2015-11-26 Paolo Bonzini <bonzini@gnu.org>
[official-gcc.git] / gcc / real.c
blob0cc5aec7363079397f6428d081ee6132ca4efa6b
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
3 Contributed by Stephen L. Moshier (moshier@world.std.com).
4 Re-written by Richard Henderson <rth@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "realmpfr.h"
29 #include "dfp.h"
31 /* The floating point model used internally is not exactly IEEE 754
32 compliant, and close to the description in the ISO C99 standard,
33 section 5.2.4.2.2 Characteristics of floating types.
35 Specifically
37 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
39 where
40 s = sign (+- 1)
41 b = base or radix, here always 2
42 e = exponent
43 p = precision (the number of base-b digits in the significand)
44 f_k = the digits of the significand.
46 We differ from typical IEEE 754 encodings in that the entire
47 significand is fractional. Normalized significands are in the
48 range [0.5, 1.0).
50 A requirement of the model is that P be larger than the largest
51 supported target floating-point type by at least 2 bits. This gives
52 us proper rounding when we truncate to the target type. In addition,
53 E must be large enough to hold the smallest supported denormal number
54 in a normalized form.
56 Both of these requirements are easily satisfied. The largest target
57 significand is 113 bits; we store at least 160. The smallest
58 denormal number fits in 17 exponent bits; we store 26. */
61 /* Used to classify two numbers simultaneously. */
62 #define CLASS2(A, B) ((A) << 2 | (B))
64 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
65 #error "Some constant folding done by hand to avoid shift count warnings"
66 #endif
68 static void get_zero (REAL_VALUE_TYPE *, int);
69 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
70 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
71 static void get_inf (REAL_VALUE_TYPE *, int);
72 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
73 const REAL_VALUE_TYPE *, unsigned int);
74 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
75 unsigned int);
76 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
77 unsigned int);
78 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
79 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
80 const REAL_VALUE_TYPE *);
81 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
82 const REAL_VALUE_TYPE *, int);
83 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
84 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
85 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
86 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
87 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
88 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
89 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
90 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 const REAL_VALUE_TYPE *);
92 static void normalize (REAL_VALUE_TYPE *);
94 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
95 const REAL_VALUE_TYPE *, int);
96 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
97 const REAL_VALUE_TYPE *);
98 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
99 const REAL_VALUE_TYPE *);
100 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
101 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
103 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
104 static void decimal_from_integer (REAL_VALUE_TYPE *);
105 static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
106 size_t);
108 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
109 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
110 static const REAL_VALUE_TYPE * real_digit (int);
111 static void times_pten (REAL_VALUE_TYPE *, int);
113 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
115 /* Initialize R with a positive zero. */
117 static inline void
118 get_zero (REAL_VALUE_TYPE *r, int sign)
120 memset (r, 0, sizeof (*r));
121 r->sign = sign;
124 /* Initialize R with the canonical quiet NaN. */
126 static inline void
127 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
129 memset (r, 0, sizeof (*r));
130 r->cl = rvc_nan;
131 r->sign = sign;
132 r->canonical = 1;
135 static inline void
136 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
138 memset (r, 0, sizeof (*r));
139 r->cl = rvc_nan;
140 r->sign = sign;
141 r->signalling = 1;
142 r->canonical = 1;
145 static inline void
146 get_inf (REAL_VALUE_TYPE *r, int sign)
148 memset (r, 0, sizeof (*r));
149 r->cl = rvc_inf;
150 r->sign = sign;
154 /* Right-shift the significand of A by N bits; put the result in the
155 significand of R. If any one bits are shifted out, return true. */
157 static bool
158 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
159 unsigned int n)
161 unsigned long sticky = 0;
162 unsigned int i, ofs = 0;
164 if (n >= HOST_BITS_PER_LONG)
166 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
167 sticky |= a->sig[i];
168 n &= HOST_BITS_PER_LONG - 1;
171 if (n != 0)
173 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
174 for (i = 0; i < SIGSZ; ++i)
176 r->sig[i]
177 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
178 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
179 << (HOST_BITS_PER_LONG - n)));
182 else
184 for (i = 0; ofs + i < SIGSZ; ++i)
185 r->sig[i] = a->sig[ofs + i];
186 for (; i < SIGSZ; ++i)
187 r->sig[i] = 0;
190 return sticky != 0;
193 /* Right-shift the significand of A by N bits; put the result in the
194 significand of R. */
196 static void
197 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
198 unsigned int n)
200 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
202 n &= HOST_BITS_PER_LONG - 1;
203 if (n != 0)
205 for (i = 0; i < SIGSZ; ++i)
207 r->sig[i]
208 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
209 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
210 << (HOST_BITS_PER_LONG - n)));
213 else
215 for (i = 0; ofs + i < SIGSZ; ++i)
216 r->sig[i] = a->sig[ofs + i];
217 for (; i < SIGSZ; ++i)
218 r->sig[i] = 0;
222 /* Left-shift the significand of A by N bits; put the result in the
223 significand of R. */
225 static void
226 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
227 unsigned int n)
229 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
231 n &= HOST_BITS_PER_LONG - 1;
232 if (n == 0)
234 for (i = 0; ofs + i < SIGSZ; ++i)
235 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
236 for (; i < SIGSZ; ++i)
237 r->sig[SIGSZ-1-i] = 0;
239 else
240 for (i = 0; i < SIGSZ; ++i)
242 r->sig[SIGSZ-1-i]
243 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
244 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
245 >> (HOST_BITS_PER_LONG - n)));
249 /* Likewise, but N is specialized to 1. */
251 static inline void
252 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
254 unsigned int i;
256 for (i = SIGSZ - 1; i > 0; --i)
257 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
258 r->sig[0] = a->sig[0] << 1;
261 /* Add the significands of A and B, placing the result in R. Return
262 true if there was carry out of the most significant word. */
264 static inline bool
265 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
266 const REAL_VALUE_TYPE *b)
268 bool carry = false;
269 int i;
271 for (i = 0; i < SIGSZ; ++i)
273 unsigned long ai = a->sig[i];
274 unsigned long ri = ai + b->sig[i];
276 if (carry)
278 carry = ri < ai;
279 carry |= ++ri == 0;
281 else
282 carry = ri < ai;
284 r->sig[i] = ri;
287 return carry;
290 /* Subtract the significands of A and B, placing the result in R. CARRY is
291 true if there's a borrow incoming to the least significant word.
292 Return true if there was borrow out of the most significant word. */
294 static inline bool
295 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
296 const REAL_VALUE_TYPE *b, int carry)
298 int i;
300 for (i = 0; i < SIGSZ; ++i)
302 unsigned long ai = a->sig[i];
303 unsigned long ri = ai - b->sig[i];
305 if (carry)
307 carry = ri > ai;
308 carry |= ~--ri == 0;
310 else
311 carry = ri > ai;
313 r->sig[i] = ri;
316 return carry;
319 /* Negate the significand A, placing the result in R. */
321 static inline void
322 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
324 bool carry = true;
325 int i;
327 for (i = 0; i < SIGSZ; ++i)
329 unsigned long ri, ai = a->sig[i];
331 if (carry)
333 if (ai)
335 ri = -ai;
336 carry = false;
338 else
339 ri = ai;
341 else
342 ri = ~ai;
344 r->sig[i] = ri;
348 /* Compare significands. Return tri-state vs zero. */
350 static inline int
351 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
353 int i;
355 for (i = SIGSZ - 1; i >= 0; --i)
357 unsigned long ai = a->sig[i];
358 unsigned long bi = b->sig[i];
360 if (ai > bi)
361 return 1;
362 if (ai < bi)
363 return -1;
366 return 0;
369 /* Return true if A is nonzero. */
371 static inline int
372 cmp_significand_0 (const REAL_VALUE_TYPE *a)
374 int i;
376 for (i = SIGSZ - 1; i >= 0; --i)
377 if (a->sig[i])
378 return 1;
380 return 0;
383 /* Set bit N of the significand of R. */
385 static inline void
386 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
388 r->sig[n / HOST_BITS_PER_LONG]
389 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
392 /* Clear bit N of the significand of R. */
394 static inline void
395 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
397 r->sig[n / HOST_BITS_PER_LONG]
398 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
401 /* Test bit N of the significand of R. */
403 static inline bool
404 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
406 /* ??? Compiler bug here if we return this expression directly.
407 The conversion to bool strips the "&1" and we wind up testing
408 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
409 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
410 return t;
413 /* Clear bits 0..N-1 of the significand of R. */
415 static void
416 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
418 int i, w = n / HOST_BITS_PER_LONG;
420 for (i = 0; i < w; ++i)
421 r->sig[i] = 0;
423 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
426 /* Divide the significands of A and B, placing the result in R. Return
427 true if the division was inexact. */
429 static inline bool
430 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
431 const REAL_VALUE_TYPE *b)
433 REAL_VALUE_TYPE u;
434 int i, bit = SIGNIFICAND_BITS - 1;
435 unsigned long msb, inexact;
437 u = *a;
438 memset (r->sig, 0, sizeof (r->sig));
440 msb = 0;
441 goto start;
444 msb = u.sig[SIGSZ-1] & SIG_MSB;
445 lshift_significand_1 (&u, &u);
446 start:
447 if (msb || cmp_significands (&u, b) >= 0)
449 sub_significands (&u, &u, b, 0);
450 set_significand_bit (r, bit);
453 while (--bit >= 0);
455 for (i = 0, inexact = 0; i < SIGSZ; i++)
456 inexact |= u.sig[i];
458 return inexact != 0;
461 /* Adjust the exponent and significand of R such that the most
462 significant bit is set. We underflow to zero and overflow to
463 infinity here, without denormals. (The intermediate representation
464 exponent is large enough to handle target denormals normalized.) */
466 static void
467 normalize (REAL_VALUE_TYPE *r)
469 int shift = 0, exp;
470 int i, j;
472 if (r->decimal)
473 return;
475 /* Find the first word that is nonzero. */
476 for (i = SIGSZ - 1; i >= 0; i--)
477 if (r->sig[i] == 0)
478 shift += HOST_BITS_PER_LONG;
479 else
480 break;
482 /* Zero significand flushes to zero. */
483 if (i < 0)
485 r->cl = rvc_zero;
486 SET_REAL_EXP (r, 0);
487 return;
490 /* Find the first bit that is nonzero. */
491 for (j = 0; ; j++)
492 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
493 break;
494 shift += j;
496 if (shift > 0)
498 exp = REAL_EXP (r) - shift;
499 if (exp > MAX_EXP)
500 get_inf (r, r->sign);
501 else if (exp < -MAX_EXP)
502 get_zero (r, r->sign);
503 else
505 SET_REAL_EXP (r, exp);
506 lshift_significand (r, r, shift);
511 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
512 result may be inexact due to a loss of precision. */
514 static bool
515 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
516 const REAL_VALUE_TYPE *b, int subtract_p)
518 int dexp, sign, exp;
519 REAL_VALUE_TYPE t;
520 bool inexact = false;
522 /* Determine if we need to add or subtract. */
523 sign = a->sign;
524 subtract_p = (sign ^ b->sign) ^ subtract_p;
526 switch (CLASS2 (a->cl, b->cl))
528 case CLASS2 (rvc_zero, rvc_zero):
529 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
530 get_zero (r, sign & !subtract_p);
531 return false;
533 case CLASS2 (rvc_zero, rvc_normal):
534 case CLASS2 (rvc_zero, rvc_inf):
535 case CLASS2 (rvc_zero, rvc_nan):
536 /* 0 + ANY = ANY. */
537 case CLASS2 (rvc_normal, rvc_nan):
538 case CLASS2 (rvc_inf, rvc_nan):
539 case CLASS2 (rvc_nan, rvc_nan):
540 /* ANY + NaN = NaN. */
541 case CLASS2 (rvc_normal, rvc_inf):
542 /* R + Inf = Inf. */
543 *r = *b;
544 r->sign = sign ^ subtract_p;
545 return false;
547 case CLASS2 (rvc_normal, rvc_zero):
548 case CLASS2 (rvc_inf, rvc_zero):
549 case CLASS2 (rvc_nan, rvc_zero):
550 /* ANY + 0 = ANY. */
551 case CLASS2 (rvc_nan, rvc_normal):
552 case CLASS2 (rvc_nan, rvc_inf):
553 /* NaN + ANY = NaN. */
554 case CLASS2 (rvc_inf, rvc_normal):
555 /* Inf + R = Inf. */
556 *r = *a;
557 return false;
559 case CLASS2 (rvc_inf, rvc_inf):
560 if (subtract_p)
561 /* Inf - Inf = NaN. */
562 get_canonical_qnan (r, 0);
563 else
564 /* Inf + Inf = Inf. */
565 *r = *a;
566 return false;
568 case CLASS2 (rvc_normal, rvc_normal):
569 break;
571 default:
572 gcc_unreachable ();
575 /* Swap the arguments such that A has the larger exponent. */
576 dexp = REAL_EXP (a) - REAL_EXP (b);
577 if (dexp < 0)
579 const REAL_VALUE_TYPE *t;
580 t = a, a = b, b = t;
581 dexp = -dexp;
582 sign ^= subtract_p;
584 exp = REAL_EXP (a);
586 /* If the exponents are not identical, we need to shift the
587 significand of B down. */
588 if (dexp > 0)
590 /* If the exponents are too far apart, the significands
591 do not overlap, which makes the subtraction a noop. */
592 if (dexp >= SIGNIFICAND_BITS)
594 *r = *a;
595 r->sign = sign;
596 return true;
599 inexact |= sticky_rshift_significand (&t, b, dexp);
600 b = &t;
603 if (subtract_p)
605 if (sub_significands (r, a, b, inexact))
607 /* We got a borrow out of the subtraction. That means that
608 A and B had the same exponent, and B had the larger
609 significand. We need to swap the sign and negate the
610 significand. */
611 sign ^= 1;
612 neg_significand (r, r);
615 else
617 if (add_significands (r, a, b))
619 /* We got carry out of the addition. This means we need to
620 shift the significand back down one bit and increase the
621 exponent. */
622 inexact |= sticky_rshift_significand (r, r, 1);
623 r->sig[SIGSZ-1] |= SIG_MSB;
624 if (++exp > MAX_EXP)
626 get_inf (r, sign);
627 return true;
632 r->cl = rvc_normal;
633 r->sign = sign;
634 SET_REAL_EXP (r, exp);
635 /* Zero out the remaining fields. */
636 r->signalling = 0;
637 r->canonical = 0;
638 r->decimal = 0;
640 /* Re-normalize the result. */
641 normalize (r);
643 /* Special case: if the subtraction results in zero, the result
644 is positive. */
645 if (r->cl == rvc_zero)
646 r->sign = 0;
647 else
648 r->sig[0] |= inexact;
650 return inexact;
653 /* Calculate R = A * B. Return true if the result may be inexact. */
655 static bool
656 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
657 const REAL_VALUE_TYPE *b)
659 REAL_VALUE_TYPE u, t, *rr;
660 unsigned int i, j, k;
661 int sign = a->sign ^ b->sign;
662 bool inexact = false;
664 switch (CLASS2 (a->cl, b->cl))
666 case CLASS2 (rvc_zero, rvc_zero):
667 case CLASS2 (rvc_zero, rvc_normal):
668 case CLASS2 (rvc_normal, rvc_zero):
669 /* +-0 * ANY = 0 with appropriate sign. */
670 get_zero (r, sign);
671 return false;
673 case CLASS2 (rvc_zero, rvc_nan):
674 case CLASS2 (rvc_normal, rvc_nan):
675 case CLASS2 (rvc_inf, rvc_nan):
676 case CLASS2 (rvc_nan, rvc_nan):
677 /* ANY * NaN = NaN. */
678 *r = *b;
679 r->sign = sign;
680 return false;
682 case CLASS2 (rvc_nan, rvc_zero):
683 case CLASS2 (rvc_nan, rvc_normal):
684 case CLASS2 (rvc_nan, rvc_inf):
685 /* NaN * ANY = NaN. */
686 *r = *a;
687 r->sign = sign;
688 return false;
690 case CLASS2 (rvc_zero, rvc_inf):
691 case CLASS2 (rvc_inf, rvc_zero):
692 /* 0 * Inf = NaN */
693 get_canonical_qnan (r, sign);
694 return false;
696 case CLASS2 (rvc_inf, rvc_inf):
697 case CLASS2 (rvc_normal, rvc_inf):
698 case CLASS2 (rvc_inf, rvc_normal):
699 /* Inf * Inf = Inf, R * Inf = Inf */
700 get_inf (r, sign);
701 return false;
703 case CLASS2 (rvc_normal, rvc_normal):
704 break;
706 default:
707 gcc_unreachable ();
710 if (r == a || r == b)
711 rr = &t;
712 else
713 rr = r;
714 get_zero (rr, 0);
716 /* Collect all the partial products. Since we don't have sure access
717 to a widening multiply, we split each long into two half-words.
719 Consider the long-hand form of a four half-word multiplication:
721 A B C D
722 * E F G H
723 --------------
724 DE DF DG DH
725 CE CF CG CH
726 BE BF BG BH
727 AE AF AG AH
729 We construct partial products of the widened half-word products
730 that are known to not overlap, e.g. DF+DH. Each such partial
731 product is given its proper exponent, which allows us to sum them
732 and obtain the finished product. */
734 for (i = 0; i < SIGSZ * 2; ++i)
736 unsigned long ai = a->sig[i / 2];
737 if (i & 1)
738 ai >>= HOST_BITS_PER_LONG / 2;
739 else
740 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
742 if (ai == 0)
743 continue;
745 for (j = 0; j < 2; ++j)
747 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
748 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
750 if (exp > MAX_EXP)
752 get_inf (r, sign);
753 return true;
755 if (exp < -MAX_EXP)
757 /* Would underflow to zero, which we shouldn't bother adding. */
758 inexact = true;
759 continue;
762 memset (&u, 0, sizeof (u));
763 u.cl = rvc_normal;
764 SET_REAL_EXP (&u, exp);
766 for (k = j; k < SIGSZ * 2; k += 2)
768 unsigned long bi = b->sig[k / 2];
769 if (k & 1)
770 bi >>= HOST_BITS_PER_LONG / 2;
771 else
772 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
774 u.sig[k / 2] = ai * bi;
777 normalize (&u);
778 inexact |= do_add (rr, rr, &u, 0);
782 rr->sign = sign;
783 if (rr != r)
784 *r = t;
786 return inexact;
789 /* Calculate R = A / B. Return true if the result may be inexact. */
791 static bool
792 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
793 const REAL_VALUE_TYPE *b)
795 int exp, sign = a->sign ^ b->sign;
796 REAL_VALUE_TYPE t, *rr;
797 bool inexact;
799 switch (CLASS2 (a->cl, b->cl))
801 case CLASS2 (rvc_zero, rvc_zero):
802 /* 0 / 0 = NaN. */
803 case CLASS2 (rvc_inf, rvc_inf):
804 /* Inf / Inf = NaN. */
805 get_canonical_qnan (r, sign);
806 return false;
808 case CLASS2 (rvc_zero, rvc_normal):
809 case CLASS2 (rvc_zero, rvc_inf):
810 /* 0 / ANY = 0. */
811 case CLASS2 (rvc_normal, rvc_inf):
812 /* R / Inf = 0. */
813 get_zero (r, sign);
814 return false;
816 case CLASS2 (rvc_normal, rvc_zero):
817 /* R / 0 = Inf. */
818 case CLASS2 (rvc_inf, rvc_zero):
819 /* Inf / 0 = Inf. */
820 get_inf (r, sign);
821 return false;
823 case CLASS2 (rvc_zero, rvc_nan):
824 case CLASS2 (rvc_normal, rvc_nan):
825 case CLASS2 (rvc_inf, rvc_nan):
826 case CLASS2 (rvc_nan, rvc_nan):
827 /* ANY / NaN = NaN. */
828 *r = *b;
829 r->sign = sign;
830 return false;
832 case CLASS2 (rvc_nan, rvc_zero):
833 case CLASS2 (rvc_nan, rvc_normal):
834 case CLASS2 (rvc_nan, rvc_inf):
835 /* NaN / ANY = NaN. */
836 *r = *a;
837 r->sign = sign;
838 return false;
840 case CLASS2 (rvc_inf, rvc_normal):
841 /* Inf / R = Inf. */
842 get_inf (r, sign);
843 return false;
845 case CLASS2 (rvc_normal, rvc_normal):
846 break;
848 default:
849 gcc_unreachable ();
852 if (r == a || r == b)
853 rr = &t;
854 else
855 rr = r;
857 /* Make sure all fields in the result are initialized. */
858 get_zero (rr, 0);
859 rr->cl = rvc_normal;
860 rr->sign = sign;
862 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
863 if (exp > MAX_EXP)
865 get_inf (r, sign);
866 return true;
868 if (exp < -MAX_EXP)
870 get_zero (r, sign);
871 return true;
873 SET_REAL_EXP (rr, exp);
875 inexact = div_significands (rr, a, b);
877 /* Re-normalize the result. */
878 normalize (rr);
879 rr->sig[0] |= inexact;
881 if (rr != r)
882 *r = t;
884 return inexact;
887 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
888 one of the two operands is a NaN. */
890 static int
891 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
892 int nan_result)
894 int ret;
896 switch (CLASS2 (a->cl, b->cl))
898 case CLASS2 (rvc_zero, rvc_zero):
899 /* Sign of zero doesn't matter for compares. */
900 return 0;
902 case CLASS2 (rvc_normal, rvc_zero):
903 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
904 if (a->decimal)
905 return decimal_do_compare (a, b, nan_result);
906 /* Fall through. */
907 case CLASS2 (rvc_inf, rvc_zero):
908 case CLASS2 (rvc_inf, rvc_normal):
909 return (a->sign ? -1 : 1);
911 case CLASS2 (rvc_inf, rvc_inf):
912 return -a->sign - -b->sign;
914 case CLASS2 (rvc_zero, rvc_normal):
915 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
916 if (b->decimal)
917 return decimal_do_compare (a, b, nan_result);
918 /* Fall through. */
919 case CLASS2 (rvc_zero, rvc_inf):
920 case CLASS2 (rvc_normal, rvc_inf):
921 return (b->sign ? 1 : -1);
923 case CLASS2 (rvc_zero, rvc_nan):
924 case CLASS2 (rvc_normal, rvc_nan):
925 case CLASS2 (rvc_inf, rvc_nan):
926 case CLASS2 (rvc_nan, rvc_nan):
927 case CLASS2 (rvc_nan, rvc_zero):
928 case CLASS2 (rvc_nan, rvc_normal):
929 case CLASS2 (rvc_nan, rvc_inf):
930 return nan_result;
932 case CLASS2 (rvc_normal, rvc_normal):
933 break;
935 default:
936 gcc_unreachable ();
939 if (a->sign != b->sign)
940 return -a->sign - -b->sign;
942 if (a->decimal || b->decimal)
943 return decimal_do_compare (a, b, nan_result);
945 if (REAL_EXP (a) > REAL_EXP (b))
946 ret = 1;
947 else if (REAL_EXP (a) < REAL_EXP (b))
948 ret = -1;
949 else
950 ret = cmp_significands (a, b);
952 return (a->sign ? -ret : ret);
955 /* Return A truncated to an integral value toward zero. */
957 static void
958 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
960 *r = *a;
962 switch (r->cl)
964 case rvc_zero:
965 case rvc_inf:
966 case rvc_nan:
967 break;
969 case rvc_normal:
970 if (r->decimal)
972 decimal_do_fix_trunc (r, a);
973 return;
975 if (REAL_EXP (r) <= 0)
976 get_zero (r, r->sign);
977 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
978 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
979 break;
981 default:
982 gcc_unreachable ();
986 /* Perform the binary or unary operation described by CODE.
987 For a unary operation, leave OP1 NULL. This function returns
988 true if the result may be inexact due to loss of precision. */
990 bool
991 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
992 const REAL_VALUE_TYPE *op1)
994 enum tree_code code = (enum tree_code) icode;
996 if (op0->decimal || (op1 && op1->decimal))
997 return decimal_real_arithmetic (r, code, op0, op1);
999 switch (code)
1001 case PLUS_EXPR:
1002 /* Clear any padding areas in *r if it isn't equal to one of the
1003 operands so that we can later do bitwise comparisons later on. */
1004 if (r != op0 && r != op1)
1005 memset (r, '\0', sizeof (*r));
1006 return do_add (r, op0, op1, 0);
1008 case MINUS_EXPR:
1009 if (r != op0 && r != op1)
1010 memset (r, '\0', sizeof (*r));
1011 return do_add (r, op0, op1, 1);
1013 case MULT_EXPR:
1014 if (r != op0 && r != op1)
1015 memset (r, '\0', sizeof (*r));
1016 return do_multiply (r, op0, op1);
1018 case RDIV_EXPR:
1019 if (r != op0 && r != op1)
1020 memset (r, '\0', sizeof (*r));
1021 return do_divide (r, op0, op1);
1023 case MIN_EXPR:
1024 if (op1->cl == rvc_nan)
1025 *r = *op1;
1026 else if (do_compare (op0, op1, -1) < 0)
1027 *r = *op0;
1028 else
1029 *r = *op1;
1030 break;
1032 case MAX_EXPR:
1033 if (op1->cl == rvc_nan)
1034 *r = *op1;
1035 else if (do_compare (op0, op1, 1) < 0)
1036 *r = *op1;
1037 else
1038 *r = *op0;
1039 break;
1041 case NEGATE_EXPR:
1042 *r = *op0;
1043 r->sign ^= 1;
1044 break;
1046 case ABS_EXPR:
1047 *r = *op0;
1048 r->sign = 0;
1049 break;
1051 case FIX_TRUNC_EXPR:
1052 do_fix_trunc (r, op0);
1053 break;
1055 default:
1056 gcc_unreachable ();
1058 return false;
1061 REAL_VALUE_TYPE
1062 real_value_negate (const REAL_VALUE_TYPE *op0)
1064 REAL_VALUE_TYPE r;
1065 real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
1066 return r;
1069 REAL_VALUE_TYPE
1070 real_value_abs (const REAL_VALUE_TYPE *op0)
1072 REAL_VALUE_TYPE r;
1073 real_arithmetic (&r, ABS_EXPR, op0, NULL);
1074 return r;
1077 /* Return whether OP0 == OP1. */
1079 bool
1080 real_equal (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1082 return do_compare (op0, op1, -1) == 0;
1085 /* Return whether OP0 < OP1. */
1087 bool
1088 real_less (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1090 return do_compare (op0, op1, 1) < 0;
1093 bool
1094 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1095 const REAL_VALUE_TYPE *op1)
1097 enum tree_code code = (enum tree_code) icode;
1099 switch (code)
1101 case LT_EXPR:
1102 return real_less (op0, op1);
1103 case LE_EXPR:
1104 return do_compare (op0, op1, 1) <= 0;
1105 case GT_EXPR:
1106 return do_compare (op0, op1, -1) > 0;
1107 case GE_EXPR:
1108 return do_compare (op0, op1, -1) >= 0;
1109 case EQ_EXPR:
1110 return real_equal (op0, op1);
1111 case NE_EXPR:
1112 return do_compare (op0, op1, -1) != 0;
1113 case UNORDERED_EXPR:
1114 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1115 case ORDERED_EXPR:
1116 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1117 case UNLT_EXPR:
1118 return do_compare (op0, op1, -1) < 0;
1119 case UNLE_EXPR:
1120 return do_compare (op0, op1, -1) <= 0;
1121 case UNGT_EXPR:
1122 return do_compare (op0, op1, 1) > 0;
1123 case UNGE_EXPR:
1124 return do_compare (op0, op1, 1) >= 0;
1125 case UNEQ_EXPR:
1126 return do_compare (op0, op1, 0) == 0;
1127 case LTGT_EXPR:
1128 return do_compare (op0, op1, 0) != 0;
1130 default:
1131 gcc_unreachable ();
1135 /* Return floor log2(R). */
1138 real_exponent (const REAL_VALUE_TYPE *r)
1140 switch (r->cl)
1142 case rvc_zero:
1143 return 0;
1144 case rvc_inf:
1145 case rvc_nan:
1146 return (unsigned int)-1 >> 1;
1147 case rvc_normal:
1148 return REAL_EXP (r);
1149 default:
1150 gcc_unreachable ();
1154 /* R = OP0 * 2**EXP. */
1156 void
1157 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1159 *r = *op0;
1160 switch (r->cl)
1162 case rvc_zero:
1163 case rvc_inf:
1164 case rvc_nan:
1165 break;
1167 case rvc_normal:
1168 exp += REAL_EXP (op0);
1169 if (exp > MAX_EXP)
1170 get_inf (r, r->sign);
1171 else if (exp < -MAX_EXP)
1172 get_zero (r, r->sign);
1173 else
1174 SET_REAL_EXP (r, exp);
1175 break;
1177 default:
1178 gcc_unreachable ();
1182 /* Determine whether a floating-point value X is infinite. */
1184 bool
1185 real_isinf (const REAL_VALUE_TYPE *r)
1187 return (r->cl == rvc_inf);
1190 /* Determine whether a floating-point value X is a NaN. */
1192 bool
1193 real_isnan (const REAL_VALUE_TYPE *r)
1195 return (r->cl == rvc_nan);
1198 /* Determine whether a floating-point value X is finite. */
1200 bool
1201 real_isfinite (const REAL_VALUE_TYPE *r)
1203 return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1206 /* Determine whether a floating-point value X is negative. */
1208 bool
1209 real_isneg (const REAL_VALUE_TYPE *r)
1211 return r->sign;
1214 /* Determine whether a floating-point value X is minus zero. */
1216 bool
1217 real_isnegzero (const REAL_VALUE_TYPE *r)
1219 return r->sign && r->cl == rvc_zero;
1222 /* Compare two floating-point objects for bitwise identity. */
1224 bool
1225 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1227 int i;
1229 if (a->cl != b->cl)
1230 return false;
1231 if (a->sign != b->sign)
1232 return false;
1234 switch (a->cl)
1236 case rvc_zero:
1237 case rvc_inf:
1238 return true;
1240 case rvc_normal:
1241 if (a->decimal != b->decimal)
1242 return false;
1243 if (REAL_EXP (a) != REAL_EXP (b))
1244 return false;
1245 break;
1247 case rvc_nan:
1248 if (a->signalling != b->signalling)
1249 return false;
1250 /* The significand is ignored for canonical NaNs. */
1251 if (a->canonical || b->canonical)
1252 return a->canonical == b->canonical;
1253 break;
1255 default:
1256 gcc_unreachable ();
1259 for (i = 0; i < SIGSZ; ++i)
1260 if (a->sig[i] != b->sig[i])
1261 return false;
1263 return true;
1266 /* Try to change R into its exact multiplicative inverse in format FMT.
1267 Return true if successful. */
1269 bool
1270 exact_real_inverse (format_helper fmt, REAL_VALUE_TYPE *r)
1272 const REAL_VALUE_TYPE *one = real_digit (1);
1273 REAL_VALUE_TYPE u;
1274 int i;
1276 if (r->cl != rvc_normal)
1277 return false;
1279 /* Check for a power of two: all significand bits zero except the MSB. */
1280 for (i = 0; i < SIGSZ-1; ++i)
1281 if (r->sig[i] != 0)
1282 return false;
1283 if (r->sig[SIGSZ-1] != SIG_MSB)
1284 return false;
1286 /* Find the inverse and truncate to the required format. */
1287 do_divide (&u, one, r);
1288 real_convert (&u, fmt, &u);
1290 /* The rounding may have overflowed. */
1291 if (u.cl != rvc_normal)
1292 return false;
1293 for (i = 0; i < SIGSZ-1; ++i)
1294 if (u.sig[i] != 0)
1295 return false;
1296 if (u.sig[SIGSZ-1] != SIG_MSB)
1297 return false;
1299 *r = u;
1300 return true;
1303 /* Return true if arithmetic on values in IMODE that were promoted
1304 from values in TMODE is equivalent to direct arithmetic on values
1305 in TMODE. */
1307 bool
1308 real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
1310 const struct real_format *tfmt, *ifmt;
1311 tfmt = REAL_MODE_FORMAT (tmode);
1312 ifmt = REAL_MODE_FORMAT (imode);
1313 /* These conditions are conservative rather than trying to catch the
1314 exact boundary conditions; the main case to allow is IEEE float
1315 and double. */
1316 return (ifmt->b == tfmt->b
1317 && ifmt->p > 2 * tfmt->p
1318 && ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
1319 && ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
1320 && ifmt->emax > 2 * tfmt->emax + 2
1321 && ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
1322 && ifmt->round_towards_zero == tfmt->round_towards_zero
1323 && (ifmt->has_sign_dependent_rounding
1324 == tfmt->has_sign_dependent_rounding)
1325 && ifmt->has_nans >= tfmt->has_nans
1326 && ifmt->has_inf >= tfmt->has_inf
1327 && ifmt->has_signed_zero >= tfmt->has_signed_zero
1328 && !MODE_COMPOSITE_P (tmode)
1329 && !MODE_COMPOSITE_P (imode));
1332 /* Render R as an integer. */
1334 HOST_WIDE_INT
1335 real_to_integer (const REAL_VALUE_TYPE *r)
1337 unsigned HOST_WIDE_INT i;
1339 switch (r->cl)
1341 case rvc_zero:
1342 underflow:
1343 return 0;
1345 case rvc_inf:
1346 case rvc_nan:
1347 overflow:
1348 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1349 if (!r->sign)
1350 i--;
1351 return i;
1353 case rvc_normal:
1354 if (r->decimal)
1355 return decimal_real_to_integer (r);
1357 if (REAL_EXP (r) <= 0)
1358 goto underflow;
1359 /* Only force overflow for unsigned overflow. Signed overflow is
1360 undefined, so it doesn't matter what we return, and some callers
1361 expect to be able to use this routine for both signed and
1362 unsigned conversions. */
1363 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1364 goto overflow;
1366 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1367 i = r->sig[SIGSZ-1];
1368 else
1370 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1371 i = r->sig[SIGSZ-1];
1372 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1373 i |= r->sig[SIGSZ-2];
1376 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1378 if (r->sign)
1379 i = -i;
1380 return i;
1382 default:
1383 gcc_unreachable ();
1387 /* Likewise, but producing a wide-int of PRECISION. If the value cannot
1388 be represented in precision, *FAIL is set to TRUE. */
1390 wide_int
1391 real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
1393 HOST_WIDE_INT val[2 * WIDE_INT_MAX_ELTS];
1394 int exp;
1395 int words, w;
1396 wide_int result;
1398 switch (r->cl)
1400 case rvc_zero:
1401 underflow:
1402 return wi::zero (precision);
1404 case rvc_inf:
1405 case rvc_nan:
1406 overflow:
1407 *fail = true;
1409 if (r->sign)
1410 return wi::set_bit_in_zero (precision - 1, precision);
1411 else
1412 return ~wi::set_bit_in_zero (precision - 1, precision);
1414 case rvc_normal:
1415 if (r->decimal)
1416 return decimal_real_to_integer (r, fail, precision);
1418 exp = REAL_EXP (r);
1419 if (exp <= 0)
1420 goto underflow;
1421 /* Only force overflow for unsigned overflow. Signed overflow is
1422 undefined, so it doesn't matter what we return, and some callers
1423 expect to be able to use this routine for both signed and
1424 unsigned conversions. */
1425 if (exp > precision)
1426 goto overflow;
1428 /* Put the significand into a wide_int that has precision W, which
1429 is the smallest HWI-multiple that has at least PRECISION bits.
1430 This ensures that the top bit of the significand is in the
1431 top bit of the wide_int. */
1432 words = (precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
1433 w = words * HOST_BITS_PER_WIDE_INT;
1435 #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1436 for (int i = 0; i < words; i++)
1438 int j = SIGSZ - words + i;
1439 val[i] = (j < 0) ? 0 : r->sig[j];
1441 #else
1442 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1443 for (int i = 0; i < words; i++)
1445 int j = SIGSZ - (words * 2) + (i * 2);
1446 if (j < 0)
1447 val[i] = 0;
1448 else
1449 val[i] = r->sig[j];
1450 j += 1;
1451 if (j >= 0)
1452 val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
1454 #endif
1455 /* Shift the value into place and truncate to the desired precision. */
1456 result = wide_int::from_array (val, words, w);
1457 result = wi::lrshift (result, w - exp);
1458 result = wide_int::from (result, precision, UNSIGNED);
1460 if (r->sign)
1461 return -result;
1462 else
1463 return result;
1465 default:
1466 gcc_unreachable ();
1470 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1471 of NUM / DEN. Return the quotient and place the remainder in NUM.
1472 It is expected that NUM / DEN are close enough that the quotient is
1473 small. */
1475 static unsigned long
1476 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1478 unsigned long q, msb;
1479 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1481 if (expn < expd)
1482 return 0;
1484 q = msb = 0;
1485 goto start;
1488 msb = num->sig[SIGSZ-1] & SIG_MSB;
1489 q <<= 1;
1490 lshift_significand_1 (num, num);
1491 start:
1492 if (msb || cmp_significands (num, den) >= 0)
1494 sub_significands (num, num, den, 0);
1495 q |= 1;
1498 while (--expn >= expd);
1500 SET_REAL_EXP (num, expd);
1501 normalize (num);
1503 return q;
1506 /* Render R as a decimal floating point constant. Emit DIGITS significant
1507 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1508 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1509 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1510 to a string that, when parsed back in mode MODE, yields the same value. */
1512 #define M_LOG10_2 0.30102999566398119521
1514 void
1515 real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
1516 size_t buf_size, size_t digits,
1517 int crop_trailing_zeros, machine_mode mode)
1519 const struct real_format *fmt = NULL;
1520 const REAL_VALUE_TYPE *one, *ten;
1521 REAL_VALUE_TYPE r, pten, u, v;
1522 int dec_exp, cmp_one, digit;
1523 size_t max_digits;
1524 char *p, *first, *last;
1525 bool sign;
1526 bool round_up;
1528 if (mode != VOIDmode)
1530 fmt = REAL_MODE_FORMAT (mode);
1531 gcc_assert (fmt);
1534 r = *r_orig;
1535 switch (r.cl)
1537 case rvc_zero:
1538 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1539 return;
1540 case rvc_normal:
1541 break;
1542 case rvc_inf:
1543 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1544 return;
1545 case rvc_nan:
1546 /* ??? Print the significand as well, if not canonical? */
1547 sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
1548 (r_orig->signalling ? 'S' : 'Q'));
1549 return;
1550 default:
1551 gcc_unreachable ();
1554 if (r.decimal)
1556 decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1557 return;
1560 /* Bound the number of digits printed by the size of the representation. */
1561 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1562 if (digits == 0 || digits > max_digits)
1563 digits = max_digits;
1565 /* Estimate the decimal exponent, and compute the length of the string it
1566 will print as. Be conservative and add one to account for possible
1567 overflow or rounding error. */
1568 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1569 for (max_digits = 1; dec_exp ; max_digits++)
1570 dec_exp /= 10;
1572 /* Bound the number of digits printed by the size of the output buffer. */
1573 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1574 gcc_assert (max_digits <= buf_size);
1575 if (digits > max_digits)
1576 digits = max_digits;
1578 one = real_digit (1);
1579 ten = ten_to_ptwo (0);
1581 sign = r.sign;
1582 r.sign = 0;
1584 dec_exp = 0;
1585 pten = *one;
1587 cmp_one = do_compare (&r, one, 0);
1588 if (cmp_one > 0)
1590 int m;
1592 /* Number is greater than one. Convert significand to an integer
1593 and strip trailing decimal zeros. */
1595 u = r;
1596 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1598 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1599 m = floor_log2 (max_digits);
1601 /* Iterate over the bits of the possible powers of 10 that might
1602 be present in U and eliminate them. That is, if we find that
1603 10**2**M divides U evenly, keep the division and increase
1604 DEC_EXP by 2**M. */
1607 REAL_VALUE_TYPE t;
1609 do_divide (&t, &u, ten_to_ptwo (m));
1610 do_fix_trunc (&v, &t);
1611 if (cmp_significands (&v, &t) == 0)
1613 u = t;
1614 dec_exp += 1 << m;
1617 while (--m >= 0);
1619 /* Revert the scaling to integer that we performed earlier. */
1620 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1621 - (SIGNIFICAND_BITS - 1));
1622 r = u;
1624 /* Find power of 10. Do this by dividing out 10**2**M when
1625 this is larger than the current remainder. Fill PTEN with
1626 the power of 10 that we compute. */
1627 if (REAL_EXP (&r) > 0)
1629 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1632 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1633 if (do_compare (&u, ptentwo, 0) >= 0)
1635 do_divide (&u, &u, ptentwo);
1636 do_multiply (&pten, &pten, ptentwo);
1637 dec_exp += 1 << m;
1640 while (--m >= 0);
1642 else
1643 /* We managed to divide off enough tens in the above reduction
1644 loop that we've now got a negative exponent. Fall into the
1645 less-than-one code to compute the proper value for PTEN. */
1646 cmp_one = -1;
1648 if (cmp_one < 0)
1650 int m;
1652 /* Number is less than one. Pad significand with leading
1653 decimal zeros. */
1655 v = r;
1656 while (1)
1658 /* Stop if we'd shift bits off the bottom. */
1659 if (v.sig[0] & 7)
1660 break;
1662 do_multiply (&u, &v, ten);
1664 /* Stop if we're now >= 1. */
1665 if (REAL_EXP (&u) > 0)
1666 break;
1668 v = u;
1669 dec_exp -= 1;
1671 r = v;
1673 /* Find power of 10. Do this by multiplying in P=10**2**M when
1674 the current remainder is smaller than 1/P. Fill PTEN with the
1675 power of 10 that we compute. */
1676 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1679 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1680 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1682 if (do_compare (&v, ptenmtwo, 0) <= 0)
1684 do_multiply (&v, &v, ptentwo);
1685 do_multiply (&pten, &pten, ptentwo);
1686 dec_exp -= 1 << m;
1689 while (--m >= 0);
1691 /* Invert the positive power of 10 that we've collected so far. */
1692 do_divide (&pten, one, &pten);
1695 p = str;
1696 if (sign)
1697 *p++ = '-';
1698 first = p++;
1700 /* At this point, PTEN should contain the nearest power of 10 smaller
1701 than R, such that this division produces the first digit.
1703 Using a divide-step primitive that returns the complete integral
1704 remainder avoids the rounding error that would be produced if
1705 we were to use do_divide here and then simply multiply by 10 for
1706 each subsequent digit. */
1708 digit = rtd_divmod (&r, &pten);
1710 /* Be prepared for error in that division via underflow ... */
1711 if (digit == 0 && cmp_significand_0 (&r))
1713 /* Multiply by 10 and try again. */
1714 do_multiply (&r, &r, ten);
1715 digit = rtd_divmod (&r, &pten);
1716 dec_exp -= 1;
1717 gcc_assert (digit != 0);
1720 /* ... or overflow. */
1721 if (digit == 10)
1723 *p++ = '1';
1724 if (--digits > 0)
1725 *p++ = '0';
1726 dec_exp += 1;
1728 else
1730 gcc_assert (digit <= 10);
1731 *p++ = digit + '0';
1734 /* Generate subsequent digits. */
1735 while (--digits > 0)
1737 do_multiply (&r, &r, ten);
1738 digit = rtd_divmod (&r, &pten);
1739 *p++ = digit + '0';
1741 last = p;
1743 /* Generate one more digit with which to do rounding. */
1744 do_multiply (&r, &r, ten);
1745 digit = rtd_divmod (&r, &pten);
1747 /* Round the result. */
1748 if (fmt && fmt->round_towards_zero)
1750 /* If the format uses round towards zero when parsing the string
1751 back in, we need to always round away from zero here. */
1752 if (cmp_significand_0 (&r))
1753 digit++;
1754 round_up = digit > 0;
1756 else
1758 if (digit == 5)
1760 /* Round to nearest. If R is nonzero there are additional
1761 nonzero digits to be extracted. */
1762 if (cmp_significand_0 (&r))
1763 digit++;
1764 /* Round to even. */
1765 else if ((p[-1] - '0') & 1)
1766 digit++;
1769 round_up = digit > 5;
1772 if (round_up)
1774 while (p > first)
1776 digit = *--p;
1777 if (digit == '9')
1778 *p = '0';
1779 else
1781 *p = digit + 1;
1782 break;
1786 /* Carry out of the first digit. This means we had all 9's and
1787 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1788 if (p == first)
1790 first[1] = '1';
1791 dec_exp++;
1795 /* Insert the decimal point. */
1796 first[0] = first[1];
1797 first[1] = '.';
1799 /* If requested, drop trailing zeros. Never crop past "1.0". */
1800 if (crop_trailing_zeros)
1801 while (last > first + 3 && last[-1] == '0')
1802 last--;
1804 /* Append the exponent. */
1805 sprintf (last, "e%+d", dec_exp);
1807 /* Verify that we can read the original value back in. */
1808 if (flag_checking && mode != VOIDmode)
1810 real_from_string (&r, str);
1811 real_convert (&r, mode, &r);
1812 gcc_assert (real_identical (&r, r_orig));
1816 /* Likewise, except always uses round-to-nearest. */
1818 void
1819 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1820 size_t digits, int crop_trailing_zeros)
1822 real_to_decimal_for_mode (str, r_orig, buf_size,
1823 digits, crop_trailing_zeros, VOIDmode);
1826 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1827 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1828 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1829 strip trailing zeros. */
1831 void
1832 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1833 size_t digits, int crop_trailing_zeros)
1835 int i, j, exp = REAL_EXP (r);
1836 char *p, *first;
1837 char exp_buf[16];
1838 size_t max_digits;
1840 switch (r->cl)
1842 case rvc_zero:
1843 exp = 0;
1844 break;
1845 case rvc_normal:
1846 break;
1847 case rvc_inf:
1848 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1849 return;
1850 case rvc_nan:
1851 /* ??? Print the significand as well, if not canonical? */
1852 sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
1853 (r->signalling ? 'S' : 'Q'));
1854 return;
1855 default:
1856 gcc_unreachable ();
1859 if (r->decimal)
1861 /* Hexadecimal format for decimal floats is not interesting. */
1862 strcpy (str, "N/A");
1863 return;
1866 if (digits == 0)
1867 digits = SIGNIFICAND_BITS / 4;
1869 /* Bound the number of digits printed by the size of the output buffer. */
1871 sprintf (exp_buf, "p%+d", exp);
1872 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1873 gcc_assert (max_digits <= buf_size);
1874 if (digits > max_digits)
1875 digits = max_digits;
1877 p = str;
1878 if (r->sign)
1879 *p++ = '-';
1880 *p++ = '0';
1881 *p++ = 'x';
1882 *p++ = '0';
1883 *p++ = '.';
1884 first = p;
1886 for (i = SIGSZ - 1; i >= 0; --i)
1887 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1889 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1890 if (--digits == 0)
1891 goto out;
1894 out:
1895 if (crop_trailing_zeros)
1896 while (p > first + 1 && p[-1] == '0')
1897 p--;
1899 sprintf (p, "p%+d", exp);
1902 /* Initialize R from a decimal or hexadecimal string. The string is
1903 assumed to have been syntax checked already. Return -1 if the
1904 value underflows, +1 if overflows, and 0 otherwise. */
1907 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1909 int exp = 0;
1910 bool sign = false;
1912 get_zero (r, 0);
1914 if (*str == '-')
1916 sign = true;
1917 str++;
1919 else if (*str == '+')
1920 str++;
1922 if (!strncmp (str, "QNaN", 4))
1924 get_canonical_qnan (r, sign);
1925 return 0;
1927 else if (!strncmp (str, "SNaN", 4))
1929 get_canonical_snan (r, sign);
1930 return 0;
1932 else if (!strncmp (str, "Inf", 3))
1934 get_inf (r, sign);
1935 return 0;
1938 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1940 /* Hexadecimal floating point. */
1941 int pos = SIGNIFICAND_BITS - 4, d;
1943 str += 2;
1945 while (*str == '0')
1946 str++;
1947 while (1)
1949 d = hex_value (*str);
1950 if (d == _hex_bad)
1951 break;
1952 if (pos >= 0)
1954 r->sig[pos / HOST_BITS_PER_LONG]
1955 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1956 pos -= 4;
1958 else if (d)
1959 /* Ensure correct rounding by setting last bit if there is
1960 a subsequent nonzero digit. */
1961 r->sig[0] |= 1;
1962 exp += 4;
1963 str++;
1965 if (*str == '.')
1967 str++;
1968 if (pos == SIGNIFICAND_BITS - 4)
1970 while (*str == '0')
1971 str++, exp -= 4;
1973 while (1)
1975 d = hex_value (*str);
1976 if (d == _hex_bad)
1977 break;
1978 if (pos >= 0)
1980 r->sig[pos / HOST_BITS_PER_LONG]
1981 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1982 pos -= 4;
1984 else if (d)
1985 /* Ensure correct rounding by setting last bit if there is
1986 a subsequent nonzero digit. */
1987 r->sig[0] |= 1;
1988 str++;
1992 /* If the mantissa is zero, ignore the exponent. */
1993 if (!cmp_significand_0 (r))
1994 goto is_a_zero;
1996 if (*str == 'p' || *str == 'P')
1998 bool exp_neg = false;
2000 str++;
2001 if (*str == '-')
2003 exp_neg = true;
2004 str++;
2006 else if (*str == '+')
2007 str++;
2009 d = 0;
2010 while (ISDIGIT (*str))
2012 d *= 10;
2013 d += *str - '0';
2014 if (d > MAX_EXP)
2016 /* Overflowed the exponent. */
2017 if (exp_neg)
2018 goto underflow;
2019 else
2020 goto overflow;
2022 str++;
2024 if (exp_neg)
2025 d = -d;
2027 exp += d;
2030 r->cl = rvc_normal;
2031 SET_REAL_EXP (r, exp);
2033 normalize (r);
2035 else
2037 /* Decimal floating point. */
2038 const char *cstr = str;
2039 mpfr_t m;
2040 bool inexact;
2042 while (*cstr == '0')
2043 cstr++;
2044 if (*cstr == '.')
2046 cstr++;
2047 while (*cstr == '0')
2048 cstr++;
2051 /* If the mantissa is zero, ignore the exponent. */
2052 if (!ISDIGIT (*cstr))
2053 goto is_a_zero;
2055 /* Nonzero value, possibly overflowing or underflowing. */
2056 mpfr_init2 (m, SIGNIFICAND_BITS);
2057 inexact = mpfr_strtofr (m, str, NULL, 10, GMP_RNDZ);
2058 /* The result should never be a NaN, and because the rounding is
2059 toward zero should never be an infinity. */
2060 gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
2061 if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
2063 mpfr_clear (m);
2064 goto underflow;
2066 else if (mpfr_get_exp (m) > MAX_EXP - 4)
2068 mpfr_clear (m);
2069 goto overflow;
2071 else
2073 real_from_mpfr (r, m, NULL_TREE, GMP_RNDZ);
2074 /* 1 to 3 bits may have been shifted off (with a sticky bit)
2075 because the hex digits used in real_from_mpfr did not
2076 start with a digit 8 to f, but the exponent bounds above
2077 should have avoided underflow or overflow. */
2078 gcc_assert (r->cl == rvc_normal);
2079 /* Set a sticky bit if mpfr_strtofr was inexact. */
2080 r->sig[0] |= inexact;
2081 mpfr_clear (m);
2085 r->sign = sign;
2086 return 0;
2088 is_a_zero:
2089 get_zero (r, sign);
2090 return 0;
2092 underflow:
2093 get_zero (r, sign);
2094 return -1;
2096 overflow:
2097 get_inf (r, sign);
2098 return 1;
2101 /* Legacy. Similar, but return the result directly. */
2103 REAL_VALUE_TYPE
2104 real_from_string2 (const char *s, format_helper fmt)
2106 REAL_VALUE_TYPE r;
2108 real_from_string (&r, s);
2109 if (fmt)
2110 real_convert (&r, fmt, &r);
2112 return r;
2115 /* Initialize R from string S and desired format FMT. */
2117 void
2118 real_from_string3 (REAL_VALUE_TYPE *r, const char *s, format_helper fmt)
2120 if (fmt.decimal_p ())
2121 decimal_real_from_string (r, s);
2122 else
2123 real_from_string (r, s);
2125 if (fmt)
2126 real_convert (r, fmt, r);
2129 /* Initialize R from the wide_int VAL_IN. Round it to format FMT if
2130 FMT is nonnull. */
2132 void
2133 real_from_integer (REAL_VALUE_TYPE *r, format_helper fmt,
2134 const wide_int_ref &val_in, signop sgn)
2136 if (val_in == 0)
2137 get_zero (r, 0);
2138 else
2140 unsigned int len = val_in.get_precision ();
2141 int i, j, e = 0;
2142 int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
2143 const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
2144 * HOST_BITS_PER_WIDE_INT);
2146 memset (r, 0, sizeof (*r));
2147 r->cl = rvc_normal;
2148 r->sign = wi::neg_p (val_in, sgn);
2150 /* We have to ensure we can negate the largest negative number. */
2151 wide_int val = wide_int::from (val_in, maxbitlen, sgn);
2153 if (r->sign)
2154 val = -val;
2156 /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
2157 won't work with precisions that are not a multiple of
2158 HOST_BITS_PER_WIDE_INT. */
2159 len += HOST_BITS_PER_WIDE_INT - 1;
2161 /* Ensure we can represent the largest negative number. */
2162 len += 1;
2164 len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
2166 /* Cap the size to the size allowed by real.h. */
2167 if (len > realmax)
2169 HOST_WIDE_INT cnt_l_z;
2170 cnt_l_z = wi::clz (val);
2172 if (maxbitlen - cnt_l_z > realmax)
2174 e = maxbitlen - cnt_l_z - realmax;
2176 /* This value is too large, we must shift it right to
2177 preserve all the bits we can, and then bump the
2178 exponent up by that amount. */
2179 val = wi::lrshift (val, e);
2181 len = realmax;
2184 /* Clear out top bits so elt will work with precisions that aren't
2185 a multiple of HOST_BITS_PER_WIDE_INT. */
2186 val = wide_int::from (val, len, sgn);
2187 len = len / HOST_BITS_PER_WIDE_INT;
2189 SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
2191 j = SIGSZ - 1;
2192 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2193 for (i = len - 1; i >= 0; i--)
2195 r->sig[j--] = val.elt (i);
2196 if (j < 0)
2197 break;
2199 else
2201 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2202 for (i = len - 1; i >= 0; i--)
2204 HOST_WIDE_INT e = val.elt (i);
2205 r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
2206 if (j < 0)
2207 break;
2208 r->sig[j--] = e;
2209 if (j < 0)
2210 break;
2214 normalize (r);
2217 if (fmt.decimal_p ())
2218 decimal_from_integer (r);
2219 else if (fmt)
2220 real_convert (r, fmt, r);
2223 /* Render R, an integral value, as a floating point constant with no
2224 specified exponent. */
2226 static void
2227 decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
2228 size_t buf_size)
2230 int dec_exp, digit, digits;
2231 REAL_VALUE_TYPE r, pten;
2232 char *p;
2233 bool sign;
2235 r = *r_orig;
2237 if (r.cl == rvc_zero)
2239 strcpy (str, "0.");
2240 return;
2243 sign = r.sign;
2244 r.sign = 0;
2246 dec_exp = REAL_EXP (&r) * M_LOG10_2;
2247 digits = dec_exp + 1;
2248 gcc_assert ((digits + 2) < (int)buf_size);
2250 pten = *real_digit (1);
2251 times_pten (&pten, dec_exp);
2253 p = str;
2254 if (sign)
2255 *p++ = '-';
2257 digit = rtd_divmod (&r, &pten);
2258 gcc_assert (digit >= 0 && digit <= 9);
2259 *p++ = digit + '0';
2260 while (--digits > 0)
2262 times_pten (&r, 1);
2263 digit = rtd_divmod (&r, &pten);
2264 *p++ = digit + '0';
2266 *p++ = '.';
2267 *p++ = '\0';
2270 /* Convert a real with an integral value to decimal float. */
2272 static void
2273 decimal_from_integer (REAL_VALUE_TYPE *r)
2275 char str[256];
2277 decimal_integer_string (str, r, sizeof (str) - 1);
2278 decimal_real_from_string (r, str);
2281 /* Returns 10**2**N. */
2283 static const REAL_VALUE_TYPE *
2284 ten_to_ptwo (int n)
2286 static REAL_VALUE_TYPE tens[EXP_BITS];
2288 gcc_assert (n >= 0);
2289 gcc_assert (n < EXP_BITS);
2291 if (tens[n].cl == rvc_zero)
2293 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2295 HOST_WIDE_INT t = 10;
2296 int i;
2298 for (i = 0; i < n; ++i)
2299 t *= t;
2301 real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
2303 else
2305 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2306 do_multiply (&tens[n], t, t);
2310 return &tens[n];
2313 /* Returns 10**(-2**N). */
2315 static const REAL_VALUE_TYPE *
2316 ten_to_mptwo (int n)
2318 static REAL_VALUE_TYPE tens[EXP_BITS];
2320 gcc_assert (n >= 0);
2321 gcc_assert (n < EXP_BITS);
2323 if (tens[n].cl == rvc_zero)
2324 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2326 return &tens[n];
2329 /* Returns N. */
2331 static const REAL_VALUE_TYPE *
2332 real_digit (int n)
2334 static REAL_VALUE_TYPE num[10];
2336 gcc_assert (n >= 0);
2337 gcc_assert (n <= 9);
2339 if (n > 0 && num[n].cl == rvc_zero)
2340 real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
2342 return &num[n];
2345 /* Multiply R by 10**EXP. */
2347 static void
2348 times_pten (REAL_VALUE_TYPE *r, int exp)
2350 REAL_VALUE_TYPE pten, *rr;
2351 bool negative = (exp < 0);
2352 int i;
2354 if (negative)
2356 exp = -exp;
2357 pten = *real_digit (1);
2358 rr = &pten;
2360 else
2361 rr = r;
2363 for (i = 0; exp > 0; ++i, exp >>= 1)
2364 if (exp & 1)
2365 do_multiply (rr, rr, ten_to_ptwo (i));
2367 if (negative)
2368 do_divide (r, r, &pten);
2371 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2373 const REAL_VALUE_TYPE *
2374 dconst_e_ptr (void)
2376 static REAL_VALUE_TYPE value;
2378 /* Initialize mathematical constants for constant folding builtins.
2379 These constants need to be given to at least 160 bits precision. */
2380 if (value.cl == rvc_zero)
2382 mpfr_t m;
2383 mpfr_init2 (m, SIGNIFICAND_BITS);
2384 mpfr_set_ui (m, 1, GMP_RNDN);
2385 mpfr_exp (m, m, GMP_RNDN);
2386 real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
2387 mpfr_clear (m);
2390 return &value;
2393 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
2395 #define CACHED_FRACTION(NAME, N) \
2396 const REAL_VALUE_TYPE * \
2397 NAME (void) \
2399 static REAL_VALUE_TYPE value; \
2401 /* Initialize mathematical constants for constant folding builtins. \
2402 These constants need to be given to at least 160 bits \
2403 precision. */ \
2404 if (value.cl == rvc_zero) \
2405 real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
2406 return &value; \
2409 CACHED_FRACTION (dconst_third_ptr, 3)
2410 CACHED_FRACTION (dconst_quarter_ptr, 4)
2411 CACHED_FRACTION (dconst_sixth_ptr, 6)
2412 CACHED_FRACTION (dconst_ninth_ptr, 9)
2414 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2416 const REAL_VALUE_TYPE *
2417 dconst_sqrt2_ptr (void)
2419 static REAL_VALUE_TYPE value;
2421 /* Initialize mathematical constants for constant folding builtins.
2422 These constants need to be given to at least 160 bits precision. */
2423 if (value.cl == rvc_zero)
2425 mpfr_t m;
2426 mpfr_init2 (m, SIGNIFICAND_BITS);
2427 mpfr_sqrt_ui (m, 2, GMP_RNDN);
2428 real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
2429 mpfr_clear (m);
2431 return &value;
2434 /* Fills R with +Inf. */
2436 void
2437 real_inf (REAL_VALUE_TYPE *r)
2439 get_inf (r, 0);
2442 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2443 we force a QNaN, else we force an SNaN. The string, if not empty,
2444 is parsed as a number and placed in the significand. Return true
2445 if the string was successfully parsed. */
2447 bool
2448 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2449 format_helper fmt)
2451 if (*str == 0)
2453 if (quiet)
2454 get_canonical_qnan (r, 0);
2455 else
2456 get_canonical_snan (r, 0);
2458 else
2460 int base = 10, d;
2462 memset (r, 0, sizeof (*r));
2463 r->cl = rvc_nan;
2465 /* Parse akin to strtol into the significand of R. */
2467 while (ISSPACE (*str))
2468 str++;
2469 if (*str == '-')
2470 str++;
2471 else if (*str == '+')
2472 str++;
2473 if (*str == '0')
2475 str++;
2476 if (*str == 'x' || *str == 'X')
2478 base = 16;
2479 str++;
2481 else
2482 base = 8;
2485 while ((d = hex_value (*str)) < base)
2487 REAL_VALUE_TYPE u;
2489 switch (base)
2491 case 8:
2492 lshift_significand (r, r, 3);
2493 break;
2494 case 16:
2495 lshift_significand (r, r, 4);
2496 break;
2497 case 10:
2498 lshift_significand_1 (&u, r);
2499 lshift_significand (r, r, 3);
2500 add_significands (r, r, &u);
2501 break;
2502 default:
2503 gcc_unreachable ();
2506 get_zero (&u, 0);
2507 u.sig[0] = d;
2508 add_significands (r, r, &u);
2510 str++;
2513 /* Must have consumed the entire string for success. */
2514 if (*str != 0)
2515 return false;
2517 /* Shift the significand into place such that the bits
2518 are in the most significant bits for the format. */
2519 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2521 /* Our MSB is always unset for NaNs. */
2522 r->sig[SIGSZ-1] &= ~SIG_MSB;
2524 /* Force quiet or signalling NaN. */
2525 r->signalling = !quiet;
2528 return true;
2531 /* Fills R with the largest finite value representable in mode MODE.
2532 If SIGN is nonzero, R is set to the most negative finite value. */
2534 void
2535 real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
2537 const struct real_format *fmt;
2538 int np2;
2540 fmt = REAL_MODE_FORMAT (mode);
2541 gcc_assert (fmt);
2542 memset (r, 0, sizeof (*r));
2544 if (fmt->b == 10)
2545 decimal_real_maxval (r, sign, mode);
2546 else
2548 r->cl = rvc_normal;
2549 r->sign = sign;
2550 SET_REAL_EXP (r, fmt->emax);
2552 np2 = SIGNIFICAND_BITS - fmt->p;
2553 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2554 clear_significand_below (r, np2);
2556 if (fmt->pnan < fmt->p)
2557 /* This is an IBM extended double format made up of two IEEE
2558 doubles. The value of the long double is the sum of the
2559 values of the two parts. The most significant part is
2560 required to be the value of the long double rounded to the
2561 nearest double. Rounding means we need a slightly smaller
2562 value for LDBL_MAX. */
2563 clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
2567 /* Fills R with 2**N. */
2569 void
2570 real_2expN (REAL_VALUE_TYPE *r, int n, format_helper fmt)
2572 memset (r, 0, sizeof (*r));
2574 n++;
2575 if (n > MAX_EXP)
2576 r->cl = rvc_inf;
2577 else if (n < -MAX_EXP)
2579 else
2581 r->cl = rvc_normal;
2582 SET_REAL_EXP (r, n);
2583 r->sig[SIGSZ-1] = SIG_MSB;
2585 if (fmt.decimal_p ())
2586 decimal_real_convert (r, fmt, r);
2590 static void
2591 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2593 int p2, np2, i, w;
2594 int emin2m1, emax2;
2595 bool round_up = false;
2597 if (r->decimal)
2599 if (fmt->b == 10)
2601 decimal_round_for_format (fmt, r);
2602 return;
2604 /* FIXME. We can come here via fp_easy_constant
2605 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2606 investigated whether this convert needs to be here, or
2607 something else is missing. */
2608 decimal_real_convert (r, REAL_MODE_FORMAT (DFmode), r);
2611 p2 = fmt->p;
2612 emin2m1 = fmt->emin - 1;
2613 emax2 = fmt->emax;
2615 np2 = SIGNIFICAND_BITS - p2;
2616 switch (r->cl)
2618 underflow:
2619 get_zero (r, r->sign);
2620 case rvc_zero:
2621 if (!fmt->has_signed_zero)
2622 r->sign = 0;
2623 return;
2625 overflow:
2626 get_inf (r, r->sign);
2627 case rvc_inf:
2628 return;
2630 case rvc_nan:
2631 clear_significand_below (r, np2);
2632 return;
2634 case rvc_normal:
2635 break;
2637 default:
2638 gcc_unreachable ();
2641 /* Check the range of the exponent. If we're out of range,
2642 either underflow or overflow. */
2643 if (REAL_EXP (r) > emax2)
2644 goto overflow;
2645 else if (REAL_EXP (r) <= emin2m1)
2647 int diff;
2649 if (!fmt->has_denorm)
2651 /* Don't underflow completely until we've had a chance to round. */
2652 if (REAL_EXP (r) < emin2m1)
2653 goto underflow;
2655 else
2657 diff = emin2m1 - REAL_EXP (r) + 1;
2658 if (diff > p2)
2659 goto underflow;
2661 /* De-normalize the significand. */
2662 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2663 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2667 if (!fmt->round_towards_zero)
2669 /* There are P2 true significand bits, followed by one guard bit,
2670 followed by one sticky bit, followed by stuff. Fold nonzero
2671 stuff into the sticky bit. */
2672 unsigned long sticky;
2673 bool guard, lsb;
2675 sticky = 0;
2676 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2677 sticky |= r->sig[i];
2678 sticky |= r->sig[w]
2679 & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2681 guard = test_significand_bit (r, np2 - 1);
2682 lsb = test_significand_bit (r, np2);
2684 /* Round to even. */
2685 round_up = guard && (sticky || lsb);
2688 if (round_up)
2690 REAL_VALUE_TYPE u;
2691 get_zero (&u, 0);
2692 set_significand_bit (&u, np2);
2694 if (add_significands (r, r, &u))
2696 /* Overflow. Means the significand had been all ones, and
2697 is now all zeros. Need to increase the exponent, and
2698 possibly re-normalize it. */
2699 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2700 if (REAL_EXP (r) > emax2)
2701 goto overflow;
2702 r->sig[SIGSZ-1] = SIG_MSB;
2706 /* Catch underflow that we deferred until after rounding. */
2707 if (REAL_EXP (r) <= emin2m1)
2708 goto underflow;
2710 /* Clear out trailing garbage. */
2711 clear_significand_below (r, np2);
2714 /* Extend or truncate to a new format. */
2716 void
2717 real_convert (REAL_VALUE_TYPE *r, format_helper fmt,
2718 const REAL_VALUE_TYPE *a)
2720 *r = *a;
2722 if (a->decimal || fmt->b == 10)
2723 decimal_real_convert (r, fmt, a);
2725 round_for_format (fmt, r);
2727 /* round_for_format de-normalizes denormals. Undo just that part. */
2728 if (r->cl == rvc_normal)
2729 normalize (r);
2732 /* Legacy. Likewise, except return the struct directly. */
2734 REAL_VALUE_TYPE
2735 real_value_truncate (format_helper fmt, REAL_VALUE_TYPE a)
2737 REAL_VALUE_TYPE r;
2738 real_convert (&r, fmt, &a);
2739 return r;
2742 /* Return true if truncating to FMT is exact. */
2744 bool
2745 exact_real_truncate (format_helper fmt, const REAL_VALUE_TYPE *a)
2747 REAL_VALUE_TYPE t;
2748 int emin2m1;
2750 /* Don't allow conversion to denormals. */
2751 emin2m1 = fmt->emin - 1;
2752 if (REAL_EXP (a) <= emin2m1)
2753 return false;
2755 /* After conversion to the new format, the value must be identical. */
2756 real_convert (&t, fmt, a);
2757 return real_identical (&t, a);
2760 /* Write R to the given target format. Place the words of the result
2761 in target word order in BUF. There are always 32 bits in each
2762 long, no matter the size of the host long.
2764 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2766 long
2767 real_to_target (long *buf, const REAL_VALUE_TYPE *r_orig,
2768 format_helper fmt)
2770 REAL_VALUE_TYPE r;
2771 long buf1;
2773 r = *r_orig;
2774 round_for_format (fmt, &r);
2776 if (!buf)
2777 buf = &buf1;
2778 (*fmt->encode) (fmt, buf, &r);
2780 return *buf;
2783 /* Read R from the given target format. Read the words of the result
2784 in target word order in BUF. There are always 32 bits in each
2785 long, no matter the size of the host long. */
2787 void
2788 real_from_target (REAL_VALUE_TYPE *r, const long *buf, format_helper fmt)
2790 (*fmt->decode) (fmt, r, buf);
2793 /* Return the number of bits of the largest binary value that the
2794 significand of FMT will hold. */
2795 /* ??? Legacy. Should get access to real_format directly. */
2798 significand_size (format_helper fmt)
2800 if (fmt == NULL)
2801 return 0;
2803 if (fmt->b == 10)
2805 /* Return the size in bits of the largest binary value that can be
2806 held by the decimal coefficient for this format. This is one more
2807 than the number of bits required to hold the largest coefficient
2808 of this format. */
2809 double log2_10 = 3.3219281;
2810 return fmt->p * log2_10;
2812 return fmt->p;
2815 /* Return a hash value for the given real value. */
2816 /* ??? The "unsigned int" return value is intended to be hashval_t,
2817 but I didn't want to pull hashtab.h into real.h. */
2819 unsigned int
2820 real_hash (const REAL_VALUE_TYPE *r)
2822 unsigned int h;
2823 size_t i;
2825 h = r->cl | (r->sign << 2);
2826 switch (r->cl)
2828 case rvc_zero:
2829 case rvc_inf:
2830 return h;
2832 case rvc_normal:
2833 h |= REAL_EXP (r) << 3;
2834 break;
2836 case rvc_nan:
2837 if (r->signalling)
2838 h ^= (unsigned int)-1;
2839 if (r->canonical)
2840 return h;
2841 break;
2843 default:
2844 gcc_unreachable ();
2847 if (sizeof (unsigned long) > sizeof (unsigned int))
2848 for (i = 0; i < SIGSZ; ++i)
2850 unsigned long s = r->sig[i];
2851 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2853 else
2854 for (i = 0; i < SIGSZ; ++i)
2855 h ^= r->sig[i];
2857 return h;
2860 /* IEEE single-precision format. */
2862 static void encode_ieee_single (const struct real_format *fmt,
2863 long *, const REAL_VALUE_TYPE *);
2864 static void decode_ieee_single (const struct real_format *,
2865 REAL_VALUE_TYPE *, const long *);
2867 static void
2868 encode_ieee_single (const struct real_format *fmt, long *buf,
2869 const REAL_VALUE_TYPE *r)
2871 unsigned long image, sig, exp;
2872 unsigned long sign = r->sign;
2873 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2875 image = sign << 31;
2876 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2878 switch (r->cl)
2880 case rvc_zero:
2881 break;
2883 case rvc_inf:
2884 if (fmt->has_inf)
2885 image |= 255 << 23;
2886 else
2887 image |= 0x7fffffff;
2888 break;
2890 case rvc_nan:
2891 if (fmt->has_nans)
2893 if (r->canonical)
2894 sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
2895 if (r->signalling == fmt->qnan_msb_set)
2896 sig &= ~(1 << 22);
2897 else
2898 sig |= 1 << 22;
2899 if (sig == 0)
2900 sig = 1 << 21;
2902 image |= 255 << 23;
2903 image |= sig;
2905 else
2906 image |= 0x7fffffff;
2907 break;
2909 case rvc_normal:
2910 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2911 whereas the intermediate representation is 0.F x 2**exp.
2912 Which means we're off by one. */
2913 if (denormal)
2914 exp = 0;
2915 else
2916 exp = REAL_EXP (r) + 127 - 1;
2917 image |= exp << 23;
2918 image |= sig;
2919 break;
2921 default:
2922 gcc_unreachable ();
2925 buf[0] = image;
2928 static void
2929 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2930 const long *buf)
2932 unsigned long image = buf[0] & 0xffffffff;
2933 bool sign = (image >> 31) & 1;
2934 int exp = (image >> 23) & 0xff;
2936 memset (r, 0, sizeof (*r));
2937 image <<= HOST_BITS_PER_LONG - 24;
2938 image &= ~SIG_MSB;
2940 if (exp == 0)
2942 if (image && fmt->has_denorm)
2944 r->cl = rvc_normal;
2945 r->sign = sign;
2946 SET_REAL_EXP (r, -126);
2947 r->sig[SIGSZ-1] = image << 1;
2948 normalize (r);
2950 else if (fmt->has_signed_zero)
2951 r->sign = sign;
2953 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2955 if (image)
2957 r->cl = rvc_nan;
2958 r->sign = sign;
2959 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2960 ^ fmt->qnan_msb_set);
2961 r->sig[SIGSZ-1] = image;
2963 else
2965 r->cl = rvc_inf;
2966 r->sign = sign;
2969 else
2971 r->cl = rvc_normal;
2972 r->sign = sign;
2973 SET_REAL_EXP (r, exp - 127 + 1);
2974 r->sig[SIGSZ-1] = image | SIG_MSB;
2978 const struct real_format ieee_single_format =
2980 encode_ieee_single,
2981 decode_ieee_single,
2985 -125,
2986 128,
2989 false,
2990 true,
2991 true,
2992 true,
2993 true,
2994 true,
2995 true,
2996 false,
2997 "ieee_single"
3000 const struct real_format mips_single_format =
3002 encode_ieee_single,
3003 decode_ieee_single,
3007 -125,
3008 128,
3011 false,
3012 true,
3013 true,
3014 true,
3015 true,
3016 true,
3017 false,
3018 true,
3019 "mips_single"
3022 const struct real_format motorola_single_format =
3024 encode_ieee_single,
3025 decode_ieee_single,
3029 -125,
3030 128,
3033 false,
3034 true,
3035 true,
3036 true,
3037 true,
3038 true,
3039 true,
3040 true,
3041 "motorola_single"
3044 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3045 single precision with the following differences:
3046 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
3047 are generated.
3048 - NaNs are not supported.
3049 - The range of non-zero numbers in binary is
3050 (001)[1.]000...000 to (255)[1.]111...111.
3051 - Denormals can be represented, but are treated as +0.0 when
3052 used as an operand and are never generated as a result.
3053 - -0.0 can be represented, but a zero result is always +0.0.
3054 - the only supported rounding mode is trunction (towards zero). */
3055 const struct real_format spu_single_format =
3057 encode_ieee_single,
3058 decode_ieee_single,
3062 -125,
3063 129,
3066 true,
3067 false,
3068 false,
3069 false,
3070 true,
3071 true,
3072 false,
3073 false,
3074 "spu_single"
3077 /* IEEE double-precision format. */
3079 static void encode_ieee_double (const struct real_format *fmt,
3080 long *, const REAL_VALUE_TYPE *);
3081 static void decode_ieee_double (const struct real_format *,
3082 REAL_VALUE_TYPE *, const long *);
3084 static void
3085 encode_ieee_double (const struct real_format *fmt, long *buf,
3086 const REAL_VALUE_TYPE *r)
3088 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
3089 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3091 image_hi = r->sign << 31;
3092 image_lo = 0;
3094 if (HOST_BITS_PER_LONG == 64)
3096 sig_hi = r->sig[SIGSZ-1];
3097 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
3098 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
3100 else
3102 sig_hi = r->sig[SIGSZ-1];
3103 sig_lo = r->sig[SIGSZ-2];
3104 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
3105 sig_hi = (sig_hi >> 11) & 0xfffff;
3108 switch (r->cl)
3110 case rvc_zero:
3111 break;
3113 case rvc_inf:
3114 if (fmt->has_inf)
3115 image_hi |= 2047 << 20;
3116 else
3118 image_hi |= 0x7fffffff;
3119 image_lo = 0xffffffff;
3121 break;
3123 case rvc_nan:
3124 if (fmt->has_nans)
3126 if (r->canonical)
3128 if (fmt->canonical_nan_lsbs_set)
3130 sig_hi = (1 << 19) - 1;
3131 sig_lo = 0xffffffff;
3133 else
3135 sig_hi = 0;
3136 sig_lo = 0;
3139 if (r->signalling == fmt->qnan_msb_set)
3140 sig_hi &= ~(1 << 19);
3141 else
3142 sig_hi |= 1 << 19;
3143 if (sig_hi == 0 && sig_lo == 0)
3144 sig_hi = 1 << 18;
3146 image_hi |= 2047 << 20;
3147 image_hi |= sig_hi;
3148 image_lo = sig_lo;
3150 else
3152 image_hi |= 0x7fffffff;
3153 image_lo = 0xffffffff;
3155 break;
3157 case rvc_normal:
3158 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3159 whereas the intermediate representation is 0.F x 2**exp.
3160 Which means we're off by one. */
3161 if (denormal)
3162 exp = 0;
3163 else
3164 exp = REAL_EXP (r) + 1023 - 1;
3165 image_hi |= exp << 20;
3166 image_hi |= sig_hi;
3167 image_lo = sig_lo;
3168 break;
3170 default:
3171 gcc_unreachable ();
3174 if (FLOAT_WORDS_BIG_ENDIAN)
3175 buf[0] = image_hi, buf[1] = image_lo;
3176 else
3177 buf[0] = image_lo, buf[1] = image_hi;
3180 static void
3181 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3182 const long *buf)
3184 unsigned long image_hi, image_lo;
3185 bool sign;
3186 int exp;
3188 if (FLOAT_WORDS_BIG_ENDIAN)
3189 image_hi = buf[0], image_lo = buf[1];
3190 else
3191 image_lo = buf[0], image_hi = buf[1];
3192 image_lo &= 0xffffffff;
3193 image_hi &= 0xffffffff;
3195 sign = (image_hi >> 31) & 1;
3196 exp = (image_hi >> 20) & 0x7ff;
3198 memset (r, 0, sizeof (*r));
3200 image_hi <<= 32 - 21;
3201 image_hi |= image_lo >> 21;
3202 image_hi &= 0x7fffffff;
3203 image_lo <<= 32 - 21;
3205 if (exp == 0)
3207 if ((image_hi || image_lo) && fmt->has_denorm)
3209 r->cl = rvc_normal;
3210 r->sign = sign;
3211 SET_REAL_EXP (r, -1022);
3212 if (HOST_BITS_PER_LONG == 32)
3214 image_hi = (image_hi << 1) | (image_lo >> 31);
3215 image_lo <<= 1;
3216 r->sig[SIGSZ-1] = image_hi;
3217 r->sig[SIGSZ-2] = image_lo;
3219 else
3221 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
3222 r->sig[SIGSZ-1] = image_hi;
3224 normalize (r);
3226 else if (fmt->has_signed_zero)
3227 r->sign = sign;
3229 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
3231 if (image_hi || image_lo)
3233 r->cl = rvc_nan;
3234 r->sign = sign;
3235 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3236 if (HOST_BITS_PER_LONG == 32)
3238 r->sig[SIGSZ-1] = image_hi;
3239 r->sig[SIGSZ-2] = image_lo;
3241 else
3242 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
3244 else
3246 r->cl = rvc_inf;
3247 r->sign = sign;
3250 else
3252 r->cl = rvc_normal;
3253 r->sign = sign;
3254 SET_REAL_EXP (r, exp - 1023 + 1);
3255 if (HOST_BITS_PER_LONG == 32)
3257 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
3258 r->sig[SIGSZ-2] = image_lo;
3260 else
3261 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
3265 const struct real_format ieee_double_format =
3267 encode_ieee_double,
3268 decode_ieee_double,
3272 -1021,
3273 1024,
3276 false,
3277 true,
3278 true,
3279 true,
3280 true,
3281 true,
3282 true,
3283 false,
3284 "ieee_double"
3287 const struct real_format mips_double_format =
3289 encode_ieee_double,
3290 decode_ieee_double,
3294 -1021,
3295 1024,
3298 false,
3299 true,
3300 true,
3301 true,
3302 true,
3303 true,
3304 false,
3305 true,
3306 "mips_double"
3309 const struct real_format motorola_double_format =
3311 encode_ieee_double,
3312 decode_ieee_double,
3316 -1021,
3317 1024,
3320 false,
3321 true,
3322 true,
3323 true,
3324 true,
3325 true,
3326 true,
3327 true,
3328 "motorola_double"
3331 /* IEEE extended real format. This comes in three flavors: Intel's as
3332 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3333 12- and 16-byte images may be big- or little endian; Motorola's is
3334 always big endian. */
3336 /* Helper subroutine which converts from the internal format to the
3337 12-byte little-endian Intel format. Functions below adjust this
3338 for the other possible formats. */
3339 static void
3340 encode_ieee_extended (const struct real_format *fmt, long *buf,
3341 const REAL_VALUE_TYPE *r)
3343 unsigned long image_hi, sig_hi, sig_lo;
3344 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3346 image_hi = r->sign << 15;
3347 sig_hi = sig_lo = 0;
3349 switch (r->cl)
3351 case rvc_zero:
3352 break;
3354 case rvc_inf:
3355 if (fmt->has_inf)
3357 image_hi |= 32767;
3359 /* Intel requires the explicit integer bit to be set, otherwise
3360 it considers the value a "pseudo-infinity". Motorola docs
3361 say it doesn't care. */
3362 sig_hi = 0x80000000;
3364 else
3366 image_hi |= 32767;
3367 sig_lo = sig_hi = 0xffffffff;
3369 break;
3371 case rvc_nan:
3372 if (fmt->has_nans)
3374 image_hi |= 32767;
3375 if (r->canonical)
3377 if (fmt->canonical_nan_lsbs_set)
3379 sig_hi = (1 << 30) - 1;
3380 sig_lo = 0xffffffff;
3383 else if (HOST_BITS_PER_LONG == 32)
3385 sig_hi = r->sig[SIGSZ-1];
3386 sig_lo = r->sig[SIGSZ-2];
3388 else
3390 sig_lo = r->sig[SIGSZ-1];
3391 sig_hi = sig_lo >> 31 >> 1;
3392 sig_lo &= 0xffffffff;
3394 if (r->signalling == fmt->qnan_msb_set)
3395 sig_hi &= ~(1 << 30);
3396 else
3397 sig_hi |= 1 << 30;
3398 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3399 sig_hi = 1 << 29;
3401 /* Intel requires the explicit integer bit to be set, otherwise
3402 it considers the value a "pseudo-nan". Motorola docs say it
3403 doesn't care. */
3404 sig_hi |= 0x80000000;
3406 else
3408 image_hi |= 32767;
3409 sig_lo = sig_hi = 0xffffffff;
3411 break;
3413 case rvc_normal:
3415 int exp = REAL_EXP (r);
3417 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3418 whereas the intermediate representation is 0.F x 2**exp.
3419 Which means we're off by one.
3421 Except for Motorola, which consider exp=0 and explicit
3422 integer bit set to continue to be normalized. In theory
3423 this discrepancy has been taken care of by the difference
3424 in fmt->emin in round_for_format. */
3426 if (denormal)
3427 exp = 0;
3428 else
3430 exp += 16383 - 1;
3431 gcc_assert (exp >= 0);
3433 image_hi |= exp;
3435 if (HOST_BITS_PER_LONG == 32)
3437 sig_hi = r->sig[SIGSZ-1];
3438 sig_lo = r->sig[SIGSZ-2];
3440 else
3442 sig_lo = r->sig[SIGSZ-1];
3443 sig_hi = sig_lo >> 31 >> 1;
3444 sig_lo &= 0xffffffff;
3447 break;
3449 default:
3450 gcc_unreachable ();
3453 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3456 /* Convert from the internal format to the 12-byte Motorola format
3457 for an IEEE extended real. */
3458 static void
3459 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3460 const REAL_VALUE_TYPE *r)
3462 long intermed[3];
3463 encode_ieee_extended (fmt, intermed, r);
3465 if (r->cl == rvc_inf)
3466 /* For infinity clear the explicit integer bit again, so that the
3467 format matches the canonical infinity generated by the FPU. */
3468 intermed[1] = 0;
3470 /* Motorola chips are assumed always to be big-endian. Also, the
3471 padding in a Motorola extended real goes between the exponent and
3472 the mantissa. At this point the mantissa is entirely within
3473 elements 0 and 1 of intermed, and the exponent entirely within
3474 element 2, so all we have to do is swap the order around, and
3475 shift element 2 left 16 bits. */
3476 buf[0] = intermed[2] << 16;
3477 buf[1] = intermed[1];
3478 buf[2] = intermed[0];
3481 /* Convert from the internal format to the 12-byte Intel format for
3482 an IEEE extended real. */
3483 static void
3484 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3485 const REAL_VALUE_TYPE *r)
3487 if (FLOAT_WORDS_BIG_ENDIAN)
3489 /* All the padding in an Intel-format extended real goes at the high
3490 end, which in this case is after the mantissa, not the exponent.
3491 Therefore we must shift everything down 16 bits. */
3492 long intermed[3];
3493 encode_ieee_extended (fmt, intermed, r);
3494 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3495 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3496 buf[2] = (intermed[0] << 16);
3498 else
3499 /* encode_ieee_extended produces what we want directly. */
3500 encode_ieee_extended (fmt, buf, r);
3503 /* Convert from the internal format to the 16-byte Intel format for
3504 an IEEE extended real. */
3505 static void
3506 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3507 const REAL_VALUE_TYPE *r)
3509 /* All the padding in an Intel-format extended real goes at the high end. */
3510 encode_ieee_extended_intel_96 (fmt, buf, r);
3511 buf[3] = 0;
3514 /* As above, we have a helper function which converts from 12-byte
3515 little-endian Intel format to internal format. Functions below
3516 adjust for the other possible formats. */
3517 static void
3518 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3519 const long *buf)
3521 unsigned long image_hi, sig_hi, sig_lo;
3522 bool sign;
3523 int exp;
3525 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3526 sig_lo &= 0xffffffff;
3527 sig_hi &= 0xffffffff;
3528 image_hi &= 0xffffffff;
3530 sign = (image_hi >> 15) & 1;
3531 exp = image_hi & 0x7fff;
3533 memset (r, 0, sizeof (*r));
3535 if (exp == 0)
3537 if ((sig_hi || sig_lo) && fmt->has_denorm)
3539 r->cl = rvc_normal;
3540 r->sign = sign;
3542 /* When the IEEE format contains a hidden bit, we know that
3543 it's zero at this point, and so shift up the significand
3544 and decrease the exponent to match. In this case, Motorola
3545 defines the explicit integer bit to be valid, so we don't
3546 know whether the msb is set or not. */
3547 SET_REAL_EXP (r, fmt->emin);
3548 if (HOST_BITS_PER_LONG == 32)
3550 r->sig[SIGSZ-1] = sig_hi;
3551 r->sig[SIGSZ-2] = sig_lo;
3553 else
3554 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3556 normalize (r);
3558 else if (fmt->has_signed_zero)
3559 r->sign = sign;
3561 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3563 /* See above re "pseudo-infinities" and "pseudo-nans".
3564 Short summary is that the MSB will likely always be
3565 set, and that we don't care about it. */
3566 sig_hi &= 0x7fffffff;
3568 if (sig_hi || sig_lo)
3570 r->cl = rvc_nan;
3571 r->sign = sign;
3572 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3573 if (HOST_BITS_PER_LONG == 32)
3575 r->sig[SIGSZ-1] = sig_hi;
3576 r->sig[SIGSZ-2] = sig_lo;
3578 else
3579 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3581 else
3583 r->cl = rvc_inf;
3584 r->sign = sign;
3587 else
3589 r->cl = rvc_normal;
3590 r->sign = sign;
3591 SET_REAL_EXP (r, exp - 16383 + 1);
3592 if (HOST_BITS_PER_LONG == 32)
3594 r->sig[SIGSZ-1] = sig_hi;
3595 r->sig[SIGSZ-2] = sig_lo;
3597 else
3598 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3602 /* Convert from the internal format to the 12-byte Motorola format
3603 for an IEEE extended real. */
3604 static void
3605 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3606 const long *buf)
3608 long intermed[3];
3610 /* Motorola chips are assumed always to be big-endian. Also, the
3611 padding in a Motorola extended real goes between the exponent and
3612 the mantissa; remove it. */
3613 intermed[0] = buf[2];
3614 intermed[1] = buf[1];
3615 intermed[2] = (unsigned long)buf[0] >> 16;
3617 decode_ieee_extended (fmt, r, intermed);
3620 /* Convert from the internal format to the 12-byte Intel format for
3621 an IEEE extended real. */
3622 static void
3623 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3624 const long *buf)
3626 if (FLOAT_WORDS_BIG_ENDIAN)
3628 /* All the padding in an Intel-format extended real goes at the high
3629 end, which in this case is after the mantissa, not the exponent.
3630 Therefore we must shift everything up 16 bits. */
3631 long intermed[3];
3633 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3634 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3635 intermed[2] = ((unsigned long)buf[0] >> 16);
3637 decode_ieee_extended (fmt, r, intermed);
3639 else
3640 /* decode_ieee_extended produces what we want directly. */
3641 decode_ieee_extended (fmt, r, buf);
3644 /* Convert from the internal format to the 16-byte Intel format for
3645 an IEEE extended real. */
3646 static void
3647 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3648 const long *buf)
3650 /* All the padding in an Intel-format extended real goes at the high end. */
3651 decode_ieee_extended_intel_96 (fmt, r, buf);
3654 const struct real_format ieee_extended_motorola_format =
3656 encode_ieee_extended_motorola,
3657 decode_ieee_extended_motorola,
3661 -16382,
3662 16384,
3665 false,
3666 true,
3667 true,
3668 true,
3669 true,
3670 true,
3671 true,
3672 true,
3673 "ieee_extended_motorola"
3676 const struct real_format ieee_extended_intel_96_format =
3678 encode_ieee_extended_intel_96,
3679 decode_ieee_extended_intel_96,
3683 -16381,
3684 16384,
3687 false,
3688 true,
3689 true,
3690 true,
3691 true,
3692 true,
3693 true,
3694 false,
3695 "ieee_extended_intel_96"
3698 const struct real_format ieee_extended_intel_128_format =
3700 encode_ieee_extended_intel_128,
3701 decode_ieee_extended_intel_128,
3705 -16381,
3706 16384,
3709 false,
3710 true,
3711 true,
3712 true,
3713 true,
3714 true,
3715 true,
3716 false,
3717 "ieee_extended_intel_128"
3720 /* The following caters to i386 systems that set the rounding precision
3721 to 53 bits instead of 64, e.g. FreeBSD. */
3722 const struct real_format ieee_extended_intel_96_round_53_format =
3724 encode_ieee_extended_intel_96,
3725 decode_ieee_extended_intel_96,
3729 -16381,
3730 16384,
3733 false,
3734 true,
3735 true,
3736 true,
3737 true,
3738 true,
3739 true,
3740 false,
3741 "ieee_extended_intel_96_round_53"
3744 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3745 numbers whose sum is equal to the extended precision value. The number
3746 with greater magnitude is first. This format has the same magnitude
3747 range as an IEEE double precision value, but effectively 106 bits of
3748 significand precision. Infinity and NaN are represented by their IEEE
3749 double precision value stored in the first number, the second number is
3750 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3752 static void encode_ibm_extended (const struct real_format *fmt,
3753 long *, const REAL_VALUE_TYPE *);
3754 static void decode_ibm_extended (const struct real_format *,
3755 REAL_VALUE_TYPE *, const long *);
3757 static void
3758 encode_ibm_extended (const struct real_format *fmt, long *buf,
3759 const REAL_VALUE_TYPE *r)
3761 REAL_VALUE_TYPE u, normr, v;
3762 const struct real_format *base_fmt;
3764 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3766 /* Renormalize R before doing any arithmetic on it. */
3767 normr = *r;
3768 if (normr.cl == rvc_normal)
3769 normalize (&normr);
3771 /* u = IEEE double precision portion of significand. */
3772 u = normr;
3773 round_for_format (base_fmt, &u);
3774 encode_ieee_double (base_fmt, &buf[0], &u);
3776 if (u.cl == rvc_normal)
3778 do_add (&v, &normr, &u, 1);
3779 /* Call round_for_format since we might need to denormalize. */
3780 round_for_format (base_fmt, &v);
3781 encode_ieee_double (base_fmt, &buf[2], &v);
3783 else
3785 /* Inf, NaN, 0 are all representable as doubles, so the
3786 least-significant part can be 0.0. */
3787 buf[2] = 0;
3788 buf[3] = 0;
3792 static void
3793 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3794 const long *buf)
3796 REAL_VALUE_TYPE u, v;
3797 const struct real_format *base_fmt;
3799 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3800 decode_ieee_double (base_fmt, &u, &buf[0]);
3802 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3804 decode_ieee_double (base_fmt, &v, &buf[2]);
3805 do_add (r, &u, &v, 0);
3807 else
3808 *r = u;
3811 const struct real_format ibm_extended_format =
3813 encode_ibm_extended,
3814 decode_ibm_extended,
3816 53 + 53,
3818 -1021 + 53,
3819 1024,
3820 127,
3822 false,
3823 true,
3824 true,
3825 true,
3826 true,
3827 true,
3828 true,
3829 false,
3830 "ibm_extended"
3833 const struct real_format mips_extended_format =
3835 encode_ibm_extended,
3836 decode_ibm_extended,
3838 53 + 53,
3840 -1021 + 53,
3841 1024,
3842 127,
3844 false,
3845 true,
3846 true,
3847 true,
3848 true,
3849 true,
3850 false,
3851 true,
3852 "mips_extended"
3856 /* IEEE quad precision format. */
3858 static void encode_ieee_quad (const struct real_format *fmt,
3859 long *, const REAL_VALUE_TYPE *);
3860 static void decode_ieee_quad (const struct real_format *,
3861 REAL_VALUE_TYPE *, const long *);
3863 static void
3864 encode_ieee_quad (const struct real_format *fmt, long *buf,
3865 const REAL_VALUE_TYPE *r)
3867 unsigned long image3, image2, image1, image0, exp;
3868 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3869 REAL_VALUE_TYPE u;
3871 image3 = r->sign << 31;
3872 image2 = 0;
3873 image1 = 0;
3874 image0 = 0;
3876 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3878 switch (r->cl)
3880 case rvc_zero:
3881 break;
3883 case rvc_inf:
3884 if (fmt->has_inf)
3885 image3 |= 32767 << 16;
3886 else
3888 image3 |= 0x7fffffff;
3889 image2 = 0xffffffff;
3890 image1 = 0xffffffff;
3891 image0 = 0xffffffff;
3893 break;
3895 case rvc_nan:
3896 if (fmt->has_nans)
3898 image3 |= 32767 << 16;
3900 if (r->canonical)
3902 if (fmt->canonical_nan_lsbs_set)
3904 image3 |= 0x7fff;
3905 image2 = image1 = image0 = 0xffffffff;
3908 else if (HOST_BITS_PER_LONG == 32)
3910 image0 = u.sig[0];
3911 image1 = u.sig[1];
3912 image2 = u.sig[2];
3913 image3 |= u.sig[3] & 0xffff;
3915 else
3917 image0 = u.sig[0];
3918 image1 = image0 >> 31 >> 1;
3919 image2 = u.sig[1];
3920 image3 |= (image2 >> 31 >> 1) & 0xffff;
3921 image0 &= 0xffffffff;
3922 image2 &= 0xffffffff;
3924 if (r->signalling == fmt->qnan_msb_set)
3925 image3 &= ~0x8000;
3926 else
3927 image3 |= 0x8000;
3928 if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3929 image3 |= 0x4000;
3931 else
3933 image3 |= 0x7fffffff;
3934 image2 = 0xffffffff;
3935 image1 = 0xffffffff;
3936 image0 = 0xffffffff;
3938 break;
3940 case rvc_normal:
3941 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3942 whereas the intermediate representation is 0.F x 2**exp.
3943 Which means we're off by one. */
3944 if (denormal)
3945 exp = 0;
3946 else
3947 exp = REAL_EXP (r) + 16383 - 1;
3948 image3 |= exp << 16;
3950 if (HOST_BITS_PER_LONG == 32)
3952 image0 = u.sig[0];
3953 image1 = u.sig[1];
3954 image2 = u.sig[2];
3955 image3 |= u.sig[3] & 0xffff;
3957 else
3959 image0 = u.sig[0];
3960 image1 = image0 >> 31 >> 1;
3961 image2 = u.sig[1];
3962 image3 |= (image2 >> 31 >> 1) & 0xffff;
3963 image0 &= 0xffffffff;
3964 image2 &= 0xffffffff;
3966 break;
3968 default:
3969 gcc_unreachable ();
3972 if (FLOAT_WORDS_BIG_ENDIAN)
3974 buf[0] = image3;
3975 buf[1] = image2;
3976 buf[2] = image1;
3977 buf[3] = image0;
3979 else
3981 buf[0] = image0;
3982 buf[1] = image1;
3983 buf[2] = image2;
3984 buf[3] = image3;
3988 static void
3989 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3990 const long *buf)
3992 unsigned long image3, image2, image1, image0;
3993 bool sign;
3994 int exp;
3996 if (FLOAT_WORDS_BIG_ENDIAN)
3998 image3 = buf[0];
3999 image2 = buf[1];
4000 image1 = buf[2];
4001 image0 = buf[3];
4003 else
4005 image0 = buf[0];
4006 image1 = buf[1];
4007 image2 = buf[2];
4008 image3 = buf[3];
4010 image0 &= 0xffffffff;
4011 image1 &= 0xffffffff;
4012 image2 &= 0xffffffff;
4014 sign = (image3 >> 31) & 1;
4015 exp = (image3 >> 16) & 0x7fff;
4016 image3 &= 0xffff;
4018 memset (r, 0, sizeof (*r));
4020 if (exp == 0)
4022 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
4024 r->cl = rvc_normal;
4025 r->sign = sign;
4027 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
4028 if (HOST_BITS_PER_LONG == 32)
4030 r->sig[0] = image0;
4031 r->sig[1] = image1;
4032 r->sig[2] = image2;
4033 r->sig[3] = image3;
4035 else
4037 r->sig[0] = (image1 << 31 << 1) | image0;
4038 r->sig[1] = (image3 << 31 << 1) | image2;
4041 normalize (r);
4043 else if (fmt->has_signed_zero)
4044 r->sign = sign;
4046 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
4048 if (image3 | image2 | image1 | image0)
4050 r->cl = rvc_nan;
4051 r->sign = sign;
4052 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
4054 if (HOST_BITS_PER_LONG == 32)
4056 r->sig[0] = image0;
4057 r->sig[1] = image1;
4058 r->sig[2] = image2;
4059 r->sig[3] = image3;
4061 else
4063 r->sig[0] = (image1 << 31 << 1) | image0;
4064 r->sig[1] = (image3 << 31 << 1) | image2;
4066 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4068 else
4070 r->cl = rvc_inf;
4071 r->sign = sign;
4074 else
4076 r->cl = rvc_normal;
4077 r->sign = sign;
4078 SET_REAL_EXP (r, exp - 16383 + 1);
4080 if (HOST_BITS_PER_LONG == 32)
4082 r->sig[0] = image0;
4083 r->sig[1] = image1;
4084 r->sig[2] = image2;
4085 r->sig[3] = image3;
4087 else
4089 r->sig[0] = (image1 << 31 << 1) | image0;
4090 r->sig[1] = (image3 << 31 << 1) | image2;
4092 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4093 r->sig[SIGSZ-1] |= SIG_MSB;
4097 const struct real_format ieee_quad_format =
4099 encode_ieee_quad,
4100 decode_ieee_quad,
4102 113,
4103 113,
4104 -16381,
4105 16384,
4106 127,
4107 127,
4108 false,
4109 true,
4110 true,
4111 true,
4112 true,
4113 true,
4114 true,
4115 false,
4116 "ieee_quad"
4119 const struct real_format mips_quad_format =
4121 encode_ieee_quad,
4122 decode_ieee_quad,
4124 113,
4125 113,
4126 -16381,
4127 16384,
4128 127,
4129 127,
4130 false,
4131 true,
4132 true,
4133 true,
4134 true,
4135 true,
4136 false,
4137 true,
4138 "mips_quad"
4141 /* Descriptions of VAX floating point formats can be found beginning at
4143 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4145 The thing to remember is that they're almost IEEE, except for word
4146 order, exponent bias, and the lack of infinities, nans, and denormals.
4148 We don't implement the H_floating format here, simply because neither
4149 the VAX or Alpha ports use it. */
4151 static void encode_vax_f (const struct real_format *fmt,
4152 long *, const REAL_VALUE_TYPE *);
4153 static void decode_vax_f (const struct real_format *,
4154 REAL_VALUE_TYPE *, const long *);
4155 static void encode_vax_d (const struct real_format *fmt,
4156 long *, const REAL_VALUE_TYPE *);
4157 static void decode_vax_d (const struct real_format *,
4158 REAL_VALUE_TYPE *, const long *);
4159 static void encode_vax_g (const struct real_format *fmt,
4160 long *, const REAL_VALUE_TYPE *);
4161 static void decode_vax_g (const struct real_format *,
4162 REAL_VALUE_TYPE *, const long *);
4164 static void
4165 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4166 const REAL_VALUE_TYPE *r)
4168 unsigned long sign, exp, sig, image;
4170 sign = r->sign << 15;
4172 switch (r->cl)
4174 case rvc_zero:
4175 image = 0;
4176 break;
4178 case rvc_inf:
4179 case rvc_nan:
4180 image = 0xffff7fff | sign;
4181 break;
4183 case rvc_normal:
4184 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4185 exp = REAL_EXP (r) + 128;
4187 image = (sig << 16) & 0xffff0000;
4188 image |= sign;
4189 image |= exp << 7;
4190 image |= sig >> 16;
4191 break;
4193 default:
4194 gcc_unreachable ();
4197 buf[0] = image;
4200 static void
4201 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
4202 REAL_VALUE_TYPE *r, const long *buf)
4204 unsigned long image = buf[0] & 0xffffffff;
4205 int exp = (image >> 7) & 0xff;
4207 memset (r, 0, sizeof (*r));
4209 if (exp != 0)
4211 r->cl = rvc_normal;
4212 r->sign = (image >> 15) & 1;
4213 SET_REAL_EXP (r, exp - 128);
4215 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
4216 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4220 static void
4221 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4222 const REAL_VALUE_TYPE *r)
4224 unsigned long image0, image1, sign = r->sign << 15;
4226 switch (r->cl)
4228 case rvc_zero:
4229 image0 = image1 = 0;
4230 break;
4232 case rvc_inf:
4233 case rvc_nan:
4234 image0 = 0xffff7fff | sign;
4235 image1 = 0xffffffff;
4236 break;
4238 case rvc_normal:
4239 /* Extract the significand into straight hi:lo. */
4240 if (HOST_BITS_PER_LONG == 64)
4242 image0 = r->sig[SIGSZ-1];
4243 image1 = (image0 >> (64 - 56)) & 0xffffffff;
4244 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
4246 else
4248 image0 = r->sig[SIGSZ-1];
4249 image1 = r->sig[SIGSZ-2];
4250 image1 = (image0 << 24) | (image1 >> 8);
4251 image0 = (image0 >> 8) & 0xffffff;
4254 /* Rearrange the half-words of the significand to match the
4255 external format. */
4256 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
4257 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4259 /* Add the sign and exponent. */
4260 image0 |= sign;
4261 image0 |= (REAL_EXP (r) + 128) << 7;
4262 break;
4264 default:
4265 gcc_unreachable ();
4268 if (FLOAT_WORDS_BIG_ENDIAN)
4269 buf[0] = image1, buf[1] = image0;
4270 else
4271 buf[0] = image0, buf[1] = image1;
4274 static void
4275 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
4276 REAL_VALUE_TYPE *r, const long *buf)
4278 unsigned long image0, image1;
4279 int exp;
4281 if (FLOAT_WORDS_BIG_ENDIAN)
4282 image1 = buf[0], image0 = buf[1];
4283 else
4284 image0 = buf[0], image1 = buf[1];
4285 image0 &= 0xffffffff;
4286 image1 &= 0xffffffff;
4288 exp = (image0 >> 7) & 0xff;
4290 memset (r, 0, sizeof (*r));
4292 if (exp != 0)
4294 r->cl = rvc_normal;
4295 r->sign = (image0 >> 15) & 1;
4296 SET_REAL_EXP (r, exp - 128);
4298 /* Rearrange the half-words of the external format into
4299 proper ascending order. */
4300 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
4301 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4303 if (HOST_BITS_PER_LONG == 64)
4305 image0 = (image0 << 31 << 1) | image1;
4306 image0 <<= 64 - 56;
4307 image0 |= SIG_MSB;
4308 r->sig[SIGSZ-1] = image0;
4310 else
4312 r->sig[SIGSZ-1] = image0;
4313 r->sig[SIGSZ-2] = image1;
4314 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4315 r->sig[SIGSZ-1] |= SIG_MSB;
4320 static void
4321 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4322 const REAL_VALUE_TYPE *r)
4324 unsigned long image0, image1, sign = r->sign << 15;
4326 switch (r->cl)
4328 case rvc_zero:
4329 image0 = image1 = 0;
4330 break;
4332 case rvc_inf:
4333 case rvc_nan:
4334 image0 = 0xffff7fff | sign;
4335 image1 = 0xffffffff;
4336 break;
4338 case rvc_normal:
4339 /* Extract the significand into straight hi:lo. */
4340 if (HOST_BITS_PER_LONG == 64)
4342 image0 = r->sig[SIGSZ-1];
4343 image1 = (image0 >> (64 - 53)) & 0xffffffff;
4344 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4346 else
4348 image0 = r->sig[SIGSZ-1];
4349 image1 = r->sig[SIGSZ-2];
4350 image1 = (image0 << 21) | (image1 >> 11);
4351 image0 = (image0 >> 11) & 0xfffff;
4354 /* Rearrange the half-words of the significand to match the
4355 external format. */
4356 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4357 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4359 /* Add the sign and exponent. */
4360 image0 |= sign;
4361 image0 |= (REAL_EXP (r) + 1024) << 4;
4362 break;
4364 default:
4365 gcc_unreachable ();
4368 if (FLOAT_WORDS_BIG_ENDIAN)
4369 buf[0] = image1, buf[1] = image0;
4370 else
4371 buf[0] = image0, buf[1] = image1;
4374 static void
4375 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4376 REAL_VALUE_TYPE *r, const long *buf)
4378 unsigned long image0, image1;
4379 int exp;
4381 if (FLOAT_WORDS_BIG_ENDIAN)
4382 image1 = buf[0], image0 = buf[1];
4383 else
4384 image0 = buf[0], image1 = buf[1];
4385 image0 &= 0xffffffff;
4386 image1 &= 0xffffffff;
4388 exp = (image0 >> 4) & 0x7ff;
4390 memset (r, 0, sizeof (*r));
4392 if (exp != 0)
4394 r->cl = rvc_normal;
4395 r->sign = (image0 >> 15) & 1;
4396 SET_REAL_EXP (r, exp - 1024);
4398 /* Rearrange the half-words of the external format into
4399 proper ascending order. */
4400 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4401 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4403 if (HOST_BITS_PER_LONG == 64)
4405 image0 = (image0 << 31 << 1) | image1;
4406 image0 <<= 64 - 53;
4407 image0 |= SIG_MSB;
4408 r->sig[SIGSZ-1] = image0;
4410 else
4412 r->sig[SIGSZ-1] = image0;
4413 r->sig[SIGSZ-2] = image1;
4414 lshift_significand (r, r, 64 - 53);
4415 r->sig[SIGSZ-1] |= SIG_MSB;
4420 const struct real_format vax_f_format =
4422 encode_vax_f,
4423 decode_vax_f,
4427 -127,
4428 127,
4431 false,
4432 false,
4433 false,
4434 false,
4435 false,
4436 false,
4437 false,
4438 false,
4439 "vax_f"
4442 const struct real_format vax_d_format =
4444 encode_vax_d,
4445 decode_vax_d,
4449 -127,
4450 127,
4453 false,
4454 false,
4455 false,
4456 false,
4457 false,
4458 false,
4459 false,
4460 false,
4461 "vax_d"
4464 const struct real_format vax_g_format =
4466 encode_vax_g,
4467 decode_vax_g,
4471 -1023,
4472 1023,
4475 false,
4476 false,
4477 false,
4478 false,
4479 false,
4480 false,
4481 false,
4482 false,
4483 "vax_g"
4486 /* Encode real R into a single precision DFP value in BUF. */
4487 static void
4488 encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4489 long *buf ATTRIBUTE_UNUSED,
4490 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4492 encode_decimal32 (fmt, buf, r);
4495 /* Decode a single precision DFP value in BUF into a real R. */
4496 static void
4497 decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4498 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4499 const long *buf ATTRIBUTE_UNUSED)
4501 decode_decimal32 (fmt, r, buf);
4504 /* Encode real R into a double precision DFP value in BUF. */
4505 static void
4506 encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4507 long *buf ATTRIBUTE_UNUSED,
4508 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4510 encode_decimal64 (fmt, buf, r);
4513 /* Decode a double precision DFP value in BUF into a real R. */
4514 static void
4515 decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4516 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4517 const long *buf ATTRIBUTE_UNUSED)
4519 decode_decimal64 (fmt, r, buf);
4522 /* Encode real R into a quad precision DFP value in BUF. */
4523 static void
4524 encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4525 long *buf ATTRIBUTE_UNUSED,
4526 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4528 encode_decimal128 (fmt, buf, r);
4531 /* Decode a quad precision DFP value in BUF into a real R. */
4532 static void
4533 decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4534 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4535 const long *buf ATTRIBUTE_UNUSED)
4537 decode_decimal128 (fmt, r, buf);
4540 /* Single precision decimal floating point (IEEE 754). */
4541 const struct real_format decimal_single_format =
4543 encode_decimal_single,
4544 decode_decimal_single,
4548 -94,
4552 false,
4553 true,
4554 true,
4555 true,
4556 true,
4557 true,
4558 true,
4559 false,
4560 "decimal_single"
4563 /* Double precision decimal floating point (IEEE 754). */
4564 const struct real_format decimal_double_format =
4566 encode_decimal_double,
4567 decode_decimal_double,
4571 -382,
4572 385,
4575 false,
4576 true,
4577 true,
4578 true,
4579 true,
4580 true,
4581 true,
4582 false,
4583 "decimal_double"
4586 /* Quad precision decimal floating point (IEEE 754). */
4587 const struct real_format decimal_quad_format =
4589 encode_decimal_quad,
4590 decode_decimal_quad,
4594 -6142,
4595 6145,
4596 127,
4597 127,
4598 false,
4599 true,
4600 true,
4601 true,
4602 true,
4603 true,
4604 true,
4605 false,
4606 "decimal_quad"
4609 /* Encode half-precision floats. This routine is used both for the IEEE
4610 ARM alternative encodings. */
4611 static void
4612 encode_ieee_half (const struct real_format *fmt, long *buf,
4613 const REAL_VALUE_TYPE *r)
4615 unsigned long image, sig, exp;
4616 unsigned long sign = r->sign;
4617 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
4619 image = sign << 15;
4620 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
4622 switch (r->cl)
4624 case rvc_zero:
4625 break;
4627 case rvc_inf:
4628 if (fmt->has_inf)
4629 image |= 31 << 10;
4630 else
4631 image |= 0x7fff;
4632 break;
4634 case rvc_nan:
4635 if (fmt->has_nans)
4637 if (r->canonical)
4638 sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
4639 if (r->signalling == fmt->qnan_msb_set)
4640 sig &= ~(1 << 9);
4641 else
4642 sig |= 1 << 9;
4643 if (sig == 0)
4644 sig = 1 << 8;
4646 image |= 31 << 10;
4647 image |= sig;
4649 else
4650 image |= 0x3ff;
4651 break;
4653 case rvc_normal:
4654 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4655 whereas the intermediate representation is 0.F x 2**exp.
4656 Which means we're off by one. */
4657 if (denormal)
4658 exp = 0;
4659 else
4660 exp = REAL_EXP (r) + 15 - 1;
4661 image |= exp << 10;
4662 image |= sig;
4663 break;
4665 default:
4666 gcc_unreachable ();
4669 buf[0] = image;
4672 /* Decode half-precision floats. This routine is used both for the IEEE
4673 ARM alternative encodings. */
4674 static void
4675 decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4676 const long *buf)
4678 unsigned long image = buf[0] & 0xffff;
4679 bool sign = (image >> 15) & 1;
4680 int exp = (image >> 10) & 0x1f;
4682 memset (r, 0, sizeof (*r));
4683 image <<= HOST_BITS_PER_LONG - 11;
4684 image &= ~SIG_MSB;
4686 if (exp == 0)
4688 if (image && fmt->has_denorm)
4690 r->cl = rvc_normal;
4691 r->sign = sign;
4692 SET_REAL_EXP (r, -14);
4693 r->sig[SIGSZ-1] = image << 1;
4694 normalize (r);
4696 else if (fmt->has_signed_zero)
4697 r->sign = sign;
4699 else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
4701 if (image)
4703 r->cl = rvc_nan;
4704 r->sign = sign;
4705 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4706 ^ fmt->qnan_msb_set);
4707 r->sig[SIGSZ-1] = image;
4709 else
4711 r->cl = rvc_inf;
4712 r->sign = sign;
4715 else
4717 r->cl = rvc_normal;
4718 r->sign = sign;
4719 SET_REAL_EXP (r, exp - 15 + 1);
4720 r->sig[SIGSZ-1] = image | SIG_MSB;
4724 /* Half-precision format, as specified in IEEE 754R. */
4725 const struct real_format ieee_half_format =
4727 encode_ieee_half,
4728 decode_ieee_half,
4732 -13,
4736 false,
4737 true,
4738 true,
4739 true,
4740 true,
4741 true,
4742 true,
4743 false,
4744 "ieee_half"
4747 /* ARM's alternative half-precision format, similar to IEEE but with
4748 no reserved exponent value for NaNs and infinities; rather, it just
4749 extends the range of exponents by one. */
4750 const struct real_format arm_half_format =
4752 encode_ieee_half,
4753 decode_ieee_half,
4757 -13,
4761 false,
4762 true,
4763 false,
4764 false,
4765 true,
4766 true,
4767 false,
4768 false,
4769 "arm_half"
4772 /* A synthetic "format" for internal arithmetic. It's the size of the
4773 internal significand minus the two bits needed for proper rounding.
4774 The encode and decode routines exist only to satisfy our paranoia
4775 harness. */
4777 static void encode_internal (const struct real_format *fmt,
4778 long *, const REAL_VALUE_TYPE *);
4779 static void decode_internal (const struct real_format *,
4780 REAL_VALUE_TYPE *, const long *);
4782 static void
4783 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4784 const REAL_VALUE_TYPE *r)
4786 memcpy (buf, r, sizeof (*r));
4789 static void
4790 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4791 REAL_VALUE_TYPE *r, const long *buf)
4793 memcpy (r, buf, sizeof (*r));
4796 const struct real_format real_internal_format =
4798 encode_internal,
4799 decode_internal,
4801 SIGNIFICAND_BITS - 2,
4802 SIGNIFICAND_BITS - 2,
4803 -MAX_EXP,
4804 MAX_EXP,
4807 false,
4808 false,
4809 true,
4810 true,
4811 false,
4812 true,
4813 true,
4814 false,
4815 "real_internal"
4818 /* Calculate X raised to the integer exponent N in format FMT and store
4819 the result in R. Return true if the result may be inexact due to
4820 loss of precision. The algorithm is the classic "left-to-right binary
4821 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4822 Algorithms", "The Art of Computer Programming", Volume 2. */
4824 bool
4825 real_powi (REAL_VALUE_TYPE *r, format_helper fmt,
4826 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4828 unsigned HOST_WIDE_INT bit;
4829 REAL_VALUE_TYPE t;
4830 bool inexact = false;
4831 bool init = false;
4832 bool neg;
4833 int i;
4835 if (n == 0)
4837 *r = dconst1;
4838 return false;
4840 else if (n < 0)
4842 /* Don't worry about overflow, from now on n is unsigned. */
4843 neg = true;
4844 n = -n;
4846 else
4847 neg = false;
4849 t = *x;
4850 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4851 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4853 if (init)
4855 inexact |= do_multiply (&t, &t, &t);
4856 if (n & bit)
4857 inexact |= do_multiply (&t, &t, x);
4859 else if (n & bit)
4860 init = true;
4861 bit >>= 1;
4864 if (neg)
4865 inexact |= do_divide (&t, &dconst1, &t);
4867 real_convert (r, fmt, &t);
4868 return inexact;
4871 /* Round X to the nearest integer not larger in absolute value, i.e.
4872 towards zero, placing the result in R in format FMT. */
4874 void
4875 real_trunc (REAL_VALUE_TYPE *r, format_helper fmt,
4876 const REAL_VALUE_TYPE *x)
4878 do_fix_trunc (r, x);
4879 if (fmt)
4880 real_convert (r, fmt, r);
4883 /* Round X to the largest integer not greater in value, i.e. round
4884 down, placing the result in R in format FMT. */
4886 void
4887 real_floor (REAL_VALUE_TYPE *r, format_helper fmt,
4888 const REAL_VALUE_TYPE *x)
4890 REAL_VALUE_TYPE t;
4892 do_fix_trunc (&t, x);
4893 if (! real_identical (&t, x) && x->sign)
4894 do_add (&t, &t, &dconstm1, 0);
4895 if (fmt)
4896 real_convert (r, fmt, &t);
4897 else
4898 *r = t;
4901 /* Round X to the smallest integer not less then argument, i.e. round
4902 up, placing the result in R in format FMT. */
4904 void
4905 real_ceil (REAL_VALUE_TYPE *r, format_helper fmt,
4906 const REAL_VALUE_TYPE *x)
4908 REAL_VALUE_TYPE t;
4910 do_fix_trunc (&t, x);
4911 if (! real_identical (&t, x) && ! x->sign)
4912 do_add (&t, &t, &dconst1, 0);
4913 if (fmt)
4914 real_convert (r, fmt, &t);
4915 else
4916 *r = t;
4919 /* Round X to the nearest integer, but round halfway cases away from
4920 zero. */
4922 void
4923 real_round (REAL_VALUE_TYPE *r, format_helper fmt,
4924 const REAL_VALUE_TYPE *x)
4926 do_add (r, x, &dconsthalf, x->sign);
4927 do_fix_trunc (r, r);
4928 if (fmt)
4929 real_convert (r, fmt, r);
4932 /* Set the sign of R to the sign of X. */
4934 void
4935 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
4937 r->sign = x->sign;
4940 /* Check whether the real constant value given is an integer. */
4942 bool
4943 real_isinteger (const REAL_VALUE_TYPE *c, format_helper fmt)
4945 REAL_VALUE_TYPE cint;
4947 real_trunc (&cint, fmt, c);
4948 return real_identical (c, &cint);
4951 /* Check whether C is an integer that fits in a HOST_WIDE_INT,
4952 storing it in *INT_OUT if so. */
4954 bool
4955 real_isinteger (const REAL_VALUE_TYPE *c, HOST_WIDE_INT *int_out)
4957 REAL_VALUE_TYPE cint;
4959 HOST_WIDE_INT n = real_to_integer (c);
4960 real_from_integer (&cint, VOIDmode, n, SIGNED);
4961 if (real_identical (c, &cint))
4963 *int_out = n;
4964 return true;
4966 return false;
4969 /* Write into BUF the maximum representable finite floating-point
4970 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
4971 float string. LEN is the size of BUF, and the buffer must be large
4972 enough to contain the resulting string. */
4974 void
4975 get_max_float (const struct real_format *fmt, char *buf, size_t len)
4977 int i, n;
4978 char *p;
4980 strcpy (buf, "0x0.");
4981 n = fmt->p;
4982 for (i = 0, p = buf + 4; i + 3 < n; i += 4)
4983 *p++ = 'f';
4984 if (i < n)
4985 *p++ = "08ce"[n - i];
4986 sprintf (p, "p%d", fmt->emax);
4987 if (fmt->pnan < fmt->p)
4989 /* This is an IBM extended double format made up of two IEEE
4990 doubles. The value of the long double is the sum of the
4991 values of the two parts. The most significant part is
4992 required to be the value of the long double rounded to the
4993 nearest double. Rounding means we need a slightly smaller
4994 value for LDBL_MAX. */
4995 buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
4998 gcc_assert (strlen (buf) < len);
5001 /* True if mode M has a NaN representation and
5002 the treatment of NaN operands is important. */
5004 bool
5005 HONOR_NANS (machine_mode m)
5007 return MODE_HAS_NANS (m) && !flag_finite_math_only;
5010 bool
5011 HONOR_NANS (const_tree t)
5013 return HONOR_NANS (element_mode (t));
5016 bool
5017 HONOR_NANS (const_rtx x)
5019 return HONOR_NANS (GET_MODE (x));
5022 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
5024 bool
5025 HONOR_SNANS (machine_mode m)
5027 return flag_signaling_nans && HONOR_NANS (m);
5030 bool
5031 HONOR_SNANS (const_tree t)
5033 return HONOR_SNANS (element_mode (t));
5036 bool
5037 HONOR_SNANS (const_rtx x)
5039 return HONOR_SNANS (GET_MODE (x));
5042 /* As for HONOR_NANS, but true if the mode can represent infinity and
5043 the treatment of infinite values is important. */
5045 bool
5046 HONOR_INFINITIES (machine_mode m)
5048 return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
5051 bool
5052 HONOR_INFINITIES (const_tree t)
5054 return HONOR_INFINITIES (element_mode (t));
5057 bool
5058 HONOR_INFINITIES (const_rtx x)
5060 return HONOR_INFINITIES (GET_MODE (x));
5063 /* Like HONOR_NANS, but true if the given mode distinguishes between
5064 positive and negative zero, and the sign of zero is important. */
5066 bool
5067 HONOR_SIGNED_ZEROS (machine_mode m)
5069 return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
5072 bool
5073 HONOR_SIGNED_ZEROS (const_tree t)
5075 return HONOR_SIGNED_ZEROS (element_mode (t));
5078 bool
5079 HONOR_SIGNED_ZEROS (const_rtx x)
5081 return HONOR_SIGNED_ZEROS (GET_MODE (x));
5084 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
5085 and the rounding mode is important. */
5087 bool
5088 HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
5090 return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
5093 bool
5094 HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
5096 return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
5099 bool
5100 HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
5102 return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));