* config/avr/avr.md: Fix indentations of insn C snippets.
[official-gcc.git] / gcc / ada / par-ch5.adb
blobe86f01c91555b3d049ef319d9b14926dc199e01b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- P A R . C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 pragma Style_Checks (All_Checks);
27 -- Turn off subprogram body ordering check. Subprograms are in order by RM
28 -- section rather than alphabetical.
30 with Sinfo.CN; use Sinfo.CN;
32 separate (Par)
33 package body Ch5 is
35 -- Local functions, used only in this chapter
37 function P_Case_Statement return Node_Id;
38 function P_Case_Statement_Alternative return Node_Id;
39 function P_Exit_Statement return Node_Id;
40 function P_Goto_Statement return Node_Id;
41 function P_If_Statement return Node_Id;
42 function P_Label return Node_Id;
43 function P_Null_Statement return Node_Id;
45 function P_Assignment_Statement (LHS : Node_Id) return Node_Id;
46 -- Parse assignment statement. On entry, the caller has scanned the left
47 -- hand side (passed in as Lhs), and the colon-equal (or some symbol
48 -- taken to be an error equivalent such as equal).
50 function P_Begin_Statement (Block_Name : Node_Id := Empty) return Node_Id;
51 -- Parse begin-end statement. If Block_Name is non-Empty on entry, it is
52 -- the N_Identifier node for the label on the block. If Block_Name is
53 -- Empty on entry (the default), then the block statement is unlabeled.
55 function P_Declare_Statement (Block_Name : Node_Id := Empty) return Node_Id;
56 -- Parse declare block. If Block_Name is non-Empty on entry, it is
57 -- the N_Identifier node for the label on the block. If Block_Name is
58 -- Empty on entry (the default), then the block statement is unlabeled.
60 function P_For_Statement (Loop_Name : Node_Id := Empty) return Node_Id;
61 -- Parse for statement. If Loop_Name is non-Empty on entry, it is
62 -- the N_Identifier node for the label on the loop. If Loop_Name is
63 -- Empty on entry (the default), then the for statement is unlabeled.
65 function P_Iterator_Specification (Def_Id : Node_Id) return Node_Id;
66 -- Parse an iterator specification. The defining identifier has already
67 -- been scanned, as it is the common prefix between loop and iterator
68 -- specification.
70 function P_Loop_Statement (Loop_Name : Node_Id := Empty) return Node_Id;
71 -- Parse loop statement. If Loop_Name is non-Empty on entry, it is
72 -- the N_Identifier node for the label on the loop. If Loop_Name is
73 -- Empty on entry (the default), then the loop statement is unlabeled.
75 function P_While_Statement (Loop_Name : Node_Id := Empty) return Node_Id;
76 -- Parse while statement. If Loop_Name is non-Empty on entry, it is
77 -- the N_Identifier node for the label on the loop. If Loop_Name is
78 -- Empty on entry (the default), then the while statement is unlabeled.
80 function Set_Loop_Block_Name (L : Character) return Name_Id;
81 -- Given a letter 'L' for a loop or 'B' for a block, returns a name
82 -- of the form L_nn or B_nn where nn is a serial number obtained by
83 -- incrementing the variable Loop_Block_Count.
85 procedure Then_Scan;
86 -- Scan past THEN token, testing for illegal junk after it
88 ---------------------------------
89 -- 5.1 Sequence of Statements --
90 ---------------------------------
92 -- SEQUENCE_OF_STATEMENTS ::= STATEMENT {STATEMENT} {LABEL}
93 -- Note: the final label is an Ada 2012 addition.
95 -- STATEMENT ::=
96 -- {LABEL} SIMPLE_STATEMENT | {LABEL} COMPOUND_STATEMENT
98 -- SIMPLE_STATEMENT ::= NULL_STATEMENT
99 -- | ASSIGNMENT_STATEMENT | EXIT_STATEMENT
100 -- | GOTO_STATEMENT | PROCEDURE_CALL_STATEMENT
101 -- | RETURN_STATEMENT | ENTRY_CALL_STATEMENT
102 -- | REQUEUE_STATEMENT | DELAY_STATEMENT
103 -- | ABORT_STATEMENT | RAISE_STATEMENT
104 -- | CODE_STATEMENT
106 -- COMPOUND_STATEMENT ::=
107 -- IF_STATEMENT | CASE_STATEMENT
108 -- | LOOP_STATEMENT | BLOCK_STATEMENT
109 -- | ACCEPT_STATEMENT | SELECT_STATEMENT
111 -- This procedure scans a sequence of statements. The caller sets SS_Flags
112 -- to indicate acceptable termination conditions for the sequence:
114 -- SS_Flags.Eftm Terminate on ELSIF
115 -- SS_Flags.Eltm Terminate on ELSE
116 -- SS_Flags.Extm Terminate on EXCEPTION
117 -- SS_Flags.Ortm Terminate on OR
118 -- SS_Flags.Tatm Terminate on THEN ABORT (Token = ABORT on return)
119 -- SS_Flags.Whtm Terminate on WHEN
120 -- SS_Flags.Unco Unconditional terminate after scanning one statement
122 -- In addition, the scan is always terminated by encountering END or the
123 -- end of file (EOF) condition. If one of the six above terminators is
124 -- encountered with the corresponding SS_Flags flag not set, then the
125 -- action taken is as follows:
127 -- If the keyword occurs to the left of the expected column of the end
128 -- for the current sequence (as recorded in the current end context),
129 -- then it is assumed to belong to an outer context, and is considered
130 -- to terminate the sequence of statements.
132 -- If the keyword occurs to the right of, or in the expected column of
133 -- the end for the current sequence, then an error message is output,
134 -- the keyword together with its associated context is skipped, and
135 -- the statement scan continues until another terminator is found.
137 -- Note that the first action means that control can return to the caller
138 -- with Token set to a terminator other than one of those specified by the
139 -- SS parameter. The caller should treat such a case as equivalent to END.
141 -- In addition, the flag SS_Flags.Sreq is set to True to indicate that at
142 -- least one real statement (other than a pragma) is required in the
143 -- statement sequence. During the processing of the sequence, this
144 -- flag is manipulated to indicate the current status of the requirement
145 -- for a statement. For example, it is turned off by the occurrence of a
146 -- statement, and back on by a label (which requires a following statement)
148 -- Error recovery: cannot raise Error_Resync. If an error occurs during
149 -- parsing a statement, then the scan pointer is advanced past the next
150 -- semicolon and the parse continues.
152 function P_Sequence_Of_Statements (SS_Flags : SS_Rec) return List_Id is
154 Statement_Required : Boolean;
155 -- This flag indicates if a subsequent statement (other than a pragma)
156 -- is required. It is initialized from the Sreq flag, and modified as
157 -- statements are scanned (a statement turns it off, and a label turns
158 -- it back on again since a statement must follow a label).
159 -- Note : this final requirement is lifted in Ada 2012.
161 Statement_Seen : Boolean;
162 -- In Ada 2012, a label can end a sequence of statements, but the
163 -- sequence cannot contain only labels. This flag is set whenever a
164 -- label is encountered, to enforce this rule at the end of a sequence.
166 Declaration_Found : Boolean := False;
167 -- This flag is set True if a declaration is encountered, so that the
168 -- error message about declarations in the statement part is only
169 -- given once for a given sequence of statements.
171 Scan_State_Label : Saved_Scan_State;
172 Scan_State : Saved_Scan_State;
174 Statement_List : List_Id;
175 Block_Label : Name_Id;
176 Id_Node : Node_Id;
177 Name_Node : Node_Id;
179 procedure Junk_Declaration;
180 -- Procedure called to handle error of declaration encountered in
181 -- statement sequence.
183 procedure Test_Statement_Required;
184 -- Flag error if Statement_Required flag set
186 ----------------------
187 -- Junk_Declaration --
188 ----------------------
190 procedure Junk_Declaration is
191 begin
192 if (not Declaration_Found) or All_Errors_Mode then
193 Error_Msg_SC -- CODEFIX
194 ("declarations must come before BEGIN");
195 Declaration_Found := True;
196 end if;
198 Skip_Declaration (Statement_List);
199 end Junk_Declaration;
201 -----------------------------
202 -- Test_Statement_Required --
203 -----------------------------
205 procedure Test_Statement_Required is
206 function All_Pragmas return Boolean;
207 -- Return True if statement list is all pragmas
209 -----------------
210 -- All_Pragmas --
211 -----------------
213 function All_Pragmas return Boolean is
214 S : Node_Id;
215 begin
216 S := First (Statement_List);
217 while Present (S) loop
218 if Nkind (S) /= N_Pragma then
219 return False;
220 else
221 Next (S);
222 end if;
223 end loop;
225 return True;
226 end All_Pragmas;
228 -- Start of processing for Test_Statement_Required
230 begin
231 if Statement_Required then
233 -- Check no statement required after label in Ada 2012, and that
234 -- it is OK to have nothing but pragmas in a statement sequence.
236 if Ada_Version >= Ada_2012
237 and then not Is_Empty_List (Statement_List)
238 and then
239 ((Nkind (Last (Statement_List)) = N_Label
240 and then Statement_Seen)
241 or else All_Pragmas)
242 then
243 declare
244 Null_Stm : constant Node_Id :=
245 Make_Null_Statement (Token_Ptr);
246 begin
247 Set_Comes_From_Source (Null_Stm, False);
248 Append_To (Statement_List, Null_Stm);
249 end;
251 -- If not Ada 2012, or not special case above, give error message
253 else
254 Error_Msg_BC -- CODEFIX
255 ("statement expected");
256 end if;
257 end if;
258 end Test_Statement_Required;
260 -- Start of processing for P_Sequence_Of_Statements
262 begin
263 Statement_List := New_List;
264 Statement_Required := SS_Flags.Sreq;
265 Statement_Seen := False;
267 loop
268 Ignore (Tok_Semicolon);
270 begin
271 if Style_Check then
272 Style.Check_Indentation;
273 end if;
275 -- Deal with reserved identifier (in assignment or call)
277 if Is_Reserved_Identifier then
278 Save_Scan_State (Scan_State); -- at possible bad identifier
279 Scan; -- and scan past it
281 -- We have an reserved word which is spelled in identifier
282 -- style, so the question is whether it really is intended
283 -- to be an identifier.
286 -- If followed by a semicolon, then it is an identifier,
287 -- with the exception of the cases tested for below.
289 (Token = Tok_Semicolon
290 and then Prev_Token /= Tok_Return
291 and then Prev_Token /= Tok_Null
292 and then Prev_Token /= Tok_Raise
293 and then Prev_Token /= Tok_End
294 and then Prev_Token /= Tok_Exit)
296 -- If followed by colon, colon-equal, or dot, then we
297 -- definitely have an identifier (could not be reserved)
299 or else Token = Tok_Colon
300 or else Token = Tok_Colon_Equal
301 or else Token = Tok_Dot
303 -- Left paren means we have an identifier except for those
304 -- reserved words that can legitimately be followed by a
305 -- left paren.
307 or else
308 (Token = Tok_Left_Paren
309 and then Prev_Token /= Tok_Case
310 and then Prev_Token /= Tok_Delay
311 and then Prev_Token /= Tok_If
312 and then Prev_Token /= Tok_Elsif
313 and then Prev_Token /= Tok_Return
314 and then Prev_Token /= Tok_When
315 and then Prev_Token /= Tok_While
316 and then Prev_Token /= Tok_Separate)
317 then
318 -- Here we have an apparent reserved identifier and the
319 -- token past it is appropriate to this usage (and would
320 -- be a definite error if this is not an identifier). What
321 -- we do is to use P_Identifier to fix up the identifier,
322 -- and then fall into the normal processing.
324 Restore_Scan_State (Scan_State); -- back to the ID
325 Scan_Reserved_Identifier (Force_Msg => False);
327 -- Not a reserved identifier after all (or at least we can't
328 -- be sure that it is), so reset the scan and continue.
330 else
331 Restore_Scan_State (Scan_State); -- back to the reserved word
332 end if;
333 end if;
335 -- Now look to see what kind of statement we have
337 case Token is
339 -- Case of end or EOF
341 when Tok_End | Tok_EOF =>
343 -- These tokens always terminate the statement sequence
345 Test_Statement_Required;
346 exit;
348 -- Case of ELSIF
350 when Tok_Elsif =>
352 -- Terminate if Eftm set or if the ELSIF is to the left
353 -- of the expected column of the end for this sequence
355 if SS_Flags.Eftm
356 or else Start_Column < Scope.Table (Scope.Last).Ecol
357 then
358 Test_Statement_Required;
359 exit;
361 -- Otherwise complain and skip past ELSIF Condition then
363 else
364 Error_Msg_SC ("ELSIF not allowed here");
365 Scan; -- past ELSIF
366 Discard_Junk_Node (P_Expression_No_Right_Paren);
367 Then_Scan;
368 Statement_Required := False;
369 end if;
371 -- Case of ELSE
373 when Tok_Else =>
375 -- Terminate if Eltm set or if the else is to the left
376 -- of the expected column of the end for this sequence
378 if SS_Flags.Eltm
379 or else Start_Column < Scope.Table (Scope.Last).Ecol
380 then
381 Test_Statement_Required;
382 exit;
384 -- Otherwise complain and skip past else
386 else
387 Error_Msg_SC ("ELSE not allowed here");
388 Scan; -- past ELSE
389 Statement_Required := False;
390 end if;
392 -- Case of exception
394 when Tok_Exception =>
395 Test_Statement_Required;
397 -- If Extm not set and the exception is not to the left of
398 -- the expected column of the end for this sequence, then we
399 -- assume it belongs to the current sequence, even though it
400 -- is not permitted.
402 if not SS_Flags.Extm and then
403 Start_Column >= Scope.Table (Scope.Last).Ecol
405 then
406 Error_Msg_SC ("exception handler not permitted here");
407 Scan; -- past EXCEPTION
408 Discard_Junk_List (Parse_Exception_Handlers);
409 end if;
411 -- Always return, in the case where we scanned out handlers
412 -- that we did not expect, Parse_Exception_Handlers returned
413 -- with Token being either end or EOF, so we are OK.
415 exit;
417 -- Case of OR
419 when Tok_Or =>
421 -- Terminate if Ortm set or if the or is to the left of the
422 -- expected column of the end for this sequence.
424 if SS_Flags.Ortm
425 or else Start_Column < Scope.Table (Scope.Last).Ecol
426 then
427 Test_Statement_Required;
428 exit;
430 -- Otherwise complain and skip past or
432 else
433 Error_Msg_SC ("OR not allowed here");
434 Scan; -- past or
435 Statement_Required := False;
436 end if;
438 -- Case of THEN (deal also with THEN ABORT)
440 when Tok_Then =>
441 Save_Scan_State (Scan_State); -- at THEN
442 Scan; -- past THEN
444 -- Terminate if THEN ABORT allowed (ATC case)
446 exit when SS_Flags.Tatm and then Token = Tok_Abort;
448 -- Otherwise we treat THEN as some kind of mess where we did
449 -- not see the associated IF, but we pick up assuming it had
450 -- been there!
452 Restore_Scan_State (Scan_State); -- to THEN
453 Append_To (Statement_List, P_If_Statement);
454 Statement_Required := False;
456 -- Case of WHEN (error because we are not in a case)
458 when Tok_When | Tok_Others =>
460 -- Terminate if Whtm set or if the WHEN is to the left of
461 -- the expected column of the end for this sequence.
463 if SS_Flags.Whtm
464 or else Start_Column < Scope.Table (Scope.Last).Ecol
465 then
466 Test_Statement_Required;
467 exit;
469 -- Otherwise complain and skip when Choice {| Choice} =>
471 else
472 Error_Msg_SC ("WHEN not allowed here");
473 Scan; -- past when
474 Discard_Junk_List (P_Discrete_Choice_List);
475 TF_Arrow;
476 Statement_Required := False;
477 end if;
479 -- Cases of statements starting with an identifier
481 when Tok_Identifier =>
482 Check_Bad_Layout;
484 -- Save scan pointers and line number in case block label
486 Id_Node := Token_Node;
487 Block_Label := Token_Name;
488 Save_Scan_State (Scan_State_Label); -- at possible label
489 Scan; -- past Id
491 -- Check for common case of assignment, since it occurs
492 -- frequently, and we want to process it efficiently.
494 if Token = Tok_Colon_Equal then
495 Scan; -- past the colon-equal
496 Append_To (Statement_List,
497 P_Assignment_Statement (Id_Node));
498 Statement_Required := False;
500 -- Check common case of procedure call, another case that
501 -- we want to speed up as much as possible.
503 elsif Token = Tok_Semicolon then
504 Change_Name_To_Procedure_Call_Statement (Id_Node);
505 Append_To (Statement_List, Id_Node);
506 Scan; -- past semicolon
507 Statement_Required := False;
509 -- Check for case of "go to" in place of "goto"
511 elsif Token = Tok_Identifier
512 and then Block_Label = Name_Go
513 and then Token_Name = Name_To
514 then
515 Error_Msg_SP -- CODEFIX
516 ("goto is one word");
517 Append_To (Statement_List, P_Goto_Statement);
518 Statement_Required := False;
520 -- Check common case of = used instead of :=, just so we
521 -- give a better error message for this special misuse.
523 elsif Token = Tok_Equal then
524 T_Colon_Equal; -- give := expected message
525 Append_To (Statement_List,
526 P_Assignment_Statement (Id_Node));
527 Statement_Required := False;
529 -- Check case of loop label or block label
531 elsif Token = Tok_Colon
532 or else (Token in Token_Class_Labeled_Stmt
533 and then not Token_Is_At_Start_Of_Line)
534 then
535 T_Colon; -- past colon (if there, or msg for missing one)
537 -- Test for more than one label
539 loop
540 exit when Token /= Tok_Identifier;
541 Save_Scan_State (Scan_State); -- at second Id
542 Scan; -- past Id
544 if Token = Tok_Colon then
545 Error_Msg_SP
546 ("only one label allowed on block or loop");
547 Scan; -- past colon on extra label
549 -- Use the second label as the "real" label
551 Scan_State_Label := Scan_State;
553 -- We will set Error_name as the Block_Label since
554 -- we really don't know which of the labels might
555 -- be used at the end of the loop or block!
557 Block_Label := Error_Name;
559 -- If Id with no colon, then backup to point to the
560 -- Id and we will issue the message below when we try
561 -- to scan out the statement as some other form.
563 else
564 Restore_Scan_State (Scan_State); -- to second Id
565 exit;
566 end if;
567 end loop;
569 -- Loop_Statement (labeled Loop_Statement)
571 if Token = Tok_Loop then
572 Append_To (Statement_List,
573 P_Loop_Statement (Id_Node));
575 -- While statement (labeled loop statement with WHILE)
577 elsif Token = Tok_While then
578 Append_To (Statement_List,
579 P_While_Statement (Id_Node));
581 -- Declare statement (labeled block statement with
582 -- DECLARE part)
584 elsif Token = Tok_Declare then
585 Append_To (Statement_List,
586 P_Declare_Statement (Id_Node));
588 -- Begin statement (labeled block statement with no
589 -- DECLARE part)
591 elsif Token = Tok_Begin then
592 Append_To (Statement_List,
593 P_Begin_Statement (Id_Node));
595 -- For statement (labeled loop statement with FOR)
597 elsif Token = Tok_For then
598 Append_To (Statement_List,
599 P_For_Statement (Id_Node));
601 -- Improper statement follows label. If we have an
602 -- expression token, then assume the colon was part
603 -- of a misplaced declaration.
605 elsif Token not in Token_Class_Eterm then
606 Restore_Scan_State (Scan_State_Label);
607 Junk_Declaration;
609 -- Otherwise complain we have inappropriate statement
611 else
612 Error_Msg_AP
613 ("loop or block statement must follow label");
614 end if;
616 Statement_Required := False;
618 -- Here we have an identifier followed by something
619 -- other than a colon, semicolon or assignment symbol.
620 -- The only valid possibility is a name extension symbol
622 elsif Token in Token_Class_Namext then
623 Restore_Scan_State (Scan_State_Label); -- to Id
624 Name_Node := P_Name;
626 -- Skip junk right parens in this context
628 Ignore (Tok_Right_Paren);
630 -- Check context following call
632 if Token = Tok_Colon_Equal then
633 Scan; -- past colon equal
634 Append_To (Statement_List,
635 P_Assignment_Statement (Name_Node));
636 Statement_Required := False;
638 -- Check common case of = used instead of :=
640 elsif Token = Tok_Equal then
641 T_Colon_Equal; -- give := expected message
642 Append_To (Statement_List,
643 P_Assignment_Statement (Name_Node));
644 Statement_Required := False;
646 -- Check apostrophe cases
648 elsif Token = Tok_Apostrophe then
649 Append_To (Statement_List,
650 P_Code_Statement (Name_Node));
651 Statement_Required := False;
653 -- The only other valid item after a name is ; which
654 -- means that the item we just scanned was a call.
656 elsif Token = Tok_Semicolon then
657 Change_Name_To_Procedure_Call_Statement (Name_Node);
658 Append_To (Statement_List, Name_Node);
659 Scan; -- past semicolon
660 Statement_Required := False;
662 -- A slash following an identifier or a selected
663 -- component in this situation is most likely a period
664 -- (see location of keys on keyboard).
666 elsif Token = Tok_Slash
667 and then (Nkind (Name_Node) = N_Identifier
668 or else
669 Nkind (Name_Node) = N_Selected_Component)
670 then
671 Error_Msg_SC -- CODEFIX
672 ("""/"" should be "".""");
673 Statement_Required := False;
674 raise Error_Resync;
676 -- Else we have a missing semicolon
678 else
679 TF_Semicolon;
680 Statement_Required := False;
681 end if;
683 -- If junk after identifier, check if identifier is an
684 -- instance of an incorrectly spelled keyword. If so, we
685 -- do nothing. The Bad_Spelling_Of will have reset Token
686 -- to the appropriate keyword, so the next time round the
687 -- loop we will process the modified token. Note that we
688 -- check for ELSIF before ELSE here. That's not accidental.
689 -- We don't want to identify a misspelling of ELSE as
690 -- ELSIF, and in particular we do not want to treat ELSEIF
691 -- as ELSE IF.
693 else
694 Restore_Scan_State (Scan_State_Label); -- to identifier
696 if Bad_Spelling_Of (Tok_Abort)
697 or else Bad_Spelling_Of (Tok_Accept)
698 or else Bad_Spelling_Of (Tok_Case)
699 or else Bad_Spelling_Of (Tok_Declare)
700 or else Bad_Spelling_Of (Tok_Delay)
701 or else Bad_Spelling_Of (Tok_Elsif)
702 or else Bad_Spelling_Of (Tok_Else)
703 or else Bad_Spelling_Of (Tok_End)
704 or else Bad_Spelling_Of (Tok_Exception)
705 or else Bad_Spelling_Of (Tok_Exit)
706 or else Bad_Spelling_Of (Tok_For)
707 or else Bad_Spelling_Of (Tok_Goto)
708 or else Bad_Spelling_Of (Tok_If)
709 or else Bad_Spelling_Of (Tok_Loop)
710 or else Bad_Spelling_Of (Tok_Or)
711 or else Bad_Spelling_Of (Tok_Pragma)
712 or else Bad_Spelling_Of (Tok_Raise)
713 or else Bad_Spelling_Of (Tok_Requeue)
714 or else Bad_Spelling_Of (Tok_Return)
715 or else Bad_Spelling_Of (Tok_Select)
716 or else Bad_Spelling_Of (Tok_When)
717 or else Bad_Spelling_Of (Tok_While)
718 then
719 null;
721 -- If not a bad spelling, then we really have junk
723 else
724 Scan; -- past identifier again
726 -- If next token is first token on line, then we
727 -- consider that we were missing a semicolon after
728 -- the identifier, and process it as a procedure
729 -- call with no parameters.
731 if Token_Is_At_Start_Of_Line then
732 Change_Name_To_Procedure_Call_Statement (Id_Node);
733 Append_To (Statement_List, Id_Node);
734 T_Semicolon; -- to give error message
735 Statement_Required := False;
737 -- Otherwise we give a missing := message and
738 -- simply abandon the junk that is there now.
740 else
741 T_Colon_Equal; -- give := expected message
742 raise Error_Resync;
743 end if;
745 end if;
746 end if;
748 -- Statement starting with operator symbol. This could be
749 -- a call, a name starting an assignment, or a qualified
750 -- expression.
752 when Tok_Operator_Symbol =>
753 Check_Bad_Layout;
754 Name_Node := P_Name;
756 -- An attempt at a range attribute or a qualified expression
757 -- must be illegal here (a code statement cannot possibly
758 -- allow qualification by a function name).
760 if Token = Tok_Apostrophe then
761 Error_Msg_SC ("apostrophe illegal here");
762 raise Error_Resync;
763 end if;
765 -- Scan possible assignment if we have a name
767 if Expr_Form = EF_Name
768 and then Token = Tok_Colon_Equal
769 then
770 Scan; -- past colon equal
771 Append_To (Statement_List,
772 P_Assignment_Statement (Name_Node));
773 else
774 Change_Name_To_Procedure_Call_Statement (Name_Node);
775 Append_To (Statement_List, Name_Node);
776 end if;
778 TF_Semicolon;
779 Statement_Required := False;
781 -- Label starting with << which must precede real statement
782 -- Note: in Ada 2012, the label may end the sequence.
784 when Tok_Less_Less =>
785 if Present (Last (Statement_List))
786 and then Nkind (Last (Statement_List)) /= N_Label
787 then
788 Statement_Seen := True;
789 end if;
791 Append_To (Statement_List, P_Label);
792 Statement_Required := True;
794 -- Pragma appearing as a statement in a statement sequence
796 when Tok_Pragma =>
797 Check_Bad_Layout;
798 Append_To (Statement_List, P_Pragma);
800 -- Abort_Statement
802 when Tok_Abort =>
803 Check_Bad_Layout;
804 Append_To (Statement_List, P_Abort_Statement);
805 Statement_Required := False;
807 -- Accept_Statement
809 when Tok_Accept =>
810 Check_Bad_Layout;
811 Append_To (Statement_List, P_Accept_Statement);
812 Statement_Required := False;
814 -- Begin_Statement (Block_Statement with no declare, no label)
816 when Tok_Begin =>
817 Check_Bad_Layout;
818 Append_To (Statement_List, P_Begin_Statement);
819 Statement_Required := False;
821 -- Case_Statement
823 when Tok_Case =>
824 Check_Bad_Layout;
825 Append_To (Statement_List, P_Case_Statement);
826 Statement_Required := False;
828 -- Block_Statement with DECLARE and no label
830 when Tok_Declare =>
831 Check_Bad_Layout;
832 Append_To (Statement_List, P_Declare_Statement);
833 Statement_Required := False;
835 -- Delay_Statement
837 when Tok_Delay =>
838 Check_Bad_Layout;
839 Append_To (Statement_List, P_Delay_Statement);
840 Statement_Required := False;
842 -- Exit_Statement
844 when Tok_Exit =>
845 Check_Bad_Layout;
846 Append_To (Statement_List, P_Exit_Statement);
847 Statement_Required := False;
849 -- Loop_Statement with FOR and no label
851 when Tok_For =>
852 Check_Bad_Layout;
853 Append_To (Statement_List, P_For_Statement);
854 Statement_Required := False;
856 -- Goto_Statement
858 when Tok_Goto =>
859 Check_Bad_Layout;
860 Append_To (Statement_List, P_Goto_Statement);
861 Statement_Required := False;
863 -- If_Statement
865 when Tok_If =>
866 Check_Bad_Layout;
867 Append_To (Statement_List, P_If_Statement);
868 Statement_Required := False;
870 -- Loop_Statement
872 when Tok_Loop =>
873 Check_Bad_Layout;
874 Append_To (Statement_List, P_Loop_Statement);
875 Statement_Required := False;
877 -- Null_Statement
879 when Tok_Null =>
880 Check_Bad_Layout;
881 Append_To (Statement_List, P_Null_Statement);
882 Statement_Required := False;
884 -- Raise_Statement
886 when Tok_Raise =>
887 Check_Bad_Layout;
888 Append_To (Statement_List, P_Raise_Statement);
889 Statement_Required := False;
891 -- Requeue_Statement
893 when Tok_Requeue =>
894 Check_Bad_Layout;
895 Append_To (Statement_List, P_Requeue_Statement);
896 Statement_Required := False;
898 -- Return_Statement
900 when Tok_Return =>
901 Check_Bad_Layout;
902 Append_To (Statement_List, P_Return_Statement);
903 Statement_Required := False;
905 -- Select_Statement
907 when Tok_Select =>
908 Check_Bad_Layout;
909 Append_To (Statement_List, P_Select_Statement);
910 Statement_Required := False;
912 -- While_Statement (Block_Statement with while and no loop)
914 when Tok_While =>
915 Check_Bad_Layout;
916 Append_To (Statement_List, P_While_Statement);
917 Statement_Required := False;
919 -- Anything else is some kind of junk, signal an error message
920 -- and then raise Error_Resync, to merge with the normal
921 -- handling of a bad statement.
923 when others =>
925 if Token in Token_Class_Declk then
926 Junk_Declaration;
928 else
929 Error_Msg_BC -- CODEFIX
930 ("statement expected");
931 raise Error_Resync;
932 end if;
933 end case;
935 -- On error resynchronization, skip past next semicolon, and, since
936 -- we are still in the statement loop, look for next statement. We
937 -- set Statement_Required False to avoid an unnecessary error message
938 -- complaining that no statement was found (i.e. we consider the
939 -- junk to satisfy the requirement for a statement being present).
941 exception
942 when Error_Resync =>
943 Resync_Past_Semicolon_Or_To_Loop_Or_Then;
944 Statement_Required := False;
945 end;
947 exit when SS_Flags.Unco;
949 end loop;
951 return Statement_List;
953 end P_Sequence_Of_Statements;
955 --------------------
956 -- 5.1 Statement --
957 --------------------
959 ---------------------------
960 -- 5.1 Simple Statement --
961 ---------------------------
963 -- Parsed by P_Sequence_Of_Statements (5.1)
965 -----------------------------
966 -- 5.1 Compound Statement --
967 -----------------------------
969 -- Parsed by P_Sequence_Of_Statements (5.1)
971 -------------------------
972 -- 5.1 Null Statement --
973 -------------------------
975 -- NULL_STATEMENT ::= null;
977 -- The caller has already checked that the current token is null
979 -- Error recovery: cannot raise Error_Resync
981 function P_Null_Statement return Node_Id is
982 Null_Stmt_Node : Node_Id;
984 begin
985 Null_Stmt_Node := New_Node (N_Null_Statement, Token_Ptr);
986 Scan; -- past NULL
987 TF_Semicolon;
988 return Null_Stmt_Node;
989 end P_Null_Statement;
991 ----------------
992 -- 5.1 Label --
993 ----------------
995 -- LABEL ::= <<label_STATEMENT_IDENTIFIER>>
997 -- STATEMENT_IDENTIFIER ::= DIRECT_NAME
999 -- The IDENTIFIER of a STATEMENT_IDENTIFIER shall be an identifier
1000 -- (not an OPERATOR_SYMBOL)
1002 -- The caller has already checked that the current token is <<
1004 -- Error recovery: can raise Error_Resync
1006 function P_Label return Node_Id is
1007 Label_Node : Node_Id;
1009 begin
1010 Label_Node := New_Node (N_Label, Token_Ptr);
1011 Scan; -- past <<
1012 Set_Identifier (Label_Node, P_Identifier (C_Greater_Greater));
1013 T_Greater_Greater;
1014 Append_Elmt (Label_Node, Label_List);
1015 return Label_Node;
1016 end P_Label;
1018 -------------------------------
1019 -- 5.1 Statement Identifier --
1020 -------------------------------
1022 -- Statement label is parsed by P_Label (5.1)
1024 -- Loop label is parsed by P_Loop_Statement (5.5), P_For_Statement (5.5)
1025 -- or P_While_Statement (5.5)
1027 -- Block label is parsed by P_Begin_Statement (5.6) or
1028 -- P_Declare_Statement (5.6)
1030 -------------------------------
1031 -- 5.2 Assignment Statement --
1032 -------------------------------
1034 -- ASSIGNMENT_STATEMENT ::=
1035 -- variable_NAME := EXPRESSION;
1037 -- Error recovery: can raise Error_Resync
1039 function P_Assignment_Statement (LHS : Node_Id) return Node_Id is
1040 Assign_Node : Node_Id;
1042 begin
1043 Assign_Node := New_Node (N_Assignment_Statement, Prev_Token_Ptr);
1044 Set_Name (Assign_Node, LHS);
1045 Set_Expression (Assign_Node, P_Expression_No_Right_Paren);
1046 TF_Semicolon;
1047 return Assign_Node;
1048 end P_Assignment_Statement;
1050 -----------------------
1051 -- 5.3 If Statement --
1052 -----------------------
1054 -- IF_STATEMENT ::=
1055 -- if CONDITION then
1056 -- SEQUENCE_OF_STATEMENTS
1057 -- {elsif CONDITION then
1058 -- SEQUENCE_OF_STATEMENTS}
1059 -- [else
1060 -- SEQUENCE_OF_STATEMENTS]
1061 -- end if;
1063 -- The caller has checked that the initial token is IF (or in the error
1064 -- case of a mysterious THEN, the initial token may simply be THEN, in
1065 -- which case, no condition (or IF) was scanned).
1067 -- Error recovery: can raise Error_Resync
1069 function P_If_Statement return Node_Id is
1070 If_Node : Node_Id;
1071 Elsif_Node : Node_Id;
1072 Loc : Source_Ptr;
1074 procedure Add_Elsif_Part;
1075 -- An internal procedure used to scan out a single ELSIF part. On entry
1076 -- the ELSIF (or an ELSE which has been determined should be ELSIF) is
1077 -- scanned out and is in Prev_Token.
1079 procedure Check_If_Column;
1080 -- An internal procedure used to check that THEN, ELSE, or ELSIF
1081 -- appear in the right place if column checking is enabled (i.e. if
1082 -- they are the first token on the line, then they must appear in
1083 -- the same column as the opening IF).
1085 procedure Check_Then_Column;
1086 -- This procedure carries out the style checks for a THEN token
1087 -- Note that the caller has set Loc to the Source_Ptr value for
1088 -- the previous IF or ELSIF token. These checks apply only to a
1089 -- THEN at the start of a line.
1091 function Else_Should_Be_Elsif return Boolean;
1092 -- An internal routine used to do a special error recovery check when
1093 -- an ELSE is encountered. It determines if the ELSE should be treated
1094 -- as an ELSIF. A positive decision (TRUE returned, is made if the ELSE
1095 -- is followed by a sequence of tokens, starting on the same line as
1096 -- the ELSE, which are not expression terminators, followed by a THEN.
1097 -- On entry, the ELSE has been scanned out.
1099 procedure Add_Elsif_Part is
1100 begin
1101 if No (Elsif_Parts (If_Node)) then
1102 Set_Elsif_Parts (If_Node, New_List);
1103 end if;
1105 Elsif_Node := New_Node (N_Elsif_Part, Prev_Token_Ptr);
1106 Loc := Prev_Token_Ptr;
1107 Set_Condition (Elsif_Node, P_Condition);
1108 Check_Then_Column;
1109 Then_Scan;
1110 Set_Then_Statements
1111 (Elsif_Node, P_Sequence_Of_Statements (SS_Eftm_Eltm_Sreq));
1112 Append (Elsif_Node, Elsif_Parts (If_Node));
1113 end Add_Elsif_Part;
1115 procedure Check_If_Column is
1116 begin
1117 if RM_Column_Check and then Token_Is_At_Start_Of_Line
1118 and then Start_Column /= Scope.Table (Scope.Last).Ecol
1119 then
1120 Error_Msg_Col := Scope.Table (Scope.Last).Ecol;
1121 Error_Msg_SC ("(style) this token should be@");
1122 end if;
1123 end Check_If_Column;
1125 procedure Check_Then_Column is
1126 begin
1127 if Token_Is_At_Start_Of_Line and then Token = Tok_Then then
1128 Check_If_Column;
1130 if Style_Check then
1131 Style.Check_Then (Loc);
1132 end if;
1133 end if;
1134 end Check_Then_Column;
1136 function Else_Should_Be_Elsif return Boolean is
1137 Scan_State : Saved_Scan_State;
1139 begin
1140 if Token_Is_At_Start_Of_Line then
1141 return False;
1143 else
1144 Save_Scan_State (Scan_State);
1146 loop
1147 if Token in Token_Class_Eterm then
1148 Restore_Scan_State (Scan_State);
1149 return False;
1150 else
1151 Scan; -- past non-expression terminating token
1153 if Token = Tok_Then then
1154 Restore_Scan_State (Scan_State);
1155 return True;
1156 end if;
1157 end if;
1158 end loop;
1159 end if;
1160 end Else_Should_Be_Elsif;
1162 -- Start of processing for P_If_Statement
1164 begin
1165 If_Node := New_Node (N_If_Statement, Token_Ptr);
1167 Push_Scope_Stack;
1168 Scope.Table (Scope.Last).Etyp := E_If;
1169 Scope.Table (Scope.Last).Ecol := Start_Column;
1170 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1171 Scope.Table (Scope.Last).Labl := Error;
1172 Scope.Table (Scope.Last).Node := If_Node;
1174 if Token = Tok_If then
1175 Loc := Token_Ptr;
1176 Scan; -- past IF
1177 Set_Condition (If_Node, P_Condition);
1179 -- Deal with misuse of IF expression => used instead
1180 -- of WHEN expression =>
1182 if Token = Tok_Arrow then
1183 Error_Msg_SC -- CODEFIX
1184 ("THEN expected");
1185 Scan; -- past the arrow
1186 Pop_Scope_Stack; -- remove unneeded entry
1187 raise Error_Resync;
1188 end if;
1190 Check_Then_Column;
1192 else
1193 Error_Msg_SC ("no IF for this THEN");
1194 Set_Condition (If_Node, Error);
1195 end if;
1197 Then_Scan;
1199 Set_Then_Statements
1200 (If_Node, P_Sequence_Of_Statements (SS_Eftm_Eltm_Sreq));
1202 -- This loop scans out else and elsif parts
1204 loop
1205 if Token = Tok_Elsif then
1206 Check_If_Column;
1208 if Present (Else_Statements (If_Node)) then
1209 Error_Msg_SP ("ELSIF cannot appear after ELSE");
1210 end if;
1212 Scan; -- past ELSIF
1213 Add_Elsif_Part;
1215 elsif Token = Tok_Else then
1216 Check_If_Column;
1217 Scan; -- past ELSE
1219 if Else_Should_Be_Elsif then
1220 Error_Msg_SP -- CODEFIX
1221 ("ELSE should be ELSIF");
1222 Add_Elsif_Part;
1224 else
1225 -- Here we have an else that really is an else
1227 if Present (Else_Statements (If_Node)) then
1228 Error_Msg_SP ("only one ELSE part allowed");
1229 Append_List
1230 (P_Sequence_Of_Statements (SS_Eftm_Eltm_Sreq),
1231 Else_Statements (If_Node));
1232 else
1233 Set_Else_Statements
1234 (If_Node, P_Sequence_Of_Statements (SS_Eftm_Eltm_Sreq));
1235 end if;
1236 end if;
1238 -- If anything other than ELSE or ELSIF, exit the loop. The token
1239 -- had better be END (and in fact it had better be END IF), but
1240 -- we will let End_Statements take care of checking that.
1242 else
1243 exit;
1244 end if;
1245 end loop;
1247 End_Statements;
1248 return If_Node;
1250 end P_If_Statement;
1252 --------------------
1253 -- 5.3 Condition --
1254 --------------------
1256 -- CONDITION ::= boolean_EXPRESSION
1258 function P_Condition return Node_Id is
1259 Cond : Node_Id;
1261 begin
1262 Cond := P_Expression_No_Right_Paren;
1264 -- It is never possible for := to follow a condition, so if we get
1265 -- a := we assume it is a mistyped equality. Note that we do not try
1266 -- to reconstruct the tree correctly in this case, but we do at least
1267 -- give an accurate error message.
1269 if Token = Tok_Colon_Equal then
1270 while Token = Tok_Colon_Equal loop
1271 Error_Msg_SC -- CODEFIX
1272 (""":="" should be ""=""");
1273 Scan; -- past junk :=
1274 Discard_Junk_Node (P_Expression_No_Right_Paren);
1275 end loop;
1277 return Cond;
1279 -- Otherwise check for redundant parens
1281 else
1282 if Style_Check
1283 and then Paren_Count (Cond) > 0
1284 then
1285 Style.Check_Xtra_Parens (First_Sloc (Cond));
1286 end if;
1288 -- And return the result
1290 return Cond;
1291 end if;
1292 end P_Condition;
1294 -------------------------
1295 -- 5.4 Case Statement --
1296 -------------------------
1298 -- CASE_STATEMENT ::=
1299 -- case EXPRESSION is
1300 -- CASE_STATEMENT_ALTERNATIVE
1301 -- {CASE_STATEMENT_ALTERNATIVE}
1302 -- end case;
1304 -- The caller has checked that the first token is CASE
1306 -- Can raise Error_Resync
1308 function P_Case_Statement return Node_Id is
1309 Case_Node : Node_Id;
1310 Alternatives_List : List_Id;
1311 First_When_Loc : Source_Ptr;
1313 begin
1314 Case_Node := New_Node (N_Case_Statement, Token_Ptr);
1316 Push_Scope_Stack;
1317 Scope.Table (Scope.Last).Etyp := E_Case;
1318 Scope.Table (Scope.Last).Ecol := Start_Column;
1319 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1320 Scope.Table (Scope.Last).Labl := Error;
1321 Scope.Table (Scope.Last).Node := Case_Node;
1323 Scan; -- past CASE
1324 Set_Expression (Case_Node, P_Expression_No_Right_Paren);
1325 TF_Is;
1327 -- Prepare to parse case statement alternatives
1329 Alternatives_List := New_List;
1330 P_Pragmas_Opt (Alternatives_List);
1331 First_When_Loc := Token_Ptr;
1333 -- Loop through case statement alternatives
1335 loop
1336 -- If we have a WHEN or OTHERS, then that's fine keep going. Note
1337 -- that it is a semantic check to ensure the proper use of OTHERS
1339 if Token = Tok_When or else Token = Tok_Others then
1340 Append (P_Case_Statement_Alternative, Alternatives_List);
1342 -- If we have an END, then probably we are at the end of the case
1343 -- but we only exit if Check_End thinks the END was reasonable.
1345 elsif Token = Tok_End then
1346 exit when Check_End;
1348 -- Here if token is other than WHEN, OTHERS or END. We definitely
1349 -- have an error, but the question is whether or not to get out of
1350 -- the case statement. We don't want to get out early, or we will
1351 -- get a slew of junk error messages for subsequent when tokens.
1353 -- If the token is not at the start of the line, or if it is indented
1354 -- with respect to the current case statement, then the best guess is
1355 -- that we are still supposed to be inside the case statement. We
1356 -- complain about the missing WHEN, and discard the junk statements.
1358 elsif not Token_Is_At_Start_Of_Line
1359 or else Start_Column > Scope.Table (Scope.Last).Ecol
1360 then
1361 Error_Msg_BC ("WHEN (case statement alternative) expected");
1363 -- Here is a possibility for infinite looping if we don't make
1364 -- progress. So try to process statements, otherwise exit
1366 declare
1367 Error_Ptr : constant Source_Ptr := Scan_Ptr;
1368 begin
1369 Discard_Junk_List (P_Sequence_Of_Statements (SS_Whtm));
1370 exit when Scan_Ptr = Error_Ptr and then Check_End;
1371 end;
1373 -- Here we have a junk token at the start of the line and it is
1374 -- not indented. If Check_End thinks there is a missing END, then
1375 -- we will get out of the case, otherwise we keep going.
1377 else
1378 exit when Check_End;
1379 end if;
1380 end loop;
1382 -- Make sure we have at least one alternative
1384 if No (First_Non_Pragma (Alternatives_List)) then
1385 Error_Msg
1386 ("WHEN expected, must have at least one alternative in case",
1387 First_When_Loc);
1388 return Error;
1390 else
1391 Set_Alternatives (Case_Node, Alternatives_List);
1392 return Case_Node;
1393 end if;
1394 end P_Case_Statement;
1396 -------------------------------------
1397 -- 5.4 Case Statement Alternative --
1398 -------------------------------------
1400 -- CASE_STATEMENT_ALTERNATIVE ::=
1401 -- when DISCRETE_CHOICE_LIST =>
1402 -- SEQUENCE_OF_STATEMENTS
1404 -- The caller has checked that the initial token is WHEN or OTHERS
1405 -- Error recovery: can raise Error_Resync
1407 function P_Case_Statement_Alternative return Node_Id is
1408 Case_Alt_Node : Node_Id;
1410 begin
1411 if Style_Check then
1412 Style.Check_Indentation;
1413 end if;
1415 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Token_Ptr);
1416 T_When; -- past WHEN (or give error in OTHERS case)
1417 Set_Discrete_Choices (Case_Alt_Node, P_Discrete_Choice_List);
1418 TF_Arrow;
1419 Set_Statements (Case_Alt_Node, P_Sequence_Of_Statements (SS_Sreq_Whtm));
1420 return Case_Alt_Node;
1421 end P_Case_Statement_Alternative;
1423 -------------------------
1424 -- 5.5 Loop Statement --
1425 -------------------------
1427 -- LOOP_STATEMENT ::=
1428 -- [LOOP_STATEMENT_IDENTIFIER:]
1429 -- [ITERATION_SCHEME] loop
1430 -- SEQUENCE_OF_STATEMENTS
1431 -- end loop [loop_IDENTIFIER];
1433 -- ITERATION_SCHEME ::=
1434 -- while CONDITION
1435 -- | for LOOP_PARAMETER_SPECIFICATION
1437 -- The parsing of loop statements is handled by one of three functions
1438 -- P_Loop_Statement, P_For_Statement or P_While_Statement depending
1439 -- on the initial keyword in the construct (excluding the identifier)
1441 -- P_Loop_Statement
1443 -- This function parses the case where no iteration scheme is present
1445 -- The caller has checked that the initial token is LOOP. The parameter
1446 -- is the node identifiers for the loop label if any (or is set to Empty
1447 -- if there is no loop label).
1449 -- Error recovery : cannot raise Error_Resync
1451 function P_Loop_Statement (Loop_Name : Node_Id := Empty) return Node_Id is
1452 Loop_Node : Node_Id;
1453 Created_Name : Node_Id;
1455 begin
1456 Push_Scope_Stack;
1457 Scope.Table (Scope.Last).Labl := Loop_Name;
1458 Scope.Table (Scope.Last).Ecol := Start_Column;
1459 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1460 Scope.Table (Scope.Last).Etyp := E_Loop;
1462 Loop_Node := New_Node (N_Loop_Statement, Token_Ptr);
1463 TF_Loop;
1465 if No (Loop_Name) then
1466 Created_Name :=
1467 Make_Identifier (Sloc (Loop_Node), Set_Loop_Block_Name ('L'));
1468 Set_Comes_From_Source (Created_Name, False);
1469 Set_Has_Created_Identifier (Loop_Node, True);
1470 Set_Identifier (Loop_Node, Created_Name);
1471 Scope.Table (Scope.Last).Labl := Created_Name;
1472 else
1473 Set_Identifier (Loop_Node, Loop_Name);
1474 end if;
1476 Append_Elmt (Loop_Node, Label_List);
1477 Set_Statements (Loop_Node, P_Sequence_Of_Statements (SS_Sreq));
1478 End_Statements (Loop_Node);
1479 return Loop_Node;
1480 end P_Loop_Statement;
1482 -- P_For_Statement
1484 -- This function parses a loop statement with a FOR iteration scheme
1486 -- The caller has checked that the initial token is FOR. The parameter
1487 -- is the node identifier for the block label if any (or is set to Empty
1488 -- if there is no block label).
1490 -- Note: the caller fills in the Identifier field if a label was present
1492 -- Error recovery: can raise Error_Resync
1494 function P_For_Statement (Loop_Name : Node_Id := Empty) return Node_Id is
1495 Loop_Node : Node_Id;
1496 Iter_Scheme_Node : Node_Id;
1497 Loop_For_Flag : Boolean;
1498 Created_Name : Node_Id;
1499 Spec : Node_Id;
1501 begin
1502 Push_Scope_Stack;
1503 Scope.Table (Scope.Last).Labl := Loop_Name;
1504 Scope.Table (Scope.Last).Ecol := Start_Column;
1505 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1506 Scope.Table (Scope.Last).Etyp := E_Loop;
1508 Loop_For_Flag := (Prev_Token = Tok_Loop);
1509 Scan; -- past FOR
1510 Iter_Scheme_Node := New_Node (N_Iteration_Scheme, Token_Ptr);
1511 Spec := P_Loop_Parameter_Specification;
1513 if Nkind (Spec) = N_Loop_Parameter_Specification then
1514 Set_Loop_Parameter_Specification (Iter_Scheme_Node, Spec);
1515 else
1516 Set_Iterator_Specification (Iter_Scheme_Node, Spec);
1517 end if;
1519 -- The following is a special test so that a miswritten for loop such
1520 -- as "loop for I in 1..10;" is handled nicely, without making an extra
1521 -- entry in the scope stack. We don't bother to actually fix up the
1522 -- tree in this case since it's not worth the effort. Instead we just
1523 -- eat up the loop junk, leaving the entry for what now looks like an
1524 -- unmodified loop intact.
1526 if Loop_For_Flag and then Token = Tok_Semicolon then
1527 Error_Msg_SC ("LOOP belongs here, not before FOR");
1528 Pop_Scope_Stack;
1529 return Error;
1531 -- Normal case
1533 else
1534 Loop_Node := New_Node (N_Loop_Statement, Token_Ptr);
1536 if No (Loop_Name) then
1537 Created_Name :=
1538 Make_Identifier (Sloc (Loop_Node), Set_Loop_Block_Name ('L'));
1539 Set_Comes_From_Source (Created_Name, False);
1540 Set_Has_Created_Identifier (Loop_Node, True);
1541 Set_Identifier (Loop_Node, Created_Name);
1542 Scope.Table (Scope.Last).Labl := Created_Name;
1543 else
1544 Set_Identifier (Loop_Node, Loop_Name);
1545 end if;
1547 TF_Loop;
1548 Set_Statements (Loop_Node, P_Sequence_Of_Statements (SS_Sreq));
1549 End_Statements (Loop_Node);
1550 Set_Iteration_Scheme (Loop_Node, Iter_Scheme_Node);
1551 Append_Elmt (Loop_Node, Label_List);
1552 return Loop_Node;
1553 end if;
1554 end P_For_Statement;
1556 -- P_While_Statement
1558 -- This procedure scans a loop statement with a WHILE iteration scheme
1560 -- The caller has checked that the initial token is WHILE. The parameter
1561 -- is the node identifier for the block label if any (or is set to Empty
1562 -- if there is no block label).
1564 -- Error recovery: cannot raise Error_Resync
1566 function P_While_Statement (Loop_Name : Node_Id := Empty) return Node_Id is
1567 Loop_Node : Node_Id;
1568 Iter_Scheme_Node : Node_Id;
1569 Loop_While_Flag : Boolean;
1570 Created_Name : Node_Id;
1572 begin
1573 Push_Scope_Stack;
1574 Scope.Table (Scope.Last).Labl := Loop_Name;
1575 Scope.Table (Scope.Last).Ecol := Start_Column;
1576 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1577 Scope.Table (Scope.Last).Etyp := E_Loop;
1579 Loop_While_Flag := (Prev_Token = Tok_Loop);
1580 Iter_Scheme_Node := New_Node (N_Iteration_Scheme, Token_Ptr);
1581 Scan; -- past WHILE
1582 Set_Condition (Iter_Scheme_Node, P_Condition);
1584 -- The following is a special test so that a miswritten for loop such
1585 -- as "loop while I > 10;" is handled nicely, without making an extra
1586 -- entry in the scope stack. We don't bother to actually fix up the
1587 -- tree in this case since it's not worth the effort. Instead we just
1588 -- eat up the loop junk, leaving the entry for what now looks like an
1589 -- unmodified loop intact.
1591 if Loop_While_Flag and then Token = Tok_Semicolon then
1592 Error_Msg_SC ("LOOP belongs here, not before WHILE");
1593 Pop_Scope_Stack;
1594 return Error;
1596 -- Normal case
1598 else
1599 Loop_Node := New_Node (N_Loop_Statement, Token_Ptr);
1600 TF_Loop;
1602 if No (Loop_Name) then
1603 Created_Name :=
1604 Make_Identifier (Sloc (Loop_Node), Set_Loop_Block_Name ('L'));
1605 Set_Comes_From_Source (Created_Name, False);
1606 Set_Has_Created_Identifier (Loop_Node, True);
1607 Set_Identifier (Loop_Node, Created_Name);
1608 Scope.Table (Scope.Last).Labl := Created_Name;
1609 else
1610 Set_Identifier (Loop_Node, Loop_Name);
1611 end if;
1613 Set_Statements (Loop_Node, P_Sequence_Of_Statements (SS_Sreq));
1614 End_Statements (Loop_Node);
1615 Set_Iteration_Scheme (Loop_Node, Iter_Scheme_Node);
1616 Append_Elmt (Loop_Node, Label_List);
1617 return Loop_Node;
1618 end if;
1619 end P_While_Statement;
1621 ---------------------------------------
1622 -- 5.5 Loop Parameter Specification --
1623 ---------------------------------------
1625 -- LOOP_PARAMETER_SPECIFICATION ::=
1626 -- DEFINING_IDENTIFIER in [reverse] DISCRETE_SUBTYPE_DEFINITION
1628 -- Error recovery: cannot raise Error_Resync
1630 function P_Loop_Parameter_Specification return Node_Id is
1631 Loop_Param_Specification_Node : Node_Id;
1633 ID_Node : Node_Id;
1634 Scan_State : Saved_Scan_State;
1636 begin
1638 Save_Scan_State (Scan_State);
1639 ID_Node := P_Defining_Identifier (C_In);
1641 -- If the next token is OF, it indicates an Ada 2012 iterator. If the
1642 -- next token is a colon, this is also an Ada 2012 iterator, including
1643 -- a subtype indication for the loop parameter. Otherwise we parse the
1644 -- construct as a loop parameter specification. Note that the form
1645 -- "for A in B" is ambiguous, and must be resolved semantically: if B
1646 -- is a discrete subtype this is a loop specification, but if it is an
1647 -- expression it is an iterator specification. Ambiguity is resolved
1648 -- during analysis of the loop parameter specification.
1650 if Token = Tok_Of or else Token = Tok_Colon then
1651 if Ada_Version < Ada_2012 then
1652 Error_Msg_SC ("iterator is an Ada 2012 feature");
1653 end if;
1655 return P_Iterator_Specification (ID_Node);
1656 end if;
1658 -- The span of the Loop_Parameter_Specification starts at the
1659 -- defining identifier.
1661 Loop_Param_Specification_Node :=
1662 New_Node (N_Loop_Parameter_Specification, Sloc (ID_Node));
1663 Set_Defining_Identifier (Loop_Param_Specification_Node, ID_Node);
1665 if Token = Tok_Left_Paren then
1666 Error_Msg_SC ("subscripted loop parameter not allowed");
1667 Restore_Scan_State (Scan_State);
1668 Discard_Junk_Node (P_Name);
1670 elsif Token = Tok_Dot then
1671 Error_Msg_SC ("selected loop parameter not allowed");
1672 Restore_Scan_State (Scan_State);
1673 Discard_Junk_Node (P_Name);
1674 end if;
1676 T_In;
1678 if Token = Tok_Reverse then
1679 Scan; -- past REVERSE
1680 Set_Reverse_Present (Loop_Param_Specification_Node, True);
1681 end if;
1683 Set_Discrete_Subtype_Definition
1684 (Loop_Param_Specification_Node, P_Discrete_Subtype_Definition);
1685 return Loop_Param_Specification_Node;
1687 exception
1688 when Error_Resync =>
1689 return Error;
1690 end P_Loop_Parameter_Specification;
1692 ----------------------------------
1693 -- 5.5.1 Iterator_Specification --
1694 ----------------------------------
1696 function P_Iterator_Specification (Def_Id : Node_Id) return Node_Id is
1697 Node1 : Node_Id;
1699 begin
1700 Node1 := New_Node (N_Iterator_Specification, Sloc (Def_Id));
1701 Set_Defining_Identifier (Node1, Def_Id);
1703 if Token = Tok_Colon then
1704 Scan; -- past :
1705 Set_Subtype_Indication (Node1, P_Subtype_Indication);
1706 end if;
1708 if Token = Tok_Of then
1709 Set_Of_Present (Node1);
1710 Scan; -- past OF
1712 elsif Token = Tok_In then
1713 Scan; -- past IN
1715 else
1716 return Error;
1717 end if;
1719 if Token = Tok_Reverse then
1720 Scan; -- past REVERSE
1721 Set_Reverse_Present (Node1, True);
1722 end if;
1724 Set_Name (Node1, P_Name);
1725 return Node1;
1726 end P_Iterator_Specification;
1728 --------------------------
1729 -- 5.6 Block Statement --
1730 --------------------------
1732 -- BLOCK_STATEMENT ::=
1733 -- [block_STATEMENT_IDENTIFIER:]
1734 -- [declare
1735 -- DECLARATIVE_PART]
1736 -- begin
1737 -- HANDLED_SEQUENCE_OF_STATEMENTS
1738 -- end [block_IDENTIFIER];
1740 -- The parsing of block statements is handled by one of the two functions
1741 -- P_Declare_Statement or P_Begin_Statement depending on whether or not
1742 -- a declare section is present
1744 -- P_Declare_Statement
1746 -- This function parses a block statement with DECLARE present
1748 -- The caller has checked that the initial token is DECLARE
1750 -- Error recovery: cannot raise Error_Resync
1752 function P_Declare_Statement
1753 (Block_Name : Node_Id := Empty)
1754 return Node_Id
1756 Block_Node : Node_Id;
1757 Created_Name : Node_Id;
1759 begin
1760 Block_Node := New_Node (N_Block_Statement, Token_Ptr);
1762 Push_Scope_Stack;
1763 Scope.Table (Scope.Last).Etyp := E_Name;
1764 Scope.Table (Scope.Last).Lreq := Present (Block_Name);
1765 Scope.Table (Scope.Last).Ecol := Start_Column;
1766 Scope.Table (Scope.Last).Labl := Block_Name;
1767 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1769 Scan; -- past DECLARE
1771 if No (Block_Name) then
1772 Created_Name :=
1773 Make_Identifier (Sloc (Block_Node), Set_Loop_Block_Name ('B'));
1774 Set_Comes_From_Source (Created_Name, False);
1775 Set_Has_Created_Identifier (Block_Node, True);
1776 Set_Identifier (Block_Node, Created_Name);
1777 Scope.Table (Scope.Last).Labl := Created_Name;
1778 else
1779 Set_Identifier (Block_Node, Block_Name);
1780 end if;
1782 Append_Elmt (Block_Node, Label_List);
1783 Parse_Decls_Begin_End (Block_Node);
1784 return Block_Node;
1785 end P_Declare_Statement;
1787 -- P_Begin_Statement
1789 -- This function parses a block statement with no DECLARE present
1791 -- The caller has checked that the initial token is BEGIN
1793 -- Error recovery: cannot raise Error_Resync
1795 function P_Begin_Statement
1796 (Block_Name : Node_Id := Empty)
1797 return Node_Id
1799 Block_Node : Node_Id;
1800 Created_Name : Node_Id;
1802 begin
1803 Block_Node := New_Node (N_Block_Statement, Token_Ptr);
1805 Push_Scope_Stack;
1806 Scope.Table (Scope.Last).Etyp := E_Name;
1807 Scope.Table (Scope.Last).Lreq := Present (Block_Name);
1808 Scope.Table (Scope.Last).Ecol := Start_Column;
1809 Scope.Table (Scope.Last).Labl := Block_Name;
1810 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1812 if No (Block_Name) then
1813 Created_Name :=
1814 Make_Identifier (Sloc (Block_Node), Set_Loop_Block_Name ('B'));
1815 Set_Comes_From_Source (Created_Name, False);
1816 Set_Has_Created_Identifier (Block_Node, True);
1817 Set_Identifier (Block_Node, Created_Name);
1818 Scope.Table (Scope.Last).Labl := Created_Name;
1819 else
1820 Set_Identifier (Block_Node, Block_Name);
1821 end if;
1823 Append_Elmt (Block_Node, Label_List);
1825 Scope.Table (Scope.Last).Ecol := Start_Column;
1826 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1827 Scan; -- past BEGIN
1828 Set_Handled_Statement_Sequence
1829 (Block_Node, P_Handled_Sequence_Of_Statements);
1830 End_Statements (Handled_Statement_Sequence (Block_Node));
1831 return Block_Node;
1832 end P_Begin_Statement;
1834 -------------------------
1835 -- 5.7 Exit Statement --
1836 -------------------------
1838 -- EXIT_STATEMENT ::=
1839 -- exit [loop_NAME] [when CONDITION];
1841 -- The caller has checked that the initial token is EXIT
1843 -- Error recovery: can raise Error_Resync
1845 function P_Exit_Statement return Node_Id is
1846 Exit_Node : Node_Id;
1848 function Missing_Semicolon_On_Exit return Boolean;
1849 -- This function deals with the following specialized situation
1851 -- when 'x' =>
1852 -- exit [identifier]
1853 -- when 'y' =>
1855 -- This looks like a messed up EXIT WHEN, when in fact the problem
1856 -- is a missing semicolon. It is called with Token pointing to the
1857 -- WHEN token, and returns True if a semicolon is missing before
1858 -- the WHEN as in the above example.
1860 -------------------------------
1861 -- Missing_Semicolon_On_Exit --
1862 -------------------------------
1864 function Missing_Semicolon_On_Exit return Boolean is
1865 State : Saved_Scan_State;
1867 begin
1868 if not Token_Is_At_Start_Of_Line then
1869 return False;
1871 elsif Scope.Table (Scope.Last).Etyp /= E_Case then
1872 return False;
1874 else
1875 Save_Scan_State (State);
1876 Scan; -- past WHEN
1877 Scan; -- past token after WHEN
1879 if Token = Tok_Arrow then
1880 Restore_Scan_State (State);
1881 return True;
1882 else
1883 Restore_Scan_State (State);
1884 return False;
1885 end if;
1886 end if;
1887 end Missing_Semicolon_On_Exit;
1889 -- Start of processing for P_Exit_Statement
1891 begin
1892 Exit_Node := New_Node (N_Exit_Statement, Token_Ptr);
1893 Scan; -- past EXIT
1895 if Token = Tok_Identifier then
1896 Set_Name (Exit_Node, P_Qualified_Simple_Name);
1898 elsif Style_Check then
1899 -- This EXIT has no name, so check that
1900 -- the innermost loop is unnamed too.
1902 Check_No_Exit_Name :
1903 for J in reverse 1 .. Scope.Last loop
1904 if Scope.Table (J).Etyp = E_Loop then
1905 if Present (Scope.Table (J).Labl)
1906 and then Comes_From_Source (Scope.Table (J).Labl)
1907 then
1908 -- Innermost loop in fact had a name, style check fails
1910 Style.No_Exit_Name (Scope.Table (J).Labl);
1911 end if;
1913 exit Check_No_Exit_Name;
1914 end if;
1915 end loop Check_No_Exit_Name;
1916 end if;
1918 if Token = Tok_When and then not Missing_Semicolon_On_Exit then
1919 Scan; -- past WHEN
1920 Set_Condition (Exit_Node, P_Condition);
1922 -- Allow IF instead of WHEN, giving error message
1924 elsif Token = Tok_If then
1925 T_When;
1926 Scan; -- past IF used in place of WHEN
1927 Set_Condition (Exit_Node, P_Expression_No_Right_Paren);
1928 end if;
1930 TF_Semicolon;
1931 return Exit_Node;
1932 end P_Exit_Statement;
1934 -------------------------
1935 -- 5.8 Goto Statement --
1936 -------------------------
1938 -- GOTO_STATEMENT ::= goto label_NAME;
1940 -- The caller has checked that the initial token is GOTO (or TO in the
1941 -- error case where GO and TO were incorrectly separated).
1943 -- Error recovery: can raise Error_Resync
1945 function P_Goto_Statement return Node_Id is
1946 Goto_Node : Node_Id;
1948 begin
1949 Goto_Node := New_Node (N_Goto_Statement, Token_Ptr);
1950 Scan; -- past GOTO (or TO)
1951 Set_Name (Goto_Node, P_Qualified_Simple_Name_Resync);
1952 Append_Elmt (Goto_Node, Goto_List);
1953 No_Constraint;
1954 TF_Semicolon;
1955 return Goto_Node;
1956 end P_Goto_Statement;
1958 ---------------------------
1959 -- Parse_Decls_Begin_End --
1960 ---------------------------
1962 -- This function parses the construct:
1964 -- DECLARATIVE_PART
1965 -- begin
1966 -- HANDLED_SEQUENCE_OF_STATEMENTS
1967 -- end [NAME];
1969 -- The caller has built the scope stack entry, and created the node to
1970 -- whose Declarations and Handled_Statement_Sequence fields are to be
1971 -- set. On return these fields are filled in (except in the case of a
1972 -- task body, where the handled statement sequence is optional, and may
1973 -- thus be Empty), and the scan is positioned past the End sequence.
1975 -- If the BEGIN is missing, then the parent node is used to help construct
1976 -- an appropriate missing BEGIN message. Possibilities for the parent are:
1978 -- N_Block_Statement declare block
1979 -- N_Entry_Body entry body
1980 -- N_Package_Body package body (begin part optional)
1981 -- N_Subprogram_Body procedure or function body
1982 -- N_Task_Body task body
1984 -- Note: in the case of a block statement, there is definitely a DECLARE
1985 -- present (because a Begin statement without a DECLARE is handled by the
1986 -- P_Begin_Statement procedure, which does not call Parse_Decls_Begin_End.
1988 -- Error recovery: cannot raise Error_Resync
1990 procedure Parse_Decls_Begin_End (Parent : Node_Id) is
1991 Body_Decl : Node_Id;
1992 Decls : List_Id;
1993 Parent_Nkind : Node_Kind;
1994 Spec_Node : Node_Id;
1995 HSS : Node_Id;
1997 procedure Missing_Begin (Msg : String);
1998 -- Called to post a missing begin message. In the normal case this is
1999 -- posted at the start of the current token. A special case arises when
2000 -- P_Declarative_Items has previously found a missing begin, in which
2001 -- case we replace the original error message.
2003 procedure Set_Null_HSS (Parent : Node_Id);
2004 -- Construct an empty handled statement sequence and install in Parent
2005 -- Leaves HSS set to reference the newly constructed statement sequence.
2007 -------------------
2008 -- Missing_Begin --
2009 -------------------
2011 procedure Missing_Begin (Msg : String) is
2012 begin
2013 if Missing_Begin_Msg = No_Error_Msg then
2014 Error_Msg_BC (Msg);
2015 else
2016 Change_Error_Text (Missing_Begin_Msg, Msg);
2018 -- Purge any messages issued after than, since a missing begin
2019 -- can cause a lot of havoc, and it is better not to dump these
2020 -- cascaded messages on the user.
2022 Purge_Messages (Get_Location (Missing_Begin_Msg), Prev_Token_Ptr);
2023 end if;
2024 end Missing_Begin;
2026 ------------------
2027 -- Set_Null_HSS --
2028 ------------------
2030 procedure Set_Null_HSS (Parent : Node_Id) is
2031 Null_Stm : Node_Id;
2033 begin
2034 Null_Stm :=
2035 Make_Null_Statement (Token_Ptr);
2036 Set_Comes_From_Source (Null_Stm, False);
2038 HSS :=
2039 Make_Handled_Sequence_Of_Statements (Token_Ptr,
2040 Statements => New_List (Null_Stm));
2041 Set_Comes_From_Source (HSS, False);
2043 Set_Handled_Statement_Sequence (Parent, HSS);
2044 end Set_Null_HSS;
2046 -- Start of processing for Parse_Decls_Begin_End
2048 begin
2049 Decls := P_Declarative_Part;
2051 if Ada_Version = Ada_83 then
2052 Check_Later_Vs_Basic_Declarations (Decls, During_Parsing => True);
2053 end if;
2055 -- Here is where we deal with the case of IS used instead of semicolon.
2056 -- Specifically, if the last declaration in the declarative part is a
2057 -- subprogram body still marked as having a bad IS, then this is where
2058 -- we decide that the IS should really have been a semicolon and that
2059 -- the body should have been a declaration. Note that if the bad IS
2060 -- had turned out to be OK (i.e. a decent begin/end was found for it),
2061 -- then the Bad_Is_Detected flag would have been reset by now.
2063 Body_Decl := Last (Decls);
2065 if Present (Body_Decl)
2066 and then Nkind (Body_Decl) = N_Subprogram_Body
2067 and then Bad_Is_Detected (Body_Decl)
2068 then
2069 -- OK, we have the case of a bad IS, so we need to fix up the tree.
2070 -- What we have now is a subprogram body with attached declarations
2071 -- and a possible statement sequence.
2073 -- First step is to take the declarations that were part of the bogus
2074 -- subprogram body and append them to the outer declaration chain.
2075 -- In other words we append them past the body (which we will later
2076 -- convert into a declaration).
2078 Append_List (Declarations (Body_Decl), Decls);
2080 -- Now take the handled statement sequence of the bogus body and
2081 -- set it as the statement sequence for the outer construct. Note
2082 -- that it may be empty (we specially allowed a missing BEGIN for
2083 -- a subprogram body marked as having a bad IS -- see below).
2085 Set_Handled_Statement_Sequence (Parent,
2086 Handled_Statement_Sequence (Body_Decl));
2088 -- Next step is to convert the old body node to a declaration node
2090 Spec_Node := Specification (Body_Decl);
2091 Change_Node (Body_Decl, N_Subprogram_Declaration);
2092 Set_Specification (Body_Decl, Spec_Node);
2094 -- Final step is to put the declarations for the parent where
2095 -- they belong, and then fall through the IF to scan out the
2096 -- END statements.
2098 Set_Declarations (Parent, Decls);
2100 -- This is the normal case (i.e. any case except the bad IS case)
2101 -- If we have a BEGIN, then scan out the sequence of statements, and
2102 -- also reset the expected column for the END to match the BEGIN.
2104 else
2105 Set_Declarations (Parent, Decls);
2107 if Token = Tok_Begin then
2108 if Style_Check then
2109 Style.Check_Indentation;
2110 end if;
2112 Error_Msg_Col := Scope.Table (Scope.Last).Ecol;
2114 if RM_Column_Check
2115 and then Token_Is_At_Start_Of_Line
2116 and then Start_Column /= Error_Msg_Col
2117 then
2118 Error_Msg_SC ("(style) BEGIN in wrong column, should be@");
2120 else
2121 Scope.Table (Scope.Last).Ecol := Start_Column;
2122 end if;
2124 Scope.Table (Scope.Last).Sloc := Token_Ptr;
2125 Scan; -- past BEGIN
2126 Set_Handled_Statement_Sequence (Parent,
2127 P_Handled_Sequence_Of_Statements);
2129 -- No BEGIN present
2131 else
2132 Parent_Nkind := Nkind (Parent);
2134 -- A special check for the missing IS case. If we have a
2135 -- subprogram body that was marked as having a suspicious
2136 -- IS, and the current token is END, then we simply confirm
2137 -- the suspicion, and do not require a BEGIN to be present
2139 if Parent_Nkind = N_Subprogram_Body
2140 and then Token = Tok_End
2141 and then Scope.Table (Scope.Last).Etyp = E_Suspicious_Is
2142 then
2143 Scope.Table (Scope.Last).Etyp := E_Bad_Is;
2145 -- Otherwise BEGIN is not required for a package body, so we
2146 -- don't mind if it is missing, but we do construct a dummy
2147 -- one (so that we have somewhere to set End_Label).
2149 -- However if we have something other than a BEGIN which
2150 -- looks like it might be statements, then we signal a missing
2151 -- BEGIN for these cases as well. We define "something which
2152 -- looks like it might be statements" as a token other than
2153 -- END, EOF, or a token which starts declarations.
2155 elsif Parent_Nkind = N_Package_Body
2156 and then (Token = Tok_End
2157 or else Token = Tok_EOF
2158 or else Token in Token_Class_Declk)
2159 then
2160 Set_Null_HSS (Parent);
2162 -- These are cases in which a BEGIN is required and not present
2164 else
2165 Set_Null_HSS (Parent);
2167 -- Prepare to issue error message
2169 Error_Msg_Sloc := Scope.Table (Scope.Last).Sloc;
2170 Error_Msg_Node_1 := Scope.Table (Scope.Last).Labl;
2172 -- Now issue appropriate message
2174 if Parent_Nkind = N_Block_Statement then
2175 Missing_Begin ("missing BEGIN for DECLARE#!");
2177 elsif Parent_Nkind = N_Entry_Body then
2178 Missing_Begin ("missing BEGIN for ENTRY#!");
2180 elsif Parent_Nkind = N_Subprogram_Body then
2181 if Nkind (Specification (Parent))
2182 = N_Function_Specification
2183 then
2184 Missing_Begin ("missing BEGIN for function&#!");
2185 else
2186 Missing_Begin ("missing BEGIN for procedure&#!");
2187 end if;
2189 -- The case for package body arises only when
2190 -- we have possible statement junk present.
2192 elsif Parent_Nkind = N_Package_Body then
2193 Missing_Begin ("missing BEGIN for package body&#!");
2195 else
2196 pragma Assert (Parent_Nkind = N_Task_Body);
2197 Missing_Begin ("missing BEGIN for task body&#!");
2198 end if;
2200 -- Here we pick up the statements after the BEGIN that
2201 -- should have been present but was not. We don't insist
2202 -- on statements being present if P_Declarative_Part had
2203 -- already found a missing BEGIN, since it might have
2204 -- swallowed a lone statement into the declarative part.
2206 if Missing_Begin_Msg /= No_Error_Msg
2207 and then Token = Tok_End
2208 then
2209 null;
2210 else
2211 Set_Handled_Statement_Sequence (Parent,
2212 P_Handled_Sequence_Of_Statements);
2213 end if;
2214 end if;
2215 end if;
2216 end if;
2218 -- Here with declarations and handled statement sequence scanned
2220 if Present (Handled_Statement_Sequence (Parent)) then
2221 End_Statements (Handled_Statement_Sequence (Parent));
2222 else
2223 End_Statements;
2224 end if;
2226 -- We know that End_Statements removed an entry from the scope stack
2227 -- (because it is required to do so under all circumstances). We can
2228 -- therefore reference the entry it removed one past the stack top.
2229 -- What we are interested in is whether it was a case of a bad IS.
2231 if Scope.Table (Scope.Last + 1).Etyp = E_Bad_Is then
2232 Error_Msg -- CODEFIX
2233 ("|IS should be "";""", Scope.Table (Scope.Last + 1).S_Is);
2234 Set_Bad_Is_Detected (Parent, True);
2235 end if;
2237 end Parse_Decls_Begin_End;
2239 -------------------------
2240 -- Set_Loop_Block_Name --
2241 -------------------------
2243 function Set_Loop_Block_Name (L : Character) return Name_Id is
2244 begin
2245 Name_Buffer (1) := L;
2246 Name_Buffer (2) := '_';
2247 Name_Len := 2;
2248 Loop_Block_Count := Loop_Block_Count + 1;
2249 Add_Nat_To_Name_Buffer (Loop_Block_Count);
2250 return Name_Find;
2251 end Set_Loop_Block_Name;
2253 ---------------
2254 -- Then_Scan --
2255 ---------------
2257 procedure Then_Scan is
2258 begin
2259 TF_Then;
2261 while Token = Tok_Then loop
2262 Error_Msg_SC -- CODEFIX
2263 ("redundant THEN");
2264 TF_Then;
2265 end loop;
2267 if Token = Tok_And or else Token = Tok_Or then
2268 Error_Msg_SC ("unexpected logical operator");
2269 Scan; -- past logical operator
2271 if (Prev_Token = Tok_And and then Token = Tok_Then)
2272 or else
2273 (Prev_Token = Tok_Or and then Token = Tok_Else)
2274 then
2275 Scan;
2276 end if;
2278 Discard_Junk_Node (P_Expression);
2279 end if;
2281 if Token = Tok_Then then
2282 Scan;
2283 end if;
2284 end Then_Scan;
2286 end Ch5;