree. */
1228 if (expand_switch_as_decision_tree_p (range, uniq, count))
1229 emit_case_decision_tree (index_expr, index_type,
1230 case_list, default_label,
1231 default_prob);
1232 else
1233 emit_case_dispatch_table (index_expr, index_type,
1234 case_list, default_label,
1235 minval, maxval, range, bb);
1237 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1239 free_temp_slots ();
1242 /* Expand the dispatch to a short decrement chain if there are few cases
1243 to dispatch to. Likewise if neither casesi nor tablejump is available,
1244 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1245 tablejump. The index mode is always the mode of integer_type_node.
1246 Trap if no case matches the index.
1248 DISPATCH_INDEX is the index expression to switch on. It should be a
1249 memory or register operand.
1251 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1252 ascending order, be contiguous, starting with value 0, and contain only
1253 single-valued case labels. */
1255 void
1256 expand_sjlj_dispatch_table (rtx dispatch_index,
1257 vec<tree> dispatch_table)
1259 tree index_type = integer_type_node;
1260 machine_mode index_mode = TYPE_MODE (index_type);
1262 int ncases = dispatch_table.length ();
1264 do_pending_stack_adjust ();
1265 rtx_insn *before_case = get_last_insn ();
1267 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1268 labels. This covers more than 98% of the cases in libjava,
1269 and seems to be a reasonable compromise between the "old way"
1270 of expanding as a decision tree or dispatch table vs. the "new
1271 way" with decrement chain or dispatch table. */
1272 if (dispatch_table.length () <= 5
1273 || (!targetm.have_casesi () && !targetm.have_tablejump ())
1274 || !flag_jump_tables)
1276 /* Expand the dispatch as a decrement chain:
1278 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1282 if (index == 0) do_0; else index--;
1283 if (index == 0) do_1; else index--;
1285 if (index == 0) do_N; else index--;
1287 This is more efficient than a dispatch table on most machines.
1288 The last "index--" is redundant but the code is trivially dead
1289 and will be cleaned up by later passes. */
1290 rtx index = copy_to_mode_reg (index_mode, dispatch_index);
1291 rtx zero = CONST0_RTX (index_mode);
1292 for (int i = 0; i < ncases; i++)
1294 tree elt = dispatch_table[i];
1295 rtx_code_label *lab = jump_target_rtx (CASE_LABEL (elt));
1296 do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
1297 force_expand_binop (index_mode, sub_optab,
1298 index, CONST1_RTX (index_mode),
1299 index, 0, OPTAB_DIRECT);
1302 else
1304 /* Similar to expand_case, but much simpler. */
1305 struct case_node *case_list = 0;
1306 object_allocator<case_node> case_node_pool ("struct sjlj_case pool");
1307 tree index_expr = make_tree (index_type, dispatch_index);
1308 tree minval = build_int_cst (index_type, 0);
1309 tree maxval = CASE_LOW (dispatch_table.last ());
1310 tree range = maxval;
1311 rtx_code_label *default_label = gen_label_rtx ();
1313 for (int i = ncases - 1; i >= 0; --i)
1315 tree elt = dispatch_table[i];
1316 tree low = CASE_LOW (elt);
1317 tree lab = CASE_LABEL (elt);
1318 case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
1321 emit_case_dispatch_table (index_expr, index_type,
1322 case_list, default_label,
1323 minval, maxval, range,
1324 BLOCK_FOR_INSN (before_case));
1325 emit_label (default_label);
1328 /* Dispatching something not handled? Trap! */
1329 expand_builtin_trap ();
1331 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1333 free_temp_slots ();
1337 /* Take an ordered list of case nodes
1338 and transform them into a near optimal binary tree,
1339 on the assumption that any target code selection value is as
1340 likely as any other.
1342 The transformation is performed by splitting the ordered
1343 list into two equal sections plus a pivot. The parts are
1344 then attached to the pivot as left and right branches. Each
1345 branch is then transformed recursively. */
1347 static void
1348 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1350 case_node_ptr np;
1352 np = *head;
1353 if (np)
1355 int i = 0;
1356 int ranges = 0;
1357 case_node_ptr *npp;
1358 case_node_ptr left;
1360 /* Count the number of entries on branch. Also count the ranges. */
1362 while (np)
1364 if (!tree_int_cst_equal (np->low, np->high))
1365 ranges++;
1367 i++;
1368 np = np->right;
1371 if (i > 2)
1373 /* Split this list if it is long enough for that to help. */
1374 npp = head;
1375 left = *npp;
1377 /* If there are just three nodes, split at the middle one. */
1378 if (i == 3)
1379 npp = &(*npp)->right;
1380 else
1382 /* Find the place in the list that bisects the list's total cost,
1383 where ranges count as 2.
1384 Here I gets half the total cost. */
1385 i = (i + ranges + 1) / 2;
1386 while (1)
1388 /* Skip nodes while their cost does not reach that amount. */
1389 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1390 i--;
1391 i--;
1392 if (i <= 0)
1393 break;
1394 npp = &(*npp)->right;
1397 *head = np = *npp;
1398 *npp = 0;
1399 np->parent = parent;
1400 np->left = left;
1402 /* Optimize each of the two split parts. */
1403 balance_case_nodes (&np->left, np);
1404 balance_case_nodes (&np->right, np);
1405 np->subtree_prob = np->prob;
1406 np->subtree_prob += np->left->subtree_prob;
1407 np->subtree_prob += np->right->subtree_prob;
1409 else
1411 /* Else leave this branch as one level,
1412 but fill in `parent' fields. */
1413 np = *head;
1414 np->parent = parent;
1415 np->subtree_prob = np->prob;
1416 for (; np->right; np = np->right)
1418 np->right->parent = np;
1419 (*head)->subtree_prob += np->right->subtree_prob;
1425 /* Search the parent sections of the case node tree
1426 to see if a test for the lower bound of NODE would be redundant.
1427 INDEX_TYPE is the type of the index expression.
1429 The instructions to generate the case decision tree are
1430 output in the same order as nodes are processed so it is
1431 known that if a parent node checks the range of the current
1432 node minus one that the current node is bounded at its lower
1433 span. Thus the test would be redundant. */
1435 static int
1436 node_has_low_bound (case_node_ptr node, tree index_type)
1438 tree low_minus_one;
1439 case_node_ptr pnode;
1441 /* If the lower bound of this node is the lowest value in the index type,
1442 we need not test it. */
1444 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
1445 return 1;
1447 /* If this node has a left branch, the value at the left must be less
1448 than that at this node, so it cannot be bounded at the bottom and
1449 we need not bother testing any further. */
1451 if (node->left)
1452 return 0;
1454 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
1455 node->low,
1456 build_int_cst (TREE_TYPE (node->low), 1));
1458 /* If the subtraction above overflowed, we can't verify anything.
1459 Otherwise, look for a parent that tests our value - 1. */
1461 if (! tree_int_cst_lt (low_minus_one, node->low))
1462 return 0;
1464 for (pnode = node->parent; pnode; pnode = pnode->parent)
1465 if (tree_int_cst_equal (low_minus_one, pnode->high))
1466 return 1;
1468 return 0;
1471 /* Search the parent sections of the case node tree
1472 to see if a test for the upper bound of NODE would be redundant.
1473 INDEX_TYPE is the type of the index expression.
1475 The instructions to generate the case decision tree are
1476 output in the same order as nodes are processed so it is
1477 known that if a parent node checks the range of the current
1478 node plus one that the current node is bounded at its upper
1479 span. Thus the test would be redundant. */
1481 static int
1482 node_has_high_bound (case_node_ptr node, tree index_type)
1484 tree high_plus_one;
1485 case_node_ptr pnode;
1487 /* If there is no upper bound, obviously no test is needed. */
1489 if (TYPE_MAX_VALUE (index_type) == NULL)
1490 return 1;
1492 /* If the upper bound of this node is the highest value in the type
1493 of the index expression, we need not test against it. */
1495 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
1496 return 1;
1498 /* If this node has a right branch, the value at the right must be greater
1499 than that at this node, so it cannot be bounded at the top and
1500 we need not bother testing any further. */
1502 if (node->right)
1503 return 0;
1505 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
1506 node->high,
1507 build_int_cst (TREE_TYPE (node->high), 1));
1509 /* If the addition above overflowed, we can't verify anything.
1510 Otherwise, look for a parent that tests our value + 1. */
1512 if (! tree_int_cst_lt (node->high, high_plus_one))
1513 return 0;
1515 for (pnode = node->parent; pnode; pnode = pnode->parent)
1516 if (tree_int_cst_equal (high_plus_one, pnode->low))
1517 return 1;
1519 return 0;
1522 /* Search the parent sections of the
1523 case node tree to see if both tests for the upper and lower
1524 bounds of NODE would be redundant. */
1526 static int
1527 node_is_bounded (case_node_ptr node, tree index_type)
1529 return (node_has_low_bound (node, index_type)
1530 && node_has_high_bound (node, index_type));
1534 /* Emit step-by-step code to select a case for the value of INDEX.
1535 The thus generated decision tree follows the form of the
1536 case-node binary tree NODE, whose nodes represent test conditions.
1537 INDEX_TYPE is the type of the index of the switch.
1539 Care is taken to prune redundant tests from the decision tree
1540 by detecting any boundary conditions already checked by
1541 emitted rtx. (See node_has_high_bound, node_has_low_bound
1542 and node_is_bounded, above.)
1544 Where the test conditions can be shown to be redundant we emit
1545 an unconditional jump to the target code. As a further
1546 optimization, the subordinates of a tree node are examined to
1547 check for bounded nodes. In this case conditional and/or
1548 unconditional jumps as a result of the boundary check for the
1549 current node are arranged to target the subordinates associated
1550 code for out of bound conditions on the current node.
1552 We can assume that when control reaches the code generated here,
1553 the index value has already been compared with the parents
1554 of this node, and determined to be on the same side of each parent
1555 as this node is. Thus, if this node tests for the value 51,
1556 and a parent tested for 52, we don't need to consider
1557 the possibility of a value greater than 51. If another parent
1558 tests for the value 50, then this node need not test anything. */
1560 static void
1561 emit_case_nodes (rtx index, case_node_ptr node, rtx_code_label *default_label,
1562 int default_prob, tree index_type)
1564 /* If INDEX has an unsigned type, we must make unsigned branches. */
1565 int unsignedp = TYPE_UNSIGNED (index_type);
1566 int probability;
1567 int prob = node->prob, subtree_prob = node->subtree_prob;
1568 machine_mode mode = GET_MODE (index);
1569 machine_mode imode = TYPE_MODE (index_type);
1571 /* Handle indices detected as constant during RTL expansion. */
1572 if (mode == VOIDmode)
1573 mode = imode;
1575 /* See if our parents have already tested everything for us.
1576 If they have, emit an unconditional jump for this node. */
1577 if (node_is_bounded (node, index_type))
1578 emit_jump (label_rtx (node->code_label));
1580 else if (tree_int_cst_equal (node->low, node->high))
1582 probability = conditional_probability (prob, subtree_prob + default_prob);
1583 /* Node is single valued. First see if the index expression matches
1584 this node and then check our children, if any. */
1585 do_jump_if_equal (mode, index,
1586 convert_modes (mode, imode,
1587 expand_normal (node->low),
1588 unsignedp),
1589 jump_target_rtx (node->code_label),
1590 unsignedp, probability);
1591 /* Since this case is taken at this point, reduce its weight from
1592 subtree_weight. */
1593 subtree_prob -= prob;
1594 if (node->right != 0 && node->left != 0)
1596 /* This node has children on both sides.
1597 Dispatch to one side or the other
1598 by comparing the index value with this node's value.
1599 If one subtree is bounded, check that one first,
1600 so we can avoid real branches in the tree. */
1602 if (node_is_bounded (node->right, index_type))
1604 probability = conditional_probability (
1605 node->right->prob,
1606 subtree_prob + default_prob);
1607 emit_cmp_and_jump_insns (index,
1608 convert_modes
1609 (mode, imode,
1610 expand_normal (node->high),
1611 unsignedp),
1612 GT, NULL_RTX, mode, unsignedp,
1613 label_rtx (node->right->code_label),
1614 probability);
1615 emit_case_nodes (index, node->left, default_label, default_prob,
1616 index_type);
1619 else if (node_is_bounded (node->left, index_type))
1621 probability = conditional_probability (
1622 node->left->prob,
1623 subtree_prob + default_prob);
1624 emit_cmp_and_jump_insns (index,
1625 convert_modes
1626 (mode, imode,
1627 expand_normal (node->high),
1628 unsignedp),
1629 LT, NULL_RTX, mode, unsignedp,
1630 label_rtx (node->left->code_label),
1631 probability);
1632 emit_case_nodes (index, node->right, default_label, default_prob,
1633 index_type);
1636 /* If both children are single-valued cases with no
1637 children, finish up all the work. This way, we can save
1638 one ordered comparison. */
1639 else if (tree_int_cst_equal (node->right->low, node->right->high)
1640 && node->right->left == 0
1641 && node->right->right == 0
1642 && tree_int_cst_equal (node->left->low, node->left->high)
1643 && node->left->left == 0
1644 && node->left->right == 0)
1646 /* Neither node is bounded. First distinguish the two sides;
1647 then emit the code for one side at a time. */
1649 /* See if the value matches what the right hand side
1650 wants. */
1651 probability = conditional_probability (
1652 node->right->prob,
1653 subtree_prob + default_prob);
1654 do_jump_if_equal (mode, index,
1655 convert_modes (mode, imode,
1656 expand_normal (node->right->low),
1657 unsignedp),
1658 jump_target_rtx (node->right->code_label),
1659 unsignedp, probability);
1661 /* See if the value matches what the left hand side
1662 wants. */
1663 probability = conditional_probability (
1664 node->left->prob,
1665 subtree_prob + default_prob);
1666 do_jump_if_equal (mode, index,
1667 convert_modes (mode, imode,
1668 expand_normal (node->left->low),
1669 unsignedp),
1670 jump_target_rtx (node->left->code_label),
1671 unsignedp, probability);
1674 else
1676 /* Neither node is bounded. First distinguish the two sides;
1677 then emit the code for one side at a time. */
1679 tree test_label
1680 = build_decl (curr_insn_location (),
1681 LABEL_DECL, NULL_TREE, void_type_node);
1683 /* The default label could be reached either through the right
1684 subtree or the left subtree. Divide the probability
1685 equally. */
1686 probability = conditional_probability (
1687 node->right->subtree_prob + default_prob/2,
1688 subtree_prob + default_prob);
1689 /* See if the value is on the right. */
1690 emit_cmp_and_jump_insns (index,
1691 convert_modes
1692 (mode, imode,
1693 expand_normal (node->high),
1694 unsignedp),
1695 GT, NULL_RTX, mode, unsignedp,
1696 label_rtx (test_label),
1697 probability);
1698 default_prob /= 2;
1700 /* Value must be on the left.
1701 Handle the left-hand subtree. */
1702 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1703 /* If left-hand subtree does nothing,
1704 go to default. */
1705 if (default_label)
1706 emit_jump (default_label);
1708 /* Code branches here for the right-hand subtree. */
1709 expand_label (test_label);
1710 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1714 else if (node->right != 0 && node->left == 0)
1716 /* Here we have a right child but no left so we issue a conditional
1717 branch to default and process the right child.
1719 Omit the conditional branch to default if the right child
1720 does not have any children and is single valued; it would
1721 cost too much space to save so little time. */
1723 if (node->right->right || node->right->left
1724 || !tree_int_cst_equal (node->right->low, node->right->high))
1726 if (!node_has_low_bound (node, index_type))
1728 probability = conditional_probability (
1729 default_prob/2,
1730 subtree_prob + default_prob);
1731 emit_cmp_and_jump_insns (index,
1732 convert_modes
1733 (mode, imode,
1734 expand_normal (node->high),
1735 unsignedp),
1736 LT, NULL_RTX, mode, unsignedp,
1737 default_label,
1738 probability);
1739 default_prob /= 2;
1742 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1744 else
1746 probability = conditional_probability (
1747 node->right->subtree_prob,
1748 subtree_prob + default_prob);
1749 /* We cannot process node->right normally
1750 since we haven't ruled out the numbers less than
1751 this node's value. So handle node->right explicitly. */
1752 do_jump_if_equal (mode, index,
1753 convert_modes
1754 (mode, imode,
1755 expand_normal (node->right->low),
1756 unsignedp),
1757 jump_target_rtx (node->right->code_label),
1758 unsignedp, probability);
1762 else if (node->right == 0 && node->left != 0)
1764 /* Just one subtree, on the left. */
1765 if (node->left->left || node->left->right
1766 || !tree_int_cst_equal (node->left->low, node->left->high))
1768 if (!node_has_high_bound (node, index_type))
1770 probability = conditional_probability (
1771 default_prob/2,
1772 subtree_prob + default_prob);
1773 emit_cmp_and_jump_insns (index,
1774 convert_modes
1775 (mode, imode,
1776 expand_normal (node->high),
1777 unsignedp),
1778 GT, NULL_RTX, mode, unsignedp,
1779 default_label,
1780 probability);
1781 default_prob /= 2;
1784 emit_case_nodes (index, node->left, default_label,
1785 default_prob, index_type);
1787 else
1789 probability = conditional_probability (
1790 node->left->subtree_prob,
1791 subtree_prob + default_prob);
1792 /* We cannot process node->left normally
1793 since we haven't ruled out the numbers less than
1794 this node's value. So handle node->left explicitly. */
1795 do_jump_if_equal (mode, index,
1796 convert_modes
1797 (mode, imode,
1798 expand_normal (node->left->low),
1799 unsignedp),
1800 jump_target_rtx (node->left->code_label),
1801 unsignedp, probability);
1805 else
1807 /* Node is a range. These cases are very similar to those for a single
1808 value, except that we do not start by testing whether this node
1809 is the one to branch to. */
1811 if (node->right != 0 && node->left != 0)
1813 /* Node has subtrees on both sides.
1814 If the right-hand subtree is bounded,
1815 test for it first, since we can go straight there.
1816 Otherwise, we need to make a branch in the control structure,
1817 then handle the two subtrees. */
1818 tree test_label = 0;
1820 if (node_is_bounded (node->right, index_type))
1822 /* Right hand node is fully bounded so we can eliminate any
1823 testing and branch directly to the target code. */
1824 probability = conditional_probability (
1825 node->right->subtree_prob,
1826 subtree_prob + default_prob);
1827 emit_cmp_and_jump_insns (index,
1828 convert_modes
1829 (mode, imode,
1830 expand_normal (node->high),
1831 unsignedp),
1832 GT, NULL_RTX, mode, unsignedp,
1833 label_rtx (node->right->code_label),
1834 probability);
1836 else
1838 /* Right hand node requires testing.
1839 Branch to a label where we will handle it later. */
1841 test_label = build_decl (curr_insn_location (),
1842 LABEL_DECL, NULL_TREE, void_type_node);
1843 probability = conditional_probability (
1844 node->right->subtree_prob + default_prob/2,
1845 subtree_prob + default_prob);
1846 emit_cmp_and_jump_insns (index,
1847 convert_modes
1848 (mode, imode,
1849 expand_normal (node->high),
1850 unsignedp),
1851 GT, NULL_RTX, mode, unsignedp,
1852 label_rtx (test_label),
1853 probability);
1854 default_prob /= 2;
1857 /* Value belongs to this node or to the left-hand subtree. */
1859 probability = conditional_probability (
1860 prob,
1861 subtree_prob + default_prob);
1862 emit_cmp_and_jump_insns (index,
1863 convert_modes
1864 (mode, imode,
1865 expand_normal (node->low),
1866 unsignedp),
1867 GE, NULL_RTX, mode, unsignedp,
1868 label_rtx (node->code_label),
1869 probability);
1871 /* Handle the left-hand subtree. */
1872 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1874 /* If right node had to be handled later, do that now. */
1876 if (test_label)
1878 /* If the left-hand subtree fell through,
1879 don't let it fall into the right-hand subtree. */
1880 if (default_label)
1881 emit_jump (default_label);
1883 expand_label (test_label);
1884 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1888 else if (node->right != 0 && node->left == 0)
1890 /* Deal with values to the left of this node,
1891 if they are possible. */
1892 if (!node_has_low_bound (node, index_type))
1894 probability = conditional_probability (
1895 default_prob/2,
1896 subtree_prob + default_prob);
1897 emit_cmp_and_jump_insns (index,
1898 convert_modes
1899 (mode, imode,
1900 expand_normal (node->low),
1901 unsignedp),
1902 LT, NULL_RTX, mode, unsignedp,
1903 default_label,
1904 probability);
1905 default_prob /= 2;
1908 /* Value belongs to this node or to the right-hand subtree. */
1910 probability = conditional_probability (
1911 prob,
1912 subtree_prob + default_prob);
1913 emit_cmp_and_jump_insns (index,
1914 convert_modes
1915 (mode, imode,
1916 expand_normal (node->high),
1917 unsignedp),
1918 LE, NULL_RTX, mode, unsignedp,
1919 label_rtx (node->code_label),
1920 probability);
1922 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1925 else if (node->right == 0 && node->left != 0)
1927 /* Deal with values to the right of this node,
1928 if they are possible. */
1929 if (!node_has_high_bound (node, index_type))
1931 probability = conditional_probability (
1932 default_prob/2,
1933 subtree_prob + default_prob);
1934 emit_cmp_and_jump_insns (index,
1935 convert_modes
1936 (mode, imode,
1937 expand_normal (node->high),
1938 unsignedp),
1939 GT, NULL_RTX, mode, unsignedp,
1940 default_label,
1941 probability);
1942 default_prob /= 2;
1945 /* Value belongs to this node or to the left-hand subtree. */
1947 probability = conditional_probability (
1948 prob,
1949 subtree_prob + default_prob);
1950 emit_cmp_and_jump_insns (index,
1951 convert_modes
1952 (mode, imode,
1953 expand_normal (node->low),
1954 unsignedp),
1955 GE, NULL_RTX, mode, unsignedp,
1956 label_rtx (node->code_label),
1957 probability);
1959 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1962 else
1964 /* Node has no children so we check low and high bounds to remove
1965 redundant tests. Only one of the bounds can exist,
1966 since otherwise this node is bounded--a case tested already. */
1967 int high_bound = node_has_high_bound (node, index_type);
1968 int low_bound = node_has_low_bound (node, index_type);
1970 if (!high_bound && low_bound)
1972 probability = conditional_probability (
1973 default_prob,
1974 subtree_prob + default_prob);
1975 emit_cmp_and_jump_insns (index,
1976 convert_modes
1977 (mode, imode,
1978 expand_normal (node->high),
1979 unsignedp),
1980 GT, NULL_RTX, mode, unsignedp,
1981 default_label,
1982 probability);
1985 else if (!low_bound && high_bound)
1987 probability = conditional_probability (
1988 default_prob,
1989 subtree_prob + default_prob);
1990 emit_cmp_and_jump_insns (index,
1991 convert_modes
1992 (mode, imode,
1993 expand_normal (node->low),
1994 unsignedp),
1995 LT, NULL_RTX, mode, unsignedp,
1996 default_label,
1997 probability);
1999 else if (!low_bound && !high_bound)
2001 /* Widen LOW and HIGH to the same width as INDEX. */
2002 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2003 tree low = build1 (CONVERT_EXPR, type, node->low);
2004 tree high = build1 (CONVERT_EXPR, type, node->high);
2005 rtx low_rtx, new_index, new_bound;
2007 /* Instead of doing two branches, emit one unsigned branch for
2008 (index-low) > (high-low). */
2009 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2010 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2011 NULL_RTX, unsignedp,
2012 OPTAB_WIDEN);
2013 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2014 high, low),
2015 NULL_RTX, mode, EXPAND_NORMAL);
2017 probability = conditional_probability (
2018 default_prob,
2019 subtree_prob + default_prob);
2020 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2021 mode, 1, default_label, probability);
2024 emit_jump (jump_target_rtx (node->code_label));