* config/avr/avr.md: Fix indentations of insn C snippets.
[official-gcc.git] / gcc / ada / sem_type.adb
blob0c46536e9613dadbe17f91014bdae76f6026a010
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ T Y P E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Alloc;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Nlists; use Nlists;
32 with Errout; use Errout;
33 with Lib; use Lib;
34 with Namet; use Namet;
35 with Opt; use Opt;
36 with Output; use Output;
37 with Sem; use Sem;
38 with Sem_Aux; use Sem_Aux;
39 with Sem_Ch6; use Sem_Ch6;
40 with Sem_Ch8; use Sem_Ch8;
41 with Sem_Ch12; use Sem_Ch12;
42 with Sem_Disp; use Sem_Disp;
43 with Sem_Dist; use Sem_Dist;
44 with Sem_Util; use Sem_Util;
45 with Stand; use Stand;
46 with Sinfo; use Sinfo;
47 with Snames; use Snames;
48 with Table;
49 with Treepr; use Treepr;
50 with Uintp; use Uintp;
52 package body Sem_Type is
54 ---------------------
55 -- Data Structures --
56 ---------------------
58 -- The following data structures establish a mapping between nodes and
59 -- their interpretations. An overloaded node has an entry in Interp_Map,
60 -- which in turn contains a pointer into the All_Interp array. The
61 -- interpretations of a given node are contiguous in All_Interp. Each set
62 -- of interpretations is terminated with the marker No_Interp. In order to
63 -- speed up the retrieval of the interpretations of an overloaded node, the
64 -- Interp_Map table is accessed by means of a simple hashing scheme, and
65 -- the entries in Interp_Map are chained. The heads of clash lists are
66 -- stored in array Headers.
68 -- Headers Interp_Map All_Interp
70 -- _ +-----+ +--------+
71 -- |_| |_____| --->|interp1 |
72 -- |_|---------->|node | | |interp2 |
73 -- |_| |index|---------| |nointerp|
74 -- |_| |next | | |
75 -- |-----| | |
76 -- +-----+ +--------+
78 -- This scheme does not currently reclaim interpretations. In principle,
79 -- after a unit is compiled, all overloadings have been resolved, and the
80 -- candidate interpretations should be deleted. This should be easier
81 -- now than with the previous scheme???
83 package All_Interp is new Table.Table (
84 Table_Component_Type => Interp,
85 Table_Index_Type => Interp_Index,
86 Table_Low_Bound => 0,
87 Table_Initial => Alloc.All_Interp_Initial,
88 Table_Increment => Alloc.All_Interp_Increment,
89 Table_Name => "All_Interp");
91 type Interp_Ref is record
92 Node : Node_Id;
93 Index : Interp_Index;
94 Next : Int;
95 end record;
97 Header_Size : constant Int := 2 ** 12;
98 No_Entry : constant Int := -1;
99 Headers : array (0 .. Header_Size) of Int := (others => No_Entry);
101 package Interp_Map is new Table.Table (
102 Table_Component_Type => Interp_Ref,
103 Table_Index_Type => Int,
104 Table_Low_Bound => 0,
105 Table_Initial => Alloc.Interp_Map_Initial,
106 Table_Increment => Alloc.Interp_Map_Increment,
107 Table_Name => "Interp_Map");
109 function Hash (N : Node_Id) return Int;
110 -- A trivial hashing function for nodes, used to insert an overloaded
111 -- node into the Interp_Map table.
113 -------------------------------------
114 -- Handling of Overload Resolution --
115 -------------------------------------
117 -- Overload resolution uses two passes over the syntax tree of a complete
118 -- context. In the first, bottom-up pass, the types of actuals in calls
119 -- are used to resolve possibly overloaded subprogram and operator names.
120 -- In the second top-down pass, the type of the context (for example the
121 -- condition in a while statement) is used to resolve a possibly ambiguous
122 -- call, and the unique subprogram name in turn imposes a specific context
123 -- on each of its actuals.
125 -- Most expressions are in fact unambiguous, and the bottom-up pass is
126 -- sufficient to resolve most everything. To simplify the common case,
127 -- names and expressions carry a flag Is_Overloaded to indicate whether
128 -- they have more than one interpretation. If the flag is off, then each
129 -- name has already a unique meaning and type, and the bottom-up pass is
130 -- sufficient (and much simpler).
132 --------------------------
133 -- Operator Overloading --
134 --------------------------
136 -- The visibility of operators is handled differently from that of other
137 -- entities. We do not introduce explicit versions of primitive operators
138 -- for each type definition. As a result, there is only one entity
139 -- corresponding to predefined addition on all numeric types, etc. The
140 -- back-end resolves predefined operators according to their type. The
141 -- visibility of primitive operations then reduces to the visibility of the
142 -- resulting type: (a + b) is a legal interpretation of some primitive
143 -- operator + if the type of the result (which must also be the type of a
144 -- and b) is directly visible (either immediately visible or use-visible).
146 -- User-defined operators are treated like other functions, but the
147 -- visibility of these user-defined operations must be special-cased
148 -- to determine whether they hide or are hidden by predefined operators.
149 -- The form P."+" (x, y) requires additional handling.
151 -- Concatenation is treated more conventionally: for every one-dimensional
152 -- array type we introduce a explicit concatenation operator. This is
153 -- necessary to handle the case of (element & element => array) which
154 -- cannot be handled conveniently if there is no explicit instance of
155 -- resulting type of the operation.
157 -----------------------
158 -- Local Subprograms --
159 -----------------------
161 procedure All_Overloads;
162 pragma Warnings (Off, All_Overloads);
163 -- Debugging procedure: list full contents of Overloads table
165 function Binary_Op_Interp_Has_Abstract_Op
166 (N : Node_Id;
167 E : Entity_Id) return Entity_Id;
168 -- Given the node and entity of a binary operator, determine whether the
169 -- actuals of E contain an abstract interpretation with regards to the
170 -- types of their corresponding formals. Return the abstract operation or
171 -- Empty.
173 function Function_Interp_Has_Abstract_Op
174 (N : Node_Id;
175 E : Entity_Id) return Entity_Id;
176 -- Given the node and entity of a function call, determine whether the
177 -- actuals of E contain an abstract interpretation with regards to the
178 -- types of their corresponding formals. Return the abstract operation or
179 -- Empty.
181 function Has_Abstract_Op
182 (N : Node_Id;
183 Typ : Entity_Id) return Entity_Id;
184 -- Subsidiary routine to Binary_Op_Interp_Has_Abstract_Op and Function_
185 -- Interp_Has_Abstract_Op. Determine whether an overloaded node has an
186 -- abstract interpretation which yields type Typ.
188 procedure New_Interps (N : Node_Id);
189 -- Initialize collection of interpretations for the given node, which is
190 -- either an overloaded entity, or an operation whose arguments have
191 -- multiple interpretations. Interpretations can be added to only one
192 -- node at a time.
194 function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id;
195 -- If Typ_1 and Typ_2 are compatible, return the one that is not universal
196 -- or is not a "class" type (any_character, etc).
198 --------------------
199 -- Add_One_Interp --
200 --------------------
202 procedure Add_One_Interp
203 (N : Node_Id;
204 E : Entity_Id;
205 T : Entity_Id;
206 Opnd_Type : Entity_Id := Empty)
208 Vis_Type : Entity_Id;
210 procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id);
211 -- Add one interpretation to an overloaded node. Add a new entry if
212 -- not hidden by previous one, and remove previous one if hidden by
213 -- new one.
215 function Is_Universal_Operation (Op : Entity_Id) return Boolean;
216 -- True if the entity is a predefined operator and the operands have
217 -- a universal Interpretation.
219 ---------------
220 -- Add_Entry --
221 ---------------
223 procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id) is
224 Abstr_Op : Entity_Id := Empty;
225 I : Interp_Index;
226 It : Interp;
228 -- Start of processing for Add_Entry
230 begin
231 -- Find out whether the new entry references interpretations that
232 -- are abstract or disabled by abstract operators.
234 if Ada_Version >= Ada_2005 then
235 if Nkind (N) in N_Binary_Op then
236 Abstr_Op := Binary_Op_Interp_Has_Abstract_Op (N, Name);
237 elsif Nkind (N) = N_Function_Call then
238 Abstr_Op := Function_Interp_Has_Abstract_Op (N, Name);
239 end if;
240 end if;
242 Get_First_Interp (N, I, It);
243 while Present (It.Nam) loop
245 -- A user-defined subprogram hides another declared at an outer
246 -- level, or one that is use-visible. So return if previous
247 -- definition hides new one (which is either in an outer
248 -- scope, or use-visible). Note that for functions use-visible
249 -- is the same as potentially use-visible. If new one hides
250 -- previous one, replace entry in table of interpretations.
251 -- If this is a universal operation, retain the operator in case
252 -- preference rule applies.
254 if (((Ekind (Name) = E_Function or else Ekind (Name) = E_Procedure)
255 and then Ekind (Name) = Ekind (It.Nam))
256 or else (Ekind (Name) = E_Operator
257 and then Ekind (It.Nam) = E_Function))
259 and then Is_Immediately_Visible (It.Nam)
260 and then Type_Conformant (Name, It.Nam)
261 and then Base_Type (It.Typ) = Base_Type (T)
262 then
263 if Is_Universal_Operation (Name) then
264 exit;
266 -- If node is an operator symbol, we have no actuals with
267 -- which to check hiding, and this is done in full in the
268 -- caller (Analyze_Subprogram_Renaming) so we include the
269 -- predefined operator in any case.
271 elsif Nkind (N) = N_Operator_Symbol
272 or else (Nkind (N) = N_Expanded_Name
273 and then
274 Nkind (Selector_Name (N)) = N_Operator_Symbol)
275 then
276 exit;
278 elsif not In_Open_Scopes (Scope (Name))
279 or else Scope_Depth (Scope (Name)) <=
280 Scope_Depth (Scope (It.Nam))
281 then
282 -- If ambiguity within instance, and entity is not an
283 -- implicit operation, save for later disambiguation.
285 if Scope (Name) = Scope (It.Nam)
286 and then not Is_Inherited_Operation (Name)
287 and then In_Instance
288 then
289 exit;
290 else
291 return;
292 end if;
294 else
295 All_Interp.Table (I).Nam := Name;
296 return;
297 end if;
299 -- Avoid making duplicate entries in overloads
301 elsif Name = It.Nam
302 and then Base_Type (It.Typ) = Base_Type (T)
303 then
304 return;
306 -- Otherwise keep going
308 else
309 Get_Next_Interp (I, It);
310 end if;
312 end loop;
314 All_Interp.Table (All_Interp.Last) := (Name, Typ, Abstr_Op);
315 All_Interp.Append (No_Interp);
316 end Add_Entry;
318 ----------------------------
319 -- Is_Universal_Operation --
320 ----------------------------
322 function Is_Universal_Operation (Op : Entity_Id) return Boolean is
323 Arg : Node_Id;
325 begin
326 if Ekind (Op) /= E_Operator then
327 return False;
329 elsif Nkind (N) in N_Binary_Op then
330 return Present (Universal_Interpretation (Left_Opnd (N)))
331 and then Present (Universal_Interpretation (Right_Opnd (N)));
333 elsif Nkind (N) in N_Unary_Op then
334 return Present (Universal_Interpretation (Right_Opnd (N)));
336 elsif Nkind (N) = N_Function_Call then
337 Arg := First_Actual (N);
338 while Present (Arg) loop
339 if No (Universal_Interpretation (Arg)) then
340 return False;
341 end if;
343 Next_Actual (Arg);
344 end loop;
346 return True;
348 else
349 return False;
350 end if;
351 end Is_Universal_Operation;
353 -- Start of processing for Add_One_Interp
355 begin
356 -- If the interpretation is a predefined operator, verify that the
357 -- result type is visible, or that the entity has already been
358 -- resolved (case of an instantiation node that refers to a predefined
359 -- operation, or an internally generated operator node, or an operator
360 -- given as an expanded name). If the operator is a comparison or
361 -- equality, it is the type of the operand that matters to determine
362 -- whether the operator is visible. In an instance, the check is not
363 -- performed, given that the operator was visible in the generic.
365 if Ekind (E) = E_Operator then
366 if Present (Opnd_Type) then
367 Vis_Type := Opnd_Type;
368 else
369 Vis_Type := Base_Type (T);
370 end if;
372 if In_Open_Scopes (Scope (Vis_Type))
373 or else Is_Potentially_Use_Visible (Vis_Type)
374 or else In_Use (Vis_Type)
375 or else (In_Use (Scope (Vis_Type))
376 and then not Is_Hidden (Vis_Type))
377 or else Nkind (N) = N_Expanded_Name
378 or else (Nkind (N) in N_Op and then E = Entity (N))
379 or else In_Instance
380 or else Ekind (Vis_Type) = E_Anonymous_Access_Type
381 then
382 null;
384 -- If the node is given in functional notation and the prefix
385 -- is an expanded name, then the operator is visible if the
386 -- prefix is the scope of the result type as well. If the
387 -- operator is (implicitly) defined in an extension of system,
388 -- it is know to be valid (see Defined_In_Scope, sem_ch4.adb).
390 elsif Nkind (N) = N_Function_Call
391 and then Nkind (Name (N)) = N_Expanded_Name
392 and then (Entity (Prefix (Name (N))) = Scope (Base_Type (T))
393 or else Entity (Prefix (Name (N))) = Scope (Vis_Type)
394 or else Scope (Vis_Type) = System_Aux_Id)
395 then
396 null;
398 -- Save type for subsequent error message, in case no other
399 -- interpretation is found.
401 else
402 Candidate_Type := Vis_Type;
403 return;
404 end if;
406 -- In an instance, an abstract non-dispatching operation cannot be a
407 -- candidate interpretation, because it could not have been one in the
408 -- generic (it may be a spurious overloading in the instance).
410 elsif In_Instance
411 and then Is_Overloadable (E)
412 and then Is_Abstract_Subprogram (E)
413 and then not Is_Dispatching_Operation (E)
414 then
415 return;
417 -- An inherited interface operation that is implemented by some derived
418 -- type does not participate in overload resolution, only the
419 -- implementation operation does.
421 elsif Is_Hidden (E)
422 and then Is_Subprogram (E)
423 and then Present (Interface_Alias (E))
424 then
425 -- Ada 2005 (AI-251): If this primitive operation corresponds with
426 -- an immediate ancestor interface there is no need to add it to the
427 -- list of interpretations. The corresponding aliased primitive is
428 -- also in this list of primitive operations and will be used instead
429 -- because otherwise we have a dummy ambiguity between the two
430 -- subprograms which are in fact the same.
432 if not Is_Ancestor
433 (Find_Dispatching_Type (Interface_Alias (E)),
434 Find_Dispatching_Type (E))
435 then
436 Add_One_Interp (N, Interface_Alias (E), T);
437 end if;
439 return;
441 -- Calling stubs for an RACW operation never participate in resolution,
442 -- they are executed only through dispatching calls.
444 elsif Is_RACW_Stub_Type_Operation (E) then
445 return;
446 end if;
448 -- If this is the first interpretation of N, N has type Any_Type.
449 -- In that case place the new type on the node. If one interpretation
450 -- already exists, indicate that the node is overloaded, and store
451 -- both the previous and the new interpretation in All_Interp. If
452 -- this is a later interpretation, just add it to the set.
454 if Etype (N) = Any_Type then
455 if Is_Type (E) then
456 Set_Etype (N, T);
458 else
459 -- Record both the operator or subprogram name, and its type
461 if Nkind (N) in N_Op or else Is_Entity_Name (N) then
462 Set_Entity (N, E);
463 end if;
465 Set_Etype (N, T);
466 end if;
468 -- Either there is no current interpretation in the table for any
469 -- node or the interpretation that is present is for a different
470 -- node. In both cases add a new interpretation to the table.
472 elsif Interp_Map.Last < 0
473 or else
474 (Interp_Map.Table (Interp_Map.Last).Node /= N
475 and then not Is_Overloaded (N))
476 then
477 New_Interps (N);
479 if (Nkind (N) in N_Op or else Is_Entity_Name (N))
480 and then Present (Entity (N))
481 then
482 Add_Entry (Entity (N), Etype (N));
484 elsif Nkind (N) in N_Subprogram_Call
485 and then Is_Entity_Name (Name (N))
486 then
487 Add_Entry (Entity (Name (N)), Etype (N));
489 -- If this is an indirect call there will be no name associated
490 -- with the previous entry. To make diagnostics clearer, save
491 -- Subprogram_Type of first interpretation, so that the error will
492 -- point to the anonymous access to subprogram, not to the result
493 -- type of the call itself.
495 elsif (Nkind (N)) = N_Function_Call
496 and then Nkind (Name (N)) = N_Explicit_Dereference
497 and then Is_Overloaded (Name (N))
498 then
499 declare
500 It : Interp;
502 Itn : Interp_Index;
503 pragma Warnings (Off, Itn);
505 begin
506 Get_First_Interp (Name (N), Itn, It);
507 Add_Entry (It.Nam, Etype (N));
508 end;
510 else
511 -- Overloaded prefix in indexed or selected component, or call
512 -- whose name is an expression or another call.
514 Add_Entry (Etype (N), Etype (N));
515 end if;
517 Add_Entry (E, T);
519 else
520 Add_Entry (E, T);
521 end if;
522 end Add_One_Interp;
524 -------------------
525 -- All_Overloads --
526 -------------------
528 procedure All_Overloads is
529 begin
530 for J in All_Interp.First .. All_Interp.Last loop
532 if Present (All_Interp.Table (J).Nam) then
533 Write_Entity_Info (All_Interp.Table (J). Nam, " ");
534 else
535 Write_Str ("No Interp");
536 Write_Eol;
537 end if;
539 Write_Str ("=================");
540 Write_Eol;
541 end loop;
542 end All_Overloads;
544 --------------------------------------
545 -- Binary_Op_Interp_Has_Abstract_Op --
546 --------------------------------------
548 function Binary_Op_Interp_Has_Abstract_Op
549 (N : Node_Id;
550 E : Entity_Id) return Entity_Id
552 Abstr_Op : Entity_Id;
553 E_Left : constant Node_Id := First_Formal (E);
554 E_Right : constant Node_Id := Next_Formal (E_Left);
556 begin
557 Abstr_Op := Has_Abstract_Op (Left_Opnd (N), Etype (E_Left));
558 if Present (Abstr_Op) then
559 return Abstr_Op;
560 end if;
562 return Has_Abstract_Op (Right_Opnd (N), Etype (E_Right));
563 end Binary_Op_Interp_Has_Abstract_Op;
565 ---------------------
566 -- Collect_Interps --
567 ---------------------
569 procedure Collect_Interps (N : Node_Id) is
570 Ent : constant Entity_Id := Entity (N);
571 H : Entity_Id;
572 First_Interp : Interp_Index;
574 function Within_Instance (E : Entity_Id) return Boolean;
575 -- Within an instance there can be spurious ambiguities between a local
576 -- entity and one declared outside of the instance. This can only happen
577 -- for subprograms, because otherwise the local entity hides the outer
578 -- one. For an overloadable entity, this predicate determines whether it
579 -- is a candidate within the instance, or must be ignored.
581 ---------------------
582 -- Within_Instance --
583 ---------------------
585 function Within_Instance (E : Entity_Id) return Boolean is
586 Inst : Entity_Id;
587 Scop : Entity_Id;
589 begin
590 if not In_Instance then
591 return False;
592 end if;
594 Inst := Current_Scope;
595 while Present (Inst) and then not Is_Generic_Instance (Inst) loop
596 Inst := Scope (Inst);
597 end loop;
599 Scop := Scope (E);
600 while Present (Scop) and then Scop /= Standard_Standard loop
601 if Scop = Inst then
602 return True;
603 end if;
604 Scop := Scope (Scop);
605 end loop;
607 return False;
608 end Within_Instance;
610 -- Start of processing for Collect_Interps
612 begin
613 New_Interps (N);
615 -- Unconditionally add the entity that was initially matched
617 First_Interp := All_Interp.Last;
618 Add_One_Interp (N, Ent, Etype (N));
620 -- For expanded name, pick up all additional entities from the
621 -- same scope, since these are obviously also visible. Note that
622 -- these are not necessarily contiguous on the homonym chain.
624 if Nkind (N) = N_Expanded_Name then
625 H := Homonym (Ent);
626 while Present (H) loop
627 if Scope (H) = Scope (Entity (N)) then
628 Add_One_Interp (N, H, Etype (H));
629 end if;
631 H := Homonym (H);
632 end loop;
634 -- Case of direct name
636 else
637 -- First, search the homonym chain for directly visible entities
639 H := Current_Entity (Ent);
640 while Present (H) loop
641 exit when (not Is_Overloadable (H))
642 and then Is_Immediately_Visible (H);
644 if Is_Immediately_Visible (H)
645 and then H /= Ent
646 then
647 -- Only add interpretation if not hidden by an inner
648 -- immediately visible one.
650 for J in First_Interp .. All_Interp.Last - 1 loop
652 -- Current homograph is not hidden. Add to overloads
654 if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
655 exit;
657 -- Homograph is hidden, unless it is a predefined operator
659 elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
661 -- A homograph in the same scope can occur within an
662 -- instantiation, the resulting ambiguity has to be
663 -- resolved later. The homographs may both be local
664 -- functions or actuals, or may be declared at different
665 -- levels within the instance. The renaming of an actual
666 -- within the instance must not be included.
668 if Within_Instance (H)
669 and then H /= Renamed_Entity (Ent)
670 and then not Is_Inherited_Operation (H)
671 then
672 All_Interp.Table (All_Interp.Last) :=
673 (H, Etype (H), Empty);
674 All_Interp.Append (No_Interp);
675 goto Next_Homograph;
677 elsif Scope (H) /= Standard_Standard then
678 goto Next_Homograph;
679 end if;
680 end if;
681 end loop;
683 -- On exit, we know that current homograph is not hidden
685 Add_One_Interp (N, H, Etype (H));
687 if Debug_Flag_E then
688 Write_Str ("Add overloaded interpretation ");
689 Write_Int (Int (H));
690 Write_Eol;
691 end if;
692 end if;
694 <<Next_Homograph>>
695 H := Homonym (H);
696 end loop;
698 -- Scan list of homographs for use-visible entities only
700 H := Current_Entity (Ent);
702 while Present (H) loop
703 if Is_Potentially_Use_Visible (H)
704 and then H /= Ent
705 and then Is_Overloadable (H)
706 then
707 for J in First_Interp .. All_Interp.Last - 1 loop
709 if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
710 exit;
712 elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
713 goto Next_Use_Homograph;
714 end if;
715 end loop;
717 Add_One_Interp (N, H, Etype (H));
718 end if;
720 <<Next_Use_Homograph>>
721 H := Homonym (H);
722 end loop;
723 end if;
725 if All_Interp.Last = First_Interp + 1 then
727 -- The final interpretation is in fact not overloaded. Note that the
728 -- unique legal interpretation may or may not be the original one,
729 -- so we need to update N's entity and etype now, because once N
730 -- is marked as not overloaded it is also expected to carry the
731 -- proper interpretation.
733 Set_Is_Overloaded (N, False);
734 Set_Entity (N, All_Interp.Table (First_Interp).Nam);
735 Set_Etype (N, All_Interp.Table (First_Interp).Typ);
736 end if;
737 end Collect_Interps;
739 ------------
740 -- Covers --
741 ------------
743 function Covers (T1, T2 : Entity_Id) return Boolean is
744 BT1 : Entity_Id;
745 BT2 : Entity_Id;
747 function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean;
748 -- In an instance the proper view may not always be correct for
749 -- private types, but private and full view are compatible. This
750 -- removes spurious errors from nested instantiations that involve,
751 -- among other things, types derived from private types.
753 ----------------------
754 -- Full_View_Covers --
755 ----------------------
757 function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean is
758 begin
759 return
760 Is_Private_Type (Typ1)
761 and then
762 ((Present (Full_View (Typ1))
763 and then Covers (Full_View (Typ1), Typ2))
764 or else Base_Type (Typ1) = Typ2
765 or else Base_Type (Typ2) = Typ1);
766 end Full_View_Covers;
768 -- Start of processing for Covers
770 begin
771 -- If either operand missing, then this is an error, but ignore it (and
772 -- pretend we have a cover) if errors already detected, since this may
773 -- simply mean we have malformed trees or a semantic error upstream.
775 if No (T1) or else No (T2) then
776 if Total_Errors_Detected /= 0 then
777 return True;
778 else
779 raise Program_Error;
780 end if;
781 end if;
783 -- Trivial case: same types are always compatible
785 if T1 = T2 then
786 return True;
787 end if;
789 -- First check for Standard_Void_Type, which is special. Subsequent
790 -- processing in this routine assumes T1 and T2 are bona fide types;
791 -- Standard_Void_Type is a special entity that has some, but not all,
792 -- properties of types.
794 if (T1 = Standard_Void_Type) /= (T2 = Standard_Void_Type) then
795 return False;
796 end if;
798 BT1 := Base_Type (T1);
799 BT2 := Base_Type (T2);
801 -- Handle underlying view of records with unknown discriminants
802 -- using the original entity that motivated the construction of
803 -- this underlying record view (see Build_Derived_Private_Type).
805 if Is_Underlying_Record_View (BT1) then
806 BT1 := Underlying_Record_View (BT1);
807 end if;
809 if Is_Underlying_Record_View (BT2) then
810 BT2 := Underlying_Record_View (BT2);
811 end if;
813 -- Simplest case: types that have the same base type and are not generic
814 -- actuals are compatible. Generic actuals belong to their class but are
815 -- not compatible with other types of their class, and in particular
816 -- with other generic actuals. They are however compatible with their
817 -- own subtypes, and itypes with the same base are compatible as well.
818 -- Similarly, constrained subtypes obtained from expressions of an
819 -- unconstrained nominal type are compatible with the base type (may
820 -- lead to spurious ambiguities in obscure cases ???)
822 -- Generic actuals require special treatment to avoid spurious ambi-
823 -- guities in an instance, when two formal types are instantiated with
824 -- the same actual, so that different subprograms end up with the same
825 -- signature in the instance.
827 if BT1 = BT2
828 or else BT1 = T2
829 or else BT2 = T1
830 then
831 if not Is_Generic_Actual_Type (T1) then
832 return True;
833 else
834 return (not Is_Generic_Actual_Type (T2)
835 or else Is_Itype (T1)
836 or else Is_Itype (T2)
837 or else Is_Constr_Subt_For_U_Nominal (T1)
838 or else Is_Constr_Subt_For_U_Nominal (T2)
839 or else Scope (T1) /= Scope (T2));
840 end if;
842 -- Literals are compatible with types in a given "class"
844 elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
845 or else (T2 = Universal_Real and then Is_Real_Type (T1))
846 or else (T2 = Universal_Fixed and then Is_Fixed_Point_Type (T1))
847 or else (T2 = Any_Fixed and then Is_Fixed_Point_Type (T1))
848 or else (T2 = Any_String and then Is_String_Type (T1))
849 or else (T2 = Any_Character and then Is_Character_Type (T1))
850 or else (T2 = Any_Access and then Is_Access_Type (T1))
851 then
852 return True;
854 -- The context may be class wide, and a class-wide type is compatible
855 -- with any member of the class.
857 elsif Is_Class_Wide_Type (T1)
858 and then Is_Ancestor (Root_Type (T1), T2)
859 then
860 return True;
862 elsif Is_Class_Wide_Type (T1)
863 and then Is_Class_Wide_Type (T2)
864 and then Base_Type (Etype (T1)) = Base_Type (Etype (T2))
865 then
866 return True;
868 -- Ada 2005 (AI-345): A class-wide abstract interface type covers a
869 -- task_type or protected_type that implements the interface.
871 elsif Ada_Version >= Ada_2005
872 and then Is_Class_Wide_Type (T1)
873 and then Is_Interface (Etype (T1))
874 and then Is_Concurrent_Type (T2)
875 and then Interface_Present_In_Ancestor
876 (Typ => BT2, Iface => Etype (T1))
877 then
878 return True;
880 -- Ada 2005 (AI-251): A class-wide abstract interface type T1 covers an
881 -- object T2 implementing T1.
883 elsif Ada_Version >= Ada_2005
884 and then Is_Class_Wide_Type (T1)
885 and then Is_Interface (Etype (T1))
886 and then Is_Tagged_Type (T2)
887 then
888 if Interface_Present_In_Ancestor (Typ => T2,
889 Iface => Etype (T1))
890 then
891 return True;
892 end if;
894 declare
895 E : Entity_Id;
896 Elmt : Elmt_Id;
898 begin
899 if Is_Concurrent_Type (BT2) then
900 E := Corresponding_Record_Type (BT2);
901 else
902 E := BT2;
903 end if;
905 -- Ada 2005 (AI-251): A class-wide abstract interface type T1
906 -- covers an object T2 that implements a direct derivation of T1.
907 -- Note: test for presence of E is defense against previous error.
909 if Present (E)
910 and then Present (Interfaces (E))
911 then
912 Elmt := First_Elmt (Interfaces (E));
913 while Present (Elmt) loop
914 if Is_Ancestor (Etype (T1), Node (Elmt)) then
915 return True;
916 end if;
918 Next_Elmt (Elmt);
919 end loop;
920 end if;
922 -- We should also check the case in which T1 is an ancestor of
923 -- some implemented interface???
925 return False;
926 end;
928 -- In a dispatching call, the formal is of some specific type, and the
929 -- actual is of the corresponding class-wide type, including a subtype
930 -- of the class-wide type.
932 elsif Is_Class_Wide_Type (T2)
933 and then
934 (Class_Wide_Type (T1) = Class_Wide_Type (T2)
935 or else Base_Type (Root_Type (T2)) = BT1)
936 then
937 return True;
939 -- Some contexts require a class of types rather than a specific type.
940 -- For example, conditions require any boolean type, fixed point
941 -- attributes require some real type, etc. The built-in types Any_XXX
942 -- represent these classes.
944 elsif (T1 = Any_Integer and then Is_Integer_Type (T2))
945 or else (T1 = Any_Boolean and then Is_Boolean_Type (T2))
946 or else (T1 = Any_Real and then Is_Real_Type (T2))
947 or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
948 or else (T1 = Any_Discrete and then Is_Discrete_Type (T2))
949 then
950 return True;
952 -- An aggregate is compatible with an array or record type
954 elsif T2 = Any_Composite
955 and then Is_Aggregate_Type (T1)
956 then
957 return True;
959 -- If the expected type is an anonymous access, the designated type must
960 -- cover that of the expression. Use the base type for this check: even
961 -- though access subtypes are rare in sources, they are generated for
962 -- actuals in instantiations.
964 elsif Ekind (BT1) = E_Anonymous_Access_Type
965 and then Is_Access_Type (T2)
966 and then Covers (Designated_Type (T1), Designated_Type (T2))
967 then
968 return True;
970 -- Ada 2012 (AI05-0149): Allow an anonymous access type in the context
971 -- of a named general access type. An implicit conversion will be
972 -- applied. For the resolution, one designated type must cover the
973 -- other.
975 elsif Ada_Version >= Ada_2012
976 and then Ekind (BT1) = E_General_Access_Type
977 and then Ekind (BT2) = E_Anonymous_Access_Type
978 and then (Covers (Designated_Type (T1), Designated_Type (T2))
979 or else Covers (Designated_Type (T2), Designated_Type (T1)))
980 then
981 return True;
983 -- An Access_To_Subprogram is compatible with itself, or with an
984 -- anonymous type created for an attribute reference Access.
986 elsif (Ekind (BT1) = E_Access_Subprogram_Type
987 or else
988 Ekind (BT1) = E_Access_Protected_Subprogram_Type)
989 and then Is_Access_Type (T2)
990 and then (not Comes_From_Source (T1)
991 or else not Comes_From_Source (T2))
992 and then (Is_Overloadable (Designated_Type (T2))
993 or else
994 Ekind (Designated_Type (T2)) = E_Subprogram_Type)
995 and then
996 Type_Conformant (Designated_Type (T1), Designated_Type (T2))
997 and then
998 Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
999 then
1000 return True;
1002 -- Ada 2005 (AI-254): An Anonymous_Access_To_Subprogram is compatible
1003 -- with itself, or with an anonymous type created for an attribute
1004 -- reference Access.
1006 elsif (Ekind (BT1) = E_Anonymous_Access_Subprogram_Type
1007 or else
1008 Ekind (BT1)
1009 = E_Anonymous_Access_Protected_Subprogram_Type)
1010 and then Is_Access_Type (T2)
1011 and then (not Comes_From_Source (T1)
1012 or else not Comes_From_Source (T2))
1013 and then (Is_Overloadable (Designated_Type (T2))
1014 or else
1015 Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1016 and then
1017 Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1018 and then
1019 Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1020 then
1021 return True;
1023 -- The context can be a remote access type, and the expression the
1024 -- corresponding source type declared in a categorized package, or
1025 -- vice versa.
1027 elsif Is_Record_Type (T1)
1028 and then (Is_Remote_Call_Interface (T1)
1029 or else Is_Remote_Types (T1))
1030 and then Present (Corresponding_Remote_Type (T1))
1031 then
1032 return Covers (Corresponding_Remote_Type (T1), T2);
1034 -- and conversely.
1036 elsif Is_Record_Type (T2)
1037 and then (Is_Remote_Call_Interface (T2)
1038 or else Is_Remote_Types (T2))
1039 and then Present (Corresponding_Remote_Type (T2))
1040 then
1041 return Covers (Corresponding_Remote_Type (T2), T1);
1043 -- Synchronized types are represented at run time by their corresponding
1044 -- record type. During expansion one is replaced with the other, but
1045 -- they are compatible views of the same type.
1047 elsif Is_Record_Type (T1)
1048 and then Is_Concurrent_Type (T2)
1049 and then Present (Corresponding_Record_Type (T2))
1050 then
1051 return Covers (T1, Corresponding_Record_Type (T2));
1053 elsif Is_Concurrent_Type (T1)
1054 and then Present (Corresponding_Record_Type (T1))
1055 and then Is_Record_Type (T2)
1056 then
1057 return Covers (Corresponding_Record_Type (T1), T2);
1059 -- During analysis, an attribute reference 'Access has a special type
1060 -- kind: Access_Attribute_Type, to be replaced eventually with the type
1061 -- imposed by context.
1063 elsif Ekind (T2) = E_Access_Attribute_Type
1064 and then Ekind_In (BT1, E_General_Access_Type, E_Access_Type)
1065 and then Covers (Designated_Type (T1), Designated_Type (T2))
1066 then
1067 -- If the target type is a RACW type while the source is an access
1068 -- attribute type, we are building a RACW that may be exported.
1070 if Is_Remote_Access_To_Class_Wide_Type (BT1) then
1071 Set_Has_RACW (Current_Sem_Unit);
1072 end if;
1074 return True;
1076 -- Ditto for allocators, which eventually resolve to the context type
1078 elsif Ekind (T2) = E_Allocator_Type
1079 and then Is_Access_Type (T1)
1080 then
1081 return Covers (Designated_Type (T1), Designated_Type (T2))
1082 or else
1083 (From_With_Type (Designated_Type (T1))
1084 and then Covers (Designated_Type (T2), Designated_Type (T1)));
1086 -- A boolean operation on integer literals is compatible with modular
1087 -- context.
1089 elsif T2 = Any_Modular
1090 and then Is_Modular_Integer_Type (T1)
1091 then
1092 return True;
1094 -- The actual type may be the result of a previous error
1096 elsif BT2 = Any_Type then
1097 return True;
1099 -- A packed array type covers its corresponding non-packed type. This is
1100 -- not legitimate Ada, but allows the omission of a number of otherwise
1101 -- useless unchecked conversions, and since this can only arise in
1102 -- (known correct) expanded code, no harm is done.
1104 elsif Is_Array_Type (T2)
1105 and then Is_Packed (T2)
1106 and then T1 = Packed_Array_Type (T2)
1107 then
1108 return True;
1110 -- Similarly an array type covers its corresponding packed array type
1112 elsif Is_Array_Type (T1)
1113 and then Is_Packed (T1)
1114 and then T2 = Packed_Array_Type (T1)
1115 then
1116 return True;
1118 -- In instances, or with types exported from instantiations, check
1119 -- whether a partial and a full view match. Verify that types are
1120 -- legal, to prevent cascaded errors.
1122 elsif In_Instance
1123 and then
1124 (Full_View_Covers (T1, T2)
1125 or else Full_View_Covers (T2, T1))
1126 then
1127 return True;
1129 elsif Is_Type (T2)
1130 and then Is_Generic_Actual_Type (T2)
1131 and then Full_View_Covers (T1, T2)
1132 then
1133 return True;
1135 elsif Is_Type (T1)
1136 and then Is_Generic_Actual_Type (T1)
1137 and then Full_View_Covers (T2, T1)
1138 then
1139 return True;
1141 -- In the expansion of inlined bodies, types are compatible if they
1142 -- are structurally equivalent.
1144 elsif In_Inlined_Body
1145 and then (Underlying_Type (T1) = Underlying_Type (T2)
1146 or else (Is_Access_Type (T1)
1147 and then Is_Access_Type (T2)
1148 and then
1149 Designated_Type (T1) = Designated_Type (T2))
1150 or else (T1 = Any_Access
1151 and then Is_Access_Type (Underlying_Type (T2)))
1152 or else (T2 = Any_Composite
1153 and then
1154 Is_Composite_Type (Underlying_Type (T1))))
1155 then
1156 return True;
1158 -- Ada 2005 (AI-50217): Additional branches to make the shadow entity
1159 -- obtained through a limited_with compatible with its real entity.
1161 elsif From_With_Type (T1) then
1163 -- If the expected type is the non-limited view of a type, the
1164 -- expression may have the limited view. If that one in turn is
1165 -- incomplete, get full view if available.
1167 if Is_Incomplete_Type (T1) then
1168 return Covers (Get_Full_View (Non_Limited_View (T1)), T2);
1170 elsif Ekind (T1) = E_Class_Wide_Type then
1171 return
1172 Covers (Class_Wide_Type (Non_Limited_View (Etype (T1))), T2);
1173 else
1174 return False;
1175 end if;
1177 elsif From_With_Type (T2) then
1179 -- If units in the context have Limited_With clauses on each other,
1180 -- either type might have a limited view. Checks performed elsewhere
1181 -- verify that the context type is the nonlimited view.
1183 if Is_Incomplete_Type (T2) then
1184 return Covers (T1, Get_Full_View (Non_Limited_View (T2)));
1186 elsif Ekind (T2) = E_Class_Wide_Type then
1187 return
1188 Present (Non_Limited_View (Etype (T2)))
1189 and then
1190 Covers (T1, Class_Wide_Type (Non_Limited_View (Etype (T2))));
1191 else
1192 return False;
1193 end if;
1195 -- Ada 2005 (AI-412): Coverage for regular incomplete subtypes
1197 elsif Ekind (T1) = E_Incomplete_Subtype then
1198 return Covers (Full_View (Etype (T1)), T2);
1200 elsif Ekind (T2) = E_Incomplete_Subtype then
1201 return Covers (T1, Full_View (Etype (T2)));
1203 -- Ada 2005 (AI-423): Coverage of formal anonymous access types
1204 -- and actual anonymous access types in the context of generic
1205 -- instantiations. We have the following situation:
1207 -- generic
1208 -- type Formal is private;
1209 -- Formal_Obj : access Formal; -- T1
1210 -- package G is ...
1212 -- package P is
1213 -- type Actual is ...
1214 -- Actual_Obj : access Actual; -- T2
1215 -- package Instance is new G (Formal => Actual,
1216 -- Formal_Obj => Actual_Obj);
1218 elsif Ada_Version >= Ada_2005
1219 and then Ekind (T1) = E_Anonymous_Access_Type
1220 and then Ekind (T2) = E_Anonymous_Access_Type
1221 and then Is_Generic_Type (Directly_Designated_Type (T1))
1222 and then Get_Instance_Of (Directly_Designated_Type (T1)) =
1223 Directly_Designated_Type (T2)
1224 then
1225 return True;
1227 -- Otherwise, types are not compatible!
1229 else
1230 return False;
1231 end if;
1232 end Covers;
1234 ------------------
1235 -- Disambiguate --
1236 ------------------
1238 function Disambiguate
1239 (N : Node_Id;
1240 I1, I2 : Interp_Index;
1241 Typ : Entity_Id) return Interp
1243 I : Interp_Index;
1244 It : Interp;
1245 It1, It2 : Interp;
1246 Nam1, Nam2 : Entity_Id;
1247 Predef_Subp : Entity_Id;
1248 User_Subp : Entity_Id;
1250 function Inherited_From_Actual (S : Entity_Id) return Boolean;
1251 -- Determine whether one of the candidates is an operation inherited by
1252 -- a type that is derived from an actual in an instantiation.
1254 function In_Same_Declaration_List
1255 (Typ : Entity_Id;
1256 Op_Decl : Entity_Id) return Boolean;
1257 -- AI05-0020: a spurious ambiguity may arise when equality on anonymous
1258 -- access types is declared on the partial view of a designated type, so
1259 -- that the type declaration and equality are not in the same list of
1260 -- declarations. This AI gives a preference rule for the user-defined
1261 -- operation. Same rule applies for arithmetic operations on private
1262 -- types completed with fixed-point types: the predefined operation is
1263 -- hidden; this is already handled properly in GNAT.
1265 function Is_Actual_Subprogram (S : Entity_Id) return Boolean;
1266 -- Determine whether a subprogram is an actual in an enclosing instance.
1267 -- An overloading between such a subprogram and one declared outside the
1268 -- instance is resolved in favor of the first, because it resolved in
1269 -- the generic.
1271 function Matches (Actual, Formal : Node_Id) return Boolean;
1272 -- Look for exact type match in an instance, to remove spurious
1273 -- ambiguities when two formal types have the same actual.
1275 function Operand_Type return Entity_Id;
1276 -- Determine type of operand for an equality operation, to apply
1277 -- Ada 2005 rules to equality on anonymous access types.
1279 function Standard_Operator return Boolean;
1280 -- Check whether subprogram is predefined operator declared in Standard.
1281 -- It may given by an operator name, or by an expanded name whose prefix
1282 -- is Standard.
1284 function Remove_Conversions return Interp;
1285 -- Last chance for pathological cases involving comparisons on literals,
1286 -- and user overloadings of the same operator. Such pathologies have
1287 -- been removed from the ACVC, but still appear in two DEC tests, with
1288 -- the following notable quote from Ben Brosgol:
1290 -- [Note: I disclaim all credit/responsibility/blame for coming up with
1291 -- this example; Robert Dewar brought it to our attention, since it is
1292 -- apparently found in the ACVC 1.5. I did not attempt to find the
1293 -- reason in the Reference Manual that makes the example legal, since I
1294 -- was too nauseated by it to want to pursue it further.]
1296 -- Accordingly, this is not a fully recursive solution, but it handles
1297 -- DEC tests c460vsa, c460vsb. It also handles ai00136a, which pushes
1298 -- pathology in the other direction with calls whose multiple overloaded
1299 -- actuals make them truly unresolvable.
1301 -- The new rules concerning abstract operations create additional need
1302 -- for special handling of expressions with universal operands, see
1303 -- comments to Has_Abstract_Interpretation below.
1305 ---------------------------
1306 -- Inherited_From_Actual --
1307 ---------------------------
1309 function Inherited_From_Actual (S : Entity_Id) return Boolean is
1310 Par : constant Node_Id := Parent (S);
1311 begin
1312 if Nkind (Par) /= N_Full_Type_Declaration
1313 or else Nkind (Type_Definition (Par)) /= N_Derived_Type_Definition
1314 then
1315 return False;
1316 else
1317 return Is_Entity_Name (Subtype_Indication (Type_Definition (Par)))
1318 and then
1319 Is_Generic_Actual_Type (
1320 Entity (Subtype_Indication (Type_Definition (Par))));
1321 end if;
1322 end Inherited_From_Actual;
1324 ------------------------------
1325 -- In_Same_Declaration_List --
1326 ------------------------------
1328 function In_Same_Declaration_List
1329 (Typ : Entity_Id;
1330 Op_Decl : Entity_Id) return Boolean
1332 Scop : constant Entity_Id := Scope (Typ);
1334 begin
1335 return In_Same_List (Parent (Typ), Op_Decl)
1336 or else
1337 (Ekind_In (Scop, E_Package, E_Generic_Package)
1338 and then List_Containing (Op_Decl) =
1339 Visible_Declarations (Parent (Scop))
1340 and then List_Containing (Parent (Typ)) =
1341 Private_Declarations (Parent (Scop)));
1342 end In_Same_Declaration_List;
1344 --------------------------
1345 -- Is_Actual_Subprogram --
1346 --------------------------
1348 function Is_Actual_Subprogram (S : Entity_Id) return Boolean is
1349 begin
1350 return In_Open_Scopes (Scope (S))
1351 and then
1352 (Is_Generic_Instance (Scope (S))
1353 or else Is_Wrapper_Package (Scope (S)));
1354 end Is_Actual_Subprogram;
1356 -------------
1357 -- Matches --
1358 -------------
1360 function Matches (Actual, Formal : Node_Id) return Boolean is
1361 T1 : constant Entity_Id := Etype (Actual);
1362 T2 : constant Entity_Id := Etype (Formal);
1363 begin
1364 return T1 = T2
1365 or else
1366 (Is_Numeric_Type (T2)
1367 and then (T1 = Universal_Real or else T1 = Universal_Integer));
1368 end Matches;
1370 ------------------
1371 -- Operand_Type --
1372 ------------------
1374 function Operand_Type return Entity_Id is
1375 Opnd : Node_Id;
1377 begin
1378 if Nkind (N) = N_Function_Call then
1379 Opnd := First_Actual (N);
1380 else
1381 Opnd := Left_Opnd (N);
1382 end if;
1384 return Etype (Opnd);
1385 end Operand_Type;
1387 ------------------------
1388 -- Remove_Conversions --
1389 ------------------------
1391 function Remove_Conversions return Interp is
1392 I : Interp_Index;
1393 It : Interp;
1394 It1 : Interp;
1395 F1 : Entity_Id;
1396 Act1 : Node_Id;
1397 Act2 : Node_Id;
1399 function Has_Abstract_Interpretation (N : Node_Id) return Boolean;
1400 -- If an operation has universal operands the universal operation
1401 -- is present among its interpretations. If there is an abstract
1402 -- interpretation for the operator, with a numeric result, this
1403 -- interpretation was already removed in sem_ch4, but the universal
1404 -- one is still visible. We must rescan the list of operators and
1405 -- remove the universal interpretation to resolve the ambiguity.
1407 ---------------------------------
1408 -- Has_Abstract_Interpretation --
1409 ---------------------------------
1411 function Has_Abstract_Interpretation (N : Node_Id) return Boolean is
1412 E : Entity_Id;
1414 begin
1415 if Nkind (N) not in N_Op
1416 or else Ada_Version < Ada_2005
1417 or else not Is_Overloaded (N)
1418 or else No (Universal_Interpretation (N))
1419 then
1420 return False;
1422 else
1423 E := Get_Name_Entity_Id (Chars (N));
1424 while Present (E) loop
1425 if Is_Overloadable (E)
1426 and then Is_Abstract_Subprogram (E)
1427 and then Is_Numeric_Type (Etype (E))
1428 then
1429 return True;
1430 else
1431 E := Homonym (E);
1432 end if;
1433 end loop;
1435 -- Finally, if an operand of the binary operator is itself
1436 -- an operator, recurse to see whether its own abstract
1437 -- interpretation is responsible for the spurious ambiguity.
1439 if Nkind (N) in N_Binary_Op then
1440 return Has_Abstract_Interpretation (Left_Opnd (N))
1441 or else Has_Abstract_Interpretation (Right_Opnd (N));
1443 elsif Nkind (N) in N_Unary_Op then
1444 return Has_Abstract_Interpretation (Right_Opnd (N));
1446 else
1447 return False;
1448 end if;
1449 end if;
1450 end Has_Abstract_Interpretation;
1452 -- Start of processing for Remove_Conversions
1454 begin
1455 It1 := No_Interp;
1457 Get_First_Interp (N, I, It);
1458 while Present (It.Typ) loop
1459 if not Is_Overloadable (It.Nam) then
1460 return No_Interp;
1461 end if;
1463 F1 := First_Formal (It.Nam);
1465 if No (F1) then
1466 return It1;
1468 else
1469 if Nkind (N) in N_Subprogram_Call then
1470 Act1 := First_Actual (N);
1472 if Present (Act1) then
1473 Act2 := Next_Actual (Act1);
1474 else
1475 Act2 := Empty;
1476 end if;
1478 elsif Nkind (N) in N_Unary_Op then
1479 Act1 := Right_Opnd (N);
1480 Act2 := Empty;
1482 elsif Nkind (N) in N_Binary_Op then
1483 Act1 := Left_Opnd (N);
1484 Act2 := Right_Opnd (N);
1486 -- Use type of second formal, so as to include
1487 -- exponentiation, where the exponent may be
1488 -- ambiguous and the result non-universal.
1490 Next_Formal (F1);
1492 else
1493 return It1;
1494 end if;
1496 if Nkind (Act1) in N_Op
1497 and then Is_Overloaded (Act1)
1498 and then (Nkind (Right_Opnd (Act1)) = N_Integer_Literal
1499 or else Nkind (Right_Opnd (Act1)) = N_Real_Literal)
1500 and then Has_Compatible_Type (Act1, Standard_Boolean)
1501 and then Etype (F1) = Standard_Boolean
1502 then
1503 -- If the two candidates are the original ones, the
1504 -- ambiguity is real. Otherwise keep the original, further
1505 -- calls to Disambiguate will take care of others in the
1506 -- list of candidates.
1508 if It1 /= No_Interp then
1509 if It = Disambiguate.It1
1510 or else It = Disambiguate.It2
1511 then
1512 if It1 = Disambiguate.It1
1513 or else It1 = Disambiguate.It2
1514 then
1515 return No_Interp;
1516 else
1517 It1 := It;
1518 end if;
1519 end if;
1521 elsif Present (Act2)
1522 and then Nkind (Act2) in N_Op
1523 and then Is_Overloaded (Act2)
1524 and then Nkind_In (Right_Opnd (Act2), N_Integer_Literal,
1525 N_Real_Literal)
1526 and then Has_Compatible_Type (Act2, Standard_Boolean)
1527 then
1528 -- The preference rule on the first actual is not
1529 -- sufficient to disambiguate.
1531 goto Next_Interp;
1533 else
1534 It1 := It;
1535 end if;
1537 elsif Is_Numeric_Type (Etype (F1))
1538 and then Has_Abstract_Interpretation (Act1)
1539 then
1540 -- Current interpretation is not the right one because it
1541 -- expects a numeric operand. Examine all the other ones.
1543 declare
1544 I : Interp_Index;
1545 It : Interp;
1547 begin
1548 Get_First_Interp (N, I, It);
1549 while Present (It.Typ) loop
1551 not Is_Numeric_Type (Etype (First_Formal (It.Nam)))
1552 then
1553 if No (Act2)
1554 or else not Has_Abstract_Interpretation (Act2)
1555 or else not
1556 Is_Numeric_Type
1557 (Etype (Next_Formal (First_Formal (It.Nam))))
1558 then
1559 return It;
1560 end if;
1561 end if;
1563 Get_Next_Interp (I, It);
1564 end loop;
1566 return No_Interp;
1567 end;
1568 end if;
1569 end if;
1571 <<Next_Interp>>
1572 Get_Next_Interp (I, It);
1573 end loop;
1575 -- After some error, a formal may have Any_Type and yield a spurious
1576 -- match. To avoid cascaded errors if possible, check for such a
1577 -- formal in either candidate.
1579 if Serious_Errors_Detected > 0 then
1580 declare
1581 Formal : Entity_Id;
1583 begin
1584 Formal := First_Formal (Nam1);
1585 while Present (Formal) loop
1586 if Etype (Formal) = Any_Type then
1587 return Disambiguate.It2;
1588 end if;
1590 Next_Formal (Formal);
1591 end loop;
1593 Formal := First_Formal (Nam2);
1594 while Present (Formal) loop
1595 if Etype (Formal) = Any_Type then
1596 return Disambiguate.It1;
1597 end if;
1599 Next_Formal (Formal);
1600 end loop;
1601 end;
1602 end if;
1604 return It1;
1605 end Remove_Conversions;
1607 -----------------------
1608 -- Standard_Operator --
1609 -----------------------
1611 function Standard_Operator return Boolean is
1612 Nam : Node_Id;
1614 begin
1615 if Nkind (N) in N_Op then
1616 return True;
1618 elsif Nkind (N) = N_Function_Call then
1619 Nam := Name (N);
1621 if Nkind (Nam) /= N_Expanded_Name then
1622 return True;
1623 else
1624 return Entity (Prefix (Nam)) = Standard_Standard;
1625 end if;
1626 else
1627 return False;
1628 end if;
1629 end Standard_Operator;
1631 -- Start of processing for Disambiguate
1633 begin
1634 -- Recover the two legal interpretations
1636 Get_First_Interp (N, I, It);
1637 while I /= I1 loop
1638 Get_Next_Interp (I, It);
1639 end loop;
1641 It1 := It;
1642 Nam1 := It.Nam;
1643 while I /= I2 loop
1644 Get_Next_Interp (I, It);
1645 end loop;
1647 It2 := It;
1648 Nam2 := It.Nam;
1650 -- Check whether one of the entities is an Ada 2005/2012 and we are
1651 -- operating in an earlier mode, in which case we discard the Ada
1652 -- 2005/2012 entity, so that we get proper Ada 95 overload resolution.
1654 if Ada_Version < Ada_2005 then
1655 if Is_Ada_2005_Only (Nam1) or else Is_Ada_2012_Only (Nam1) then
1656 return It2;
1657 elsif Is_Ada_2005_Only (Nam2) or else Is_Ada_2012_Only (Nam1) then
1658 return It1;
1659 end if;
1660 end if;
1662 -- Check whether one of the entities is an Ada 2012 entity and we are
1663 -- operating in Ada 2005 mode, in which case we discard the Ada 2012
1664 -- entity, so that we get proper Ada 2005 overload resolution.
1666 if Ada_Version = Ada_2005 then
1667 if Is_Ada_2012_Only (Nam1) then
1668 return It2;
1669 elsif Is_Ada_2012_Only (Nam2) then
1670 return It1;
1671 end if;
1672 end if;
1674 -- Check for overloaded CIL convention stuff because the CIL libraries
1675 -- do sick things like Console.Write_Line where it matches two different
1676 -- overloads, so just pick the first ???
1678 if Convention (Nam1) = Convention_CIL
1679 and then Convention (Nam2) = Convention_CIL
1680 and then Ekind (Nam1) = Ekind (Nam2)
1681 and then (Ekind (Nam1) = E_Procedure
1682 or else Ekind (Nam1) = E_Function)
1683 then
1684 return It2;
1685 end if;
1687 -- If the context is universal, the predefined operator is preferred.
1688 -- This includes bounds in numeric type declarations, and expressions
1689 -- in type conversions. If no interpretation yields a universal type,
1690 -- then we must check whether the user-defined entity hides the prede-
1691 -- fined one.
1693 if Chars (Nam1) in Any_Operator_Name
1694 and then Standard_Operator
1695 then
1696 if Typ = Universal_Integer
1697 or else Typ = Universal_Real
1698 or else Typ = Any_Integer
1699 or else Typ = Any_Discrete
1700 or else Typ = Any_Real
1701 or else Typ = Any_Type
1702 then
1703 -- Find an interpretation that yields the universal type, or else
1704 -- a predefined operator that yields a predefined numeric type.
1706 declare
1707 Candidate : Interp := No_Interp;
1709 begin
1710 Get_First_Interp (N, I, It);
1711 while Present (It.Typ) loop
1712 if (Covers (Typ, It.Typ)
1713 or else Typ = Any_Type)
1714 and then
1715 (It.Typ = Universal_Integer
1716 or else It.Typ = Universal_Real)
1717 then
1718 return It;
1720 elsif Covers (Typ, It.Typ)
1721 and then Scope (It.Typ) = Standard_Standard
1722 and then Scope (It.Nam) = Standard_Standard
1723 and then Is_Numeric_Type (It.Typ)
1724 then
1725 Candidate := It;
1726 end if;
1728 Get_Next_Interp (I, It);
1729 end loop;
1731 if Candidate /= No_Interp then
1732 return Candidate;
1733 end if;
1734 end;
1736 elsif Chars (Nam1) /= Name_Op_Not
1737 and then (Typ = Standard_Boolean or else Typ = Any_Boolean)
1738 then
1739 -- Equality or comparison operation. Choose predefined operator if
1740 -- arguments are universal. The node may be an operator, name, or
1741 -- a function call, so unpack arguments accordingly.
1743 declare
1744 Arg1, Arg2 : Node_Id;
1746 begin
1747 if Nkind (N) in N_Op then
1748 Arg1 := Left_Opnd (N);
1749 Arg2 := Right_Opnd (N);
1751 elsif Is_Entity_Name (N) then
1752 Arg1 := First_Entity (Entity (N));
1753 Arg2 := Next_Entity (Arg1);
1755 else
1756 Arg1 := First_Actual (N);
1757 Arg2 := Next_Actual (Arg1);
1758 end if;
1760 if Present (Arg2)
1761 and then Present (Universal_Interpretation (Arg1))
1762 and then Universal_Interpretation (Arg2) =
1763 Universal_Interpretation (Arg1)
1764 then
1765 Get_First_Interp (N, I, It);
1766 while Scope (It.Nam) /= Standard_Standard loop
1767 Get_Next_Interp (I, It);
1768 end loop;
1770 return It;
1771 end if;
1772 end;
1773 end if;
1774 end if;
1776 -- If no universal interpretation, check whether user-defined operator
1777 -- hides predefined one, as well as other special cases. If the node
1778 -- is a range, then one or both bounds are ambiguous. Each will have
1779 -- to be disambiguated w.r.t. the context type. The type of the range
1780 -- itself is imposed by the context, so we can return either legal
1781 -- interpretation.
1783 if Ekind (Nam1) = E_Operator then
1784 Predef_Subp := Nam1;
1785 User_Subp := Nam2;
1787 elsif Ekind (Nam2) = E_Operator then
1788 Predef_Subp := Nam2;
1789 User_Subp := Nam1;
1791 elsif Nkind (N) = N_Range then
1792 return It1;
1794 -- Implement AI05-105: A renaming declaration with an access
1795 -- definition must resolve to an anonymous access type. This
1796 -- is a resolution rule and can be used to disambiguate.
1798 elsif Nkind (Parent (N)) = N_Object_Renaming_Declaration
1799 and then Present (Access_Definition (Parent (N)))
1800 then
1801 if Ekind_In (It1.Typ, E_Anonymous_Access_Type,
1802 E_Anonymous_Access_Subprogram_Type)
1803 then
1804 if Ekind (It2.Typ) = Ekind (It1.Typ) then
1806 -- True ambiguity
1808 return No_Interp;
1810 else
1811 return It1;
1812 end if;
1814 elsif Ekind_In (It2.Typ, E_Anonymous_Access_Type,
1815 E_Anonymous_Access_Subprogram_Type)
1816 then
1817 return It2;
1819 -- No legal interpretation
1821 else
1822 return No_Interp;
1823 end if;
1825 -- If two user defined-subprograms are visible, it is a true ambiguity,
1826 -- unless one of them is an entry and the context is a conditional or
1827 -- timed entry call, or unless we are within an instance and this is
1828 -- results from two formals types with the same actual.
1830 else
1831 if Nkind (N) = N_Procedure_Call_Statement
1832 and then Nkind (Parent (N)) = N_Entry_Call_Alternative
1833 and then N = Entry_Call_Statement (Parent (N))
1834 then
1835 if Ekind (Nam2) = E_Entry then
1836 return It2;
1837 elsif Ekind (Nam1) = E_Entry then
1838 return It1;
1839 else
1840 return No_Interp;
1841 end if;
1843 -- If the ambiguity occurs within an instance, it is due to several
1844 -- formal types with the same actual. Look for an exact match between
1845 -- the types of the formals of the overloadable entities, and the
1846 -- actuals in the call, to recover the unambiguous match in the
1847 -- original generic.
1849 -- The ambiguity can also be due to an overloading between a formal
1850 -- subprogram and a subprogram declared outside the generic. If the
1851 -- node is overloaded, it did not resolve to the global entity in
1852 -- the generic, and we choose the formal subprogram.
1854 -- Finally, the ambiguity can be between an explicit subprogram and
1855 -- one inherited (with different defaults) from an actual. In this
1856 -- case the resolution was to the explicit declaration in the
1857 -- generic, and remains so in the instance.
1859 -- The same sort of disambiguation needed for calls is also required
1860 -- for the name given in a subprogram renaming, and that case is
1861 -- handled here as well. We test Comes_From_Source to exclude this
1862 -- treatment for implicit renamings created for formal subprograms.
1864 elsif In_Instance
1865 and then not In_Generic_Actual (N)
1866 then
1867 if Nkind (N) in N_Subprogram_Call
1868 or else
1869 (Nkind (N) in N_Has_Entity
1870 and then
1871 Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
1872 and then Comes_From_Source (Parent (N)))
1873 then
1874 declare
1875 Actual : Node_Id;
1876 Formal : Entity_Id;
1877 Renam : Entity_Id := Empty;
1878 Is_Act1 : constant Boolean := Is_Actual_Subprogram (Nam1);
1879 Is_Act2 : constant Boolean := Is_Actual_Subprogram (Nam2);
1881 begin
1882 if Is_Act1 and then not Is_Act2 then
1883 return It1;
1885 elsif Is_Act2 and then not Is_Act1 then
1886 return It2;
1888 elsif Inherited_From_Actual (Nam1)
1889 and then Comes_From_Source (Nam2)
1890 then
1891 return It2;
1893 elsif Inherited_From_Actual (Nam2)
1894 and then Comes_From_Source (Nam1)
1895 then
1896 return It1;
1897 end if;
1899 -- In the case of a renamed subprogram, pick up the entity
1900 -- of the renaming declaration so we can traverse its
1901 -- formal parameters.
1903 if Nkind (N) in N_Has_Entity then
1904 Renam := Defining_Unit_Name (Specification (Parent (N)));
1905 end if;
1907 if Present (Renam) then
1908 Actual := First_Formal (Renam);
1909 else
1910 Actual := First_Actual (N);
1911 end if;
1913 Formal := First_Formal (Nam1);
1914 while Present (Actual) loop
1915 if Etype (Actual) /= Etype (Formal) then
1916 return It2;
1917 end if;
1919 if Present (Renam) then
1920 Next_Formal (Actual);
1921 else
1922 Next_Actual (Actual);
1923 end if;
1925 Next_Formal (Formal);
1926 end loop;
1928 return It1;
1929 end;
1931 elsif Nkind (N) in N_Binary_Op then
1932 if Matches (Left_Opnd (N), First_Formal (Nam1))
1933 and then
1934 Matches (Right_Opnd (N), Next_Formal (First_Formal (Nam1)))
1935 then
1936 return It1;
1937 else
1938 return It2;
1939 end if;
1941 elsif Nkind (N) in N_Unary_Op then
1942 if Etype (Right_Opnd (N)) = Etype (First_Formal (Nam1)) then
1943 return It1;
1944 else
1945 return It2;
1946 end if;
1948 else
1949 return Remove_Conversions;
1950 end if;
1951 else
1952 return Remove_Conversions;
1953 end if;
1954 end if;
1956 -- An implicit concatenation operator on a string type cannot be
1957 -- disambiguated from the predefined concatenation. This can only
1958 -- happen with concatenation of string literals.
1960 if Chars (User_Subp) = Name_Op_Concat
1961 and then Ekind (User_Subp) = E_Operator
1962 and then Is_String_Type (Etype (First_Formal (User_Subp)))
1963 then
1964 return No_Interp;
1966 -- If the user-defined operator is in an open scope, or in the scope
1967 -- of the resulting type, or given by an expanded name that names its
1968 -- scope, it hides the predefined operator for the type. Exponentiation
1969 -- has to be special-cased because the implicit operator does not have
1970 -- a symmetric signature, and may not be hidden by the explicit one.
1972 elsif (Nkind (N) = N_Function_Call
1973 and then Nkind (Name (N)) = N_Expanded_Name
1974 and then (Chars (Predef_Subp) /= Name_Op_Expon
1975 or else Hides_Op (User_Subp, Predef_Subp))
1976 and then Scope (User_Subp) = Entity (Prefix (Name (N))))
1977 or else Hides_Op (User_Subp, Predef_Subp)
1978 then
1979 if It1.Nam = User_Subp then
1980 return It1;
1981 else
1982 return It2;
1983 end if;
1985 -- Otherwise, the predefined operator has precedence, or if the user-
1986 -- defined operation is directly visible we have a true ambiguity.
1988 -- If this is a fixed-point multiplication and division in Ada 83 mode,
1989 -- exclude the universal_fixed operator, which often causes ambiguities
1990 -- in legacy code.
1992 -- Ditto in Ada 2012, where an ambiguity may arise for an operation
1993 -- on a partial view that is completed with a fixed point type. See
1994 -- AI05-0020 and AI05-0209. The ambiguity is resolved in favor of the
1995 -- user-defined subprogram so that a client of the package has the
1996 -- same resulution as the body of the package.
1998 else
1999 if (In_Open_Scopes (Scope (User_Subp))
2000 or else Is_Potentially_Use_Visible (User_Subp))
2001 and then not In_Instance
2002 then
2003 if Is_Fixed_Point_Type (Typ)
2004 and then (Chars (Nam1) = Name_Op_Multiply
2005 or else Chars (Nam1) = Name_Op_Divide)
2006 and then
2007 (Ada_Version = Ada_83
2008 or else
2009 (Ada_Version >= Ada_2012
2010 and then
2011 In_Same_Declaration_List
2012 (Typ, Unit_Declaration_Node (User_Subp))))
2013 then
2014 if It2.Nam = Predef_Subp then
2015 return It1;
2016 else
2017 return It2;
2018 end if;
2020 -- Ada 2005, AI-420: preference rule for "=" on Universal_Access
2021 -- states that the operator defined in Standard is not available
2022 -- if there is a user-defined equality with the proper signature,
2023 -- declared in the same declarative list as the type. The node
2024 -- may be an operator or a function call.
2026 elsif (Chars (Nam1) = Name_Op_Eq
2027 or else
2028 Chars (Nam1) = Name_Op_Ne)
2029 and then Ada_Version >= Ada_2005
2030 and then Etype (User_Subp) = Standard_Boolean
2031 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
2032 and then
2033 In_Same_Declaration_List
2034 (Designated_Type (Operand_Type),
2035 Unit_Declaration_Node (User_Subp))
2036 then
2037 if It2.Nam = Predef_Subp then
2038 return It1;
2039 else
2040 return It2;
2041 end if;
2043 -- An immediately visible operator hides a use-visible user-
2044 -- defined operation. This disambiguation cannot take place
2045 -- earlier because the visibility of the predefined operator
2046 -- can only be established when operand types are known.
2048 elsif Ekind (User_Subp) = E_Function
2049 and then Ekind (Predef_Subp) = E_Operator
2050 and then Nkind (N) in N_Op
2051 and then not Is_Overloaded (Right_Opnd (N))
2052 and then
2053 Is_Immediately_Visible (Base_Type (Etype (Right_Opnd (N))))
2054 and then Is_Potentially_Use_Visible (User_Subp)
2055 then
2056 if It2.Nam = Predef_Subp then
2057 return It1;
2058 else
2059 return It2;
2060 end if;
2062 else
2063 return No_Interp;
2064 end if;
2066 elsif It1.Nam = Predef_Subp then
2067 return It1;
2069 else
2070 return It2;
2071 end if;
2072 end if;
2073 end Disambiguate;
2075 ---------------------
2076 -- End_Interp_List --
2077 ---------------------
2079 procedure End_Interp_List is
2080 begin
2081 All_Interp.Table (All_Interp.Last) := No_Interp;
2082 All_Interp.Increment_Last;
2083 end End_Interp_List;
2085 -------------------------
2086 -- Entity_Matches_Spec --
2087 -------------------------
2089 function Entity_Matches_Spec (Old_S, New_S : Entity_Id) return Boolean is
2090 begin
2091 -- Simple case: same entity kinds, type conformance is required. A
2092 -- parameterless function can also rename a literal.
2094 if Ekind (Old_S) = Ekind (New_S)
2095 or else (Ekind (New_S) = E_Function
2096 and then Ekind (Old_S) = E_Enumeration_Literal)
2097 then
2098 return Type_Conformant (New_S, Old_S);
2100 elsif Ekind (New_S) = E_Function
2101 and then Ekind (Old_S) = E_Operator
2102 then
2103 return Operator_Matches_Spec (Old_S, New_S);
2105 elsif Ekind (New_S) = E_Procedure
2106 and then Is_Entry (Old_S)
2107 then
2108 return Type_Conformant (New_S, Old_S);
2110 else
2111 return False;
2112 end if;
2113 end Entity_Matches_Spec;
2115 ----------------------
2116 -- Find_Unique_Type --
2117 ----------------------
2119 function Find_Unique_Type (L : Node_Id; R : Node_Id) return Entity_Id is
2120 T : constant Entity_Id := Etype (L);
2121 I : Interp_Index;
2122 It : Interp;
2123 TR : Entity_Id := Any_Type;
2125 begin
2126 if Is_Overloaded (R) then
2127 Get_First_Interp (R, I, It);
2128 while Present (It.Typ) loop
2129 if Covers (T, It.Typ) or else Covers (It.Typ, T) then
2131 -- If several interpretations are possible and L is universal,
2132 -- apply preference rule.
2134 if TR /= Any_Type then
2136 if (T = Universal_Integer or else T = Universal_Real)
2137 and then It.Typ = T
2138 then
2139 TR := It.Typ;
2140 end if;
2142 else
2143 TR := It.Typ;
2144 end if;
2145 end if;
2147 Get_Next_Interp (I, It);
2148 end loop;
2150 Set_Etype (R, TR);
2152 -- In the non-overloaded case, the Etype of R is already set correctly
2154 else
2155 null;
2156 end if;
2158 -- If one of the operands is Universal_Fixed, the type of the other
2159 -- operand provides the context.
2161 if Etype (R) = Universal_Fixed then
2162 return T;
2164 elsif T = Universal_Fixed then
2165 return Etype (R);
2167 -- Ada 2005 (AI-230): Support the following operators:
2169 -- function "=" (L, R : universal_access) return Boolean;
2170 -- function "/=" (L, R : universal_access) return Boolean;
2172 -- Pool specific access types (E_Access_Type) are not covered by these
2173 -- operators because of the legality rule of 4.5.2(9.2): "The operands
2174 -- of the equality operators for universal_access shall be convertible
2175 -- to one another (see 4.6)". For example, considering the type decla-
2176 -- ration "type P is access Integer" and an anonymous access to Integer,
2177 -- P is convertible to "access Integer" by 4.6 (24.11-24.15), but there
2178 -- is no rule in 4.6 that allows "access Integer" to be converted to P.
2180 elsif Ada_Version >= Ada_2005
2181 and then
2182 (Ekind (Etype (L)) = E_Anonymous_Access_Type
2183 or else
2184 Ekind (Etype (L)) = E_Anonymous_Access_Subprogram_Type)
2185 and then Is_Access_Type (Etype (R))
2186 and then Ekind (Etype (R)) /= E_Access_Type
2187 then
2188 return Etype (L);
2190 elsif Ada_Version >= Ada_2005
2191 and then
2192 (Ekind (Etype (R)) = E_Anonymous_Access_Type
2193 or else Ekind (Etype (R)) = E_Anonymous_Access_Subprogram_Type)
2194 and then Is_Access_Type (Etype (L))
2195 and then Ekind (Etype (L)) /= E_Access_Type
2196 then
2197 return Etype (R);
2199 else
2200 return Specific_Type (T, Etype (R));
2201 end if;
2202 end Find_Unique_Type;
2204 -------------------------------------
2205 -- Function_Interp_Has_Abstract_Op --
2206 -------------------------------------
2208 function Function_Interp_Has_Abstract_Op
2209 (N : Node_Id;
2210 E : Entity_Id) return Entity_Id
2212 Abstr_Op : Entity_Id;
2213 Act : Node_Id;
2214 Act_Parm : Node_Id;
2215 Form_Parm : Node_Id;
2217 begin
2218 -- Why is check on E needed below ???
2219 -- In any case this para needs comments ???
2221 if Is_Overloaded (N) and then Is_Overloadable (E) then
2222 Act_Parm := First_Actual (N);
2223 Form_Parm := First_Formal (E);
2224 while Present (Act_Parm)
2225 and then Present (Form_Parm)
2226 loop
2227 Act := Act_Parm;
2229 if Nkind (Act) = N_Parameter_Association then
2230 Act := Explicit_Actual_Parameter (Act);
2231 end if;
2233 Abstr_Op := Has_Abstract_Op (Act, Etype (Form_Parm));
2235 if Present (Abstr_Op) then
2236 return Abstr_Op;
2237 end if;
2239 Next_Actual (Act_Parm);
2240 Next_Formal (Form_Parm);
2241 end loop;
2242 end if;
2244 return Empty;
2245 end Function_Interp_Has_Abstract_Op;
2247 ----------------------
2248 -- Get_First_Interp --
2249 ----------------------
2251 procedure Get_First_Interp
2252 (N : Node_Id;
2253 I : out Interp_Index;
2254 It : out Interp)
2256 Int_Ind : Interp_Index;
2257 Map_Ptr : Int;
2258 O_N : Node_Id;
2260 begin
2261 -- If a selected component is overloaded because the selector has
2262 -- multiple interpretations, the node is a call to a protected
2263 -- operation or an indirect call. Retrieve the interpretation from
2264 -- the selector name. The selected component may be overloaded as well
2265 -- if the prefix is overloaded. That case is unchanged.
2267 if Nkind (N) = N_Selected_Component
2268 and then Is_Overloaded (Selector_Name (N))
2269 then
2270 O_N := Selector_Name (N);
2271 else
2272 O_N := N;
2273 end if;
2275 Map_Ptr := Headers (Hash (O_N));
2276 while Map_Ptr /= No_Entry loop
2277 if Interp_Map.Table (Map_Ptr).Node = O_N then
2278 Int_Ind := Interp_Map.Table (Map_Ptr).Index;
2279 It := All_Interp.Table (Int_Ind);
2280 I := Int_Ind;
2281 return;
2282 else
2283 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
2284 end if;
2285 end loop;
2287 -- Procedure should never be called if the node has no interpretations
2289 raise Program_Error;
2290 end Get_First_Interp;
2292 ---------------------
2293 -- Get_Next_Interp --
2294 ---------------------
2296 procedure Get_Next_Interp (I : in out Interp_Index; It : out Interp) is
2297 begin
2298 I := I + 1;
2299 It := All_Interp.Table (I);
2300 end Get_Next_Interp;
2302 -------------------------
2303 -- Has_Compatible_Type --
2304 -------------------------
2306 function Has_Compatible_Type
2307 (N : Node_Id;
2308 Typ : Entity_Id) return Boolean
2310 I : Interp_Index;
2311 It : Interp;
2313 begin
2314 if N = Error then
2315 return False;
2316 end if;
2318 if Nkind (N) = N_Subtype_Indication
2319 or else not Is_Overloaded (N)
2320 then
2321 return
2322 Covers (Typ, Etype (N))
2324 -- Ada 2005 (AI-345): The context may be a synchronized interface.
2325 -- If the type is already frozen use the corresponding_record
2326 -- to check whether it is a proper descendant.
2328 or else
2329 (Is_Record_Type (Typ)
2330 and then Is_Concurrent_Type (Etype (N))
2331 and then Present (Corresponding_Record_Type (Etype (N)))
2332 and then Covers (Typ, Corresponding_Record_Type (Etype (N))))
2334 or else
2335 (Is_Concurrent_Type (Typ)
2336 and then Is_Record_Type (Etype (N))
2337 and then Present (Corresponding_Record_Type (Typ))
2338 and then Covers (Corresponding_Record_Type (Typ), Etype (N)))
2340 or else
2341 (not Is_Tagged_Type (Typ)
2342 and then Ekind (Typ) /= E_Anonymous_Access_Type
2343 and then Covers (Etype (N), Typ));
2345 else
2346 Get_First_Interp (N, I, It);
2347 while Present (It.Typ) loop
2348 if (Covers (Typ, It.Typ)
2349 and then
2350 (Scope (It.Nam) /= Standard_Standard
2351 or else not Is_Invisible_Operator (N, Base_Type (Typ))))
2353 -- Ada 2005 (AI-345)
2355 or else
2356 (Is_Concurrent_Type (It.Typ)
2357 and then Present (Corresponding_Record_Type
2358 (Etype (It.Typ)))
2359 and then Covers (Typ, Corresponding_Record_Type
2360 (Etype (It.Typ))))
2362 or else (not Is_Tagged_Type (Typ)
2363 and then Ekind (Typ) /= E_Anonymous_Access_Type
2364 and then Covers (It.Typ, Typ))
2365 then
2366 return True;
2367 end if;
2369 Get_Next_Interp (I, It);
2370 end loop;
2372 return False;
2373 end if;
2374 end Has_Compatible_Type;
2376 ---------------------
2377 -- Has_Abstract_Op --
2378 ---------------------
2380 function Has_Abstract_Op
2381 (N : Node_Id;
2382 Typ : Entity_Id) return Entity_Id
2384 I : Interp_Index;
2385 It : Interp;
2387 begin
2388 if Is_Overloaded (N) then
2389 Get_First_Interp (N, I, It);
2390 while Present (It.Nam) loop
2391 if Present (It.Abstract_Op)
2392 and then Etype (It.Abstract_Op) = Typ
2393 then
2394 return It.Abstract_Op;
2395 end if;
2397 Get_Next_Interp (I, It);
2398 end loop;
2399 end if;
2401 return Empty;
2402 end Has_Abstract_Op;
2404 ----------
2405 -- Hash --
2406 ----------
2408 function Hash (N : Node_Id) return Int is
2409 begin
2410 -- Nodes have a size that is power of two, so to select significant
2411 -- bits only we remove the low-order bits.
2413 return ((Int (N) / 2 ** 5) mod Header_Size);
2414 end Hash;
2416 --------------
2417 -- Hides_Op --
2418 --------------
2420 function Hides_Op (F : Entity_Id; Op : Entity_Id) return Boolean is
2421 Btyp : constant Entity_Id := Base_Type (Etype (First_Formal (F)));
2422 begin
2423 return Operator_Matches_Spec (Op, F)
2424 and then (In_Open_Scopes (Scope (F))
2425 or else Scope (F) = Scope (Btyp)
2426 or else (not In_Open_Scopes (Scope (Btyp))
2427 and then not In_Use (Btyp)
2428 and then not In_Use (Scope (Btyp))));
2429 end Hides_Op;
2431 ------------------------
2432 -- Init_Interp_Tables --
2433 ------------------------
2435 procedure Init_Interp_Tables is
2436 begin
2437 All_Interp.Init;
2438 Interp_Map.Init;
2439 Headers := (others => No_Entry);
2440 end Init_Interp_Tables;
2442 -----------------------------------
2443 -- Interface_Present_In_Ancestor --
2444 -----------------------------------
2446 function Interface_Present_In_Ancestor
2447 (Typ : Entity_Id;
2448 Iface : Entity_Id) return Boolean
2450 Target_Typ : Entity_Id;
2451 Iface_Typ : Entity_Id;
2453 function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean;
2454 -- Returns True if Typ or some ancestor of Typ implements Iface
2456 -------------------------------
2457 -- Iface_Present_In_Ancestor --
2458 -------------------------------
2460 function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean is
2461 E : Entity_Id;
2462 AI : Entity_Id;
2463 Elmt : Elmt_Id;
2465 begin
2466 if Typ = Iface_Typ then
2467 return True;
2468 end if;
2470 -- Handle private types
2472 if Present (Full_View (Typ))
2473 and then not Is_Concurrent_Type (Full_View (Typ))
2474 then
2475 E := Full_View (Typ);
2476 else
2477 E := Typ;
2478 end if;
2480 loop
2481 if Present (Interfaces (E))
2482 and then Present (Interfaces (E))
2483 and then not Is_Empty_Elmt_List (Interfaces (E))
2484 then
2485 Elmt := First_Elmt (Interfaces (E));
2486 while Present (Elmt) loop
2487 AI := Node (Elmt);
2489 if AI = Iface_Typ or else Is_Ancestor (Iface_Typ, AI) then
2490 return True;
2491 end if;
2493 Next_Elmt (Elmt);
2494 end loop;
2495 end if;
2497 exit when Etype (E) = E
2499 -- Handle private types
2501 or else (Present (Full_View (Etype (E)))
2502 and then Full_View (Etype (E)) = E);
2504 -- Check if the current type is a direct derivation of the
2505 -- interface
2507 if Etype (E) = Iface_Typ then
2508 return True;
2509 end if;
2511 -- Climb to the immediate ancestor handling private types
2513 if Present (Full_View (Etype (E))) then
2514 E := Full_View (Etype (E));
2515 else
2516 E := Etype (E);
2517 end if;
2518 end loop;
2520 return False;
2521 end Iface_Present_In_Ancestor;
2523 -- Start of processing for Interface_Present_In_Ancestor
2525 begin
2526 -- Iface might be a class-wide subtype, so we have to apply Base_Type
2528 if Is_Class_Wide_Type (Iface) then
2529 Iface_Typ := Etype (Base_Type (Iface));
2530 else
2531 Iface_Typ := Iface;
2532 end if;
2534 -- Handle subtypes
2536 Iface_Typ := Base_Type (Iface_Typ);
2538 if Is_Access_Type (Typ) then
2539 Target_Typ := Etype (Directly_Designated_Type (Typ));
2540 else
2541 Target_Typ := Typ;
2542 end if;
2544 if Is_Concurrent_Record_Type (Target_Typ) then
2545 Target_Typ := Corresponding_Concurrent_Type (Target_Typ);
2546 end if;
2548 Target_Typ := Base_Type (Target_Typ);
2550 -- In case of concurrent types we can't use the Corresponding Record_Typ
2551 -- to look for the interface because it is built by the expander (and
2552 -- hence it is not always available). For this reason we traverse the
2553 -- list of interfaces (available in the parent of the concurrent type)
2555 if Is_Concurrent_Type (Target_Typ) then
2556 if Present (Interface_List (Parent (Target_Typ))) then
2557 declare
2558 AI : Node_Id;
2560 begin
2561 AI := First (Interface_List (Parent (Target_Typ)));
2562 while Present (AI) loop
2563 if Etype (AI) = Iface_Typ then
2564 return True;
2566 elsif Present (Interfaces (Etype (AI)))
2567 and then Iface_Present_In_Ancestor (Etype (AI))
2568 then
2569 return True;
2570 end if;
2572 Next (AI);
2573 end loop;
2574 end;
2575 end if;
2577 return False;
2578 end if;
2580 if Is_Class_Wide_Type (Target_Typ) then
2581 Target_Typ := Etype (Target_Typ);
2582 end if;
2584 if Ekind (Target_Typ) = E_Incomplete_Type then
2585 pragma Assert (Present (Non_Limited_View (Target_Typ)));
2586 Target_Typ := Non_Limited_View (Target_Typ);
2588 -- Protect the frontend against previously detected errors
2590 if Ekind (Target_Typ) = E_Incomplete_Type then
2591 return False;
2592 end if;
2593 end if;
2595 return Iface_Present_In_Ancestor (Target_Typ);
2596 end Interface_Present_In_Ancestor;
2598 ---------------------
2599 -- Intersect_Types --
2600 ---------------------
2602 function Intersect_Types (L, R : Node_Id) return Entity_Id is
2603 Index : Interp_Index;
2604 It : Interp;
2605 Typ : Entity_Id;
2607 function Check_Right_Argument (T : Entity_Id) return Entity_Id;
2608 -- Find interpretation of right arg that has type compatible with T
2610 --------------------------
2611 -- Check_Right_Argument --
2612 --------------------------
2614 function Check_Right_Argument (T : Entity_Id) return Entity_Id is
2615 Index : Interp_Index;
2616 It : Interp;
2617 T2 : Entity_Id;
2619 begin
2620 if not Is_Overloaded (R) then
2621 return Specific_Type (T, Etype (R));
2623 else
2624 Get_First_Interp (R, Index, It);
2625 loop
2626 T2 := Specific_Type (T, It.Typ);
2628 if T2 /= Any_Type then
2629 return T2;
2630 end if;
2632 Get_Next_Interp (Index, It);
2633 exit when No (It.Typ);
2634 end loop;
2636 return Any_Type;
2637 end if;
2638 end Check_Right_Argument;
2640 -- Start of processing for Intersect_Types
2642 begin
2643 if Etype (L) = Any_Type or else Etype (R) = Any_Type then
2644 return Any_Type;
2645 end if;
2647 if not Is_Overloaded (L) then
2648 Typ := Check_Right_Argument (Etype (L));
2650 else
2651 Typ := Any_Type;
2652 Get_First_Interp (L, Index, It);
2653 while Present (It.Typ) loop
2654 Typ := Check_Right_Argument (It.Typ);
2655 exit when Typ /= Any_Type;
2656 Get_Next_Interp (Index, It);
2657 end loop;
2659 end if;
2661 -- If Typ is Any_Type, it means no compatible pair of types was found
2663 if Typ = Any_Type then
2664 if Nkind (Parent (L)) in N_Op then
2665 Error_Msg_N ("incompatible types for operator", Parent (L));
2667 elsif Nkind (Parent (L)) = N_Range then
2668 Error_Msg_N ("incompatible types given in constraint", Parent (L));
2670 -- Ada 2005 (AI-251): Complete the error notification
2672 elsif Is_Class_Wide_Type (Etype (R))
2673 and then Is_Interface (Etype (Class_Wide_Type (Etype (R))))
2674 then
2675 Error_Msg_NE ("(Ada 2005) does not implement interface }",
2676 L, Etype (Class_Wide_Type (Etype (R))));
2678 else
2679 Error_Msg_N ("incompatible types", Parent (L));
2680 end if;
2681 end if;
2683 return Typ;
2684 end Intersect_Types;
2686 -----------------------
2687 -- In_Generic_Actual --
2688 -----------------------
2690 function In_Generic_Actual (Exp : Node_Id) return Boolean is
2691 Par : constant Node_Id := Parent (Exp);
2693 begin
2694 if No (Par) then
2695 return False;
2697 elsif Nkind (Par) in N_Declaration then
2698 if Nkind (Par) = N_Object_Declaration then
2699 return Present (Corresponding_Generic_Association (Par));
2700 else
2701 return False;
2702 end if;
2704 elsif Nkind (Par) = N_Object_Renaming_Declaration then
2705 return Present (Corresponding_Generic_Association (Par));
2707 elsif Nkind (Par) in N_Statement_Other_Than_Procedure_Call then
2708 return False;
2710 else
2711 return In_Generic_Actual (Parent (Par));
2712 end if;
2713 end In_Generic_Actual;
2715 -----------------
2716 -- Is_Ancestor --
2717 -----------------
2719 function Is_Ancestor
2720 (T1 : Entity_Id;
2721 T2 : Entity_Id;
2722 Use_Full_View : Boolean := False) return Boolean
2724 BT1 : Entity_Id;
2725 BT2 : Entity_Id;
2726 Par : Entity_Id;
2728 begin
2729 BT1 := Base_Type (T1);
2730 BT2 := Base_Type (T2);
2732 -- Handle underlying view of records with unknown discriminants using
2733 -- the original entity that motivated the construction of this
2734 -- underlying record view (see Build_Derived_Private_Type).
2736 if Is_Underlying_Record_View (BT1) then
2737 BT1 := Underlying_Record_View (BT1);
2738 end if;
2740 if Is_Underlying_Record_View (BT2) then
2741 BT2 := Underlying_Record_View (BT2);
2742 end if;
2744 if BT1 = BT2 then
2745 return True;
2747 -- The predicate must look past privacy
2749 elsif Is_Private_Type (T1)
2750 and then Present (Full_View (T1))
2751 and then BT2 = Base_Type (Full_View (T1))
2752 then
2753 return True;
2755 elsif Is_Private_Type (T2)
2756 and then Present (Full_View (T2))
2757 and then BT1 = Base_Type (Full_View (T2))
2758 then
2759 return True;
2761 else
2762 -- Obtain the parent of the base type of T2 (use the full view if
2763 -- allowed).
2765 if Use_Full_View
2766 and then Is_Private_Type (BT2)
2767 and then Present (Full_View (BT2))
2768 then
2769 -- No climbing needed if its full view is the root type
2771 if Full_View (BT2) = Root_Type (Full_View (BT2)) then
2772 return False;
2773 end if;
2775 Par := Etype (Full_View (BT2));
2777 else
2778 Par := Etype (BT2);
2779 end if;
2781 loop
2782 -- If there was a error on the type declaration, do not recurse
2784 if Error_Posted (Par) then
2785 return False;
2787 elsif BT1 = Base_Type (Par)
2788 or else (Is_Private_Type (T1)
2789 and then Present (Full_View (T1))
2790 and then Base_Type (Par) = Base_Type (Full_View (T1)))
2791 then
2792 return True;
2794 elsif Is_Private_Type (Par)
2795 and then Present (Full_View (Par))
2796 and then Full_View (Par) = BT1
2797 then
2798 return True;
2800 -- Root type found
2802 elsif Par = Root_Type (Par) then
2803 return False;
2805 -- Continue climbing
2807 else
2808 -- Use the full-view of private types (if allowed)
2810 if Use_Full_View
2811 and then Is_Private_Type (Par)
2812 and then Present (Full_View (Par))
2813 then
2814 Par := Etype (Full_View (Par));
2815 else
2816 Par := Etype (Par);
2817 end if;
2818 end if;
2819 end loop;
2820 end if;
2821 end Is_Ancestor;
2823 ---------------------------
2824 -- Is_Invisible_Operator --
2825 ---------------------------
2827 function Is_Invisible_Operator
2828 (N : Node_Id;
2829 T : Entity_Id) return Boolean
2831 Orig_Node : constant Node_Id := Original_Node (N);
2833 begin
2834 if Nkind (N) not in N_Op then
2835 return False;
2837 elsif not Comes_From_Source (N) then
2838 return False;
2840 elsif No (Universal_Interpretation (Right_Opnd (N))) then
2841 return False;
2843 elsif Nkind (N) in N_Binary_Op
2844 and then No (Universal_Interpretation (Left_Opnd (N)))
2845 then
2846 return False;
2848 else
2849 return Is_Numeric_Type (T)
2850 and then not In_Open_Scopes (Scope (T))
2851 and then not Is_Potentially_Use_Visible (T)
2852 and then not In_Use (T)
2853 and then not In_Use (Scope (T))
2854 and then
2855 (Nkind (Orig_Node) /= N_Function_Call
2856 or else Nkind (Name (Orig_Node)) /= N_Expanded_Name
2857 or else Entity (Prefix (Name (Orig_Node))) /= Scope (T))
2858 and then not In_Instance;
2859 end if;
2860 end Is_Invisible_Operator;
2862 --------------------
2863 -- Is_Progenitor --
2864 --------------------
2866 function Is_Progenitor
2867 (Iface : Entity_Id;
2868 Typ : Entity_Id) return Boolean
2870 begin
2871 return Implements_Interface (Typ, Iface, Exclude_Parents => True);
2872 end Is_Progenitor;
2874 -------------------
2875 -- Is_Subtype_Of --
2876 -------------------
2878 function Is_Subtype_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
2879 S : Entity_Id;
2881 begin
2882 S := Ancestor_Subtype (T1);
2883 while Present (S) loop
2884 if S = T2 then
2885 return True;
2886 else
2887 S := Ancestor_Subtype (S);
2888 end if;
2889 end loop;
2891 return False;
2892 end Is_Subtype_Of;
2894 ------------------
2895 -- List_Interps --
2896 ------------------
2898 procedure List_Interps (Nam : Node_Id; Err : Node_Id) is
2899 Index : Interp_Index;
2900 It : Interp;
2902 begin
2903 Get_First_Interp (Nam, Index, It);
2904 while Present (It.Nam) loop
2905 if Scope (It.Nam) = Standard_Standard
2906 and then Scope (It.Typ) /= Standard_Standard
2907 then
2908 Error_Msg_Sloc := Sloc (Parent (It.Typ));
2909 Error_Msg_NE ("\\& (inherited) declared#!", Err, It.Nam);
2911 else
2912 Error_Msg_Sloc := Sloc (It.Nam);
2913 Error_Msg_NE ("\\& declared#!", Err, It.Nam);
2914 end if;
2916 Get_Next_Interp (Index, It);
2917 end loop;
2918 end List_Interps;
2920 -----------------
2921 -- New_Interps --
2922 -----------------
2924 procedure New_Interps (N : Node_Id) is
2925 Map_Ptr : Int;
2927 begin
2928 All_Interp.Append (No_Interp);
2930 Map_Ptr := Headers (Hash (N));
2932 if Map_Ptr = No_Entry then
2934 -- Place new node at end of table
2936 Interp_Map.Increment_Last;
2937 Headers (Hash (N)) := Interp_Map.Last;
2939 else
2940 -- Place node at end of chain, or locate its previous entry
2942 loop
2943 if Interp_Map.Table (Map_Ptr).Node = N then
2945 -- Node is already in the table, and is being rewritten.
2946 -- Start a new interp section, retain hash link.
2948 Interp_Map.Table (Map_Ptr).Node := N;
2949 Interp_Map.Table (Map_Ptr).Index := All_Interp.Last;
2950 Set_Is_Overloaded (N, True);
2951 return;
2953 else
2954 exit when Interp_Map.Table (Map_Ptr).Next = No_Entry;
2955 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
2956 end if;
2957 end loop;
2959 -- Chain the new node
2961 Interp_Map.Increment_Last;
2962 Interp_Map.Table (Map_Ptr).Next := Interp_Map.Last;
2963 end if;
2965 Interp_Map.Table (Interp_Map.Last) := (N, All_Interp.Last, No_Entry);
2966 Set_Is_Overloaded (N, True);
2967 end New_Interps;
2969 ---------------------------
2970 -- Operator_Matches_Spec --
2971 ---------------------------
2973 function Operator_Matches_Spec (Op, New_S : Entity_Id) return Boolean is
2974 Op_Name : constant Name_Id := Chars (Op);
2975 T : constant Entity_Id := Etype (New_S);
2976 New_F : Entity_Id;
2977 Old_F : Entity_Id;
2978 Num : Int;
2979 T1 : Entity_Id;
2980 T2 : Entity_Id;
2982 begin
2983 -- To verify that a predefined operator matches a given signature,
2984 -- do a case analysis of the operator classes. Function can have one
2985 -- or two formals and must have the proper result type.
2987 New_F := First_Formal (New_S);
2988 Old_F := First_Formal (Op);
2989 Num := 0;
2990 while Present (New_F) and then Present (Old_F) loop
2991 Num := Num + 1;
2992 Next_Formal (New_F);
2993 Next_Formal (Old_F);
2994 end loop;
2996 -- Definite mismatch if different number of parameters
2998 if Present (Old_F) or else Present (New_F) then
2999 return False;
3001 -- Unary operators
3003 elsif Num = 1 then
3004 T1 := Etype (First_Formal (New_S));
3006 if Op_Name = Name_Op_Subtract
3007 or else Op_Name = Name_Op_Add
3008 or else Op_Name = Name_Op_Abs
3009 then
3010 return Base_Type (T1) = Base_Type (T)
3011 and then Is_Numeric_Type (T);
3013 elsif Op_Name = Name_Op_Not then
3014 return Base_Type (T1) = Base_Type (T)
3015 and then Valid_Boolean_Arg (Base_Type (T));
3017 else
3018 return False;
3019 end if;
3021 -- Binary operators
3023 else
3024 T1 := Etype (First_Formal (New_S));
3025 T2 := Etype (Next_Formal (First_Formal (New_S)));
3027 if Op_Name = Name_Op_And or else Op_Name = Name_Op_Or
3028 or else Op_Name = Name_Op_Xor
3029 then
3030 return Base_Type (T1) = Base_Type (T2)
3031 and then Base_Type (T1) = Base_Type (T)
3032 and then Valid_Boolean_Arg (Base_Type (T));
3034 elsif Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne then
3035 return Base_Type (T1) = Base_Type (T2)
3036 and then not Is_Limited_Type (T1)
3037 and then Is_Boolean_Type (T);
3039 elsif Op_Name = Name_Op_Lt or else Op_Name = Name_Op_Le
3040 or else Op_Name = Name_Op_Gt or else Op_Name = Name_Op_Ge
3041 then
3042 return Base_Type (T1) = Base_Type (T2)
3043 and then Valid_Comparison_Arg (T1)
3044 and then Is_Boolean_Type (T);
3046 elsif Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
3047 return Base_Type (T1) = Base_Type (T2)
3048 and then Base_Type (T1) = Base_Type (T)
3049 and then Is_Numeric_Type (T);
3051 -- For division and multiplication, a user-defined function does not
3052 -- match the predefined universal_fixed operation, except in Ada 83.
3054 elsif Op_Name = Name_Op_Divide then
3055 return (Base_Type (T1) = Base_Type (T2)
3056 and then Base_Type (T1) = Base_Type (T)
3057 and then Is_Numeric_Type (T)
3058 and then (not Is_Fixed_Point_Type (T)
3059 or else Ada_Version = Ada_83))
3061 -- Mixed_Mode operations on fixed-point types
3063 or else (Base_Type (T1) = Base_Type (T)
3064 and then Base_Type (T2) = Base_Type (Standard_Integer)
3065 and then Is_Fixed_Point_Type (T))
3067 -- A user defined operator can also match (and hide) a mixed
3068 -- operation on universal literals.
3070 or else (Is_Integer_Type (T2)
3071 and then Is_Floating_Point_Type (T1)
3072 and then Base_Type (T1) = Base_Type (T));
3074 elsif Op_Name = Name_Op_Multiply then
3075 return (Base_Type (T1) = Base_Type (T2)
3076 and then Base_Type (T1) = Base_Type (T)
3077 and then Is_Numeric_Type (T)
3078 and then (not Is_Fixed_Point_Type (T)
3079 or else Ada_Version = Ada_83))
3081 -- Mixed_Mode operations on fixed-point types
3083 or else (Base_Type (T1) = Base_Type (T)
3084 and then Base_Type (T2) = Base_Type (Standard_Integer)
3085 and then Is_Fixed_Point_Type (T))
3087 or else (Base_Type (T2) = Base_Type (T)
3088 and then Base_Type (T1) = Base_Type (Standard_Integer)
3089 and then Is_Fixed_Point_Type (T))
3091 or else (Is_Integer_Type (T2)
3092 and then Is_Floating_Point_Type (T1)
3093 and then Base_Type (T1) = Base_Type (T))
3095 or else (Is_Integer_Type (T1)
3096 and then Is_Floating_Point_Type (T2)
3097 and then Base_Type (T2) = Base_Type (T));
3099 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
3100 return Base_Type (T1) = Base_Type (T2)
3101 and then Base_Type (T1) = Base_Type (T)
3102 and then Is_Integer_Type (T);
3104 elsif Op_Name = Name_Op_Expon then
3105 return Base_Type (T1) = Base_Type (T)
3106 and then Is_Numeric_Type (T)
3107 and then Base_Type (T2) = Base_Type (Standard_Integer);
3109 elsif Op_Name = Name_Op_Concat then
3110 return Is_Array_Type (T)
3111 and then (Base_Type (T) = Base_Type (Etype (Op)))
3112 and then (Base_Type (T1) = Base_Type (T)
3113 or else
3114 Base_Type (T1) = Base_Type (Component_Type (T)))
3115 and then (Base_Type (T2) = Base_Type (T)
3116 or else
3117 Base_Type (T2) = Base_Type (Component_Type (T)));
3119 else
3120 return False;
3121 end if;
3122 end if;
3123 end Operator_Matches_Spec;
3125 -------------------
3126 -- Remove_Interp --
3127 -------------------
3129 procedure Remove_Interp (I : in out Interp_Index) is
3130 II : Interp_Index;
3132 begin
3133 -- Find end of interp list and copy downward to erase the discarded one
3135 II := I + 1;
3136 while Present (All_Interp.Table (II).Typ) loop
3137 II := II + 1;
3138 end loop;
3140 for J in I + 1 .. II loop
3141 All_Interp.Table (J - 1) := All_Interp.Table (J);
3142 end loop;
3144 -- Back up interp index to insure that iterator will pick up next
3145 -- available interpretation.
3147 I := I - 1;
3148 end Remove_Interp;
3150 ------------------
3151 -- Save_Interps --
3152 ------------------
3154 procedure Save_Interps (Old_N : Node_Id; New_N : Node_Id) is
3155 Map_Ptr : Int;
3156 O_N : Node_Id := Old_N;
3158 begin
3159 if Is_Overloaded (Old_N) then
3160 if Nkind (Old_N) = N_Selected_Component
3161 and then Is_Overloaded (Selector_Name (Old_N))
3162 then
3163 O_N := Selector_Name (Old_N);
3164 end if;
3166 Map_Ptr := Headers (Hash (O_N));
3168 while Interp_Map.Table (Map_Ptr).Node /= O_N loop
3169 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
3170 pragma Assert (Map_Ptr /= No_Entry);
3171 end loop;
3173 New_Interps (New_N);
3174 Interp_Map.Table (Interp_Map.Last).Index :=
3175 Interp_Map.Table (Map_Ptr).Index;
3176 end if;
3177 end Save_Interps;
3179 -------------------
3180 -- Specific_Type --
3181 -------------------
3183 function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id is
3184 T1 : constant Entity_Id := Available_View (Typ_1);
3185 T2 : constant Entity_Id := Available_View (Typ_2);
3186 B1 : constant Entity_Id := Base_Type (T1);
3187 B2 : constant Entity_Id := Base_Type (T2);
3189 function Is_Remote_Access (T : Entity_Id) return Boolean;
3190 -- Check whether T is the equivalent type of a remote access type.
3191 -- If distribution is enabled, T is a legal context for Null.
3193 ----------------------
3194 -- Is_Remote_Access --
3195 ----------------------
3197 function Is_Remote_Access (T : Entity_Id) return Boolean is
3198 begin
3199 return Is_Record_Type (T)
3200 and then (Is_Remote_Call_Interface (T)
3201 or else Is_Remote_Types (T))
3202 and then Present (Corresponding_Remote_Type (T))
3203 and then Is_Access_Type (Corresponding_Remote_Type (T));
3204 end Is_Remote_Access;
3206 -- Start of processing for Specific_Type
3208 begin
3209 if T1 = Any_Type or else T2 = Any_Type then
3210 return Any_Type;
3211 end if;
3213 if B1 = B2 then
3214 return B1;
3216 elsif (T1 = Universal_Integer and then Is_Integer_Type (T2))
3217 or else (T1 = Universal_Real and then Is_Real_Type (T2))
3218 or else (T1 = Universal_Fixed and then Is_Fixed_Point_Type (T2))
3219 or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
3220 then
3221 return B2;
3223 elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
3224 or else (T2 = Universal_Real and then Is_Real_Type (T1))
3225 or else (T2 = Universal_Fixed and then Is_Fixed_Point_Type (T1))
3226 or else (T2 = Any_Fixed and then Is_Fixed_Point_Type (T1))
3227 then
3228 return B1;
3230 elsif T2 = Any_String and then Is_String_Type (T1) then
3231 return B1;
3233 elsif T1 = Any_String and then Is_String_Type (T2) then
3234 return B2;
3236 elsif T2 = Any_Character and then Is_Character_Type (T1) then
3237 return B1;
3239 elsif T1 = Any_Character and then Is_Character_Type (T2) then
3240 return B2;
3242 elsif T1 = Any_Access
3243 and then (Is_Access_Type (T2) or else Is_Remote_Access (T2))
3244 then
3245 return T2;
3247 elsif T2 = Any_Access
3248 and then (Is_Access_Type (T1) or else Is_Remote_Access (T1))
3249 then
3250 return T1;
3252 -- In an instance, the specific type may have a private view. Use full
3253 -- view to check legality.
3255 elsif T2 = Any_Access
3256 and then Is_Private_Type (T1)
3257 and then Present (Full_View (T1))
3258 and then Is_Access_Type (Full_View (T1))
3259 and then In_Instance
3260 then
3261 return T1;
3263 elsif T2 = Any_Composite
3264 and then Is_Aggregate_Type (T1)
3265 then
3266 return T1;
3268 elsif T1 = Any_Composite
3269 and then Is_Aggregate_Type (T2)
3270 then
3271 return T2;
3273 elsif T1 = Any_Modular and then Is_Modular_Integer_Type (T2) then
3274 return T2;
3276 elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
3277 return T1;
3279 -- ----------------------------------------------------------
3280 -- Special cases for equality operators (all other predefined
3281 -- operators can never apply to tagged types)
3282 -- ----------------------------------------------------------
3284 -- Ada 2005 (AI-251): T1 and T2 are class-wide types, and T2 is an
3285 -- interface
3287 elsif Is_Class_Wide_Type (T1)
3288 and then Is_Class_Wide_Type (T2)
3289 and then Is_Interface (Etype (T2))
3290 then
3291 return T1;
3293 -- Ada 2005 (AI-251): T1 is a concrete type that implements the
3294 -- class-wide interface T2
3296 elsif Is_Class_Wide_Type (T2)
3297 and then Is_Interface (Etype (T2))
3298 and then Interface_Present_In_Ancestor (Typ => T1,
3299 Iface => Etype (T2))
3300 then
3301 return T1;
3303 elsif Is_Class_Wide_Type (T1)
3304 and then Is_Ancestor (Root_Type (T1), T2)
3305 then
3306 return T1;
3308 elsif Is_Class_Wide_Type (T2)
3309 and then Is_Ancestor (Root_Type (T2), T1)
3310 then
3311 return T2;
3313 elsif (Ekind (B1) = E_Access_Subprogram_Type
3314 or else
3315 Ekind (B1) = E_Access_Protected_Subprogram_Type)
3316 and then Ekind (Designated_Type (B1)) /= E_Subprogram_Type
3317 and then Is_Access_Type (T2)
3318 then
3319 return T2;
3321 elsif (Ekind (B2) = E_Access_Subprogram_Type
3322 or else
3323 Ekind (B2) = E_Access_Protected_Subprogram_Type)
3324 and then Ekind (Designated_Type (B2)) /= E_Subprogram_Type
3325 and then Is_Access_Type (T1)
3326 then
3327 return T1;
3329 elsif (Ekind (T1) = E_Allocator_Type
3330 or else Ekind (T1) = E_Access_Attribute_Type
3331 or else Ekind (T1) = E_Anonymous_Access_Type)
3332 and then Is_Access_Type (T2)
3333 then
3334 return T2;
3336 elsif (Ekind (T2) = E_Allocator_Type
3337 or else Ekind (T2) = E_Access_Attribute_Type
3338 or else Ekind (T2) = E_Anonymous_Access_Type)
3339 and then Is_Access_Type (T1)
3340 then
3341 return T1;
3343 -- If none of the above cases applies, types are not compatible
3345 else
3346 return Any_Type;
3347 end if;
3348 end Specific_Type;
3350 ---------------------
3351 -- Set_Abstract_Op --
3352 ---------------------
3354 procedure Set_Abstract_Op (I : Interp_Index; V : Entity_Id) is
3355 begin
3356 All_Interp.Table (I).Abstract_Op := V;
3357 end Set_Abstract_Op;
3359 -----------------------
3360 -- Valid_Boolean_Arg --
3361 -----------------------
3363 -- In addition to booleans and arrays of booleans, we must include
3364 -- aggregates as valid boolean arguments, because in the first pass of
3365 -- resolution their components are not examined. If it turns out not to be
3366 -- an aggregate of booleans, this will be diagnosed in Resolve.
3367 -- Any_Composite must be checked for prior to the array type checks because
3368 -- Any_Composite does not have any associated indexes.
3370 function Valid_Boolean_Arg (T : Entity_Id) return Boolean is
3371 begin
3372 if Is_Boolean_Type (T)
3373 or else Is_Modular_Integer_Type (T)
3374 or else T = Universal_Integer
3375 or else T = Any_Composite
3376 then
3377 return True;
3379 elsif Is_Array_Type (T)
3380 and then T /= Any_String
3381 and then Number_Dimensions (T) = 1
3382 and then Is_Boolean_Type (Component_Type (T))
3383 and then
3384 ((not Is_Private_Composite (T)
3385 and then not Is_Limited_Composite (T))
3386 or else In_Instance
3387 or else Available_Full_View_Of_Component (T))
3388 then
3389 return True;
3391 else
3392 return False;
3393 end if;
3394 end Valid_Boolean_Arg;
3396 --------------------------
3397 -- Valid_Comparison_Arg --
3398 --------------------------
3400 function Valid_Comparison_Arg (T : Entity_Id) return Boolean is
3401 begin
3403 if T = Any_Composite then
3404 return False;
3406 elsif Is_Discrete_Type (T)
3407 or else Is_Real_Type (T)
3408 then
3409 return True;
3411 elsif Is_Array_Type (T)
3412 and then Number_Dimensions (T) = 1
3413 and then Is_Discrete_Type (Component_Type (T))
3414 and then (not Is_Private_Composite (T)
3415 or else In_Instance)
3416 and then (not Is_Limited_Composite (T)
3417 or else In_Instance)
3418 then
3419 return True;
3421 elsif Is_Array_Type (T)
3422 and then Number_Dimensions (T) = 1
3423 and then Is_Discrete_Type (Component_Type (T))
3424 and then Available_Full_View_Of_Component (T)
3425 then
3426 return True;
3428 elsif Is_String_Type (T) then
3429 return True;
3430 else
3431 return False;
3432 end if;
3433 end Valid_Comparison_Arg;
3435 ------------------
3436 -- Write_Interp --
3437 ------------------
3439 procedure Write_Interp (It : Interp) is
3440 begin
3441 Write_Str ("Nam: ");
3442 Print_Tree_Node (It.Nam);
3443 Write_Str ("Typ: ");
3444 Print_Tree_Node (It.Typ);
3445 Write_Str ("Abstract_Op: ");
3446 Print_Tree_Node (It.Abstract_Op);
3447 end Write_Interp;
3449 ----------------------
3450 -- Write_Interp_Ref --
3451 ----------------------
3453 procedure Write_Interp_Ref (Map_Ptr : Int) is
3454 begin
3455 Write_Str (" Node: ");
3456 Write_Int (Int (Interp_Map.Table (Map_Ptr).Node));
3457 Write_Str (" Index: ");
3458 Write_Int (Int (Interp_Map.Table (Map_Ptr).Index));
3459 Write_Str (" Next: ");
3460 Write_Int (Interp_Map.Table (Map_Ptr).Next);
3461 Write_Eol;
3462 end Write_Interp_Ref;
3464 ---------------------
3465 -- Write_Overloads --
3466 ---------------------
3468 procedure Write_Overloads (N : Node_Id) is
3469 I : Interp_Index;
3470 It : Interp;
3471 Nam : Entity_Id;
3473 begin
3474 Write_Str ("Overloads: ");
3475 Print_Node_Briefly (N);
3477 if Nkind (N) not in N_Has_Entity then
3478 return;
3479 end if;
3481 if not Is_Overloaded (N) then
3482 Write_Str ("Non-overloaded entity ");
3483 Write_Eol;
3484 Write_Entity_Info (Entity (N), " ");
3486 else
3487 Get_First_Interp (N, I, It);
3488 Write_Str ("Overloaded entity ");
3489 Write_Eol;
3490 Write_Str (" Name Type Abstract Op");
3491 Write_Eol;
3492 Write_Str ("===============================================");
3493 Write_Eol;
3494 Nam := It.Nam;
3496 while Present (Nam) loop
3497 Write_Int (Int (Nam));
3498 Write_Str (" ");
3499 Write_Name (Chars (Nam));
3500 Write_Str (" ");
3501 Write_Int (Int (It.Typ));
3502 Write_Str (" ");
3503 Write_Name (Chars (It.Typ));
3505 if Present (It.Abstract_Op) then
3506 Write_Str (" ");
3507 Write_Int (Int (It.Abstract_Op));
3508 Write_Str (" ");
3509 Write_Name (Chars (It.Abstract_Op));
3510 end if;
3512 Write_Eol;
3513 Get_Next_Interp (I, It);
3514 Nam := It.Nam;
3515 end loop;
3516 end if;
3517 end Write_Overloads;
3519 end Sem_Type;