2006-03-25 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / gcc / tree-data-ref.h
blob2c246df0660c56afe617dad7a8c458e201e07539
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
25 #include "lambda.h"
27 /** {base_address + offset + init} is the first location accessed by data-ref
28 in the loop, and step is the stride of data-ref in the loop in bytes;
29 e.g.:
31 Example 1 Example 2
32 data-ref a[j].b[i][j] a + x + 16B (a is int*)
34 First location info:
35 base_address &a a
36 offset j_0*D_j + i_0*D_i + C_a x
37 init C_b 16
38 step D_j 4
39 access_fn NULL {16, +, 1}
41 Base object info:
42 base_object a NULL
43 access_fn <access_fns of indexes of b> NULL
45 **/
46 struct first_location_in_loop
48 tree base_address;
49 tree offset;
50 tree init;
51 tree step;
52 /* Access function related to first location in the loop. */
53 VEC(tree,heap) *access_fns;
57 struct base_object_info
59 /* The object. */
60 tree base_object;
62 /* A list of chrecs. Access functions related to BASE_OBJECT. */
63 VEC(tree,heap) *access_fns;
66 enum data_ref_type {
67 ARRAY_REF_TYPE,
68 POINTER_REF_TYPE
71 struct data_reference
73 /* A pointer to the statement that contains this DR. */
74 tree stmt;
76 /* A pointer to the ARRAY_REF node. */
77 tree ref;
79 /* Auxiliary info specific to a pass. */
80 int aux;
82 /* True when the data reference is in RHS of a stmt. */
83 bool is_read;
85 /* First location accessed by the data-ref in the loop. */
86 struct first_location_in_loop first_location;
88 /* Base object related info. */
89 struct base_object_info object_info;
91 /* Aliasing information. This field represents the symbol that
92 should be aliased by a pointer holding the address of this data
93 reference. If the original data reference was a pointer
94 dereference, then this field contains the memory tag that should
95 be used by the new vector-pointer. */
96 tree memtag;
97 struct ptr_info_def *ptr_info;
98 subvar_t subvars;
100 /* Alignment information. */
101 /* The offset of the data-reference from its base in bytes. */
102 tree misalignment;
103 /* The maximum data-ref's alignment. */
104 tree aligned_to;
106 /* The type of the data-ref. */
107 enum data_ref_type type;
110 #define DR_STMT(DR) (DR)->stmt
111 #define DR_REF(DR) (DR)->ref
112 #define DR_BASE_OBJECT(DR) (DR)->object_info.base_object
113 #define DR_TYPE(DR) (DR)->type
114 #define DR_ACCESS_FNS(DR)\
115 (DR_TYPE(DR) == ARRAY_REF_TYPE ? \
116 (DR)->object_info.access_fns : (DR)->first_location.access_fns)
117 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
118 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
119 #define DR_IS_READ(DR) (DR)->is_read
120 #define DR_BASE_ADDRESS(DR) (DR)->first_location.base_address
121 #define DR_OFFSET(DR) (DR)->first_location.offset
122 #define DR_INIT(DR) (DR)->first_location.init
123 #define DR_STEP(DR) (DR)->first_location.step
124 #define DR_MEMTAG(DR) (DR)->memtag
125 #define DR_ALIGNED_TO(DR) (DR)->aligned_to
126 #define DR_OFFSET_MISALIGNMENT(DR) (DR)->misalignment
127 #define DR_PTR_INFO(DR) (DR)->ptr_info
128 #define DR_SUBVARS(DR) (DR)->subvars
130 #define DR_ACCESS_FNS_ADDR(DR) \
131 (DR_TYPE(DR) == ARRAY_REF_TYPE ? \
132 &((DR)->object_info.access_fns) : &((DR)->first_location.access_fns))
133 #define DR_SET_ACCESS_FNS(DR, ACC_FNS) \
135 if (DR_TYPE(DR) == ARRAY_REF_TYPE) \
136 (DR)->object_info.access_fns = ACC_FNS; \
137 else \
138 (DR)->first_location.access_fns = ACC_FNS; \
140 #define DR_FREE_ACCESS_FNS(DR) \
142 if (DR_TYPE(DR) == ARRAY_REF_TYPE) \
143 VEC_free (tree, heap, (DR)->object_info.access_fns); \
144 else \
145 VEC_free (tree, heap, (DR)->first_location.access_fns); \
148 enum data_dependence_direction {
149 dir_positive,
150 dir_negative,
151 dir_equal,
152 dir_positive_or_negative,
153 dir_positive_or_equal,
154 dir_negative_or_equal,
155 dir_star,
156 dir_independent
159 /* What is a subscript? Given two array accesses a subscript is the
160 tuple composed of the access functions for a given dimension.
161 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
162 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
163 are stored in the data_dependence_relation structure under the form
164 of an array of subscripts. */
166 struct subscript
168 /* A description of the iterations for which the elements are
169 accessed twice. */
170 tree conflicting_iterations_in_a;
171 tree conflicting_iterations_in_b;
173 /* This field stores the information about the iteration domain
174 validity of the dependence relation. */
175 tree last_conflict;
177 /* Distance from the iteration that access a conflicting element in
178 A to the iteration that access this same conflicting element in
179 B. The distance is a tree scalar expression, i.e. a constant or a
180 symbolic expression, but certainly not a chrec function. */
181 tree distance;
184 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
185 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
186 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
187 #define SUB_DISTANCE(SUB) SUB->distance
189 /* A data_dependence_relation represents a relation between two
190 data_references A and B. */
192 struct data_dependence_relation
195 struct data_reference *a;
196 struct data_reference *b;
198 /* When the dependence relation is affine, it can be represented by
199 a distance vector. */
200 bool affine_p;
202 /* A "yes/no/maybe" field for the dependence relation:
204 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
205 relation between A and B, and the description of this relation
206 is given in the SUBSCRIPTS array,
208 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
209 SUBSCRIPTS is empty,
211 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
212 but the analyzer cannot be more specific. */
213 tree are_dependent;
215 /* For each subscript in the dependence test, there is an element in
216 this array. This is the attribute that labels the edge A->B of
217 the data_dependence_relation. */
218 varray_type subscripts;
220 /* The size of the direction/distance vectors: the depth of the
221 analyzed loop nest. */
222 int size_vect;
224 /* The classic direction vector. */
225 VEC(lambda_vector,heap) *dir_vects;
227 /* The classic distance vector. */
228 VEC(lambda_vector,heap) *dist_vects;
231 typedef struct data_dependence_relation *ddr_p;
232 DEF_VEC_P(ddr_p);
233 DEF_VEC_ALLOC_P(ddr_p,heap);
235 #define DDR_A(DDR) DDR->a
236 #define DDR_B(DDR) DDR->b
237 #define DDR_AFFINE_P(DDR) DDR->affine_p
238 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
239 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
240 #define DDR_SUBSCRIPTS_VECTOR_INIT(DDR, N) \
241 VARRAY_GENERIC_PTR_INIT (DDR_SUBSCRIPTS (DDR), N, "subscripts_vector");
242 #define DDR_SUBSCRIPT(DDR, I) VARRAY_GENERIC_PTR (DDR_SUBSCRIPTS (DDR), I)
243 #define DDR_NUM_SUBSCRIPTS(DDR) VARRAY_ACTIVE_SIZE (DDR_SUBSCRIPTS (DDR))
244 #define DDR_SIZE_VECT(DDR) DDR->size_vect
246 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
247 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
248 #define DDR_NUM_DIST_VECTS(DDR) \
249 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
250 #define DDR_NUM_DIR_VECTS(DDR) \
251 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
252 #define DDR_DIR_VECT(DDR, I) \
253 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
254 #define DDR_DIST_VECT(DDR, I) \
255 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
259 extern tree find_data_references_in_loop (struct loop *, varray_type *);
260 extern void compute_data_dependences_for_loop (struct loop *, bool,
261 varray_type *, varray_type *);
262 extern void print_direction_vector (FILE *, lambda_vector, int);
263 extern void dump_subscript (FILE *, struct subscript *);
264 extern void dump_ddrs (FILE *, varray_type);
265 extern void dump_dist_dir_vectors (FILE *, varray_type);
266 extern void dump_data_reference (FILE *, struct data_reference *);
267 extern void dump_data_references (FILE *, varray_type);
268 extern void dump_data_dependence_relation (FILE *,
269 struct data_dependence_relation *);
270 extern void dump_data_dependence_relations (FILE *, varray_type);
271 extern void dump_data_dependence_direction (FILE *,
272 enum data_dependence_direction);
273 extern void free_dependence_relation (struct data_dependence_relation *);
274 extern void free_dependence_relations (varray_type);
275 extern void free_data_refs (varray_type);
276 extern struct data_reference *analyze_array (tree, tree, bool);
277 extern void estimate_iters_using_array (tree, tree);
281 #endif /* GCC_TREE_DATA_REF_H */