2006-03-25 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / gcc / simplify-rtx.c
blobe00e9ccca105c8ad007dd431b83406c6cd80456e
1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "target.h"
43 /* Simplification and canonicalization of RTL. */
45 /* Much code operates on (low, high) pairs; the low value is an
46 unsigned wide int, the high value a signed wide int. We
47 occasionally need to sign extend from low to high as if low were a
48 signed wide int. */
49 #define HWI_SIGN_EXTEND(low) \
50 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
52 static rtx neg_const_int (enum machine_mode, rtx);
53 static bool plus_minus_operand_p (rtx);
54 static int simplify_plus_minus_op_data_cmp (const void *, const void *);
55 static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx, rtx);
56 static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
57 unsigned int);
58 static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
59 rtx, rtx);
60 static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
61 enum machine_mode, rtx, rtx);
62 static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
63 static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
64 rtx, rtx, rtx, rtx);
66 /* Negate a CONST_INT rtx, truncating (because a conversion from a
67 maximally negative number can overflow). */
68 static rtx
69 neg_const_int (enum machine_mode mode, rtx i)
71 return gen_int_mode (- INTVAL (i), mode);
74 /* Test whether expression, X, is an immediate constant that represents
75 the most significant bit of machine mode MODE. */
77 bool
78 mode_signbit_p (enum machine_mode mode, rtx x)
80 unsigned HOST_WIDE_INT val;
81 unsigned int width;
83 if (GET_MODE_CLASS (mode) != MODE_INT)
84 return false;
86 width = GET_MODE_BITSIZE (mode);
87 if (width == 0)
88 return false;
90 if (width <= HOST_BITS_PER_WIDE_INT
91 && GET_CODE (x) == CONST_INT)
92 val = INTVAL (x);
93 else if (width <= 2 * HOST_BITS_PER_WIDE_INT
94 && GET_CODE (x) == CONST_DOUBLE
95 && CONST_DOUBLE_LOW (x) == 0)
97 val = CONST_DOUBLE_HIGH (x);
98 width -= HOST_BITS_PER_WIDE_INT;
100 else
101 return false;
103 if (width < HOST_BITS_PER_WIDE_INT)
104 val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
105 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
108 /* Make a binary operation by properly ordering the operands and
109 seeing if the expression folds. */
112 simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
113 rtx op1)
115 rtx tem;
117 /* If this simplifies, do it. */
118 tem = simplify_binary_operation (code, mode, op0, op1);
119 if (tem)
120 return tem;
122 /* Put complex operands first and constants second if commutative. */
123 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
124 && swap_commutative_operands_p (op0, op1))
125 tem = op0, op0 = op1, op1 = tem;
127 return gen_rtx_fmt_ee (code, mode, op0, op1);
130 /* If X is a MEM referencing the constant pool, return the real value.
131 Otherwise return X. */
133 avoid_constant_pool_reference (rtx x)
135 rtx c, tmp, addr;
136 enum machine_mode cmode;
137 HOST_WIDE_INT offset = 0;
139 switch (GET_CODE (x))
141 case MEM:
142 break;
144 case FLOAT_EXTEND:
145 /* Handle float extensions of constant pool references. */
146 tmp = XEXP (x, 0);
147 c = avoid_constant_pool_reference (tmp);
148 if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
150 REAL_VALUE_TYPE d;
152 REAL_VALUE_FROM_CONST_DOUBLE (d, c);
153 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
155 return x;
157 default:
158 return x;
161 addr = XEXP (x, 0);
163 /* Call target hook to avoid the effects of -fpic etc.... */
164 addr = targetm.delegitimize_address (addr);
166 /* Split the address into a base and integer offset. */
167 if (GET_CODE (addr) == CONST
168 && GET_CODE (XEXP (addr, 0)) == PLUS
169 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
171 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
172 addr = XEXP (XEXP (addr, 0), 0);
175 if (GET_CODE (addr) == LO_SUM)
176 addr = XEXP (addr, 1);
178 /* If this is a constant pool reference, we can turn it into its
179 constant and hope that simplifications happen. */
180 if (GET_CODE (addr) == SYMBOL_REF
181 && CONSTANT_POOL_ADDRESS_P (addr))
183 c = get_pool_constant (addr);
184 cmode = get_pool_mode (addr);
186 /* If we're accessing the constant in a different mode than it was
187 originally stored, attempt to fix that up via subreg simplifications.
188 If that fails we have no choice but to return the original memory. */
189 if (offset != 0 || cmode != GET_MODE (x))
191 rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
192 if (tem && CONSTANT_P (tem))
193 return tem;
195 else
196 return c;
199 return x;
202 /* Return true if X is a MEM referencing the constant pool. */
204 bool
205 constant_pool_reference_p (rtx x)
207 return avoid_constant_pool_reference (x) != x;
210 /* Make a unary operation by first seeing if it folds and otherwise making
211 the specified operation. */
214 simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
215 enum machine_mode op_mode)
217 rtx tem;
219 /* If this simplifies, use it. */
220 if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
221 return tem;
223 return gen_rtx_fmt_e (code, mode, op);
226 /* Likewise for ternary operations. */
229 simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
230 enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
232 rtx tem;
234 /* If this simplifies, use it. */
235 if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
236 op0, op1, op2)))
237 return tem;
239 return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
242 /* Likewise, for relational operations.
243 CMP_MODE specifies mode comparison is done in. */
246 simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
247 enum machine_mode cmp_mode, rtx op0, rtx op1)
249 rtx tem;
251 if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
252 op0, op1)))
253 return tem;
255 return gen_rtx_fmt_ee (code, mode, op0, op1);
258 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
259 resulting RTX. Return a new RTX which is as simplified as possible. */
262 simplify_replace_rtx (rtx x, rtx old_rtx, rtx new_rtx)
264 enum rtx_code code = GET_CODE (x);
265 enum machine_mode mode = GET_MODE (x);
266 enum machine_mode op_mode;
267 rtx op0, op1, op2;
269 /* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression, try
270 to build a new expression substituting recursively. If we can't do
271 anything, return our input. */
273 if (x == old_rtx)
274 return new_rtx;
276 switch (GET_RTX_CLASS (code))
278 case RTX_UNARY:
279 op0 = XEXP (x, 0);
280 op_mode = GET_MODE (op0);
281 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
282 if (op0 == XEXP (x, 0))
283 return x;
284 return simplify_gen_unary (code, mode, op0, op_mode);
286 case RTX_BIN_ARITH:
287 case RTX_COMM_ARITH:
288 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
289 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
290 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
291 return x;
292 return simplify_gen_binary (code, mode, op0, op1);
294 case RTX_COMPARE:
295 case RTX_COMM_COMPARE:
296 op0 = XEXP (x, 0);
297 op1 = XEXP (x, 1);
298 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
299 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
300 op1 = simplify_replace_rtx (op1, old_rtx, new_rtx);
301 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
302 return x;
303 return simplify_gen_relational (code, mode, op_mode, op0, op1);
305 case RTX_TERNARY:
306 case RTX_BITFIELD_OPS:
307 op0 = XEXP (x, 0);
308 op_mode = GET_MODE (op0);
309 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
310 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
311 op2 = simplify_replace_rtx (XEXP (x, 2), old_rtx, new_rtx);
312 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
313 return x;
314 if (op_mode == VOIDmode)
315 op_mode = GET_MODE (op0);
316 return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
318 case RTX_EXTRA:
319 /* The only case we try to handle is a SUBREG. */
320 if (code == SUBREG)
322 op0 = simplify_replace_rtx (SUBREG_REG (x), old_rtx, new_rtx);
323 if (op0 == SUBREG_REG (x))
324 return x;
325 op0 = simplify_gen_subreg (GET_MODE (x), op0,
326 GET_MODE (SUBREG_REG (x)),
327 SUBREG_BYTE (x));
328 return op0 ? op0 : x;
330 break;
332 case RTX_OBJ:
333 if (code == MEM)
335 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
336 if (op0 == XEXP (x, 0))
337 return x;
338 return replace_equiv_address_nv (x, op0);
340 else if (code == LO_SUM)
342 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
343 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
345 /* (lo_sum (high x) x) -> x */
346 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
347 return op1;
349 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
350 return x;
351 return gen_rtx_LO_SUM (mode, op0, op1);
353 else if (code == REG)
355 if (rtx_equal_p (x, old_rtx))
356 return new_rtx;
358 break;
360 default:
361 break;
363 return x;
366 /* Try to simplify a unary operation CODE whose output mode is to be
367 MODE with input operand OP whose mode was originally OP_MODE.
368 Return zero if no simplification can be made. */
370 simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
371 rtx op, enum machine_mode op_mode)
373 rtx trueop, tem;
375 if (GET_CODE (op) == CONST)
376 op = XEXP (op, 0);
378 trueop = avoid_constant_pool_reference (op);
380 tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
381 if (tem)
382 return tem;
384 return simplify_unary_operation_1 (code, mode, op);
387 /* Perform some simplifications we can do even if the operands
388 aren't constant. */
389 static rtx
390 simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
392 enum rtx_code reversed;
393 rtx temp;
395 switch (code)
397 case NOT:
398 /* (not (not X)) == X. */
399 if (GET_CODE (op) == NOT)
400 return XEXP (op, 0);
402 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
403 comparison is all ones. */
404 if (COMPARISON_P (op)
405 && (mode == BImode || STORE_FLAG_VALUE == -1)
406 && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
407 return simplify_gen_relational (reversed, mode, VOIDmode,
408 XEXP (op, 0), XEXP (op, 1));
410 /* (not (plus X -1)) can become (neg X). */
411 if (GET_CODE (op) == PLUS
412 && XEXP (op, 1) == constm1_rtx)
413 return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
415 /* Similarly, (not (neg X)) is (plus X -1). */
416 if (GET_CODE (op) == NEG)
417 return plus_constant (XEXP (op, 0), -1);
419 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
420 if (GET_CODE (op) == XOR
421 && GET_CODE (XEXP (op, 1)) == CONST_INT
422 && (temp = simplify_unary_operation (NOT, mode,
423 XEXP (op, 1), mode)) != 0)
424 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
426 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
427 if (GET_CODE (op) == PLUS
428 && GET_CODE (XEXP (op, 1)) == CONST_INT
429 && mode_signbit_p (mode, XEXP (op, 1))
430 && (temp = simplify_unary_operation (NOT, mode,
431 XEXP (op, 1), mode)) != 0)
432 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
435 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
436 operands other than 1, but that is not valid. We could do a
437 similar simplification for (not (lshiftrt C X)) where C is
438 just the sign bit, but this doesn't seem common enough to
439 bother with. */
440 if (GET_CODE (op) == ASHIFT
441 && XEXP (op, 0) == const1_rtx)
443 temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
444 return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
447 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
448 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
449 so we can perform the above simplification. */
451 if (STORE_FLAG_VALUE == -1
452 && GET_CODE (op) == ASHIFTRT
453 && GET_CODE (XEXP (op, 1)) == CONST_INT
454 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
455 return simplify_gen_relational (GE, mode, VOIDmode,
456 XEXP (op, 0), const0_rtx);
459 if (GET_CODE (op) == SUBREG
460 && subreg_lowpart_p (op)
461 && (GET_MODE_SIZE (GET_MODE (op))
462 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
463 && GET_CODE (SUBREG_REG (op)) == ASHIFT
464 && XEXP (SUBREG_REG (op), 0) == const1_rtx)
466 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
467 rtx x;
469 x = gen_rtx_ROTATE (inner_mode,
470 simplify_gen_unary (NOT, inner_mode, const1_rtx,
471 inner_mode),
472 XEXP (SUBREG_REG (op), 1));
473 return rtl_hooks.gen_lowpart_no_emit (mode, x);
476 /* Apply De Morgan's laws to reduce number of patterns for machines
477 with negating logical insns (and-not, nand, etc.). If result has
478 only one NOT, put it first, since that is how the patterns are
479 coded. */
481 if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
483 rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
484 enum machine_mode op_mode;
486 op_mode = GET_MODE (in1);
487 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
489 op_mode = GET_MODE (in2);
490 if (op_mode == VOIDmode)
491 op_mode = mode;
492 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
494 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
496 rtx tem = in2;
497 in2 = in1; in1 = tem;
500 return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
501 mode, in1, in2);
503 break;
505 case NEG:
506 /* (neg (neg X)) == X. */
507 if (GET_CODE (op) == NEG)
508 return XEXP (op, 0);
510 /* (neg (plus X 1)) can become (not X). */
511 if (GET_CODE (op) == PLUS
512 && XEXP (op, 1) == const1_rtx)
513 return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
515 /* Similarly, (neg (not X)) is (plus X 1). */
516 if (GET_CODE (op) == NOT)
517 return plus_constant (XEXP (op, 0), 1);
519 /* (neg (minus X Y)) can become (minus Y X). This transformation
520 isn't safe for modes with signed zeros, since if X and Y are
521 both +0, (minus Y X) is the same as (minus X Y). If the
522 rounding mode is towards +infinity (or -infinity) then the two
523 expressions will be rounded differently. */
524 if (GET_CODE (op) == MINUS
525 && !HONOR_SIGNED_ZEROS (mode)
526 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
527 return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
529 if (GET_CODE (op) == PLUS
530 && !HONOR_SIGNED_ZEROS (mode)
531 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
533 /* (neg (plus A C)) is simplified to (minus -C A). */
534 if (GET_CODE (XEXP (op, 1)) == CONST_INT
535 || GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
537 temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
538 if (temp)
539 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
542 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
543 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
544 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
547 /* (neg (mult A B)) becomes (mult (neg A) B).
548 This works even for floating-point values. */
549 if (GET_CODE (op) == MULT
550 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
552 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
553 return simplify_gen_binary (MULT, mode, temp, XEXP (op, 1));
556 /* NEG commutes with ASHIFT since it is multiplication. Only do
557 this if we can then eliminate the NEG (e.g., if the operand
558 is a constant). */
559 if (GET_CODE (op) == ASHIFT)
561 temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
562 if (temp)
563 return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
566 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
567 C is equal to the width of MODE minus 1. */
568 if (GET_CODE (op) == ASHIFTRT
569 && GET_CODE (XEXP (op, 1)) == CONST_INT
570 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
571 return simplify_gen_binary (LSHIFTRT, mode,
572 XEXP (op, 0), XEXP (op, 1));
574 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
575 C is equal to the width of MODE minus 1. */
576 if (GET_CODE (op) == LSHIFTRT
577 && GET_CODE (XEXP (op, 1)) == CONST_INT
578 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
579 return simplify_gen_binary (ASHIFTRT, mode,
580 XEXP (op, 0), XEXP (op, 1));
582 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
583 if (GET_CODE (op) == XOR
584 && XEXP (op, 1) == const1_rtx
585 && nonzero_bits (XEXP (op, 0), mode) == 1)
586 return plus_constant (XEXP (op, 0), -1);
588 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
589 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
590 if (GET_CODE (op) == LT
591 && XEXP (op, 1) == const0_rtx)
593 enum machine_mode inner = GET_MODE (XEXP (op, 0));
594 int isize = GET_MODE_BITSIZE (inner);
595 if (STORE_FLAG_VALUE == 1)
597 temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
598 GEN_INT (isize - 1));
599 if (mode == inner)
600 return temp;
601 if (GET_MODE_BITSIZE (mode) > isize)
602 return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
603 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
605 else if (STORE_FLAG_VALUE == -1)
607 temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
608 GEN_INT (isize - 1));
609 if (mode == inner)
610 return temp;
611 if (GET_MODE_BITSIZE (mode) > isize)
612 return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
613 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
616 break;
618 case TRUNCATE:
619 /* We can't handle truncation to a partial integer mode here
620 because we don't know the real bitsize of the partial
621 integer mode. */
622 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
623 break;
625 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
626 if ((GET_CODE (op) == SIGN_EXTEND
627 || GET_CODE (op) == ZERO_EXTEND)
628 && GET_MODE (XEXP (op, 0)) == mode)
629 return XEXP (op, 0);
631 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
632 (OP:SI foo:SI) if OP is NEG or ABS. */
633 if ((GET_CODE (op) == ABS
634 || GET_CODE (op) == NEG)
635 && (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
636 || GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
637 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
638 return simplify_gen_unary (GET_CODE (op), mode,
639 XEXP (XEXP (op, 0), 0), mode);
641 /* (truncate:A (subreg:B (truncate:C X) 0)) is
642 (truncate:A X). */
643 if (GET_CODE (op) == SUBREG
644 && GET_CODE (SUBREG_REG (op)) == TRUNCATE
645 && subreg_lowpart_p (op))
646 return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
647 GET_MODE (XEXP (SUBREG_REG (op), 0)));
649 /* If we know that the value is already truncated, we can
650 replace the TRUNCATE with a SUBREG. Note that this is also
651 valid if TRULY_NOOP_TRUNCATION is false for the corresponding
652 modes we just have to apply a different definition for
653 truncation. But don't do this for an (LSHIFTRT (MULT ...))
654 since this will cause problems with the umulXi3_highpart
655 patterns. */
656 if ((TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
657 GET_MODE_BITSIZE (GET_MODE (op)))
658 ? (num_sign_bit_copies (op, GET_MODE (op))
659 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1))
660 : truncated_to_mode (mode, op))
661 && ! (GET_CODE (op) == LSHIFTRT
662 && GET_CODE (XEXP (op, 0)) == MULT))
663 return rtl_hooks.gen_lowpart_no_emit (mode, op);
665 /* A truncate of a comparison can be replaced with a subreg if
666 STORE_FLAG_VALUE permits. This is like the previous test,
667 but it works even if the comparison is done in a mode larger
668 than HOST_BITS_PER_WIDE_INT. */
669 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
670 && COMPARISON_P (op)
671 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
672 return rtl_hooks.gen_lowpart_no_emit (mode, op);
673 break;
675 case FLOAT_TRUNCATE:
676 if (DECIMAL_FLOAT_MODE_P (mode))
677 break;
679 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
680 if (GET_CODE (op) == FLOAT_EXTEND
681 && GET_MODE (XEXP (op, 0)) == mode)
682 return XEXP (op, 0);
684 /* (float_truncate:SF (float_truncate:DF foo:XF))
685 = (float_truncate:SF foo:XF).
686 This may eliminate double rounding, so it is unsafe.
688 (float_truncate:SF (float_extend:XF foo:DF))
689 = (float_truncate:SF foo:DF).
691 (float_truncate:DF (float_extend:XF foo:SF))
692 = (float_extend:SF foo:DF). */
693 if ((GET_CODE (op) == FLOAT_TRUNCATE
694 && flag_unsafe_math_optimizations)
695 || GET_CODE (op) == FLOAT_EXTEND)
696 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
697 0)))
698 > GET_MODE_SIZE (mode)
699 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
700 mode,
701 XEXP (op, 0), mode);
703 /* (float_truncate (float x)) is (float x) */
704 if (GET_CODE (op) == FLOAT
705 && (flag_unsafe_math_optimizations
706 || ((unsigned)significand_size (GET_MODE (op))
707 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
708 - num_sign_bit_copies (XEXP (op, 0),
709 GET_MODE (XEXP (op, 0)))))))
710 return simplify_gen_unary (FLOAT, mode,
711 XEXP (op, 0),
712 GET_MODE (XEXP (op, 0)));
714 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
715 (OP:SF foo:SF) if OP is NEG or ABS. */
716 if ((GET_CODE (op) == ABS
717 || GET_CODE (op) == NEG)
718 && GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
719 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
720 return simplify_gen_unary (GET_CODE (op), mode,
721 XEXP (XEXP (op, 0), 0), mode);
723 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
724 is (float_truncate:SF x). */
725 if (GET_CODE (op) == SUBREG
726 && subreg_lowpart_p (op)
727 && GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
728 return SUBREG_REG (op);
729 break;
731 case FLOAT_EXTEND:
732 if (DECIMAL_FLOAT_MODE_P (mode))
733 break;
735 /* (float_extend (float_extend x)) is (float_extend x)
737 (float_extend (float x)) is (float x) assuming that double
738 rounding can't happen.
740 if (GET_CODE (op) == FLOAT_EXTEND
741 || (GET_CODE (op) == FLOAT
742 && ((unsigned)significand_size (GET_MODE (op))
743 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
744 - num_sign_bit_copies (XEXP (op, 0),
745 GET_MODE (XEXP (op, 0)))))))
746 return simplify_gen_unary (GET_CODE (op), mode,
747 XEXP (op, 0),
748 GET_MODE (XEXP (op, 0)));
750 break;
752 case ABS:
753 /* (abs (neg <foo>)) -> (abs <foo>) */
754 if (GET_CODE (op) == NEG)
755 return simplify_gen_unary (ABS, mode, XEXP (op, 0),
756 GET_MODE (XEXP (op, 0)));
758 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
759 do nothing. */
760 if (GET_MODE (op) == VOIDmode)
761 break;
763 /* If operand is something known to be positive, ignore the ABS. */
764 if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
765 || ((GET_MODE_BITSIZE (GET_MODE (op))
766 <= HOST_BITS_PER_WIDE_INT)
767 && ((nonzero_bits (op, GET_MODE (op))
768 & ((HOST_WIDE_INT) 1
769 << (GET_MODE_BITSIZE (GET_MODE (op)) - 1)))
770 == 0)))
771 return op;
773 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
774 if (num_sign_bit_copies (op, mode) == GET_MODE_BITSIZE (mode))
775 return gen_rtx_NEG (mode, op);
777 break;
779 case FFS:
780 /* (ffs (*_extend <X>)) = (ffs <X>) */
781 if (GET_CODE (op) == SIGN_EXTEND
782 || GET_CODE (op) == ZERO_EXTEND)
783 return simplify_gen_unary (FFS, mode, XEXP (op, 0),
784 GET_MODE (XEXP (op, 0)));
785 break;
787 case POPCOUNT:
788 case PARITY:
789 /* (pop* (zero_extend <X>)) = (pop* <X>) */
790 if (GET_CODE (op) == ZERO_EXTEND)
791 return simplify_gen_unary (code, mode, XEXP (op, 0),
792 GET_MODE (XEXP (op, 0)));
793 break;
795 case FLOAT:
796 /* (float (sign_extend <X>)) = (float <X>). */
797 if (GET_CODE (op) == SIGN_EXTEND)
798 return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
799 GET_MODE (XEXP (op, 0)));
800 break;
802 case SIGN_EXTEND:
803 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
804 becomes just the MINUS if its mode is MODE. This allows
805 folding switch statements on machines using casesi (such as
806 the VAX). */
807 if (GET_CODE (op) == TRUNCATE
808 && GET_MODE (XEXP (op, 0)) == mode
809 && GET_CODE (XEXP (op, 0)) == MINUS
810 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
811 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
812 return XEXP (op, 0);
814 /* Check for a sign extension of a subreg of a promoted
815 variable, where the promotion is sign-extended, and the
816 target mode is the same as the variable's promotion. */
817 if (GET_CODE (op) == SUBREG
818 && SUBREG_PROMOTED_VAR_P (op)
819 && ! SUBREG_PROMOTED_UNSIGNED_P (op)
820 && GET_MODE (XEXP (op, 0)) == mode)
821 return XEXP (op, 0);
823 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
824 if (! POINTERS_EXTEND_UNSIGNED
825 && mode == Pmode && GET_MODE (op) == ptr_mode
826 && (CONSTANT_P (op)
827 || (GET_CODE (op) == SUBREG
828 && REG_P (SUBREG_REG (op))
829 && REG_POINTER (SUBREG_REG (op))
830 && GET_MODE (SUBREG_REG (op)) == Pmode)))
831 return convert_memory_address (Pmode, op);
832 #endif
833 break;
835 case ZERO_EXTEND:
836 /* Check for a zero extension of a subreg of a promoted
837 variable, where the promotion is zero-extended, and the
838 target mode is the same as the variable's promotion. */
839 if (GET_CODE (op) == SUBREG
840 && SUBREG_PROMOTED_VAR_P (op)
841 && SUBREG_PROMOTED_UNSIGNED_P (op) > 0
842 && GET_MODE (XEXP (op, 0)) == mode)
843 return XEXP (op, 0);
845 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
846 if (POINTERS_EXTEND_UNSIGNED > 0
847 && mode == Pmode && GET_MODE (op) == ptr_mode
848 && (CONSTANT_P (op)
849 || (GET_CODE (op) == SUBREG
850 && REG_P (SUBREG_REG (op))
851 && REG_POINTER (SUBREG_REG (op))
852 && GET_MODE (SUBREG_REG (op)) == Pmode)))
853 return convert_memory_address (Pmode, op);
854 #endif
855 break;
857 default:
858 break;
861 return 0;
864 /* Try to compute the value of a unary operation CODE whose output mode is to
865 be MODE with input operand OP whose mode was originally OP_MODE.
866 Return zero if the value cannot be computed. */
868 simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
869 rtx op, enum machine_mode op_mode)
871 unsigned int width = GET_MODE_BITSIZE (mode);
873 if (code == VEC_DUPLICATE)
875 gcc_assert (VECTOR_MODE_P (mode));
876 if (GET_MODE (op) != VOIDmode)
878 if (!VECTOR_MODE_P (GET_MODE (op)))
879 gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
880 else
881 gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
882 (GET_MODE (op)));
884 if (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
885 || GET_CODE (op) == CONST_VECTOR)
887 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
888 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
889 rtvec v = rtvec_alloc (n_elts);
890 unsigned int i;
892 if (GET_CODE (op) != CONST_VECTOR)
893 for (i = 0; i < n_elts; i++)
894 RTVEC_ELT (v, i) = op;
895 else
897 enum machine_mode inmode = GET_MODE (op);
898 int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
899 unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
901 gcc_assert (in_n_elts < n_elts);
902 gcc_assert ((n_elts % in_n_elts) == 0);
903 for (i = 0; i < n_elts; i++)
904 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
906 return gen_rtx_CONST_VECTOR (mode, v);
910 if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
912 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
913 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
914 enum machine_mode opmode = GET_MODE (op);
915 int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
916 unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
917 rtvec v = rtvec_alloc (n_elts);
918 unsigned int i;
920 gcc_assert (op_n_elts == n_elts);
921 for (i = 0; i < n_elts; i++)
923 rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
924 CONST_VECTOR_ELT (op, i),
925 GET_MODE_INNER (opmode));
926 if (!x)
927 return 0;
928 RTVEC_ELT (v, i) = x;
930 return gen_rtx_CONST_VECTOR (mode, v);
933 /* The order of these tests is critical so that, for example, we don't
934 check the wrong mode (input vs. output) for a conversion operation,
935 such as FIX. At some point, this should be simplified. */
937 if (code == FLOAT && GET_MODE (op) == VOIDmode
938 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
940 HOST_WIDE_INT hv, lv;
941 REAL_VALUE_TYPE d;
943 if (GET_CODE (op) == CONST_INT)
944 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
945 else
946 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
948 REAL_VALUE_FROM_INT (d, lv, hv, mode);
949 d = real_value_truncate (mode, d);
950 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
952 else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
953 && (GET_CODE (op) == CONST_DOUBLE
954 || GET_CODE (op) == CONST_INT))
956 HOST_WIDE_INT hv, lv;
957 REAL_VALUE_TYPE d;
959 if (GET_CODE (op) == CONST_INT)
960 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
961 else
962 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
964 if (op_mode == VOIDmode)
966 /* We don't know how to interpret negative-looking numbers in
967 this case, so don't try to fold those. */
968 if (hv < 0)
969 return 0;
971 else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
973 else
974 hv = 0, lv &= GET_MODE_MASK (op_mode);
976 REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
977 d = real_value_truncate (mode, d);
978 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
981 if (GET_CODE (op) == CONST_INT
982 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
984 HOST_WIDE_INT arg0 = INTVAL (op);
985 HOST_WIDE_INT val;
987 switch (code)
989 case NOT:
990 val = ~ arg0;
991 break;
993 case NEG:
994 val = - arg0;
995 break;
997 case ABS:
998 val = (arg0 >= 0 ? arg0 : - arg0);
999 break;
1001 case FFS:
1002 /* Don't use ffs here. Instead, get low order bit and then its
1003 number. If arg0 is zero, this will return 0, as desired. */
1004 arg0 &= GET_MODE_MASK (mode);
1005 val = exact_log2 (arg0 & (- arg0)) + 1;
1006 break;
1008 case CLZ:
1009 arg0 &= GET_MODE_MASK (mode);
1010 if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
1012 else
1013 val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
1014 break;
1016 case CTZ:
1017 arg0 &= GET_MODE_MASK (mode);
1018 if (arg0 == 0)
1020 /* Even if the value at zero is undefined, we have to come
1021 up with some replacement. Seems good enough. */
1022 if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
1023 val = GET_MODE_BITSIZE (mode);
1025 else
1026 val = exact_log2 (arg0 & -arg0);
1027 break;
1029 case POPCOUNT:
1030 arg0 &= GET_MODE_MASK (mode);
1031 val = 0;
1032 while (arg0)
1033 val++, arg0 &= arg0 - 1;
1034 break;
1036 case PARITY:
1037 arg0 &= GET_MODE_MASK (mode);
1038 val = 0;
1039 while (arg0)
1040 val++, arg0 &= arg0 - 1;
1041 val &= 1;
1042 break;
1044 case TRUNCATE:
1045 val = arg0;
1046 break;
1048 case ZERO_EXTEND:
1049 /* When zero-extending a CONST_INT, we need to know its
1050 original mode. */
1051 gcc_assert (op_mode != VOIDmode);
1052 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1054 /* If we were really extending the mode,
1055 we would have to distinguish between zero-extension
1056 and sign-extension. */
1057 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1058 val = arg0;
1060 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1061 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1062 else
1063 return 0;
1064 break;
1066 case SIGN_EXTEND:
1067 if (op_mode == VOIDmode)
1068 op_mode = mode;
1069 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1071 /* If we were really extending the mode,
1072 we would have to distinguish between zero-extension
1073 and sign-extension. */
1074 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1075 val = arg0;
1077 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1080 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1081 if (val
1082 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
1083 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1085 else
1086 return 0;
1087 break;
1089 case SQRT:
1090 case FLOAT_EXTEND:
1091 case FLOAT_TRUNCATE:
1092 case SS_TRUNCATE:
1093 case US_TRUNCATE:
1094 return 0;
1096 default:
1097 gcc_unreachable ();
1100 return gen_int_mode (val, mode);
1103 /* We can do some operations on integer CONST_DOUBLEs. Also allow
1104 for a DImode operation on a CONST_INT. */
1105 else if (GET_MODE (op) == VOIDmode
1106 && width <= HOST_BITS_PER_WIDE_INT * 2
1107 && (GET_CODE (op) == CONST_DOUBLE
1108 || GET_CODE (op) == CONST_INT))
1110 unsigned HOST_WIDE_INT l1, lv;
1111 HOST_WIDE_INT h1, hv;
1113 if (GET_CODE (op) == CONST_DOUBLE)
1114 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
1115 else
1116 l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
1118 switch (code)
1120 case NOT:
1121 lv = ~ l1;
1122 hv = ~ h1;
1123 break;
1125 case NEG:
1126 neg_double (l1, h1, &lv, &hv);
1127 break;
1129 case ABS:
1130 if (h1 < 0)
1131 neg_double (l1, h1, &lv, &hv);
1132 else
1133 lv = l1, hv = h1;
1134 break;
1136 case FFS:
1137 hv = 0;
1138 if (l1 == 0)
1140 if (h1 == 0)
1141 lv = 0;
1142 else
1143 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
1145 else
1146 lv = exact_log2 (l1 & -l1) + 1;
1147 break;
1149 case CLZ:
1150 hv = 0;
1151 if (h1 != 0)
1152 lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
1153 - HOST_BITS_PER_WIDE_INT;
1154 else if (l1 != 0)
1155 lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
1156 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1157 lv = GET_MODE_BITSIZE (mode);
1158 break;
1160 case CTZ:
1161 hv = 0;
1162 if (l1 != 0)
1163 lv = exact_log2 (l1 & -l1);
1164 else if (h1 != 0)
1165 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
1166 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1167 lv = GET_MODE_BITSIZE (mode);
1168 break;
1170 case POPCOUNT:
1171 hv = 0;
1172 lv = 0;
1173 while (l1)
1174 lv++, l1 &= l1 - 1;
1175 while (h1)
1176 lv++, h1 &= h1 - 1;
1177 break;
1179 case PARITY:
1180 hv = 0;
1181 lv = 0;
1182 while (l1)
1183 lv++, l1 &= l1 - 1;
1184 while (h1)
1185 lv++, h1 &= h1 - 1;
1186 lv &= 1;
1187 break;
1189 case TRUNCATE:
1190 /* This is just a change-of-mode, so do nothing. */
1191 lv = l1, hv = h1;
1192 break;
1194 case ZERO_EXTEND:
1195 gcc_assert (op_mode != VOIDmode);
1197 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1198 return 0;
1200 hv = 0;
1201 lv = l1 & GET_MODE_MASK (op_mode);
1202 break;
1204 case SIGN_EXTEND:
1205 if (op_mode == VOIDmode
1206 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1207 return 0;
1208 else
1210 lv = l1 & GET_MODE_MASK (op_mode);
1211 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
1212 && (lv & ((HOST_WIDE_INT) 1
1213 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
1214 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1216 hv = HWI_SIGN_EXTEND (lv);
1218 break;
1220 case SQRT:
1221 return 0;
1223 default:
1224 return 0;
1227 return immed_double_const (lv, hv, mode);
1230 else if (GET_CODE (op) == CONST_DOUBLE
1231 && SCALAR_FLOAT_MODE_P (mode))
1233 REAL_VALUE_TYPE d, t;
1234 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1236 switch (code)
1238 case SQRT:
1239 if (HONOR_SNANS (mode) && real_isnan (&d))
1240 return 0;
1241 real_sqrt (&t, mode, &d);
1242 d = t;
1243 break;
1244 case ABS:
1245 d = REAL_VALUE_ABS (d);
1246 break;
1247 case NEG:
1248 d = REAL_VALUE_NEGATE (d);
1249 break;
1250 case FLOAT_TRUNCATE:
1251 d = real_value_truncate (mode, d);
1252 break;
1253 case FLOAT_EXTEND:
1254 /* All this does is change the mode. */
1255 break;
1256 case FIX:
1257 real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
1258 break;
1259 case NOT:
1261 long tmp[4];
1262 int i;
1264 real_to_target (tmp, &d, GET_MODE (op));
1265 for (i = 0; i < 4; i++)
1266 tmp[i] = ~tmp[i];
1267 real_from_target (&d, tmp, mode);
1268 break;
1270 default:
1271 gcc_unreachable ();
1273 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1276 else if (GET_CODE (op) == CONST_DOUBLE
1277 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1278 && GET_MODE_CLASS (mode) == MODE_INT
1279 && width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
1281 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1282 operators are intentionally left unspecified (to ease implementation
1283 by target backends), for consistency, this routine implements the
1284 same semantics for constant folding as used by the middle-end. */
1286 /* This was formerly used only for non-IEEE float.
1287 eggert@twinsun.com says it is safe for IEEE also. */
1288 HOST_WIDE_INT xh, xl, th, tl;
1289 REAL_VALUE_TYPE x, t;
1290 REAL_VALUE_FROM_CONST_DOUBLE (x, op);
1291 switch (code)
1293 case FIX:
1294 if (REAL_VALUE_ISNAN (x))
1295 return const0_rtx;
1297 /* Test against the signed upper bound. */
1298 if (width > HOST_BITS_PER_WIDE_INT)
1300 th = ((unsigned HOST_WIDE_INT) 1
1301 << (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
1302 tl = -1;
1304 else
1306 th = 0;
1307 tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
1309 real_from_integer (&t, VOIDmode, tl, th, 0);
1310 if (REAL_VALUES_LESS (t, x))
1312 xh = th;
1313 xl = tl;
1314 break;
1317 /* Test against the signed lower bound. */
1318 if (width > HOST_BITS_PER_WIDE_INT)
1320 th = (HOST_WIDE_INT) -1 << (width - HOST_BITS_PER_WIDE_INT - 1);
1321 tl = 0;
1323 else
1325 th = -1;
1326 tl = (HOST_WIDE_INT) -1 << (width - 1);
1328 real_from_integer (&t, VOIDmode, tl, th, 0);
1329 if (REAL_VALUES_LESS (x, t))
1331 xh = th;
1332 xl = tl;
1333 break;
1335 REAL_VALUE_TO_INT (&xl, &xh, x);
1336 break;
1338 case UNSIGNED_FIX:
1339 if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
1340 return const0_rtx;
1342 /* Test against the unsigned upper bound. */
1343 if (width == 2*HOST_BITS_PER_WIDE_INT)
1345 th = -1;
1346 tl = -1;
1348 else if (width >= HOST_BITS_PER_WIDE_INT)
1350 th = ((unsigned HOST_WIDE_INT) 1
1351 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
1352 tl = -1;
1354 else
1356 th = 0;
1357 tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
1359 real_from_integer (&t, VOIDmode, tl, th, 1);
1360 if (REAL_VALUES_LESS (t, x))
1362 xh = th;
1363 xl = tl;
1364 break;
1367 REAL_VALUE_TO_INT (&xl, &xh, x);
1368 break;
1370 default:
1371 gcc_unreachable ();
1373 return immed_double_const (xl, xh, mode);
1376 return NULL_RTX;
1379 /* Subroutine of simplify_binary_operation to simplify a commutative,
1380 associative binary operation CODE with result mode MODE, operating
1381 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1382 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1383 canonicalization is possible. */
1385 static rtx
1386 simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
1387 rtx op0, rtx op1)
1389 rtx tem;
1391 /* Linearize the operator to the left. */
1392 if (GET_CODE (op1) == code)
1394 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1395 if (GET_CODE (op0) == code)
1397 tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
1398 return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
1401 /* "a op (b op c)" becomes "(b op c) op a". */
1402 if (! swap_commutative_operands_p (op1, op0))
1403 return simplify_gen_binary (code, mode, op1, op0);
1405 tem = op0;
1406 op0 = op1;
1407 op1 = tem;
1410 if (GET_CODE (op0) == code)
1412 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1413 if (swap_commutative_operands_p (XEXP (op0, 1), op1))
1415 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
1416 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1419 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1420 tem = swap_commutative_operands_p (XEXP (op0, 1), op1)
1421 ? simplify_binary_operation (code, mode, op1, XEXP (op0, 1))
1422 : simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
1423 if (tem != 0)
1424 return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
1426 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1427 tem = swap_commutative_operands_p (XEXP (op0, 0), op1)
1428 ? simplify_binary_operation (code, mode, op1, XEXP (op0, 0))
1429 : simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
1430 if (tem != 0)
1431 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1434 return 0;
1438 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1439 and OP1. Return 0 if no simplification is possible.
1441 Don't use this for relational operations such as EQ or LT.
1442 Use simplify_relational_operation instead. */
1444 simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
1445 rtx op0, rtx op1)
1447 rtx trueop0, trueop1;
1448 rtx tem;
1450 /* Relational operations don't work here. We must know the mode
1451 of the operands in order to do the comparison correctly.
1452 Assuming a full word can give incorrect results.
1453 Consider comparing 128 with -128 in QImode. */
1454 gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
1455 gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
1457 /* Make sure the constant is second. */
1458 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
1459 && swap_commutative_operands_p (op0, op1))
1461 tem = op0, op0 = op1, op1 = tem;
1464 trueop0 = avoid_constant_pool_reference (op0);
1465 trueop1 = avoid_constant_pool_reference (op1);
1467 tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
1468 if (tem)
1469 return tem;
1470 return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
1473 static rtx
1474 simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
1475 rtx op0, rtx op1, rtx trueop0, rtx trueop1)
1477 rtx tem, reversed, opleft, opright;
1478 HOST_WIDE_INT val;
1479 unsigned int width = GET_MODE_BITSIZE (mode);
1481 /* Even if we can't compute a constant result,
1482 there are some cases worth simplifying. */
1484 switch (code)
1486 case PLUS:
1487 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1488 when x is NaN, infinite, or finite and nonzero. They aren't
1489 when x is -0 and the rounding mode is not towards -infinity,
1490 since (-0) + 0 is then 0. */
1491 if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
1492 return op0;
1494 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1495 transformations are safe even for IEEE. */
1496 if (GET_CODE (op0) == NEG)
1497 return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
1498 else if (GET_CODE (op1) == NEG)
1499 return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
1501 /* (~a) + 1 -> -a */
1502 if (INTEGRAL_MODE_P (mode)
1503 && GET_CODE (op0) == NOT
1504 && trueop1 == const1_rtx)
1505 return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
1507 /* Handle both-operands-constant cases. We can only add
1508 CONST_INTs to constants since the sum of relocatable symbols
1509 can't be handled by most assemblers. Don't add CONST_INT
1510 to CONST_INT since overflow won't be computed properly if wider
1511 than HOST_BITS_PER_WIDE_INT. */
1513 if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
1514 && GET_CODE (op1) == CONST_INT)
1515 return plus_constant (op0, INTVAL (op1));
1516 else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
1517 && GET_CODE (op0) == CONST_INT)
1518 return plus_constant (op1, INTVAL (op0));
1520 /* See if this is something like X * C - X or vice versa or
1521 if the multiplication is written as a shift. If so, we can
1522 distribute and make a new multiply, shift, or maybe just
1523 have X (if C is 2 in the example above). But don't make
1524 something more expensive than we had before. */
1526 if (SCALAR_INT_MODE_P (mode))
1528 HOST_WIDE_INT coeff0h = 0, coeff1h = 0;
1529 unsigned HOST_WIDE_INT coeff0l = 1, coeff1l = 1;
1530 rtx lhs = op0, rhs = op1;
1532 if (GET_CODE (lhs) == NEG)
1534 coeff0l = -1;
1535 coeff0h = -1;
1536 lhs = XEXP (lhs, 0);
1538 else if (GET_CODE (lhs) == MULT
1539 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1541 coeff0l = INTVAL (XEXP (lhs, 1));
1542 coeff0h = INTVAL (XEXP (lhs, 1)) < 0 ? -1 : 0;
1543 lhs = XEXP (lhs, 0);
1545 else if (GET_CODE (lhs) == ASHIFT
1546 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1547 && INTVAL (XEXP (lhs, 1)) >= 0
1548 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1550 coeff0l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1551 coeff0h = 0;
1552 lhs = XEXP (lhs, 0);
1555 if (GET_CODE (rhs) == NEG)
1557 coeff1l = -1;
1558 coeff1h = -1;
1559 rhs = XEXP (rhs, 0);
1561 else if (GET_CODE (rhs) == MULT
1562 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1564 coeff1l = INTVAL (XEXP (rhs, 1));
1565 coeff1h = INTVAL (XEXP (rhs, 1)) < 0 ? -1 : 0;
1566 rhs = XEXP (rhs, 0);
1568 else if (GET_CODE (rhs) == ASHIFT
1569 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1570 && INTVAL (XEXP (rhs, 1)) >= 0
1571 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1573 coeff1l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
1574 coeff1h = 0;
1575 rhs = XEXP (rhs, 0);
1578 if (rtx_equal_p (lhs, rhs))
1580 rtx orig = gen_rtx_PLUS (mode, op0, op1);
1581 rtx coeff;
1582 unsigned HOST_WIDE_INT l;
1583 HOST_WIDE_INT h;
1585 add_double (coeff0l, coeff0h, coeff1l, coeff1h, &l, &h);
1586 coeff = immed_double_const (l, h, mode);
1588 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1589 return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
1590 ? tem : 0;
1594 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
1595 if ((GET_CODE (op1) == CONST_INT
1596 || GET_CODE (op1) == CONST_DOUBLE)
1597 && GET_CODE (op0) == XOR
1598 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
1599 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
1600 && mode_signbit_p (mode, op1))
1601 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
1602 simplify_gen_binary (XOR, mode, op1,
1603 XEXP (op0, 1)));
1605 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
1606 if (GET_CODE (op0) == MULT
1607 && GET_CODE (XEXP (op0, 0)) == NEG)
1609 rtx in1, in2;
1611 in1 = XEXP (XEXP (op0, 0), 0);
1612 in2 = XEXP (op0, 1);
1613 return simplify_gen_binary (MINUS, mode, op1,
1614 simplify_gen_binary (MULT, mode,
1615 in1, in2));
1618 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
1619 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
1620 is 1. */
1621 if (COMPARISON_P (op0)
1622 && ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
1623 || (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
1624 && (reversed = reversed_comparison (op0, mode)))
1625 return
1626 simplify_gen_unary (NEG, mode, reversed, mode);
1628 /* If one of the operands is a PLUS or a MINUS, see if we can
1629 simplify this by the associative law.
1630 Don't use the associative law for floating point.
1631 The inaccuracy makes it nonassociative,
1632 and subtle programs can break if operations are associated. */
1634 if (INTEGRAL_MODE_P (mode)
1635 && (plus_minus_operand_p (op0)
1636 || plus_minus_operand_p (op1))
1637 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1638 return tem;
1640 /* Reassociate floating point addition only when the user
1641 specifies unsafe math optimizations. */
1642 if (FLOAT_MODE_P (mode)
1643 && flag_unsafe_math_optimizations)
1645 tem = simplify_associative_operation (code, mode, op0, op1);
1646 if (tem)
1647 return tem;
1649 break;
1651 case COMPARE:
1652 #ifdef HAVE_cc0
1653 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
1654 using cc0, in which case we want to leave it as a COMPARE
1655 so we can distinguish it from a register-register-copy.
1657 In IEEE floating point, x-0 is not the same as x. */
1659 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1660 || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
1661 && trueop1 == CONST0_RTX (mode))
1662 return op0;
1663 #endif
1665 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
1666 if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
1667 || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
1668 && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
1670 rtx xop00 = XEXP (op0, 0);
1671 rtx xop10 = XEXP (op1, 0);
1673 #ifdef HAVE_cc0
1674 if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
1675 #else
1676 if (REG_P (xop00) && REG_P (xop10)
1677 && GET_MODE (xop00) == GET_MODE (xop10)
1678 && REGNO (xop00) == REGNO (xop10)
1679 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
1680 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
1681 #endif
1682 return xop00;
1684 break;
1686 case MINUS:
1687 /* We can't assume x-x is 0 even with non-IEEE floating point,
1688 but since it is zero except in very strange circumstances, we
1689 will treat it as zero with -funsafe-math-optimizations. */
1690 if (rtx_equal_p (trueop0, trueop1)
1691 && ! side_effects_p (op0)
1692 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
1693 return CONST0_RTX (mode);
1695 /* Change subtraction from zero into negation. (0 - x) is the
1696 same as -x when x is NaN, infinite, or finite and nonzero.
1697 But if the mode has signed zeros, and does not round towards
1698 -infinity, then 0 - 0 is 0, not -0. */
1699 if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
1700 return simplify_gen_unary (NEG, mode, op1, mode);
1702 /* (-1 - a) is ~a. */
1703 if (trueop0 == constm1_rtx)
1704 return simplify_gen_unary (NOT, mode, op1, mode);
1706 /* Subtracting 0 has no effect unless the mode has signed zeros
1707 and supports rounding towards -infinity. In such a case,
1708 0 - 0 is -0. */
1709 if (!(HONOR_SIGNED_ZEROS (mode)
1710 && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
1711 && trueop1 == CONST0_RTX (mode))
1712 return op0;
1714 /* See if this is something like X * C - X or vice versa or
1715 if the multiplication is written as a shift. If so, we can
1716 distribute and make a new multiply, shift, or maybe just
1717 have X (if C is 2 in the example above). But don't make
1718 something more expensive than we had before. */
1720 if (SCALAR_INT_MODE_P (mode))
1722 HOST_WIDE_INT coeff0h = 0, negcoeff1h = -1;
1723 unsigned HOST_WIDE_INT coeff0l = 1, negcoeff1l = -1;
1724 rtx lhs = op0, rhs = op1;
1726 if (GET_CODE (lhs) == NEG)
1728 coeff0l = -1;
1729 coeff0h = -1;
1730 lhs = XEXP (lhs, 0);
1732 else if (GET_CODE (lhs) == MULT
1733 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1735 coeff0l = INTVAL (XEXP (lhs, 1));
1736 coeff0h = INTVAL (XEXP (lhs, 1)) < 0 ? -1 : 0;
1737 lhs = XEXP (lhs, 0);
1739 else if (GET_CODE (lhs) == ASHIFT
1740 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1741 && INTVAL (XEXP (lhs, 1)) >= 0
1742 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1744 coeff0l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1745 coeff0h = 0;
1746 lhs = XEXP (lhs, 0);
1749 if (GET_CODE (rhs) == NEG)
1751 negcoeff1l = 1;
1752 negcoeff1h = 0;
1753 rhs = XEXP (rhs, 0);
1755 else if (GET_CODE (rhs) == MULT
1756 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1758 negcoeff1l = -INTVAL (XEXP (rhs, 1));
1759 negcoeff1h = INTVAL (XEXP (rhs, 1)) <= 0 ? 0 : -1;
1760 rhs = XEXP (rhs, 0);
1762 else if (GET_CODE (rhs) == ASHIFT
1763 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1764 && INTVAL (XEXP (rhs, 1)) >= 0
1765 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1767 negcoeff1l = -(((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1)));
1768 negcoeff1h = -1;
1769 rhs = XEXP (rhs, 0);
1772 if (rtx_equal_p (lhs, rhs))
1774 rtx orig = gen_rtx_MINUS (mode, op0, op1);
1775 rtx coeff;
1776 unsigned HOST_WIDE_INT l;
1777 HOST_WIDE_INT h;
1779 add_double (coeff0l, coeff0h, negcoeff1l, negcoeff1h, &l, &h);
1780 coeff = immed_double_const (l, h, mode);
1782 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1783 return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
1784 ? tem : 0;
1788 /* (a - (-b)) -> (a + b). True even for IEEE. */
1789 if (GET_CODE (op1) == NEG)
1790 return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
1792 /* (-x - c) may be simplified as (-c - x). */
1793 if (GET_CODE (op0) == NEG
1794 && (GET_CODE (op1) == CONST_INT
1795 || GET_CODE (op1) == CONST_DOUBLE))
1797 tem = simplify_unary_operation (NEG, mode, op1, mode);
1798 if (tem)
1799 return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
1802 /* Don't let a relocatable value get a negative coeff. */
1803 if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
1804 return simplify_gen_binary (PLUS, mode,
1805 op0,
1806 neg_const_int (mode, op1));
1808 /* (x - (x & y)) -> (x & ~y) */
1809 if (GET_CODE (op1) == AND)
1811 if (rtx_equal_p (op0, XEXP (op1, 0)))
1813 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
1814 GET_MODE (XEXP (op1, 1)));
1815 return simplify_gen_binary (AND, mode, op0, tem);
1817 if (rtx_equal_p (op0, XEXP (op1, 1)))
1819 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
1820 GET_MODE (XEXP (op1, 0)));
1821 return simplify_gen_binary (AND, mode, op0, tem);
1825 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
1826 by reversing the comparison code if valid. */
1827 if (STORE_FLAG_VALUE == 1
1828 && trueop0 == const1_rtx
1829 && COMPARISON_P (op1)
1830 && (reversed = reversed_comparison (op1, mode)))
1831 return reversed;
1833 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
1834 if (GET_CODE (op1) == MULT
1835 && GET_CODE (XEXP (op1, 0)) == NEG)
1837 rtx in1, in2;
1839 in1 = XEXP (XEXP (op1, 0), 0);
1840 in2 = XEXP (op1, 1);
1841 return simplify_gen_binary (PLUS, mode,
1842 simplify_gen_binary (MULT, mode,
1843 in1, in2),
1844 op0);
1847 /* Canonicalize (minus (neg A) (mult B C)) to
1848 (minus (mult (neg B) C) A). */
1849 if (GET_CODE (op1) == MULT
1850 && GET_CODE (op0) == NEG)
1852 rtx in1, in2;
1854 in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
1855 in2 = XEXP (op1, 1);
1856 return simplify_gen_binary (MINUS, mode,
1857 simplify_gen_binary (MULT, mode,
1858 in1, in2),
1859 XEXP (op0, 0));
1862 /* If one of the operands is a PLUS or a MINUS, see if we can
1863 simplify this by the associative law. This will, for example,
1864 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
1865 Don't use the associative law for floating point.
1866 The inaccuracy makes it nonassociative,
1867 and subtle programs can break if operations are associated. */
1869 if (INTEGRAL_MODE_P (mode)
1870 && (plus_minus_operand_p (op0)
1871 || plus_minus_operand_p (op1))
1872 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1873 return tem;
1874 break;
1876 case MULT:
1877 if (trueop1 == constm1_rtx)
1878 return simplify_gen_unary (NEG, mode, op0, mode);
1880 /* Maybe simplify x * 0 to 0. The reduction is not valid if
1881 x is NaN, since x * 0 is then also NaN. Nor is it valid
1882 when the mode has signed zeros, since multiplying a negative
1883 number by 0 will give -0, not 0. */
1884 if (!HONOR_NANS (mode)
1885 && !HONOR_SIGNED_ZEROS (mode)
1886 && trueop1 == CONST0_RTX (mode)
1887 && ! side_effects_p (op0))
1888 return op1;
1890 /* In IEEE floating point, x*1 is not equivalent to x for
1891 signalling NaNs. */
1892 if (!HONOR_SNANS (mode)
1893 && trueop1 == CONST1_RTX (mode))
1894 return op0;
1896 /* Convert multiply by constant power of two into shift unless
1897 we are still generating RTL. This test is a kludge. */
1898 if (GET_CODE (trueop1) == CONST_INT
1899 && (val = exact_log2 (INTVAL (trueop1))) >= 0
1900 /* If the mode is larger than the host word size, and the
1901 uppermost bit is set, then this isn't a power of two due
1902 to implicit sign extension. */
1903 && (width <= HOST_BITS_PER_WIDE_INT
1904 || val != HOST_BITS_PER_WIDE_INT - 1))
1905 return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
1907 /* Likewise for multipliers wider than a word. */
1908 else if (GET_CODE (trueop1) == CONST_DOUBLE
1909 && (GET_MODE (trueop1) == VOIDmode
1910 || GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_INT)
1911 && GET_MODE (op0) == mode
1912 && CONST_DOUBLE_LOW (trueop1) == 0
1913 && (val = exact_log2 (CONST_DOUBLE_HIGH (trueop1))) >= 0)
1914 return simplify_gen_binary (ASHIFT, mode, op0,
1915 GEN_INT (val + HOST_BITS_PER_WIDE_INT));
1917 /* x*2 is x+x and x*(-1) is -x */
1918 if (GET_CODE (trueop1) == CONST_DOUBLE
1919 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
1920 && GET_MODE (op0) == mode)
1922 REAL_VALUE_TYPE d;
1923 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
1925 if (REAL_VALUES_EQUAL (d, dconst2))
1926 return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
1928 if (REAL_VALUES_EQUAL (d, dconstm1))
1929 return simplify_gen_unary (NEG, mode, op0, mode);
1932 /* Reassociate multiplication, but for floating point MULTs
1933 only when the user specifies unsafe math optimizations. */
1934 if (! FLOAT_MODE_P (mode)
1935 || flag_unsafe_math_optimizations)
1937 tem = simplify_associative_operation (code, mode, op0, op1);
1938 if (tem)
1939 return tem;
1941 break;
1943 case IOR:
1944 if (trueop1 == const0_rtx)
1945 return op0;
1946 if (GET_CODE (trueop1) == CONST_INT
1947 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
1948 == GET_MODE_MASK (mode)))
1949 return op1;
1950 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
1951 return op0;
1952 /* A | (~A) -> -1 */
1953 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
1954 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
1955 && ! side_effects_p (op0)
1956 && SCALAR_INT_MODE_P (mode))
1957 return constm1_rtx;
1959 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
1960 if (GET_CODE (op1) == CONST_INT
1961 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
1962 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
1963 return op1;
1965 /* Convert (A & B) | A to A. */
1966 if (GET_CODE (op0) == AND
1967 && (rtx_equal_p (XEXP (op0, 0), op1)
1968 || rtx_equal_p (XEXP (op0, 1), op1))
1969 && ! side_effects_p (XEXP (op0, 0))
1970 && ! side_effects_p (XEXP (op0, 1)))
1971 return op1;
1973 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
1974 mode size to (rotate A CX). */
1976 if (GET_CODE (op1) == ASHIFT
1977 || GET_CODE (op1) == SUBREG)
1979 opleft = op1;
1980 opright = op0;
1982 else
1984 opright = op1;
1985 opleft = op0;
1988 if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
1989 && rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
1990 && GET_CODE (XEXP (opleft, 1)) == CONST_INT
1991 && GET_CODE (XEXP (opright, 1)) == CONST_INT
1992 && (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
1993 == GET_MODE_BITSIZE (mode)))
1994 return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
1996 /* Same, but for ashift that has been "simplified" to a wider mode
1997 by simplify_shift_const. */
1999 if (GET_CODE (opleft) == SUBREG
2000 && GET_CODE (SUBREG_REG (opleft)) == ASHIFT
2001 && GET_CODE (opright) == LSHIFTRT
2002 && GET_CODE (XEXP (opright, 0)) == SUBREG
2003 && GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
2004 && SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
2005 && (GET_MODE_SIZE (GET_MODE (opleft))
2006 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
2007 && rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
2008 SUBREG_REG (XEXP (opright, 0)))
2009 && GET_CODE (XEXP (SUBREG_REG (opleft), 1)) == CONST_INT
2010 && GET_CODE (XEXP (opright, 1)) == CONST_INT
2011 && (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
2012 == GET_MODE_BITSIZE (mode)))
2013 return gen_rtx_ROTATE (mode, XEXP (opright, 0),
2014 XEXP (SUBREG_REG (opleft), 1));
2016 /* If we have (ior (and (X C1) C2)), simplify this by making
2017 C1 as small as possible if C1 actually changes. */
2018 if (GET_CODE (op1) == CONST_INT
2019 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2020 || INTVAL (op1) > 0)
2021 && GET_CODE (op0) == AND
2022 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2023 && GET_CODE (op1) == CONST_INT
2024 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
2025 return simplify_gen_binary (IOR, mode,
2026 simplify_gen_binary
2027 (AND, mode, XEXP (op0, 0),
2028 GEN_INT (INTVAL (XEXP (op0, 1))
2029 & ~INTVAL (op1))),
2030 op1);
2032 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2033 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2034 the PLUS does not affect any of the bits in OP1: then we can do
2035 the IOR as a PLUS and we can associate. This is valid if OP1
2036 can be safely shifted left C bits. */
2037 if (GET_CODE (trueop1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
2038 && GET_CODE (XEXP (op0, 0)) == PLUS
2039 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
2040 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2041 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
2043 int count = INTVAL (XEXP (op0, 1));
2044 HOST_WIDE_INT mask = INTVAL (trueop1) << count;
2046 if (mask >> count == INTVAL (trueop1)
2047 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
2048 return simplify_gen_binary (ASHIFTRT, mode,
2049 plus_constant (XEXP (op0, 0), mask),
2050 XEXP (op0, 1));
2053 tem = simplify_associative_operation (code, mode, op0, op1);
2054 if (tem)
2055 return tem;
2056 break;
2058 case XOR:
2059 if (trueop1 == const0_rtx)
2060 return op0;
2061 if (GET_CODE (trueop1) == CONST_INT
2062 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
2063 == GET_MODE_MASK (mode)))
2064 return simplify_gen_unary (NOT, mode, op0, mode);
2065 if (rtx_equal_p (trueop0, trueop1)
2066 && ! side_effects_p (op0)
2067 && GET_MODE_CLASS (mode) != MODE_CC)
2068 return CONST0_RTX (mode);
2070 /* Canonicalize XOR of the most significant bit to PLUS. */
2071 if ((GET_CODE (op1) == CONST_INT
2072 || GET_CODE (op1) == CONST_DOUBLE)
2073 && mode_signbit_p (mode, op1))
2074 return simplify_gen_binary (PLUS, mode, op0, op1);
2075 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2076 if ((GET_CODE (op1) == CONST_INT
2077 || GET_CODE (op1) == CONST_DOUBLE)
2078 && GET_CODE (op0) == PLUS
2079 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
2080 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
2081 && mode_signbit_p (mode, XEXP (op0, 1)))
2082 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2083 simplify_gen_binary (XOR, mode, op1,
2084 XEXP (op0, 1)));
2086 /* If we are XORing two things that have no bits in common,
2087 convert them into an IOR. This helps to detect rotation encoded
2088 using those methods and possibly other simplifications. */
2090 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2091 && (nonzero_bits (op0, mode)
2092 & nonzero_bits (op1, mode)) == 0)
2093 return (simplify_gen_binary (IOR, mode, op0, op1));
2095 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2096 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2097 (NOT y). */
2099 int num_negated = 0;
2101 if (GET_CODE (op0) == NOT)
2102 num_negated++, op0 = XEXP (op0, 0);
2103 if (GET_CODE (op1) == NOT)
2104 num_negated++, op1 = XEXP (op1, 0);
2106 if (num_negated == 2)
2107 return simplify_gen_binary (XOR, mode, op0, op1);
2108 else if (num_negated == 1)
2109 return simplify_gen_unary (NOT, mode,
2110 simplify_gen_binary (XOR, mode, op0, op1),
2111 mode);
2114 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2115 correspond to a machine insn or result in further simplifications
2116 if B is a constant. */
2118 if (GET_CODE (op0) == AND
2119 && rtx_equal_p (XEXP (op0, 1), op1)
2120 && ! side_effects_p (op1))
2121 return simplify_gen_binary (AND, mode,
2122 simplify_gen_unary (NOT, mode,
2123 XEXP (op0, 0), mode),
2124 op1);
2126 else if (GET_CODE (op0) == AND
2127 && rtx_equal_p (XEXP (op0, 0), op1)
2128 && ! side_effects_p (op1))
2129 return simplify_gen_binary (AND, mode,
2130 simplify_gen_unary (NOT, mode,
2131 XEXP (op0, 1), mode),
2132 op1);
2134 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2135 comparison if STORE_FLAG_VALUE is 1. */
2136 if (STORE_FLAG_VALUE == 1
2137 && trueop1 == const1_rtx
2138 && COMPARISON_P (op0)
2139 && (reversed = reversed_comparison (op0, mode)))
2140 return reversed;
2142 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2143 is (lt foo (const_int 0)), so we can perform the above
2144 simplification if STORE_FLAG_VALUE is 1. */
2146 if (STORE_FLAG_VALUE == 1
2147 && trueop1 == const1_rtx
2148 && GET_CODE (op0) == LSHIFTRT
2149 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2150 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
2151 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
2153 /* (xor (comparison foo bar) (const_int sign-bit))
2154 when STORE_FLAG_VALUE is the sign bit. */
2155 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2156 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
2157 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
2158 && trueop1 == const_true_rtx
2159 && COMPARISON_P (op0)
2160 && (reversed = reversed_comparison (op0, mode)))
2161 return reversed;
2163 break;
2165 tem = simplify_associative_operation (code, mode, op0, op1);
2166 if (tem)
2167 return tem;
2168 break;
2170 case AND:
2171 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2172 return trueop1;
2173 /* If we are turning off bits already known off in OP0, we need
2174 not do an AND. */
2175 if (GET_CODE (trueop1) == CONST_INT
2176 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2177 && (nonzero_bits (trueop0, mode) & ~INTVAL (trueop1)) == 0)
2178 return op0;
2179 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
2180 && GET_MODE_CLASS (mode) != MODE_CC)
2181 return op0;
2182 /* A & (~A) -> 0 */
2183 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2184 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2185 && ! side_effects_p (op0)
2186 && GET_MODE_CLASS (mode) != MODE_CC)
2187 return CONST0_RTX (mode);
2189 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2190 there are no nonzero bits of C outside of X's mode. */
2191 if ((GET_CODE (op0) == SIGN_EXTEND
2192 || GET_CODE (op0) == ZERO_EXTEND)
2193 && GET_CODE (trueop1) == CONST_INT
2194 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2195 && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
2196 & INTVAL (trueop1)) == 0)
2198 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2199 tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
2200 gen_int_mode (INTVAL (trueop1),
2201 imode));
2202 return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
2205 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2206 insn (and may simplify more). */
2207 if (GET_CODE (op0) == XOR
2208 && rtx_equal_p (XEXP (op0, 0), op1)
2209 && ! side_effects_p (op1))
2210 return simplify_gen_binary (AND, mode,
2211 simplify_gen_unary (NOT, mode,
2212 XEXP (op0, 1), mode),
2213 op1);
2215 if (GET_CODE (op0) == XOR
2216 && rtx_equal_p (XEXP (op0, 1), op1)
2217 && ! side_effects_p (op1))
2218 return simplify_gen_binary (AND, mode,
2219 simplify_gen_unary (NOT, mode,
2220 XEXP (op0, 0), mode),
2221 op1);
2223 /* Similarly for (~(A ^ B)) & A. */
2224 if (GET_CODE (op0) == NOT
2225 && GET_CODE (XEXP (op0, 0)) == XOR
2226 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
2227 && ! side_effects_p (op1))
2228 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
2230 if (GET_CODE (op0) == NOT
2231 && GET_CODE (XEXP (op0, 0)) == XOR
2232 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
2233 && ! side_effects_p (op1))
2234 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
2236 /* Convert (A | B) & A to A. */
2237 if (GET_CODE (op0) == IOR
2238 && (rtx_equal_p (XEXP (op0, 0), op1)
2239 || rtx_equal_p (XEXP (op0, 1), op1))
2240 && ! side_effects_p (XEXP (op0, 0))
2241 && ! side_effects_p (XEXP (op0, 1)))
2242 return op1;
2244 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2245 ((A & N) + B) & M -> (A + B) & M
2246 Similarly if (N & M) == 0,
2247 ((A | N) + B) & M -> (A + B) & M
2248 and for - instead of + and/or ^ instead of |. */
2249 if (GET_CODE (trueop1) == CONST_INT
2250 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2251 && ~INTVAL (trueop1)
2252 && (INTVAL (trueop1) & (INTVAL (trueop1) + 1)) == 0
2253 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
2255 rtx pmop[2];
2256 int which;
2258 pmop[0] = XEXP (op0, 0);
2259 pmop[1] = XEXP (op0, 1);
2261 for (which = 0; which < 2; which++)
2263 tem = pmop[which];
2264 switch (GET_CODE (tem))
2266 case AND:
2267 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
2268 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1))
2269 == INTVAL (trueop1))
2270 pmop[which] = XEXP (tem, 0);
2271 break;
2272 case IOR:
2273 case XOR:
2274 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
2275 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1)) == 0)
2276 pmop[which] = XEXP (tem, 0);
2277 break;
2278 default:
2279 break;
2283 if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
2285 tem = simplify_gen_binary (GET_CODE (op0), mode,
2286 pmop[0], pmop[1]);
2287 return simplify_gen_binary (code, mode, tem, op1);
2290 tem = simplify_associative_operation (code, mode, op0, op1);
2291 if (tem)
2292 return tem;
2293 break;
2295 case UDIV:
2296 /* 0/x is 0 (or x&0 if x has side-effects). */
2297 if (trueop0 == CONST0_RTX (mode))
2299 if (side_effects_p (op1))
2300 return simplify_gen_binary (AND, mode, op1, trueop0);
2301 return trueop0;
2303 /* x/1 is x. */
2304 if (trueop1 == CONST1_RTX (mode))
2305 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2306 /* Convert divide by power of two into shift. */
2307 if (GET_CODE (trueop1) == CONST_INT
2308 && (val = exact_log2 (INTVAL (trueop1))) > 0)
2309 return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
2310 break;
2312 case DIV:
2313 /* Handle floating point and integers separately. */
2314 if (SCALAR_FLOAT_MODE_P (mode))
2316 /* Maybe change 0.0 / x to 0.0. This transformation isn't
2317 safe for modes with NaNs, since 0.0 / 0.0 will then be
2318 NaN rather than 0.0. Nor is it safe for modes with signed
2319 zeros, since dividing 0 by a negative number gives -0.0 */
2320 if (trueop0 == CONST0_RTX (mode)
2321 && !HONOR_NANS (mode)
2322 && !HONOR_SIGNED_ZEROS (mode)
2323 && ! side_effects_p (op1))
2324 return op0;
2325 /* x/1.0 is x. */
2326 if (trueop1 == CONST1_RTX (mode)
2327 && !HONOR_SNANS (mode))
2328 return op0;
2330 if (GET_CODE (trueop1) == CONST_DOUBLE
2331 && trueop1 != CONST0_RTX (mode))
2333 REAL_VALUE_TYPE d;
2334 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2336 /* x/-1.0 is -x. */
2337 if (REAL_VALUES_EQUAL (d, dconstm1)
2338 && !HONOR_SNANS (mode))
2339 return simplify_gen_unary (NEG, mode, op0, mode);
2341 /* Change FP division by a constant into multiplication.
2342 Only do this with -funsafe-math-optimizations. */
2343 if (flag_unsafe_math_optimizations
2344 && !REAL_VALUES_EQUAL (d, dconst0))
2346 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
2347 tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2348 return simplify_gen_binary (MULT, mode, op0, tem);
2352 else
2354 /* 0/x is 0 (or x&0 if x has side-effects). */
2355 if (trueop0 == CONST0_RTX (mode))
2357 if (side_effects_p (op1))
2358 return simplify_gen_binary (AND, mode, op1, trueop0);
2359 return trueop0;
2361 /* x/1 is x. */
2362 if (trueop1 == CONST1_RTX (mode))
2363 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2364 /* x/-1 is -x. */
2365 if (trueop1 == constm1_rtx)
2367 rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
2368 return simplify_gen_unary (NEG, mode, x, mode);
2371 break;
2373 case UMOD:
2374 /* 0%x is 0 (or x&0 if x has side-effects). */
2375 if (trueop0 == CONST0_RTX (mode))
2377 if (side_effects_p (op1))
2378 return simplify_gen_binary (AND, mode, op1, trueop0);
2379 return trueop0;
2381 /* x%1 is 0 (of x&0 if x has side-effects). */
2382 if (trueop1 == CONST1_RTX (mode))
2384 if (side_effects_p (op0))
2385 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2386 return CONST0_RTX (mode);
2388 /* Implement modulus by power of two as AND. */
2389 if (GET_CODE (trueop1) == CONST_INT
2390 && exact_log2 (INTVAL (trueop1)) > 0)
2391 return simplify_gen_binary (AND, mode, op0,
2392 GEN_INT (INTVAL (op1) - 1));
2393 break;
2395 case MOD:
2396 /* 0%x is 0 (or x&0 if x has side-effects). */
2397 if (trueop0 == CONST0_RTX (mode))
2399 if (side_effects_p (op1))
2400 return simplify_gen_binary (AND, mode, op1, trueop0);
2401 return trueop0;
2403 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
2404 if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
2406 if (side_effects_p (op0))
2407 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2408 return CONST0_RTX (mode);
2410 break;
2412 case ROTATERT:
2413 case ROTATE:
2414 case ASHIFTRT:
2415 /* Rotating ~0 always results in ~0. */
2416 if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
2417 && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
2418 && ! side_effects_p (op1))
2419 return op0;
2421 /* Fall through.... */
2423 case ASHIFT:
2424 case LSHIFTRT:
2425 if (trueop1 == CONST0_RTX (mode))
2426 return op0;
2427 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2428 return op0;
2429 break;
2431 case SMIN:
2432 if (width <= HOST_BITS_PER_WIDE_INT
2433 && GET_CODE (trueop1) == CONST_INT
2434 && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
2435 && ! side_effects_p (op0))
2436 return op1;
2437 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2438 return op0;
2439 tem = simplify_associative_operation (code, mode, op0, op1);
2440 if (tem)
2441 return tem;
2442 break;
2444 case SMAX:
2445 if (width <= HOST_BITS_PER_WIDE_INT
2446 && GET_CODE (trueop1) == CONST_INT
2447 && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
2448 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
2449 && ! side_effects_p (op0))
2450 return op1;
2451 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2452 return op0;
2453 tem = simplify_associative_operation (code, mode, op0, op1);
2454 if (tem)
2455 return tem;
2456 break;
2458 case UMIN:
2459 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2460 return op1;
2461 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2462 return op0;
2463 tem = simplify_associative_operation (code, mode, op0, op1);
2464 if (tem)
2465 return tem;
2466 break;
2468 case UMAX:
2469 if (trueop1 == constm1_rtx && ! side_effects_p (op0))
2470 return op1;
2471 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2472 return op0;
2473 tem = simplify_associative_operation (code, mode, op0, op1);
2474 if (tem)
2475 return tem;
2476 break;
2478 case SS_PLUS:
2479 case US_PLUS:
2480 case SS_MINUS:
2481 case US_MINUS:
2482 /* ??? There are simplifications that can be done. */
2483 return 0;
2485 case VEC_SELECT:
2486 if (!VECTOR_MODE_P (mode))
2488 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2489 gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
2490 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2491 gcc_assert (XVECLEN (trueop1, 0) == 1);
2492 gcc_assert (GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT);
2494 if (GET_CODE (trueop0) == CONST_VECTOR)
2495 return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
2496 (trueop1, 0, 0)));
2498 else
2500 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2501 gcc_assert (GET_MODE_INNER (mode)
2502 == GET_MODE_INNER (GET_MODE (trueop0)));
2503 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2505 if (GET_CODE (trueop0) == CONST_VECTOR)
2507 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2508 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2509 rtvec v = rtvec_alloc (n_elts);
2510 unsigned int i;
2512 gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
2513 for (i = 0; i < n_elts; i++)
2515 rtx x = XVECEXP (trueop1, 0, i);
2517 gcc_assert (GET_CODE (x) == CONST_INT);
2518 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
2519 INTVAL (x));
2522 return gen_rtx_CONST_VECTOR (mode, v);
2526 if (XVECLEN (trueop1, 0) == 1
2527 && GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT
2528 && GET_CODE (trueop0) == VEC_CONCAT)
2530 rtx vec = trueop0;
2531 int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
2533 /* Try to find the element in the VEC_CONCAT. */
2534 while (GET_MODE (vec) != mode
2535 && GET_CODE (vec) == VEC_CONCAT)
2537 HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
2538 if (offset < vec_size)
2539 vec = XEXP (vec, 0);
2540 else
2542 offset -= vec_size;
2543 vec = XEXP (vec, 1);
2545 vec = avoid_constant_pool_reference (vec);
2548 if (GET_MODE (vec) == mode)
2549 return vec;
2552 return 0;
2553 case VEC_CONCAT:
2555 enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
2556 ? GET_MODE (trueop0)
2557 : GET_MODE_INNER (mode));
2558 enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
2559 ? GET_MODE (trueop1)
2560 : GET_MODE_INNER (mode));
2562 gcc_assert (VECTOR_MODE_P (mode));
2563 gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
2564 == GET_MODE_SIZE (mode));
2566 if (VECTOR_MODE_P (op0_mode))
2567 gcc_assert (GET_MODE_INNER (mode)
2568 == GET_MODE_INNER (op0_mode));
2569 else
2570 gcc_assert (GET_MODE_INNER (mode) == op0_mode);
2572 if (VECTOR_MODE_P (op1_mode))
2573 gcc_assert (GET_MODE_INNER (mode)
2574 == GET_MODE_INNER (op1_mode));
2575 else
2576 gcc_assert (GET_MODE_INNER (mode) == op1_mode);
2578 if ((GET_CODE (trueop0) == CONST_VECTOR
2579 || GET_CODE (trueop0) == CONST_INT
2580 || GET_CODE (trueop0) == CONST_DOUBLE)
2581 && (GET_CODE (trueop1) == CONST_VECTOR
2582 || GET_CODE (trueop1) == CONST_INT
2583 || GET_CODE (trueop1) == CONST_DOUBLE))
2585 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2586 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2587 rtvec v = rtvec_alloc (n_elts);
2588 unsigned int i;
2589 unsigned in_n_elts = 1;
2591 if (VECTOR_MODE_P (op0_mode))
2592 in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
2593 for (i = 0; i < n_elts; i++)
2595 if (i < in_n_elts)
2597 if (!VECTOR_MODE_P (op0_mode))
2598 RTVEC_ELT (v, i) = trueop0;
2599 else
2600 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
2602 else
2604 if (!VECTOR_MODE_P (op1_mode))
2605 RTVEC_ELT (v, i) = trueop1;
2606 else
2607 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
2608 i - in_n_elts);
2612 return gen_rtx_CONST_VECTOR (mode, v);
2615 return 0;
2617 default:
2618 gcc_unreachable ();
2621 return 0;
2625 simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
2626 rtx op0, rtx op1)
2628 HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
2629 HOST_WIDE_INT val;
2630 unsigned int width = GET_MODE_BITSIZE (mode);
2632 if (VECTOR_MODE_P (mode)
2633 && code != VEC_CONCAT
2634 && GET_CODE (op0) == CONST_VECTOR
2635 && GET_CODE (op1) == CONST_VECTOR)
2637 unsigned n_elts = GET_MODE_NUNITS (mode);
2638 enum machine_mode op0mode = GET_MODE (op0);
2639 unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
2640 enum machine_mode op1mode = GET_MODE (op1);
2641 unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
2642 rtvec v = rtvec_alloc (n_elts);
2643 unsigned int i;
2645 gcc_assert (op0_n_elts == n_elts);
2646 gcc_assert (op1_n_elts == n_elts);
2647 for (i = 0; i < n_elts; i++)
2649 rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
2650 CONST_VECTOR_ELT (op0, i),
2651 CONST_VECTOR_ELT (op1, i));
2652 if (!x)
2653 return 0;
2654 RTVEC_ELT (v, i) = x;
2657 return gen_rtx_CONST_VECTOR (mode, v);
2660 if (VECTOR_MODE_P (mode)
2661 && code == VEC_CONCAT
2662 && CONSTANT_P (op0) && CONSTANT_P (op1))
2664 unsigned n_elts = GET_MODE_NUNITS (mode);
2665 rtvec v = rtvec_alloc (n_elts);
2667 gcc_assert (n_elts >= 2);
2668 if (n_elts == 2)
2670 gcc_assert (GET_CODE (op0) != CONST_VECTOR);
2671 gcc_assert (GET_CODE (op1) != CONST_VECTOR);
2673 RTVEC_ELT (v, 0) = op0;
2674 RTVEC_ELT (v, 1) = op1;
2676 else
2678 unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
2679 unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
2680 unsigned i;
2682 gcc_assert (GET_CODE (op0) == CONST_VECTOR);
2683 gcc_assert (GET_CODE (op1) == CONST_VECTOR);
2684 gcc_assert (op0_n_elts + op1_n_elts == n_elts);
2686 for (i = 0; i < op0_n_elts; ++i)
2687 RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
2688 for (i = 0; i < op1_n_elts; ++i)
2689 RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
2692 return gen_rtx_CONST_VECTOR (mode, v);
2695 if (SCALAR_FLOAT_MODE_P (mode)
2696 && GET_CODE (op0) == CONST_DOUBLE
2697 && GET_CODE (op1) == CONST_DOUBLE
2698 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
2700 if (code == AND
2701 || code == IOR
2702 || code == XOR)
2704 long tmp0[4];
2705 long tmp1[4];
2706 REAL_VALUE_TYPE r;
2707 int i;
2709 real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
2710 GET_MODE (op0));
2711 real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
2712 GET_MODE (op1));
2713 for (i = 0; i < 4; i++)
2715 switch (code)
2717 case AND:
2718 tmp0[i] &= tmp1[i];
2719 break;
2720 case IOR:
2721 tmp0[i] |= tmp1[i];
2722 break;
2723 case XOR:
2724 tmp0[i] ^= tmp1[i];
2725 break;
2726 default:
2727 gcc_unreachable ();
2730 real_from_target (&r, tmp0, mode);
2731 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
2733 else
2735 REAL_VALUE_TYPE f0, f1, value, result;
2736 bool inexact;
2738 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
2739 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
2740 real_convert (&f0, mode, &f0);
2741 real_convert (&f1, mode, &f1);
2743 if (HONOR_SNANS (mode)
2744 && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
2745 return 0;
2747 if (code == DIV
2748 && REAL_VALUES_EQUAL (f1, dconst0)
2749 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
2750 return 0;
2752 if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
2753 && flag_trapping_math
2754 && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
2756 int s0 = REAL_VALUE_NEGATIVE (f0);
2757 int s1 = REAL_VALUE_NEGATIVE (f1);
2759 switch (code)
2761 case PLUS:
2762 /* Inf + -Inf = NaN plus exception. */
2763 if (s0 != s1)
2764 return 0;
2765 break;
2766 case MINUS:
2767 /* Inf - Inf = NaN plus exception. */
2768 if (s0 == s1)
2769 return 0;
2770 break;
2771 case DIV:
2772 /* Inf / Inf = NaN plus exception. */
2773 return 0;
2774 default:
2775 break;
2779 if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
2780 && flag_trapping_math
2781 && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
2782 || (REAL_VALUE_ISINF (f1)
2783 && REAL_VALUES_EQUAL (f0, dconst0))))
2784 /* Inf * 0 = NaN plus exception. */
2785 return 0;
2787 inexact = real_arithmetic (&value, rtx_to_tree_code (code),
2788 &f0, &f1);
2789 real_convert (&result, mode, &value);
2791 /* Don't constant fold this floating point operation if
2792 the result has overflowed and flag_trapping_math. */
2794 if (flag_trapping_math
2795 && MODE_HAS_INFINITIES (mode)
2796 && REAL_VALUE_ISINF (result)
2797 && !REAL_VALUE_ISINF (f0)
2798 && !REAL_VALUE_ISINF (f1))
2799 /* Overflow plus exception. */
2800 return 0;
2802 /* Don't constant fold this floating point operation if the
2803 result may dependent upon the run-time rounding mode and
2804 flag_rounding_math is set, or if GCC's software emulation
2805 is unable to accurately represent the result. */
2807 if ((flag_rounding_math
2808 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
2809 && !flag_unsafe_math_optimizations))
2810 && (inexact || !real_identical (&result, &value)))
2811 return NULL_RTX;
2813 return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
2817 /* We can fold some multi-word operations. */
2818 if (GET_MODE_CLASS (mode) == MODE_INT
2819 && width == HOST_BITS_PER_WIDE_INT * 2
2820 && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
2821 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
2823 unsigned HOST_WIDE_INT l1, l2, lv, lt;
2824 HOST_WIDE_INT h1, h2, hv, ht;
2826 if (GET_CODE (op0) == CONST_DOUBLE)
2827 l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
2828 else
2829 l1 = INTVAL (op0), h1 = HWI_SIGN_EXTEND (l1);
2831 if (GET_CODE (op1) == CONST_DOUBLE)
2832 l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
2833 else
2834 l2 = INTVAL (op1), h2 = HWI_SIGN_EXTEND (l2);
2836 switch (code)
2838 case MINUS:
2839 /* A - B == A + (-B). */
2840 neg_double (l2, h2, &lv, &hv);
2841 l2 = lv, h2 = hv;
2843 /* Fall through.... */
2845 case PLUS:
2846 add_double (l1, h1, l2, h2, &lv, &hv);
2847 break;
2849 case MULT:
2850 mul_double (l1, h1, l2, h2, &lv, &hv);
2851 break;
2853 case DIV:
2854 if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
2855 &lv, &hv, &lt, &ht))
2856 return 0;
2857 break;
2859 case MOD:
2860 if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
2861 &lt, &ht, &lv, &hv))
2862 return 0;
2863 break;
2865 case UDIV:
2866 if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
2867 &lv, &hv, &lt, &ht))
2868 return 0;
2869 break;
2871 case UMOD:
2872 if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
2873 &lt, &ht, &lv, &hv))
2874 return 0;
2875 break;
2877 case AND:
2878 lv = l1 & l2, hv = h1 & h2;
2879 break;
2881 case IOR:
2882 lv = l1 | l2, hv = h1 | h2;
2883 break;
2885 case XOR:
2886 lv = l1 ^ l2, hv = h1 ^ h2;
2887 break;
2889 case SMIN:
2890 if (h1 < h2
2891 || (h1 == h2
2892 && ((unsigned HOST_WIDE_INT) l1
2893 < (unsigned HOST_WIDE_INT) l2)))
2894 lv = l1, hv = h1;
2895 else
2896 lv = l2, hv = h2;
2897 break;
2899 case SMAX:
2900 if (h1 > h2
2901 || (h1 == h2
2902 && ((unsigned HOST_WIDE_INT) l1
2903 > (unsigned HOST_WIDE_INT) l2)))
2904 lv = l1, hv = h1;
2905 else
2906 lv = l2, hv = h2;
2907 break;
2909 case UMIN:
2910 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
2911 || (h1 == h2
2912 && ((unsigned HOST_WIDE_INT) l1
2913 < (unsigned HOST_WIDE_INT) l2)))
2914 lv = l1, hv = h1;
2915 else
2916 lv = l2, hv = h2;
2917 break;
2919 case UMAX:
2920 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
2921 || (h1 == h2
2922 && ((unsigned HOST_WIDE_INT) l1
2923 > (unsigned HOST_WIDE_INT) l2)))
2924 lv = l1, hv = h1;
2925 else
2926 lv = l2, hv = h2;
2927 break;
2929 case LSHIFTRT: case ASHIFTRT:
2930 case ASHIFT:
2931 case ROTATE: case ROTATERT:
2932 if (SHIFT_COUNT_TRUNCATED)
2933 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
2935 if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
2936 return 0;
2938 if (code == LSHIFTRT || code == ASHIFTRT)
2939 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
2940 code == ASHIFTRT);
2941 else if (code == ASHIFT)
2942 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
2943 else if (code == ROTATE)
2944 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
2945 else /* code == ROTATERT */
2946 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
2947 break;
2949 default:
2950 return 0;
2953 return immed_double_const (lv, hv, mode);
2956 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
2957 && width <= HOST_BITS_PER_WIDE_INT && width != 0)
2959 /* Get the integer argument values in two forms:
2960 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
2962 arg0 = INTVAL (op0);
2963 arg1 = INTVAL (op1);
2965 if (width < HOST_BITS_PER_WIDE_INT)
2967 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
2968 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
2970 arg0s = arg0;
2971 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
2972 arg0s |= ((HOST_WIDE_INT) (-1) << width);
2974 arg1s = arg1;
2975 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
2976 arg1s |= ((HOST_WIDE_INT) (-1) << width);
2978 else
2980 arg0s = arg0;
2981 arg1s = arg1;
2984 /* Compute the value of the arithmetic. */
2986 switch (code)
2988 case PLUS:
2989 val = arg0s + arg1s;
2990 break;
2992 case MINUS:
2993 val = arg0s - arg1s;
2994 break;
2996 case MULT:
2997 val = arg0s * arg1s;
2998 break;
3000 case DIV:
3001 if (arg1s == 0
3002 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3003 && arg1s == -1))
3004 return 0;
3005 val = arg0s / arg1s;
3006 break;
3008 case MOD:
3009 if (arg1s == 0
3010 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3011 && arg1s == -1))
3012 return 0;
3013 val = arg0s % arg1s;
3014 break;
3016 case UDIV:
3017 if (arg1 == 0
3018 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3019 && arg1s == -1))
3020 return 0;
3021 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
3022 break;
3024 case UMOD:
3025 if (arg1 == 0
3026 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3027 && arg1s == -1))
3028 return 0;
3029 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
3030 break;
3032 case AND:
3033 val = arg0 & arg1;
3034 break;
3036 case IOR:
3037 val = arg0 | arg1;
3038 break;
3040 case XOR:
3041 val = arg0 ^ arg1;
3042 break;
3044 case LSHIFTRT:
3045 case ASHIFT:
3046 case ASHIFTRT:
3047 /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
3048 the value is in range. We can't return any old value for
3049 out-of-range arguments because either the middle-end (via
3050 shift_truncation_mask) or the back-end might be relying on
3051 target-specific knowledge. Nor can we rely on
3052 shift_truncation_mask, since the shift might not be part of an
3053 ashlM3, lshrM3 or ashrM3 instruction. */
3054 if (SHIFT_COUNT_TRUNCATED)
3055 arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
3056 else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
3057 return 0;
3059 val = (code == ASHIFT
3060 ? ((unsigned HOST_WIDE_INT) arg0) << arg1
3061 : ((unsigned HOST_WIDE_INT) arg0) >> arg1);
3063 /* Sign-extend the result for arithmetic right shifts. */
3064 if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
3065 val |= ((HOST_WIDE_INT) -1) << (width - arg1);
3066 break;
3068 case ROTATERT:
3069 if (arg1 < 0)
3070 return 0;
3072 arg1 %= width;
3073 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
3074 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
3075 break;
3077 case ROTATE:
3078 if (arg1 < 0)
3079 return 0;
3081 arg1 %= width;
3082 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
3083 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
3084 break;
3086 case COMPARE:
3087 /* Do nothing here. */
3088 return 0;
3090 case SMIN:
3091 val = arg0s <= arg1s ? arg0s : arg1s;
3092 break;
3094 case UMIN:
3095 val = ((unsigned HOST_WIDE_INT) arg0
3096 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3097 break;
3099 case SMAX:
3100 val = arg0s > arg1s ? arg0s : arg1s;
3101 break;
3103 case UMAX:
3104 val = ((unsigned HOST_WIDE_INT) arg0
3105 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3106 break;
3108 case SS_PLUS:
3109 case US_PLUS:
3110 case SS_MINUS:
3111 case US_MINUS:
3112 /* ??? There are simplifications that can be done. */
3113 return 0;
3115 default:
3116 gcc_unreachable ();
3119 return gen_int_mode (val, mode);
3122 return NULL_RTX;
3127 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
3128 PLUS or MINUS.
3130 Rather than test for specific case, we do this by a brute-force method
3131 and do all possible simplifications until no more changes occur. Then
3132 we rebuild the operation. */
3134 struct simplify_plus_minus_op_data
3136 rtx op;
3137 short neg;
3138 short ix;
3141 static int
3142 simplify_plus_minus_op_data_cmp (const void *p1, const void *p2)
3144 const struct simplify_plus_minus_op_data *d1 = p1;
3145 const struct simplify_plus_minus_op_data *d2 = p2;
3146 int result;
3148 result = (commutative_operand_precedence (d2->op)
3149 - commutative_operand_precedence (d1->op));
3150 if (result)
3151 return result;
3152 return d1->ix - d2->ix;
3155 static rtx
3156 simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
3157 rtx op1)
3159 struct simplify_plus_minus_op_data ops[8];
3160 rtx result, tem;
3161 int n_ops = 2, input_ops = 2;
3162 int first, changed, canonicalized = 0;
3163 int i, j;
3165 memset (ops, 0, sizeof ops);
3167 /* Set up the two operands and then expand them until nothing has been
3168 changed. If we run out of room in our array, give up; this should
3169 almost never happen. */
3171 ops[0].op = op0;
3172 ops[0].neg = 0;
3173 ops[1].op = op1;
3174 ops[1].neg = (code == MINUS);
3178 changed = 0;
3180 for (i = 0; i < n_ops; i++)
3182 rtx this_op = ops[i].op;
3183 int this_neg = ops[i].neg;
3184 enum rtx_code this_code = GET_CODE (this_op);
3186 switch (this_code)
3188 case PLUS:
3189 case MINUS:
3190 if (n_ops == 7)
3191 return NULL_RTX;
3193 ops[n_ops].op = XEXP (this_op, 1);
3194 ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
3195 n_ops++;
3197 ops[i].op = XEXP (this_op, 0);
3198 input_ops++;
3199 changed = 1;
3200 canonicalized |= this_neg;
3201 break;
3203 case NEG:
3204 ops[i].op = XEXP (this_op, 0);
3205 ops[i].neg = ! this_neg;
3206 changed = 1;
3207 canonicalized = 1;
3208 break;
3210 case CONST:
3211 if (n_ops < 7
3212 && GET_CODE (XEXP (this_op, 0)) == PLUS
3213 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
3214 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
3216 ops[i].op = XEXP (XEXP (this_op, 0), 0);
3217 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
3218 ops[n_ops].neg = this_neg;
3219 n_ops++;
3220 changed = 1;
3221 canonicalized = 1;
3223 break;
3225 case NOT:
3226 /* ~a -> (-a - 1) */
3227 if (n_ops != 7)
3229 ops[n_ops].op = constm1_rtx;
3230 ops[n_ops++].neg = this_neg;
3231 ops[i].op = XEXP (this_op, 0);
3232 ops[i].neg = !this_neg;
3233 changed = 1;
3234 canonicalized = 1;
3236 break;
3238 case CONST_INT:
3239 if (this_neg)
3241 ops[i].op = neg_const_int (mode, this_op);
3242 ops[i].neg = 0;
3243 changed = 1;
3244 canonicalized = 1;
3246 break;
3248 default:
3249 break;
3253 while (changed);
3255 gcc_assert (n_ops >= 2);
3256 if (!canonicalized)
3258 int n_constants = 0;
3260 for (i = 0; i < n_ops; i++)
3261 if (GET_CODE (ops[i].op) == CONST_INT)
3262 n_constants++;
3264 if (n_constants <= 1)
3265 return NULL_RTX;
3268 /* If we only have two operands, we can avoid the loops. */
3269 if (n_ops == 2)
3271 enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
3272 rtx lhs, rhs;
3274 /* Get the two operands. Be careful with the order, especially for
3275 the cases where code == MINUS. */
3276 if (ops[0].neg && ops[1].neg)
3278 lhs = gen_rtx_NEG (mode, ops[0].op);
3279 rhs = ops[1].op;
3281 else if (ops[0].neg)
3283 lhs = ops[1].op;
3284 rhs = ops[0].op;
3286 else
3288 lhs = ops[0].op;
3289 rhs = ops[1].op;
3292 return simplify_const_binary_operation (code, mode, lhs, rhs);
3295 /* Now simplify each pair of operands until nothing changes. The first
3296 time through just simplify constants against each other. */
3298 first = 1;
3301 changed = first;
3303 for (i = 0; i < n_ops - 1; i++)
3304 for (j = i + 1; j < n_ops; j++)
3306 rtx lhs = ops[i].op, rhs = ops[j].op;
3307 int lneg = ops[i].neg, rneg = ops[j].neg;
3309 if (lhs != 0 && rhs != 0
3310 && (! first || (CONSTANT_P (lhs) && CONSTANT_P (rhs))))
3312 enum rtx_code ncode = PLUS;
3314 if (lneg != rneg)
3316 ncode = MINUS;
3317 if (lneg)
3318 tem = lhs, lhs = rhs, rhs = tem;
3320 else if (swap_commutative_operands_p (lhs, rhs))
3321 tem = lhs, lhs = rhs, rhs = tem;
3323 if ((GET_CODE (lhs) == CONST || GET_CODE (lhs) == CONST_INT)
3324 && (GET_CODE (rhs) == CONST || GET_CODE (rhs) == CONST_INT))
3326 rtx tem_lhs, tem_rhs;
3328 tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
3329 tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
3330 tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
3332 if (tem && !CONSTANT_P (tem))
3333 tem = gen_rtx_CONST (GET_MODE (tem), tem);
3335 else
3336 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
3338 /* Reject "simplifications" that just wrap the two
3339 arguments in a CONST. Failure to do so can result
3340 in infinite recursion with simplify_binary_operation
3341 when it calls us to simplify CONST operations. */
3342 if (tem
3343 && ! (GET_CODE (tem) == CONST
3344 && GET_CODE (XEXP (tem, 0)) == ncode
3345 && XEXP (XEXP (tem, 0), 0) == lhs
3346 && XEXP (XEXP (tem, 0), 1) == rhs)
3347 /* Don't allow -x + -1 -> ~x simplifications in the
3348 first pass. This allows us the chance to combine
3349 the -1 with other constants. */
3350 && ! (first
3351 && GET_CODE (tem) == NOT
3352 && XEXP (tem, 0) == rhs))
3354 lneg &= rneg;
3355 if (GET_CODE (tem) == NEG)
3356 tem = XEXP (tem, 0), lneg = !lneg;
3357 if (GET_CODE (tem) == CONST_INT && lneg)
3358 tem = neg_const_int (mode, tem), lneg = 0;
3360 ops[i].op = tem;
3361 ops[i].neg = lneg;
3362 ops[j].op = NULL_RTX;
3363 changed = 1;
3368 first = 0;
3370 while (changed);
3372 /* Pack all the operands to the lower-numbered entries. */
3373 for (i = 0, j = 0; j < n_ops; j++)
3374 if (ops[j].op)
3376 ops[i] = ops[j];
3377 /* Stabilize sort. */
3378 ops[i].ix = i;
3379 i++;
3381 n_ops = i;
3383 /* Sort the operations based on swap_commutative_operands_p. */
3384 qsort (ops, n_ops, sizeof (*ops), simplify_plus_minus_op_data_cmp);
3386 /* Create (minus -C X) instead of (neg (const (plus X C))). */
3387 if (n_ops == 2
3388 && GET_CODE (ops[1].op) == CONST_INT
3389 && CONSTANT_P (ops[0].op)
3390 && ops[0].neg)
3391 return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
3393 /* We suppressed creation of trivial CONST expressions in the
3394 combination loop to avoid recursion. Create one manually now.
3395 The combination loop should have ensured that there is exactly
3396 one CONST_INT, and the sort will have ensured that it is last
3397 in the array and that any other constant will be next-to-last. */
3399 if (n_ops > 1
3400 && GET_CODE (ops[n_ops - 1].op) == CONST_INT
3401 && CONSTANT_P (ops[n_ops - 2].op))
3403 rtx value = ops[n_ops - 1].op;
3404 if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
3405 value = neg_const_int (mode, value);
3406 ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
3407 n_ops--;
3410 /* Put a non-negated operand first, if possible. */
3412 for (i = 0; i < n_ops && ops[i].neg; i++)
3413 continue;
3414 if (i == n_ops)
3415 ops[0].op = gen_rtx_NEG (mode, ops[0].op);
3416 else if (i != 0)
3418 tem = ops[0].op;
3419 ops[0] = ops[i];
3420 ops[i].op = tem;
3421 ops[i].neg = 1;
3424 /* Now make the result by performing the requested operations. */
3425 result = ops[0].op;
3426 for (i = 1; i < n_ops; i++)
3427 result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
3428 mode, result, ops[i].op);
3430 return result;
3433 /* Check whether an operand is suitable for calling simplify_plus_minus. */
3434 static bool
3435 plus_minus_operand_p (rtx x)
3437 return GET_CODE (x) == PLUS
3438 || GET_CODE (x) == MINUS
3439 || (GET_CODE (x) == CONST
3440 && GET_CODE (XEXP (x, 0)) == PLUS
3441 && CONSTANT_P (XEXP (XEXP (x, 0), 0))
3442 && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
3445 /* Like simplify_binary_operation except used for relational operators.
3446 MODE is the mode of the result. If MODE is VOIDmode, both operands must
3447 not also be VOIDmode.
3449 CMP_MODE specifies in which mode the comparison is done in, so it is
3450 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
3451 the operands or, if both are VOIDmode, the operands are compared in
3452 "infinite precision". */
3454 simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
3455 enum machine_mode cmp_mode, rtx op0, rtx op1)
3457 rtx tem, trueop0, trueop1;
3459 if (cmp_mode == VOIDmode)
3460 cmp_mode = GET_MODE (op0);
3461 if (cmp_mode == VOIDmode)
3462 cmp_mode = GET_MODE (op1);
3464 tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
3465 if (tem)
3467 if (SCALAR_FLOAT_MODE_P (mode))
3469 if (tem == const0_rtx)
3470 return CONST0_RTX (mode);
3471 #ifdef FLOAT_STORE_FLAG_VALUE
3473 REAL_VALUE_TYPE val;
3474 val = FLOAT_STORE_FLAG_VALUE (mode);
3475 return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
3477 #else
3478 return NULL_RTX;
3479 #endif
3481 if (VECTOR_MODE_P (mode))
3483 if (tem == const0_rtx)
3484 return CONST0_RTX (mode);
3485 #ifdef VECTOR_STORE_FLAG_VALUE
3487 int i, units;
3488 rtvec v;
3490 rtx val = VECTOR_STORE_FLAG_VALUE (mode);
3491 if (val == NULL_RTX)
3492 return NULL_RTX;
3493 if (val == const1_rtx)
3494 return CONST1_RTX (mode);
3496 units = GET_MODE_NUNITS (mode);
3497 v = rtvec_alloc (units);
3498 for (i = 0; i < units; i++)
3499 RTVEC_ELT (v, i) = val;
3500 return gen_rtx_raw_CONST_VECTOR (mode, v);
3502 #else
3503 return NULL_RTX;
3504 #endif
3507 return tem;
3510 /* For the following tests, ensure const0_rtx is op1. */
3511 if (swap_commutative_operands_p (op0, op1)
3512 || (op0 == const0_rtx && op1 != const0_rtx))
3513 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
3515 /* If op0 is a compare, extract the comparison arguments from it. */
3516 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
3517 return simplify_relational_operation (code, mode, VOIDmode,
3518 XEXP (op0, 0), XEXP (op0, 1));
3520 if (mode == VOIDmode
3521 || GET_MODE_CLASS (cmp_mode) == MODE_CC
3522 || CC0_P (op0))
3523 return NULL_RTX;
3525 trueop0 = avoid_constant_pool_reference (op0);
3526 trueop1 = avoid_constant_pool_reference (op1);
3527 return simplify_relational_operation_1 (code, mode, cmp_mode,
3528 trueop0, trueop1);
3531 /* This part of simplify_relational_operation is only used when CMP_MODE
3532 is not in class MODE_CC (i.e. it is a real comparison).
3534 MODE is the mode of the result, while CMP_MODE specifies in which
3535 mode the comparison is done in, so it is the mode of the operands. */
3537 static rtx
3538 simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
3539 enum machine_mode cmp_mode, rtx op0, rtx op1)
3541 enum rtx_code op0code = GET_CODE (op0);
3543 if (GET_CODE (op1) == CONST_INT)
3545 if (INTVAL (op1) == 0 && COMPARISON_P (op0))
3547 /* If op0 is a comparison, extract the comparison arguments
3548 from it. */
3549 if (code == NE)
3551 if (GET_MODE (op0) == mode)
3552 return simplify_rtx (op0);
3553 else
3554 return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
3555 XEXP (op0, 0), XEXP (op0, 1));
3557 else if (code == EQ)
3559 enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
3560 if (new_code != UNKNOWN)
3561 return simplify_gen_relational (new_code, mode, VOIDmode,
3562 XEXP (op0, 0), XEXP (op0, 1));
3567 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
3568 if ((code == EQ || code == NE)
3569 && (op0code == PLUS || op0code == MINUS)
3570 && CONSTANT_P (op1)
3571 && CONSTANT_P (XEXP (op0, 1))
3572 && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
3574 rtx x = XEXP (op0, 0);
3575 rtx c = XEXP (op0, 1);
3577 c = simplify_gen_binary (op0code == PLUS ? MINUS : PLUS,
3578 cmp_mode, op1, c);
3579 return simplify_gen_relational (code, mode, cmp_mode, x, c);
3582 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
3583 the same as (zero_extract:SI FOO (const_int 1) BAR). */
3584 if (code == NE
3585 && op1 == const0_rtx
3586 && GET_MODE_CLASS (mode) == MODE_INT
3587 && cmp_mode != VOIDmode
3588 /* ??? Work-around BImode bugs in the ia64 backend. */
3589 && mode != BImode
3590 && cmp_mode != BImode
3591 && nonzero_bits (op0, cmp_mode) == 1
3592 && STORE_FLAG_VALUE == 1)
3593 return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
3594 ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
3595 : lowpart_subreg (mode, op0, cmp_mode);
3597 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
3598 if ((code == EQ || code == NE)
3599 && op1 == const0_rtx
3600 && op0code == XOR)
3601 return simplify_gen_relational (code, mode, cmp_mode,
3602 XEXP (op0, 0), XEXP (op0, 1));
3604 /* (eq/ne (xor x y) x) simplifies to (eq/ne x 0). */
3605 if ((code == EQ || code == NE)
3606 && op0code == XOR
3607 && rtx_equal_p (XEXP (op0, 0), op1)
3608 && !side_effects_p (XEXP (op0, 1)))
3609 return simplify_gen_relational (code, mode, cmp_mode, op1, const0_rtx);
3610 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne y 0). */
3611 if ((code == EQ || code == NE)
3612 && op0code == XOR
3613 && rtx_equal_p (XEXP (op0, 1), op1)
3614 && !side_effects_p (XEXP (op0, 0)))
3615 return simplify_gen_relational (code, mode, cmp_mode, op1, const0_rtx);
3617 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
3618 if ((code == EQ || code == NE)
3619 && op0code == XOR
3620 && (GET_CODE (op1) == CONST_INT
3621 || GET_CODE (op1) == CONST_DOUBLE)
3622 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
3623 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE))
3624 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
3625 simplify_gen_binary (XOR, cmp_mode,
3626 XEXP (op0, 1), op1));
3628 return NULL_RTX;
3631 /* Check if the given comparison (done in the given MODE) is actually a
3632 tautology or a contradiction.
3633 If no simplification is possible, this function returns zero.
3634 Otherwise, it returns either const_true_rtx or const0_rtx. */
3637 simplify_const_relational_operation (enum rtx_code code,
3638 enum machine_mode mode,
3639 rtx op0, rtx op1)
3641 int equal, op0lt, op0ltu, op1lt, op1ltu;
3642 rtx tem;
3643 rtx trueop0;
3644 rtx trueop1;
3646 gcc_assert (mode != VOIDmode
3647 || (GET_MODE (op0) == VOIDmode
3648 && GET_MODE (op1) == VOIDmode));
3650 /* If op0 is a compare, extract the comparison arguments from it. */
3651 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
3653 op1 = XEXP (op0, 1);
3654 op0 = XEXP (op0, 0);
3656 if (GET_MODE (op0) != VOIDmode)
3657 mode = GET_MODE (op0);
3658 else if (GET_MODE (op1) != VOIDmode)
3659 mode = GET_MODE (op1);
3660 else
3661 return 0;
3664 /* We can't simplify MODE_CC values since we don't know what the
3665 actual comparison is. */
3666 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
3667 return 0;
3669 /* Make sure the constant is second. */
3670 if (swap_commutative_operands_p (op0, op1))
3672 tem = op0, op0 = op1, op1 = tem;
3673 code = swap_condition (code);
3676 trueop0 = avoid_constant_pool_reference (op0);
3677 trueop1 = avoid_constant_pool_reference (op1);
3679 /* For integer comparisons of A and B maybe we can simplify A - B and can
3680 then simplify a comparison of that with zero. If A and B are both either
3681 a register or a CONST_INT, this can't help; testing for these cases will
3682 prevent infinite recursion here and speed things up.
3684 If CODE is an unsigned comparison, then we can never do this optimization,
3685 because it gives an incorrect result if the subtraction wraps around zero.
3686 ANSI C defines unsigned operations such that they never overflow, and
3687 thus such cases can not be ignored; but we cannot do it even for
3688 signed comparisons for languages such as Java, so test flag_wrapv. */
3690 if (!flag_wrapv && INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
3691 && ! ((REG_P (op0) || GET_CODE (trueop0) == CONST_INT)
3692 && (REG_P (op1) || GET_CODE (trueop1) == CONST_INT))
3693 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
3694 /* We cannot do this for == or != if tem is a nonzero address. */
3695 && ((code != EQ && code != NE) || ! nonzero_address_p (tem))
3696 && code != GTU && code != GEU && code != LTU && code != LEU)
3697 return simplify_const_relational_operation (signed_condition (code),
3698 mode, tem, const0_rtx);
3700 if (flag_unsafe_math_optimizations && code == ORDERED)
3701 return const_true_rtx;
3703 if (flag_unsafe_math_optimizations && code == UNORDERED)
3704 return const0_rtx;
3706 /* For modes without NaNs, if the two operands are equal, we know the
3707 result except if they have side-effects. */
3708 if (! HONOR_NANS (GET_MODE (trueop0))
3709 && rtx_equal_p (trueop0, trueop1)
3710 && ! side_effects_p (trueop0))
3711 equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
3713 /* If the operands are floating-point constants, see if we can fold
3714 the result. */
3715 else if (GET_CODE (trueop0) == CONST_DOUBLE
3716 && GET_CODE (trueop1) == CONST_DOUBLE
3717 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
3719 REAL_VALUE_TYPE d0, d1;
3721 REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
3722 REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
3724 /* Comparisons are unordered iff at least one of the values is NaN. */
3725 if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
3726 switch (code)
3728 case UNEQ:
3729 case UNLT:
3730 case UNGT:
3731 case UNLE:
3732 case UNGE:
3733 case NE:
3734 case UNORDERED:
3735 return const_true_rtx;
3736 case EQ:
3737 case LT:
3738 case GT:
3739 case LE:
3740 case GE:
3741 case LTGT:
3742 case ORDERED:
3743 return const0_rtx;
3744 default:
3745 return 0;
3748 equal = REAL_VALUES_EQUAL (d0, d1);
3749 op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
3750 op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
3753 /* Otherwise, see if the operands are both integers. */
3754 else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
3755 && (GET_CODE (trueop0) == CONST_DOUBLE
3756 || GET_CODE (trueop0) == CONST_INT)
3757 && (GET_CODE (trueop1) == CONST_DOUBLE
3758 || GET_CODE (trueop1) == CONST_INT))
3760 int width = GET_MODE_BITSIZE (mode);
3761 HOST_WIDE_INT l0s, h0s, l1s, h1s;
3762 unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
3764 /* Get the two words comprising each integer constant. */
3765 if (GET_CODE (trueop0) == CONST_DOUBLE)
3767 l0u = l0s = CONST_DOUBLE_LOW (trueop0);
3768 h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
3770 else
3772 l0u = l0s = INTVAL (trueop0);
3773 h0u = h0s = HWI_SIGN_EXTEND (l0s);
3776 if (GET_CODE (trueop1) == CONST_DOUBLE)
3778 l1u = l1s = CONST_DOUBLE_LOW (trueop1);
3779 h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
3781 else
3783 l1u = l1s = INTVAL (trueop1);
3784 h1u = h1s = HWI_SIGN_EXTEND (l1s);
3787 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
3788 we have to sign or zero-extend the values. */
3789 if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
3791 l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
3792 l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
3794 if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
3795 l0s |= ((HOST_WIDE_INT) (-1) << width);
3797 if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
3798 l1s |= ((HOST_WIDE_INT) (-1) << width);
3800 if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
3801 h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
3803 equal = (h0u == h1u && l0u == l1u);
3804 op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
3805 op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
3806 op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
3807 op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
3810 /* Otherwise, there are some code-specific tests we can make. */
3811 else
3813 /* Optimize comparisons with upper and lower bounds. */
3814 if (SCALAR_INT_MODE_P (mode)
3815 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3817 rtx mmin, mmax;
3818 int sign;
3820 if (code == GEU
3821 || code == LEU
3822 || code == GTU
3823 || code == LTU)
3824 sign = 0;
3825 else
3826 sign = 1;
3828 get_mode_bounds (mode, sign, mode, &mmin, &mmax);
3830 tem = NULL_RTX;
3831 switch (code)
3833 case GEU:
3834 case GE:
3835 /* x >= min is always true. */
3836 if (rtx_equal_p (trueop1, mmin))
3837 tem = const_true_rtx;
3838 else
3839 break;
3841 case LEU:
3842 case LE:
3843 /* x <= max is always true. */
3844 if (rtx_equal_p (trueop1, mmax))
3845 tem = const_true_rtx;
3846 break;
3848 case GTU:
3849 case GT:
3850 /* x > max is always false. */
3851 if (rtx_equal_p (trueop1, mmax))
3852 tem = const0_rtx;
3853 break;
3855 case LTU:
3856 case LT:
3857 /* x < min is always false. */
3858 if (rtx_equal_p (trueop1, mmin))
3859 tem = const0_rtx;
3860 break;
3862 default:
3863 break;
3865 if (tem == const0_rtx
3866 || tem == const_true_rtx)
3867 return tem;
3870 switch (code)
3872 case EQ:
3873 if (trueop1 == const0_rtx && nonzero_address_p (op0))
3874 return const0_rtx;
3875 break;
3877 case NE:
3878 if (trueop1 == const0_rtx && nonzero_address_p (op0))
3879 return const_true_rtx;
3880 break;
3882 case LT:
3883 /* Optimize abs(x) < 0.0. */
3884 if (trueop1 == CONST0_RTX (mode)
3885 && !HONOR_SNANS (mode)
3886 && !(flag_wrapv && INTEGRAL_MODE_P (mode)))
3888 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3889 : trueop0;
3890 if (GET_CODE (tem) == ABS)
3891 return const0_rtx;
3893 break;
3895 case GE:
3896 /* Optimize abs(x) >= 0.0. */
3897 if (trueop1 == CONST0_RTX (mode)
3898 && !HONOR_NANS (mode)
3899 && !(flag_wrapv && INTEGRAL_MODE_P (mode)))
3901 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3902 : trueop0;
3903 if (GET_CODE (tem) == ABS)
3904 return const_true_rtx;
3906 break;
3908 case UNGE:
3909 /* Optimize ! (abs(x) < 0.0). */
3910 if (trueop1 == CONST0_RTX (mode))
3912 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3913 : trueop0;
3914 if (GET_CODE (tem) == ABS)
3915 return const_true_rtx;
3917 break;
3919 default:
3920 break;
3923 return 0;
3926 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
3927 as appropriate. */
3928 switch (code)
3930 case EQ:
3931 case UNEQ:
3932 return equal ? const_true_rtx : const0_rtx;
3933 case NE:
3934 case LTGT:
3935 return ! equal ? const_true_rtx : const0_rtx;
3936 case LT:
3937 case UNLT:
3938 return op0lt ? const_true_rtx : const0_rtx;
3939 case GT:
3940 case UNGT:
3941 return op1lt ? const_true_rtx : const0_rtx;
3942 case LTU:
3943 return op0ltu ? const_true_rtx : const0_rtx;
3944 case GTU:
3945 return op1ltu ? const_true_rtx : const0_rtx;
3946 case LE:
3947 case UNLE:
3948 return equal || op0lt ? const_true_rtx : const0_rtx;
3949 case GE:
3950 case UNGE:
3951 return equal || op1lt ? const_true_rtx : const0_rtx;
3952 case LEU:
3953 return equal || op0ltu ? const_true_rtx : const0_rtx;
3954 case GEU:
3955 return equal || op1ltu ? const_true_rtx : const0_rtx;
3956 case ORDERED:
3957 return const_true_rtx;
3958 case UNORDERED:
3959 return const0_rtx;
3960 default:
3961 gcc_unreachable ();
3965 /* Simplify CODE, an operation with result mode MODE and three operands,
3966 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
3967 a constant. Return 0 if no simplifications is possible. */
3970 simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
3971 enum machine_mode op0_mode, rtx op0, rtx op1,
3972 rtx op2)
3974 unsigned int width = GET_MODE_BITSIZE (mode);
3976 /* VOIDmode means "infinite" precision. */
3977 if (width == 0)
3978 width = HOST_BITS_PER_WIDE_INT;
3980 switch (code)
3982 case SIGN_EXTRACT:
3983 case ZERO_EXTRACT:
3984 if (GET_CODE (op0) == CONST_INT
3985 && GET_CODE (op1) == CONST_INT
3986 && GET_CODE (op2) == CONST_INT
3987 && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
3988 && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
3990 /* Extracting a bit-field from a constant */
3991 HOST_WIDE_INT val = INTVAL (op0);
3993 if (BITS_BIG_ENDIAN)
3994 val >>= (GET_MODE_BITSIZE (op0_mode)
3995 - INTVAL (op2) - INTVAL (op1));
3996 else
3997 val >>= INTVAL (op2);
3999 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
4001 /* First zero-extend. */
4002 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
4003 /* If desired, propagate sign bit. */
4004 if (code == SIGN_EXTRACT
4005 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
4006 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
4009 /* Clear the bits that don't belong in our mode,
4010 unless they and our sign bit are all one.
4011 So we get either a reasonable negative value or a reasonable
4012 unsigned value for this mode. */
4013 if (width < HOST_BITS_PER_WIDE_INT
4014 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4015 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4016 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4018 return gen_int_mode (val, mode);
4020 break;
4022 case IF_THEN_ELSE:
4023 if (GET_CODE (op0) == CONST_INT)
4024 return op0 != const0_rtx ? op1 : op2;
4026 /* Convert c ? a : a into "a". */
4027 if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
4028 return op1;
4030 /* Convert a != b ? a : b into "a". */
4031 if (GET_CODE (op0) == NE
4032 && ! side_effects_p (op0)
4033 && ! HONOR_NANS (mode)
4034 && ! HONOR_SIGNED_ZEROS (mode)
4035 && ((rtx_equal_p (XEXP (op0, 0), op1)
4036 && rtx_equal_p (XEXP (op0, 1), op2))
4037 || (rtx_equal_p (XEXP (op0, 0), op2)
4038 && rtx_equal_p (XEXP (op0, 1), op1))))
4039 return op1;
4041 /* Convert a == b ? a : b into "b". */
4042 if (GET_CODE (op0) == EQ
4043 && ! side_effects_p (op0)
4044 && ! HONOR_NANS (mode)
4045 && ! HONOR_SIGNED_ZEROS (mode)
4046 && ((rtx_equal_p (XEXP (op0, 0), op1)
4047 && rtx_equal_p (XEXP (op0, 1), op2))
4048 || (rtx_equal_p (XEXP (op0, 0), op2)
4049 && rtx_equal_p (XEXP (op0, 1), op1))))
4050 return op2;
4052 if (COMPARISON_P (op0) && ! side_effects_p (op0))
4054 enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
4055 ? GET_MODE (XEXP (op0, 1))
4056 : GET_MODE (XEXP (op0, 0)));
4057 rtx temp;
4059 /* Look for happy constants in op1 and op2. */
4060 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
4062 HOST_WIDE_INT t = INTVAL (op1);
4063 HOST_WIDE_INT f = INTVAL (op2);
4065 if (t == STORE_FLAG_VALUE && f == 0)
4066 code = GET_CODE (op0);
4067 else if (t == 0 && f == STORE_FLAG_VALUE)
4069 enum rtx_code tmp;
4070 tmp = reversed_comparison_code (op0, NULL_RTX);
4071 if (tmp == UNKNOWN)
4072 break;
4073 code = tmp;
4075 else
4076 break;
4078 return simplify_gen_relational (code, mode, cmp_mode,
4079 XEXP (op0, 0), XEXP (op0, 1));
4082 if (cmp_mode == VOIDmode)
4083 cmp_mode = op0_mode;
4084 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
4085 cmp_mode, XEXP (op0, 0),
4086 XEXP (op0, 1));
4088 /* See if any simplifications were possible. */
4089 if (temp)
4091 if (GET_CODE (temp) == CONST_INT)
4092 return temp == const0_rtx ? op2 : op1;
4093 else if (temp)
4094 return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
4097 break;
4099 case VEC_MERGE:
4100 gcc_assert (GET_MODE (op0) == mode);
4101 gcc_assert (GET_MODE (op1) == mode);
4102 gcc_assert (VECTOR_MODE_P (mode));
4103 op2 = avoid_constant_pool_reference (op2);
4104 if (GET_CODE (op2) == CONST_INT)
4106 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
4107 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
4108 int mask = (1 << n_elts) - 1;
4110 if (!(INTVAL (op2) & mask))
4111 return op1;
4112 if ((INTVAL (op2) & mask) == mask)
4113 return op0;
4115 op0 = avoid_constant_pool_reference (op0);
4116 op1 = avoid_constant_pool_reference (op1);
4117 if (GET_CODE (op0) == CONST_VECTOR
4118 && GET_CODE (op1) == CONST_VECTOR)
4120 rtvec v = rtvec_alloc (n_elts);
4121 unsigned int i;
4123 for (i = 0; i < n_elts; i++)
4124 RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
4125 ? CONST_VECTOR_ELT (op0, i)
4126 : CONST_VECTOR_ELT (op1, i));
4127 return gen_rtx_CONST_VECTOR (mode, v);
4130 break;
4132 default:
4133 gcc_unreachable ();
4136 return 0;
4139 /* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_VECTOR,
4140 returning another CONST_INT or CONST_DOUBLE or CONST_VECTOR.
4142 Works by unpacking OP into a collection of 8-bit values
4143 represented as a little-endian array of 'unsigned char', selecting by BYTE,
4144 and then repacking them again for OUTERMODE. */
4146 static rtx
4147 simplify_immed_subreg (enum machine_mode outermode, rtx op,
4148 enum machine_mode innermode, unsigned int byte)
4150 /* We support up to 512-bit values (for V8DFmode). */
4151 enum {
4152 max_bitsize = 512,
4153 value_bit = 8,
4154 value_mask = (1 << value_bit) - 1
4156 unsigned char value[max_bitsize / value_bit];
4157 int value_start;
4158 int i;
4159 int elem;
4161 int num_elem;
4162 rtx * elems;
4163 int elem_bitsize;
4164 rtx result_s;
4165 rtvec result_v = NULL;
4166 enum mode_class outer_class;
4167 enum machine_mode outer_submode;
4169 /* Some ports misuse CCmode. */
4170 if (GET_MODE_CLASS (outermode) == MODE_CC && GET_CODE (op) == CONST_INT)
4171 return op;
4173 /* We have no way to represent a complex constant at the rtl level. */
4174 if (COMPLEX_MODE_P (outermode))
4175 return NULL_RTX;
4177 /* Unpack the value. */
4179 if (GET_CODE (op) == CONST_VECTOR)
4181 num_elem = CONST_VECTOR_NUNITS (op);
4182 elems = &CONST_VECTOR_ELT (op, 0);
4183 elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
4185 else
4187 num_elem = 1;
4188 elems = &op;
4189 elem_bitsize = max_bitsize;
4191 /* If this asserts, it is too complicated; reducing value_bit may help. */
4192 gcc_assert (BITS_PER_UNIT % value_bit == 0);
4193 /* I don't know how to handle endianness of sub-units. */
4194 gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
4196 for (elem = 0; elem < num_elem; elem++)
4198 unsigned char * vp;
4199 rtx el = elems[elem];
4201 /* Vectors are kept in target memory order. (This is probably
4202 a mistake.) */
4204 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4205 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4206 / BITS_PER_UNIT);
4207 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4208 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4209 unsigned bytele = (subword_byte % UNITS_PER_WORD
4210 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4211 vp = value + (bytele * BITS_PER_UNIT) / value_bit;
4214 switch (GET_CODE (el))
4216 case CONST_INT:
4217 for (i = 0;
4218 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4219 i += value_bit)
4220 *vp++ = INTVAL (el) >> i;
4221 /* CONST_INTs are always logically sign-extended. */
4222 for (; i < elem_bitsize; i += value_bit)
4223 *vp++ = INTVAL (el) < 0 ? -1 : 0;
4224 break;
4226 case CONST_DOUBLE:
4227 if (GET_MODE (el) == VOIDmode)
4229 /* If this triggers, someone should have generated a
4230 CONST_INT instead. */
4231 gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
4233 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
4234 *vp++ = CONST_DOUBLE_LOW (el) >> i;
4235 while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
4237 *vp++
4238 = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
4239 i += value_bit;
4241 /* It shouldn't matter what's done here, so fill it with
4242 zero. */
4243 for (; i < elem_bitsize; i += value_bit)
4244 *vp++ = 0;
4246 else
4248 long tmp[max_bitsize / 32];
4249 int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
4251 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
4252 gcc_assert (bitsize <= elem_bitsize);
4253 gcc_assert (bitsize % value_bit == 0);
4255 real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
4256 GET_MODE (el));
4258 /* real_to_target produces its result in words affected by
4259 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4260 and use WORDS_BIG_ENDIAN instead; see the documentation
4261 of SUBREG in rtl.texi. */
4262 for (i = 0; i < bitsize; i += value_bit)
4264 int ibase;
4265 if (WORDS_BIG_ENDIAN)
4266 ibase = bitsize - 1 - i;
4267 else
4268 ibase = i;
4269 *vp++ = tmp[ibase / 32] >> i % 32;
4272 /* It shouldn't matter what's done here, so fill it with
4273 zero. */
4274 for (; i < elem_bitsize; i += value_bit)
4275 *vp++ = 0;
4277 break;
4279 default:
4280 gcc_unreachable ();
4284 /* Now, pick the right byte to start with. */
4285 /* Renumber BYTE so that the least-significant byte is byte 0. A special
4286 case is paradoxical SUBREGs, which shouldn't be adjusted since they
4287 will already have offset 0. */
4288 if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
4290 unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
4291 - byte);
4292 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4293 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4294 byte = (subword_byte % UNITS_PER_WORD
4295 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4298 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
4299 so if it's become negative it will instead be very large.) */
4300 gcc_assert (byte < GET_MODE_SIZE (innermode));
4302 /* Convert from bytes to chunks of size value_bit. */
4303 value_start = byte * (BITS_PER_UNIT / value_bit);
4305 /* Re-pack the value. */
4307 if (VECTOR_MODE_P (outermode))
4309 num_elem = GET_MODE_NUNITS (outermode);
4310 result_v = rtvec_alloc (num_elem);
4311 elems = &RTVEC_ELT (result_v, 0);
4312 outer_submode = GET_MODE_INNER (outermode);
4314 else
4316 num_elem = 1;
4317 elems = &result_s;
4318 outer_submode = outermode;
4321 outer_class = GET_MODE_CLASS (outer_submode);
4322 elem_bitsize = GET_MODE_BITSIZE (outer_submode);
4324 gcc_assert (elem_bitsize % value_bit == 0);
4325 gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
4327 for (elem = 0; elem < num_elem; elem++)
4329 unsigned char *vp;
4331 /* Vectors are stored in target memory order. (This is probably
4332 a mistake.) */
4334 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4335 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4336 / BITS_PER_UNIT);
4337 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4338 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4339 unsigned bytele = (subword_byte % UNITS_PER_WORD
4340 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4341 vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
4344 switch (outer_class)
4346 case MODE_INT:
4347 case MODE_PARTIAL_INT:
4349 unsigned HOST_WIDE_INT hi = 0, lo = 0;
4351 for (i = 0;
4352 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4353 i += value_bit)
4354 lo |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
4355 for (; i < elem_bitsize; i += value_bit)
4356 hi |= ((HOST_WIDE_INT)(*vp++ & value_mask)
4357 << (i - HOST_BITS_PER_WIDE_INT));
4359 /* immed_double_const doesn't call trunc_int_for_mode. I don't
4360 know why. */
4361 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
4362 elems[elem] = gen_int_mode (lo, outer_submode);
4363 else if (elem_bitsize <= 2 * HOST_BITS_PER_WIDE_INT)
4364 elems[elem] = immed_double_const (lo, hi, outer_submode);
4365 else
4366 return NULL_RTX;
4368 break;
4370 case MODE_FLOAT:
4371 case MODE_DECIMAL_FLOAT:
4373 REAL_VALUE_TYPE r;
4374 long tmp[max_bitsize / 32];
4376 /* real_from_target wants its input in words affected by
4377 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4378 and use WORDS_BIG_ENDIAN instead; see the documentation
4379 of SUBREG in rtl.texi. */
4380 for (i = 0; i < max_bitsize / 32; i++)
4381 tmp[i] = 0;
4382 for (i = 0; i < elem_bitsize; i += value_bit)
4384 int ibase;
4385 if (WORDS_BIG_ENDIAN)
4386 ibase = elem_bitsize - 1 - i;
4387 else
4388 ibase = i;
4389 tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
4392 real_from_target (&r, tmp, outer_submode);
4393 elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
4395 break;
4397 default:
4398 gcc_unreachable ();
4401 if (VECTOR_MODE_P (outermode))
4402 return gen_rtx_CONST_VECTOR (outermode, result_v);
4403 else
4404 return result_s;
4407 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
4408 Return 0 if no simplifications are possible. */
4410 simplify_subreg (enum machine_mode outermode, rtx op,
4411 enum machine_mode innermode, unsigned int byte)
4413 /* Little bit of sanity checking. */
4414 gcc_assert (innermode != VOIDmode);
4415 gcc_assert (outermode != VOIDmode);
4416 gcc_assert (innermode != BLKmode);
4417 gcc_assert (outermode != BLKmode);
4419 gcc_assert (GET_MODE (op) == innermode
4420 || GET_MODE (op) == VOIDmode);
4422 gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
4423 gcc_assert (byte < GET_MODE_SIZE (innermode));
4425 if (outermode == innermode && !byte)
4426 return op;
4428 if (GET_CODE (op) == CONST_INT
4429 || GET_CODE (op) == CONST_DOUBLE
4430 || GET_CODE (op) == CONST_VECTOR)
4431 return simplify_immed_subreg (outermode, op, innermode, byte);
4433 /* Changing mode twice with SUBREG => just change it once,
4434 or not at all if changing back op starting mode. */
4435 if (GET_CODE (op) == SUBREG)
4437 enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4438 int final_offset = byte + SUBREG_BYTE (op);
4439 rtx newx;
4441 if (outermode == innermostmode
4442 && byte == 0 && SUBREG_BYTE (op) == 0)
4443 return SUBREG_REG (op);
4445 /* The SUBREG_BYTE represents offset, as if the value were stored
4446 in memory. Irritating exception is paradoxical subreg, where
4447 we define SUBREG_BYTE to be 0. On big endian machines, this
4448 value should be negative. For a moment, undo this exception. */
4449 if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
4451 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
4452 if (WORDS_BIG_ENDIAN)
4453 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4454 if (BYTES_BIG_ENDIAN)
4455 final_offset += difference % UNITS_PER_WORD;
4457 if (SUBREG_BYTE (op) == 0
4458 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
4460 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
4461 if (WORDS_BIG_ENDIAN)
4462 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4463 if (BYTES_BIG_ENDIAN)
4464 final_offset += difference % UNITS_PER_WORD;
4467 /* See whether resulting subreg will be paradoxical. */
4468 if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
4470 /* In nonparadoxical subregs we can't handle negative offsets. */
4471 if (final_offset < 0)
4472 return NULL_RTX;
4473 /* Bail out in case resulting subreg would be incorrect. */
4474 if (final_offset % GET_MODE_SIZE (outermode)
4475 || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
4476 return NULL_RTX;
4478 else
4480 int offset = 0;
4481 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
4483 /* In paradoxical subreg, see if we are still looking on lower part.
4484 If so, our SUBREG_BYTE will be 0. */
4485 if (WORDS_BIG_ENDIAN)
4486 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4487 if (BYTES_BIG_ENDIAN)
4488 offset += difference % UNITS_PER_WORD;
4489 if (offset == final_offset)
4490 final_offset = 0;
4491 else
4492 return NULL_RTX;
4495 /* Recurse for further possible simplifications. */
4496 newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
4497 final_offset);
4498 if (newx)
4499 return newx;
4500 if (validate_subreg (outermode, innermostmode,
4501 SUBREG_REG (op), final_offset))
4502 return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
4503 return NULL_RTX;
4506 /* Merge implicit and explicit truncations. */
4508 if (GET_CODE (op) == TRUNCATE
4509 && GET_MODE_SIZE (outermode) < GET_MODE_SIZE (innermode)
4510 && subreg_lowpart_offset (outermode, innermode) == byte)
4511 return simplify_gen_unary (TRUNCATE, outermode, XEXP (op, 0),
4512 GET_MODE (XEXP (op, 0)));
4514 /* SUBREG of a hard register => just change the register number
4515 and/or mode. If the hard register is not valid in that mode,
4516 suppress this simplification. If the hard register is the stack,
4517 frame, or argument pointer, leave this as a SUBREG. */
4519 if (REG_P (op)
4520 && REGNO (op) < FIRST_PSEUDO_REGISTER
4521 #ifdef CANNOT_CHANGE_MODE_CLASS
4522 && ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op), innermode, outermode)
4523 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
4524 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT)
4525 #endif
4526 && ((reload_completed && !frame_pointer_needed)
4527 || (REGNO (op) != FRAME_POINTER_REGNUM
4528 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4529 && REGNO (op) != HARD_FRAME_POINTER_REGNUM
4530 #endif
4532 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4533 && REGNO (op) != ARG_POINTER_REGNUM
4534 #endif
4535 && REGNO (op) != STACK_POINTER_REGNUM
4536 && subreg_offset_representable_p (REGNO (op), innermode,
4537 byte, outermode))
4539 unsigned int regno = REGNO (op);
4540 unsigned int final_regno
4541 = regno + subreg_regno_offset (regno, innermode, byte, outermode);
4543 /* ??? We do allow it if the current REG is not valid for
4544 its mode. This is a kludge to work around how float/complex
4545 arguments are passed on 32-bit SPARC and should be fixed. */
4546 if (HARD_REGNO_MODE_OK (final_regno, outermode)
4547 || ! HARD_REGNO_MODE_OK (regno, innermode))
4549 rtx x = gen_rtx_REG_offset (op, outermode, final_regno, byte);
4551 /* Propagate original regno. We don't have any way to specify
4552 the offset inside original regno, so do so only for lowpart.
4553 The information is used only by alias analysis that can not
4554 grog partial register anyway. */
4556 if (subreg_lowpart_offset (outermode, innermode) == byte)
4557 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
4558 return x;
4562 /* If we have a SUBREG of a register that we are replacing and we are
4563 replacing it with a MEM, make a new MEM and try replacing the
4564 SUBREG with it. Don't do this if the MEM has a mode-dependent address
4565 or if we would be widening it. */
4567 if (MEM_P (op)
4568 && ! mode_dependent_address_p (XEXP (op, 0))
4569 /* Allow splitting of volatile memory references in case we don't
4570 have instruction to move the whole thing. */
4571 && (! MEM_VOLATILE_P (op)
4572 || ! have_insn_for (SET, innermode))
4573 && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
4574 return adjust_address_nv (op, outermode, byte);
4576 /* Handle complex values represented as CONCAT
4577 of real and imaginary part. */
4578 if (GET_CODE (op) == CONCAT)
4580 unsigned int inner_size, final_offset;
4581 rtx part, res;
4583 inner_size = GET_MODE_UNIT_SIZE (innermode);
4584 part = byte < inner_size ? XEXP (op, 0) : XEXP (op, 1);
4585 final_offset = byte % inner_size;
4586 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
4587 return NULL_RTX;
4589 res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
4590 if (res)
4591 return res;
4592 if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
4593 return gen_rtx_SUBREG (outermode, part, final_offset);
4594 return NULL_RTX;
4597 /* Optimize SUBREG truncations of zero and sign extended values. */
4598 if ((GET_CODE (op) == ZERO_EXTEND
4599 || GET_CODE (op) == SIGN_EXTEND)
4600 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode))
4602 unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
4604 /* If we're requesting the lowpart of a zero or sign extension,
4605 there are three possibilities. If the outermode is the same
4606 as the origmode, we can omit both the extension and the subreg.
4607 If the outermode is not larger than the origmode, we can apply
4608 the truncation without the extension. Finally, if the outermode
4609 is larger than the origmode, but both are integer modes, we
4610 can just extend to the appropriate mode. */
4611 if (bitpos == 0)
4613 enum machine_mode origmode = GET_MODE (XEXP (op, 0));
4614 if (outermode == origmode)
4615 return XEXP (op, 0);
4616 if (GET_MODE_BITSIZE (outermode) <= GET_MODE_BITSIZE (origmode))
4617 return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
4618 subreg_lowpart_offset (outermode,
4619 origmode));
4620 if (SCALAR_INT_MODE_P (outermode))
4621 return simplify_gen_unary (GET_CODE (op), outermode,
4622 XEXP (op, 0), origmode);
4625 /* A SUBREG resulting from a zero extension may fold to zero if
4626 it extracts higher bits that the ZERO_EXTEND's source bits. */
4627 if (GET_CODE (op) == ZERO_EXTEND
4628 && bitpos >= GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))))
4629 return CONST0_RTX (outermode);
4632 /* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
4633 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
4634 the outer subreg is effectively a truncation to the original mode. */
4635 if ((GET_CODE (op) == LSHIFTRT
4636 || GET_CODE (op) == ASHIFTRT)
4637 && SCALAR_INT_MODE_P (outermode)
4638 /* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
4639 to avoid the possibility that an outer LSHIFTRT shifts by more
4640 than the sign extension's sign_bit_copies and introduces zeros
4641 into the high bits of the result. */
4642 && (2 * GET_MODE_BITSIZE (outermode)) <= GET_MODE_BITSIZE (innermode)
4643 && GET_CODE (XEXP (op, 1)) == CONST_INT
4644 && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
4645 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4646 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4647 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4648 return simplify_gen_binary (ASHIFTRT, outermode,
4649 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4651 /* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
4652 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
4653 the outer subreg is effectively a truncation to the original mode. */
4654 if ((GET_CODE (op) == LSHIFTRT
4655 || GET_CODE (op) == ASHIFTRT)
4656 && SCALAR_INT_MODE_P (outermode)
4657 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
4658 && GET_CODE (XEXP (op, 1)) == CONST_INT
4659 && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
4660 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4661 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4662 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4663 return simplify_gen_binary (LSHIFTRT, outermode,
4664 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4666 /* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
4667 to (ashift:QI (x:QI) C), where C is a suitable small constant and
4668 the outer subreg is effectively a truncation to the original mode. */
4669 if (GET_CODE (op) == ASHIFT
4670 && SCALAR_INT_MODE_P (outermode)
4671 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
4672 && GET_CODE (XEXP (op, 1)) == CONST_INT
4673 && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
4674 || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
4675 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4676 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4677 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4678 return simplify_gen_binary (ASHIFT, outermode,
4679 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4681 return NULL_RTX;
4684 /* Make a SUBREG operation or equivalent if it folds. */
4687 simplify_gen_subreg (enum machine_mode outermode, rtx op,
4688 enum machine_mode innermode, unsigned int byte)
4690 rtx newx;
4692 newx = simplify_subreg (outermode, op, innermode, byte);
4693 if (newx)
4694 return newx;
4696 if (GET_CODE (op) == SUBREG
4697 || GET_CODE (op) == CONCAT
4698 || GET_MODE (op) == VOIDmode)
4699 return NULL_RTX;
4701 if (validate_subreg (outermode, innermode, op, byte))
4702 return gen_rtx_SUBREG (outermode, op, byte);
4704 return NULL_RTX;
4707 /* Simplify X, an rtx expression.
4709 Return the simplified expression or NULL if no simplifications
4710 were possible.
4712 This is the preferred entry point into the simplification routines;
4713 however, we still allow passes to call the more specific routines.
4715 Right now GCC has three (yes, three) major bodies of RTL simplification
4716 code that need to be unified.
4718 1. fold_rtx in cse.c. This code uses various CSE specific
4719 information to aid in RTL simplification.
4721 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
4722 it uses combine specific information to aid in RTL
4723 simplification.
4725 3. The routines in this file.
4728 Long term we want to only have one body of simplification code; to
4729 get to that state I recommend the following steps:
4731 1. Pour over fold_rtx & simplify_rtx and move any simplifications
4732 which are not pass dependent state into these routines.
4734 2. As code is moved by #1, change fold_rtx & simplify_rtx to
4735 use this routine whenever possible.
4737 3. Allow for pass dependent state to be provided to these
4738 routines and add simplifications based on the pass dependent
4739 state. Remove code from cse.c & combine.c that becomes
4740 redundant/dead.
4742 It will take time, but ultimately the compiler will be easier to
4743 maintain and improve. It's totally silly that when we add a
4744 simplification that it needs to be added to 4 places (3 for RTL
4745 simplification and 1 for tree simplification. */
4748 simplify_rtx (rtx x)
4750 enum rtx_code code = GET_CODE (x);
4751 enum machine_mode mode = GET_MODE (x);
4753 switch (GET_RTX_CLASS (code))
4755 case RTX_UNARY:
4756 return simplify_unary_operation (code, mode,
4757 XEXP (x, 0), GET_MODE (XEXP (x, 0)));
4758 case RTX_COMM_ARITH:
4759 if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4760 return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
4762 /* Fall through.... */
4764 case RTX_BIN_ARITH:
4765 return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4767 case RTX_TERNARY:
4768 case RTX_BITFIELD_OPS:
4769 return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
4770 XEXP (x, 0), XEXP (x, 1),
4771 XEXP (x, 2));
4773 case RTX_COMPARE:
4774 case RTX_COMM_COMPARE:
4775 return simplify_relational_operation (code, mode,
4776 ((GET_MODE (XEXP (x, 0))
4777 != VOIDmode)
4778 ? GET_MODE (XEXP (x, 0))
4779 : GET_MODE (XEXP (x, 1))),
4780 XEXP (x, 0),
4781 XEXP (x, 1));
4783 case RTX_EXTRA:
4784 if (code == SUBREG)
4785 return simplify_gen_subreg (mode, SUBREG_REG (x),
4786 GET_MODE (SUBREG_REG (x)),
4787 SUBREG_BYTE (x));
4788 break;
4790 case RTX_OBJ:
4791 if (code == LO_SUM)
4793 /* Convert (lo_sum (high FOO) FOO) to FOO. */
4794 if (GET_CODE (XEXP (x, 0)) == HIGH
4795 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4796 return XEXP (x, 1);
4798 break;
4800 default:
4801 break;
4803 return NULL;