* cgraph.h (symtab_node): Add nonzero_address.
[official-gcc.git] / gcc / fold-const.c
blob6a1c50204bbeca262e5eedb12e7e44ed61a0ed87
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "tm.h"
47 #include "flags.h"
48 #include "tree.h"
49 #include "stor-layout.h"
50 #include "calls.h"
51 #include "tree-iterator.h"
52 #include "realmpfr.h"
53 #include "rtl.h"
54 #include "expr.h"
55 #include "tm_p.h"
56 #include "target.h"
57 #include "diagnostic-core.h"
58 #include "intl.h"
59 #include "langhooks.h"
60 #include "md5.h"
61 #include "basic-block.h"
62 #include "tree-ssa-alias.h"
63 #include "internal-fn.h"
64 #include "tree-eh.h"
65 #include "gimple-expr.h"
66 #include "is-a.h"
67 #include "gimple.h"
68 #include "gimplify.h"
69 #include "tree-dfa.h"
70 #include "hash-table.h" /* Required for ENABLE_FOLD_CHECKING. */
71 #include "builtins.h"
72 #include "cgraph.h"
74 /* Nonzero if we are folding constants inside an initializer; zero
75 otherwise. */
76 int folding_initializer = 0;
78 /* The following constants represent a bit based encoding of GCC's
79 comparison operators. This encoding simplifies transformations
80 on relational comparison operators, such as AND and OR. */
81 enum comparison_code {
82 COMPCODE_FALSE = 0,
83 COMPCODE_LT = 1,
84 COMPCODE_EQ = 2,
85 COMPCODE_LE = 3,
86 COMPCODE_GT = 4,
87 COMPCODE_LTGT = 5,
88 COMPCODE_GE = 6,
89 COMPCODE_ORD = 7,
90 COMPCODE_UNORD = 8,
91 COMPCODE_UNLT = 9,
92 COMPCODE_UNEQ = 10,
93 COMPCODE_UNLE = 11,
94 COMPCODE_UNGT = 12,
95 COMPCODE_NE = 13,
96 COMPCODE_UNGE = 14,
97 COMPCODE_TRUE = 15
100 static bool negate_mathfn_p (enum built_in_function);
101 static bool negate_expr_p (tree);
102 static tree negate_expr (tree);
103 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
104 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
105 static tree const_binop (enum tree_code, tree, tree);
106 static enum comparison_code comparison_to_compcode (enum tree_code);
107 static enum tree_code compcode_to_comparison (enum comparison_code);
108 static int operand_equal_for_comparison_p (tree, tree, tree);
109 static int twoval_comparison_p (tree, tree *, tree *, int *);
110 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
111 static tree pedantic_omit_one_operand_loc (location_t, tree, tree, tree);
112 static tree distribute_bit_expr (location_t, enum tree_code, tree, tree, tree);
113 static tree make_bit_field_ref (location_t, tree, tree,
114 HOST_WIDE_INT, HOST_WIDE_INT, int);
115 static tree optimize_bit_field_compare (location_t, enum tree_code,
116 tree, tree, tree);
117 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
118 HOST_WIDE_INT *,
119 enum machine_mode *, int *, int *,
120 tree *, tree *);
121 static tree sign_bit_p (tree, const_tree);
122 static int simple_operand_p (const_tree);
123 static bool simple_operand_p_2 (tree);
124 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
125 static tree range_predecessor (tree);
126 static tree range_successor (tree);
127 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
128 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
129 static tree unextend (tree, int, int, tree);
130 static tree optimize_minmax_comparison (location_t, enum tree_code,
131 tree, tree, tree);
132 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
133 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
134 static tree fold_binary_op_with_conditional_arg (location_t,
135 enum tree_code, tree,
136 tree, tree,
137 tree, tree, int);
138 static tree fold_mathfn_compare (location_t,
139 enum built_in_function, enum tree_code,
140 tree, tree, tree);
141 static tree fold_inf_compare (location_t, enum tree_code, tree, tree, tree);
142 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
143 static bool reorder_operands_p (const_tree, const_tree);
144 static tree fold_negate_const (tree, tree);
145 static tree fold_not_const (const_tree, tree);
146 static tree fold_relational_const (enum tree_code, tree, tree, tree);
147 static tree fold_convert_const (enum tree_code, tree, tree);
149 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
150 Otherwise, return LOC. */
152 static location_t
153 expr_location_or (tree t, location_t loc)
155 location_t tloc = EXPR_LOCATION (t);
156 return tloc == UNKNOWN_LOCATION ? loc : tloc;
159 /* Similar to protected_set_expr_location, but never modify x in place,
160 if location can and needs to be set, unshare it. */
162 static inline tree
163 protected_set_expr_location_unshare (tree x, location_t loc)
165 if (CAN_HAVE_LOCATION_P (x)
166 && EXPR_LOCATION (x) != loc
167 && !(TREE_CODE (x) == SAVE_EXPR
168 || TREE_CODE (x) == TARGET_EXPR
169 || TREE_CODE (x) == BIND_EXPR))
171 x = copy_node (x);
172 SET_EXPR_LOCATION (x, loc);
174 return x;
177 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
178 division and returns the quotient. Otherwise returns
179 NULL_TREE. */
181 tree
182 div_if_zero_remainder (const_tree arg1, const_tree arg2)
184 widest_int quo;
186 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
187 SIGNED, &quo))
188 return wide_int_to_tree (TREE_TYPE (arg1), quo);
190 return NULL_TREE;
193 /* This is nonzero if we should defer warnings about undefined
194 overflow. This facility exists because these warnings are a
195 special case. The code to estimate loop iterations does not want
196 to issue any warnings, since it works with expressions which do not
197 occur in user code. Various bits of cleanup code call fold(), but
198 only use the result if it has certain characteristics (e.g., is a
199 constant); that code only wants to issue a warning if the result is
200 used. */
202 static int fold_deferring_overflow_warnings;
204 /* If a warning about undefined overflow is deferred, this is the
205 warning. Note that this may cause us to turn two warnings into
206 one, but that is fine since it is sufficient to only give one
207 warning per expression. */
209 static const char* fold_deferred_overflow_warning;
211 /* If a warning about undefined overflow is deferred, this is the
212 level at which the warning should be emitted. */
214 static enum warn_strict_overflow_code fold_deferred_overflow_code;
216 /* Start deferring overflow warnings. We could use a stack here to
217 permit nested calls, but at present it is not necessary. */
219 void
220 fold_defer_overflow_warnings (void)
222 ++fold_deferring_overflow_warnings;
225 /* Stop deferring overflow warnings. If there is a pending warning,
226 and ISSUE is true, then issue the warning if appropriate. STMT is
227 the statement with which the warning should be associated (used for
228 location information); STMT may be NULL. CODE is the level of the
229 warning--a warn_strict_overflow_code value. This function will use
230 the smaller of CODE and the deferred code when deciding whether to
231 issue the warning. CODE may be zero to mean to always use the
232 deferred code. */
234 void
235 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
237 const char *warnmsg;
238 location_t locus;
240 gcc_assert (fold_deferring_overflow_warnings > 0);
241 --fold_deferring_overflow_warnings;
242 if (fold_deferring_overflow_warnings > 0)
244 if (fold_deferred_overflow_warning != NULL
245 && code != 0
246 && code < (int) fold_deferred_overflow_code)
247 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
248 return;
251 warnmsg = fold_deferred_overflow_warning;
252 fold_deferred_overflow_warning = NULL;
254 if (!issue || warnmsg == NULL)
255 return;
257 if (gimple_no_warning_p (stmt))
258 return;
260 /* Use the smallest code level when deciding to issue the
261 warning. */
262 if (code == 0 || code > (int) fold_deferred_overflow_code)
263 code = fold_deferred_overflow_code;
265 if (!issue_strict_overflow_warning (code))
266 return;
268 if (stmt == NULL)
269 locus = input_location;
270 else
271 locus = gimple_location (stmt);
272 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
275 /* Stop deferring overflow warnings, ignoring any deferred
276 warnings. */
278 void
279 fold_undefer_and_ignore_overflow_warnings (void)
281 fold_undefer_overflow_warnings (false, NULL, 0);
284 /* Whether we are deferring overflow warnings. */
286 bool
287 fold_deferring_overflow_warnings_p (void)
289 return fold_deferring_overflow_warnings > 0;
292 /* This is called when we fold something based on the fact that signed
293 overflow is undefined. */
295 static void
296 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
298 if (fold_deferring_overflow_warnings > 0)
300 if (fold_deferred_overflow_warning == NULL
301 || wc < fold_deferred_overflow_code)
303 fold_deferred_overflow_warning = gmsgid;
304 fold_deferred_overflow_code = wc;
307 else if (issue_strict_overflow_warning (wc))
308 warning (OPT_Wstrict_overflow, gmsgid);
311 /* Return true if the built-in mathematical function specified by CODE
312 is odd, i.e. -f(x) == f(-x). */
314 static bool
315 negate_mathfn_p (enum built_in_function code)
317 switch (code)
319 CASE_FLT_FN (BUILT_IN_ASIN):
320 CASE_FLT_FN (BUILT_IN_ASINH):
321 CASE_FLT_FN (BUILT_IN_ATAN):
322 CASE_FLT_FN (BUILT_IN_ATANH):
323 CASE_FLT_FN (BUILT_IN_CASIN):
324 CASE_FLT_FN (BUILT_IN_CASINH):
325 CASE_FLT_FN (BUILT_IN_CATAN):
326 CASE_FLT_FN (BUILT_IN_CATANH):
327 CASE_FLT_FN (BUILT_IN_CBRT):
328 CASE_FLT_FN (BUILT_IN_CPROJ):
329 CASE_FLT_FN (BUILT_IN_CSIN):
330 CASE_FLT_FN (BUILT_IN_CSINH):
331 CASE_FLT_FN (BUILT_IN_CTAN):
332 CASE_FLT_FN (BUILT_IN_CTANH):
333 CASE_FLT_FN (BUILT_IN_ERF):
334 CASE_FLT_FN (BUILT_IN_LLROUND):
335 CASE_FLT_FN (BUILT_IN_LROUND):
336 CASE_FLT_FN (BUILT_IN_ROUND):
337 CASE_FLT_FN (BUILT_IN_SIN):
338 CASE_FLT_FN (BUILT_IN_SINH):
339 CASE_FLT_FN (BUILT_IN_TAN):
340 CASE_FLT_FN (BUILT_IN_TANH):
341 CASE_FLT_FN (BUILT_IN_TRUNC):
342 return true;
344 CASE_FLT_FN (BUILT_IN_LLRINT):
345 CASE_FLT_FN (BUILT_IN_LRINT):
346 CASE_FLT_FN (BUILT_IN_NEARBYINT):
347 CASE_FLT_FN (BUILT_IN_RINT):
348 return !flag_rounding_math;
350 default:
351 break;
353 return false;
356 /* Check whether we may negate an integer constant T without causing
357 overflow. */
359 bool
360 may_negate_without_overflow_p (const_tree t)
362 tree type;
364 gcc_assert (TREE_CODE (t) == INTEGER_CST);
366 type = TREE_TYPE (t);
367 if (TYPE_UNSIGNED (type))
368 return false;
370 return !wi::only_sign_bit_p (t);
373 /* Determine whether an expression T can be cheaply negated using
374 the function negate_expr without introducing undefined overflow. */
376 static bool
377 negate_expr_p (tree t)
379 tree type;
381 if (t == 0)
382 return false;
384 type = TREE_TYPE (t);
386 STRIP_SIGN_NOPS (t);
387 switch (TREE_CODE (t))
389 case INTEGER_CST:
390 if (TYPE_OVERFLOW_WRAPS (type))
391 return true;
393 /* Check that -CST will not overflow type. */
394 return may_negate_without_overflow_p (t);
395 case BIT_NOT_EXPR:
396 return (INTEGRAL_TYPE_P (type)
397 && TYPE_OVERFLOW_WRAPS (type));
399 case FIXED_CST:
400 case NEGATE_EXPR:
401 return true;
403 case REAL_CST:
404 /* We want to canonicalize to positive real constants. Pretend
405 that only negative ones can be easily negated. */
406 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
408 case COMPLEX_CST:
409 return negate_expr_p (TREE_REALPART (t))
410 && negate_expr_p (TREE_IMAGPART (t));
412 case VECTOR_CST:
414 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
415 return true;
417 int count = TYPE_VECTOR_SUBPARTS (type), i;
419 for (i = 0; i < count; i++)
420 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
421 return false;
423 return true;
426 case COMPLEX_EXPR:
427 return negate_expr_p (TREE_OPERAND (t, 0))
428 && negate_expr_p (TREE_OPERAND (t, 1));
430 case CONJ_EXPR:
431 return negate_expr_p (TREE_OPERAND (t, 0));
433 case PLUS_EXPR:
434 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
435 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
436 return false;
437 /* -(A + B) -> (-B) - A. */
438 if (negate_expr_p (TREE_OPERAND (t, 1))
439 && reorder_operands_p (TREE_OPERAND (t, 0),
440 TREE_OPERAND (t, 1)))
441 return true;
442 /* -(A + B) -> (-A) - B. */
443 return negate_expr_p (TREE_OPERAND (t, 0));
445 case MINUS_EXPR:
446 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
447 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
448 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
449 && reorder_operands_p (TREE_OPERAND (t, 0),
450 TREE_OPERAND (t, 1));
452 case MULT_EXPR:
453 if (TYPE_UNSIGNED (TREE_TYPE (t)))
454 break;
456 /* Fall through. */
458 case RDIV_EXPR:
459 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
460 return negate_expr_p (TREE_OPERAND (t, 1))
461 || negate_expr_p (TREE_OPERAND (t, 0));
462 break;
464 case TRUNC_DIV_EXPR:
465 case ROUND_DIV_EXPR:
466 case EXACT_DIV_EXPR:
467 /* In general we can't negate A / B, because if A is INT_MIN and
468 B is 1, we may turn this into INT_MIN / -1 which is undefined
469 and actually traps on some architectures. But if overflow is
470 undefined, we can negate, because - (INT_MIN / 1) is an
471 overflow. */
472 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
474 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
475 break;
476 /* If overflow is undefined then we have to be careful because
477 we ask whether it's ok to associate the negate with the
478 division which is not ok for example for
479 -((a - b) / c) where (-(a - b)) / c may invoke undefined
480 overflow because of negating INT_MIN. So do not use
481 negate_expr_p here but open-code the two important cases. */
482 if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR
483 || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
484 && may_negate_without_overflow_p (TREE_OPERAND (t, 0))))
485 return true;
487 else if (negate_expr_p (TREE_OPERAND (t, 0)))
488 return true;
489 return negate_expr_p (TREE_OPERAND (t, 1));
491 case NOP_EXPR:
492 /* Negate -((double)float) as (double)(-float). */
493 if (TREE_CODE (type) == REAL_TYPE)
495 tree tem = strip_float_extensions (t);
496 if (tem != t)
497 return negate_expr_p (tem);
499 break;
501 case CALL_EXPR:
502 /* Negate -f(x) as f(-x). */
503 if (negate_mathfn_p (builtin_mathfn_code (t)))
504 return negate_expr_p (CALL_EXPR_ARG (t, 0));
505 break;
507 case RSHIFT_EXPR:
508 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
509 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
511 tree op1 = TREE_OPERAND (t, 1);
512 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
513 return true;
515 break;
517 default:
518 break;
520 return false;
523 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
524 simplification is possible.
525 If negate_expr_p would return true for T, NULL_TREE will never be
526 returned. */
528 static tree
529 fold_negate_expr (location_t loc, tree t)
531 tree type = TREE_TYPE (t);
532 tree tem;
534 switch (TREE_CODE (t))
536 /* Convert - (~A) to A + 1. */
537 case BIT_NOT_EXPR:
538 if (INTEGRAL_TYPE_P (type))
539 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
540 build_one_cst (type));
541 break;
543 case INTEGER_CST:
544 tem = fold_negate_const (t, type);
545 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
546 || !TYPE_OVERFLOW_TRAPS (type))
547 return tem;
548 break;
550 case REAL_CST:
551 tem = fold_negate_const (t, type);
552 /* Two's complement FP formats, such as c4x, may overflow. */
553 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
554 return tem;
555 break;
557 case FIXED_CST:
558 tem = fold_negate_const (t, type);
559 return tem;
561 case COMPLEX_CST:
563 tree rpart = negate_expr (TREE_REALPART (t));
564 tree ipart = negate_expr (TREE_IMAGPART (t));
566 if ((TREE_CODE (rpart) == REAL_CST
567 && TREE_CODE (ipart) == REAL_CST)
568 || (TREE_CODE (rpart) == INTEGER_CST
569 && TREE_CODE (ipart) == INTEGER_CST))
570 return build_complex (type, rpart, ipart);
572 break;
574 case VECTOR_CST:
576 int count = TYPE_VECTOR_SUBPARTS (type), i;
577 tree *elts = XALLOCAVEC (tree, count);
579 for (i = 0; i < count; i++)
581 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
582 if (elts[i] == NULL_TREE)
583 return NULL_TREE;
586 return build_vector (type, elts);
589 case COMPLEX_EXPR:
590 if (negate_expr_p (t))
591 return fold_build2_loc (loc, COMPLEX_EXPR, type,
592 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
593 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
594 break;
596 case CONJ_EXPR:
597 if (negate_expr_p (t))
598 return fold_build1_loc (loc, CONJ_EXPR, type,
599 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
600 break;
602 case NEGATE_EXPR:
603 return TREE_OPERAND (t, 0);
605 case PLUS_EXPR:
606 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
607 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
609 /* -(A + B) -> (-B) - A. */
610 if (negate_expr_p (TREE_OPERAND (t, 1))
611 && reorder_operands_p (TREE_OPERAND (t, 0),
612 TREE_OPERAND (t, 1)))
614 tem = negate_expr (TREE_OPERAND (t, 1));
615 return fold_build2_loc (loc, MINUS_EXPR, type,
616 tem, TREE_OPERAND (t, 0));
619 /* -(A + B) -> (-A) - B. */
620 if (negate_expr_p (TREE_OPERAND (t, 0)))
622 tem = negate_expr (TREE_OPERAND (t, 0));
623 return fold_build2_loc (loc, MINUS_EXPR, type,
624 tem, TREE_OPERAND (t, 1));
627 break;
629 case MINUS_EXPR:
630 /* - (A - B) -> B - A */
631 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
632 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
633 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
634 return fold_build2_loc (loc, MINUS_EXPR, type,
635 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
636 break;
638 case MULT_EXPR:
639 if (TYPE_UNSIGNED (type))
640 break;
642 /* Fall through. */
644 case RDIV_EXPR:
645 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
647 tem = TREE_OPERAND (t, 1);
648 if (negate_expr_p (tem))
649 return fold_build2_loc (loc, TREE_CODE (t), type,
650 TREE_OPERAND (t, 0), negate_expr (tem));
651 tem = TREE_OPERAND (t, 0);
652 if (negate_expr_p (tem))
653 return fold_build2_loc (loc, TREE_CODE (t), type,
654 negate_expr (tem), TREE_OPERAND (t, 1));
656 break;
658 case TRUNC_DIV_EXPR:
659 case ROUND_DIV_EXPR:
660 case EXACT_DIV_EXPR:
661 /* In general we can't negate A / B, because if A is INT_MIN and
662 B is 1, we may turn this into INT_MIN / -1 which is undefined
663 and actually traps on some architectures. But if overflow is
664 undefined, we can negate, because - (INT_MIN / 1) is an
665 overflow. */
666 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
668 const char * const warnmsg = G_("assuming signed overflow does not "
669 "occur when negating a division");
670 tem = TREE_OPERAND (t, 1);
671 if (negate_expr_p (tem))
673 if (INTEGRAL_TYPE_P (type)
674 && (TREE_CODE (tem) != INTEGER_CST
675 || integer_onep (tem)))
676 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
677 return fold_build2_loc (loc, TREE_CODE (t), type,
678 TREE_OPERAND (t, 0), negate_expr (tem));
680 /* If overflow is undefined then we have to be careful because
681 we ask whether it's ok to associate the negate with the
682 division which is not ok for example for
683 -((a - b) / c) where (-(a - b)) / c may invoke undefined
684 overflow because of negating INT_MIN. So do not use
685 negate_expr_p here but open-code the two important cases. */
686 tem = TREE_OPERAND (t, 0);
687 if ((INTEGRAL_TYPE_P (type)
688 && (TREE_CODE (tem) == NEGATE_EXPR
689 || (TREE_CODE (tem) == INTEGER_CST
690 && may_negate_without_overflow_p (tem))))
691 || !INTEGRAL_TYPE_P (type))
692 return fold_build2_loc (loc, TREE_CODE (t), type,
693 negate_expr (tem), TREE_OPERAND (t, 1));
695 break;
697 case NOP_EXPR:
698 /* Convert -((double)float) into (double)(-float). */
699 if (TREE_CODE (type) == REAL_TYPE)
701 tem = strip_float_extensions (t);
702 if (tem != t && negate_expr_p (tem))
703 return fold_convert_loc (loc, type, negate_expr (tem));
705 break;
707 case CALL_EXPR:
708 /* Negate -f(x) as f(-x). */
709 if (negate_mathfn_p (builtin_mathfn_code (t))
710 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
712 tree fndecl, arg;
714 fndecl = get_callee_fndecl (t);
715 arg = negate_expr (CALL_EXPR_ARG (t, 0));
716 return build_call_expr_loc (loc, fndecl, 1, arg);
718 break;
720 case RSHIFT_EXPR:
721 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
722 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
724 tree op1 = TREE_OPERAND (t, 1);
725 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
727 tree ntype = TYPE_UNSIGNED (type)
728 ? signed_type_for (type)
729 : unsigned_type_for (type);
730 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
731 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
732 return fold_convert_loc (loc, type, temp);
735 break;
737 default:
738 break;
741 return NULL_TREE;
744 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
745 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
746 return NULL_TREE. */
748 static tree
749 negate_expr (tree t)
751 tree type, tem;
752 location_t loc;
754 if (t == NULL_TREE)
755 return NULL_TREE;
757 loc = EXPR_LOCATION (t);
758 type = TREE_TYPE (t);
759 STRIP_SIGN_NOPS (t);
761 tem = fold_negate_expr (loc, t);
762 if (!tem)
763 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
764 return fold_convert_loc (loc, type, tem);
767 /* Split a tree IN into a constant, literal and variable parts that could be
768 combined with CODE to make IN. "constant" means an expression with
769 TREE_CONSTANT but that isn't an actual constant. CODE must be a
770 commutative arithmetic operation. Store the constant part into *CONP,
771 the literal in *LITP and return the variable part. If a part isn't
772 present, set it to null. If the tree does not decompose in this way,
773 return the entire tree as the variable part and the other parts as null.
775 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
776 case, we negate an operand that was subtracted. Except if it is a
777 literal for which we use *MINUS_LITP instead.
779 If NEGATE_P is true, we are negating all of IN, again except a literal
780 for which we use *MINUS_LITP instead.
782 If IN is itself a literal or constant, return it as appropriate.
784 Note that we do not guarantee that any of the three values will be the
785 same type as IN, but they will have the same signedness and mode. */
787 static tree
788 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
789 tree *minus_litp, int negate_p)
791 tree var = 0;
793 *conp = 0;
794 *litp = 0;
795 *minus_litp = 0;
797 /* Strip any conversions that don't change the machine mode or signedness. */
798 STRIP_SIGN_NOPS (in);
800 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
801 || TREE_CODE (in) == FIXED_CST)
802 *litp = in;
803 else if (TREE_CODE (in) == code
804 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
805 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
806 /* We can associate addition and subtraction together (even
807 though the C standard doesn't say so) for integers because
808 the value is not affected. For reals, the value might be
809 affected, so we can't. */
810 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
811 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
813 tree op0 = TREE_OPERAND (in, 0);
814 tree op1 = TREE_OPERAND (in, 1);
815 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
816 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
818 /* First see if either of the operands is a literal, then a constant. */
819 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
820 || TREE_CODE (op0) == FIXED_CST)
821 *litp = op0, op0 = 0;
822 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
823 || TREE_CODE (op1) == FIXED_CST)
824 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
826 if (op0 != 0 && TREE_CONSTANT (op0))
827 *conp = op0, op0 = 0;
828 else if (op1 != 0 && TREE_CONSTANT (op1))
829 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
831 /* If we haven't dealt with either operand, this is not a case we can
832 decompose. Otherwise, VAR is either of the ones remaining, if any. */
833 if (op0 != 0 && op1 != 0)
834 var = in;
835 else if (op0 != 0)
836 var = op0;
837 else
838 var = op1, neg_var_p = neg1_p;
840 /* Now do any needed negations. */
841 if (neg_litp_p)
842 *minus_litp = *litp, *litp = 0;
843 if (neg_conp_p)
844 *conp = negate_expr (*conp);
845 if (neg_var_p)
846 var = negate_expr (var);
848 else if (TREE_CODE (in) == BIT_NOT_EXPR
849 && code == PLUS_EXPR)
851 /* -X - 1 is folded to ~X, undo that here. */
852 *minus_litp = build_one_cst (TREE_TYPE (in));
853 var = negate_expr (TREE_OPERAND (in, 0));
855 else if (TREE_CONSTANT (in))
856 *conp = in;
857 else
858 var = in;
860 if (negate_p)
862 if (*litp)
863 *minus_litp = *litp, *litp = 0;
864 else if (*minus_litp)
865 *litp = *minus_litp, *minus_litp = 0;
866 *conp = negate_expr (*conp);
867 var = negate_expr (var);
870 return var;
873 /* Re-associate trees split by the above function. T1 and T2 are
874 either expressions to associate or null. Return the new
875 expression, if any. LOC is the location of the new expression. If
876 we build an operation, do it in TYPE and with CODE. */
878 static tree
879 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
881 if (t1 == 0)
882 return t2;
883 else if (t2 == 0)
884 return t1;
886 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
887 try to fold this since we will have infinite recursion. But do
888 deal with any NEGATE_EXPRs. */
889 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
890 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
892 if (code == PLUS_EXPR)
894 if (TREE_CODE (t1) == NEGATE_EXPR)
895 return build2_loc (loc, MINUS_EXPR, type,
896 fold_convert_loc (loc, type, t2),
897 fold_convert_loc (loc, type,
898 TREE_OPERAND (t1, 0)));
899 else if (TREE_CODE (t2) == NEGATE_EXPR)
900 return build2_loc (loc, MINUS_EXPR, type,
901 fold_convert_loc (loc, type, t1),
902 fold_convert_loc (loc, type,
903 TREE_OPERAND (t2, 0)));
904 else if (integer_zerop (t2))
905 return fold_convert_loc (loc, type, t1);
907 else if (code == MINUS_EXPR)
909 if (integer_zerop (t2))
910 return fold_convert_loc (loc, type, t1);
913 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
914 fold_convert_loc (loc, type, t2));
917 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
918 fold_convert_loc (loc, type, t2));
921 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
922 for use in int_const_binop, size_binop and size_diffop. */
924 static bool
925 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
927 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
928 return false;
929 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
930 return false;
932 switch (code)
934 case LSHIFT_EXPR:
935 case RSHIFT_EXPR:
936 case LROTATE_EXPR:
937 case RROTATE_EXPR:
938 return true;
940 default:
941 break;
944 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
945 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
946 && TYPE_MODE (type1) == TYPE_MODE (type2);
950 /* Combine two integer constants ARG1 and ARG2 under operation CODE
951 to produce a new constant. Return NULL_TREE if we don't know how
952 to evaluate CODE at compile-time. */
954 static tree
955 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
956 int overflowable)
958 wide_int res;
959 tree t;
960 tree type = TREE_TYPE (arg1);
961 signop sign = TYPE_SIGN (type);
962 bool overflow = false;
964 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
965 TYPE_SIGN (TREE_TYPE (parg2)));
967 switch (code)
969 case BIT_IOR_EXPR:
970 res = wi::bit_or (arg1, arg2);
971 break;
973 case BIT_XOR_EXPR:
974 res = wi::bit_xor (arg1, arg2);
975 break;
977 case BIT_AND_EXPR:
978 res = wi::bit_and (arg1, arg2);
979 break;
981 case RSHIFT_EXPR:
982 case LSHIFT_EXPR:
983 if (wi::neg_p (arg2))
985 arg2 = -arg2;
986 if (code == RSHIFT_EXPR)
987 code = LSHIFT_EXPR;
988 else
989 code = RSHIFT_EXPR;
992 if (code == RSHIFT_EXPR)
993 /* It's unclear from the C standard whether shifts can overflow.
994 The following code ignores overflow; perhaps a C standard
995 interpretation ruling is needed. */
996 res = wi::rshift (arg1, arg2, sign);
997 else
998 res = wi::lshift (arg1, arg2);
999 break;
1001 case RROTATE_EXPR:
1002 case LROTATE_EXPR:
1003 if (wi::neg_p (arg2))
1005 arg2 = -arg2;
1006 if (code == RROTATE_EXPR)
1007 code = LROTATE_EXPR;
1008 else
1009 code = RROTATE_EXPR;
1012 if (code == RROTATE_EXPR)
1013 res = wi::rrotate (arg1, arg2);
1014 else
1015 res = wi::lrotate (arg1, arg2);
1016 break;
1018 case PLUS_EXPR:
1019 res = wi::add (arg1, arg2, sign, &overflow);
1020 break;
1022 case MINUS_EXPR:
1023 res = wi::sub (arg1, arg2, sign, &overflow);
1024 break;
1026 case MULT_EXPR:
1027 res = wi::mul (arg1, arg2, sign, &overflow);
1028 break;
1030 case MULT_HIGHPART_EXPR:
1031 res = wi::mul_high (arg1, arg2, sign);
1032 break;
1034 case TRUNC_DIV_EXPR:
1035 case EXACT_DIV_EXPR:
1036 if (arg2 == 0)
1037 return NULL_TREE;
1038 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1039 break;
1041 case FLOOR_DIV_EXPR:
1042 if (arg2 == 0)
1043 return NULL_TREE;
1044 res = wi::div_floor (arg1, arg2, sign, &overflow);
1045 break;
1047 case CEIL_DIV_EXPR:
1048 if (arg2 == 0)
1049 return NULL_TREE;
1050 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1051 break;
1053 case ROUND_DIV_EXPR:
1054 if (arg2 == 0)
1055 return NULL_TREE;
1056 res = wi::div_round (arg1, arg2, sign, &overflow);
1057 break;
1059 case TRUNC_MOD_EXPR:
1060 if (arg2 == 0)
1061 return NULL_TREE;
1062 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1063 break;
1065 case FLOOR_MOD_EXPR:
1066 if (arg2 == 0)
1067 return NULL_TREE;
1068 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1069 break;
1071 case CEIL_MOD_EXPR:
1072 if (arg2 == 0)
1073 return NULL_TREE;
1074 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1075 break;
1077 case ROUND_MOD_EXPR:
1078 if (arg2 == 0)
1079 return NULL_TREE;
1080 res = wi::mod_round (arg1, arg2, sign, &overflow);
1081 break;
1083 case MIN_EXPR:
1084 res = wi::min (arg1, arg2, sign);
1085 break;
1087 case MAX_EXPR:
1088 res = wi::max (arg1, arg2, sign);
1089 break;
1091 default:
1092 return NULL_TREE;
1095 t = force_fit_type (type, res, overflowable,
1096 (((sign == SIGNED || overflowable == -1)
1097 && overflow)
1098 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1100 return t;
1103 tree
1104 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1106 return int_const_binop_1 (code, arg1, arg2, 1);
1109 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1110 constant. We assume ARG1 and ARG2 have the same data type, or at least
1111 are the same kind of constant and the same machine mode. Return zero if
1112 combining the constants is not allowed in the current operating mode. */
1114 static tree
1115 const_binop (enum tree_code code, tree arg1, tree arg2)
1117 /* Sanity check for the recursive cases. */
1118 if (!arg1 || !arg2)
1119 return NULL_TREE;
1121 STRIP_NOPS (arg1);
1122 STRIP_NOPS (arg2);
1124 if (TREE_CODE (arg1) == INTEGER_CST)
1125 return int_const_binop (code, arg1, arg2);
1127 if (TREE_CODE (arg1) == REAL_CST)
1129 enum machine_mode mode;
1130 REAL_VALUE_TYPE d1;
1131 REAL_VALUE_TYPE d2;
1132 REAL_VALUE_TYPE value;
1133 REAL_VALUE_TYPE result;
1134 bool inexact;
1135 tree t, type;
1137 /* The following codes are handled by real_arithmetic. */
1138 switch (code)
1140 case PLUS_EXPR:
1141 case MINUS_EXPR:
1142 case MULT_EXPR:
1143 case RDIV_EXPR:
1144 case MIN_EXPR:
1145 case MAX_EXPR:
1146 break;
1148 default:
1149 return NULL_TREE;
1152 d1 = TREE_REAL_CST (arg1);
1153 d2 = TREE_REAL_CST (arg2);
1155 type = TREE_TYPE (arg1);
1156 mode = TYPE_MODE (type);
1158 /* Don't perform operation if we honor signaling NaNs and
1159 either operand is a NaN. */
1160 if (HONOR_SNANS (mode)
1161 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1162 return NULL_TREE;
1164 /* Don't perform operation if it would raise a division
1165 by zero exception. */
1166 if (code == RDIV_EXPR
1167 && REAL_VALUES_EQUAL (d2, dconst0)
1168 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1169 return NULL_TREE;
1171 /* If either operand is a NaN, just return it. Otherwise, set up
1172 for floating-point trap; we return an overflow. */
1173 if (REAL_VALUE_ISNAN (d1))
1174 return arg1;
1175 else if (REAL_VALUE_ISNAN (d2))
1176 return arg2;
1178 inexact = real_arithmetic (&value, code, &d1, &d2);
1179 real_convert (&result, mode, &value);
1181 /* Don't constant fold this floating point operation if
1182 the result has overflowed and flag_trapping_math. */
1183 if (flag_trapping_math
1184 && MODE_HAS_INFINITIES (mode)
1185 && REAL_VALUE_ISINF (result)
1186 && !REAL_VALUE_ISINF (d1)
1187 && !REAL_VALUE_ISINF (d2))
1188 return NULL_TREE;
1190 /* Don't constant fold this floating point operation if the
1191 result may dependent upon the run-time rounding mode and
1192 flag_rounding_math is set, or if GCC's software emulation
1193 is unable to accurately represent the result. */
1194 if ((flag_rounding_math
1195 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1196 && (inexact || !real_identical (&result, &value)))
1197 return NULL_TREE;
1199 t = build_real (type, result);
1201 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1202 return t;
1205 if (TREE_CODE (arg1) == FIXED_CST)
1207 FIXED_VALUE_TYPE f1;
1208 FIXED_VALUE_TYPE f2;
1209 FIXED_VALUE_TYPE result;
1210 tree t, type;
1211 int sat_p;
1212 bool overflow_p;
1214 /* The following codes are handled by fixed_arithmetic. */
1215 switch (code)
1217 case PLUS_EXPR:
1218 case MINUS_EXPR:
1219 case MULT_EXPR:
1220 case TRUNC_DIV_EXPR:
1221 f2 = TREE_FIXED_CST (arg2);
1222 break;
1224 case LSHIFT_EXPR:
1225 case RSHIFT_EXPR:
1227 wide_int w2 = arg2;
1228 f2.data.high = w2.elt (1);
1229 f2.data.low = w2.elt (0);
1230 f2.mode = SImode;
1232 break;
1234 default:
1235 return NULL_TREE;
1238 f1 = TREE_FIXED_CST (arg1);
1239 type = TREE_TYPE (arg1);
1240 sat_p = TYPE_SATURATING (type);
1241 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1242 t = build_fixed (type, result);
1243 /* Propagate overflow flags. */
1244 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1245 TREE_OVERFLOW (t) = 1;
1246 return t;
1249 if (TREE_CODE (arg1) == COMPLEX_CST)
1251 tree type = TREE_TYPE (arg1);
1252 tree r1 = TREE_REALPART (arg1);
1253 tree i1 = TREE_IMAGPART (arg1);
1254 tree r2 = TREE_REALPART (arg2);
1255 tree i2 = TREE_IMAGPART (arg2);
1256 tree real, imag;
1258 switch (code)
1260 case PLUS_EXPR:
1261 case MINUS_EXPR:
1262 real = const_binop (code, r1, r2);
1263 imag = const_binop (code, i1, i2);
1264 break;
1266 case MULT_EXPR:
1267 if (COMPLEX_FLOAT_TYPE_P (type))
1268 return do_mpc_arg2 (arg1, arg2, type,
1269 /* do_nonfinite= */ folding_initializer,
1270 mpc_mul);
1272 real = const_binop (MINUS_EXPR,
1273 const_binop (MULT_EXPR, r1, r2),
1274 const_binop (MULT_EXPR, i1, i2));
1275 imag = const_binop (PLUS_EXPR,
1276 const_binop (MULT_EXPR, r1, i2),
1277 const_binop (MULT_EXPR, i1, r2));
1278 break;
1280 case RDIV_EXPR:
1281 if (COMPLEX_FLOAT_TYPE_P (type))
1282 return do_mpc_arg2 (arg1, arg2, type,
1283 /* do_nonfinite= */ folding_initializer,
1284 mpc_div);
1285 /* Fallthru ... */
1286 case TRUNC_DIV_EXPR:
1287 case CEIL_DIV_EXPR:
1288 case FLOOR_DIV_EXPR:
1289 case ROUND_DIV_EXPR:
1290 if (flag_complex_method == 0)
1292 /* Keep this algorithm in sync with
1293 tree-complex.c:expand_complex_div_straight().
1295 Expand complex division to scalars, straightforward algorithm.
1296 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1297 t = br*br + bi*bi
1299 tree magsquared
1300 = const_binop (PLUS_EXPR,
1301 const_binop (MULT_EXPR, r2, r2),
1302 const_binop (MULT_EXPR, i2, i2));
1303 tree t1
1304 = const_binop (PLUS_EXPR,
1305 const_binop (MULT_EXPR, r1, r2),
1306 const_binop (MULT_EXPR, i1, i2));
1307 tree t2
1308 = const_binop (MINUS_EXPR,
1309 const_binop (MULT_EXPR, i1, r2),
1310 const_binop (MULT_EXPR, r1, i2));
1312 real = const_binop (code, t1, magsquared);
1313 imag = const_binop (code, t2, magsquared);
1315 else
1317 /* Keep this algorithm in sync with
1318 tree-complex.c:expand_complex_div_wide().
1320 Expand complex division to scalars, modified algorithm to minimize
1321 overflow with wide input ranges. */
1322 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1323 fold_abs_const (r2, TREE_TYPE (type)),
1324 fold_abs_const (i2, TREE_TYPE (type)));
1326 if (integer_nonzerop (compare))
1328 /* In the TRUE branch, we compute
1329 ratio = br/bi;
1330 div = (br * ratio) + bi;
1331 tr = (ar * ratio) + ai;
1332 ti = (ai * ratio) - ar;
1333 tr = tr / div;
1334 ti = ti / div; */
1335 tree ratio = const_binop (code, r2, i2);
1336 tree div = const_binop (PLUS_EXPR, i2,
1337 const_binop (MULT_EXPR, r2, ratio));
1338 real = const_binop (MULT_EXPR, r1, ratio);
1339 real = const_binop (PLUS_EXPR, real, i1);
1340 real = const_binop (code, real, div);
1342 imag = const_binop (MULT_EXPR, i1, ratio);
1343 imag = const_binop (MINUS_EXPR, imag, r1);
1344 imag = const_binop (code, imag, div);
1346 else
1348 /* In the FALSE branch, we compute
1349 ratio = d/c;
1350 divisor = (d * ratio) + c;
1351 tr = (b * ratio) + a;
1352 ti = b - (a * ratio);
1353 tr = tr / div;
1354 ti = ti / div; */
1355 tree ratio = const_binop (code, i2, r2);
1356 tree div = const_binop (PLUS_EXPR, r2,
1357 const_binop (MULT_EXPR, i2, ratio));
1359 real = const_binop (MULT_EXPR, i1, ratio);
1360 real = const_binop (PLUS_EXPR, real, r1);
1361 real = const_binop (code, real, div);
1363 imag = const_binop (MULT_EXPR, r1, ratio);
1364 imag = const_binop (MINUS_EXPR, i1, imag);
1365 imag = const_binop (code, imag, div);
1368 break;
1370 default:
1371 return NULL_TREE;
1374 if (real && imag)
1375 return build_complex (type, real, imag);
1378 if (TREE_CODE (arg1) == VECTOR_CST
1379 && TREE_CODE (arg2) == VECTOR_CST)
1381 tree type = TREE_TYPE (arg1);
1382 int count = TYPE_VECTOR_SUBPARTS (type), i;
1383 tree *elts = XALLOCAVEC (tree, count);
1385 for (i = 0; i < count; i++)
1387 tree elem1 = VECTOR_CST_ELT (arg1, i);
1388 tree elem2 = VECTOR_CST_ELT (arg2, i);
1390 elts[i] = const_binop (code, elem1, elem2);
1392 /* It is possible that const_binop cannot handle the given
1393 code and return NULL_TREE */
1394 if (elts[i] == NULL_TREE)
1395 return NULL_TREE;
1398 return build_vector (type, elts);
1401 /* Shifts allow a scalar offset for a vector. */
1402 if (TREE_CODE (arg1) == VECTOR_CST
1403 && TREE_CODE (arg2) == INTEGER_CST)
1405 tree type = TREE_TYPE (arg1);
1406 int count = TYPE_VECTOR_SUBPARTS (type), i;
1407 tree *elts = XALLOCAVEC (tree, count);
1409 if (code == VEC_LSHIFT_EXPR
1410 || code == VEC_RSHIFT_EXPR)
1412 if (!tree_fits_uhwi_p (arg2))
1413 return NULL_TREE;
1415 unsigned HOST_WIDE_INT shiftc = tree_to_uhwi (arg2);
1416 unsigned HOST_WIDE_INT outerc = tree_to_uhwi (TYPE_SIZE (type));
1417 unsigned HOST_WIDE_INT innerc
1418 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
1419 if (shiftc >= outerc || (shiftc % innerc) != 0)
1420 return NULL_TREE;
1421 int offset = shiftc / innerc;
1422 /* The direction of VEC_[LR]SHIFT_EXPR is endian dependent.
1423 For reductions, compiler emits VEC_RSHIFT_EXPR always,
1424 for !BYTES_BIG_ENDIAN picks first vector element, but
1425 for BYTES_BIG_ENDIAN last element from the vector. */
1426 if ((code == VEC_RSHIFT_EXPR) ^ (!BYTES_BIG_ENDIAN))
1427 offset = -offset;
1428 tree zero = build_zero_cst (TREE_TYPE (type));
1429 for (i = 0; i < count; i++)
1431 if (i + offset < 0 || i + offset >= count)
1432 elts[i] = zero;
1433 else
1434 elts[i] = VECTOR_CST_ELT (arg1, i + offset);
1437 else
1438 for (i = 0; i < count; i++)
1440 tree elem1 = VECTOR_CST_ELT (arg1, i);
1442 elts[i] = const_binop (code, elem1, arg2);
1444 /* It is possible that const_binop cannot handle the given
1445 code and return NULL_TREE */
1446 if (elts[i] == NULL_TREE)
1447 return NULL_TREE;
1450 return build_vector (type, elts);
1452 return NULL_TREE;
1455 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1456 indicates which particular sizetype to create. */
1458 tree
1459 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1461 return build_int_cst (sizetype_tab[(int) kind], number);
1464 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1465 is a tree code. The type of the result is taken from the operands.
1466 Both must be equivalent integer types, ala int_binop_types_match_p.
1467 If the operands are constant, so is the result. */
1469 tree
1470 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1472 tree type = TREE_TYPE (arg0);
1474 if (arg0 == error_mark_node || arg1 == error_mark_node)
1475 return error_mark_node;
1477 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1478 TREE_TYPE (arg1)));
1480 /* Handle the special case of two integer constants faster. */
1481 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1483 /* And some specific cases even faster than that. */
1484 if (code == PLUS_EXPR)
1486 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1487 return arg1;
1488 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1489 return arg0;
1491 else if (code == MINUS_EXPR)
1493 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1494 return arg0;
1496 else if (code == MULT_EXPR)
1498 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1499 return arg1;
1502 /* Handle general case of two integer constants. For sizetype
1503 constant calculations we always want to know about overflow,
1504 even in the unsigned case. */
1505 return int_const_binop_1 (code, arg0, arg1, -1);
1508 return fold_build2_loc (loc, code, type, arg0, arg1);
1511 /* Given two values, either both of sizetype or both of bitsizetype,
1512 compute the difference between the two values. Return the value
1513 in signed type corresponding to the type of the operands. */
1515 tree
1516 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1518 tree type = TREE_TYPE (arg0);
1519 tree ctype;
1521 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1522 TREE_TYPE (arg1)));
1524 /* If the type is already signed, just do the simple thing. */
1525 if (!TYPE_UNSIGNED (type))
1526 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1528 if (type == sizetype)
1529 ctype = ssizetype;
1530 else if (type == bitsizetype)
1531 ctype = sbitsizetype;
1532 else
1533 ctype = signed_type_for (type);
1535 /* If either operand is not a constant, do the conversions to the signed
1536 type and subtract. The hardware will do the right thing with any
1537 overflow in the subtraction. */
1538 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1539 return size_binop_loc (loc, MINUS_EXPR,
1540 fold_convert_loc (loc, ctype, arg0),
1541 fold_convert_loc (loc, ctype, arg1));
1543 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1544 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1545 overflow) and negate (which can't either). Special-case a result
1546 of zero while we're here. */
1547 if (tree_int_cst_equal (arg0, arg1))
1548 return build_int_cst (ctype, 0);
1549 else if (tree_int_cst_lt (arg1, arg0))
1550 return fold_convert_loc (loc, ctype,
1551 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1552 else
1553 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1554 fold_convert_loc (loc, ctype,
1555 size_binop_loc (loc,
1556 MINUS_EXPR,
1557 arg1, arg0)));
1560 /* A subroutine of fold_convert_const handling conversions of an
1561 INTEGER_CST to another integer type. */
1563 static tree
1564 fold_convert_const_int_from_int (tree type, const_tree arg1)
1566 /* Given an integer constant, make new constant with new type,
1567 appropriately sign-extended or truncated. Use widest_int
1568 so that any extension is done according ARG1's type. */
1569 return force_fit_type (type, wi::to_widest (arg1),
1570 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1571 TREE_OVERFLOW (arg1));
1574 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1575 to an integer type. */
1577 static tree
1578 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1580 bool overflow = false;
1581 tree t;
1583 /* The following code implements the floating point to integer
1584 conversion rules required by the Java Language Specification,
1585 that IEEE NaNs are mapped to zero and values that overflow
1586 the target precision saturate, i.e. values greater than
1587 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1588 are mapped to INT_MIN. These semantics are allowed by the
1589 C and C++ standards that simply state that the behavior of
1590 FP-to-integer conversion is unspecified upon overflow. */
1592 wide_int val;
1593 REAL_VALUE_TYPE r;
1594 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1596 switch (code)
1598 case FIX_TRUNC_EXPR:
1599 real_trunc (&r, VOIDmode, &x);
1600 break;
1602 default:
1603 gcc_unreachable ();
1606 /* If R is NaN, return zero and show we have an overflow. */
1607 if (REAL_VALUE_ISNAN (r))
1609 overflow = true;
1610 val = wi::zero (TYPE_PRECISION (type));
1613 /* See if R is less than the lower bound or greater than the
1614 upper bound. */
1616 if (! overflow)
1618 tree lt = TYPE_MIN_VALUE (type);
1619 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1620 if (REAL_VALUES_LESS (r, l))
1622 overflow = true;
1623 val = lt;
1627 if (! overflow)
1629 tree ut = TYPE_MAX_VALUE (type);
1630 if (ut)
1632 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1633 if (REAL_VALUES_LESS (u, r))
1635 overflow = true;
1636 val = ut;
1641 if (! overflow)
1642 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1644 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1645 return t;
1648 /* A subroutine of fold_convert_const handling conversions of a
1649 FIXED_CST to an integer type. */
1651 static tree
1652 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1654 tree t;
1655 double_int temp, temp_trunc;
1656 unsigned int mode;
1658 /* Right shift FIXED_CST to temp by fbit. */
1659 temp = TREE_FIXED_CST (arg1).data;
1660 mode = TREE_FIXED_CST (arg1).mode;
1661 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1663 temp = temp.rshift (GET_MODE_FBIT (mode),
1664 HOST_BITS_PER_DOUBLE_INT,
1665 SIGNED_FIXED_POINT_MODE_P (mode));
1667 /* Left shift temp to temp_trunc by fbit. */
1668 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1669 HOST_BITS_PER_DOUBLE_INT,
1670 SIGNED_FIXED_POINT_MODE_P (mode));
1672 else
1674 temp = double_int_zero;
1675 temp_trunc = double_int_zero;
1678 /* If FIXED_CST is negative, we need to round the value toward 0.
1679 By checking if the fractional bits are not zero to add 1 to temp. */
1680 if (SIGNED_FIXED_POINT_MODE_P (mode)
1681 && temp_trunc.is_negative ()
1682 && TREE_FIXED_CST (arg1).data != temp_trunc)
1683 temp += double_int_one;
1685 /* Given a fixed-point constant, make new constant with new type,
1686 appropriately sign-extended or truncated. */
1687 t = force_fit_type (type, temp, -1,
1688 (temp.is_negative ()
1689 && (TYPE_UNSIGNED (type)
1690 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1691 | TREE_OVERFLOW (arg1));
1693 return t;
1696 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1697 to another floating point type. */
1699 static tree
1700 fold_convert_const_real_from_real (tree type, const_tree arg1)
1702 REAL_VALUE_TYPE value;
1703 tree t;
1705 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1706 t = build_real (type, value);
1708 /* If converting an infinity or NAN to a representation that doesn't
1709 have one, set the overflow bit so that we can produce some kind of
1710 error message at the appropriate point if necessary. It's not the
1711 most user-friendly message, but it's better than nothing. */
1712 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1713 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1714 TREE_OVERFLOW (t) = 1;
1715 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1716 && !MODE_HAS_NANS (TYPE_MODE (type)))
1717 TREE_OVERFLOW (t) = 1;
1718 /* Regular overflow, conversion produced an infinity in a mode that
1719 can't represent them. */
1720 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1721 && REAL_VALUE_ISINF (value)
1722 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1723 TREE_OVERFLOW (t) = 1;
1724 else
1725 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1726 return t;
1729 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1730 to a floating point type. */
1732 static tree
1733 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1735 REAL_VALUE_TYPE value;
1736 tree t;
1738 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1739 t = build_real (type, value);
1741 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1742 return t;
1745 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1746 to another fixed-point type. */
1748 static tree
1749 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
1751 FIXED_VALUE_TYPE value;
1752 tree t;
1753 bool overflow_p;
1755 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
1756 TYPE_SATURATING (type));
1757 t = build_fixed (type, value);
1759 /* Propagate overflow flags. */
1760 if (overflow_p | TREE_OVERFLOW (arg1))
1761 TREE_OVERFLOW (t) = 1;
1762 return t;
1765 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
1766 to a fixed-point type. */
1768 static tree
1769 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
1771 FIXED_VALUE_TYPE value;
1772 tree t;
1773 bool overflow_p;
1774 double_int di;
1776 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
1778 di.low = TREE_INT_CST_ELT (arg1, 0);
1779 if (TREE_INT_CST_NUNITS (arg1) == 1)
1780 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
1781 else
1782 di.high = TREE_INT_CST_ELT (arg1, 1);
1784 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
1785 TYPE_UNSIGNED (TREE_TYPE (arg1)),
1786 TYPE_SATURATING (type));
1787 t = build_fixed (type, value);
1789 /* Propagate overflow flags. */
1790 if (overflow_p | TREE_OVERFLOW (arg1))
1791 TREE_OVERFLOW (t) = 1;
1792 return t;
1795 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1796 to a fixed-point type. */
1798 static tree
1799 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
1801 FIXED_VALUE_TYPE value;
1802 tree t;
1803 bool overflow_p;
1805 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
1806 &TREE_REAL_CST (arg1),
1807 TYPE_SATURATING (type));
1808 t = build_fixed (type, value);
1810 /* Propagate overflow flags. */
1811 if (overflow_p | TREE_OVERFLOW (arg1))
1812 TREE_OVERFLOW (t) = 1;
1813 return t;
1816 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1817 type TYPE. If no simplification can be done return NULL_TREE. */
1819 static tree
1820 fold_convert_const (enum tree_code code, tree type, tree arg1)
1822 if (TREE_TYPE (arg1) == type)
1823 return arg1;
1825 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
1826 || TREE_CODE (type) == OFFSET_TYPE)
1828 if (TREE_CODE (arg1) == INTEGER_CST)
1829 return fold_convert_const_int_from_int (type, arg1);
1830 else if (TREE_CODE (arg1) == REAL_CST)
1831 return fold_convert_const_int_from_real (code, type, arg1);
1832 else if (TREE_CODE (arg1) == FIXED_CST)
1833 return fold_convert_const_int_from_fixed (type, arg1);
1835 else if (TREE_CODE (type) == REAL_TYPE)
1837 if (TREE_CODE (arg1) == INTEGER_CST)
1838 return build_real_from_int_cst (type, arg1);
1839 else if (TREE_CODE (arg1) == REAL_CST)
1840 return fold_convert_const_real_from_real (type, arg1);
1841 else if (TREE_CODE (arg1) == FIXED_CST)
1842 return fold_convert_const_real_from_fixed (type, arg1);
1844 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
1846 if (TREE_CODE (arg1) == FIXED_CST)
1847 return fold_convert_const_fixed_from_fixed (type, arg1);
1848 else if (TREE_CODE (arg1) == INTEGER_CST)
1849 return fold_convert_const_fixed_from_int (type, arg1);
1850 else if (TREE_CODE (arg1) == REAL_CST)
1851 return fold_convert_const_fixed_from_real (type, arg1);
1853 return NULL_TREE;
1856 /* Construct a vector of zero elements of vector type TYPE. */
1858 static tree
1859 build_zero_vector (tree type)
1861 tree t;
1863 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1864 return build_vector_from_val (type, t);
1867 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
1869 bool
1870 fold_convertible_p (const_tree type, const_tree arg)
1872 tree orig = TREE_TYPE (arg);
1874 if (type == orig)
1875 return true;
1877 if (TREE_CODE (arg) == ERROR_MARK
1878 || TREE_CODE (type) == ERROR_MARK
1879 || TREE_CODE (orig) == ERROR_MARK)
1880 return false;
1882 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
1883 return true;
1885 switch (TREE_CODE (type))
1887 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1888 case POINTER_TYPE: case REFERENCE_TYPE:
1889 case OFFSET_TYPE:
1890 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1891 || TREE_CODE (orig) == OFFSET_TYPE)
1892 return true;
1893 return (TREE_CODE (orig) == VECTOR_TYPE
1894 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1896 case REAL_TYPE:
1897 case FIXED_POINT_TYPE:
1898 case COMPLEX_TYPE:
1899 case VECTOR_TYPE:
1900 case VOID_TYPE:
1901 return TREE_CODE (type) == TREE_CODE (orig);
1903 default:
1904 return false;
1908 /* Convert expression ARG to type TYPE. Used by the middle-end for
1909 simple conversions in preference to calling the front-end's convert. */
1911 tree
1912 fold_convert_loc (location_t loc, tree type, tree arg)
1914 tree orig = TREE_TYPE (arg);
1915 tree tem;
1917 if (type == orig)
1918 return arg;
1920 if (TREE_CODE (arg) == ERROR_MARK
1921 || TREE_CODE (type) == ERROR_MARK
1922 || TREE_CODE (orig) == ERROR_MARK)
1923 return error_mark_node;
1925 switch (TREE_CODE (type))
1927 case POINTER_TYPE:
1928 case REFERENCE_TYPE:
1929 /* Handle conversions between pointers to different address spaces. */
1930 if (POINTER_TYPE_P (orig)
1931 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
1932 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
1933 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
1934 /* fall through */
1936 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1937 case OFFSET_TYPE:
1938 if (TREE_CODE (arg) == INTEGER_CST)
1940 tem = fold_convert_const (NOP_EXPR, type, arg);
1941 if (tem != NULL_TREE)
1942 return tem;
1944 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1945 || TREE_CODE (orig) == OFFSET_TYPE)
1946 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1947 if (TREE_CODE (orig) == COMPLEX_TYPE)
1948 return fold_convert_loc (loc, type,
1949 fold_build1_loc (loc, REALPART_EXPR,
1950 TREE_TYPE (orig), arg));
1951 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
1952 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1953 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1955 case REAL_TYPE:
1956 if (TREE_CODE (arg) == INTEGER_CST)
1958 tem = fold_convert_const (FLOAT_EXPR, type, arg);
1959 if (tem != NULL_TREE)
1960 return tem;
1962 else if (TREE_CODE (arg) == REAL_CST)
1964 tem = fold_convert_const (NOP_EXPR, type, arg);
1965 if (tem != NULL_TREE)
1966 return tem;
1968 else if (TREE_CODE (arg) == FIXED_CST)
1970 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
1971 if (tem != NULL_TREE)
1972 return tem;
1975 switch (TREE_CODE (orig))
1977 case INTEGER_TYPE:
1978 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1979 case POINTER_TYPE: case REFERENCE_TYPE:
1980 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
1982 case REAL_TYPE:
1983 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1985 case FIXED_POINT_TYPE:
1986 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
1988 case COMPLEX_TYPE:
1989 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1990 return fold_convert_loc (loc, type, tem);
1992 default:
1993 gcc_unreachable ();
1996 case FIXED_POINT_TYPE:
1997 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
1998 || TREE_CODE (arg) == REAL_CST)
2000 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2001 if (tem != NULL_TREE)
2002 goto fold_convert_exit;
2005 switch (TREE_CODE (orig))
2007 case FIXED_POINT_TYPE:
2008 case INTEGER_TYPE:
2009 case ENUMERAL_TYPE:
2010 case BOOLEAN_TYPE:
2011 case REAL_TYPE:
2012 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2014 case COMPLEX_TYPE:
2015 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2016 return fold_convert_loc (loc, type, tem);
2018 default:
2019 gcc_unreachable ();
2022 case COMPLEX_TYPE:
2023 switch (TREE_CODE (orig))
2025 case INTEGER_TYPE:
2026 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2027 case POINTER_TYPE: case REFERENCE_TYPE:
2028 case REAL_TYPE:
2029 case FIXED_POINT_TYPE:
2030 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2031 fold_convert_loc (loc, TREE_TYPE (type), arg),
2032 fold_convert_loc (loc, TREE_TYPE (type),
2033 integer_zero_node));
2034 case COMPLEX_TYPE:
2036 tree rpart, ipart;
2038 if (TREE_CODE (arg) == COMPLEX_EXPR)
2040 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2041 TREE_OPERAND (arg, 0));
2042 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2043 TREE_OPERAND (arg, 1));
2044 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2047 arg = save_expr (arg);
2048 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2049 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2050 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2051 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2052 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2055 default:
2056 gcc_unreachable ();
2059 case VECTOR_TYPE:
2060 if (integer_zerop (arg))
2061 return build_zero_vector (type);
2062 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2063 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2064 || TREE_CODE (orig) == VECTOR_TYPE);
2065 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2067 case VOID_TYPE:
2068 tem = fold_ignored_result (arg);
2069 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2071 default:
2072 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2073 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2074 gcc_unreachable ();
2076 fold_convert_exit:
2077 protected_set_expr_location_unshare (tem, loc);
2078 return tem;
2081 /* Return false if expr can be assumed not to be an lvalue, true
2082 otherwise. */
2084 static bool
2085 maybe_lvalue_p (const_tree x)
2087 /* We only need to wrap lvalue tree codes. */
2088 switch (TREE_CODE (x))
2090 case VAR_DECL:
2091 case PARM_DECL:
2092 case RESULT_DECL:
2093 case LABEL_DECL:
2094 case FUNCTION_DECL:
2095 case SSA_NAME:
2097 case COMPONENT_REF:
2098 case MEM_REF:
2099 case INDIRECT_REF:
2100 case ARRAY_REF:
2101 case ARRAY_RANGE_REF:
2102 case BIT_FIELD_REF:
2103 case OBJ_TYPE_REF:
2105 case REALPART_EXPR:
2106 case IMAGPART_EXPR:
2107 case PREINCREMENT_EXPR:
2108 case PREDECREMENT_EXPR:
2109 case SAVE_EXPR:
2110 case TRY_CATCH_EXPR:
2111 case WITH_CLEANUP_EXPR:
2112 case COMPOUND_EXPR:
2113 case MODIFY_EXPR:
2114 case TARGET_EXPR:
2115 case COND_EXPR:
2116 case BIND_EXPR:
2117 break;
2119 default:
2120 /* Assume the worst for front-end tree codes. */
2121 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2122 break;
2123 return false;
2126 return true;
2129 /* Return an expr equal to X but certainly not valid as an lvalue. */
2131 tree
2132 non_lvalue_loc (location_t loc, tree x)
2134 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2135 us. */
2136 if (in_gimple_form)
2137 return x;
2139 if (! maybe_lvalue_p (x))
2140 return x;
2141 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2144 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2145 Zero means allow extended lvalues. */
2147 int pedantic_lvalues;
2149 /* When pedantic, return an expr equal to X but certainly not valid as a
2150 pedantic lvalue. Otherwise, return X. */
2152 static tree
2153 pedantic_non_lvalue_loc (location_t loc, tree x)
2155 if (pedantic_lvalues)
2156 return non_lvalue_loc (loc, x);
2158 return protected_set_expr_location_unshare (x, loc);
2161 /* Given a tree comparison code, return the code that is the logical inverse.
2162 It is generally not safe to do this for floating-point comparisons, except
2163 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2164 ERROR_MARK in this case. */
2166 enum tree_code
2167 invert_tree_comparison (enum tree_code code, bool honor_nans)
2169 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2170 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2171 return ERROR_MARK;
2173 switch (code)
2175 case EQ_EXPR:
2176 return NE_EXPR;
2177 case NE_EXPR:
2178 return EQ_EXPR;
2179 case GT_EXPR:
2180 return honor_nans ? UNLE_EXPR : LE_EXPR;
2181 case GE_EXPR:
2182 return honor_nans ? UNLT_EXPR : LT_EXPR;
2183 case LT_EXPR:
2184 return honor_nans ? UNGE_EXPR : GE_EXPR;
2185 case LE_EXPR:
2186 return honor_nans ? UNGT_EXPR : GT_EXPR;
2187 case LTGT_EXPR:
2188 return UNEQ_EXPR;
2189 case UNEQ_EXPR:
2190 return LTGT_EXPR;
2191 case UNGT_EXPR:
2192 return LE_EXPR;
2193 case UNGE_EXPR:
2194 return LT_EXPR;
2195 case UNLT_EXPR:
2196 return GE_EXPR;
2197 case UNLE_EXPR:
2198 return GT_EXPR;
2199 case ORDERED_EXPR:
2200 return UNORDERED_EXPR;
2201 case UNORDERED_EXPR:
2202 return ORDERED_EXPR;
2203 default:
2204 gcc_unreachable ();
2208 /* Similar, but return the comparison that results if the operands are
2209 swapped. This is safe for floating-point. */
2211 enum tree_code
2212 swap_tree_comparison (enum tree_code code)
2214 switch (code)
2216 case EQ_EXPR:
2217 case NE_EXPR:
2218 case ORDERED_EXPR:
2219 case UNORDERED_EXPR:
2220 case LTGT_EXPR:
2221 case UNEQ_EXPR:
2222 return code;
2223 case GT_EXPR:
2224 return LT_EXPR;
2225 case GE_EXPR:
2226 return LE_EXPR;
2227 case LT_EXPR:
2228 return GT_EXPR;
2229 case LE_EXPR:
2230 return GE_EXPR;
2231 case UNGT_EXPR:
2232 return UNLT_EXPR;
2233 case UNGE_EXPR:
2234 return UNLE_EXPR;
2235 case UNLT_EXPR:
2236 return UNGT_EXPR;
2237 case UNLE_EXPR:
2238 return UNGE_EXPR;
2239 default:
2240 gcc_unreachable ();
2245 /* Convert a comparison tree code from an enum tree_code representation
2246 into a compcode bit-based encoding. This function is the inverse of
2247 compcode_to_comparison. */
2249 static enum comparison_code
2250 comparison_to_compcode (enum tree_code code)
2252 switch (code)
2254 case LT_EXPR:
2255 return COMPCODE_LT;
2256 case EQ_EXPR:
2257 return COMPCODE_EQ;
2258 case LE_EXPR:
2259 return COMPCODE_LE;
2260 case GT_EXPR:
2261 return COMPCODE_GT;
2262 case NE_EXPR:
2263 return COMPCODE_NE;
2264 case GE_EXPR:
2265 return COMPCODE_GE;
2266 case ORDERED_EXPR:
2267 return COMPCODE_ORD;
2268 case UNORDERED_EXPR:
2269 return COMPCODE_UNORD;
2270 case UNLT_EXPR:
2271 return COMPCODE_UNLT;
2272 case UNEQ_EXPR:
2273 return COMPCODE_UNEQ;
2274 case UNLE_EXPR:
2275 return COMPCODE_UNLE;
2276 case UNGT_EXPR:
2277 return COMPCODE_UNGT;
2278 case LTGT_EXPR:
2279 return COMPCODE_LTGT;
2280 case UNGE_EXPR:
2281 return COMPCODE_UNGE;
2282 default:
2283 gcc_unreachable ();
2287 /* Convert a compcode bit-based encoding of a comparison operator back
2288 to GCC's enum tree_code representation. This function is the
2289 inverse of comparison_to_compcode. */
2291 static enum tree_code
2292 compcode_to_comparison (enum comparison_code code)
2294 switch (code)
2296 case COMPCODE_LT:
2297 return LT_EXPR;
2298 case COMPCODE_EQ:
2299 return EQ_EXPR;
2300 case COMPCODE_LE:
2301 return LE_EXPR;
2302 case COMPCODE_GT:
2303 return GT_EXPR;
2304 case COMPCODE_NE:
2305 return NE_EXPR;
2306 case COMPCODE_GE:
2307 return GE_EXPR;
2308 case COMPCODE_ORD:
2309 return ORDERED_EXPR;
2310 case COMPCODE_UNORD:
2311 return UNORDERED_EXPR;
2312 case COMPCODE_UNLT:
2313 return UNLT_EXPR;
2314 case COMPCODE_UNEQ:
2315 return UNEQ_EXPR;
2316 case COMPCODE_UNLE:
2317 return UNLE_EXPR;
2318 case COMPCODE_UNGT:
2319 return UNGT_EXPR;
2320 case COMPCODE_LTGT:
2321 return LTGT_EXPR;
2322 case COMPCODE_UNGE:
2323 return UNGE_EXPR;
2324 default:
2325 gcc_unreachable ();
2329 /* Return a tree for the comparison which is the combination of
2330 doing the AND or OR (depending on CODE) of the two operations LCODE
2331 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2332 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2333 if this makes the transformation invalid. */
2335 tree
2336 combine_comparisons (location_t loc,
2337 enum tree_code code, enum tree_code lcode,
2338 enum tree_code rcode, tree truth_type,
2339 tree ll_arg, tree lr_arg)
2341 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2342 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2343 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2344 int compcode;
2346 switch (code)
2348 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2349 compcode = lcompcode & rcompcode;
2350 break;
2352 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2353 compcode = lcompcode | rcompcode;
2354 break;
2356 default:
2357 return NULL_TREE;
2360 if (!honor_nans)
2362 /* Eliminate unordered comparisons, as well as LTGT and ORD
2363 which are not used unless the mode has NaNs. */
2364 compcode &= ~COMPCODE_UNORD;
2365 if (compcode == COMPCODE_LTGT)
2366 compcode = COMPCODE_NE;
2367 else if (compcode == COMPCODE_ORD)
2368 compcode = COMPCODE_TRUE;
2370 else if (flag_trapping_math)
2372 /* Check that the original operation and the optimized ones will trap
2373 under the same condition. */
2374 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2375 && (lcompcode != COMPCODE_EQ)
2376 && (lcompcode != COMPCODE_ORD);
2377 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2378 && (rcompcode != COMPCODE_EQ)
2379 && (rcompcode != COMPCODE_ORD);
2380 bool trap = (compcode & COMPCODE_UNORD) == 0
2381 && (compcode != COMPCODE_EQ)
2382 && (compcode != COMPCODE_ORD);
2384 /* In a short-circuited boolean expression the LHS might be
2385 such that the RHS, if evaluated, will never trap. For
2386 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2387 if neither x nor y is NaN. (This is a mixed blessing: for
2388 example, the expression above will never trap, hence
2389 optimizing it to x < y would be invalid). */
2390 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2391 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2392 rtrap = false;
2394 /* If the comparison was short-circuited, and only the RHS
2395 trapped, we may now generate a spurious trap. */
2396 if (rtrap && !ltrap
2397 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2398 return NULL_TREE;
2400 /* If we changed the conditions that cause a trap, we lose. */
2401 if ((ltrap || rtrap) != trap)
2402 return NULL_TREE;
2405 if (compcode == COMPCODE_TRUE)
2406 return constant_boolean_node (true, truth_type);
2407 else if (compcode == COMPCODE_FALSE)
2408 return constant_boolean_node (false, truth_type);
2409 else
2411 enum tree_code tcode;
2413 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2414 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2418 /* Return nonzero if two operands (typically of the same tree node)
2419 are necessarily equal. If either argument has side-effects this
2420 function returns zero. FLAGS modifies behavior as follows:
2422 If OEP_ONLY_CONST is set, only return nonzero for constants.
2423 This function tests whether the operands are indistinguishable;
2424 it does not test whether they are equal using C's == operation.
2425 The distinction is important for IEEE floating point, because
2426 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2427 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2429 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2430 even though it may hold multiple values during a function.
2431 This is because a GCC tree node guarantees that nothing else is
2432 executed between the evaluation of its "operands" (which may often
2433 be evaluated in arbitrary order). Hence if the operands themselves
2434 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2435 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2436 unset means assuming isochronic (or instantaneous) tree equivalence.
2437 Unless comparing arbitrary expression trees, such as from different
2438 statements, this flag can usually be left unset.
2440 If OEP_PURE_SAME is set, then pure functions with identical arguments
2441 are considered the same. It is used when the caller has other ways
2442 to ensure that global memory is unchanged in between. */
2445 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2447 /* If either is ERROR_MARK, they aren't equal. */
2448 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2449 || TREE_TYPE (arg0) == error_mark_node
2450 || TREE_TYPE (arg1) == error_mark_node)
2451 return 0;
2453 /* Similar, if either does not have a type (like a released SSA name),
2454 they aren't equal. */
2455 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2456 return 0;
2458 /* Check equality of integer constants before bailing out due to
2459 precision differences. */
2460 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2461 return tree_int_cst_equal (arg0, arg1);
2463 /* If both types don't have the same signedness, then we can't consider
2464 them equal. We must check this before the STRIP_NOPS calls
2465 because they may change the signedness of the arguments. As pointers
2466 strictly don't have a signedness, require either two pointers or
2467 two non-pointers as well. */
2468 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2469 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2470 return 0;
2472 /* We cannot consider pointers to different address space equal. */
2473 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2474 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2475 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2476 return 0;
2478 /* If both types don't have the same precision, then it is not safe
2479 to strip NOPs. */
2480 if (element_precision (TREE_TYPE (arg0))
2481 != element_precision (TREE_TYPE (arg1)))
2482 return 0;
2484 STRIP_NOPS (arg0);
2485 STRIP_NOPS (arg1);
2487 /* In case both args are comparisons but with different comparison
2488 code, try to swap the comparison operands of one arg to produce
2489 a match and compare that variant. */
2490 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2491 && COMPARISON_CLASS_P (arg0)
2492 && COMPARISON_CLASS_P (arg1))
2494 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2496 if (TREE_CODE (arg0) == swap_code)
2497 return operand_equal_p (TREE_OPERAND (arg0, 0),
2498 TREE_OPERAND (arg1, 1), flags)
2499 && operand_equal_p (TREE_OPERAND (arg0, 1),
2500 TREE_OPERAND (arg1, 0), flags);
2503 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2504 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2505 && !(CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)))
2506 return 0;
2508 /* This is needed for conversions and for COMPONENT_REF.
2509 Might as well play it safe and always test this. */
2510 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2511 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2512 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2513 return 0;
2515 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2516 We don't care about side effects in that case because the SAVE_EXPR
2517 takes care of that for us. In all other cases, two expressions are
2518 equal if they have no side effects. If we have two identical
2519 expressions with side effects that should be treated the same due
2520 to the only side effects being identical SAVE_EXPR's, that will
2521 be detected in the recursive calls below.
2522 If we are taking an invariant address of two identical objects
2523 they are necessarily equal as well. */
2524 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2525 && (TREE_CODE (arg0) == SAVE_EXPR
2526 || (flags & OEP_CONSTANT_ADDRESS_OF)
2527 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2528 return 1;
2530 /* Next handle constant cases, those for which we can return 1 even
2531 if ONLY_CONST is set. */
2532 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2533 switch (TREE_CODE (arg0))
2535 case INTEGER_CST:
2536 return tree_int_cst_equal (arg0, arg1);
2538 case FIXED_CST:
2539 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2540 TREE_FIXED_CST (arg1));
2542 case REAL_CST:
2543 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2544 TREE_REAL_CST (arg1)))
2545 return 1;
2548 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
2550 /* If we do not distinguish between signed and unsigned zero,
2551 consider them equal. */
2552 if (real_zerop (arg0) && real_zerop (arg1))
2553 return 1;
2555 return 0;
2557 case VECTOR_CST:
2559 unsigned i;
2561 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2562 return 0;
2564 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2566 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2567 VECTOR_CST_ELT (arg1, i), flags))
2568 return 0;
2570 return 1;
2573 case COMPLEX_CST:
2574 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2575 flags)
2576 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2577 flags));
2579 case STRING_CST:
2580 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2581 && ! memcmp (TREE_STRING_POINTER (arg0),
2582 TREE_STRING_POINTER (arg1),
2583 TREE_STRING_LENGTH (arg0)));
2585 case ADDR_EXPR:
2586 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2587 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2588 ? OEP_CONSTANT_ADDRESS_OF : 0);
2589 default:
2590 break;
2593 if (flags & OEP_ONLY_CONST)
2594 return 0;
2596 /* Define macros to test an operand from arg0 and arg1 for equality and a
2597 variant that allows null and views null as being different from any
2598 non-null value. In the latter case, if either is null, the both
2599 must be; otherwise, do the normal comparison. */
2600 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2601 TREE_OPERAND (arg1, N), flags)
2603 #define OP_SAME_WITH_NULL(N) \
2604 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2605 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2607 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2609 case tcc_unary:
2610 /* Two conversions are equal only if signedness and modes match. */
2611 switch (TREE_CODE (arg0))
2613 CASE_CONVERT:
2614 case FIX_TRUNC_EXPR:
2615 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2616 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2617 return 0;
2618 break;
2619 default:
2620 break;
2623 return OP_SAME (0);
2626 case tcc_comparison:
2627 case tcc_binary:
2628 if (OP_SAME (0) && OP_SAME (1))
2629 return 1;
2631 /* For commutative ops, allow the other order. */
2632 return (commutative_tree_code (TREE_CODE (arg0))
2633 && operand_equal_p (TREE_OPERAND (arg0, 0),
2634 TREE_OPERAND (arg1, 1), flags)
2635 && operand_equal_p (TREE_OPERAND (arg0, 1),
2636 TREE_OPERAND (arg1, 0), flags));
2638 case tcc_reference:
2639 /* If either of the pointer (or reference) expressions we are
2640 dereferencing contain a side effect, these cannot be equal,
2641 but their addresses can be. */
2642 if ((flags & OEP_CONSTANT_ADDRESS_OF) == 0
2643 && (TREE_SIDE_EFFECTS (arg0)
2644 || TREE_SIDE_EFFECTS (arg1)))
2645 return 0;
2647 switch (TREE_CODE (arg0))
2649 case INDIRECT_REF:
2650 flags &= ~OEP_CONSTANT_ADDRESS_OF;
2651 return OP_SAME (0);
2653 case REALPART_EXPR:
2654 case IMAGPART_EXPR:
2655 return OP_SAME (0);
2657 case TARGET_MEM_REF:
2658 flags &= ~OEP_CONSTANT_ADDRESS_OF;
2659 /* Require equal extra operands and then fall through to MEM_REF
2660 handling of the two common operands. */
2661 if (!OP_SAME_WITH_NULL (2)
2662 || !OP_SAME_WITH_NULL (3)
2663 || !OP_SAME_WITH_NULL (4))
2664 return 0;
2665 /* Fallthru. */
2666 case MEM_REF:
2667 flags &= ~OEP_CONSTANT_ADDRESS_OF;
2668 /* Require equal access sizes, and similar pointer types.
2669 We can have incomplete types for array references of
2670 variable-sized arrays from the Fortran frontend
2671 though. Also verify the types are compatible. */
2672 return ((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2673 || (TYPE_SIZE (TREE_TYPE (arg0))
2674 && TYPE_SIZE (TREE_TYPE (arg1))
2675 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2676 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2677 && types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
2678 && alias_ptr_types_compatible_p
2679 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
2680 TREE_TYPE (TREE_OPERAND (arg1, 1)))
2681 && OP_SAME (0) && OP_SAME (1));
2683 case ARRAY_REF:
2684 case ARRAY_RANGE_REF:
2685 /* Operands 2 and 3 may be null.
2686 Compare the array index by value if it is constant first as we
2687 may have different types but same value here. */
2688 if (!OP_SAME (0))
2689 return 0;
2690 flags &= ~OEP_CONSTANT_ADDRESS_OF;
2691 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2692 TREE_OPERAND (arg1, 1))
2693 || OP_SAME (1))
2694 && OP_SAME_WITH_NULL (2)
2695 && OP_SAME_WITH_NULL (3));
2697 case COMPONENT_REF:
2698 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2699 may be NULL when we're called to compare MEM_EXPRs. */
2700 if (!OP_SAME_WITH_NULL (0)
2701 || !OP_SAME (1))
2702 return 0;
2703 flags &= ~OEP_CONSTANT_ADDRESS_OF;
2704 return OP_SAME_WITH_NULL (2);
2706 case BIT_FIELD_REF:
2707 if (!OP_SAME (0))
2708 return 0;
2709 flags &= ~OEP_CONSTANT_ADDRESS_OF;
2710 return OP_SAME (1) && OP_SAME (2);
2712 default:
2713 return 0;
2716 case tcc_expression:
2717 switch (TREE_CODE (arg0))
2719 case ADDR_EXPR:
2720 case TRUTH_NOT_EXPR:
2721 return OP_SAME (0);
2723 case TRUTH_ANDIF_EXPR:
2724 case TRUTH_ORIF_EXPR:
2725 return OP_SAME (0) && OP_SAME (1);
2727 case FMA_EXPR:
2728 case WIDEN_MULT_PLUS_EXPR:
2729 case WIDEN_MULT_MINUS_EXPR:
2730 if (!OP_SAME (2))
2731 return 0;
2732 /* The multiplcation operands are commutative. */
2733 /* FALLTHRU */
2735 case TRUTH_AND_EXPR:
2736 case TRUTH_OR_EXPR:
2737 case TRUTH_XOR_EXPR:
2738 if (OP_SAME (0) && OP_SAME (1))
2739 return 1;
2741 /* Otherwise take into account this is a commutative operation. */
2742 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2743 TREE_OPERAND (arg1, 1), flags)
2744 && operand_equal_p (TREE_OPERAND (arg0, 1),
2745 TREE_OPERAND (arg1, 0), flags));
2747 case COND_EXPR:
2748 case VEC_COND_EXPR:
2749 case DOT_PROD_EXPR:
2750 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2752 default:
2753 return 0;
2756 case tcc_vl_exp:
2757 switch (TREE_CODE (arg0))
2759 case CALL_EXPR:
2760 /* If the CALL_EXPRs call different functions, then they
2761 clearly can not be equal. */
2762 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
2763 flags))
2764 return 0;
2767 unsigned int cef = call_expr_flags (arg0);
2768 if (flags & OEP_PURE_SAME)
2769 cef &= ECF_CONST | ECF_PURE;
2770 else
2771 cef &= ECF_CONST;
2772 if (!cef)
2773 return 0;
2776 /* Now see if all the arguments are the same. */
2778 const_call_expr_arg_iterator iter0, iter1;
2779 const_tree a0, a1;
2780 for (a0 = first_const_call_expr_arg (arg0, &iter0),
2781 a1 = first_const_call_expr_arg (arg1, &iter1);
2782 a0 && a1;
2783 a0 = next_const_call_expr_arg (&iter0),
2784 a1 = next_const_call_expr_arg (&iter1))
2785 if (! operand_equal_p (a0, a1, flags))
2786 return 0;
2788 /* If we get here and both argument lists are exhausted
2789 then the CALL_EXPRs are equal. */
2790 return ! (a0 || a1);
2792 default:
2793 return 0;
2796 case tcc_declaration:
2797 /* Consider __builtin_sqrt equal to sqrt. */
2798 return (TREE_CODE (arg0) == FUNCTION_DECL
2799 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2800 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2801 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2803 default:
2804 return 0;
2807 #undef OP_SAME
2808 #undef OP_SAME_WITH_NULL
2811 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2812 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2814 When in doubt, return 0. */
2816 static int
2817 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2819 int unsignedp1, unsignedpo;
2820 tree primarg0, primarg1, primother;
2821 unsigned int correct_width;
2823 if (operand_equal_p (arg0, arg1, 0))
2824 return 1;
2826 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2827 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2828 return 0;
2830 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2831 and see if the inner values are the same. This removes any
2832 signedness comparison, which doesn't matter here. */
2833 primarg0 = arg0, primarg1 = arg1;
2834 STRIP_NOPS (primarg0);
2835 STRIP_NOPS (primarg1);
2836 if (operand_equal_p (primarg0, primarg1, 0))
2837 return 1;
2839 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2840 actual comparison operand, ARG0.
2842 First throw away any conversions to wider types
2843 already present in the operands. */
2845 primarg1 = get_narrower (arg1, &unsignedp1);
2846 primother = get_narrower (other, &unsignedpo);
2848 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2849 if (unsignedp1 == unsignedpo
2850 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2851 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2853 tree type = TREE_TYPE (arg0);
2855 /* Make sure shorter operand is extended the right way
2856 to match the longer operand. */
2857 primarg1 = fold_convert (signed_or_unsigned_type_for
2858 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2860 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2861 return 1;
2864 return 0;
2867 /* See if ARG is an expression that is either a comparison or is performing
2868 arithmetic on comparisons. The comparisons must only be comparing
2869 two different values, which will be stored in *CVAL1 and *CVAL2; if
2870 they are nonzero it means that some operands have already been found.
2871 No variables may be used anywhere else in the expression except in the
2872 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2873 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2875 If this is true, return 1. Otherwise, return zero. */
2877 static int
2878 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2880 enum tree_code code = TREE_CODE (arg);
2881 enum tree_code_class tclass = TREE_CODE_CLASS (code);
2883 /* We can handle some of the tcc_expression cases here. */
2884 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
2885 tclass = tcc_unary;
2886 else if (tclass == tcc_expression
2887 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2888 || code == COMPOUND_EXPR))
2889 tclass = tcc_binary;
2891 else if (tclass == tcc_expression && code == SAVE_EXPR
2892 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2894 /* If we've already found a CVAL1 or CVAL2, this expression is
2895 two complex to handle. */
2896 if (*cval1 || *cval2)
2897 return 0;
2899 tclass = tcc_unary;
2900 *save_p = 1;
2903 switch (tclass)
2905 case tcc_unary:
2906 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2908 case tcc_binary:
2909 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2910 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2911 cval1, cval2, save_p));
2913 case tcc_constant:
2914 return 1;
2916 case tcc_expression:
2917 if (code == COND_EXPR)
2918 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2919 cval1, cval2, save_p)
2920 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2921 cval1, cval2, save_p)
2922 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2923 cval1, cval2, save_p));
2924 return 0;
2926 case tcc_comparison:
2927 /* First see if we can handle the first operand, then the second. For
2928 the second operand, we know *CVAL1 can't be zero. It must be that
2929 one side of the comparison is each of the values; test for the
2930 case where this isn't true by failing if the two operands
2931 are the same. */
2933 if (operand_equal_p (TREE_OPERAND (arg, 0),
2934 TREE_OPERAND (arg, 1), 0))
2935 return 0;
2937 if (*cval1 == 0)
2938 *cval1 = TREE_OPERAND (arg, 0);
2939 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2941 else if (*cval2 == 0)
2942 *cval2 = TREE_OPERAND (arg, 0);
2943 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2945 else
2946 return 0;
2948 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2950 else if (*cval2 == 0)
2951 *cval2 = TREE_OPERAND (arg, 1);
2952 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2954 else
2955 return 0;
2957 return 1;
2959 default:
2960 return 0;
2964 /* ARG is a tree that is known to contain just arithmetic operations and
2965 comparisons. Evaluate the operations in the tree substituting NEW0 for
2966 any occurrence of OLD0 as an operand of a comparison and likewise for
2967 NEW1 and OLD1. */
2969 static tree
2970 eval_subst (location_t loc, tree arg, tree old0, tree new0,
2971 tree old1, tree new1)
2973 tree type = TREE_TYPE (arg);
2974 enum tree_code code = TREE_CODE (arg);
2975 enum tree_code_class tclass = TREE_CODE_CLASS (code);
2977 /* We can handle some of the tcc_expression cases here. */
2978 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
2979 tclass = tcc_unary;
2980 else if (tclass == tcc_expression
2981 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2982 tclass = tcc_binary;
2984 switch (tclass)
2986 case tcc_unary:
2987 return fold_build1_loc (loc, code, type,
2988 eval_subst (loc, TREE_OPERAND (arg, 0),
2989 old0, new0, old1, new1));
2991 case tcc_binary:
2992 return fold_build2_loc (loc, code, type,
2993 eval_subst (loc, TREE_OPERAND (arg, 0),
2994 old0, new0, old1, new1),
2995 eval_subst (loc, TREE_OPERAND (arg, 1),
2996 old0, new0, old1, new1));
2998 case tcc_expression:
2999 switch (code)
3001 case SAVE_EXPR:
3002 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3003 old1, new1);
3005 case COMPOUND_EXPR:
3006 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3007 old1, new1);
3009 case COND_EXPR:
3010 return fold_build3_loc (loc, code, type,
3011 eval_subst (loc, TREE_OPERAND (arg, 0),
3012 old0, new0, old1, new1),
3013 eval_subst (loc, TREE_OPERAND (arg, 1),
3014 old0, new0, old1, new1),
3015 eval_subst (loc, TREE_OPERAND (arg, 2),
3016 old0, new0, old1, new1));
3017 default:
3018 break;
3020 /* Fall through - ??? */
3022 case tcc_comparison:
3024 tree arg0 = TREE_OPERAND (arg, 0);
3025 tree arg1 = TREE_OPERAND (arg, 1);
3027 /* We need to check both for exact equality and tree equality. The
3028 former will be true if the operand has a side-effect. In that
3029 case, we know the operand occurred exactly once. */
3031 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3032 arg0 = new0;
3033 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3034 arg0 = new1;
3036 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3037 arg1 = new0;
3038 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3039 arg1 = new1;
3041 return fold_build2_loc (loc, code, type, arg0, arg1);
3044 default:
3045 return arg;
3049 /* Return a tree for the case when the result of an expression is RESULT
3050 converted to TYPE and OMITTED was previously an operand of the expression
3051 but is now not needed (e.g., we folded OMITTED * 0).
3053 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3054 the conversion of RESULT to TYPE. */
3056 tree
3057 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3059 tree t = fold_convert_loc (loc, type, result);
3061 /* If the resulting operand is an empty statement, just return the omitted
3062 statement casted to void. */
3063 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3064 return build1_loc (loc, NOP_EXPR, void_type_node,
3065 fold_ignored_result (omitted));
3067 if (TREE_SIDE_EFFECTS (omitted))
3068 return build2_loc (loc, COMPOUND_EXPR, type,
3069 fold_ignored_result (omitted), t);
3071 return non_lvalue_loc (loc, t);
3074 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3076 static tree
3077 pedantic_omit_one_operand_loc (location_t loc, tree type, tree result,
3078 tree omitted)
3080 tree t = fold_convert_loc (loc, type, result);
3082 /* If the resulting operand is an empty statement, just return the omitted
3083 statement casted to void. */
3084 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3085 return build1_loc (loc, NOP_EXPR, void_type_node,
3086 fold_ignored_result (omitted));
3088 if (TREE_SIDE_EFFECTS (omitted))
3089 return build2_loc (loc, COMPOUND_EXPR, type,
3090 fold_ignored_result (omitted), t);
3092 return pedantic_non_lvalue_loc (loc, t);
3095 /* Return a tree for the case when the result of an expression is RESULT
3096 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3097 of the expression but are now not needed.
3099 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3100 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3101 evaluated before OMITTED2. Otherwise, if neither has side effects,
3102 just do the conversion of RESULT to TYPE. */
3104 tree
3105 omit_two_operands_loc (location_t loc, tree type, tree result,
3106 tree omitted1, tree omitted2)
3108 tree t = fold_convert_loc (loc, type, result);
3110 if (TREE_SIDE_EFFECTS (omitted2))
3111 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3112 if (TREE_SIDE_EFFECTS (omitted1))
3113 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3115 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3119 /* Return a simplified tree node for the truth-negation of ARG. This
3120 never alters ARG itself. We assume that ARG is an operation that
3121 returns a truth value (0 or 1).
3123 FIXME: one would think we would fold the result, but it causes
3124 problems with the dominator optimizer. */
3126 static tree
3127 fold_truth_not_expr (location_t loc, tree arg)
3129 tree type = TREE_TYPE (arg);
3130 enum tree_code code = TREE_CODE (arg);
3131 location_t loc1, loc2;
3133 /* If this is a comparison, we can simply invert it, except for
3134 floating-point non-equality comparisons, in which case we just
3135 enclose a TRUTH_NOT_EXPR around what we have. */
3137 if (TREE_CODE_CLASS (code) == tcc_comparison)
3139 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3140 if (FLOAT_TYPE_P (op_type)
3141 && flag_trapping_math
3142 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3143 && code != NE_EXPR && code != EQ_EXPR)
3144 return NULL_TREE;
3146 code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (op_type)));
3147 if (code == ERROR_MARK)
3148 return NULL_TREE;
3150 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3151 TREE_OPERAND (arg, 1));
3154 switch (code)
3156 case INTEGER_CST:
3157 return constant_boolean_node (integer_zerop (arg), type);
3159 case TRUTH_AND_EXPR:
3160 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3161 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3162 return build2_loc (loc, TRUTH_OR_EXPR, type,
3163 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3164 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3166 case TRUTH_OR_EXPR:
3167 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3168 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3169 return build2_loc (loc, TRUTH_AND_EXPR, type,
3170 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3171 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3173 case TRUTH_XOR_EXPR:
3174 /* Here we can invert either operand. We invert the first operand
3175 unless the second operand is a TRUTH_NOT_EXPR in which case our
3176 result is the XOR of the first operand with the inside of the
3177 negation of the second operand. */
3179 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3180 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3181 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3182 else
3183 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3184 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3185 TREE_OPERAND (arg, 1));
3187 case TRUTH_ANDIF_EXPR:
3188 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3189 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3190 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3191 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3192 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3194 case TRUTH_ORIF_EXPR:
3195 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3196 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3197 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3198 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3199 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3201 case TRUTH_NOT_EXPR:
3202 return TREE_OPERAND (arg, 0);
3204 case COND_EXPR:
3206 tree arg1 = TREE_OPERAND (arg, 1);
3207 tree arg2 = TREE_OPERAND (arg, 2);
3209 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3210 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3212 /* A COND_EXPR may have a throw as one operand, which
3213 then has void type. Just leave void operands
3214 as they are. */
3215 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3216 VOID_TYPE_P (TREE_TYPE (arg1))
3217 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3218 VOID_TYPE_P (TREE_TYPE (arg2))
3219 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3222 case COMPOUND_EXPR:
3223 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3224 return build2_loc (loc, COMPOUND_EXPR, type,
3225 TREE_OPERAND (arg, 0),
3226 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3228 case NON_LVALUE_EXPR:
3229 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3230 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3232 CASE_CONVERT:
3233 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3234 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3236 /* ... fall through ... */
3238 case FLOAT_EXPR:
3239 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3240 return build1_loc (loc, TREE_CODE (arg), type,
3241 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3243 case BIT_AND_EXPR:
3244 if (!integer_onep (TREE_OPERAND (arg, 1)))
3245 return NULL_TREE;
3246 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3248 case SAVE_EXPR:
3249 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3251 case CLEANUP_POINT_EXPR:
3252 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3253 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3254 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3256 default:
3257 return NULL_TREE;
3261 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3262 assume that ARG is an operation that returns a truth value (0 or 1
3263 for scalars, 0 or -1 for vectors). Return the folded expression if
3264 folding is successful. Otherwise, return NULL_TREE. */
3266 static tree
3267 fold_invert_truthvalue (location_t loc, tree arg)
3269 tree type = TREE_TYPE (arg);
3270 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3271 ? BIT_NOT_EXPR
3272 : TRUTH_NOT_EXPR,
3273 type, arg);
3276 /* Return a simplified tree node for the truth-negation of ARG. This
3277 never alters ARG itself. We assume that ARG is an operation that
3278 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3280 tree
3281 invert_truthvalue_loc (location_t loc, tree arg)
3283 if (TREE_CODE (arg) == ERROR_MARK)
3284 return arg;
3286 tree type = TREE_TYPE (arg);
3287 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3288 ? BIT_NOT_EXPR
3289 : TRUTH_NOT_EXPR,
3290 type, arg);
3293 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3294 operands are another bit-wise operation with a common input. If so,
3295 distribute the bit operations to save an operation and possibly two if
3296 constants are involved. For example, convert
3297 (A | B) & (A | C) into A | (B & C)
3298 Further simplification will occur if B and C are constants.
3300 If this optimization cannot be done, 0 will be returned. */
3302 static tree
3303 distribute_bit_expr (location_t loc, enum tree_code code, tree type,
3304 tree arg0, tree arg1)
3306 tree common;
3307 tree left, right;
3309 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3310 || TREE_CODE (arg0) == code
3311 || (TREE_CODE (arg0) != BIT_AND_EXPR
3312 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3313 return 0;
3315 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3317 common = TREE_OPERAND (arg0, 0);
3318 left = TREE_OPERAND (arg0, 1);
3319 right = TREE_OPERAND (arg1, 1);
3321 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3323 common = TREE_OPERAND (arg0, 0);
3324 left = TREE_OPERAND (arg0, 1);
3325 right = TREE_OPERAND (arg1, 0);
3327 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3329 common = TREE_OPERAND (arg0, 1);
3330 left = TREE_OPERAND (arg0, 0);
3331 right = TREE_OPERAND (arg1, 1);
3333 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3335 common = TREE_OPERAND (arg0, 1);
3336 left = TREE_OPERAND (arg0, 0);
3337 right = TREE_OPERAND (arg1, 0);
3339 else
3340 return 0;
3342 common = fold_convert_loc (loc, type, common);
3343 left = fold_convert_loc (loc, type, left);
3344 right = fold_convert_loc (loc, type, right);
3345 return fold_build2_loc (loc, TREE_CODE (arg0), type, common,
3346 fold_build2_loc (loc, code, type, left, right));
3349 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3350 with code CODE. This optimization is unsafe. */
3351 static tree
3352 distribute_real_division (location_t loc, enum tree_code code, tree type,
3353 tree arg0, tree arg1)
3355 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3356 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3358 /* (A / C) +- (B / C) -> (A +- B) / C. */
3359 if (mul0 == mul1
3360 && operand_equal_p (TREE_OPERAND (arg0, 1),
3361 TREE_OPERAND (arg1, 1), 0))
3362 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3363 fold_build2_loc (loc, code, type,
3364 TREE_OPERAND (arg0, 0),
3365 TREE_OPERAND (arg1, 0)),
3366 TREE_OPERAND (arg0, 1));
3368 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3369 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3370 TREE_OPERAND (arg1, 0), 0)
3371 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3372 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3374 REAL_VALUE_TYPE r0, r1;
3375 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3376 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3377 if (!mul0)
3378 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3379 if (!mul1)
3380 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3381 real_arithmetic (&r0, code, &r0, &r1);
3382 return fold_build2_loc (loc, MULT_EXPR, type,
3383 TREE_OPERAND (arg0, 0),
3384 build_real (type, r0));
3387 return NULL_TREE;
3390 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3391 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3393 static tree
3394 make_bit_field_ref (location_t loc, tree inner, tree type,
3395 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3397 tree result, bftype;
3399 if (bitpos == 0)
3401 tree size = TYPE_SIZE (TREE_TYPE (inner));
3402 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3403 || POINTER_TYPE_P (TREE_TYPE (inner)))
3404 && tree_fits_shwi_p (size)
3405 && tree_to_shwi (size) == bitsize)
3406 return fold_convert_loc (loc, type, inner);
3409 bftype = type;
3410 if (TYPE_PRECISION (bftype) != bitsize
3411 || TYPE_UNSIGNED (bftype) == !unsignedp)
3412 bftype = build_nonstandard_integer_type (bitsize, 0);
3414 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3415 size_int (bitsize), bitsize_int (bitpos));
3417 if (bftype != type)
3418 result = fold_convert_loc (loc, type, result);
3420 return result;
3423 /* Optimize a bit-field compare.
3425 There are two cases: First is a compare against a constant and the
3426 second is a comparison of two items where the fields are at the same
3427 bit position relative to the start of a chunk (byte, halfword, word)
3428 large enough to contain it. In these cases we can avoid the shift
3429 implicit in bitfield extractions.
3431 For constants, we emit a compare of the shifted constant with the
3432 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3433 compared. For two fields at the same position, we do the ANDs with the
3434 similar mask and compare the result of the ANDs.
3436 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3437 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3438 are the left and right operands of the comparison, respectively.
3440 If the optimization described above can be done, we return the resulting
3441 tree. Otherwise we return zero. */
3443 static tree
3444 optimize_bit_field_compare (location_t loc, enum tree_code code,
3445 tree compare_type, tree lhs, tree rhs)
3447 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3448 tree type = TREE_TYPE (lhs);
3449 tree unsigned_type;
3450 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3451 enum machine_mode lmode, rmode, nmode;
3452 int lunsignedp, runsignedp;
3453 int lvolatilep = 0, rvolatilep = 0;
3454 tree linner, rinner = NULL_TREE;
3455 tree mask;
3456 tree offset;
3458 /* Get all the information about the extractions being done. If the bit size
3459 if the same as the size of the underlying object, we aren't doing an
3460 extraction at all and so can do nothing. We also don't want to
3461 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3462 then will no longer be able to replace it. */
3463 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3464 &lunsignedp, &lvolatilep, false);
3465 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3466 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3467 return 0;
3469 if (!const_p)
3471 /* If this is not a constant, we can only do something if bit positions,
3472 sizes, and signedness are the same. */
3473 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3474 &runsignedp, &rvolatilep, false);
3476 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3477 || lunsignedp != runsignedp || offset != 0
3478 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3479 return 0;
3482 /* See if we can find a mode to refer to this field. We should be able to,
3483 but fail if we can't. */
3484 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3485 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3486 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3487 TYPE_ALIGN (TREE_TYPE (rinner))),
3488 word_mode, false);
3489 if (nmode == VOIDmode)
3490 return 0;
3492 /* Set signed and unsigned types of the precision of this mode for the
3493 shifts below. */
3494 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3496 /* Compute the bit position and size for the new reference and our offset
3497 within it. If the new reference is the same size as the original, we
3498 won't optimize anything, so return zero. */
3499 nbitsize = GET_MODE_BITSIZE (nmode);
3500 nbitpos = lbitpos & ~ (nbitsize - 1);
3501 lbitpos -= nbitpos;
3502 if (nbitsize == lbitsize)
3503 return 0;
3505 if (BYTES_BIG_ENDIAN)
3506 lbitpos = nbitsize - lbitsize - lbitpos;
3508 /* Make the mask to be used against the extracted field. */
3509 mask = build_int_cst_type (unsigned_type, -1);
3510 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3511 mask = const_binop (RSHIFT_EXPR, mask,
3512 size_int (nbitsize - lbitsize - lbitpos));
3514 if (! const_p)
3515 /* If not comparing with constant, just rework the comparison
3516 and return. */
3517 return fold_build2_loc (loc, code, compare_type,
3518 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3519 make_bit_field_ref (loc, linner,
3520 unsigned_type,
3521 nbitsize, nbitpos,
3523 mask),
3524 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3525 make_bit_field_ref (loc, rinner,
3526 unsigned_type,
3527 nbitsize, nbitpos,
3529 mask));
3531 /* Otherwise, we are handling the constant case. See if the constant is too
3532 big for the field. Warn and return a tree of for 0 (false) if so. We do
3533 this not only for its own sake, but to avoid having to test for this
3534 error case below. If we didn't, we might generate wrong code.
3536 For unsigned fields, the constant shifted right by the field length should
3537 be all zero. For signed fields, the high-order bits should agree with
3538 the sign bit. */
3540 if (lunsignedp)
3542 if (wi::lrshift (rhs, lbitsize) != 0)
3544 warning (0, "comparison is always %d due to width of bit-field",
3545 code == NE_EXPR);
3546 return constant_boolean_node (code == NE_EXPR, compare_type);
3549 else
3551 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3552 if (tem != 0 && tem != -1)
3554 warning (0, "comparison is always %d due to width of bit-field",
3555 code == NE_EXPR);
3556 return constant_boolean_node (code == NE_EXPR, compare_type);
3560 /* Single-bit compares should always be against zero. */
3561 if (lbitsize == 1 && ! integer_zerop (rhs))
3563 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3564 rhs = build_int_cst (type, 0);
3567 /* Make a new bitfield reference, shift the constant over the
3568 appropriate number of bits and mask it with the computed mask
3569 (in case this was a signed field). If we changed it, make a new one. */
3570 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3572 rhs = const_binop (BIT_AND_EXPR,
3573 const_binop (LSHIFT_EXPR,
3574 fold_convert_loc (loc, unsigned_type, rhs),
3575 size_int (lbitpos)),
3576 mask);
3578 lhs = build2_loc (loc, code, compare_type,
3579 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3580 return lhs;
3583 /* Subroutine for fold_truth_andor_1: decode a field reference.
3585 If EXP is a comparison reference, we return the innermost reference.
3587 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3588 set to the starting bit number.
3590 If the innermost field can be completely contained in a mode-sized
3591 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3593 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3594 otherwise it is not changed.
3596 *PUNSIGNEDP is set to the signedness of the field.
3598 *PMASK is set to the mask used. This is either contained in a
3599 BIT_AND_EXPR or derived from the width of the field.
3601 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3603 Return 0 if this is not a component reference or is one that we can't
3604 do anything with. */
3606 static tree
3607 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3608 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3609 int *punsignedp, int *pvolatilep,
3610 tree *pmask, tree *pand_mask)
3612 tree outer_type = 0;
3613 tree and_mask = 0;
3614 tree mask, inner, offset;
3615 tree unsigned_type;
3616 unsigned int precision;
3618 /* All the optimizations using this function assume integer fields.
3619 There are problems with FP fields since the type_for_size call
3620 below can fail for, e.g., XFmode. */
3621 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3622 return 0;
3624 /* We are interested in the bare arrangement of bits, so strip everything
3625 that doesn't affect the machine mode. However, record the type of the
3626 outermost expression if it may matter below. */
3627 if (CONVERT_EXPR_P (exp)
3628 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3629 outer_type = TREE_TYPE (exp);
3630 STRIP_NOPS (exp);
3632 if (TREE_CODE (exp) == BIT_AND_EXPR)
3634 and_mask = TREE_OPERAND (exp, 1);
3635 exp = TREE_OPERAND (exp, 0);
3636 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3637 if (TREE_CODE (and_mask) != INTEGER_CST)
3638 return 0;
3641 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3642 punsignedp, pvolatilep, false);
3643 if ((inner == exp && and_mask == 0)
3644 || *pbitsize < 0 || offset != 0
3645 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3646 return 0;
3648 /* If the number of bits in the reference is the same as the bitsize of
3649 the outer type, then the outer type gives the signedness. Otherwise
3650 (in case of a small bitfield) the signedness is unchanged. */
3651 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3652 *punsignedp = TYPE_UNSIGNED (outer_type);
3654 /* Compute the mask to access the bitfield. */
3655 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3656 precision = TYPE_PRECISION (unsigned_type);
3658 mask = build_int_cst_type (unsigned_type, -1);
3660 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3661 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3663 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3664 if (and_mask != 0)
3665 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3666 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3668 *pmask = mask;
3669 *pand_mask = and_mask;
3670 return inner;
3673 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3674 bit positions and MASK is SIGNED. */
3676 static int
3677 all_ones_mask_p (const_tree mask, unsigned int size)
3679 tree type = TREE_TYPE (mask);
3680 unsigned int precision = TYPE_PRECISION (type);
3682 /* If this function returns true when the type of the mask is
3683 UNSIGNED, then there will be errors. In particular see
3684 gcc.c-torture/execute/990326-1.c. There does not appear to be
3685 any documentation paper trail as to why this is so. But the pre
3686 wide-int worked with that restriction and it has been preserved
3687 here. */
3688 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
3689 return false;
3691 return wi::mask (size, false, precision) == mask;
3694 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3695 represents the sign bit of EXP's type. If EXP represents a sign
3696 or zero extension, also test VAL against the unextended type.
3697 The return value is the (sub)expression whose sign bit is VAL,
3698 or NULL_TREE otherwise. */
3700 static tree
3701 sign_bit_p (tree exp, const_tree val)
3703 int width;
3704 tree t;
3706 /* Tree EXP must have an integral type. */
3707 t = TREE_TYPE (exp);
3708 if (! INTEGRAL_TYPE_P (t))
3709 return NULL_TREE;
3711 /* Tree VAL must be an integer constant. */
3712 if (TREE_CODE (val) != INTEGER_CST
3713 || TREE_OVERFLOW (val))
3714 return NULL_TREE;
3716 width = TYPE_PRECISION (t);
3717 if (wi::only_sign_bit_p (val, width))
3718 return exp;
3720 /* Handle extension from a narrower type. */
3721 if (TREE_CODE (exp) == NOP_EXPR
3722 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3723 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3725 return NULL_TREE;
3728 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3729 to be evaluated unconditionally. */
3731 static int
3732 simple_operand_p (const_tree exp)
3734 /* Strip any conversions that don't change the machine mode. */
3735 STRIP_NOPS (exp);
3737 return (CONSTANT_CLASS_P (exp)
3738 || TREE_CODE (exp) == SSA_NAME
3739 || (DECL_P (exp)
3740 && ! TREE_ADDRESSABLE (exp)
3741 && ! TREE_THIS_VOLATILE (exp)
3742 && ! DECL_NONLOCAL (exp)
3743 /* Don't regard global variables as simple. They may be
3744 allocated in ways unknown to the compiler (shared memory,
3745 #pragma weak, etc). */
3746 && ! TREE_PUBLIC (exp)
3747 && ! DECL_EXTERNAL (exp)
3748 /* Weakrefs are not safe to be read, since they can be NULL.
3749 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
3750 have DECL_WEAK flag set. */
3751 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
3752 /* Loading a static variable is unduly expensive, but global
3753 registers aren't expensive. */
3754 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3757 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
3758 to be evaluated unconditionally.
3759 I addition to simple_operand_p, we assume that comparisons, conversions,
3760 and logic-not operations are simple, if their operands are simple, too. */
3762 static bool
3763 simple_operand_p_2 (tree exp)
3765 enum tree_code code;
3767 if (TREE_SIDE_EFFECTS (exp)
3768 || tree_could_trap_p (exp))
3769 return false;
3771 while (CONVERT_EXPR_P (exp))
3772 exp = TREE_OPERAND (exp, 0);
3774 code = TREE_CODE (exp);
3776 if (TREE_CODE_CLASS (code) == tcc_comparison)
3777 return (simple_operand_p (TREE_OPERAND (exp, 0))
3778 && simple_operand_p (TREE_OPERAND (exp, 1)));
3780 if (code == TRUTH_NOT_EXPR)
3781 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
3783 return simple_operand_p (exp);
3787 /* The following functions are subroutines to fold_range_test and allow it to
3788 try to change a logical combination of comparisons into a range test.
3790 For example, both
3791 X == 2 || X == 3 || X == 4 || X == 5
3793 X >= 2 && X <= 5
3794 are converted to
3795 (unsigned) (X - 2) <= 3
3797 We describe each set of comparisons as being either inside or outside
3798 a range, using a variable named like IN_P, and then describe the
3799 range with a lower and upper bound. If one of the bounds is omitted,
3800 it represents either the highest or lowest value of the type.
3802 In the comments below, we represent a range by two numbers in brackets
3803 preceded by a "+" to designate being inside that range, or a "-" to
3804 designate being outside that range, so the condition can be inverted by
3805 flipping the prefix. An omitted bound is represented by a "-". For
3806 example, "- [-, 10]" means being outside the range starting at the lowest
3807 possible value and ending at 10, in other words, being greater than 10.
3808 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3809 always false.
3811 We set up things so that the missing bounds are handled in a consistent
3812 manner so neither a missing bound nor "true" and "false" need to be
3813 handled using a special case. */
3815 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3816 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3817 and UPPER1_P are nonzero if the respective argument is an upper bound
3818 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3819 must be specified for a comparison. ARG1 will be converted to ARG0's
3820 type if both are specified. */
3822 static tree
3823 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3824 tree arg1, int upper1_p)
3826 tree tem;
3827 int result;
3828 int sgn0, sgn1;
3830 /* If neither arg represents infinity, do the normal operation.
3831 Else, if not a comparison, return infinity. Else handle the special
3832 comparison rules. Note that most of the cases below won't occur, but
3833 are handled for consistency. */
3835 if (arg0 != 0 && arg1 != 0)
3837 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3838 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3839 STRIP_NOPS (tem);
3840 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3843 if (TREE_CODE_CLASS (code) != tcc_comparison)
3844 return 0;
3846 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3847 for neither. In real maths, we cannot assume open ended ranges are
3848 the same. But, this is computer arithmetic, where numbers are finite.
3849 We can therefore make the transformation of any unbounded range with
3850 the value Z, Z being greater than any representable number. This permits
3851 us to treat unbounded ranges as equal. */
3852 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3853 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3854 switch (code)
3856 case EQ_EXPR:
3857 result = sgn0 == sgn1;
3858 break;
3859 case NE_EXPR:
3860 result = sgn0 != sgn1;
3861 break;
3862 case LT_EXPR:
3863 result = sgn0 < sgn1;
3864 break;
3865 case LE_EXPR:
3866 result = sgn0 <= sgn1;
3867 break;
3868 case GT_EXPR:
3869 result = sgn0 > sgn1;
3870 break;
3871 case GE_EXPR:
3872 result = sgn0 >= sgn1;
3873 break;
3874 default:
3875 gcc_unreachable ();
3878 return constant_boolean_node (result, type);
3881 /* Helper routine for make_range. Perform one step for it, return
3882 new expression if the loop should continue or NULL_TREE if it should
3883 stop. */
3885 tree
3886 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
3887 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
3888 bool *strict_overflow_p)
3890 tree arg0_type = TREE_TYPE (arg0);
3891 tree n_low, n_high, low = *p_low, high = *p_high;
3892 int in_p = *p_in_p, n_in_p;
3894 switch (code)
3896 case TRUTH_NOT_EXPR:
3897 /* We can only do something if the range is testing for zero. */
3898 if (low == NULL_TREE || high == NULL_TREE
3899 || ! integer_zerop (low) || ! integer_zerop (high))
3900 return NULL_TREE;
3901 *p_in_p = ! in_p;
3902 return arg0;
3904 case EQ_EXPR: case NE_EXPR:
3905 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3906 /* We can only do something if the range is testing for zero
3907 and if the second operand is an integer constant. Note that
3908 saying something is "in" the range we make is done by
3909 complementing IN_P since it will set in the initial case of
3910 being not equal to zero; "out" is leaving it alone. */
3911 if (low == NULL_TREE || high == NULL_TREE
3912 || ! integer_zerop (low) || ! integer_zerop (high)
3913 || TREE_CODE (arg1) != INTEGER_CST)
3914 return NULL_TREE;
3916 switch (code)
3918 case NE_EXPR: /* - [c, c] */
3919 low = high = arg1;
3920 break;
3921 case EQ_EXPR: /* + [c, c] */
3922 in_p = ! in_p, low = high = arg1;
3923 break;
3924 case GT_EXPR: /* - [-, c] */
3925 low = 0, high = arg1;
3926 break;
3927 case GE_EXPR: /* + [c, -] */
3928 in_p = ! in_p, low = arg1, high = 0;
3929 break;
3930 case LT_EXPR: /* - [c, -] */
3931 low = arg1, high = 0;
3932 break;
3933 case LE_EXPR: /* + [-, c] */
3934 in_p = ! in_p, low = 0, high = arg1;
3935 break;
3936 default:
3937 gcc_unreachable ();
3940 /* If this is an unsigned comparison, we also know that EXP is
3941 greater than or equal to zero. We base the range tests we make
3942 on that fact, so we record it here so we can parse existing
3943 range tests. We test arg0_type since often the return type
3944 of, e.g. EQ_EXPR, is boolean. */
3945 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3947 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3948 in_p, low, high, 1,
3949 build_int_cst (arg0_type, 0),
3950 NULL_TREE))
3951 return NULL_TREE;
3953 in_p = n_in_p, low = n_low, high = n_high;
3955 /* If the high bound is missing, but we have a nonzero low
3956 bound, reverse the range so it goes from zero to the low bound
3957 minus 1. */
3958 if (high == 0 && low && ! integer_zerop (low))
3960 in_p = ! in_p;
3961 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3962 build_int_cst (TREE_TYPE (low), 1), 0);
3963 low = build_int_cst (arg0_type, 0);
3967 *p_low = low;
3968 *p_high = high;
3969 *p_in_p = in_p;
3970 return arg0;
3972 case NEGATE_EXPR:
3973 /* If flag_wrapv and ARG0_TYPE is signed, make sure
3974 low and high are non-NULL, then normalize will DTRT. */
3975 if (!TYPE_UNSIGNED (arg0_type)
3976 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
3978 if (low == NULL_TREE)
3979 low = TYPE_MIN_VALUE (arg0_type);
3980 if (high == NULL_TREE)
3981 high = TYPE_MAX_VALUE (arg0_type);
3984 /* (-x) IN [a,b] -> x in [-b, -a] */
3985 n_low = range_binop (MINUS_EXPR, exp_type,
3986 build_int_cst (exp_type, 0),
3987 0, high, 1);
3988 n_high = range_binop (MINUS_EXPR, exp_type,
3989 build_int_cst (exp_type, 0),
3990 0, low, 0);
3991 if (n_high != 0 && TREE_OVERFLOW (n_high))
3992 return NULL_TREE;
3993 goto normalize;
3995 case BIT_NOT_EXPR:
3996 /* ~ X -> -X - 1 */
3997 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
3998 build_int_cst (exp_type, 1));
4000 case PLUS_EXPR:
4001 case MINUS_EXPR:
4002 if (TREE_CODE (arg1) != INTEGER_CST)
4003 return NULL_TREE;
4005 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4006 move a constant to the other side. */
4007 if (!TYPE_UNSIGNED (arg0_type)
4008 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4009 return NULL_TREE;
4011 /* If EXP is signed, any overflow in the computation is undefined,
4012 so we don't worry about it so long as our computations on
4013 the bounds don't overflow. For unsigned, overflow is defined
4014 and this is exactly the right thing. */
4015 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4016 arg0_type, low, 0, arg1, 0);
4017 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4018 arg0_type, high, 1, arg1, 0);
4019 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4020 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4021 return NULL_TREE;
4023 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4024 *strict_overflow_p = true;
4026 normalize:
4027 /* Check for an unsigned range which has wrapped around the maximum
4028 value thus making n_high < n_low, and normalize it. */
4029 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4031 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4032 build_int_cst (TREE_TYPE (n_high), 1), 0);
4033 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4034 build_int_cst (TREE_TYPE (n_low), 1), 0);
4036 /* If the range is of the form +/- [ x+1, x ], we won't
4037 be able to normalize it. But then, it represents the
4038 whole range or the empty set, so make it
4039 +/- [ -, - ]. */
4040 if (tree_int_cst_equal (n_low, low)
4041 && tree_int_cst_equal (n_high, high))
4042 low = high = 0;
4043 else
4044 in_p = ! in_p;
4046 else
4047 low = n_low, high = n_high;
4049 *p_low = low;
4050 *p_high = high;
4051 *p_in_p = in_p;
4052 return arg0;
4054 CASE_CONVERT:
4055 case NON_LVALUE_EXPR:
4056 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4057 return NULL_TREE;
4059 if (! INTEGRAL_TYPE_P (arg0_type)
4060 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4061 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4062 return NULL_TREE;
4064 n_low = low, n_high = high;
4066 if (n_low != 0)
4067 n_low = fold_convert_loc (loc, arg0_type, n_low);
4069 if (n_high != 0)
4070 n_high = fold_convert_loc (loc, arg0_type, n_high);
4072 /* If we're converting arg0 from an unsigned type, to exp,
4073 a signed type, we will be doing the comparison as unsigned.
4074 The tests above have already verified that LOW and HIGH
4075 are both positive.
4077 So we have to ensure that we will handle large unsigned
4078 values the same way that the current signed bounds treat
4079 negative values. */
4081 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4083 tree high_positive;
4084 tree equiv_type;
4085 /* For fixed-point modes, we need to pass the saturating flag
4086 as the 2nd parameter. */
4087 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4088 equiv_type
4089 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4090 TYPE_SATURATING (arg0_type));
4091 else
4092 equiv_type
4093 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4095 /* A range without an upper bound is, naturally, unbounded.
4096 Since convert would have cropped a very large value, use
4097 the max value for the destination type. */
4098 high_positive
4099 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4100 : TYPE_MAX_VALUE (arg0_type);
4102 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4103 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4104 fold_convert_loc (loc, arg0_type,
4105 high_positive),
4106 build_int_cst (arg0_type, 1));
4108 /* If the low bound is specified, "and" the range with the
4109 range for which the original unsigned value will be
4110 positive. */
4111 if (low != 0)
4113 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4114 1, fold_convert_loc (loc, arg0_type,
4115 integer_zero_node),
4116 high_positive))
4117 return NULL_TREE;
4119 in_p = (n_in_p == in_p);
4121 else
4123 /* Otherwise, "or" the range with the range of the input
4124 that will be interpreted as negative. */
4125 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4126 1, fold_convert_loc (loc, arg0_type,
4127 integer_zero_node),
4128 high_positive))
4129 return NULL_TREE;
4131 in_p = (in_p != n_in_p);
4135 *p_low = n_low;
4136 *p_high = n_high;
4137 *p_in_p = in_p;
4138 return arg0;
4140 default:
4141 return NULL_TREE;
4145 /* Given EXP, a logical expression, set the range it is testing into
4146 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4147 actually being tested. *PLOW and *PHIGH will be made of the same
4148 type as the returned expression. If EXP is not a comparison, we
4149 will most likely not be returning a useful value and range. Set
4150 *STRICT_OVERFLOW_P to true if the return value is only valid
4151 because signed overflow is undefined; otherwise, do not change
4152 *STRICT_OVERFLOW_P. */
4154 tree
4155 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4156 bool *strict_overflow_p)
4158 enum tree_code code;
4159 tree arg0, arg1 = NULL_TREE;
4160 tree exp_type, nexp;
4161 int in_p;
4162 tree low, high;
4163 location_t loc = EXPR_LOCATION (exp);
4165 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4166 and see if we can refine the range. Some of the cases below may not
4167 happen, but it doesn't seem worth worrying about this. We "continue"
4168 the outer loop when we've changed something; otherwise we "break"
4169 the switch, which will "break" the while. */
4171 in_p = 0;
4172 low = high = build_int_cst (TREE_TYPE (exp), 0);
4174 while (1)
4176 code = TREE_CODE (exp);
4177 exp_type = TREE_TYPE (exp);
4178 arg0 = NULL_TREE;
4180 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4182 if (TREE_OPERAND_LENGTH (exp) > 0)
4183 arg0 = TREE_OPERAND (exp, 0);
4184 if (TREE_CODE_CLASS (code) == tcc_binary
4185 || TREE_CODE_CLASS (code) == tcc_comparison
4186 || (TREE_CODE_CLASS (code) == tcc_expression
4187 && TREE_OPERAND_LENGTH (exp) > 1))
4188 arg1 = TREE_OPERAND (exp, 1);
4190 if (arg0 == NULL_TREE)
4191 break;
4193 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4194 &high, &in_p, strict_overflow_p);
4195 if (nexp == NULL_TREE)
4196 break;
4197 exp = nexp;
4200 /* If EXP is a constant, we can evaluate whether this is true or false. */
4201 if (TREE_CODE (exp) == INTEGER_CST)
4203 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4204 exp, 0, low, 0))
4205 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4206 exp, 1, high, 1)));
4207 low = high = 0;
4208 exp = 0;
4211 *pin_p = in_p, *plow = low, *phigh = high;
4212 return exp;
4215 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4216 type, TYPE, return an expression to test if EXP is in (or out of, depending
4217 on IN_P) the range. Return 0 if the test couldn't be created. */
4219 tree
4220 build_range_check (location_t loc, tree type, tree exp, int in_p,
4221 tree low, tree high)
4223 tree etype = TREE_TYPE (exp), value;
4225 #ifdef HAVE_canonicalize_funcptr_for_compare
4226 /* Disable this optimization for function pointer expressions
4227 on targets that require function pointer canonicalization. */
4228 if (HAVE_canonicalize_funcptr_for_compare
4229 && TREE_CODE (etype) == POINTER_TYPE
4230 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4231 return NULL_TREE;
4232 #endif
4234 if (! in_p)
4236 value = build_range_check (loc, type, exp, 1, low, high);
4237 if (value != 0)
4238 return invert_truthvalue_loc (loc, value);
4240 return 0;
4243 if (low == 0 && high == 0)
4244 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4246 if (low == 0)
4247 return fold_build2_loc (loc, LE_EXPR, type, exp,
4248 fold_convert_loc (loc, etype, high));
4250 if (high == 0)
4251 return fold_build2_loc (loc, GE_EXPR, type, exp,
4252 fold_convert_loc (loc, etype, low));
4254 if (operand_equal_p (low, high, 0))
4255 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4256 fold_convert_loc (loc, etype, low));
4258 if (integer_zerop (low))
4260 if (! TYPE_UNSIGNED (etype))
4262 etype = unsigned_type_for (etype);
4263 high = fold_convert_loc (loc, etype, high);
4264 exp = fold_convert_loc (loc, etype, exp);
4266 return build_range_check (loc, type, exp, 1, 0, high);
4269 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4270 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4272 int prec = TYPE_PRECISION (etype);
4274 if (wi::mask (prec - 1, false, prec) == high)
4276 if (TYPE_UNSIGNED (etype))
4278 tree signed_etype = signed_type_for (etype);
4279 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4280 etype
4281 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4282 else
4283 etype = signed_etype;
4284 exp = fold_convert_loc (loc, etype, exp);
4286 return fold_build2_loc (loc, GT_EXPR, type, exp,
4287 build_int_cst (etype, 0));
4291 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4292 This requires wrap-around arithmetics for the type of the expression.
4293 First make sure that arithmetics in this type is valid, then make sure
4294 that it wraps around. */
4295 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4296 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4297 TYPE_UNSIGNED (etype));
4299 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4301 tree utype, minv, maxv;
4303 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4304 for the type in question, as we rely on this here. */
4305 utype = unsigned_type_for (etype);
4306 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4307 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4308 build_int_cst (TREE_TYPE (maxv), 1), 1);
4309 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4311 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4312 minv, 1, maxv, 1)))
4313 etype = utype;
4314 else
4315 return 0;
4318 high = fold_convert_loc (loc, etype, high);
4319 low = fold_convert_loc (loc, etype, low);
4320 exp = fold_convert_loc (loc, etype, exp);
4322 value = const_binop (MINUS_EXPR, high, low);
4325 if (POINTER_TYPE_P (etype))
4327 if (value != 0 && !TREE_OVERFLOW (value))
4329 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4330 return build_range_check (loc, type,
4331 fold_build_pointer_plus_loc (loc, exp, low),
4332 1, build_int_cst (etype, 0), value);
4334 return 0;
4337 if (value != 0 && !TREE_OVERFLOW (value))
4338 return build_range_check (loc, type,
4339 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4340 1, build_int_cst (etype, 0), value);
4342 return 0;
4345 /* Return the predecessor of VAL in its type, handling the infinite case. */
4347 static tree
4348 range_predecessor (tree val)
4350 tree type = TREE_TYPE (val);
4352 if (INTEGRAL_TYPE_P (type)
4353 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4354 return 0;
4355 else
4356 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4357 build_int_cst (TREE_TYPE (val), 1), 0);
4360 /* Return the successor of VAL in its type, handling the infinite case. */
4362 static tree
4363 range_successor (tree val)
4365 tree type = TREE_TYPE (val);
4367 if (INTEGRAL_TYPE_P (type)
4368 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4369 return 0;
4370 else
4371 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4372 build_int_cst (TREE_TYPE (val), 1), 0);
4375 /* Given two ranges, see if we can merge them into one. Return 1 if we
4376 can, 0 if we can't. Set the output range into the specified parameters. */
4378 bool
4379 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4380 tree high0, int in1_p, tree low1, tree high1)
4382 int no_overlap;
4383 int subset;
4384 int temp;
4385 tree tem;
4386 int in_p;
4387 tree low, high;
4388 int lowequal = ((low0 == 0 && low1 == 0)
4389 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4390 low0, 0, low1, 0)));
4391 int highequal = ((high0 == 0 && high1 == 0)
4392 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4393 high0, 1, high1, 1)));
4395 /* Make range 0 be the range that starts first, or ends last if they
4396 start at the same value. Swap them if it isn't. */
4397 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4398 low0, 0, low1, 0))
4399 || (lowequal
4400 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4401 high1, 1, high0, 1))))
4403 temp = in0_p, in0_p = in1_p, in1_p = temp;
4404 tem = low0, low0 = low1, low1 = tem;
4405 tem = high0, high0 = high1, high1 = tem;
4408 /* Now flag two cases, whether the ranges are disjoint or whether the
4409 second range is totally subsumed in the first. Note that the tests
4410 below are simplified by the ones above. */
4411 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4412 high0, 1, low1, 0));
4413 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4414 high1, 1, high0, 1));
4416 /* We now have four cases, depending on whether we are including or
4417 excluding the two ranges. */
4418 if (in0_p && in1_p)
4420 /* If they don't overlap, the result is false. If the second range
4421 is a subset it is the result. Otherwise, the range is from the start
4422 of the second to the end of the first. */
4423 if (no_overlap)
4424 in_p = 0, low = high = 0;
4425 else if (subset)
4426 in_p = 1, low = low1, high = high1;
4427 else
4428 in_p = 1, low = low1, high = high0;
4431 else if (in0_p && ! in1_p)
4433 /* If they don't overlap, the result is the first range. If they are
4434 equal, the result is false. If the second range is a subset of the
4435 first, and the ranges begin at the same place, we go from just after
4436 the end of the second range to the end of the first. If the second
4437 range is not a subset of the first, or if it is a subset and both
4438 ranges end at the same place, the range starts at the start of the
4439 first range and ends just before the second range.
4440 Otherwise, we can't describe this as a single range. */
4441 if (no_overlap)
4442 in_p = 1, low = low0, high = high0;
4443 else if (lowequal && highequal)
4444 in_p = 0, low = high = 0;
4445 else if (subset && lowequal)
4447 low = range_successor (high1);
4448 high = high0;
4449 in_p = 1;
4450 if (low == 0)
4452 /* We are in the weird situation where high0 > high1 but
4453 high1 has no successor. Punt. */
4454 return 0;
4457 else if (! subset || highequal)
4459 low = low0;
4460 high = range_predecessor (low1);
4461 in_p = 1;
4462 if (high == 0)
4464 /* low0 < low1 but low1 has no predecessor. Punt. */
4465 return 0;
4468 else
4469 return 0;
4472 else if (! in0_p && in1_p)
4474 /* If they don't overlap, the result is the second range. If the second
4475 is a subset of the first, the result is false. Otherwise,
4476 the range starts just after the first range and ends at the
4477 end of the second. */
4478 if (no_overlap)
4479 in_p = 1, low = low1, high = high1;
4480 else if (subset || highequal)
4481 in_p = 0, low = high = 0;
4482 else
4484 low = range_successor (high0);
4485 high = high1;
4486 in_p = 1;
4487 if (low == 0)
4489 /* high1 > high0 but high0 has no successor. Punt. */
4490 return 0;
4495 else
4497 /* The case where we are excluding both ranges. Here the complex case
4498 is if they don't overlap. In that case, the only time we have a
4499 range is if they are adjacent. If the second is a subset of the
4500 first, the result is the first. Otherwise, the range to exclude
4501 starts at the beginning of the first range and ends at the end of the
4502 second. */
4503 if (no_overlap)
4505 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4506 range_successor (high0),
4507 1, low1, 0)))
4508 in_p = 0, low = low0, high = high1;
4509 else
4511 /* Canonicalize - [min, x] into - [-, x]. */
4512 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4513 switch (TREE_CODE (TREE_TYPE (low0)))
4515 case ENUMERAL_TYPE:
4516 if (TYPE_PRECISION (TREE_TYPE (low0))
4517 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4518 break;
4519 /* FALLTHROUGH */
4520 case INTEGER_TYPE:
4521 if (tree_int_cst_equal (low0,
4522 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4523 low0 = 0;
4524 break;
4525 case POINTER_TYPE:
4526 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4527 && integer_zerop (low0))
4528 low0 = 0;
4529 break;
4530 default:
4531 break;
4534 /* Canonicalize - [x, max] into - [x, -]. */
4535 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4536 switch (TREE_CODE (TREE_TYPE (high1)))
4538 case ENUMERAL_TYPE:
4539 if (TYPE_PRECISION (TREE_TYPE (high1))
4540 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4541 break;
4542 /* FALLTHROUGH */
4543 case INTEGER_TYPE:
4544 if (tree_int_cst_equal (high1,
4545 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4546 high1 = 0;
4547 break;
4548 case POINTER_TYPE:
4549 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4550 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4551 high1, 1,
4552 build_int_cst (TREE_TYPE (high1), 1),
4553 1)))
4554 high1 = 0;
4555 break;
4556 default:
4557 break;
4560 /* The ranges might be also adjacent between the maximum and
4561 minimum values of the given type. For
4562 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4563 return + [x + 1, y - 1]. */
4564 if (low0 == 0 && high1 == 0)
4566 low = range_successor (high0);
4567 high = range_predecessor (low1);
4568 if (low == 0 || high == 0)
4569 return 0;
4571 in_p = 1;
4573 else
4574 return 0;
4577 else if (subset)
4578 in_p = 0, low = low0, high = high0;
4579 else
4580 in_p = 0, low = low0, high = high1;
4583 *pin_p = in_p, *plow = low, *phigh = high;
4584 return 1;
4588 /* Subroutine of fold, looking inside expressions of the form
4589 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4590 of the COND_EXPR. This function is being used also to optimize
4591 A op B ? C : A, by reversing the comparison first.
4593 Return a folded expression whose code is not a COND_EXPR
4594 anymore, or NULL_TREE if no folding opportunity is found. */
4596 static tree
4597 fold_cond_expr_with_comparison (location_t loc, tree type,
4598 tree arg0, tree arg1, tree arg2)
4600 enum tree_code comp_code = TREE_CODE (arg0);
4601 tree arg00 = TREE_OPERAND (arg0, 0);
4602 tree arg01 = TREE_OPERAND (arg0, 1);
4603 tree arg1_type = TREE_TYPE (arg1);
4604 tree tem;
4606 STRIP_NOPS (arg1);
4607 STRIP_NOPS (arg2);
4609 /* If we have A op 0 ? A : -A, consider applying the following
4610 transformations:
4612 A == 0? A : -A same as -A
4613 A != 0? A : -A same as A
4614 A >= 0? A : -A same as abs (A)
4615 A > 0? A : -A same as abs (A)
4616 A <= 0? A : -A same as -abs (A)
4617 A < 0? A : -A same as -abs (A)
4619 None of these transformations work for modes with signed
4620 zeros. If A is +/-0, the first two transformations will
4621 change the sign of the result (from +0 to -0, or vice
4622 versa). The last four will fix the sign of the result,
4623 even though the original expressions could be positive or
4624 negative, depending on the sign of A.
4626 Note that all these transformations are correct if A is
4627 NaN, since the two alternatives (A and -A) are also NaNs. */
4628 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4629 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4630 ? real_zerop (arg01)
4631 : integer_zerop (arg01))
4632 && ((TREE_CODE (arg2) == NEGATE_EXPR
4633 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4634 /* In the case that A is of the form X-Y, '-A' (arg2) may
4635 have already been folded to Y-X, check for that. */
4636 || (TREE_CODE (arg1) == MINUS_EXPR
4637 && TREE_CODE (arg2) == MINUS_EXPR
4638 && operand_equal_p (TREE_OPERAND (arg1, 0),
4639 TREE_OPERAND (arg2, 1), 0)
4640 && operand_equal_p (TREE_OPERAND (arg1, 1),
4641 TREE_OPERAND (arg2, 0), 0))))
4642 switch (comp_code)
4644 case EQ_EXPR:
4645 case UNEQ_EXPR:
4646 tem = fold_convert_loc (loc, arg1_type, arg1);
4647 return pedantic_non_lvalue_loc (loc,
4648 fold_convert_loc (loc, type,
4649 negate_expr (tem)));
4650 case NE_EXPR:
4651 case LTGT_EXPR:
4652 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4653 case UNGE_EXPR:
4654 case UNGT_EXPR:
4655 if (flag_trapping_math)
4656 break;
4657 /* Fall through. */
4658 case GE_EXPR:
4659 case GT_EXPR:
4660 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4661 arg1 = fold_convert_loc (loc, signed_type_for
4662 (TREE_TYPE (arg1)), arg1);
4663 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4664 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4665 case UNLE_EXPR:
4666 case UNLT_EXPR:
4667 if (flag_trapping_math)
4668 break;
4669 case LE_EXPR:
4670 case LT_EXPR:
4671 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4672 arg1 = fold_convert_loc (loc, signed_type_for
4673 (TREE_TYPE (arg1)), arg1);
4674 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4675 return negate_expr (fold_convert_loc (loc, type, tem));
4676 default:
4677 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4678 break;
4681 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4682 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4683 both transformations are correct when A is NaN: A != 0
4684 is then true, and A == 0 is false. */
4686 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4687 && integer_zerop (arg01) && integer_zerop (arg2))
4689 if (comp_code == NE_EXPR)
4690 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4691 else if (comp_code == EQ_EXPR)
4692 return build_zero_cst (type);
4695 /* Try some transformations of A op B ? A : B.
4697 A == B? A : B same as B
4698 A != B? A : B same as A
4699 A >= B? A : B same as max (A, B)
4700 A > B? A : B same as max (B, A)
4701 A <= B? A : B same as min (A, B)
4702 A < B? A : B same as min (B, A)
4704 As above, these transformations don't work in the presence
4705 of signed zeros. For example, if A and B are zeros of
4706 opposite sign, the first two transformations will change
4707 the sign of the result. In the last four, the original
4708 expressions give different results for (A=+0, B=-0) and
4709 (A=-0, B=+0), but the transformed expressions do not.
4711 The first two transformations are correct if either A or B
4712 is a NaN. In the first transformation, the condition will
4713 be false, and B will indeed be chosen. In the case of the
4714 second transformation, the condition A != B will be true,
4715 and A will be chosen.
4717 The conversions to max() and min() are not correct if B is
4718 a number and A is not. The conditions in the original
4719 expressions will be false, so all four give B. The min()
4720 and max() versions would give a NaN instead. */
4721 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4722 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4723 /* Avoid these transformations if the COND_EXPR may be used
4724 as an lvalue in the C++ front-end. PR c++/19199. */
4725 && (in_gimple_form
4726 || VECTOR_TYPE_P (type)
4727 || (strcmp (lang_hooks.name, "GNU C++") != 0
4728 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4729 || ! maybe_lvalue_p (arg1)
4730 || ! maybe_lvalue_p (arg2)))
4732 tree comp_op0 = arg00;
4733 tree comp_op1 = arg01;
4734 tree comp_type = TREE_TYPE (comp_op0);
4736 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4737 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4739 comp_type = type;
4740 comp_op0 = arg1;
4741 comp_op1 = arg2;
4744 switch (comp_code)
4746 case EQ_EXPR:
4747 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4748 case NE_EXPR:
4749 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4750 case LE_EXPR:
4751 case LT_EXPR:
4752 case UNLE_EXPR:
4753 case UNLT_EXPR:
4754 /* In C++ a ?: expression can be an lvalue, so put the
4755 operand which will be used if they are equal first
4756 so that we can convert this back to the
4757 corresponding COND_EXPR. */
4758 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4760 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4761 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4762 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4763 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4764 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4765 comp_op1, comp_op0);
4766 return pedantic_non_lvalue_loc (loc,
4767 fold_convert_loc (loc, type, tem));
4769 break;
4770 case GE_EXPR:
4771 case GT_EXPR:
4772 case UNGE_EXPR:
4773 case UNGT_EXPR:
4774 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4776 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4777 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4778 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4779 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4780 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4781 comp_op1, comp_op0);
4782 return pedantic_non_lvalue_loc (loc,
4783 fold_convert_loc (loc, type, tem));
4785 break;
4786 case UNEQ_EXPR:
4787 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4788 return pedantic_non_lvalue_loc (loc,
4789 fold_convert_loc (loc, type, arg2));
4790 break;
4791 case LTGT_EXPR:
4792 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4793 return pedantic_non_lvalue_loc (loc,
4794 fold_convert_loc (loc, type, arg1));
4795 break;
4796 default:
4797 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4798 break;
4802 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4803 we might still be able to simplify this. For example,
4804 if C1 is one less or one more than C2, this might have started
4805 out as a MIN or MAX and been transformed by this function.
4806 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4808 if (INTEGRAL_TYPE_P (type)
4809 && TREE_CODE (arg01) == INTEGER_CST
4810 && TREE_CODE (arg2) == INTEGER_CST)
4811 switch (comp_code)
4813 case EQ_EXPR:
4814 if (TREE_CODE (arg1) == INTEGER_CST)
4815 break;
4816 /* We can replace A with C1 in this case. */
4817 arg1 = fold_convert_loc (loc, type, arg01);
4818 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
4820 case LT_EXPR:
4821 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
4822 MIN_EXPR, to preserve the signedness of the comparison. */
4823 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4824 OEP_ONLY_CONST)
4825 && operand_equal_p (arg01,
4826 const_binop (PLUS_EXPR, arg2,
4827 build_int_cst (type, 1)),
4828 OEP_ONLY_CONST))
4830 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
4831 fold_convert_loc (loc, TREE_TYPE (arg00),
4832 arg2));
4833 return pedantic_non_lvalue_loc (loc,
4834 fold_convert_loc (loc, type, tem));
4836 break;
4838 case LE_EXPR:
4839 /* If C1 is C2 - 1, this is min(A, C2), with the same care
4840 as above. */
4841 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4842 OEP_ONLY_CONST)
4843 && operand_equal_p (arg01,
4844 const_binop (MINUS_EXPR, arg2,
4845 build_int_cst (type, 1)),
4846 OEP_ONLY_CONST))
4848 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
4849 fold_convert_loc (loc, TREE_TYPE (arg00),
4850 arg2));
4851 return pedantic_non_lvalue_loc (loc,
4852 fold_convert_loc (loc, type, tem));
4854 break;
4856 case GT_EXPR:
4857 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
4858 MAX_EXPR, to preserve the signedness of the comparison. */
4859 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4860 OEP_ONLY_CONST)
4861 && operand_equal_p (arg01,
4862 const_binop (MINUS_EXPR, arg2,
4863 build_int_cst (type, 1)),
4864 OEP_ONLY_CONST))
4866 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
4867 fold_convert_loc (loc, TREE_TYPE (arg00),
4868 arg2));
4869 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4871 break;
4873 case GE_EXPR:
4874 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
4875 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4876 OEP_ONLY_CONST)
4877 && operand_equal_p (arg01,
4878 const_binop (PLUS_EXPR, arg2,
4879 build_int_cst (type, 1)),
4880 OEP_ONLY_CONST))
4882 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
4883 fold_convert_loc (loc, TREE_TYPE (arg00),
4884 arg2));
4885 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4887 break;
4888 case NE_EXPR:
4889 break;
4890 default:
4891 gcc_unreachable ();
4894 return NULL_TREE;
4899 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4900 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
4901 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
4902 false) >= 2)
4903 #endif
4905 /* EXP is some logical combination of boolean tests. See if we can
4906 merge it into some range test. Return the new tree if so. */
4908 static tree
4909 fold_range_test (location_t loc, enum tree_code code, tree type,
4910 tree op0, tree op1)
4912 int or_op = (code == TRUTH_ORIF_EXPR
4913 || code == TRUTH_OR_EXPR);
4914 int in0_p, in1_p, in_p;
4915 tree low0, low1, low, high0, high1, high;
4916 bool strict_overflow_p = false;
4917 tree tem, lhs, rhs;
4918 const char * const warnmsg = G_("assuming signed overflow does not occur "
4919 "when simplifying range test");
4921 if (!INTEGRAL_TYPE_P (type))
4922 return 0;
4924 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
4925 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
4927 /* If this is an OR operation, invert both sides; we will invert
4928 again at the end. */
4929 if (or_op)
4930 in0_p = ! in0_p, in1_p = ! in1_p;
4932 /* If both expressions are the same, if we can merge the ranges, and we
4933 can build the range test, return it or it inverted. If one of the
4934 ranges is always true or always false, consider it to be the same
4935 expression as the other. */
4936 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4937 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4938 in1_p, low1, high1)
4939 && 0 != (tem = (build_range_check (loc, type,
4940 lhs != 0 ? lhs
4941 : rhs != 0 ? rhs : integer_zero_node,
4942 in_p, low, high))))
4944 if (strict_overflow_p)
4945 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
4946 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
4949 /* On machines where the branch cost is expensive, if this is a
4950 short-circuited branch and the underlying object on both sides
4951 is the same, make a non-short-circuit operation. */
4952 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4953 && lhs != 0 && rhs != 0
4954 && (code == TRUTH_ANDIF_EXPR
4955 || code == TRUTH_ORIF_EXPR)
4956 && operand_equal_p (lhs, rhs, 0))
4958 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4959 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4960 which cases we can't do this. */
4961 if (simple_operand_p (lhs))
4962 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
4963 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4964 type, op0, op1);
4966 else if (!lang_hooks.decls.global_bindings_p ()
4967 && !CONTAINS_PLACEHOLDER_P (lhs))
4969 tree common = save_expr (lhs);
4971 if (0 != (lhs = build_range_check (loc, type, common,
4972 or_op ? ! in0_p : in0_p,
4973 low0, high0))
4974 && (0 != (rhs = build_range_check (loc, type, common,
4975 or_op ? ! in1_p : in1_p,
4976 low1, high1))))
4978 if (strict_overflow_p)
4979 fold_overflow_warning (warnmsg,
4980 WARN_STRICT_OVERFLOW_COMPARISON);
4981 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
4982 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4983 type, lhs, rhs);
4988 return 0;
4991 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
4992 bit value. Arrange things so the extra bits will be set to zero if and
4993 only if C is signed-extended to its full width. If MASK is nonzero,
4994 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4996 static tree
4997 unextend (tree c, int p, int unsignedp, tree mask)
4999 tree type = TREE_TYPE (c);
5000 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5001 tree temp;
5003 if (p == modesize || unsignedp)
5004 return c;
5006 /* We work by getting just the sign bit into the low-order bit, then
5007 into the high-order bit, then sign-extend. We then XOR that value
5008 with C. */
5009 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5011 /* We must use a signed type in order to get an arithmetic right shift.
5012 However, we must also avoid introducing accidental overflows, so that
5013 a subsequent call to integer_zerop will work. Hence we must
5014 do the type conversion here. At this point, the constant is either
5015 zero or one, and the conversion to a signed type can never overflow.
5016 We could get an overflow if this conversion is done anywhere else. */
5017 if (TYPE_UNSIGNED (type))
5018 temp = fold_convert (signed_type_for (type), temp);
5020 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5021 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5022 if (mask != 0)
5023 temp = const_binop (BIT_AND_EXPR, temp,
5024 fold_convert (TREE_TYPE (c), mask));
5025 /* If necessary, convert the type back to match the type of C. */
5026 if (TYPE_UNSIGNED (type))
5027 temp = fold_convert (type, temp);
5029 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5032 /* For an expression that has the form
5033 (A && B) || ~B
5035 (A || B) && ~B,
5036 we can drop one of the inner expressions and simplify to
5037 A || ~B
5039 A && ~B
5040 LOC is the location of the resulting expression. OP is the inner
5041 logical operation; the left-hand side in the examples above, while CMPOP
5042 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5043 removing a condition that guards another, as in
5044 (A != NULL && A->...) || A == NULL
5045 which we must not transform. If RHS_ONLY is true, only eliminate the
5046 right-most operand of the inner logical operation. */
5048 static tree
5049 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5050 bool rhs_only)
5052 tree type = TREE_TYPE (cmpop);
5053 enum tree_code code = TREE_CODE (cmpop);
5054 enum tree_code truthop_code = TREE_CODE (op);
5055 tree lhs = TREE_OPERAND (op, 0);
5056 tree rhs = TREE_OPERAND (op, 1);
5057 tree orig_lhs = lhs, orig_rhs = rhs;
5058 enum tree_code rhs_code = TREE_CODE (rhs);
5059 enum tree_code lhs_code = TREE_CODE (lhs);
5060 enum tree_code inv_code;
5062 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5063 return NULL_TREE;
5065 if (TREE_CODE_CLASS (code) != tcc_comparison)
5066 return NULL_TREE;
5068 if (rhs_code == truthop_code)
5070 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5071 if (newrhs != NULL_TREE)
5073 rhs = newrhs;
5074 rhs_code = TREE_CODE (rhs);
5077 if (lhs_code == truthop_code && !rhs_only)
5079 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5080 if (newlhs != NULL_TREE)
5082 lhs = newlhs;
5083 lhs_code = TREE_CODE (lhs);
5087 inv_code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
5088 if (inv_code == rhs_code
5089 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5090 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5091 return lhs;
5092 if (!rhs_only && inv_code == lhs_code
5093 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5094 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5095 return rhs;
5096 if (rhs != orig_rhs || lhs != orig_lhs)
5097 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5098 lhs, rhs);
5099 return NULL_TREE;
5102 /* Find ways of folding logical expressions of LHS and RHS:
5103 Try to merge two comparisons to the same innermost item.
5104 Look for range tests like "ch >= '0' && ch <= '9'".
5105 Look for combinations of simple terms on machines with expensive branches
5106 and evaluate the RHS unconditionally.
5108 For example, if we have p->a == 2 && p->b == 4 and we can make an
5109 object large enough to span both A and B, we can do this with a comparison
5110 against the object ANDed with the a mask.
5112 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5113 operations to do this with one comparison.
5115 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5116 function and the one above.
5118 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5119 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5121 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5122 two operands.
5124 We return the simplified tree or 0 if no optimization is possible. */
5126 static tree
5127 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5128 tree lhs, tree rhs)
5130 /* If this is the "or" of two comparisons, we can do something if
5131 the comparisons are NE_EXPR. If this is the "and", we can do something
5132 if the comparisons are EQ_EXPR. I.e.,
5133 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5135 WANTED_CODE is this operation code. For single bit fields, we can
5136 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5137 comparison for one-bit fields. */
5139 enum tree_code wanted_code;
5140 enum tree_code lcode, rcode;
5141 tree ll_arg, lr_arg, rl_arg, rr_arg;
5142 tree ll_inner, lr_inner, rl_inner, rr_inner;
5143 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5144 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5145 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5146 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5147 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5148 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5149 enum machine_mode lnmode, rnmode;
5150 tree ll_mask, lr_mask, rl_mask, rr_mask;
5151 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5152 tree l_const, r_const;
5153 tree lntype, rntype, result;
5154 HOST_WIDE_INT first_bit, end_bit;
5155 int volatilep;
5157 /* Start by getting the comparison codes. Fail if anything is volatile.
5158 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5159 it were surrounded with a NE_EXPR. */
5161 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5162 return 0;
5164 lcode = TREE_CODE (lhs);
5165 rcode = TREE_CODE (rhs);
5167 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5169 lhs = build2 (NE_EXPR, truth_type, lhs,
5170 build_int_cst (TREE_TYPE (lhs), 0));
5171 lcode = NE_EXPR;
5174 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5176 rhs = build2 (NE_EXPR, truth_type, rhs,
5177 build_int_cst (TREE_TYPE (rhs), 0));
5178 rcode = NE_EXPR;
5181 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5182 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5183 return 0;
5185 ll_arg = TREE_OPERAND (lhs, 0);
5186 lr_arg = TREE_OPERAND (lhs, 1);
5187 rl_arg = TREE_OPERAND (rhs, 0);
5188 rr_arg = TREE_OPERAND (rhs, 1);
5190 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5191 if (simple_operand_p (ll_arg)
5192 && simple_operand_p (lr_arg))
5194 if (operand_equal_p (ll_arg, rl_arg, 0)
5195 && operand_equal_p (lr_arg, rr_arg, 0))
5197 result = combine_comparisons (loc, code, lcode, rcode,
5198 truth_type, ll_arg, lr_arg);
5199 if (result)
5200 return result;
5202 else if (operand_equal_p (ll_arg, rr_arg, 0)
5203 && operand_equal_p (lr_arg, rl_arg, 0))
5205 result = combine_comparisons (loc, code, lcode,
5206 swap_tree_comparison (rcode),
5207 truth_type, ll_arg, lr_arg);
5208 if (result)
5209 return result;
5213 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5214 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5216 /* If the RHS can be evaluated unconditionally and its operands are
5217 simple, it wins to evaluate the RHS unconditionally on machines
5218 with expensive branches. In this case, this isn't a comparison
5219 that can be merged. */
5221 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5222 false) >= 2
5223 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5224 && simple_operand_p (rl_arg)
5225 && simple_operand_p (rr_arg))
5227 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5228 if (code == TRUTH_OR_EXPR
5229 && lcode == NE_EXPR && integer_zerop (lr_arg)
5230 && rcode == NE_EXPR && integer_zerop (rr_arg)
5231 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5232 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5233 return build2_loc (loc, NE_EXPR, truth_type,
5234 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5235 ll_arg, rl_arg),
5236 build_int_cst (TREE_TYPE (ll_arg), 0));
5238 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5239 if (code == TRUTH_AND_EXPR
5240 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5241 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5242 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5243 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5244 return build2_loc (loc, EQ_EXPR, truth_type,
5245 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5246 ll_arg, rl_arg),
5247 build_int_cst (TREE_TYPE (ll_arg), 0));
5250 /* See if the comparisons can be merged. Then get all the parameters for
5251 each side. */
5253 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5254 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5255 return 0;
5257 volatilep = 0;
5258 ll_inner = decode_field_reference (loc, ll_arg,
5259 &ll_bitsize, &ll_bitpos, &ll_mode,
5260 &ll_unsignedp, &volatilep, &ll_mask,
5261 &ll_and_mask);
5262 lr_inner = decode_field_reference (loc, lr_arg,
5263 &lr_bitsize, &lr_bitpos, &lr_mode,
5264 &lr_unsignedp, &volatilep, &lr_mask,
5265 &lr_and_mask);
5266 rl_inner = decode_field_reference (loc, rl_arg,
5267 &rl_bitsize, &rl_bitpos, &rl_mode,
5268 &rl_unsignedp, &volatilep, &rl_mask,
5269 &rl_and_mask);
5270 rr_inner = decode_field_reference (loc, rr_arg,
5271 &rr_bitsize, &rr_bitpos, &rr_mode,
5272 &rr_unsignedp, &volatilep, &rr_mask,
5273 &rr_and_mask);
5275 /* It must be true that the inner operation on the lhs of each
5276 comparison must be the same if we are to be able to do anything.
5277 Then see if we have constants. If not, the same must be true for
5278 the rhs's. */
5279 if (volatilep || ll_inner == 0 || rl_inner == 0
5280 || ! operand_equal_p (ll_inner, rl_inner, 0))
5281 return 0;
5283 if (TREE_CODE (lr_arg) == INTEGER_CST
5284 && TREE_CODE (rr_arg) == INTEGER_CST)
5285 l_const = lr_arg, r_const = rr_arg;
5286 else if (lr_inner == 0 || rr_inner == 0
5287 || ! operand_equal_p (lr_inner, rr_inner, 0))
5288 return 0;
5289 else
5290 l_const = r_const = 0;
5292 /* If either comparison code is not correct for our logical operation,
5293 fail. However, we can convert a one-bit comparison against zero into
5294 the opposite comparison against that bit being set in the field. */
5296 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5297 if (lcode != wanted_code)
5299 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5301 /* Make the left operand unsigned, since we are only interested
5302 in the value of one bit. Otherwise we are doing the wrong
5303 thing below. */
5304 ll_unsignedp = 1;
5305 l_const = ll_mask;
5307 else
5308 return 0;
5311 /* This is analogous to the code for l_const above. */
5312 if (rcode != wanted_code)
5314 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5316 rl_unsignedp = 1;
5317 r_const = rl_mask;
5319 else
5320 return 0;
5323 /* See if we can find a mode that contains both fields being compared on
5324 the left. If we can't, fail. Otherwise, update all constants and masks
5325 to be relative to a field of that size. */
5326 first_bit = MIN (ll_bitpos, rl_bitpos);
5327 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5328 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5329 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5330 volatilep);
5331 if (lnmode == VOIDmode)
5332 return 0;
5334 lnbitsize = GET_MODE_BITSIZE (lnmode);
5335 lnbitpos = first_bit & ~ (lnbitsize - 1);
5336 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5337 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5339 if (BYTES_BIG_ENDIAN)
5341 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5342 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5345 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5346 size_int (xll_bitpos));
5347 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5348 size_int (xrl_bitpos));
5350 if (l_const)
5352 l_const = fold_convert_loc (loc, lntype, l_const);
5353 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5354 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5355 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5356 fold_build1_loc (loc, BIT_NOT_EXPR,
5357 lntype, ll_mask))))
5359 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5361 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5364 if (r_const)
5366 r_const = fold_convert_loc (loc, lntype, r_const);
5367 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5368 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5369 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5370 fold_build1_loc (loc, BIT_NOT_EXPR,
5371 lntype, rl_mask))))
5373 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5375 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5379 /* If the right sides are not constant, do the same for it. Also,
5380 disallow this optimization if a size or signedness mismatch occurs
5381 between the left and right sides. */
5382 if (l_const == 0)
5384 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5385 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5386 /* Make sure the two fields on the right
5387 correspond to the left without being swapped. */
5388 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5389 return 0;
5391 first_bit = MIN (lr_bitpos, rr_bitpos);
5392 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5393 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5394 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5395 volatilep);
5396 if (rnmode == VOIDmode)
5397 return 0;
5399 rnbitsize = GET_MODE_BITSIZE (rnmode);
5400 rnbitpos = first_bit & ~ (rnbitsize - 1);
5401 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5402 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5404 if (BYTES_BIG_ENDIAN)
5406 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5407 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5410 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5411 rntype, lr_mask),
5412 size_int (xlr_bitpos));
5413 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5414 rntype, rr_mask),
5415 size_int (xrr_bitpos));
5417 /* Make a mask that corresponds to both fields being compared.
5418 Do this for both items being compared. If the operands are the
5419 same size and the bits being compared are in the same position
5420 then we can do this by masking both and comparing the masked
5421 results. */
5422 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5423 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5424 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5426 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5427 ll_unsignedp || rl_unsignedp);
5428 if (! all_ones_mask_p (ll_mask, lnbitsize))
5429 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5431 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5432 lr_unsignedp || rr_unsignedp);
5433 if (! all_ones_mask_p (lr_mask, rnbitsize))
5434 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5436 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5439 /* There is still another way we can do something: If both pairs of
5440 fields being compared are adjacent, we may be able to make a wider
5441 field containing them both.
5443 Note that we still must mask the lhs/rhs expressions. Furthermore,
5444 the mask must be shifted to account for the shift done by
5445 make_bit_field_ref. */
5446 if ((ll_bitsize + ll_bitpos == rl_bitpos
5447 && lr_bitsize + lr_bitpos == rr_bitpos)
5448 || (ll_bitpos == rl_bitpos + rl_bitsize
5449 && lr_bitpos == rr_bitpos + rr_bitsize))
5451 tree type;
5453 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5454 ll_bitsize + rl_bitsize,
5455 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5456 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5457 lr_bitsize + rr_bitsize,
5458 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5460 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5461 size_int (MIN (xll_bitpos, xrl_bitpos)));
5462 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5463 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5465 /* Convert to the smaller type before masking out unwanted bits. */
5466 type = lntype;
5467 if (lntype != rntype)
5469 if (lnbitsize > rnbitsize)
5471 lhs = fold_convert_loc (loc, rntype, lhs);
5472 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5473 type = rntype;
5475 else if (lnbitsize < rnbitsize)
5477 rhs = fold_convert_loc (loc, lntype, rhs);
5478 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5479 type = lntype;
5483 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5484 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5486 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5487 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5489 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5492 return 0;
5495 /* Handle the case of comparisons with constants. If there is something in
5496 common between the masks, those bits of the constants must be the same.
5497 If not, the condition is always false. Test for this to avoid generating
5498 incorrect code below. */
5499 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5500 if (! integer_zerop (result)
5501 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5502 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5504 if (wanted_code == NE_EXPR)
5506 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5507 return constant_boolean_node (true, truth_type);
5509 else
5511 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5512 return constant_boolean_node (false, truth_type);
5516 /* Construct the expression we will return. First get the component
5517 reference we will make. Unless the mask is all ones the width of
5518 that field, perform the mask operation. Then compare with the
5519 merged constant. */
5520 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5521 ll_unsignedp || rl_unsignedp);
5523 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5524 if (! all_ones_mask_p (ll_mask, lnbitsize))
5525 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5527 return build2_loc (loc, wanted_code, truth_type, result,
5528 const_binop (BIT_IOR_EXPR, l_const, r_const));
5531 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5532 constant. */
5534 static tree
5535 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5536 tree op0, tree op1)
5538 tree arg0 = op0;
5539 enum tree_code op_code;
5540 tree comp_const;
5541 tree minmax_const;
5542 int consts_equal, consts_lt;
5543 tree inner;
5545 STRIP_SIGN_NOPS (arg0);
5547 op_code = TREE_CODE (arg0);
5548 minmax_const = TREE_OPERAND (arg0, 1);
5549 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5550 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5551 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5552 inner = TREE_OPERAND (arg0, 0);
5554 /* If something does not permit us to optimize, return the original tree. */
5555 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5556 || TREE_CODE (comp_const) != INTEGER_CST
5557 || TREE_OVERFLOW (comp_const)
5558 || TREE_CODE (minmax_const) != INTEGER_CST
5559 || TREE_OVERFLOW (minmax_const))
5560 return NULL_TREE;
5562 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5563 and GT_EXPR, doing the rest with recursive calls using logical
5564 simplifications. */
5565 switch (code)
5567 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5569 tree tem
5570 = optimize_minmax_comparison (loc,
5571 invert_tree_comparison (code, false),
5572 type, op0, op1);
5573 if (tem)
5574 return invert_truthvalue_loc (loc, tem);
5575 return NULL_TREE;
5578 case GE_EXPR:
5579 return
5580 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5581 optimize_minmax_comparison
5582 (loc, EQ_EXPR, type, arg0, comp_const),
5583 optimize_minmax_comparison
5584 (loc, GT_EXPR, type, arg0, comp_const));
5586 case EQ_EXPR:
5587 if (op_code == MAX_EXPR && consts_equal)
5588 /* MAX (X, 0) == 0 -> X <= 0 */
5589 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5591 else if (op_code == MAX_EXPR && consts_lt)
5592 /* MAX (X, 0) == 5 -> X == 5 */
5593 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5595 else if (op_code == MAX_EXPR)
5596 /* MAX (X, 0) == -1 -> false */
5597 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5599 else if (consts_equal)
5600 /* MIN (X, 0) == 0 -> X >= 0 */
5601 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5603 else if (consts_lt)
5604 /* MIN (X, 0) == 5 -> false */
5605 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5607 else
5608 /* MIN (X, 0) == -1 -> X == -1 */
5609 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5611 case GT_EXPR:
5612 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5613 /* MAX (X, 0) > 0 -> X > 0
5614 MAX (X, 0) > 5 -> X > 5 */
5615 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5617 else if (op_code == MAX_EXPR)
5618 /* MAX (X, 0) > -1 -> true */
5619 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5621 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5622 /* MIN (X, 0) > 0 -> false
5623 MIN (X, 0) > 5 -> false */
5624 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5626 else
5627 /* MIN (X, 0) > -1 -> X > -1 */
5628 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5630 default:
5631 return NULL_TREE;
5635 /* T is an integer expression that is being multiplied, divided, or taken a
5636 modulus (CODE says which and what kind of divide or modulus) by a
5637 constant C. See if we can eliminate that operation by folding it with
5638 other operations already in T. WIDE_TYPE, if non-null, is a type that
5639 should be used for the computation if wider than our type.
5641 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5642 (X * 2) + (Y * 4). We must, however, be assured that either the original
5643 expression would not overflow or that overflow is undefined for the type
5644 in the language in question.
5646 If we return a non-null expression, it is an equivalent form of the
5647 original computation, but need not be in the original type.
5649 We set *STRICT_OVERFLOW_P to true if the return values depends on
5650 signed overflow being undefined. Otherwise we do not change
5651 *STRICT_OVERFLOW_P. */
5653 static tree
5654 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5655 bool *strict_overflow_p)
5657 /* To avoid exponential search depth, refuse to allow recursion past
5658 three levels. Beyond that (1) it's highly unlikely that we'll find
5659 something interesting and (2) we've probably processed it before
5660 when we built the inner expression. */
5662 static int depth;
5663 tree ret;
5665 if (depth > 3)
5666 return NULL;
5668 depth++;
5669 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5670 depth--;
5672 return ret;
5675 static tree
5676 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5677 bool *strict_overflow_p)
5679 tree type = TREE_TYPE (t);
5680 enum tree_code tcode = TREE_CODE (t);
5681 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5682 > GET_MODE_SIZE (TYPE_MODE (type)))
5683 ? wide_type : type);
5684 tree t1, t2;
5685 int same_p = tcode == code;
5686 tree op0 = NULL_TREE, op1 = NULL_TREE;
5687 bool sub_strict_overflow_p;
5689 /* Don't deal with constants of zero here; they confuse the code below. */
5690 if (integer_zerop (c))
5691 return NULL_TREE;
5693 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5694 op0 = TREE_OPERAND (t, 0);
5696 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5697 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5699 /* Note that we need not handle conditional operations here since fold
5700 already handles those cases. So just do arithmetic here. */
5701 switch (tcode)
5703 case INTEGER_CST:
5704 /* For a constant, we can always simplify if we are a multiply
5705 or (for divide and modulus) if it is a multiple of our constant. */
5706 if (code == MULT_EXPR
5707 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5708 return const_binop (code, fold_convert (ctype, t),
5709 fold_convert (ctype, c));
5710 break;
5712 CASE_CONVERT: case NON_LVALUE_EXPR:
5713 /* If op0 is an expression ... */
5714 if ((COMPARISON_CLASS_P (op0)
5715 || UNARY_CLASS_P (op0)
5716 || BINARY_CLASS_P (op0)
5717 || VL_EXP_CLASS_P (op0)
5718 || EXPRESSION_CLASS_P (op0))
5719 /* ... and has wrapping overflow, and its type is smaller
5720 than ctype, then we cannot pass through as widening. */
5721 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
5722 && (TYPE_PRECISION (ctype)
5723 > TYPE_PRECISION (TREE_TYPE (op0))))
5724 /* ... or this is a truncation (t is narrower than op0),
5725 then we cannot pass through this narrowing. */
5726 || (TYPE_PRECISION (type)
5727 < TYPE_PRECISION (TREE_TYPE (op0)))
5728 /* ... or signedness changes for division or modulus,
5729 then we cannot pass through this conversion. */
5730 || (code != MULT_EXPR
5731 && (TYPE_UNSIGNED (ctype)
5732 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5733 /* ... or has undefined overflow while the converted to
5734 type has not, we cannot do the operation in the inner type
5735 as that would introduce undefined overflow. */
5736 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
5737 && !TYPE_OVERFLOW_UNDEFINED (type))))
5738 break;
5740 /* Pass the constant down and see if we can make a simplification. If
5741 we can, replace this expression with the inner simplification for
5742 possible later conversion to our or some other type. */
5743 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5744 && TREE_CODE (t2) == INTEGER_CST
5745 && !TREE_OVERFLOW (t2)
5746 && (0 != (t1 = extract_muldiv (op0, t2, code,
5747 code == MULT_EXPR
5748 ? ctype : NULL_TREE,
5749 strict_overflow_p))))
5750 return t1;
5751 break;
5753 case ABS_EXPR:
5754 /* If widening the type changes it from signed to unsigned, then we
5755 must avoid building ABS_EXPR itself as unsigned. */
5756 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5758 tree cstype = (*signed_type_for) (ctype);
5759 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5760 != 0)
5762 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5763 return fold_convert (ctype, t1);
5765 break;
5767 /* If the constant is negative, we cannot simplify this. */
5768 if (tree_int_cst_sgn (c) == -1)
5769 break;
5770 /* FALLTHROUGH */
5771 case NEGATE_EXPR:
5772 /* For division and modulus, type can't be unsigned, as e.g.
5773 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
5774 For signed types, even with wrapping overflow, this is fine. */
5775 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
5776 break;
5777 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5778 != 0)
5779 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5780 break;
5782 case MIN_EXPR: case MAX_EXPR:
5783 /* If widening the type changes the signedness, then we can't perform
5784 this optimization as that changes the result. */
5785 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5786 break;
5788 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5789 sub_strict_overflow_p = false;
5790 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5791 &sub_strict_overflow_p)) != 0
5792 && (t2 = extract_muldiv (op1, c, code, wide_type,
5793 &sub_strict_overflow_p)) != 0)
5795 if (tree_int_cst_sgn (c) < 0)
5796 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5797 if (sub_strict_overflow_p)
5798 *strict_overflow_p = true;
5799 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5800 fold_convert (ctype, t2));
5802 break;
5804 case LSHIFT_EXPR: case RSHIFT_EXPR:
5805 /* If the second operand is constant, this is a multiplication
5806 or floor division, by a power of two, so we can treat it that
5807 way unless the multiplier or divisor overflows. Signed
5808 left-shift overflow is implementation-defined rather than
5809 undefined in C90, so do not convert signed left shift into
5810 multiplication. */
5811 if (TREE_CODE (op1) == INTEGER_CST
5812 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5813 /* const_binop may not detect overflow correctly,
5814 so check for it explicitly here. */
5815 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
5816 && 0 != (t1 = fold_convert (ctype,
5817 const_binop (LSHIFT_EXPR,
5818 size_one_node,
5819 op1)))
5820 && !TREE_OVERFLOW (t1))
5821 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5822 ? MULT_EXPR : FLOOR_DIV_EXPR,
5823 ctype,
5824 fold_convert (ctype, op0),
5825 t1),
5826 c, code, wide_type, strict_overflow_p);
5827 break;
5829 case PLUS_EXPR: case MINUS_EXPR:
5830 /* See if we can eliminate the operation on both sides. If we can, we
5831 can return a new PLUS or MINUS. If we can't, the only remaining
5832 cases where we can do anything are if the second operand is a
5833 constant. */
5834 sub_strict_overflow_p = false;
5835 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
5836 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
5837 if (t1 != 0 && t2 != 0
5838 && (code == MULT_EXPR
5839 /* If not multiplication, we can only do this if both operands
5840 are divisible by c. */
5841 || (multiple_of_p (ctype, op0, c)
5842 && multiple_of_p (ctype, op1, c))))
5844 if (sub_strict_overflow_p)
5845 *strict_overflow_p = true;
5846 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5847 fold_convert (ctype, t2));
5850 /* If this was a subtraction, negate OP1 and set it to be an addition.
5851 This simplifies the logic below. */
5852 if (tcode == MINUS_EXPR)
5854 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5855 /* If OP1 was not easily negatable, the constant may be OP0. */
5856 if (TREE_CODE (op0) == INTEGER_CST)
5858 tree tem = op0;
5859 op0 = op1;
5860 op1 = tem;
5861 tem = t1;
5862 t1 = t2;
5863 t2 = tem;
5867 if (TREE_CODE (op1) != INTEGER_CST)
5868 break;
5870 /* If either OP1 or C are negative, this optimization is not safe for
5871 some of the division and remainder types while for others we need
5872 to change the code. */
5873 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5875 if (code == CEIL_DIV_EXPR)
5876 code = FLOOR_DIV_EXPR;
5877 else if (code == FLOOR_DIV_EXPR)
5878 code = CEIL_DIV_EXPR;
5879 else if (code != MULT_EXPR
5880 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5881 break;
5884 /* If it's a multiply or a division/modulus operation of a multiple
5885 of our constant, do the operation and verify it doesn't overflow. */
5886 if (code == MULT_EXPR
5887 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
5889 op1 = const_binop (code, fold_convert (ctype, op1),
5890 fold_convert (ctype, c));
5891 /* We allow the constant to overflow with wrapping semantics. */
5892 if (op1 == 0
5893 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
5894 break;
5896 else
5897 break;
5899 /* If we have an unsigned type, we cannot widen the operation since it
5900 will change the result if the original computation overflowed. */
5901 if (TYPE_UNSIGNED (ctype) && ctype != type)
5902 break;
5904 /* If we were able to eliminate our operation from the first side,
5905 apply our operation to the second side and reform the PLUS. */
5906 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5907 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5909 /* The last case is if we are a multiply. In that case, we can
5910 apply the distributive law to commute the multiply and addition
5911 if the multiplication of the constants doesn't overflow
5912 and overflow is defined. With undefined overflow
5913 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
5914 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
5915 return fold_build2 (tcode, ctype,
5916 fold_build2 (code, ctype,
5917 fold_convert (ctype, op0),
5918 fold_convert (ctype, c)),
5919 op1);
5921 break;
5923 case MULT_EXPR:
5924 /* We have a special case here if we are doing something like
5925 (C * 8) % 4 since we know that's zero. */
5926 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5927 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5928 /* If the multiplication can overflow we cannot optimize this. */
5929 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
5930 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5931 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
5933 *strict_overflow_p = true;
5934 return omit_one_operand (type, integer_zero_node, op0);
5937 /* ... fall through ... */
5939 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5940 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5941 /* If we can extract our operation from the LHS, do so and return a
5942 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5943 do something only if the second operand is a constant. */
5944 if (same_p
5945 && (t1 = extract_muldiv (op0, c, code, wide_type,
5946 strict_overflow_p)) != 0)
5947 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5948 fold_convert (ctype, op1));
5949 else if (tcode == MULT_EXPR && code == MULT_EXPR
5950 && (t1 = extract_muldiv (op1, c, code, wide_type,
5951 strict_overflow_p)) != 0)
5952 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5953 fold_convert (ctype, t1));
5954 else if (TREE_CODE (op1) != INTEGER_CST)
5955 return 0;
5957 /* If these are the same operation types, we can associate them
5958 assuming no overflow. */
5959 if (tcode == code)
5961 bool overflow_p = false;
5962 bool overflow_mul_p;
5963 signop sign = TYPE_SIGN (ctype);
5964 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
5965 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
5966 if (overflow_mul_p
5967 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
5968 overflow_p = true;
5969 if (!overflow_p)
5970 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5971 wide_int_to_tree (ctype, mul));
5974 /* If these operations "cancel" each other, we have the main
5975 optimizations of this pass, which occur when either constant is a
5976 multiple of the other, in which case we replace this with either an
5977 operation or CODE or TCODE.
5979 If we have an unsigned type, we cannot do this since it will change
5980 the result if the original computation overflowed. */
5981 if (TYPE_OVERFLOW_UNDEFINED (ctype)
5982 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5983 || (tcode == MULT_EXPR
5984 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5985 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
5986 && code != MULT_EXPR)))
5988 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
5990 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5991 *strict_overflow_p = true;
5992 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5993 fold_convert (ctype,
5994 const_binop (TRUNC_DIV_EXPR,
5995 op1, c)));
5997 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
5999 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6000 *strict_overflow_p = true;
6001 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6002 fold_convert (ctype,
6003 const_binop (TRUNC_DIV_EXPR,
6004 c, op1)));
6007 break;
6009 default:
6010 break;
6013 return 0;
6016 /* Return a node which has the indicated constant VALUE (either 0 or
6017 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6018 and is of the indicated TYPE. */
6020 tree
6021 constant_boolean_node (bool value, tree type)
6023 if (type == integer_type_node)
6024 return value ? integer_one_node : integer_zero_node;
6025 else if (type == boolean_type_node)
6026 return value ? boolean_true_node : boolean_false_node;
6027 else if (TREE_CODE (type) == VECTOR_TYPE)
6028 return build_vector_from_val (type,
6029 build_int_cst (TREE_TYPE (type),
6030 value ? -1 : 0));
6031 else
6032 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6036 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6037 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6038 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6039 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6040 COND is the first argument to CODE; otherwise (as in the example
6041 given here), it is the second argument. TYPE is the type of the
6042 original expression. Return NULL_TREE if no simplification is
6043 possible. */
6045 static tree
6046 fold_binary_op_with_conditional_arg (location_t loc,
6047 enum tree_code code,
6048 tree type, tree op0, tree op1,
6049 tree cond, tree arg, int cond_first_p)
6051 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6052 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6053 tree test, true_value, false_value;
6054 tree lhs = NULL_TREE;
6055 tree rhs = NULL_TREE;
6056 enum tree_code cond_code = COND_EXPR;
6058 if (TREE_CODE (cond) == COND_EXPR
6059 || TREE_CODE (cond) == VEC_COND_EXPR)
6061 test = TREE_OPERAND (cond, 0);
6062 true_value = TREE_OPERAND (cond, 1);
6063 false_value = TREE_OPERAND (cond, 2);
6064 /* If this operand throws an expression, then it does not make
6065 sense to try to perform a logical or arithmetic operation
6066 involving it. */
6067 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6068 lhs = true_value;
6069 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6070 rhs = false_value;
6072 else
6074 tree testtype = TREE_TYPE (cond);
6075 test = cond;
6076 true_value = constant_boolean_node (true, testtype);
6077 false_value = constant_boolean_node (false, testtype);
6080 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6081 cond_code = VEC_COND_EXPR;
6083 /* This transformation is only worthwhile if we don't have to wrap ARG
6084 in a SAVE_EXPR and the operation can be simplified without recursing
6085 on at least one of the branches once its pushed inside the COND_EXPR. */
6086 if (!TREE_CONSTANT (arg)
6087 && (TREE_SIDE_EFFECTS (arg)
6088 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6089 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6090 return NULL_TREE;
6092 arg = fold_convert_loc (loc, arg_type, arg);
6093 if (lhs == 0)
6095 true_value = fold_convert_loc (loc, cond_type, true_value);
6096 if (cond_first_p)
6097 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6098 else
6099 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6101 if (rhs == 0)
6103 false_value = fold_convert_loc (loc, cond_type, false_value);
6104 if (cond_first_p)
6105 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6106 else
6107 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6110 /* Check that we have simplified at least one of the branches. */
6111 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6112 return NULL_TREE;
6114 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6118 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6120 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6121 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6122 ADDEND is the same as X.
6124 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6125 and finite. The problematic cases are when X is zero, and its mode
6126 has signed zeros. In the case of rounding towards -infinity,
6127 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6128 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6130 bool
6131 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6133 if (!real_zerop (addend))
6134 return false;
6136 /* Don't allow the fold with -fsignaling-nans. */
6137 if (HONOR_SNANS (TYPE_MODE (type)))
6138 return false;
6140 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6141 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6142 return true;
6144 /* In a vector or complex, we would need to check the sign of all zeros. */
6145 if (TREE_CODE (addend) != REAL_CST)
6146 return false;
6148 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6149 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6150 negate = !negate;
6152 /* The mode has signed zeros, and we have to honor their sign.
6153 In this situation, there is only one case we can return true for.
6154 X - 0 is the same as X unless rounding towards -infinity is
6155 supported. */
6156 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6159 /* Subroutine of fold() that checks comparisons of built-in math
6160 functions against real constants.
6162 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6163 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6164 is the type of the result and ARG0 and ARG1 are the operands of the
6165 comparison. ARG1 must be a TREE_REAL_CST.
6167 The function returns the constant folded tree if a simplification
6168 can be made, and NULL_TREE otherwise. */
6170 static tree
6171 fold_mathfn_compare (location_t loc,
6172 enum built_in_function fcode, enum tree_code code,
6173 tree type, tree arg0, tree arg1)
6175 REAL_VALUE_TYPE c;
6177 if (BUILTIN_SQRT_P (fcode))
6179 tree arg = CALL_EXPR_ARG (arg0, 0);
6180 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6182 c = TREE_REAL_CST (arg1);
6183 if (REAL_VALUE_NEGATIVE (c))
6185 /* sqrt(x) < y is always false, if y is negative. */
6186 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6187 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6189 /* sqrt(x) > y is always true, if y is negative and we
6190 don't care about NaNs, i.e. negative values of x. */
6191 if (code == NE_EXPR || !HONOR_NANS (mode))
6192 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6194 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6195 return fold_build2_loc (loc, GE_EXPR, type, arg,
6196 build_real (TREE_TYPE (arg), dconst0));
6198 else if (code == GT_EXPR || code == GE_EXPR)
6200 REAL_VALUE_TYPE c2;
6202 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6203 real_convert (&c2, mode, &c2);
6205 if (REAL_VALUE_ISINF (c2))
6207 /* sqrt(x) > y is x == +Inf, when y is very large. */
6208 if (HONOR_INFINITIES (mode))
6209 return fold_build2_loc (loc, EQ_EXPR, type, arg,
6210 build_real (TREE_TYPE (arg), c2));
6212 /* sqrt(x) > y is always false, when y is very large
6213 and we don't care about infinities. */
6214 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6217 /* sqrt(x) > c is the same as x > c*c. */
6218 return fold_build2_loc (loc, code, type, arg,
6219 build_real (TREE_TYPE (arg), c2));
6221 else if (code == LT_EXPR || code == LE_EXPR)
6223 REAL_VALUE_TYPE c2;
6225 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6226 real_convert (&c2, mode, &c2);
6228 if (REAL_VALUE_ISINF (c2))
6230 /* sqrt(x) < y is always true, when y is a very large
6231 value and we don't care about NaNs or Infinities. */
6232 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6233 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6235 /* sqrt(x) < y is x != +Inf when y is very large and we
6236 don't care about NaNs. */
6237 if (! HONOR_NANS (mode))
6238 return fold_build2_loc (loc, NE_EXPR, type, arg,
6239 build_real (TREE_TYPE (arg), c2));
6241 /* sqrt(x) < y is x >= 0 when y is very large and we
6242 don't care about Infinities. */
6243 if (! HONOR_INFINITIES (mode))
6244 return fold_build2_loc (loc, GE_EXPR, type, arg,
6245 build_real (TREE_TYPE (arg), dconst0));
6247 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6248 arg = save_expr (arg);
6249 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6250 fold_build2_loc (loc, GE_EXPR, type, arg,
6251 build_real (TREE_TYPE (arg),
6252 dconst0)),
6253 fold_build2_loc (loc, NE_EXPR, type, arg,
6254 build_real (TREE_TYPE (arg),
6255 c2)));
6258 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6259 if (! HONOR_NANS (mode))
6260 return fold_build2_loc (loc, code, type, arg,
6261 build_real (TREE_TYPE (arg), c2));
6263 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6264 arg = save_expr (arg);
6265 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6266 fold_build2_loc (loc, GE_EXPR, type, arg,
6267 build_real (TREE_TYPE (arg),
6268 dconst0)),
6269 fold_build2_loc (loc, code, type, arg,
6270 build_real (TREE_TYPE (arg),
6271 c2)));
6275 return NULL_TREE;
6278 /* Subroutine of fold() that optimizes comparisons against Infinities,
6279 either +Inf or -Inf.
6281 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6282 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6283 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6285 The function returns the constant folded tree if a simplification
6286 can be made, and NULL_TREE otherwise. */
6288 static tree
6289 fold_inf_compare (location_t loc, enum tree_code code, tree type,
6290 tree arg0, tree arg1)
6292 enum machine_mode mode;
6293 REAL_VALUE_TYPE max;
6294 tree temp;
6295 bool neg;
6297 mode = TYPE_MODE (TREE_TYPE (arg0));
6299 /* For negative infinity swap the sense of the comparison. */
6300 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6301 if (neg)
6302 code = swap_tree_comparison (code);
6304 switch (code)
6306 case GT_EXPR:
6307 /* x > +Inf is always false, if with ignore sNANs. */
6308 if (HONOR_SNANS (mode))
6309 return NULL_TREE;
6310 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6312 case LE_EXPR:
6313 /* x <= +Inf is always true, if we don't case about NaNs. */
6314 if (! HONOR_NANS (mode))
6315 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6317 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6318 arg0 = save_expr (arg0);
6319 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg0);
6321 case EQ_EXPR:
6322 case GE_EXPR:
6323 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6324 real_maxval (&max, neg, mode);
6325 return fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6326 arg0, build_real (TREE_TYPE (arg0), max));
6328 case LT_EXPR:
6329 /* x < +Inf is always equal to x <= DBL_MAX. */
6330 real_maxval (&max, neg, mode);
6331 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6332 arg0, build_real (TREE_TYPE (arg0), max));
6334 case NE_EXPR:
6335 /* x != +Inf is always equal to !(x > DBL_MAX). */
6336 real_maxval (&max, neg, mode);
6337 if (! HONOR_NANS (mode))
6338 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6339 arg0, build_real (TREE_TYPE (arg0), max));
6341 temp = fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6342 arg0, build_real (TREE_TYPE (arg0), max));
6343 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type, temp);
6345 default:
6346 break;
6349 return NULL_TREE;
6352 /* Subroutine of fold() that optimizes comparisons of a division by
6353 a nonzero integer constant against an integer constant, i.e.
6354 X/C1 op C2.
6356 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6357 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6358 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6360 The function returns the constant folded tree if a simplification
6361 can be made, and NULL_TREE otherwise. */
6363 static tree
6364 fold_div_compare (location_t loc,
6365 enum tree_code code, tree type, tree arg0, tree arg1)
6367 tree prod, tmp, hi, lo;
6368 tree arg00 = TREE_OPERAND (arg0, 0);
6369 tree arg01 = TREE_OPERAND (arg0, 1);
6370 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6371 bool neg_overflow = false;
6372 bool overflow;
6374 /* We have to do this the hard way to detect unsigned overflow.
6375 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6376 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6377 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6378 neg_overflow = false;
6380 if (sign == UNSIGNED)
6382 tmp = int_const_binop (MINUS_EXPR, arg01,
6383 build_int_cst (TREE_TYPE (arg01), 1));
6384 lo = prod;
6386 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6387 val = wi::add (prod, tmp, sign, &overflow);
6388 hi = force_fit_type (TREE_TYPE (arg00), val,
6389 -1, overflow | TREE_OVERFLOW (prod));
6391 else if (tree_int_cst_sgn (arg01) >= 0)
6393 tmp = int_const_binop (MINUS_EXPR, arg01,
6394 build_int_cst (TREE_TYPE (arg01), 1));
6395 switch (tree_int_cst_sgn (arg1))
6397 case -1:
6398 neg_overflow = true;
6399 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6400 hi = prod;
6401 break;
6403 case 0:
6404 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6405 hi = tmp;
6406 break;
6408 case 1:
6409 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6410 lo = prod;
6411 break;
6413 default:
6414 gcc_unreachable ();
6417 else
6419 /* A negative divisor reverses the relational operators. */
6420 code = swap_tree_comparison (code);
6422 tmp = int_const_binop (PLUS_EXPR, arg01,
6423 build_int_cst (TREE_TYPE (arg01), 1));
6424 switch (tree_int_cst_sgn (arg1))
6426 case -1:
6427 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6428 lo = prod;
6429 break;
6431 case 0:
6432 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6433 lo = tmp;
6434 break;
6436 case 1:
6437 neg_overflow = true;
6438 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6439 hi = prod;
6440 break;
6442 default:
6443 gcc_unreachable ();
6447 switch (code)
6449 case EQ_EXPR:
6450 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6451 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6452 if (TREE_OVERFLOW (hi))
6453 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6454 if (TREE_OVERFLOW (lo))
6455 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6456 return build_range_check (loc, type, arg00, 1, lo, hi);
6458 case NE_EXPR:
6459 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6460 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6461 if (TREE_OVERFLOW (hi))
6462 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6463 if (TREE_OVERFLOW (lo))
6464 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6465 return build_range_check (loc, type, arg00, 0, lo, hi);
6467 case LT_EXPR:
6468 if (TREE_OVERFLOW (lo))
6470 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6471 return omit_one_operand_loc (loc, type, tmp, arg00);
6473 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6475 case LE_EXPR:
6476 if (TREE_OVERFLOW (hi))
6478 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6479 return omit_one_operand_loc (loc, type, tmp, arg00);
6481 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6483 case GT_EXPR:
6484 if (TREE_OVERFLOW (hi))
6486 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6487 return omit_one_operand_loc (loc, type, tmp, arg00);
6489 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6491 case GE_EXPR:
6492 if (TREE_OVERFLOW (lo))
6494 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6495 return omit_one_operand_loc (loc, type, tmp, arg00);
6497 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6499 default:
6500 break;
6503 return NULL_TREE;
6507 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6508 equality/inequality test, then return a simplified form of the test
6509 using a sign testing. Otherwise return NULL. TYPE is the desired
6510 result type. */
6512 static tree
6513 fold_single_bit_test_into_sign_test (location_t loc,
6514 enum tree_code code, tree arg0, tree arg1,
6515 tree result_type)
6517 /* If this is testing a single bit, we can optimize the test. */
6518 if ((code == NE_EXPR || code == EQ_EXPR)
6519 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6520 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6522 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6523 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6524 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6526 if (arg00 != NULL_TREE
6527 /* This is only a win if casting to a signed type is cheap,
6528 i.e. when arg00's type is not a partial mode. */
6529 && TYPE_PRECISION (TREE_TYPE (arg00))
6530 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6532 tree stype = signed_type_for (TREE_TYPE (arg00));
6533 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6534 result_type,
6535 fold_convert_loc (loc, stype, arg00),
6536 build_int_cst (stype, 0));
6540 return NULL_TREE;
6543 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6544 equality/inequality test, then return a simplified form of
6545 the test using shifts and logical operations. Otherwise return
6546 NULL. TYPE is the desired result type. */
6548 tree
6549 fold_single_bit_test (location_t loc, enum tree_code code,
6550 tree arg0, tree arg1, tree result_type)
6552 /* If this is testing a single bit, we can optimize the test. */
6553 if ((code == NE_EXPR || code == EQ_EXPR)
6554 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6555 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6557 tree inner = TREE_OPERAND (arg0, 0);
6558 tree type = TREE_TYPE (arg0);
6559 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6560 enum machine_mode operand_mode = TYPE_MODE (type);
6561 int ops_unsigned;
6562 tree signed_type, unsigned_type, intermediate_type;
6563 tree tem, one;
6565 /* First, see if we can fold the single bit test into a sign-bit
6566 test. */
6567 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6568 result_type);
6569 if (tem)
6570 return tem;
6572 /* Otherwise we have (A & C) != 0 where C is a single bit,
6573 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6574 Similarly for (A & C) == 0. */
6576 /* If INNER is a right shift of a constant and it plus BITNUM does
6577 not overflow, adjust BITNUM and INNER. */
6578 if (TREE_CODE (inner) == RSHIFT_EXPR
6579 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6580 && bitnum < TYPE_PRECISION (type)
6581 && wi::ltu_p (TREE_OPERAND (inner, 1),
6582 TYPE_PRECISION (type) - bitnum))
6584 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6585 inner = TREE_OPERAND (inner, 0);
6588 /* If we are going to be able to omit the AND below, we must do our
6589 operations as unsigned. If we must use the AND, we have a choice.
6590 Normally unsigned is faster, but for some machines signed is. */
6591 #ifdef LOAD_EXTEND_OP
6592 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6593 && !flag_syntax_only) ? 0 : 1;
6594 #else
6595 ops_unsigned = 1;
6596 #endif
6598 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6599 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6600 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6601 inner = fold_convert_loc (loc, intermediate_type, inner);
6603 if (bitnum != 0)
6604 inner = build2 (RSHIFT_EXPR, intermediate_type,
6605 inner, size_int (bitnum));
6607 one = build_int_cst (intermediate_type, 1);
6609 if (code == EQ_EXPR)
6610 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6612 /* Put the AND last so it can combine with more things. */
6613 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6615 /* Make sure to return the proper type. */
6616 inner = fold_convert_loc (loc, result_type, inner);
6618 return inner;
6620 return NULL_TREE;
6623 /* Check whether we are allowed to reorder operands arg0 and arg1,
6624 such that the evaluation of arg1 occurs before arg0. */
6626 static bool
6627 reorder_operands_p (const_tree arg0, const_tree arg1)
6629 if (! flag_evaluation_order)
6630 return true;
6631 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6632 return true;
6633 return ! TREE_SIDE_EFFECTS (arg0)
6634 && ! TREE_SIDE_EFFECTS (arg1);
6637 /* Test whether it is preferable two swap two operands, ARG0 and
6638 ARG1, for example because ARG0 is an integer constant and ARG1
6639 isn't. If REORDER is true, only recommend swapping if we can
6640 evaluate the operands in reverse order. */
6642 bool
6643 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6645 STRIP_SIGN_NOPS (arg0);
6646 STRIP_SIGN_NOPS (arg1);
6648 if (TREE_CODE (arg1) == INTEGER_CST)
6649 return 0;
6650 if (TREE_CODE (arg0) == INTEGER_CST)
6651 return 1;
6653 if (TREE_CODE (arg1) == REAL_CST)
6654 return 0;
6655 if (TREE_CODE (arg0) == REAL_CST)
6656 return 1;
6658 if (TREE_CODE (arg1) == FIXED_CST)
6659 return 0;
6660 if (TREE_CODE (arg0) == FIXED_CST)
6661 return 1;
6663 if (TREE_CODE (arg1) == COMPLEX_CST)
6664 return 0;
6665 if (TREE_CODE (arg0) == COMPLEX_CST)
6666 return 1;
6668 if (TREE_CONSTANT (arg1))
6669 return 0;
6670 if (TREE_CONSTANT (arg0))
6671 return 1;
6673 if (optimize_function_for_size_p (cfun))
6674 return 0;
6676 if (reorder && flag_evaluation_order
6677 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6678 return 0;
6680 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6681 for commutative and comparison operators. Ensuring a canonical
6682 form allows the optimizers to find additional redundancies without
6683 having to explicitly check for both orderings. */
6684 if (TREE_CODE (arg0) == SSA_NAME
6685 && TREE_CODE (arg1) == SSA_NAME
6686 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6687 return 1;
6689 /* Put SSA_NAMEs last. */
6690 if (TREE_CODE (arg1) == SSA_NAME)
6691 return 0;
6692 if (TREE_CODE (arg0) == SSA_NAME)
6693 return 1;
6695 /* Put variables last. */
6696 if (DECL_P (arg1))
6697 return 0;
6698 if (DECL_P (arg0))
6699 return 1;
6701 return 0;
6704 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6705 ARG0 is extended to a wider type. */
6707 static tree
6708 fold_widened_comparison (location_t loc, enum tree_code code,
6709 tree type, tree arg0, tree arg1)
6711 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6712 tree arg1_unw;
6713 tree shorter_type, outer_type;
6714 tree min, max;
6715 bool above, below;
6717 if (arg0_unw == arg0)
6718 return NULL_TREE;
6719 shorter_type = TREE_TYPE (arg0_unw);
6721 #ifdef HAVE_canonicalize_funcptr_for_compare
6722 /* Disable this optimization if we're casting a function pointer
6723 type on targets that require function pointer canonicalization. */
6724 if (HAVE_canonicalize_funcptr_for_compare
6725 && TREE_CODE (shorter_type) == POINTER_TYPE
6726 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6727 return NULL_TREE;
6728 #endif
6730 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6731 return NULL_TREE;
6733 arg1_unw = get_unwidened (arg1, NULL_TREE);
6735 /* If possible, express the comparison in the shorter mode. */
6736 if ((code == EQ_EXPR || code == NE_EXPR
6737 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6738 && (TREE_TYPE (arg1_unw) == shorter_type
6739 || ((TYPE_PRECISION (shorter_type)
6740 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
6741 && (TYPE_UNSIGNED (shorter_type)
6742 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
6743 || (TREE_CODE (arg1_unw) == INTEGER_CST
6744 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6745 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6746 && int_fits_type_p (arg1_unw, shorter_type))))
6747 return fold_build2_loc (loc, code, type, arg0_unw,
6748 fold_convert_loc (loc, shorter_type, arg1_unw));
6750 if (TREE_CODE (arg1_unw) != INTEGER_CST
6751 || TREE_CODE (shorter_type) != INTEGER_TYPE
6752 || !int_fits_type_p (arg1_unw, shorter_type))
6753 return NULL_TREE;
6755 /* If we are comparing with the integer that does not fit into the range
6756 of the shorter type, the result is known. */
6757 outer_type = TREE_TYPE (arg1_unw);
6758 min = lower_bound_in_type (outer_type, shorter_type);
6759 max = upper_bound_in_type (outer_type, shorter_type);
6761 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6762 max, arg1_unw));
6763 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6764 arg1_unw, min));
6766 switch (code)
6768 case EQ_EXPR:
6769 if (above || below)
6770 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6771 break;
6773 case NE_EXPR:
6774 if (above || below)
6775 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6776 break;
6778 case LT_EXPR:
6779 case LE_EXPR:
6780 if (above)
6781 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6782 else if (below)
6783 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6785 case GT_EXPR:
6786 case GE_EXPR:
6787 if (above)
6788 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6789 else if (below)
6790 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6792 default:
6793 break;
6796 return NULL_TREE;
6799 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6800 ARG0 just the signedness is changed. */
6802 static tree
6803 fold_sign_changed_comparison (location_t loc, enum tree_code code, tree type,
6804 tree arg0, tree arg1)
6806 tree arg0_inner;
6807 tree inner_type, outer_type;
6809 if (!CONVERT_EXPR_P (arg0))
6810 return NULL_TREE;
6812 outer_type = TREE_TYPE (arg0);
6813 arg0_inner = TREE_OPERAND (arg0, 0);
6814 inner_type = TREE_TYPE (arg0_inner);
6816 #ifdef HAVE_canonicalize_funcptr_for_compare
6817 /* Disable this optimization if we're casting a function pointer
6818 type on targets that require function pointer canonicalization. */
6819 if (HAVE_canonicalize_funcptr_for_compare
6820 && TREE_CODE (inner_type) == POINTER_TYPE
6821 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6822 return NULL_TREE;
6823 #endif
6825 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6826 return NULL_TREE;
6828 if (TREE_CODE (arg1) != INTEGER_CST
6829 && !(CONVERT_EXPR_P (arg1)
6830 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6831 return NULL_TREE;
6833 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6834 && code != NE_EXPR
6835 && code != EQ_EXPR)
6836 return NULL_TREE;
6838 if (POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
6839 return NULL_TREE;
6841 if (TREE_CODE (arg1) == INTEGER_CST)
6842 arg1 = force_fit_type (inner_type, wi::to_widest (arg1), 0,
6843 TREE_OVERFLOW (arg1));
6844 else
6845 arg1 = fold_convert_loc (loc, inner_type, arg1);
6847 return fold_build2_loc (loc, code, type, arg0_inner, arg1);
6850 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
6851 step of the array. Reconstructs s and delta in the case of s *
6852 delta being an integer constant (and thus already folded). ADDR is
6853 the address. MULT is the multiplicative expression. If the
6854 function succeeds, the new address expression is returned.
6855 Otherwise NULL_TREE is returned. LOC is the location of the
6856 resulting expression. */
6858 static tree
6859 try_move_mult_to_index (location_t loc, tree addr, tree op1)
6861 tree s, delta, step;
6862 tree ref = TREE_OPERAND (addr, 0), pref;
6863 tree ret, pos;
6864 tree itype;
6865 bool mdim = false;
6867 /* Strip the nops that might be added when converting op1 to sizetype. */
6868 STRIP_NOPS (op1);
6870 /* Canonicalize op1 into a possibly non-constant delta
6871 and an INTEGER_CST s. */
6872 if (TREE_CODE (op1) == MULT_EXPR)
6874 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
6876 STRIP_NOPS (arg0);
6877 STRIP_NOPS (arg1);
6879 if (TREE_CODE (arg0) == INTEGER_CST)
6881 s = arg0;
6882 delta = arg1;
6884 else if (TREE_CODE (arg1) == INTEGER_CST)
6886 s = arg1;
6887 delta = arg0;
6889 else
6890 return NULL_TREE;
6892 else if (TREE_CODE (op1) == INTEGER_CST)
6894 delta = op1;
6895 s = NULL_TREE;
6897 else
6899 /* Simulate we are delta * 1. */
6900 delta = op1;
6901 s = integer_one_node;
6904 /* Handle &x.array the same as we would handle &x.array[0]. */
6905 if (TREE_CODE (ref) == COMPONENT_REF
6906 && TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE)
6908 tree domain;
6910 /* Remember if this was a multi-dimensional array. */
6911 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
6912 mdim = true;
6914 domain = TYPE_DOMAIN (TREE_TYPE (ref));
6915 if (! domain)
6916 goto cont;
6917 itype = TREE_TYPE (domain);
6919 step = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ref)));
6920 if (TREE_CODE (step) != INTEGER_CST)
6921 goto cont;
6923 if (s)
6925 if (! tree_int_cst_equal (step, s))
6926 goto cont;
6928 else
6930 /* Try if delta is a multiple of step. */
6931 tree tmp = div_if_zero_remainder (op1, step);
6932 if (! tmp)
6933 goto cont;
6934 delta = tmp;
6937 /* Only fold here if we can verify we do not overflow one
6938 dimension of a multi-dimensional array. */
6939 if (mdim)
6941 tree tmp;
6943 if (!TYPE_MIN_VALUE (domain)
6944 || !TYPE_MAX_VALUE (domain)
6945 || TREE_CODE (TYPE_MAX_VALUE (domain)) != INTEGER_CST)
6946 goto cont;
6948 tmp = fold_binary_loc (loc, PLUS_EXPR, itype,
6949 fold_convert_loc (loc, itype,
6950 TYPE_MIN_VALUE (domain)),
6951 fold_convert_loc (loc, itype, delta));
6952 if (TREE_CODE (tmp) != INTEGER_CST
6953 || tree_int_cst_lt (TYPE_MAX_VALUE (domain), tmp))
6954 goto cont;
6957 /* We found a suitable component reference. */
6959 pref = TREE_OPERAND (addr, 0);
6960 ret = copy_node (pref);
6961 SET_EXPR_LOCATION (ret, loc);
6963 ret = build4_loc (loc, ARRAY_REF, TREE_TYPE (TREE_TYPE (ref)), ret,
6964 fold_build2_loc
6965 (loc, PLUS_EXPR, itype,
6966 fold_convert_loc (loc, itype,
6967 TYPE_MIN_VALUE
6968 (TYPE_DOMAIN (TREE_TYPE (ref)))),
6969 fold_convert_loc (loc, itype, delta)),
6970 NULL_TREE, NULL_TREE);
6971 return build_fold_addr_expr_loc (loc, ret);
6974 cont:
6976 for (;; ref = TREE_OPERAND (ref, 0))
6978 if (TREE_CODE (ref) == ARRAY_REF)
6980 tree domain;
6982 /* Remember if this was a multi-dimensional array. */
6983 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
6984 mdim = true;
6986 domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
6987 if (! domain)
6988 continue;
6989 itype = TREE_TYPE (domain);
6991 step = array_ref_element_size (ref);
6992 if (TREE_CODE (step) != INTEGER_CST)
6993 continue;
6995 if (s)
6997 if (! tree_int_cst_equal (step, s))
6998 continue;
7000 else
7002 /* Try if delta is a multiple of step. */
7003 tree tmp = div_if_zero_remainder (op1, step);
7004 if (! tmp)
7005 continue;
7006 delta = tmp;
7009 /* Only fold here if we can verify we do not overflow one
7010 dimension of a multi-dimensional array. */
7011 if (mdim)
7013 tree tmp;
7015 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
7016 || !TYPE_MAX_VALUE (domain)
7017 || TREE_CODE (TYPE_MAX_VALUE (domain)) != INTEGER_CST)
7018 continue;
7020 tmp = fold_binary_loc (loc, PLUS_EXPR, itype,
7021 fold_convert_loc (loc, itype,
7022 TREE_OPERAND (ref, 1)),
7023 fold_convert_loc (loc, itype, delta));
7024 if (!tmp
7025 || TREE_CODE (tmp) != INTEGER_CST
7026 || tree_int_cst_lt (TYPE_MAX_VALUE (domain), tmp))
7027 continue;
7030 break;
7032 else
7033 mdim = false;
7035 if (!handled_component_p (ref))
7036 return NULL_TREE;
7039 /* We found the suitable array reference. So copy everything up to it,
7040 and replace the index. */
7042 pref = TREE_OPERAND (addr, 0);
7043 ret = copy_node (pref);
7044 SET_EXPR_LOCATION (ret, loc);
7045 pos = ret;
7047 while (pref != ref)
7049 pref = TREE_OPERAND (pref, 0);
7050 TREE_OPERAND (pos, 0) = copy_node (pref);
7051 pos = TREE_OPERAND (pos, 0);
7054 TREE_OPERAND (pos, 1)
7055 = fold_build2_loc (loc, PLUS_EXPR, itype,
7056 fold_convert_loc (loc, itype, TREE_OPERAND (pos, 1)),
7057 fold_convert_loc (loc, itype, delta));
7058 return fold_build1_loc (loc, ADDR_EXPR, TREE_TYPE (addr), ret);
7062 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7063 means A >= Y && A != MAX, but in this case we know that
7064 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7066 static tree
7067 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7069 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7071 if (TREE_CODE (bound) == LT_EXPR)
7072 a = TREE_OPERAND (bound, 0);
7073 else if (TREE_CODE (bound) == GT_EXPR)
7074 a = TREE_OPERAND (bound, 1);
7075 else
7076 return NULL_TREE;
7078 typea = TREE_TYPE (a);
7079 if (!INTEGRAL_TYPE_P (typea)
7080 && !POINTER_TYPE_P (typea))
7081 return NULL_TREE;
7083 if (TREE_CODE (ineq) == LT_EXPR)
7085 a1 = TREE_OPERAND (ineq, 1);
7086 y = TREE_OPERAND (ineq, 0);
7088 else if (TREE_CODE (ineq) == GT_EXPR)
7090 a1 = TREE_OPERAND (ineq, 0);
7091 y = TREE_OPERAND (ineq, 1);
7093 else
7094 return NULL_TREE;
7096 if (TREE_TYPE (a1) != typea)
7097 return NULL_TREE;
7099 if (POINTER_TYPE_P (typea))
7101 /* Convert the pointer types into integer before taking the difference. */
7102 tree ta = fold_convert_loc (loc, ssizetype, a);
7103 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7104 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7106 else
7107 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7109 if (!diff || !integer_onep (diff))
7110 return NULL_TREE;
7112 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7115 /* Fold a sum or difference of at least one multiplication.
7116 Returns the folded tree or NULL if no simplification could be made. */
7118 static tree
7119 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7120 tree arg0, tree arg1)
7122 tree arg00, arg01, arg10, arg11;
7123 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7125 /* (A * C) +- (B * C) -> (A+-B) * C.
7126 (A * C) +- A -> A * (C+-1).
7127 We are most concerned about the case where C is a constant,
7128 but other combinations show up during loop reduction. Since
7129 it is not difficult, try all four possibilities. */
7131 if (TREE_CODE (arg0) == MULT_EXPR)
7133 arg00 = TREE_OPERAND (arg0, 0);
7134 arg01 = TREE_OPERAND (arg0, 1);
7136 else if (TREE_CODE (arg0) == INTEGER_CST)
7138 arg00 = build_one_cst (type);
7139 arg01 = arg0;
7141 else
7143 /* We cannot generate constant 1 for fract. */
7144 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7145 return NULL_TREE;
7146 arg00 = arg0;
7147 arg01 = build_one_cst (type);
7149 if (TREE_CODE (arg1) == MULT_EXPR)
7151 arg10 = TREE_OPERAND (arg1, 0);
7152 arg11 = TREE_OPERAND (arg1, 1);
7154 else if (TREE_CODE (arg1) == INTEGER_CST)
7156 arg10 = build_one_cst (type);
7157 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7158 the purpose of this canonicalization. */
7159 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
7160 && negate_expr_p (arg1)
7161 && code == PLUS_EXPR)
7163 arg11 = negate_expr (arg1);
7164 code = MINUS_EXPR;
7166 else
7167 arg11 = arg1;
7169 else
7171 /* We cannot generate constant 1 for fract. */
7172 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7173 return NULL_TREE;
7174 arg10 = arg1;
7175 arg11 = build_one_cst (type);
7177 same = NULL_TREE;
7179 if (operand_equal_p (arg01, arg11, 0))
7180 same = arg01, alt0 = arg00, alt1 = arg10;
7181 else if (operand_equal_p (arg00, arg10, 0))
7182 same = arg00, alt0 = arg01, alt1 = arg11;
7183 else if (operand_equal_p (arg00, arg11, 0))
7184 same = arg00, alt0 = arg01, alt1 = arg10;
7185 else if (operand_equal_p (arg01, arg10, 0))
7186 same = arg01, alt0 = arg00, alt1 = arg11;
7188 /* No identical multiplicands; see if we can find a common
7189 power-of-two factor in non-power-of-two multiplies. This
7190 can help in multi-dimensional array access. */
7191 else if (tree_fits_shwi_p (arg01)
7192 && tree_fits_shwi_p (arg11))
7194 HOST_WIDE_INT int01, int11, tmp;
7195 bool swap = false;
7196 tree maybe_same;
7197 int01 = tree_to_shwi (arg01);
7198 int11 = tree_to_shwi (arg11);
7200 /* Move min of absolute values to int11. */
7201 if (absu_hwi (int01) < absu_hwi (int11))
7203 tmp = int01, int01 = int11, int11 = tmp;
7204 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7205 maybe_same = arg01;
7206 swap = true;
7208 else
7209 maybe_same = arg11;
7211 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
7212 /* The remainder should not be a constant, otherwise we
7213 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7214 increased the number of multiplications necessary. */
7215 && TREE_CODE (arg10) != INTEGER_CST)
7217 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7218 build_int_cst (TREE_TYPE (arg00),
7219 int01 / int11));
7220 alt1 = arg10;
7221 same = maybe_same;
7222 if (swap)
7223 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7227 if (same)
7228 return fold_build2_loc (loc, MULT_EXPR, type,
7229 fold_build2_loc (loc, code, type,
7230 fold_convert_loc (loc, type, alt0),
7231 fold_convert_loc (loc, type, alt1)),
7232 fold_convert_loc (loc, type, same));
7234 return NULL_TREE;
7237 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7238 specified by EXPR into the buffer PTR of length LEN bytes.
7239 Return the number of bytes placed in the buffer, or zero
7240 upon failure. */
7242 static int
7243 native_encode_int (const_tree expr, unsigned char *ptr, int len)
7245 tree type = TREE_TYPE (expr);
7246 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7247 int byte, offset, word, words;
7248 unsigned char value;
7250 if (total_bytes > len)
7251 return 0;
7252 words = total_bytes / UNITS_PER_WORD;
7254 for (byte = 0; byte < total_bytes; byte++)
7256 int bitpos = byte * BITS_PER_UNIT;
7257 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7258 number of bytes. */
7259 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7261 if (total_bytes > UNITS_PER_WORD)
7263 word = byte / UNITS_PER_WORD;
7264 if (WORDS_BIG_ENDIAN)
7265 word = (words - 1) - word;
7266 offset = word * UNITS_PER_WORD;
7267 if (BYTES_BIG_ENDIAN)
7268 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7269 else
7270 offset += byte % UNITS_PER_WORD;
7272 else
7273 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7274 ptr[offset] = value;
7276 return total_bytes;
7280 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7281 specified by EXPR into the buffer PTR of length LEN bytes.
7282 Return the number of bytes placed in the buffer, or zero
7283 upon failure. */
7285 static int
7286 native_encode_fixed (const_tree expr, unsigned char *ptr, int len)
7288 tree type = TREE_TYPE (expr);
7289 enum machine_mode mode = TYPE_MODE (type);
7290 int total_bytes = GET_MODE_SIZE (mode);
7291 FIXED_VALUE_TYPE value;
7292 tree i_value, i_type;
7294 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7295 return 0;
7297 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7299 if (NULL_TREE == i_type
7300 || TYPE_PRECISION (i_type) != total_bytes)
7301 return 0;
7303 value = TREE_FIXED_CST (expr);
7304 i_value = double_int_to_tree (i_type, value.data);
7306 return native_encode_int (i_value, ptr, len);
7310 /* Subroutine of native_encode_expr. Encode the REAL_CST
7311 specified by EXPR into the buffer PTR of length LEN bytes.
7312 Return the number of bytes placed in the buffer, or zero
7313 upon failure. */
7315 static int
7316 native_encode_real (const_tree expr, unsigned char *ptr, int len)
7318 tree type = TREE_TYPE (expr);
7319 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7320 int byte, offset, word, words, bitpos;
7321 unsigned char value;
7323 /* There are always 32 bits in each long, no matter the size of
7324 the hosts long. We handle floating point representations with
7325 up to 192 bits. */
7326 long tmp[6];
7328 if (total_bytes > len)
7329 return 0;
7330 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7332 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7334 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7335 bitpos += BITS_PER_UNIT)
7337 byte = (bitpos / BITS_PER_UNIT) & 3;
7338 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7340 if (UNITS_PER_WORD < 4)
7342 word = byte / UNITS_PER_WORD;
7343 if (WORDS_BIG_ENDIAN)
7344 word = (words - 1) - word;
7345 offset = word * UNITS_PER_WORD;
7346 if (BYTES_BIG_ENDIAN)
7347 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7348 else
7349 offset += byte % UNITS_PER_WORD;
7351 else
7352 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7353 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7355 return total_bytes;
7358 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7359 specified by EXPR into the buffer PTR of length LEN bytes.
7360 Return the number of bytes placed in the buffer, or zero
7361 upon failure. */
7363 static int
7364 native_encode_complex (const_tree expr, unsigned char *ptr, int len)
7366 int rsize, isize;
7367 tree part;
7369 part = TREE_REALPART (expr);
7370 rsize = native_encode_expr (part, ptr, len);
7371 if (rsize == 0)
7372 return 0;
7373 part = TREE_IMAGPART (expr);
7374 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7375 if (isize != rsize)
7376 return 0;
7377 return rsize + isize;
7381 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7382 specified by EXPR into the buffer PTR of length LEN bytes.
7383 Return the number of bytes placed in the buffer, or zero
7384 upon failure. */
7386 static int
7387 native_encode_vector (const_tree expr, unsigned char *ptr, int len)
7389 unsigned i, count;
7390 int size, offset;
7391 tree itype, elem;
7393 offset = 0;
7394 count = VECTOR_CST_NELTS (expr);
7395 itype = TREE_TYPE (TREE_TYPE (expr));
7396 size = GET_MODE_SIZE (TYPE_MODE (itype));
7397 for (i = 0; i < count; i++)
7399 elem = VECTOR_CST_ELT (expr, i);
7400 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7401 return 0;
7402 offset += size;
7404 return offset;
7408 /* Subroutine of native_encode_expr. Encode the STRING_CST
7409 specified by EXPR into the buffer PTR of length LEN bytes.
7410 Return the number of bytes placed in the buffer, or zero
7411 upon failure. */
7413 static int
7414 native_encode_string (const_tree expr, unsigned char *ptr, int len)
7416 tree type = TREE_TYPE (expr);
7417 HOST_WIDE_INT total_bytes;
7419 if (TREE_CODE (type) != ARRAY_TYPE
7420 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7421 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7422 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7423 return 0;
7424 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7425 if (total_bytes > len)
7426 return 0;
7427 if (TREE_STRING_LENGTH (expr) < total_bytes)
7429 memcpy (ptr, TREE_STRING_POINTER (expr), TREE_STRING_LENGTH (expr));
7430 memset (ptr + TREE_STRING_LENGTH (expr), 0,
7431 total_bytes - TREE_STRING_LENGTH (expr));
7433 else
7434 memcpy (ptr, TREE_STRING_POINTER (expr), total_bytes);
7435 return total_bytes;
7439 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7440 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7441 buffer PTR of length LEN bytes. Return the number of bytes
7442 placed in the buffer, or zero upon failure. */
7445 native_encode_expr (const_tree expr, unsigned char *ptr, int len)
7447 switch (TREE_CODE (expr))
7449 case INTEGER_CST:
7450 return native_encode_int (expr, ptr, len);
7452 case REAL_CST:
7453 return native_encode_real (expr, ptr, len);
7455 case FIXED_CST:
7456 return native_encode_fixed (expr, ptr, len);
7458 case COMPLEX_CST:
7459 return native_encode_complex (expr, ptr, len);
7461 case VECTOR_CST:
7462 return native_encode_vector (expr, ptr, len);
7464 case STRING_CST:
7465 return native_encode_string (expr, ptr, len);
7467 default:
7468 return 0;
7473 /* Subroutine of native_interpret_expr. Interpret the contents of
7474 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7475 If the buffer cannot be interpreted, return NULL_TREE. */
7477 static tree
7478 native_interpret_int (tree type, const unsigned char *ptr, int len)
7480 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7482 if (total_bytes > len
7483 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7484 return NULL_TREE;
7486 wide_int result = wi::from_buffer (ptr, total_bytes);
7488 return wide_int_to_tree (type, result);
7492 /* Subroutine of native_interpret_expr. Interpret the contents of
7493 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7494 If the buffer cannot be interpreted, return NULL_TREE. */
7496 static tree
7497 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7499 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7500 double_int result;
7501 FIXED_VALUE_TYPE fixed_value;
7503 if (total_bytes > len
7504 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7505 return NULL_TREE;
7507 result = double_int::from_buffer (ptr, total_bytes);
7508 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7510 return build_fixed (type, fixed_value);
7514 /* Subroutine of native_interpret_expr. Interpret the contents of
7515 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7516 If the buffer cannot be interpreted, return NULL_TREE. */
7518 static tree
7519 native_interpret_real (tree type, const unsigned char *ptr, int len)
7521 enum machine_mode mode = TYPE_MODE (type);
7522 int total_bytes = GET_MODE_SIZE (mode);
7523 int byte, offset, word, words, bitpos;
7524 unsigned char value;
7525 /* There are always 32 bits in each long, no matter the size of
7526 the hosts long. We handle floating point representations with
7527 up to 192 bits. */
7528 REAL_VALUE_TYPE r;
7529 long tmp[6];
7531 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7532 if (total_bytes > len || total_bytes > 24)
7533 return NULL_TREE;
7534 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7536 memset (tmp, 0, sizeof (tmp));
7537 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7538 bitpos += BITS_PER_UNIT)
7540 byte = (bitpos / BITS_PER_UNIT) & 3;
7541 if (UNITS_PER_WORD < 4)
7543 word = byte / UNITS_PER_WORD;
7544 if (WORDS_BIG_ENDIAN)
7545 word = (words - 1) - word;
7546 offset = word * UNITS_PER_WORD;
7547 if (BYTES_BIG_ENDIAN)
7548 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7549 else
7550 offset += byte % UNITS_PER_WORD;
7552 else
7553 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7554 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7556 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7559 real_from_target (&r, tmp, mode);
7560 return build_real (type, r);
7564 /* Subroutine of native_interpret_expr. Interpret the contents of
7565 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7566 If the buffer cannot be interpreted, return NULL_TREE. */
7568 static tree
7569 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7571 tree etype, rpart, ipart;
7572 int size;
7574 etype = TREE_TYPE (type);
7575 size = GET_MODE_SIZE (TYPE_MODE (etype));
7576 if (size * 2 > len)
7577 return NULL_TREE;
7578 rpart = native_interpret_expr (etype, ptr, size);
7579 if (!rpart)
7580 return NULL_TREE;
7581 ipart = native_interpret_expr (etype, ptr+size, size);
7582 if (!ipart)
7583 return NULL_TREE;
7584 return build_complex (type, rpart, ipart);
7588 /* Subroutine of native_interpret_expr. Interpret the contents of
7589 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7590 If the buffer cannot be interpreted, return NULL_TREE. */
7592 static tree
7593 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7595 tree etype, elem;
7596 int i, size, count;
7597 tree *elements;
7599 etype = TREE_TYPE (type);
7600 size = GET_MODE_SIZE (TYPE_MODE (etype));
7601 count = TYPE_VECTOR_SUBPARTS (type);
7602 if (size * count > len)
7603 return NULL_TREE;
7605 elements = XALLOCAVEC (tree, count);
7606 for (i = count - 1; i >= 0; i--)
7608 elem = native_interpret_expr (etype, ptr+(i*size), size);
7609 if (!elem)
7610 return NULL_TREE;
7611 elements[i] = elem;
7613 return build_vector (type, elements);
7617 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7618 the buffer PTR of length LEN as a constant of type TYPE. For
7619 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7620 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7621 return NULL_TREE. */
7623 tree
7624 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7626 switch (TREE_CODE (type))
7628 case INTEGER_TYPE:
7629 case ENUMERAL_TYPE:
7630 case BOOLEAN_TYPE:
7631 case POINTER_TYPE:
7632 case REFERENCE_TYPE:
7633 return native_interpret_int (type, ptr, len);
7635 case REAL_TYPE:
7636 return native_interpret_real (type, ptr, len);
7638 case FIXED_POINT_TYPE:
7639 return native_interpret_fixed (type, ptr, len);
7641 case COMPLEX_TYPE:
7642 return native_interpret_complex (type, ptr, len);
7644 case VECTOR_TYPE:
7645 return native_interpret_vector (type, ptr, len);
7647 default:
7648 return NULL_TREE;
7652 /* Returns true if we can interpret the contents of a native encoding
7653 as TYPE. */
7655 static bool
7656 can_native_interpret_type_p (tree type)
7658 switch (TREE_CODE (type))
7660 case INTEGER_TYPE:
7661 case ENUMERAL_TYPE:
7662 case BOOLEAN_TYPE:
7663 case POINTER_TYPE:
7664 case REFERENCE_TYPE:
7665 case FIXED_POINT_TYPE:
7666 case REAL_TYPE:
7667 case COMPLEX_TYPE:
7668 case VECTOR_TYPE:
7669 return true;
7670 default:
7671 return false;
7675 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7676 TYPE at compile-time. If we're unable to perform the conversion
7677 return NULL_TREE. */
7679 static tree
7680 fold_view_convert_expr (tree type, tree expr)
7682 /* We support up to 512-bit values (for V8DFmode). */
7683 unsigned char buffer[64];
7684 int len;
7686 /* Check that the host and target are sane. */
7687 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7688 return NULL_TREE;
7690 len = native_encode_expr (expr, buffer, sizeof (buffer));
7691 if (len == 0)
7692 return NULL_TREE;
7694 return native_interpret_expr (type, buffer, len);
7697 /* Build an expression for the address of T. Folds away INDIRECT_REF
7698 to avoid confusing the gimplify process. */
7700 tree
7701 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7703 /* The size of the object is not relevant when talking about its address. */
7704 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7705 t = TREE_OPERAND (t, 0);
7707 if (TREE_CODE (t) == INDIRECT_REF)
7709 t = TREE_OPERAND (t, 0);
7711 if (TREE_TYPE (t) != ptrtype)
7712 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7714 else if (TREE_CODE (t) == MEM_REF
7715 && integer_zerop (TREE_OPERAND (t, 1)))
7716 return TREE_OPERAND (t, 0);
7717 else if (TREE_CODE (t) == MEM_REF
7718 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7719 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7720 TREE_OPERAND (t, 0),
7721 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7722 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7724 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7726 if (TREE_TYPE (t) != ptrtype)
7727 t = fold_convert_loc (loc, ptrtype, t);
7729 else
7730 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7732 return t;
7735 /* Build an expression for the address of T. */
7737 tree
7738 build_fold_addr_expr_loc (location_t loc, tree t)
7740 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7742 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7745 static bool vec_cst_ctor_to_array (tree, tree *);
7747 /* Fold a unary expression of code CODE and type TYPE with operand
7748 OP0. Return the folded expression if folding is successful.
7749 Otherwise, return NULL_TREE. */
7751 tree
7752 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7754 tree tem;
7755 tree arg0;
7756 enum tree_code_class kind = TREE_CODE_CLASS (code);
7758 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7759 && TREE_CODE_LENGTH (code) == 1);
7761 arg0 = op0;
7762 if (arg0)
7764 if (CONVERT_EXPR_CODE_P (code)
7765 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7767 /* Don't use STRIP_NOPS, because signedness of argument type
7768 matters. */
7769 STRIP_SIGN_NOPS (arg0);
7771 else
7773 /* Strip any conversions that don't change the mode. This
7774 is safe for every expression, except for a comparison
7775 expression because its signedness is derived from its
7776 operands.
7778 Note that this is done as an internal manipulation within
7779 the constant folder, in order to find the simplest
7780 representation of the arguments so that their form can be
7781 studied. In any cases, the appropriate type conversions
7782 should be put back in the tree that will get out of the
7783 constant folder. */
7784 STRIP_NOPS (arg0);
7788 if (TREE_CODE_CLASS (code) == tcc_unary)
7790 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7791 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7792 fold_build1_loc (loc, code, type,
7793 fold_convert_loc (loc, TREE_TYPE (op0),
7794 TREE_OPERAND (arg0, 1))));
7795 else if (TREE_CODE (arg0) == COND_EXPR)
7797 tree arg01 = TREE_OPERAND (arg0, 1);
7798 tree arg02 = TREE_OPERAND (arg0, 2);
7799 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7800 arg01 = fold_build1_loc (loc, code, type,
7801 fold_convert_loc (loc,
7802 TREE_TYPE (op0), arg01));
7803 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7804 arg02 = fold_build1_loc (loc, code, type,
7805 fold_convert_loc (loc,
7806 TREE_TYPE (op0), arg02));
7807 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7808 arg01, arg02);
7810 /* If this was a conversion, and all we did was to move into
7811 inside the COND_EXPR, bring it back out. But leave it if
7812 it is a conversion from integer to integer and the
7813 result precision is no wider than a word since such a
7814 conversion is cheap and may be optimized away by combine,
7815 while it couldn't if it were outside the COND_EXPR. Then return
7816 so we don't get into an infinite recursion loop taking the
7817 conversion out and then back in. */
7819 if ((CONVERT_EXPR_CODE_P (code)
7820 || code == NON_LVALUE_EXPR)
7821 && TREE_CODE (tem) == COND_EXPR
7822 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7823 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7824 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7825 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7826 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7827 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7828 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7829 && (INTEGRAL_TYPE_P
7830 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7831 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7832 || flag_syntax_only))
7833 tem = build1_loc (loc, code, type,
7834 build3 (COND_EXPR,
7835 TREE_TYPE (TREE_OPERAND
7836 (TREE_OPERAND (tem, 1), 0)),
7837 TREE_OPERAND (tem, 0),
7838 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7839 TREE_OPERAND (TREE_OPERAND (tem, 2),
7840 0)));
7841 return tem;
7845 switch (code)
7847 case PAREN_EXPR:
7848 /* Re-association barriers around constants and other re-association
7849 barriers can be removed. */
7850 if (CONSTANT_CLASS_P (op0)
7851 || TREE_CODE (op0) == PAREN_EXPR)
7852 return fold_convert_loc (loc, type, op0);
7853 return NULL_TREE;
7855 case NON_LVALUE_EXPR:
7856 if (!maybe_lvalue_p (op0))
7857 return fold_convert_loc (loc, type, op0);
7858 return NULL_TREE;
7860 CASE_CONVERT:
7861 case FLOAT_EXPR:
7862 case FIX_TRUNC_EXPR:
7863 if (TREE_TYPE (op0) == type)
7864 return op0;
7866 if (COMPARISON_CLASS_P (op0))
7868 /* If we have (type) (a CMP b) and type is an integral type, return
7869 new expression involving the new type. Canonicalize
7870 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7871 non-integral type.
7872 Do not fold the result as that would not simplify further, also
7873 folding again results in recursions. */
7874 if (TREE_CODE (type) == BOOLEAN_TYPE)
7875 return build2_loc (loc, TREE_CODE (op0), type,
7876 TREE_OPERAND (op0, 0),
7877 TREE_OPERAND (op0, 1));
7878 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7879 && TREE_CODE (type) != VECTOR_TYPE)
7880 return build3_loc (loc, COND_EXPR, type, op0,
7881 constant_boolean_node (true, type),
7882 constant_boolean_node (false, type));
7885 /* Handle cases of two conversions in a row. */
7886 if (CONVERT_EXPR_P (op0))
7888 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
7889 tree inter_type = TREE_TYPE (op0);
7890 int inside_int = INTEGRAL_TYPE_P (inside_type);
7891 int inside_ptr = POINTER_TYPE_P (inside_type);
7892 int inside_float = FLOAT_TYPE_P (inside_type);
7893 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
7894 unsigned int inside_prec = TYPE_PRECISION (inside_type);
7895 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
7896 int inter_int = INTEGRAL_TYPE_P (inter_type);
7897 int inter_ptr = POINTER_TYPE_P (inter_type);
7898 int inter_float = FLOAT_TYPE_P (inter_type);
7899 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
7900 unsigned int inter_prec = TYPE_PRECISION (inter_type);
7901 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
7902 int final_int = INTEGRAL_TYPE_P (type);
7903 int final_ptr = POINTER_TYPE_P (type);
7904 int final_float = FLOAT_TYPE_P (type);
7905 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
7906 unsigned int final_prec = TYPE_PRECISION (type);
7907 int final_unsignedp = TYPE_UNSIGNED (type);
7909 /* In addition to the cases of two conversions in a row
7910 handled below, if we are converting something to its own
7911 type via an object of identical or wider precision, neither
7912 conversion is needed. */
7913 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
7914 && (((inter_int || inter_ptr) && final_int)
7915 || (inter_float && final_float))
7916 && inter_prec >= final_prec)
7917 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7919 /* Likewise, if the intermediate and initial types are either both
7920 float or both integer, we don't need the middle conversion if the
7921 former is wider than the latter and doesn't change the signedness
7922 (for integers). Avoid this if the final type is a pointer since
7923 then we sometimes need the middle conversion. Likewise if the
7924 final type has a precision not equal to the size of its mode. */
7925 if (((inter_int && inside_int)
7926 || (inter_float && inside_float)
7927 || (inter_vec && inside_vec))
7928 && inter_prec >= inside_prec
7929 && (inter_float || inter_vec
7930 || inter_unsignedp == inside_unsignedp)
7931 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
7932 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7933 && ! final_ptr
7934 && (! final_vec || inter_prec == inside_prec))
7935 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7937 /* If we have a sign-extension of a zero-extended value, we can
7938 replace that by a single zero-extension. Likewise if the
7939 final conversion does not change precision we can drop the
7940 intermediate conversion. */
7941 if (inside_int && inter_int && final_int
7942 && ((inside_prec < inter_prec && inter_prec < final_prec
7943 && inside_unsignedp && !inter_unsignedp)
7944 || final_prec == inter_prec))
7945 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7947 /* Two conversions in a row are not needed unless:
7948 - some conversion is floating-point (overstrict for now), or
7949 - some conversion is a vector (overstrict for now), or
7950 - the intermediate type is narrower than both initial and
7951 final, or
7952 - the intermediate type and innermost type differ in signedness,
7953 and the outermost type is wider than the intermediate, or
7954 - the initial type is a pointer type and the precisions of the
7955 intermediate and final types differ, or
7956 - the final type is a pointer type and the precisions of the
7957 initial and intermediate types differ. */
7958 if (! inside_float && ! inter_float && ! final_float
7959 && ! inside_vec && ! inter_vec && ! final_vec
7960 && (inter_prec >= inside_prec || inter_prec >= final_prec)
7961 && ! (inside_int && inter_int
7962 && inter_unsignedp != inside_unsignedp
7963 && inter_prec < final_prec)
7964 && ((inter_unsignedp && inter_prec > inside_prec)
7965 == (final_unsignedp && final_prec > inter_prec))
7966 && ! (inside_ptr && inter_prec != final_prec)
7967 && ! (final_ptr && inside_prec != inter_prec)
7968 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
7969 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
7970 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7973 /* Handle (T *)&A.B.C for A being of type T and B and C
7974 living at offset zero. This occurs frequently in
7975 C++ upcasting and then accessing the base. */
7976 if (TREE_CODE (op0) == ADDR_EXPR
7977 && POINTER_TYPE_P (type)
7978 && handled_component_p (TREE_OPERAND (op0, 0)))
7980 HOST_WIDE_INT bitsize, bitpos;
7981 tree offset;
7982 enum machine_mode mode;
7983 int unsignedp, volatilep;
7984 tree base = TREE_OPERAND (op0, 0);
7985 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7986 &mode, &unsignedp, &volatilep, false);
7987 /* If the reference was to a (constant) zero offset, we can use
7988 the address of the base if it has the same base type
7989 as the result type and the pointer type is unqualified. */
7990 if (! offset && bitpos == 0
7991 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7992 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7993 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7994 return fold_convert_loc (loc, type,
7995 build_fold_addr_expr_loc (loc, base));
7998 if (TREE_CODE (op0) == MODIFY_EXPR
7999 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
8000 /* Detect assigning a bitfield. */
8001 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
8002 && DECL_BIT_FIELD
8003 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
8005 /* Don't leave an assignment inside a conversion
8006 unless assigning a bitfield. */
8007 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
8008 /* First do the assignment, then return converted constant. */
8009 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
8010 TREE_NO_WARNING (tem) = 1;
8011 TREE_USED (tem) = 1;
8012 return tem;
8015 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8016 constants (if x has signed type, the sign bit cannot be set
8017 in c). This folds extension into the BIT_AND_EXPR.
8018 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
8019 very likely don't have maximal range for their precision and this
8020 transformation effectively doesn't preserve non-maximal ranges. */
8021 if (TREE_CODE (type) == INTEGER_TYPE
8022 && TREE_CODE (op0) == BIT_AND_EXPR
8023 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
8025 tree and_expr = op0;
8026 tree and0 = TREE_OPERAND (and_expr, 0);
8027 tree and1 = TREE_OPERAND (and_expr, 1);
8028 int change = 0;
8030 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
8031 || (TYPE_PRECISION (type)
8032 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
8033 change = 1;
8034 else if (TYPE_PRECISION (TREE_TYPE (and1))
8035 <= HOST_BITS_PER_WIDE_INT
8036 && tree_fits_uhwi_p (and1))
8038 unsigned HOST_WIDE_INT cst;
8040 cst = tree_to_uhwi (and1);
8041 cst &= HOST_WIDE_INT_M1U
8042 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8043 change = (cst == 0);
8044 #ifdef LOAD_EXTEND_OP
8045 if (change
8046 && !flag_syntax_only
8047 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
8048 == ZERO_EXTEND))
8050 tree uns = unsigned_type_for (TREE_TYPE (and0));
8051 and0 = fold_convert_loc (loc, uns, and0);
8052 and1 = fold_convert_loc (loc, uns, and1);
8054 #endif
8056 if (change)
8058 tem = force_fit_type (type, wi::to_widest (and1), 0,
8059 TREE_OVERFLOW (and1));
8060 return fold_build2_loc (loc, BIT_AND_EXPR, type,
8061 fold_convert_loc (loc, type, and0), tem);
8065 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8066 when one of the new casts will fold away. Conservatively we assume
8067 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8068 if (POINTER_TYPE_P (type)
8069 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8070 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
8071 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8072 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
8073 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
8075 tree arg00 = TREE_OPERAND (arg0, 0);
8076 tree arg01 = TREE_OPERAND (arg0, 1);
8078 return fold_build_pointer_plus_loc
8079 (loc, fold_convert_loc (loc, type, arg00), arg01);
8082 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8083 of the same precision, and X is an integer type not narrower than
8084 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8085 if (INTEGRAL_TYPE_P (type)
8086 && TREE_CODE (op0) == BIT_NOT_EXPR
8087 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8088 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8089 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8091 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8092 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8093 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8094 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
8095 fold_convert_loc (loc, type, tem));
8098 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8099 type of X and Y (integer types only). */
8100 if (INTEGRAL_TYPE_P (type)
8101 && TREE_CODE (op0) == MULT_EXPR
8102 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8103 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8105 /* Be careful not to introduce new overflows. */
8106 tree mult_type;
8107 if (TYPE_OVERFLOW_WRAPS (type))
8108 mult_type = type;
8109 else
8110 mult_type = unsigned_type_for (type);
8112 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8114 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8115 fold_convert_loc (loc, mult_type,
8116 TREE_OPERAND (op0, 0)),
8117 fold_convert_loc (loc, mult_type,
8118 TREE_OPERAND (op0, 1)));
8119 return fold_convert_loc (loc, type, tem);
8123 tem = fold_convert_const (code, type, arg0);
8124 return tem ? tem : NULL_TREE;
8126 case ADDR_SPACE_CONVERT_EXPR:
8127 if (integer_zerop (arg0))
8128 return fold_convert_const (code, type, arg0);
8129 return NULL_TREE;
8131 case FIXED_CONVERT_EXPR:
8132 tem = fold_convert_const (code, type, arg0);
8133 return tem ? tem : NULL_TREE;
8135 case VIEW_CONVERT_EXPR:
8136 if (TREE_TYPE (op0) == type)
8137 return op0;
8138 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
8139 return fold_build1_loc (loc, VIEW_CONVERT_EXPR,
8140 type, TREE_OPERAND (op0, 0));
8141 if (TREE_CODE (op0) == MEM_REF)
8142 return fold_build2_loc (loc, MEM_REF, type,
8143 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8145 /* For integral conversions with the same precision or pointer
8146 conversions use a NOP_EXPR instead. */
8147 if ((INTEGRAL_TYPE_P (type)
8148 || POINTER_TYPE_P (type))
8149 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
8150 || POINTER_TYPE_P (TREE_TYPE (op0)))
8151 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8152 return fold_convert_loc (loc, type, op0);
8154 /* Strip inner integral conversions that do not change the precision. */
8155 if (CONVERT_EXPR_P (op0)
8156 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
8157 || POINTER_TYPE_P (TREE_TYPE (op0)))
8158 && (INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0)))
8159 || POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0))))
8160 && (TYPE_PRECISION (TREE_TYPE (op0))
8161 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
8162 return fold_build1_loc (loc, VIEW_CONVERT_EXPR,
8163 type, TREE_OPERAND (op0, 0));
8165 return fold_view_convert_expr (type, op0);
8167 case NEGATE_EXPR:
8168 tem = fold_negate_expr (loc, arg0);
8169 if (tem)
8170 return fold_convert_loc (loc, type, tem);
8171 return NULL_TREE;
8173 case ABS_EXPR:
8174 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
8175 return fold_abs_const (arg0, type);
8176 else if (TREE_CODE (arg0) == NEGATE_EXPR)
8177 return fold_build1_loc (loc, ABS_EXPR, type, TREE_OPERAND (arg0, 0));
8178 /* Convert fabs((double)float) into (double)fabsf(float). */
8179 else if (TREE_CODE (arg0) == NOP_EXPR
8180 && TREE_CODE (type) == REAL_TYPE)
8182 tree targ0 = strip_float_extensions (arg0);
8183 if (targ0 != arg0)
8184 return fold_convert_loc (loc, type,
8185 fold_build1_loc (loc, ABS_EXPR,
8186 TREE_TYPE (targ0),
8187 targ0));
8189 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8190 else if (TREE_CODE (arg0) == ABS_EXPR)
8191 return arg0;
8192 else if (tree_expr_nonnegative_p (arg0))
8193 return arg0;
8195 /* Strip sign ops from argument. */
8196 if (TREE_CODE (type) == REAL_TYPE)
8198 tem = fold_strip_sign_ops (arg0);
8199 if (tem)
8200 return fold_build1_loc (loc, ABS_EXPR, type,
8201 fold_convert_loc (loc, type, tem));
8203 return NULL_TREE;
8205 case CONJ_EXPR:
8206 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8207 return fold_convert_loc (loc, type, arg0);
8208 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8210 tree itype = TREE_TYPE (type);
8211 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
8212 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
8213 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
8214 negate_expr (ipart));
8216 if (TREE_CODE (arg0) == COMPLEX_CST)
8218 tree itype = TREE_TYPE (type);
8219 tree rpart = fold_convert_loc (loc, itype, TREE_REALPART (arg0));
8220 tree ipart = fold_convert_loc (loc, itype, TREE_IMAGPART (arg0));
8221 return build_complex (type, rpart, negate_expr (ipart));
8223 if (TREE_CODE (arg0) == CONJ_EXPR)
8224 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8225 return NULL_TREE;
8227 case BIT_NOT_EXPR:
8228 if (TREE_CODE (arg0) == INTEGER_CST)
8229 return fold_not_const (arg0, type);
8230 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
8231 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8232 /* Convert ~ (-A) to A - 1. */
8233 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8234 return fold_build2_loc (loc, MINUS_EXPR, type,
8235 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)),
8236 build_int_cst (type, 1));
8237 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8238 else if (INTEGRAL_TYPE_P (type)
8239 && ((TREE_CODE (arg0) == MINUS_EXPR
8240 && integer_onep (TREE_OPERAND (arg0, 1)))
8241 || (TREE_CODE (arg0) == PLUS_EXPR
8242 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8243 return fold_build1_loc (loc, NEGATE_EXPR, type,
8244 fold_convert_loc (loc, type,
8245 TREE_OPERAND (arg0, 0)));
8246 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8247 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8248 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8249 fold_convert_loc (loc, type,
8250 TREE_OPERAND (arg0, 0)))))
8251 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8252 fold_convert_loc (loc, type,
8253 TREE_OPERAND (arg0, 1)));
8254 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8255 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8256 fold_convert_loc (loc, type,
8257 TREE_OPERAND (arg0, 1)))))
8258 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8259 fold_convert_loc (loc, type,
8260 TREE_OPERAND (arg0, 0)), tem);
8261 /* Perform BIT_NOT_EXPR on each element individually. */
8262 else if (TREE_CODE (arg0) == VECTOR_CST)
8264 tree *elements;
8265 tree elem;
8266 unsigned count = VECTOR_CST_NELTS (arg0), i;
8268 elements = XALLOCAVEC (tree, count);
8269 for (i = 0; i < count; i++)
8271 elem = VECTOR_CST_ELT (arg0, i);
8272 elem = fold_unary_loc (loc, BIT_NOT_EXPR, TREE_TYPE (type), elem);
8273 if (elem == NULL_TREE)
8274 break;
8275 elements[i] = elem;
8277 if (i == count)
8278 return build_vector (type, elements);
8280 else if (COMPARISON_CLASS_P (arg0)
8281 && (VECTOR_TYPE_P (type)
8282 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
8284 tree op_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
8285 enum tree_code subcode = invert_tree_comparison (TREE_CODE (arg0),
8286 HONOR_NANS (TYPE_MODE (op_type)));
8287 if (subcode != ERROR_MARK)
8288 return build2_loc (loc, subcode, type, TREE_OPERAND (arg0, 0),
8289 TREE_OPERAND (arg0, 1));
8293 return NULL_TREE;
8295 case TRUTH_NOT_EXPR:
8296 /* Note that the operand of this must be an int
8297 and its values must be 0 or 1.
8298 ("true" is a fixed value perhaps depending on the language,
8299 but we don't handle values other than 1 correctly yet.) */
8300 tem = fold_truth_not_expr (loc, arg0);
8301 if (!tem)
8302 return NULL_TREE;
8303 return fold_convert_loc (loc, type, tem);
8305 case REALPART_EXPR:
8306 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8307 return fold_convert_loc (loc, type, arg0);
8308 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8309 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 0),
8310 TREE_OPERAND (arg0, 1));
8311 if (TREE_CODE (arg0) == COMPLEX_CST)
8312 return fold_convert_loc (loc, type, TREE_REALPART (arg0));
8313 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8315 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8316 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8317 fold_build1_loc (loc, REALPART_EXPR, itype,
8318 TREE_OPERAND (arg0, 0)),
8319 fold_build1_loc (loc, REALPART_EXPR, itype,
8320 TREE_OPERAND (arg0, 1)));
8321 return fold_convert_loc (loc, type, tem);
8323 if (TREE_CODE (arg0) == CONJ_EXPR)
8325 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8326 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
8327 TREE_OPERAND (arg0, 0));
8328 return fold_convert_loc (loc, type, tem);
8330 if (TREE_CODE (arg0) == CALL_EXPR)
8332 tree fn = get_callee_fndecl (arg0);
8333 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8334 switch (DECL_FUNCTION_CODE (fn))
8336 CASE_FLT_FN (BUILT_IN_CEXPI):
8337 fn = mathfn_built_in (type, BUILT_IN_COS);
8338 if (fn)
8339 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8340 break;
8342 default:
8343 break;
8346 return NULL_TREE;
8348 case IMAGPART_EXPR:
8349 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8350 return build_zero_cst (type);
8351 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8352 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 1),
8353 TREE_OPERAND (arg0, 0));
8354 if (TREE_CODE (arg0) == COMPLEX_CST)
8355 return fold_convert_loc (loc, type, TREE_IMAGPART (arg0));
8356 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8358 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8359 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8360 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8361 TREE_OPERAND (arg0, 0)),
8362 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8363 TREE_OPERAND (arg0, 1)));
8364 return fold_convert_loc (loc, type, tem);
8366 if (TREE_CODE (arg0) == CONJ_EXPR)
8368 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8369 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8370 return fold_convert_loc (loc, type, negate_expr (tem));
8372 if (TREE_CODE (arg0) == CALL_EXPR)
8374 tree fn = get_callee_fndecl (arg0);
8375 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8376 switch (DECL_FUNCTION_CODE (fn))
8378 CASE_FLT_FN (BUILT_IN_CEXPI):
8379 fn = mathfn_built_in (type, BUILT_IN_SIN);
8380 if (fn)
8381 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8382 break;
8384 default:
8385 break;
8388 return NULL_TREE;
8390 case INDIRECT_REF:
8391 /* Fold *&X to X if X is an lvalue. */
8392 if (TREE_CODE (op0) == ADDR_EXPR)
8394 tree op00 = TREE_OPERAND (op0, 0);
8395 if ((TREE_CODE (op00) == VAR_DECL
8396 || TREE_CODE (op00) == PARM_DECL
8397 || TREE_CODE (op00) == RESULT_DECL)
8398 && !TREE_READONLY (op00))
8399 return op00;
8401 return NULL_TREE;
8403 case VEC_UNPACK_LO_EXPR:
8404 case VEC_UNPACK_HI_EXPR:
8405 case VEC_UNPACK_FLOAT_LO_EXPR:
8406 case VEC_UNPACK_FLOAT_HI_EXPR:
8408 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8409 tree *elts;
8410 enum tree_code subcode;
8412 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
8413 if (TREE_CODE (arg0) != VECTOR_CST)
8414 return NULL_TREE;
8416 elts = XALLOCAVEC (tree, nelts * 2);
8417 if (!vec_cst_ctor_to_array (arg0, elts))
8418 return NULL_TREE;
8420 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
8421 || code == VEC_UNPACK_FLOAT_LO_EXPR))
8422 elts += nelts;
8424 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
8425 subcode = NOP_EXPR;
8426 else
8427 subcode = FLOAT_EXPR;
8429 for (i = 0; i < nelts; i++)
8431 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
8432 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
8433 return NULL_TREE;
8436 return build_vector (type, elts);
8439 case REDUC_MIN_EXPR:
8440 case REDUC_MAX_EXPR:
8441 case REDUC_PLUS_EXPR:
8443 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8444 tree *elts;
8445 enum tree_code subcode;
8447 if (TREE_CODE (op0) != VECTOR_CST)
8448 return NULL_TREE;
8450 elts = XALLOCAVEC (tree, nelts);
8451 if (!vec_cst_ctor_to_array (op0, elts))
8452 return NULL_TREE;
8454 switch (code)
8456 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
8457 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
8458 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
8459 default: gcc_unreachable ();
8462 for (i = 1; i < nelts; i++)
8464 elts[0] = const_binop (subcode, elts[0], elts[i]);
8465 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
8466 return NULL_TREE;
8467 elts[i] = build_zero_cst (TREE_TYPE (type));
8470 return build_vector (type, elts);
8473 default:
8474 return NULL_TREE;
8475 } /* switch (code) */
8479 /* If the operation was a conversion do _not_ mark a resulting constant
8480 with TREE_OVERFLOW if the original constant was not. These conversions
8481 have implementation defined behavior and retaining the TREE_OVERFLOW
8482 flag here would confuse later passes such as VRP. */
8483 tree
8484 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8485 tree type, tree op0)
8487 tree res = fold_unary_loc (loc, code, type, op0);
8488 if (res
8489 && TREE_CODE (res) == INTEGER_CST
8490 && TREE_CODE (op0) == INTEGER_CST
8491 && CONVERT_EXPR_CODE_P (code))
8492 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8494 return res;
8497 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8498 operands OP0 and OP1. LOC is the location of the resulting expression.
8499 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8500 Return the folded expression if folding is successful. Otherwise,
8501 return NULL_TREE. */
8502 static tree
8503 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8504 tree arg0, tree arg1, tree op0, tree op1)
8506 tree tem;
8508 /* We only do these simplifications if we are optimizing. */
8509 if (!optimize)
8510 return NULL_TREE;
8512 /* Check for things like (A || B) && (A || C). We can convert this
8513 to A || (B && C). Note that either operator can be any of the four
8514 truth and/or operations and the transformation will still be
8515 valid. Also note that we only care about order for the
8516 ANDIF and ORIF operators. If B contains side effects, this
8517 might change the truth-value of A. */
8518 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8519 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8520 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8521 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8522 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8523 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8525 tree a00 = TREE_OPERAND (arg0, 0);
8526 tree a01 = TREE_OPERAND (arg0, 1);
8527 tree a10 = TREE_OPERAND (arg1, 0);
8528 tree a11 = TREE_OPERAND (arg1, 1);
8529 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8530 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8531 && (code == TRUTH_AND_EXPR
8532 || code == TRUTH_OR_EXPR));
8534 if (operand_equal_p (a00, a10, 0))
8535 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8536 fold_build2_loc (loc, code, type, a01, a11));
8537 else if (commutative && operand_equal_p (a00, a11, 0))
8538 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8539 fold_build2_loc (loc, code, type, a01, a10));
8540 else if (commutative && operand_equal_p (a01, a10, 0))
8541 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8542 fold_build2_loc (loc, code, type, a00, a11));
8544 /* This case if tricky because we must either have commutative
8545 operators or else A10 must not have side-effects. */
8547 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8548 && operand_equal_p (a01, a11, 0))
8549 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8550 fold_build2_loc (loc, code, type, a00, a10),
8551 a01);
8554 /* See if we can build a range comparison. */
8555 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8556 return tem;
8558 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8559 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8561 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8562 if (tem)
8563 return fold_build2_loc (loc, code, type, tem, arg1);
8566 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8567 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8569 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8570 if (tem)
8571 return fold_build2_loc (loc, code, type, arg0, tem);
8574 /* Check for the possibility of merging component references. If our
8575 lhs is another similar operation, try to merge its rhs with our
8576 rhs. Then try to merge our lhs and rhs. */
8577 if (TREE_CODE (arg0) == code
8578 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8579 TREE_OPERAND (arg0, 1), arg1)))
8580 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8582 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8583 return tem;
8585 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8586 && (code == TRUTH_AND_EXPR
8587 || code == TRUTH_ANDIF_EXPR
8588 || code == TRUTH_OR_EXPR
8589 || code == TRUTH_ORIF_EXPR))
8591 enum tree_code ncode, icode;
8593 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8594 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8595 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8597 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8598 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8599 We don't want to pack more than two leafs to a non-IF AND/OR
8600 expression.
8601 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8602 equal to IF-CODE, then we don't want to add right-hand operand.
8603 If the inner right-hand side of left-hand operand has
8604 side-effects, or isn't simple, then we can't add to it,
8605 as otherwise we might destroy if-sequence. */
8606 if (TREE_CODE (arg0) == icode
8607 && simple_operand_p_2 (arg1)
8608 /* Needed for sequence points to handle trappings, and
8609 side-effects. */
8610 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8612 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8613 arg1);
8614 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8615 tem);
8617 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8618 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8619 else if (TREE_CODE (arg1) == icode
8620 && simple_operand_p_2 (arg0)
8621 /* Needed for sequence points to handle trappings, and
8622 side-effects. */
8623 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8625 tem = fold_build2_loc (loc, ncode, type,
8626 arg0, TREE_OPERAND (arg1, 0));
8627 return fold_build2_loc (loc, icode, type, tem,
8628 TREE_OPERAND (arg1, 1));
8630 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8631 into (A OR B).
8632 For sequence point consistancy, we need to check for trapping,
8633 and side-effects. */
8634 else if (code == icode && simple_operand_p_2 (arg0)
8635 && simple_operand_p_2 (arg1))
8636 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8639 return NULL_TREE;
8642 /* Fold a binary expression of code CODE and type TYPE with operands
8643 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8644 Return the folded expression if folding is successful. Otherwise,
8645 return NULL_TREE. */
8647 static tree
8648 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8650 enum tree_code compl_code;
8652 if (code == MIN_EXPR)
8653 compl_code = MAX_EXPR;
8654 else if (code == MAX_EXPR)
8655 compl_code = MIN_EXPR;
8656 else
8657 gcc_unreachable ();
8659 /* MIN (MAX (a, b), b) == b. */
8660 if (TREE_CODE (op0) == compl_code
8661 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8662 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8664 /* MIN (MAX (b, a), b) == b. */
8665 if (TREE_CODE (op0) == compl_code
8666 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8667 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8668 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8670 /* MIN (a, MAX (a, b)) == a. */
8671 if (TREE_CODE (op1) == compl_code
8672 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8673 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8674 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8676 /* MIN (a, MAX (b, a)) == a. */
8677 if (TREE_CODE (op1) == compl_code
8678 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8679 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8680 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8682 return NULL_TREE;
8685 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8686 by changing CODE to reduce the magnitude of constants involved in
8687 ARG0 of the comparison.
8688 Returns a canonicalized comparison tree if a simplification was
8689 possible, otherwise returns NULL_TREE.
8690 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8691 valid if signed overflow is undefined. */
8693 static tree
8694 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8695 tree arg0, tree arg1,
8696 bool *strict_overflow_p)
8698 enum tree_code code0 = TREE_CODE (arg0);
8699 tree t, cst0 = NULL_TREE;
8700 int sgn0;
8701 bool swap = false;
8703 /* Match A +- CST code arg1 and CST code arg1. We can change the
8704 first form only if overflow is undefined. */
8705 if (!((TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8706 /* In principle pointers also have undefined overflow behavior,
8707 but that causes problems elsewhere. */
8708 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8709 && (code0 == MINUS_EXPR
8710 || code0 == PLUS_EXPR)
8711 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8712 || code0 == INTEGER_CST))
8713 return NULL_TREE;
8715 /* Identify the constant in arg0 and its sign. */
8716 if (code0 == INTEGER_CST)
8717 cst0 = arg0;
8718 else
8719 cst0 = TREE_OPERAND (arg0, 1);
8720 sgn0 = tree_int_cst_sgn (cst0);
8722 /* Overflowed constants and zero will cause problems. */
8723 if (integer_zerop (cst0)
8724 || TREE_OVERFLOW (cst0))
8725 return NULL_TREE;
8727 /* See if we can reduce the magnitude of the constant in
8728 arg0 by changing the comparison code. */
8729 if (code0 == INTEGER_CST)
8731 /* CST <= arg1 -> CST-1 < arg1. */
8732 if (code == LE_EXPR && sgn0 == 1)
8733 code = LT_EXPR;
8734 /* -CST < arg1 -> -CST-1 <= arg1. */
8735 else if (code == LT_EXPR && sgn0 == -1)
8736 code = LE_EXPR;
8737 /* CST > arg1 -> CST-1 >= arg1. */
8738 else if (code == GT_EXPR && sgn0 == 1)
8739 code = GE_EXPR;
8740 /* -CST >= arg1 -> -CST-1 > arg1. */
8741 else if (code == GE_EXPR && sgn0 == -1)
8742 code = GT_EXPR;
8743 else
8744 return NULL_TREE;
8745 /* arg1 code' CST' might be more canonical. */
8746 swap = true;
8748 else
8750 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8751 if (code == LT_EXPR
8752 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8753 code = LE_EXPR;
8754 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8755 else if (code == GT_EXPR
8756 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8757 code = GE_EXPR;
8758 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8759 else if (code == LE_EXPR
8760 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8761 code = LT_EXPR;
8762 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8763 else if (code == GE_EXPR
8764 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8765 code = GT_EXPR;
8766 else
8767 return NULL_TREE;
8768 *strict_overflow_p = true;
8771 /* Now build the constant reduced in magnitude. But not if that
8772 would produce one outside of its types range. */
8773 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8774 && ((sgn0 == 1
8775 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8776 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8777 || (sgn0 == -1
8778 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8779 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8780 /* We cannot swap the comparison here as that would cause us to
8781 endlessly recurse. */
8782 return NULL_TREE;
8784 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8785 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8786 if (code0 != INTEGER_CST)
8787 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8788 t = fold_convert (TREE_TYPE (arg1), t);
8790 /* If swapping might yield to a more canonical form, do so. */
8791 if (swap)
8792 return fold_build2_loc (loc, swap_tree_comparison (code), type, arg1, t);
8793 else
8794 return fold_build2_loc (loc, code, type, t, arg1);
8797 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8798 overflow further. Try to decrease the magnitude of constants involved
8799 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8800 and put sole constants at the second argument position.
8801 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8803 static tree
8804 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8805 tree arg0, tree arg1)
8807 tree t;
8808 bool strict_overflow_p;
8809 const char * const warnmsg = G_("assuming signed overflow does not occur "
8810 "when reducing constant in comparison");
8812 /* Try canonicalization by simplifying arg0. */
8813 strict_overflow_p = false;
8814 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8815 &strict_overflow_p);
8816 if (t)
8818 if (strict_overflow_p)
8819 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8820 return t;
8823 /* Try canonicalization by simplifying arg1 using the swapped
8824 comparison. */
8825 code = swap_tree_comparison (code);
8826 strict_overflow_p = false;
8827 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8828 &strict_overflow_p);
8829 if (t && strict_overflow_p)
8830 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8831 return t;
8834 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8835 space. This is used to avoid issuing overflow warnings for
8836 expressions like &p->x which can not wrap. */
8838 static bool
8839 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8841 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8842 return true;
8844 if (bitpos < 0)
8845 return true;
8847 wide_int wi_offset;
8848 int precision = TYPE_PRECISION (TREE_TYPE (base));
8849 if (offset == NULL_TREE)
8850 wi_offset = wi::zero (precision);
8851 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8852 return true;
8853 else
8854 wi_offset = offset;
8856 bool overflow;
8857 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8858 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8859 if (overflow)
8860 return true;
8862 if (!wi::fits_uhwi_p (total))
8863 return true;
8865 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8866 if (size <= 0)
8867 return true;
8869 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8870 array. */
8871 if (TREE_CODE (base) == ADDR_EXPR)
8873 HOST_WIDE_INT base_size;
8875 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8876 if (base_size > 0 && size < base_size)
8877 size = base_size;
8880 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8883 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8884 kind INTEGER_CST. This makes sure to properly sign-extend the
8885 constant. */
8887 static HOST_WIDE_INT
8888 size_low_cst (const_tree t)
8890 HOST_WIDE_INT w = TREE_INT_CST_ELT (t, 0);
8891 int prec = TYPE_PRECISION (TREE_TYPE (t));
8892 if (prec < HOST_BITS_PER_WIDE_INT)
8893 return sext_hwi (w, prec);
8894 return w;
8897 /* Subroutine of fold_binary. This routine performs all of the
8898 transformations that are common to the equality/inequality
8899 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8900 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8901 fold_binary should call fold_binary. Fold a comparison with
8902 tree code CODE and type TYPE with operands OP0 and OP1. Return
8903 the folded comparison or NULL_TREE. */
8905 static tree
8906 fold_comparison (location_t loc, enum tree_code code, tree type,
8907 tree op0, tree op1)
8909 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8910 tree arg0, arg1, tem;
8912 arg0 = op0;
8913 arg1 = op1;
8915 STRIP_SIGN_NOPS (arg0);
8916 STRIP_SIGN_NOPS (arg1);
8918 tem = fold_relational_const (code, type, arg0, arg1);
8919 if (tem != NULL_TREE)
8920 return tem;
8922 /* If one arg is a real or integer constant, put it last. */
8923 if (tree_swap_operands_p (arg0, arg1, true))
8924 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
8926 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8927 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8928 && (equality_code || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8929 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8930 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8931 && TREE_CODE (arg1) == INTEGER_CST
8932 && !TREE_OVERFLOW (arg1))
8934 const enum tree_code
8935 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8936 tree const1 = TREE_OPERAND (arg0, 1);
8937 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8938 tree variable = TREE_OPERAND (arg0, 0);
8939 tree new_const = int_const_binop (reverse_op, const2, const1);
8941 /* If the constant operation overflowed this can be
8942 simplified as a comparison against INT_MAX/INT_MIN. */
8943 if (TREE_OVERFLOW (new_const))
8945 int const1_sgn = tree_int_cst_sgn (const1);
8946 enum tree_code code2 = code;
8948 /* Get the sign of the constant on the lhs if the
8949 operation were VARIABLE + CONST1. */
8950 if (TREE_CODE (arg0) == MINUS_EXPR)
8951 const1_sgn = -const1_sgn;
8953 /* The sign of the constant determines if we overflowed
8954 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8955 Canonicalize to the INT_MIN overflow by swapping the comparison
8956 if necessary. */
8957 if (const1_sgn == -1)
8958 code2 = swap_tree_comparison (code);
8960 /* We now can look at the canonicalized case
8961 VARIABLE + 1 CODE2 INT_MIN
8962 and decide on the result. */
8963 switch (code2)
8965 case EQ_EXPR:
8966 case LT_EXPR:
8967 case LE_EXPR:
8968 return
8969 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8971 case NE_EXPR:
8972 case GE_EXPR:
8973 case GT_EXPR:
8974 return
8975 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8977 default:
8978 gcc_unreachable ();
8981 else
8983 if (!equality_code)
8984 fold_overflow_warning ("assuming signed overflow does not occur "
8985 "when changing X +- C1 cmp C2 to "
8986 "X cmp C2 -+ C1",
8987 WARN_STRICT_OVERFLOW_COMPARISON);
8988 return fold_build2_loc (loc, code, type, variable, new_const);
8992 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y. */
8993 if (TREE_CODE (arg0) == MINUS_EXPR
8994 && (equality_code || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8995 && integer_zerop (arg1))
8997 if (!equality_code)
8998 fold_overflow_warning ("assuming signed overflow does not occur "
8999 "when changing X - Y cmp 0 to X cmp Y",
9000 WARN_STRICT_OVERFLOW_COMPARISON);
9001 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
9002 TREE_OPERAND (arg0, 1));
9005 /* For comparisons of pointers we can decompose it to a compile time
9006 comparison of the base objects and the offsets into the object.
9007 This requires at least one operand being an ADDR_EXPR or a
9008 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
9009 if (POINTER_TYPE_P (TREE_TYPE (arg0))
9010 && (TREE_CODE (arg0) == ADDR_EXPR
9011 || TREE_CODE (arg1) == ADDR_EXPR
9012 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
9013 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
9015 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
9016 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
9017 enum machine_mode mode;
9018 int volatilep, unsignedp;
9019 bool indirect_base0 = false, indirect_base1 = false;
9021 /* Get base and offset for the access. Strip ADDR_EXPR for
9022 get_inner_reference, but put it back by stripping INDIRECT_REF
9023 off the base object if possible. indirect_baseN will be true
9024 if baseN is not an address but refers to the object itself. */
9025 base0 = arg0;
9026 if (TREE_CODE (arg0) == ADDR_EXPR)
9028 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
9029 &bitsize, &bitpos0, &offset0, &mode,
9030 &unsignedp, &volatilep, false);
9031 if (TREE_CODE (base0) == INDIRECT_REF)
9032 base0 = TREE_OPERAND (base0, 0);
9033 else
9034 indirect_base0 = true;
9036 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9038 base0 = TREE_OPERAND (arg0, 0);
9039 STRIP_SIGN_NOPS (base0);
9040 if (TREE_CODE (base0) == ADDR_EXPR)
9042 base0 = TREE_OPERAND (base0, 0);
9043 indirect_base0 = true;
9045 offset0 = TREE_OPERAND (arg0, 1);
9046 if (tree_fits_shwi_p (offset0))
9048 HOST_WIDE_INT off = size_low_cst (offset0);
9049 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
9050 * BITS_PER_UNIT)
9051 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
9053 bitpos0 = off * BITS_PER_UNIT;
9054 offset0 = NULL_TREE;
9059 base1 = arg1;
9060 if (TREE_CODE (arg1) == ADDR_EXPR)
9062 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
9063 &bitsize, &bitpos1, &offset1, &mode,
9064 &unsignedp, &volatilep, false);
9065 if (TREE_CODE (base1) == INDIRECT_REF)
9066 base1 = TREE_OPERAND (base1, 0);
9067 else
9068 indirect_base1 = true;
9070 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9072 base1 = TREE_OPERAND (arg1, 0);
9073 STRIP_SIGN_NOPS (base1);
9074 if (TREE_CODE (base1) == ADDR_EXPR)
9076 base1 = TREE_OPERAND (base1, 0);
9077 indirect_base1 = true;
9079 offset1 = TREE_OPERAND (arg1, 1);
9080 if (tree_fits_shwi_p (offset1))
9082 HOST_WIDE_INT off = size_low_cst (offset1);
9083 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
9084 * BITS_PER_UNIT)
9085 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
9087 bitpos1 = off * BITS_PER_UNIT;
9088 offset1 = NULL_TREE;
9093 /* A local variable can never be pointed to by
9094 the default SSA name of an incoming parameter. */
9095 if ((TREE_CODE (arg0) == ADDR_EXPR
9096 && indirect_base0
9097 && TREE_CODE (base0) == VAR_DECL
9098 && auto_var_in_fn_p (base0, current_function_decl)
9099 && !indirect_base1
9100 && TREE_CODE (base1) == SSA_NAME
9101 && SSA_NAME_IS_DEFAULT_DEF (base1)
9102 && TREE_CODE (SSA_NAME_VAR (base1)) == PARM_DECL)
9103 || (TREE_CODE (arg1) == ADDR_EXPR
9104 && indirect_base1
9105 && TREE_CODE (base1) == VAR_DECL
9106 && auto_var_in_fn_p (base1, current_function_decl)
9107 && !indirect_base0
9108 && TREE_CODE (base0) == SSA_NAME
9109 && SSA_NAME_IS_DEFAULT_DEF (base0)
9110 && TREE_CODE (SSA_NAME_VAR (base0)) == PARM_DECL))
9112 if (code == NE_EXPR)
9113 return constant_boolean_node (1, type);
9114 else if (code == EQ_EXPR)
9115 return constant_boolean_node (0, type);
9117 /* If we have equivalent bases we might be able to simplify. */
9118 else if (indirect_base0 == indirect_base1
9119 && operand_equal_p (base0, base1, 0))
9121 /* We can fold this expression to a constant if the non-constant
9122 offset parts are equal. */
9123 if ((offset0 == offset1
9124 || (offset0 && offset1
9125 && operand_equal_p (offset0, offset1, 0)))
9126 && (code == EQ_EXPR
9127 || code == NE_EXPR
9128 || (indirect_base0 && DECL_P (base0))
9129 || POINTER_TYPE_OVERFLOW_UNDEFINED))
9132 if (!equality_code
9133 && bitpos0 != bitpos1
9134 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9135 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9136 fold_overflow_warning (("assuming pointer wraparound does not "
9137 "occur when comparing P +- C1 with "
9138 "P +- C2"),
9139 WARN_STRICT_OVERFLOW_CONDITIONAL);
9141 switch (code)
9143 case EQ_EXPR:
9144 return constant_boolean_node (bitpos0 == bitpos1, type);
9145 case NE_EXPR:
9146 return constant_boolean_node (bitpos0 != bitpos1, type);
9147 case LT_EXPR:
9148 return constant_boolean_node (bitpos0 < bitpos1, type);
9149 case LE_EXPR:
9150 return constant_boolean_node (bitpos0 <= bitpos1, type);
9151 case GE_EXPR:
9152 return constant_boolean_node (bitpos0 >= bitpos1, type);
9153 case GT_EXPR:
9154 return constant_boolean_node (bitpos0 > bitpos1, type);
9155 default:;
9158 /* We can simplify the comparison to a comparison of the variable
9159 offset parts if the constant offset parts are equal.
9160 Be careful to use signed sizetype here because otherwise we
9161 mess with array offsets in the wrong way. This is possible
9162 because pointer arithmetic is restricted to retain within an
9163 object and overflow on pointer differences is undefined as of
9164 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
9165 else if (bitpos0 == bitpos1
9166 && (equality_code
9167 || (indirect_base0 && DECL_P (base0))
9168 || POINTER_TYPE_OVERFLOW_UNDEFINED))
9170 /* By converting to signed sizetype we cover middle-end pointer
9171 arithmetic which operates on unsigned pointer types of size
9172 type size and ARRAY_REF offsets which are properly sign or
9173 zero extended from their type in case it is narrower than
9174 sizetype. */
9175 if (offset0 == NULL_TREE)
9176 offset0 = build_int_cst (ssizetype, 0);
9177 else
9178 offset0 = fold_convert_loc (loc, ssizetype, offset0);
9179 if (offset1 == NULL_TREE)
9180 offset1 = build_int_cst (ssizetype, 0);
9181 else
9182 offset1 = fold_convert_loc (loc, ssizetype, offset1);
9184 if (!equality_code
9185 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9186 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9187 fold_overflow_warning (("assuming pointer wraparound does not "
9188 "occur when comparing P +- C1 with "
9189 "P +- C2"),
9190 WARN_STRICT_OVERFLOW_COMPARISON);
9192 return fold_build2_loc (loc, code, type, offset0, offset1);
9195 /* For non-equal bases we can simplify if they are addresses
9196 of local binding decls or constants. */
9197 else if (indirect_base0 && indirect_base1
9198 /* We know that !operand_equal_p (base0, base1, 0)
9199 because the if condition was false. But make
9200 sure two decls are not the same. */
9201 && base0 != base1
9202 && TREE_CODE (arg0) == ADDR_EXPR
9203 && TREE_CODE (arg1) == ADDR_EXPR
9204 && (((TREE_CODE (base0) == VAR_DECL
9205 || TREE_CODE (base0) == PARM_DECL)
9206 && (targetm.binds_local_p (base0)
9207 || CONSTANT_CLASS_P (base1)))
9208 || CONSTANT_CLASS_P (base0))
9209 && (((TREE_CODE (base1) == VAR_DECL
9210 || TREE_CODE (base1) == PARM_DECL)
9211 && (targetm.binds_local_p (base1)
9212 || CONSTANT_CLASS_P (base0)))
9213 || CONSTANT_CLASS_P (base1)))
9215 if (code == EQ_EXPR)
9216 return omit_two_operands_loc (loc, type, boolean_false_node,
9217 arg0, arg1);
9218 else if (code == NE_EXPR)
9219 return omit_two_operands_loc (loc, type, boolean_true_node,
9220 arg0, arg1);
9222 /* For equal offsets we can simplify to a comparison of the
9223 base addresses. */
9224 else if (bitpos0 == bitpos1
9225 && (indirect_base0
9226 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
9227 && (indirect_base1
9228 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
9229 && ((offset0 == offset1)
9230 || (offset0 && offset1
9231 && operand_equal_p (offset0, offset1, 0))))
9233 if (indirect_base0)
9234 base0 = build_fold_addr_expr_loc (loc, base0);
9235 if (indirect_base1)
9236 base1 = build_fold_addr_expr_loc (loc, base1);
9237 return fold_build2_loc (loc, code, type, base0, base1);
9241 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9242 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9243 the resulting offset is smaller in absolute value than the
9244 original one and has the same sign. */
9245 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9246 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9247 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9248 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9249 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
9250 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9251 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
9253 tree const1 = TREE_OPERAND (arg0, 1);
9254 tree const2 = TREE_OPERAND (arg1, 1);
9255 tree variable1 = TREE_OPERAND (arg0, 0);
9256 tree variable2 = TREE_OPERAND (arg1, 0);
9257 tree cst;
9258 const char * const warnmsg = G_("assuming signed overflow does not "
9259 "occur when combining constants around "
9260 "a comparison");
9262 /* Put the constant on the side where it doesn't overflow and is
9263 of lower absolute value and of same sign than before. */
9264 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9265 ? MINUS_EXPR : PLUS_EXPR,
9266 const2, const1);
9267 if (!TREE_OVERFLOW (cst)
9268 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
9269 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
9271 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9272 return fold_build2_loc (loc, code, type,
9273 variable1,
9274 fold_build2_loc (loc, TREE_CODE (arg1),
9275 TREE_TYPE (arg1),
9276 variable2, cst));
9279 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9280 ? MINUS_EXPR : PLUS_EXPR,
9281 const1, const2);
9282 if (!TREE_OVERFLOW (cst)
9283 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
9284 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
9286 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9287 return fold_build2_loc (loc, code, type,
9288 fold_build2_loc (loc, TREE_CODE (arg0),
9289 TREE_TYPE (arg0),
9290 variable1, cst),
9291 variable2);
9295 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
9296 signed arithmetic case. That form is created by the compiler
9297 often enough for folding it to be of value. One example is in
9298 computing loop trip counts after Operator Strength Reduction. */
9299 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9300 && TREE_CODE (arg0) == MULT_EXPR
9301 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9302 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9303 && integer_zerop (arg1))
9305 tree const1 = TREE_OPERAND (arg0, 1);
9306 tree const2 = arg1; /* zero */
9307 tree variable1 = TREE_OPERAND (arg0, 0);
9308 enum tree_code cmp_code = code;
9310 /* Handle unfolded multiplication by zero. */
9311 if (integer_zerop (const1))
9312 return fold_build2_loc (loc, cmp_code, type, const1, const2);
9314 fold_overflow_warning (("assuming signed overflow does not occur when "
9315 "eliminating multiplication in comparison "
9316 "with zero"),
9317 WARN_STRICT_OVERFLOW_COMPARISON);
9319 /* If const1 is negative we swap the sense of the comparison. */
9320 if (tree_int_cst_sgn (const1) < 0)
9321 cmp_code = swap_tree_comparison (cmp_code);
9323 return fold_build2_loc (loc, cmp_code, type, variable1, const2);
9326 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
9327 if (tem)
9328 return tem;
9330 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9332 tree targ0 = strip_float_extensions (arg0);
9333 tree targ1 = strip_float_extensions (arg1);
9334 tree newtype = TREE_TYPE (targ0);
9336 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9337 newtype = TREE_TYPE (targ1);
9339 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9340 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9341 return fold_build2_loc (loc, code, type,
9342 fold_convert_loc (loc, newtype, targ0),
9343 fold_convert_loc (loc, newtype, targ1));
9345 /* (-a) CMP (-b) -> b CMP a */
9346 if (TREE_CODE (arg0) == NEGATE_EXPR
9347 && TREE_CODE (arg1) == NEGATE_EXPR)
9348 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg1, 0),
9349 TREE_OPERAND (arg0, 0));
9351 if (TREE_CODE (arg1) == REAL_CST)
9353 REAL_VALUE_TYPE cst;
9354 cst = TREE_REAL_CST (arg1);
9356 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9357 if (TREE_CODE (arg0) == NEGATE_EXPR)
9358 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9359 TREE_OPERAND (arg0, 0),
9360 build_real (TREE_TYPE (arg1),
9361 real_value_negate (&cst)));
9363 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9364 /* a CMP (-0) -> a CMP 0 */
9365 if (REAL_VALUE_MINUS_ZERO (cst))
9366 return fold_build2_loc (loc, code, type, arg0,
9367 build_real (TREE_TYPE (arg1), dconst0));
9369 /* x != NaN is always true, other ops are always false. */
9370 if (REAL_VALUE_ISNAN (cst)
9371 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
9373 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9374 return omit_one_operand_loc (loc, type, tem, arg0);
9377 /* Fold comparisons against infinity. */
9378 if (REAL_VALUE_ISINF (cst)
9379 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))))
9381 tem = fold_inf_compare (loc, code, type, arg0, arg1);
9382 if (tem != NULL_TREE)
9383 return tem;
9387 /* If this is a comparison of a real constant with a PLUS_EXPR
9388 or a MINUS_EXPR of a real constant, we can convert it into a
9389 comparison with a revised real constant as long as no overflow
9390 occurs when unsafe_math_optimizations are enabled. */
9391 if (flag_unsafe_math_optimizations
9392 && TREE_CODE (arg1) == REAL_CST
9393 && (TREE_CODE (arg0) == PLUS_EXPR
9394 || TREE_CODE (arg0) == MINUS_EXPR)
9395 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9396 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9397 ? MINUS_EXPR : PLUS_EXPR,
9398 arg1, TREE_OPERAND (arg0, 1)))
9399 && !TREE_OVERFLOW (tem))
9400 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
9402 /* Likewise, we can simplify a comparison of a real constant with
9403 a MINUS_EXPR whose first operand is also a real constant, i.e.
9404 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9405 floating-point types only if -fassociative-math is set. */
9406 if (flag_associative_math
9407 && TREE_CODE (arg1) == REAL_CST
9408 && TREE_CODE (arg0) == MINUS_EXPR
9409 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9410 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9411 arg1))
9412 && !TREE_OVERFLOW (tem))
9413 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9414 TREE_OPERAND (arg0, 1), tem);
9416 /* Fold comparisons against built-in math functions. */
9417 if (TREE_CODE (arg1) == REAL_CST
9418 && flag_unsafe_math_optimizations
9419 && ! flag_errno_math)
9421 enum built_in_function fcode = builtin_mathfn_code (arg0);
9423 if (fcode != END_BUILTINS)
9425 tem = fold_mathfn_compare (loc, fcode, code, type, arg0, arg1);
9426 if (tem != NULL_TREE)
9427 return tem;
9432 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9433 && CONVERT_EXPR_P (arg0))
9435 /* If we are widening one operand of an integer comparison,
9436 see if the other operand is similarly being widened. Perhaps we
9437 can do the comparison in the narrower type. */
9438 tem = fold_widened_comparison (loc, code, type, arg0, arg1);
9439 if (tem)
9440 return tem;
9442 /* Or if we are changing signedness. */
9443 tem = fold_sign_changed_comparison (loc, code, type, arg0, arg1);
9444 if (tem)
9445 return tem;
9448 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9449 constant, we can simplify it. */
9450 if (TREE_CODE (arg1) == INTEGER_CST
9451 && (TREE_CODE (arg0) == MIN_EXPR
9452 || TREE_CODE (arg0) == MAX_EXPR)
9453 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9455 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
9456 if (tem)
9457 return tem;
9460 /* Simplify comparison of something with itself. (For IEEE
9461 floating-point, we can only do some of these simplifications.) */
9462 if (operand_equal_p (arg0, arg1, 0))
9464 switch (code)
9466 case EQ_EXPR:
9467 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9468 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9469 return constant_boolean_node (1, type);
9470 break;
9472 case GE_EXPR:
9473 case LE_EXPR:
9474 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9475 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9476 return constant_boolean_node (1, type);
9477 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg1);
9479 case NE_EXPR:
9480 /* For NE, we can only do this simplification if integer
9481 or we don't honor IEEE floating point NaNs. */
9482 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9483 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9484 break;
9485 /* ... fall through ... */
9486 case GT_EXPR:
9487 case LT_EXPR:
9488 return constant_boolean_node (0, type);
9489 default:
9490 gcc_unreachable ();
9494 /* If we are comparing an expression that just has comparisons
9495 of two integer values, arithmetic expressions of those comparisons,
9496 and constants, we can simplify it. There are only three cases
9497 to check: the two values can either be equal, the first can be
9498 greater, or the second can be greater. Fold the expression for
9499 those three values. Since each value must be 0 or 1, we have
9500 eight possibilities, each of which corresponds to the constant 0
9501 or 1 or one of the six possible comparisons.
9503 This handles common cases like (a > b) == 0 but also handles
9504 expressions like ((x > y) - (y > x)) > 0, which supposedly
9505 occur in macroized code. */
9507 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9509 tree cval1 = 0, cval2 = 0;
9510 int save_p = 0;
9512 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9513 /* Don't handle degenerate cases here; they should already
9514 have been handled anyway. */
9515 && cval1 != 0 && cval2 != 0
9516 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9517 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9518 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9519 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9520 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9521 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9522 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9524 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9525 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9527 /* We can't just pass T to eval_subst in case cval1 or cval2
9528 was the same as ARG1. */
9530 tree high_result
9531 = fold_build2_loc (loc, code, type,
9532 eval_subst (loc, arg0, cval1, maxval,
9533 cval2, minval),
9534 arg1);
9535 tree equal_result
9536 = fold_build2_loc (loc, code, type,
9537 eval_subst (loc, arg0, cval1, maxval,
9538 cval2, maxval),
9539 arg1);
9540 tree low_result
9541 = fold_build2_loc (loc, code, type,
9542 eval_subst (loc, arg0, cval1, minval,
9543 cval2, maxval),
9544 arg1);
9546 /* All three of these results should be 0 or 1. Confirm they are.
9547 Then use those values to select the proper code to use. */
9549 if (TREE_CODE (high_result) == INTEGER_CST
9550 && TREE_CODE (equal_result) == INTEGER_CST
9551 && TREE_CODE (low_result) == INTEGER_CST)
9553 /* Make a 3-bit mask with the high-order bit being the
9554 value for `>', the next for '=', and the low for '<'. */
9555 switch ((integer_onep (high_result) * 4)
9556 + (integer_onep (equal_result) * 2)
9557 + integer_onep (low_result))
9559 case 0:
9560 /* Always false. */
9561 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9562 case 1:
9563 code = LT_EXPR;
9564 break;
9565 case 2:
9566 code = EQ_EXPR;
9567 break;
9568 case 3:
9569 code = LE_EXPR;
9570 break;
9571 case 4:
9572 code = GT_EXPR;
9573 break;
9574 case 5:
9575 code = NE_EXPR;
9576 break;
9577 case 6:
9578 code = GE_EXPR;
9579 break;
9580 case 7:
9581 /* Always true. */
9582 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
9585 if (save_p)
9587 tem = save_expr (build2 (code, type, cval1, cval2));
9588 SET_EXPR_LOCATION (tem, loc);
9589 return tem;
9591 return fold_build2_loc (loc, code, type, cval1, cval2);
9596 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9597 into a single range test. */
9598 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9599 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9600 && TREE_CODE (arg1) == INTEGER_CST
9601 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9602 && !integer_zerop (TREE_OPERAND (arg0, 1))
9603 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9604 && !TREE_OVERFLOW (arg1))
9606 tem = fold_div_compare (loc, code, type, arg0, arg1);
9607 if (tem != NULL_TREE)
9608 return tem;
9611 /* Fold ~X op ~Y as Y op X. */
9612 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9613 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9615 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9616 return fold_build2_loc (loc, code, type,
9617 fold_convert_loc (loc, cmp_type,
9618 TREE_OPERAND (arg1, 0)),
9619 TREE_OPERAND (arg0, 0));
9622 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9623 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9624 && (TREE_CODE (arg1) == INTEGER_CST || TREE_CODE (arg1) == VECTOR_CST))
9626 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9627 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9628 TREE_OPERAND (arg0, 0),
9629 fold_build1_loc (loc, BIT_NOT_EXPR, cmp_type,
9630 fold_convert_loc (loc, cmp_type, arg1)));
9633 return NULL_TREE;
9637 /* Subroutine of fold_binary. Optimize complex multiplications of the
9638 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9639 argument EXPR represents the expression "z" of type TYPE. */
9641 static tree
9642 fold_mult_zconjz (location_t loc, tree type, tree expr)
9644 tree itype = TREE_TYPE (type);
9645 tree rpart, ipart, tem;
9647 if (TREE_CODE (expr) == COMPLEX_EXPR)
9649 rpart = TREE_OPERAND (expr, 0);
9650 ipart = TREE_OPERAND (expr, 1);
9652 else if (TREE_CODE (expr) == COMPLEX_CST)
9654 rpart = TREE_REALPART (expr);
9655 ipart = TREE_IMAGPART (expr);
9657 else
9659 expr = save_expr (expr);
9660 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
9661 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
9664 rpart = save_expr (rpart);
9665 ipart = save_expr (ipart);
9666 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
9667 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
9668 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
9669 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
9670 build_zero_cst (itype));
9674 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9675 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9676 guarantees that P and N have the same least significant log2(M) bits.
9677 N is not otherwise constrained. In particular, N is not normalized to
9678 0 <= N < M as is common. In general, the precise value of P is unknown.
9679 M is chosen as large as possible such that constant N can be determined.
9681 Returns M and sets *RESIDUE to N.
9683 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9684 account. This is not always possible due to PR 35705.
9687 static unsigned HOST_WIDE_INT
9688 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue,
9689 bool allow_func_align)
9691 enum tree_code code;
9693 *residue = 0;
9695 code = TREE_CODE (expr);
9696 if (code == ADDR_EXPR)
9698 unsigned int bitalign;
9699 get_object_alignment_1 (TREE_OPERAND (expr, 0), &bitalign, residue);
9700 *residue /= BITS_PER_UNIT;
9701 return bitalign / BITS_PER_UNIT;
9703 else if (code == POINTER_PLUS_EXPR)
9705 tree op0, op1;
9706 unsigned HOST_WIDE_INT modulus;
9707 enum tree_code inner_code;
9709 op0 = TREE_OPERAND (expr, 0);
9710 STRIP_NOPS (op0);
9711 modulus = get_pointer_modulus_and_residue (op0, residue,
9712 allow_func_align);
9714 op1 = TREE_OPERAND (expr, 1);
9715 STRIP_NOPS (op1);
9716 inner_code = TREE_CODE (op1);
9717 if (inner_code == INTEGER_CST)
9719 *residue += TREE_INT_CST_LOW (op1);
9720 return modulus;
9722 else if (inner_code == MULT_EXPR)
9724 op1 = TREE_OPERAND (op1, 1);
9725 if (TREE_CODE (op1) == INTEGER_CST)
9727 unsigned HOST_WIDE_INT align;
9729 /* Compute the greatest power-of-2 divisor of op1. */
9730 align = TREE_INT_CST_LOW (op1);
9731 align &= -align;
9733 /* If align is non-zero and less than *modulus, replace
9734 *modulus with align., If align is 0, then either op1 is 0
9735 or the greatest power-of-2 divisor of op1 doesn't fit in an
9736 unsigned HOST_WIDE_INT. In either case, no additional
9737 constraint is imposed. */
9738 if (align)
9739 modulus = MIN (modulus, align);
9741 return modulus;
9746 /* If we get here, we were unable to determine anything useful about the
9747 expression. */
9748 return 1;
9751 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
9752 CONSTRUCTOR ARG into array ELTS and return true if successful. */
9754 static bool
9755 vec_cst_ctor_to_array (tree arg, tree *elts)
9757 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
9759 if (TREE_CODE (arg) == VECTOR_CST)
9761 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
9762 elts[i] = VECTOR_CST_ELT (arg, i);
9764 else if (TREE_CODE (arg) == CONSTRUCTOR)
9766 constructor_elt *elt;
9768 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
9769 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
9770 return false;
9771 else
9772 elts[i] = elt->value;
9774 else
9775 return false;
9776 for (; i < nelts; i++)
9777 elts[i]
9778 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
9779 return true;
9782 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9783 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9784 NULL_TREE otherwise. */
9786 static tree
9787 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
9789 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
9790 tree *elts;
9791 bool need_ctor = false;
9793 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
9794 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
9795 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9796 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9797 return NULL_TREE;
9799 elts = XALLOCAVEC (tree, nelts * 3);
9800 if (!vec_cst_ctor_to_array (arg0, elts)
9801 || !vec_cst_ctor_to_array (arg1, elts + nelts))
9802 return NULL_TREE;
9804 for (i = 0; i < nelts; i++)
9806 if (!CONSTANT_CLASS_P (elts[sel[i]]))
9807 need_ctor = true;
9808 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
9811 if (need_ctor)
9813 vec<constructor_elt, va_gc> *v;
9814 vec_alloc (v, nelts);
9815 for (i = 0; i < nelts; i++)
9816 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
9817 return build_constructor (type, v);
9819 else
9820 return build_vector (type, &elts[2 * nelts]);
9823 /* Try to fold a pointer difference of type TYPE two address expressions of
9824 array references AREF0 and AREF1 using location LOC. Return a
9825 simplified expression for the difference or NULL_TREE. */
9827 static tree
9828 fold_addr_of_array_ref_difference (location_t loc, tree type,
9829 tree aref0, tree aref1)
9831 tree base0 = TREE_OPERAND (aref0, 0);
9832 tree base1 = TREE_OPERAND (aref1, 0);
9833 tree base_offset = build_int_cst (type, 0);
9835 /* If the bases are array references as well, recurse. If the bases
9836 are pointer indirections compute the difference of the pointers.
9837 If the bases are equal, we are set. */
9838 if ((TREE_CODE (base0) == ARRAY_REF
9839 && TREE_CODE (base1) == ARRAY_REF
9840 && (base_offset
9841 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
9842 || (INDIRECT_REF_P (base0)
9843 && INDIRECT_REF_P (base1)
9844 && (base_offset = fold_binary_loc (loc, MINUS_EXPR, type,
9845 TREE_OPERAND (base0, 0),
9846 TREE_OPERAND (base1, 0))))
9847 || operand_equal_p (base0, base1, 0))
9849 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9850 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9851 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9852 tree diff = build2 (MINUS_EXPR, type, op0, op1);
9853 return fold_build2_loc (loc, PLUS_EXPR, type,
9854 base_offset,
9855 fold_build2_loc (loc, MULT_EXPR, type,
9856 diff, esz));
9858 return NULL_TREE;
9861 /* If the real or vector real constant CST of type TYPE has an exact
9862 inverse, return it, else return NULL. */
9864 static tree
9865 exact_inverse (tree type, tree cst)
9867 REAL_VALUE_TYPE r;
9868 tree unit_type, *elts;
9869 enum machine_mode mode;
9870 unsigned vec_nelts, i;
9872 switch (TREE_CODE (cst))
9874 case REAL_CST:
9875 r = TREE_REAL_CST (cst);
9877 if (exact_real_inverse (TYPE_MODE (type), &r))
9878 return build_real (type, r);
9880 return NULL_TREE;
9882 case VECTOR_CST:
9883 vec_nelts = VECTOR_CST_NELTS (cst);
9884 elts = XALLOCAVEC (tree, vec_nelts);
9885 unit_type = TREE_TYPE (type);
9886 mode = TYPE_MODE (unit_type);
9888 for (i = 0; i < vec_nelts; i++)
9890 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9891 if (!exact_real_inverse (mode, &r))
9892 return NULL_TREE;
9893 elts[i] = build_real (unit_type, r);
9896 return build_vector (type, elts);
9898 default:
9899 return NULL_TREE;
9903 /* Mask out the tz least significant bits of X of type TYPE where
9904 tz is the number of trailing zeroes in Y. */
9905 static wide_int
9906 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9908 int tz = wi::ctz (y);
9909 if (tz > 0)
9910 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9911 return x;
9914 /* Return true when T is an address and is known to be nonzero.
9915 For floating point we further ensure that T is not denormal.
9916 Similar logic is present in nonzero_address in rtlanal.h.
9918 If the return value is based on the assumption that signed overflow
9919 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9920 change *STRICT_OVERFLOW_P. */
9922 static bool
9923 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9925 tree type = TREE_TYPE (t);
9926 enum tree_code code;
9928 /* Doing something useful for floating point would need more work. */
9929 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9930 return false;
9932 code = TREE_CODE (t);
9933 switch (TREE_CODE_CLASS (code))
9935 case tcc_unary:
9936 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9937 strict_overflow_p);
9938 case tcc_binary:
9939 case tcc_comparison:
9940 return tree_binary_nonzero_warnv_p (code, type,
9941 TREE_OPERAND (t, 0),
9942 TREE_OPERAND (t, 1),
9943 strict_overflow_p);
9944 case tcc_constant:
9945 case tcc_declaration:
9946 case tcc_reference:
9947 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9949 default:
9950 break;
9953 switch (code)
9955 case TRUTH_NOT_EXPR:
9956 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9957 strict_overflow_p);
9959 case TRUTH_AND_EXPR:
9960 case TRUTH_OR_EXPR:
9961 case TRUTH_XOR_EXPR:
9962 return tree_binary_nonzero_warnv_p (code, type,
9963 TREE_OPERAND (t, 0),
9964 TREE_OPERAND (t, 1),
9965 strict_overflow_p);
9967 case COND_EXPR:
9968 case CONSTRUCTOR:
9969 case OBJ_TYPE_REF:
9970 case ASSERT_EXPR:
9971 case ADDR_EXPR:
9972 case WITH_SIZE_EXPR:
9973 case SSA_NAME:
9974 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9976 case COMPOUND_EXPR:
9977 case MODIFY_EXPR:
9978 case BIND_EXPR:
9979 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9980 strict_overflow_p);
9982 case SAVE_EXPR:
9983 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9984 strict_overflow_p);
9986 case CALL_EXPR:
9988 tree fndecl = get_callee_fndecl (t);
9989 if (!fndecl) return false;
9990 if (flag_delete_null_pointer_checks && !flag_check_new
9991 && DECL_IS_OPERATOR_NEW (fndecl)
9992 && !TREE_NOTHROW (fndecl))
9993 return true;
9994 if (flag_delete_null_pointer_checks
9995 && lookup_attribute ("returns_nonnull",
9996 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9997 return true;
9998 return alloca_call_p (t);
10001 default:
10002 break;
10004 return false;
10007 /* Return true when T is an address and is known to be nonzero.
10008 Handle warnings about undefined signed overflow. */
10010 static bool
10011 tree_expr_nonzero_p (tree t)
10013 bool ret, strict_overflow_p;
10015 strict_overflow_p = false;
10016 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
10017 if (strict_overflow_p)
10018 fold_overflow_warning (("assuming signed overflow does not occur when "
10019 "determining that expression is always "
10020 "non-zero"),
10021 WARN_STRICT_OVERFLOW_MISC);
10022 return ret;
10025 /* Fold a binary expression of code CODE and type TYPE with operands
10026 OP0 and OP1. LOC is the location of the resulting expression.
10027 Return the folded expression if folding is successful. Otherwise,
10028 return NULL_TREE. */
10030 tree
10031 fold_binary_loc (location_t loc,
10032 enum tree_code code, tree type, tree op0, tree op1)
10034 enum tree_code_class kind = TREE_CODE_CLASS (code);
10035 tree arg0, arg1, tem;
10036 tree t1 = NULL_TREE;
10037 bool strict_overflow_p;
10038 unsigned int prec;
10040 gcc_assert (IS_EXPR_CODE_CLASS (kind)
10041 && TREE_CODE_LENGTH (code) == 2
10042 && op0 != NULL_TREE
10043 && op1 != NULL_TREE);
10045 arg0 = op0;
10046 arg1 = op1;
10048 /* Strip any conversions that don't change the mode. This is
10049 safe for every expression, except for a comparison expression
10050 because its signedness is derived from its operands. So, in
10051 the latter case, only strip conversions that don't change the
10052 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
10053 preserved.
10055 Note that this is done as an internal manipulation within the
10056 constant folder, in order to find the simplest representation
10057 of the arguments so that their form can be studied. In any
10058 cases, the appropriate type conversions should be put back in
10059 the tree that will get out of the constant folder. */
10061 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
10063 STRIP_SIGN_NOPS (arg0);
10064 STRIP_SIGN_NOPS (arg1);
10066 else
10068 STRIP_NOPS (arg0);
10069 STRIP_NOPS (arg1);
10072 /* Note that TREE_CONSTANT isn't enough: static var addresses are
10073 constant but we can't do arithmetic on them. */
10074 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
10075 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
10076 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == FIXED_CST)
10077 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == INTEGER_CST)
10078 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
10079 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST)
10080 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == INTEGER_CST))
10082 if (kind == tcc_binary)
10084 /* Make sure type and arg0 have the same saturating flag. */
10085 gcc_assert (TYPE_SATURATING (type)
10086 == TYPE_SATURATING (TREE_TYPE (arg0)));
10087 tem = const_binop (code, arg0, arg1);
10089 else if (kind == tcc_comparison)
10090 tem = fold_relational_const (code, type, arg0, arg1);
10091 else
10092 tem = NULL_TREE;
10094 if (tem != NULL_TREE)
10096 if (TREE_TYPE (tem) != type)
10097 tem = fold_convert_loc (loc, type, tem);
10098 return tem;
10102 /* If this is a commutative operation, and ARG0 is a constant, move it
10103 to ARG1 to reduce the number of tests below. */
10104 if (commutative_tree_code (code)
10105 && tree_swap_operands_p (arg0, arg1, true))
10106 return fold_build2_loc (loc, code, type, op1, op0);
10108 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
10110 First check for cases where an arithmetic operation is applied to a
10111 compound, conditional, or comparison operation. Push the arithmetic
10112 operation inside the compound or conditional to see if any folding
10113 can then be done. Convert comparison to conditional for this purpose.
10114 The also optimizes non-constant cases that used to be done in
10115 expand_expr.
10117 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
10118 one of the operands is a comparison and the other is a comparison, a
10119 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
10120 code below would make the expression more complex. Change it to a
10121 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
10122 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
10124 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
10125 || code == EQ_EXPR || code == NE_EXPR)
10126 && TREE_CODE (type) != VECTOR_TYPE
10127 && ((truth_value_p (TREE_CODE (arg0))
10128 && (truth_value_p (TREE_CODE (arg1))
10129 || (TREE_CODE (arg1) == BIT_AND_EXPR
10130 && integer_onep (TREE_OPERAND (arg1, 1)))))
10131 || (truth_value_p (TREE_CODE (arg1))
10132 && (truth_value_p (TREE_CODE (arg0))
10133 || (TREE_CODE (arg0) == BIT_AND_EXPR
10134 && integer_onep (TREE_OPERAND (arg0, 1)))))))
10136 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
10137 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
10138 : TRUTH_XOR_EXPR,
10139 boolean_type_node,
10140 fold_convert_loc (loc, boolean_type_node, arg0),
10141 fold_convert_loc (loc, boolean_type_node, arg1));
10143 if (code == EQ_EXPR)
10144 tem = invert_truthvalue_loc (loc, tem);
10146 return fold_convert_loc (loc, type, tem);
10149 if (TREE_CODE_CLASS (code) == tcc_binary
10150 || TREE_CODE_CLASS (code) == tcc_comparison)
10152 if (TREE_CODE (arg0) == COMPOUND_EXPR)
10154 tem = fold_build2_loc (loc, code, type,
10155 fold_convert_loc (loc, TREE_TYPE (op0),
10156 TREE_OPERAND (arg0, 1)), op1);
10157 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
10158 tem);
10160 if (TREE_CODE (arg1) == COMPOUND_EXPR
10161 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10163 tem = fold_build2_loc (loc, code, type, op0,
10164 fold_convert_loc (loc, TREE_TYPE (op1),
10165 TREE_OPERAND (arg1, 1)));
10166 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
10167 tem);
10170 if (TREE_CODE (arg0) == COND_EXPR
10171 || TREE_CODE (arg0) == VEC_COND_EXPR
10172 || COMPARISON_CLASS_P (arg0))
10174 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
10175 arg0, arg1,
10176 /*cond_first_p=*/1);
10177 if (tem != NULL_TREE)
10178 return tem;
10181 if (TREE_CODE (arg1) == COND_EXPR
10182 || TREE_CODE (arg1) == VEC_COND_EXPR
10183 || COMPARISON_CLASS_P (arg1))
10185 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
10186 arg1, arg0,
10187 /*cond_first_p=*/0);
10188 if (tem != NULL_TREE)
10189 return tem;
10193 switch (code)
10195 case MEM_REF:
10196 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
10197 if (TREE_CODE (arg0) == ADDR_EXPR
10198 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
10200 tree iref = TREE_OPERAND (arg0, 0);
10201 return fold_build2 (MEM_REF, type,
10202 TREE_OPERAND (iref, 0),
10203 int_const_binop (PLUS_EXPR, arg1,
10204 TREE_OPERAND (iref, 1)));
10207 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
10208 if (TREE_CODE (arg0) == ADDR_EXPR
10209 && handled_component_p (TREE_OPERAND (arg0, 0)))
10211 tree base;
10212 HOST_WIDE_INT coffset;
10213 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
10214 &coffset);
10215 if (!base)
10216 return NULL_TREE;
10217 return fold_build2 (MEM_REF, type,
10218 build_fold_addr_expr (base),
10219 int_const_binop (PLUS_EXPR, arg1,
10220 size_int (coffset)));
10223 return NULL_TREE;
10225 case POINTER_PLUS_EXPR:
10226 /* 0 +p index -> (type)index */
10227 if (integer_zerop (arg0))
10228 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10230 /* PTR +p 0 -> PTR */
10231 if (integer_zerop (arg1))
10232 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10234 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
10235 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10236 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
10237 return fold_convert_loc (loc, type,
10238 fold_build2_loc (loc, PLUS_EXPR, sizetype,
10239 fold_convert_loc (loc, sizetype,
10240 arg1),
10241 fold_convert_loc (loc, sizetype,
10242 arg0)));
10244 /* (PTR +p B) +p A -> PTR +p (B + A) */
10245 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10247 tree inner;
10248 tree arg01 = fold_convert_loc (loc, sizetype, TREE_OPERAND (arg0, 1));
10249 tree arg00 = TREE_OPERAND (arg0, 0);
10250 inner = fold_build2_loc (loc, PLUS_EXPR, sizetype,
10251 arg01, fold_convert_loc (loc, sizetype, arg1));
10252 return fold_convert_loc (loc, type,
10253 fold_build_pointer_plus_loc (loc,
10254 arg00, inner));
10257 /* PTR_CST +p CST -> CST1 */
10258 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
10259 return fold_build2_loc (loc, PLUS_EXPR, type, arg0,
10260 fold_convert_loc (loc, type, arg1));
10262 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
10263 of the array. Loop optimizer sometimes produce this type of
10264 expressions. */
10265 if (TREE_CODE (arg0) == ADDR_EXPR)
10267 tem = try_move_mult_to_index (loc, arg0,
10268 fold_convert_loc (loc,
10269 ssizetype, arg1));
10270 if (tem)
10271 return fold_convert_loc (loc, type, tem);
10274 return NULL_TREE;
10276 case PLUS_EXPR:
10277 /* A + (-B) -> A - B */
10278 if (TREE_CODE (arg1) == NEGATE_EXPR
10279 && (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
10280 return fold_build2_loc (loc, MINUS_EXPR, type,
10281 fold_convert_loc (loc, type, arg0),
10282 fold_convert_loc (loc, type,
10283 TREE_OPERAND (arg1, 0)));
10284 /* (-A) + B -> B - A */
10285 if (TREE_CODE (arg0) == NEGATE_EXPR
10286 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1)
10287 && (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
10288 return fold_build2_loc (loc, MINUS_EXPR, type,
10289 fold_convert_loc (loc, type, arg1),
10290 fold_convert_loc (loc, type,
10291 TREE_OPERAND (arg0, 0)));
10293 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
10295 /* Convert ~A + 1 to -A. */
10296 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10297 && integer_onep (arg1))
10298 return fold_build1_loc (loc, NEGATE_EXPR, type,
10299 fold_convert_loc (loc, type,
10300 TREE_OPERAND (arg0, 0)));
10302 /* ~X + X is -1. */
10303 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10304 && !TYPE_OVERFLOW_TRAPS (type))
10306 tree tem = TREE_OPERAND (arg0, 0);
10308 STRIP_NOPS (tem);
10309 if (operand_equal_p (tem, arg1, 0))
10311 t1 = build_all_ones_cst (type);
10312 return omit_one_operand_loc (loc, type, t1, arg1);
10316 /* X + ~X is -1. */
10317 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10318 && !TYPE_OVERFLOW_TRAPS (type))
10320 tree tem = TREE_OPERAND (arg1, 0);
10322 STRIP_NOPS (tem);
10323 if (operand_equal_p (arg0, tem, 0))
10325 t1 = build_all_ones_cst (type);
10326 return omit_one_operand_loc (loc, type, t1, arg0);
10330 /* X + (X / CST) * -CST is X % CST. */
10331 if (TREE_CODE (arg1) == MULT_EXPR
10332 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10333 && operand_equal_p (arg0,
10334 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
10336 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
10337 tree cst1 = TREE_OPERAND (arg1, 1);
10338 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
10339 cst1, cst0);
10340 if (sum && integer_zerop (sum))
10341 return fold_convert_loc (loc, type,
10342 fold_build2_loc (loc, TRUNC_MOD_EXPR,
10343 TREE_TYPE (arg0), arg0,
10344 cst0));
10348 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
10349 one. Make sure the type is not saturating and has the signedness of
10350 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10351 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10352 if ((TREE_CODE (arg0) == MULT_EXPR
10353 || TREE_CODE (arg1) == MULT_EXPR)
10354 && !TYPE_SATURATING (type)
10355 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10356 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10357 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10359 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10360 if (tem)
10361 return tem;
10364 if (! FLOAT_TYPE_P (type))
10366 if (integer_zerop (arg1))
10367 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10369 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
10370 with a constant, and the two constants have no bits in common,
10371 we should treat this as a BIT_IOR_EXPR since this may produce more
10372 simplifications. */
10373 if (TREE_CODE (arg0) == BIT_AND_EXPR
10374 && TREE_CODE (arg1) == BIT_AND_EXPR
10375 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10376 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10377 && wi::bit_and (TREE_OPERAND (arg0, 1),
10378 TREE_OPERAND (arg1, 1)) == 0)
10380 code = BIT_IOR_EXPR;
10381 goto bit_ior;
10384 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
10385 (plus (plus (mult) (mult)) (foo)) so that we can
10386 take advantage of the factoring cases below. */
10387 if (TYPE_OVERFLOW_WRAPS (type)
10388 && (((TREE_CODE (arg0) == PLUS_EXPR
10389 || TREE_CODE (arg0) == MINUS_EXPR)
10390 && TREE_CODE (arg1) == MULT_EXPR)
10391 || ((TREE_CODE (arg1) == PLUS_EXPR
10392 || TREE_CODE (arg1) == MINUS_EXPR)
10393 && TREE_CODE (arg0) == MULT_EXPR)))
10395 tree parg0, parg1, parg, marg;
10396 enum tree_code pcode;
10398 if (TREE_CODE (arg1) == MULT_EXPR)
10399 parg = arg0, marg = arg1;
10400 else
10401 parg = arg1, marg = arg0;
10402 pcode = TREE_CODE (parg);
10403 parg0 = TREE_OPERAND (parg, 0);
10404 parg1 = TREE_OPERAND (parg, 1);
10405 STRIP_NOPS (parg0);
10406 STRIP_NOPS (parg1);
10408 if (TREE_CODE (parg0) == MULT_EXPR
10409 && TREE_CODE (parg1) != MULT_EXPR)
10410 return fold_build2_loc (loc, pcode, type,
10411 fold_build2_loc (loc, PLUS_EXPR, type,
10412 fold_convert_loc (loc, type,
10413 parg0),
10414 fold_convert_loc (loc, type,
10415 marg)),
10416 fold_convert_loc (loc, type, parg1));
10417 if (TREE_CODE (parg0) != MULT_EXPR
10418 && TREE_CODE (parg1) == MULT_EXPR)
10419 return
10420 fold_build2_loc (loc, PLUS_EXPR, type,
10421 fold_convert_loc (loc, type, parg0),
10422 fold_build2_loc (loc, pcode, type,
10423 fold_convert_loc (loc, type, marg),
10424 fold_convert_loc (loc, type,
10425 parg1)));
10428 else
10430 /* See if ARG1 is zero and X + ARG1 reduces to X. */
10431 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
10432 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10434 /* Likewise if the operands are reversed. */
10435 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10436 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10438 /* Convert X + -C into X - C. */
10439 if (TREE_CODE (arg1) == REAL_CST
10440 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
10442 tem = fold_negate_const (arg1, type);
10443 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
10444 return fold_build2_loc (loc, MINUS_EXPR, type,
10445 fold_convert_loc (loc, type, arg0),
10446 fold_convert_loc (loc, type, tem));
10449 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10450 to __complex__ ( x, y ). This is not the same for SNaNs or
10451 if signed zeros are involved. */
10452 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10453 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10454 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10456 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10457 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10458 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10459 bool arg0rz = false, arg0iz = false;
10460 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10461 || (arg0i && (arg0iz = real_zerop (arg0i))))
10463 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10464 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10465 if (arg0rz && arg1i && real_zerop (arg1i))
10467 tree rp = arg1r ? arg1r
10468 : build1 (REALPART_EXPR, rtype, arg1);
10469 tree ip = arg0i ? arg0i
10470 : build1 (IMAGPART_EXPR, rtype, arg0);
10471 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10473 else if (arg0iz && arg1r && real_zerop (arg1r))
10475 tree rp = arg0r ? arg0r
10476 : build1 (REALPART_EXPR, rtype, arg0);
10477 tree ip = arg1i ? arg1i
10478 : build1 (IMAGPART_EXPR, rtype, arg1);
10479 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10484 if (flag_unsafe_math_optimizations
10485 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10486 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10487 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10488 return tem;
10490 /* Convert x+x into x*2.0. */
10491 if (operand_equal_p (arg0, arg1, 0)
10492 && SCALAR_FLOAT_TYPE_P (type))
10493 return fold_build2_loc (loc, MULT_EXPR, type, arg0,
10494 build_real (type, dconst2));
10496 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10497 We associate floats only if the user has specified
10498 -fassociative-math. */
10499 if (flag_associative_math
10500 && TREE_CODE (arg1) == PLUS_EXPR
10501 && TREE_CODE (arg0) != MULT_EXPR)
10503 tree tree10 = TREE_OPERAND (arg1, 0);
10504 tree tree11 = TREE_OPERAND (arg1, 1);
10505 if (TREE_CODE (tree11) == MULT_EXPR
10506 && TREE_CODE (tree10) == MULT_EXPR)
10508 tree tree0;
10509 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
10510 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
10513 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10514 We associate floats only if the user has specified
10515 -fassociative-math. */
10516 if (flag_associative_math
10517 && TREE_CODE (arg0) == PLUS_EXPR
10518 && TREE_CODE (arg1) != MULT_EXPR)
10520 tree tree00 = TREE_OPERAND (arg0, 0);
10521 tree tree01 = TREE_OPERAND (arg0, 1);
10522 if (TREE_CODE (tree01) == MULT_EXPR
10523 && TREE_CODE (tree00) == MULT_EXPR)
10525 tree tree0;
10526 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
10527 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
10532 bit_rotate:
10533 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10534 is a rotate of A by C1 bits. */
10535 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10536 is a rotate of A by B bits. */
10538 enum tree_code code0, code1;
10539 tree rtype;
10540 code0 = TREE_CODE (arg0);
10541 code1 = TREE_CODE (arg1);
10542 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
10543 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
10544 && operand_equal_p (TREE_OPERAND (arg0, 0),
10545 TREE_OPERAND (arg1, 0), 0)
10546 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
10547 TYPE_UNSIGNED (rtype))
10548 /* Only create rotates in complete modes. Other cases are not
10549 expanded properly. */
10550 && (element_precision (rtype)
10551 == element_precision (TYPE_MODE (rtype))))
10553 tree tree01, tree11;
10554 enum tree_code code01, code11;
10556 tree01 = TREE_OPERAND (arg0, 1);
10557 tree11 = TREE_OPERAND (arg1, 1);
10558 STRIP_NOPS (tree01);
10559 STRIP_NOPS (tree11);
10560 code01 = TREE_CODE (tree01);
10561 code11 = TREE_CODE (tree11);
10562 if (code01 == INTEGER_CST
10563 && code11 == INTEGER_CST
10564 && (wi::to_widest (tree01) + wi::to_widest (tree11)
10565 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
10567 tem = build2_loc (loc, LROTATE_EXPR,
10568 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10569 TREE_OPERAND (arg0, 0),
10570 code0 == LSHIFT_EXPR ? tree01 : tree11);
10571 return fold_convert_loc (loc, type, tem);
10573 else if (code11 == MINUS_EXPR)
10575 tree tree110, tree111;
10576 tree110 = TREE_OPERAND (tree11, 0);
10577 tree111 = TREE_OPERAND (tree11, 1);
10578 STRIP_NOPS (tree110);
10579 STRIP_NOPS (tree111);
10580 if (TREE_CODE (tree110) == INTEGER_CST
10581 && 0 == compare_tree_int (tree110,
10582 element_precision
10583 (TREE_TYPE (TREE_OPERAND
10584 (arg0, 0))))
10585 && operand_equal_p (tree01, tree111, 0))
10586 return
10587 fold_convert_loc (loc, type,
10588 build2 ((code0 == LSHIFT_EXPR
10589 ? LROTATE_EXPR
10590 : RROTATE_EXPR),
10591 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10592 TREE_OPERAND (arg0, 0), tree01));
10594 else if (code01 == MINUS_EXPR)
10596 tree tree010, tree011;
10597 tree010 = TREE_OPERAND (tree01, 0);
10598 tree011 = TREE_OPERAND (tree01, 1);
10599 STRIP_NOPS (tree010);
10600 STRIP_NOPS (tree011);
10601 if (TREE_CODE (tree010) == INTEGER_CST
10602 && 0 == compare_tree_int (tree010,
10603 element_precision
10604 (TREE_TYPE (TREE_OPERAND
10605 (arg0, 0))))
10606 && operand_equal_p (tree11, tree011, 0))
10607 return fold_convert_loc
10608 (loc, type,
10609 build2 ((code0 != LSHIFT_EXPR
10610 ? LROTATE_EXPR
10611 : RROTATE_EXPR),
10612 TREE_TYPE (TREE_OPERAND (arg0, 0)),
10613 TREE_OPERAND (arg0, 0), tree11));
10618 associate:
10619 /* In most languages, can't associate operations on floats through
10620 parentheses. Rather than remember where the parentheses were, we
10621 don't associate floats at all, unless the user has specified
10622 -fassociative-math.
10623 And, we need to make sure type is not saturating. */
10625 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10626 && !TYPE_SATURATING (type))
10628 tree var0, con0, lit0, minus_lit0;
10629 tree var1, con1, lit1, minus_lit1;
10630 tree atype = type;
10631 bool ok = true;
10633 /* Split both trees into variables, constants, and literals. Then
10634 associate each group together, the constants with literals,
10635 then the result with variables. This increases the chances of
10636 literals being recombined later and of generating relocatable
10637 expressions for the sum of a constant and literal. */
10638 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
10639 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
10640 code == MINUS_EXPR);
10642 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10643 if (code == MINUS_EXPR)
10644 code = PLUS_EXPR;
10646 /* With undefined overflow prefer doing association in a type
10647 which wraps on overflow, if that is one of the operand types. */
10648 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10649 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
10651 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10652 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10653 atype = TREE_TYPE (arg0);
10654 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10655 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
10656 atype = TREE_TYPE (arg1);
10657 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
10660 /* With undefined overflow we can only associate constants with one
10661 variable, and constants whose association doesn't overflow. */
10662 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10663 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
10665 if (var0 && var1)
10667 tree tmp0 = var0;
10668 tree tmp1 = var1;
10670 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10671 tmp0 = TREE_OPERAND (tmp0, 0);
10672 if (CONVERT_EXPR_P (tmp0)
10673 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10674 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10675 <= TYPE_PRECISION (atype)))
10676 tmp0 = TREE_OPERAND (tmp0, 0);
10677 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10678 tmp1 = TREE_OPERAND (tmp1, 0);
10679 if (CONVERT_EXPR_P (tmp1)
10680 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10681 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10682 <= TYPE_PRECISION (atype)))
10683 tmp1 = TREE_OPERAND (tmp1, 0);
10684 /* The only case we can still associate with two variables
10685 is if they are the same, modulo negation and bit-pattern
10686 preserving conversions. */
10687 if (!operand_equal_p (tmp0, tmp1, 0))
10688 ok = false;
10692 /* Only do something if we found more than two objects. Otherwise,
10693 nothing has changed and we risk infinite recursion. */
10694 if (ok
10695 && (2 < ((var0 != 0) + (var1 != 0)
10696 + (con0 != 0) + (con1 != 0)
10697 + (lit0 != 0) + (lit1 != 0)
10698 + (minus_lit0 != 0) + (minus_lit1 != 0))))
10700 bool any_overflows = false;
10701 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
10702 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
10703 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
10704 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
10705 var0 = associate_trees (loc, var0, var1, code, atype);
10706 con0 = associate_trees (loc, con0, con1, code, atype);
10707 lit0 = associate_trees (loc, lit0, lit1, code, atype);
10708 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
10709 code, atype);
10711 /* Preserve the MINUS_EXPR if the negative part of the literal is
10712 greater than the positive part. Otherwise, the multiplicative
10713 folding code (i.e extract_muldiv) may be fooled in case
10714 unsigned constants are subtracted, like in the following
10715 example: ((X*2 + 4) - 8U)/2. */
10716 if (minus_lit0 && lit0)
10718 if (TREE_CODE (lit0) == INTEGER_CST
10719 && TREE_CODE (minus_lit0) == INTEGER_CST
10720 && tree_int_cst_lt (lit0, minus_lit0))
10722 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
10723 MINUS_EXPR, atype);
10724 lit0 = 0;
10726 else
10728 lit0 = associate_trees (loc, lit0, minus_lit0,
10729 MINUS_EXPR, atype);
10730 minus_lit0 = 0;
10734 /* Don't introduce overflows through reassociation. */
10735 if (!any_overflows
10736 && ((lit0 && TREE_OVERFLOW (lit0))
10737 || (minus_lit0 && TREE_OVERFLOW (minus_lit0))))
10738 return NULL_TREE;
10740 if (minus_lit0)
10742 if (con0 == 0)
10743 return
10744 fold_convert_loc (loc, type,
10745 associate_trees (loc, var0, minus_lit0,
10746 MINUS_EXPR, atype));
10747 else
10749 con0 = associate_trees (loc, con0, minus_lit0,
10750 MINUS_EXPR, atype);
10751 return
10752 fold_convert_loc (loc, type,
10753 associate_trees (loc, var0, con0,
10754 PLUS_EXPR, atype));
10758 con0 = associate_trees (loc, con0, lit0, code, atype);
10759 return
10760 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
10761 code, atype));
10765 return NULL_TREE;
10767 case MINUS_EXPR:
10768 /* Pointer simplifications for subtraction, simple reassociations. */
10769 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
10771 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10772 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
10773 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10775 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10776 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10777 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10778 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10779 return fold_build2_loc (loc, PLUS_EXPR, type,
10780 fold_build2_loc (loc, MINUS_EXPR, type,
10781 arg00, arg10),
10782 fold_build2_loc (loc, MINUS_EXPR, type,
10783 arg01, arg11));
10785 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10786 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10788 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10789 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10790 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
10791 fold_convert_loc (loc, type, arg1));
10792 if (tmp)
10793 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
10796 /* A - (-B) -> A + B */
10797 if (TREE_CODE (arg1) == NEGATE_EXPR)
10798 return fold_build2_loc (loc, PLUS_EXPR, type, op0,
10799 fold_convert_loc (loc, type,
10800 TREE_OPERAND (arg1, 0)));
10801 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10802 if (TREE_CODE (arg0) == NEGATE_EXPR
10803 && negate_expr_p (arg1)
10804 && reorder_operands_p (arg0, arg1))
10805 return fold_build2_loc (loc, MINUS_EXPR, type,
10806 fold_convert_loc (loc, type,
10807 negate_expr (arg1)),
10808 fold_convert_loc (loc, type,
10809 TREE_OPERAND (arg0, 0)));
10810 /* Convert -A - 1 to ~A. */
10811 if (TREE_CODE (type) != COMPLEX_TYPE
10812 && TREE_CODE (arg0) == NEGATE_EXPR
10813 && integer_onep (arg1)
10814 && !TYPE_OVERFLOW_TRAPS (type))
10815 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
10816 fold_convert_loc (loc, type,
10817 TREE_OPERAND (arg0, 0)));
10819 /* Convert -1 - A to ~A. */
10820 if (TREE_CODE (type) != COMPLEX_TYPE
10821 && integer_all_onesp (arg0))
10822 return fold_build1_loc (loc, BIT_NOT_EXPR, type, op1);
10825 /* X - (X / Y) * Y is X % Y. */
10826 if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
10827 && TREE_CODE (arg1) == MULT_EXPR
10828 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10829 && operand_equal_p (arg0,
10830 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)
10831 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1, 0), 1),
10832 TREE_OPERAND (arg1, 1), 0))
10833 return
10834 fold_convert_loc (loc, type,
10835 fold_build2_loc (loc, TRUNC_MOD_EXPR, TREE_TYPE (arg0),
10836 arg0, TREE_OPERAND (arg1, 1)));
10838 if (! FLOAT_TYPE_P (type))
10840 if (integer_zerop (arg0))
10841 return negate_expr (fold_convert_loc (loc, type, arg1));
10842 if (integer_zerop (arg1))
10843 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10845 /* Fold A - (A & B) into ~B & A. */
10846 if (!TREE_SIDE_EFFECTS (arg0)
10847 && TREE_CODE (arg1) == BIT_AND_EXPR)
10849 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10851 tree arg10 = fold_convert_loc (loc, type,
10852 TREE_OPERAND (arg1, 0));
10853 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10854 fold_build1_loc (loc, BIT_NOT_EXPR,
10855 type, arg10),
10856 fold_convert_loc (loc, type, arg0));
10858 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10860 tree arg11 = fold_convert_loc (loc,
10861 type, TREE_OPERAND (arg1, 1));
10862 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10863 fold_build1_loc (loc, BIT_NOT_EXPR,
10864 type, arg11),
10865 fold_convert_loc (loc, type, arg0));
10869 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10870 any power of 2 minus 1. */
10871 if (TREE_CODE (arg0) == BIT_AND_EXPR
10872 && TREE_CODE (arg1) == BIT_AND_EXPR
10873 && operand_equal_p (TREE_OPERAND (arg0, 0),
10874 TREE_OPERAND (arg1, 0), 0))
10876 tree mask0 = TREE_OPERAND (arg0, 1);
10877 tree mask1 = TREE_OPERAND (arg1, 1);
10878 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
10880 if (operand_equal_p (tem, mask1, 0))
10882 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
10883 TREE_OPERAND (arg0, 0), mask1);
10884 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
10889 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10890 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
10891 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10893 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10894 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10895 (-ARG1 + ARG0) reduces to -ARG1. */
10896 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10897 return negate_expr (fold_convert_loc (loc, type, arg1));
10899 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10900 __complex__ ( x, -y ). This is not the same for SNaNs or if
10901 signed zeros are involved. */
10902 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10903 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10904 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10906 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10907 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10908 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10909 bool arg0rz = false, arg0iz = false;
10910 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10911 || (arg0i && (arg0iz = real_zerop (arg0i))))
10913 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10914 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10915 if (arg0rz && arg1i && real_zerop (arg1i))
10917 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10918 arg1r ? arg1r
10919 : build1 (REALPART_EXPR, rtype, arg1));
10920 tree ip = arg0i ? arg0i
10921 : build1 (IMAGPART_EXPR, rtype, arg0);
10922 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10924 else if (arg0iz && arg1r && real_zerop (arg1r))
10926 tree rp = arg0r ? arg0r
10927 : build1 (REALPART_EXPR, rtype, arg0);
10928 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10929 arg1i ? arg1i
10930 : build1 (IMAGPART_EXPR, rtype, arg1));
10931 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10936 /* Fold &x - &x. This can happen from &x.foo - &x.
10937 This is unsafe for certain floats even in non-IEEE formats.
10938 In IEEE, it is unsafe because it does wrong for NaNs.
10939 Also note that operand_equal_p is always false if an operand
10940 is volatile. */
10942 if ((!FLOAT_TYPE_P (type) || !HONOR_NANS (TYPE_MODE (type)))
10943 && operand_equal_p (arg0, arg1, 0))
10944 return build_zero_cst (type);
10946 /* A - B -> A + (-B) if B is easily negatable. */
10947 if (negate_expr_p (arg1)
10948 && ((FLOAT_TYPE_P (type)
10949 /* Avoid this transformation if B is a positive REAL_CST. */
10950 && (TREE_CODE (arg1) != REAL_CST
10951 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10952 || INTEGRAL_TYPE_P (type)))
10953 return fold_build2_loc (loc, PLUS_EXPR, type,
10954 fold_convert_loc (loc, type, arg0),
10955 fold_convert_loc (loc, type,
10956 negate_expr (arg1)));
10958 /* Try folding difference of addresses. */
10960 HOST_WIDE_INT diff;
10962 if ((TREE_CODE (arg0) == ADDR_EXPR
10963 || TREE_CODE (arg1) == ADDR_EXPR)
10964 && ptr_difference_const (arg0, arg1, &diff))
10965 return build_int_cst_type (type, diff);
10968 /* Fold &a[i] - &a[j] to i-j. */
10969 if (TREE_CODE (arg0) == ADDR_EXPR
10970 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10971 && TREE_CODE (arg1) == ADDR_EXPR
10972 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10974 tree tem = fold_addr_of_array_ref_difference (loc, type,
10975 TREE_OPERAND (arg0, 0),
10976 TREE_OPERAND (arg1, 0));
10977 if (tem)
10978 return tem;
10981 if (FLOAT_TYPE_P (type)
10982 && flag_unsafe_math_optimizations
10983 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10984 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10985 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10986 return tem;
10988 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10989 one. Make sure the type is not saturating and has the signedness of
10990 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10991 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10992 if ((TREE_CODE (arg0) == MULT_EXPR
10993 || TREE_CODE (arg1) == MULT_EXPR)
10994 && !TYPE_SATURATING (type)
10995 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10996 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10997 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10999 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
11000 if (tem)
11001 return tem;
11004 goto associate;
11006 case MULT_EXPR:
11007 /* (-A) * (-B) -> A * B */
11008 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11009 return fold_build2_loc (loc, MULT_EXPR, type,
11010 fold_convert_loc (loc, type,
11011 TREE_OPERAND (arg0, 0)),
11012 fold_convert_loc (loc, type,
11013 negate_expr (arg1)));
11014 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11015 return fold_build2_loc (loc, MULT_EXPR, type,
11016 fold_convert_loc (loc, type,
11017 negate_expr (arg0)),
11018 fold_convert_loc (loc, type,
11019 TREE_OPERAND (arg1, 0)));
11021 if (! FLOAT_TYPE_P (type))
11023 if (integer_zerop (arg1))
11024 return omit_one_operand_loc (loc, type, arg1, arg0);
11025 if (integer_onep (arg1))
11026 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11027 /* Transform x * -1 into -x. Make sure to do the negation
11028 on the original operand with conversions not stripped
11029 because we can only strip non-sign-changing conversions. */
11030 if (integer_minus_onep (arg1))
11031 return fold_convert_loc (loc, type, negate_expr (op0));
11032 /* Transform x * -C into -x * C if x is easily negatable. */
11033 if (TREE_CODE (arg1) == INTEGER_CST
11034 && tree_int_cst_sgn (arg1) == -1
11035 && negate_expr_p (arg0)
11036 && (tem = negate_expr (arg1)) != arg1
11037 && !TREE_OVERFLOW (tem))
11038 return fold_build2_loc (loc, MULT_EXPR, type,
11039 fold_convert_loc (loc, type,
11040 negate_expr (arg0)),
11041 tem);
11043 /* (a * (1 << b)) is (a << b) */
11044 if (TREE_CODE (arg1) == LSHIFT_EXPR
11045 && integer_onep (TREE_OPERAND (arg1, 0)))
11046 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
11047 TREE_OPERAND (arg1, 1));
11048 if (TREE_CODE (arg0) == LSHIFT_EXPR
11049 && integer_onep (TREE_OPERAND (arg0, 0)))
11050 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
11051 TREE_OPERAND (arg0, 1));
11053 /* (A + A) * C -> A * 2 * C */
11054 if (TREE_CODE (arg0) == PLUS_EXPR
11055 && TREE_CODE (arg1) == INTEGER_CST
11056 && operand_equal_p (TREE_OPERAND (arg0, 0),
11057 TREE_OPERAND (arg0, 1), 0))
11058 return fold_build2_loc (loc, MULT_EXPR, type,
11059 omit_one_operand_loc (loc, type,
11060 TREE_OPERAND (arg0, 0),
11061 TREE_OPERAND (arg0, 1)),
11062 fold_build2_loc (loc, MULT_EXPR, type,
11063 build_int_cst (type, 2) , arg1));
11065 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
11066 sign-changing only. */
11067 if (TREE_CODE (arg1) == INTEGER_CST
11068 && TREE_CODE (arg0) == EXACT_DIV_EXPR
11069 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
11070 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11072 strict_overflow_p = false;
11073 if (TREE_CODE (arg1) == INTEGER_CST
11074 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11075 &strict_overflow_p)))
11077 if (strict_overflow_p)
11078 fold_overflow_warning (("assuming signed overflow does not "
11079 "occur when simplifying "
11080 "multiplication"),
11081 WARN_STRICT_OVERFLOW_MISC);
11082 return fold_convert_loc (loc, type, tem);
11085 /* Optimize z * conj(z) for integer complex numbers. */
11086 if (TREE_CODE (arg0) == CONJ_EXPR
11087 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11088 return fold_mult_zconjz (loc, type, arg1);
11089 if (TREE_CODE (arg1) == CONJ_EXPR
11090 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11091 return fold_mult_zconjz (loc, type, arg0);
11093 else
11095 /* Maybe fold x * 0 to 0. The expressions aren't the same
11096 when x is NaN, since x * 0 is also NaN. Nor are they the
11097 same in modes with signed zeros, since multiplying a
11098 negative value by 0 gives -0, not +0. */
11099 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11100 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
11101 && real_zerop (arg1))
11102 return omit_one_operand_loc (loc, type, arg1, arg0);
11103 /* In IEEE floating point, x*1 is not equivalent to x for snans.
11104 Likewise for complex arithmetic with signed zeros. */
11105 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11106 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
11107 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
11108 && real_onep (arg1))
11109 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11111 /* Transform x * -1.0 into -x. */
11112 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11113 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
11114 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
11115 && real_minus_onep (arg1))
11116 return fold_convert_loc (loc, type, negate_expr (arg0));
11118 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
11119 the result for floating point types due to rounding so it is applied
11120 only if -fassociative-math was specify. */
11121 if (flag_associative_math
11122 && TREE_CODE (arg0) == RDIV_EXPR
11123 && TREE_CODE (arg1) == REAL_CST
11124 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
11126 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
11127 arg1);
11128 if (tem)
11129 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
11130 TREE_OPERAND (arg0, 1));
11133 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
11134 if (operand_equal_p (arg0, arg1, 0))
11136 tree tem = fold_strip_sign_ops (arg0);
11137 if (tem != NULL_TREE)
11139 tem = fold_convert_loc (loc, type, tem);
11140 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
11144 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
11145 This is not the same for NaNs or if signed zeros are
11146 involved. */
11147 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11148 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
11149 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11150 && TREE_CODE (arg1) == COMPLEX_CST
11151 && real_zerop (TREE_REALPART (arg1)))
11153 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
11154 if (real_onep (TREE_IMAGPART (arg1)))
11155 return
11156 fold_build2_loc (loc, COMPLEX_EXPR, type,
11157 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
11158 rtype, arg0)),
11159 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
11160 else if (real_minus_onep (TREE_IMAGPART (arg1)))
11161 return
11162 fold_build2_loc (loc, COMPLEX_EXPR, type,
11163 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
11164 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
11165 rtype, arg0)));
11168 /* Optimize z * conj(z) for floating point complex numbers.
11169 Guarded by flag_unsafe_math_optimizations as non-finite
11170 imaginary components don't produce scalar results. */
11171 if (flag_unsafe_math_optimizations
11172 && TREE_CODE (arg0) == CONJ_EXPR
11173 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11174 return fold_mult_zconjz (loc, type, arg1);
11175 if (flag_unsafe_math_optimizations
11176 && TREE_CODE (arg1) == CONJ_EXPR
11177 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11178 return fold_mult_zconjz (loc, type, arg0);
11180 if (flag_unsafe_math_optimizations)
11182 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11183 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11185 /* Optimizations of root(...)*root(...). */
11186 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
11188 tree rootfn, arg;
11189 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11190 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11192 /* Optimize sqrt(x)*sqrt(x) as x. */
11193 if (BUILTIN_SQRT_P (fcode0)
11194 && operand_equal_p (arg00, arg10, 0)
11195 && ! HONOR_SNANS (TYPE_MODE (type)))
11196 return arg00;
11198 /* Optimize root(x)*root(y) as root(x*y). */
11199 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11200 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
11201 return build_call_expr_loc (loc, rootfn, 1, arg);
11204 /* Optimize expN(x)*expN(y) as expN(x+y). */
11205 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
11207 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11208 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
11209 CALL_EXPR_ARG (arg0, 0),
11210 CALL_EXPR_ARG (arg1, 0));
11211 return build_call_expr_loc (loc, expfn, 1, arg);
11214 /* Optimizations of pow(...)*pow(...). */
11215 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
11216 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
11217 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
11219 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11220 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11221 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11222 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11224 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
11225 if (operand_equal_p (arg01, arg11, 0))
11227 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11228 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
11229 arg00, arg10);
11230 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
11233 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
11234 if (operand_equal_p (arg00, arg10, 0))
11236 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11237 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
11238 arg01, arg11);
11239 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
11243 /* Optimize tan(x)*cos(x) as sin(x). */
11244 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
11245 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
11246 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
11247 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
11248 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
11249 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
11250 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11251 CALL_EXPR_ARG (arg1, 0), 0))
11253 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
11255 if (sinfn != NULL_TREE)
11256 return build_call_expr_loc (loc, sinfn, 1,
11257 CALL_EXPR_ARG (arg0, 0));
11260 /* Optimize x*pow(x,c) as pow(x,c+1). */
11261 if (fcode1 == BUILT_IN_POW
11262 || fcode1 == BUILT_IN_POWF
11263 || fcode1 == BUILT_IN_POWL)
11265 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11266 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11267 if (TREE_CODE (arg11) == REAL_CST
11268 && !TREE_OVERFLOW (arg11)
11269 && operand_equal_p (arg0, arg10, 0))
11271 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11272 REAL_VALUE_TYPE c;
11273 tree arg;
11275 c = TREE_REAL_CST (arg11);
11276 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
11277 arg = build_real (type, c);
11278 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
11282 /* Optimize pow(x,c)*x as pow(x,c+1). */
11283 if (fcode0 == BUILT_IN_POW
11284 || fcode0 == BUILT_IN_POWF
11285 || fcode0 == BUILT_IN_POWL)
11287 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11288 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11289 if (TREE_CODE (arg01) == REAL_CST
11290 && !TREE_OVERFLOW (arg01)
11291 && operand_equal_p (arg1, arg00, 0))
11293 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11294 REAL_VALUE_TYPE c;
11295 tree arg;
11297 c = TREE_REAL_CST (arg01);
11298 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
11299 arg = build_real (type, c);
11300 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
11304 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
11305 if (!in_gimple_form
11306 && optimize
11307 && operand_equal_p (arg0, arg1, 0))
11309 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
11311 if (powfn)
11313 tree arg = build_real (type, dconst2);
11314 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
11319 goto associate;
11321 case BIT_IOR_EXPR:
11322 bit_ior:
11323 if (integer_all_onesp (arg1))
11324 return omit_one_operand_loc (loc, type, arg1, arg0);
11325 if (integer_zerop (arg1))
11326 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11327 if (operand_equal_p (arg0, arg1, 0))
11328 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11330 /* ~X | X is -1. */
11331 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11332 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11334 t1 = build_zero_cst (type);
11335 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
11336 return omit_one_operand_loc (loc, type, t1, arg1);
11339 /* X | ~X is -1. */
11340 if (TREE_CODE (arg1) == BIT_NOT_EXPR
11341 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11343 t1 = build_zero_cst (type);
11344 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
11345 return omit_one_operand_loc (loc, type, t1, arg0);
11348 /* Canonicalize (X & C1) | C2. */
11349 if (TREE_CODE (arg0) == BIT_AND_EXPR
11350 && TREE_CODE (arg1) == INTEGER_CST
11351 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11353 int width = TYPE_PRECISION (type), w;
11354 wide_int c1 = TREE_OPERAND (arg0, 1);
11355 wide_int c2 = arg1;
11357 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
11358 if ((c1 & c2) == c1)
11359 return omit_one_operand_loc (loc, type, arg1,
11360 TREE_OPERAND (arg0, 0));
11362 wide_int msk = wi::mask (width, false,
11363 TYPE_PRECISION (TREE_TYPE (arg1)));
11365 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
11366 if (msk.and_not (c1 | c2) == 0)
11367 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
11368 TREE_OPERAND (arg0, 0), arg1);
11370 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
11371 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
11372 mode which allows further optimizations. */
11373 c1 &= msk;
11374 c2 &= msk;
11375 wide_int c3 = c1.and_not (c2);
11376 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
11378 wide_int mask = wi::mask (w, false,
11379 TYPE_PRECISION (type));
11380 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
11382 c3 = mask;
11383 break;
11387 if (c3 != c1)
11388 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
11389 fold_build2_loc (loc, BIT_AND_EXPR, type,
11390 TREE_OPERAND (arg0, 0),
11391 wide_int_to_tree (type,
11392 c3)),
11393 arg1);
11396 /* (X & Y) | Y is (X, Y). */
11397 if (TREE_CODE (arg0) == BIT_AND_EXPR
11398 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11399 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 0));
11400 /* (X & Y) | X is (Y, X). */
11401 if (TREE_CODE (arg0) == BIT_AND_EXPR
11402 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11403 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11404 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 1));
11405 /* X | (X & Y) is (Y, X). */
11406 if (TREE_CODE (arg1) == BIT_AND_EXPR
11407 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
11408 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
11409 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
11410 /* X | (Y & X) is (Y, X). */
11411 if (TREE_CODE (arg1) == BIT_AND_EXPR
11412 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11413 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11414 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
11416 /* (X & ~Y) | (~X & Y) is X ^ Y */
11417 if (TREE_CODE (arg0) == BIT_AND_EXPR
11418 && TREE_CODE (arg1) == BIT_AND_EXPR)
11420 tree a0, a1, l0, l1, n0, n1;
11422 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11423 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11425 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11426 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11428 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
11429 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
11431 if ((operand_equal_p (n0, a0, 0)
11432 && operand_equal_p (n1, a1, 0))
11433 || (operand_equal_p (n0, a1, 0)
11434 && operand_equal_p (n1, a0, 0)))
11435 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
11438 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
11439 if (t1 != NULL_TREE)
11440 return t1;
11442 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
11444 This results in more efficient code for machines without a NAND
11445 instruction. Combine will canonicalize to the first form
11446 which will allow use of NAND instructions provided by the
11447 backend if they exist. */
11448 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11449 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11451 return
11452 fold_build1_loc (loc, BIT_NOT_EXPR, type,
11453 build2 (BIT_AND_EXPR, type,
11454 fold_convert_loc (loc, type,
11455 TREE_OPERAND (arg0, 0)),
11456 fold_convert_loc (loc, type,
11457 TREE_OPERAND (arg1, 0))));
11460 /* See if this can be simplified into a rotate first. If that
11461 is unsuccessful continue in the association code. */
11462 goto bit_rotate;
11464 case BIT_XOR_EXPR:
11465 if (integer_zerop (arg1))
11466 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11467 if (integer_all_onesp (arg1))
11468 return fold_build1_loc (loc, BIT_NOT_EXPR, type, op0);
11469 if (operand_equal_p (arg0, arg1, 0))
11470 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11472 /* ~X ^ X is -1. */
11473 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11474 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11476 t1 = build_zero_cst (type);
11477 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
11478 return omit_one_operand_loc (loc, type, t1, arg1);
11481 /* X ^ ~X is -1. */
11482 if (TREE_CODE (arg1) == BIT_NOT_EXPR
11483 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11485 t1 = build_zero_cst (type);
11486 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
11487 return omit_one_operand_loc (loc, type, t1, arg0);
11490 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
11491 with a constant, and the two constants have no bits in common,
11492 we should treat this as a BIT_IOR_EXPR since this may produce more
11493 simplifications. */
11494 if (TREE_CODE (arg0) == BIT_AND_EXPR
11495 && TREE_CODE (arg1) == BIT_AND_EXPR
11496 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11497 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
11498 && wi::bit_and (TREE_OPERAND (arg0, 1),
11499 TREE_OPERAND (arg1, 1)) == 0)
11501 code = BIT_IOR_EXPR;
11502 goto bit_ior;
11505 /* (X | Y) ^ X -> Y & ~ X*/
11506 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11507 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11509 tree t2 = TREE_OPERAND (arg0, 1);
11510 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
11511 arg1);
11512 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11513 fold_convert_loc (loc, type, t2),
11514 fold_convert_loc (loc, type, t1));
11515 return t1;
11518 /* (Y | X) ^ X -> Y & ~ X*/
11519 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11520 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11522 tree t2 = TREE_OPERAND (arg0, 0);
11523 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
11524 arg1);
11525 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11526 fold_convert_loc (loc, type, t2),
11527 fold_convert_loc (loc, type, t1));
11528 return t1;
11531 /* X ^ (X | Y) -> Y & ~ X*/
11532 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11533 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
11535 tree t2 = TREE_OPERAND (arg1, 1);
11536 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
11537 arg0);
11538 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11539 fold_convert_loc (loc, type, t2),
11540 fold_convert_loc (loc, type, t1));
11541 return t1;
11544 /* X ^ (Y | X) -> Y & ~ X*/
11545 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11546 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
11548 tree t2 = TREE_OPERAND (arg1, 0);
11549 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
11550 arg0);
11551 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
11552 fold_convert_loc (loc, type, t2),
11553 fold_convert_loc (loc, type, t1));
11554 return t1;
11557 /* Convert ~X ^ ~Y to X ^ Y. */
11558 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11559 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11560 return fold_build2_loc (loc, code, type,
11561 fold_convert_loc (loc, type,
11562 TREE_OPERAND (arg0, 0)),
11563 fold_convert_loc (loc, type,
11564 TREE_OPERAND (arg1, 0)));
11566 /* Convert ~X ^ C to X ^ ~C. */
11567 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11568 && TREE_CODE (arg1) == INTEGER_CST)
11569 return fold_build2_loc (loc, code, type,
11570 fold_convert_loc (loc, type,
11571 TREE_OPERAND (arg0, 0)),
11572 fold_build1_loc (loc, BIT_NOT_EXPR, type, arg1));
11574 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11575 if (TREE_CODE (arg0) == BIT_AND_EXPR
11576 && integer_onep (TREE_OPERAND (arg0, 1))
11577 && integer_onep (arg1))
11578 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
11579 build_zero_cst (TREE_TYPE (arg0)));
11581 /* Fold (X & Y) ^ Y as ~X & Y. */
11582 if (TREE_CODE (arg0) == BIT_AND_EXPR
11583 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11585 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11586 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11587 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11588 fold_convert_loc (loc, type, arg1));
11590 /* Fold (X & Y) ^ X as ~Y & X. */
11591 if (TREE_CODE (arg0) == BIT_AND_EXPR
11592 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11593 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11595 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11596 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11597 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11598 fold_convert_loc (loc, type, arg1));
11600 /* Fold X ^ (X & Y) as X & ~Y. */
11601 if (TREE_CODE (arg1) == BIT_AND_EXPR
11602 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11604 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11605 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11606 fold_convert_loc (loc, type, arg0),
11607 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
11609 /* Fold X ^ (Y & X) as ~Y & X. */
11610 if (TREE_CODE (arg1) == BIT_AND_EXPR
11611 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11612 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11614 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11615 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11616 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11617 fold_convert_loc (loc, type, arg0));
11620 /* See if this can be simplified into a rotate first. If that
11621 is unsuccessful continue in the association code. */
11622 goto bit_rotate;
11624 case BIT_AND_EXPR:
11625 if (integer_all_onesp (arg1))
11626 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11627 if (integer_zerop (arg1))
11628 return omit_one_operand_loc (loc, type, arg1, arg0);
11629 if (operand_equal_p (arg0, arg1, 0))
11630 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11632 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
11633 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
11634 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
11635 || (TREE_CODE (arg0) == EQ_EXPR
11636 && integer_zerop (TREE_OPERAND (arg0, 1))))
11637 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11638 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11640 /* X & ~X , X & (X == 0), and X & !X are always zero. */
11641 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
11642 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
11643 || (TREE_CODE (arg1) == EQ_EXPR
11644 && integer_zerop (TREE_OPERAND (arg1, 1))))
11645 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11646 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11648 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
11649 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11650 && TREE_CODE (arg1) == INTEGER_CST
11651 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11653 tree tmp1 = fold_convert_loc (loc, type, arg1);
11654 tree tmp2 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11655 tree tmp3 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11656 tmp2 = fold_build2_loc (loc, BIT_AND_EXPR, type, tmp2, tmp1);
11657 tmp3 = fold_build2_loc (loc, BIT_AND_EXPR, type, tmp3, tmp1);
11658 return
11659 fold_convert_loc (loc, type,
11660 fold_build2_loc (loc, BIT_IOR_EXPR,
11661 type, tmp2, tmp3));
11664 /* (X | Y) & Y is (X, Y). */
11665 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11666 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11667 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 0));
11668 /* (X | Y) & X is (Y, X). */
11669 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11670 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11671 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11672 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 1));
11673 /* X & (X | Y) is (Y, X). */
11674 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11675 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
11676 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
11677 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
11678 /* X & (Y | X) is (Y, X). */
11679 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11680 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11681 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11682 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
11684 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11685 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11686 && integer_onep (TREE_OPERAND (arg0, 1))
11687 && integer_onep (arg1))
11689 tree tem2;
11690 tem = TREE_OPERAND (arg0, 0);
11691 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
11692 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
11693 tem, tem2);
11694 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
11695 build_zero_cst (TREE_TYPE (tem)));
11697 /* Fold ~X & 1 as (X & 1) == 0. */
11698 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11699 && integer_onep (arg1))
11701 tree tem2;
11702 tem = TREE_OPERAND (arg0, 0);
11703 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
11704 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
11705 tem, tem2);
11706 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
11707 build_zero_cst (TREE_TYPE (tem)));
11709 /* Fold !X & 1 as X == 0. */
11710 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11711 && integer_onep (arg1))
11713 tem = TREE_OPERAND (arg0, 0);
11714 return fold_build2_loc (loc, EQ_EXPR, type, tem,
11715 build_zero_cst (TREE_TYPE (tem)));
11718 /* Fold (X ^ Y) & Y as ~X & Y. */
11719 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11720 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11722 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11723 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11724 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11725 fold_convert_loc (loc, type, arg1));
11727 /* Fold (X ^ Y) & X as ~Y & X. */
11728 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11729 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11730 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11732 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11733 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11734 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11735 fold_convert_loc (loc, type, arg1));
11737 /* Fold X & (X ^ Y) as X & ~Y. */
11738 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11739 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11741 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11742 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11743 fold_convert_loc (loc, type, arg0),
11744 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
11746 /* Fold X & (Y ^ X) as ~Y & X. */
11747 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11748 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11749 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11751 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11752 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11753 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
11754 fold_convert_loc (loc, type, arg0));
11757 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
11758 multiple of 1 << CST. */
11759 if (TREE_CODE (arg1) == INTEGER_CST)
11761 wide_int cst1 = arg1;
11762 wide_int ncst1 = -cst1;
11763 if ((cst1 & ncst1) == ncst1
11764 && multiple_of_p (type, arg0,
11765 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
11766 return fold_convert_loc (loc, type, arg0);
11769 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
11770 bits from CST2. */
11771 if (TREE_CODE (arg1) == INTEGER_CST
11772 && TREE_CODE (arg0) == MULT_EXPR
11773 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11775 wide_int warg1 = arg1;
11776 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
11778 if (masked == 0)
11779 return omit_two_operands_loc (loc, type, build_zero_cst (type),
11780 arg0, arg1);
11781 else if (masked != warg1)
11783 /* Avoid the transform if arg1 is a mask of some
11784 mode which allows further optimizations. */
11785 int pop = wi::popcount (warg1);
11786 if (!(pop >= BITS_PER_UNIT
11787 && exact_log2 (pop) != -1
11788 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
11789 return fold_build2_loc (loc, code, type, op0,
11790 wide_int_to_tree (type, masked));
11794 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11795 ((A & N) + B) & M -> (A + B) & M
11796 Similarly if (N & M) == 0,
11797 ((A | N) + B) & M -> (A + B) & M
11798 and for - instead of + (or unary - instead of +)
11799 and/or ^ instead of |.
11800 If B is constant and (B & M) == 0, fold into A & M. */
11801 if (TREE_CODE (arg1) == INTEGER_CST)
11803 wide_int cst1 = arg1;
11804 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
11805 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11806 && (TREE_CODE (arg0) == PLUS_EXPR
11807 || TREE_CODE (arg0) == MINUS_EXPR
11808 || TREE_CODE (arg0) == NEGATE_EXPR)
11809 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
11810 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
11812 tree pmop[2];
11813 int which = 0;
11814 wide_int cst0;
11816 /* Now we know that arg0 is (C + D) or (C - D) or
11817 -C and arg1 (M) is == (1LL << cst) - 1.
11818 Store C into PMOP[0] and D into PMOP[1]. */
11819 pmop[0] = TREE_OPERAND (arg0, 0);
11820 pmop[1] = NULL;
11821 if (TREE_CODE (arg0) != NEGATE_EXPR)
11823 pmop[1] = TREE_OPERAND (arg0, 1);
11824 which = 1;
11827 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
11828 which = -1;
11830 for (; which >= 0; which--)
11831 switch (TREE_CODE (pmop[which]))
11833 case BIT_AND_EXPR:
11834 case BIT_IOR_EXPR:
11835 case BIT_XOR_EXPR:
11836 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
11837 != INTEGER_CST)
11838 break;
11839 cst0 = TREE_OPERAND (pmop[which], 1);
11840 cst0 &= cst1;
11841 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
11843 if (cst0 != cst1)
11844 break;
11846 else if (cst0 != 0)
11847 break;
11848 /* If C or D is of the form (A & N) where
11849 (N & M) == M, or of the form (A | N) or
11850 (A ^ N) where (N & M) == 0, replace it with A. */
11851 pmop[which] = TREE_OPERAND (pmop[which], 0);
11852 break;
11853 case INTEGER_CST:
11854 /* If C or D is a N where (N & M) == 0, it can be
11855 omitted (assumed 0). */
11856 if ((TREE_CODE (arg0) == PLUS_EXPR
11857 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
11858 && (cst1 & pmop[which]) == 0)
11859 pmop[which] = NULL;
11860 break;
11861 default:
11862 break;
11865 /* Only build anything new if we optimized one or both arguments
11866 above. */
11867 if (pmop[0] != TREE_OPERAND (arg0, 0)
11868 || (TREE_CODE (arg0) != NEGATE_EXPR
11869 && pmop[1] != TREE_OPERAND (arg0, 1)))
11871 tree utype = TREE_TYPE (arg0);
11872 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
11874 /* Perform the operations in a type that has defined
11875 overflow behavior. */
11876 utype = unsigned_type_for (TREE_TYPE (arg0));
11877 if (pmop[0] != NULL)
11878 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
11879 if (pmop[1] != NULL)
11880 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
11883 if (TREE_CODE (arg0) == NEGATE_EXPR)
11884 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
11885 else if (TREE_CODE (arg0) == PLUS_EXPR)
11887 if (pmop[0] != NULL && pmop[1] != NULL)
11888 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
11889 pmop[0], pmop[1]);
11890 else if (pmop[0] != NULL)
11891 tem = pmop[0];
11892 else if (pmop[1] != NULL)
11893 tem = pmop[1];
11894 else
11895 return build_int_cst (type, 0);
11897 else if (pmop[0] == NULL)
11898 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
11899 else
11900 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
11901 pmop[0], pmop[1]);
11902 /* TEM is now the new binary +, - or unary - replacement. */
11903 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
11904 fold_convert_loc (loc, utype, arg1));
11905 return fold_convert_loc (loc, type, tem);
11910 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
11911 if (t1 != NULL_TREE)
11912 return t1;
11913 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11914 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11915 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11917 prec = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11919 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
11920 if (mask == -1)
11921 return
11922 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11925 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11927 This results in more efficient code for machines without a NOR
11928 instruction. Combine will canonicalize to the first form
11929 which will allow use of NOR instructions provided by the
11930 backend if they exist. */
11931 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11932 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11934 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
11935 build2 (BIT_IOR_EXPR, type,
11936 fold_convert_loc (loc, type,
11937 TREE_OPERAND (arg0, 0)),
11938 fold_convert_loc (loc, type,
11939 TREE_OPERAND (arg1, 0))));
11942 /* If arg0 is derived from the address of an object or function, we may
11943 be able to fold this expression using the object or function's
11944 alignment. */
11945 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && tree_fits_uhwi_p (arg1))
11947 unsigned HOST_WIDE_INT modulus, residue;
11948 unsigned HOST_WIDE_INT low = tree_to_uhwi (arg1);
11950 modulus = get_pointer_modulus_and_residue (arg0, &residue,
11951 integer_onep (arg1));
11953 /* This works because modulus is a power of 2. If this weren't the
11954 case, we'd have to replace it by its greatest power-of-2
11955 divisor: modulus & -modulus. */
11956 if (low < modulus)
11957 return build_int_cst (type, residue & low);
11960 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
11961 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
11962 if the new mask might be further optimized. */
11963 if ((TREE_CODE (arg0) == LSHIFT_EXPR
11964 || TREE_CODE (arg0) == RSHIFT_EXPR)
11965 && TYPE_PRECISION (TREE_TYPE (arg0)) <= HOST_BITS_PER_WIDE_INT
11966 && TREE_CODE (arg1) == INTEGER_CST
11967 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
11968 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) > 0
11969 && (tree_to_uhwi (TREE_OPERAND (arg0, 1))
11970 < TYPE_PRECISION (TREE_TYPE (arg0))))
11972 unsigned int shiftc = tree_to_uhwi (TREE_OPERAND (arg0, 1));
11973 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (arg1);
11974 unsigned HOST_WIDE_INT newmask, zerobits = 0;
11975 tree shift_type = TREE_TYPE (arg0);
11977 if (TREE_CODE (arg0) == LSHIFT_EXPR)
11978 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
11979 else if (TREE_CODE (arg0) == RSHIFT_EXPR
11980 && TYPE_PRECISION (TREE_TYPE (arg0))
11981 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg0))))
11983 prec = TYPE_PRECISION (TREE_TYPE (arg0));
11984 tree arg00 = TREE_OPERAND (arg0, 0);
11985 /* See if more bits can be proven as zero because of
11986 zero extension. */
11987 if (TREE_CODE (arg00) == NOP_EXPR
11988 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00, 0))))
11990 tree inner_type = TREE_TYPE (TREE_OPERAND (arg00, 0));
11991 if (TYPE_PRECISION (inner_type)
11992 == GET_MODE_PRECISION (TYPE_MODE (inner_type))
11993 && TYPE_PRECISION (inner_type) < prec)
11995 prec = TYPE_PRECISION (inner_type);
11996 /* See if we can shorten the right shift. */
11997 if (shiftc < prec)
11998 shift_type = inner_type;
11999 /* Otherwise X >> C1 is all zeros, so we'll optimize
12000 it into (X, 0) later on by making sure zerobits
12001 is all ones. */
12004 zerobits = ~(unsigned HOST_WIDE_INT) 0;
12005 if (shiftc < prec)
12007 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
12008 zerobits <<= prec - shiftc;
12010 /* For arithmetic shift if sign bit could be set, zerobits
12011 can contain actually sign bits, so no transformation is
12012 possible, unless MASK masks them all away. In that
12013 case the shift needs to be converted into logical shift. */
12014 if (!TYPE_UNSIGNED (TREE_TYPE (arg0))
12015 && prec == TYPE_PRECISION (TREE_TYPE (arg0)))
12017 if ((mask & zerobits) == 0)
12018 shift_type = unsigned_type_for (TREE_TYPE (arg0));
12019 else
12020 zerobits = 0;
12024 /* ((X << 16) & 0xff00) is (X, 0). */
12025 if ((mask & zerobits) == mask)
12026 return omit_one_operand_loc (loc, type,
12027 build_int_cst (type, 0), arg0);
12029 newmask = mask | zerobits;
12030 if (newmask != mask && (newmask & (newmask + 1)) == 0)
12032 /* Only do the transformation if NEWMASK is some integer
12033 mode's mask. */
12034 for (prec = BITS_PER_UNIT;
12035 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
12036 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
12037 break;
12038 if (prec < HOST_BITS_PER_WIDE_INT
12039 || newmask == ~(unsigned HOST_WIDE_INT) 0)
12041 tree newmaskt;
12043 if (shift_type != TREE_TYPE (arg0))
12045 tem = fold_build2_loc (loc, TREE_CODE (arg0), shift_type,
12046 fold_convert_loc (loc, shift_type,
12047 TREE_OPERAND (arg0, 0)),
12048 TREE_OPERAND (arg0, 1));
12049 tem = fold_convert_loc (loc, type, tem);
12051 else
12052 tem = op0;
12053 newmaskt = build_int_cst_type (TREE_TYPE (op1), newmask);
12054 if (!tree_int_cst_equal (newmaskt, arg1))
12055 return fold_build2_loc (loc, BIT_AND_EXPR, type, tem, newmaskt);
12060 goto associate;
12062 case RDIV_EXPR:
12063 /* Don't touch a floating-point divide by zero unless the mode
12064 of the constant can represent infinity. */
12065 if (TREE_CODE (arg1) == REAL_CST
12066 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
12067 && real_zerop (arg1))
12068 return NULL_TREE;
12070 /* Optimize A / A to 1.0 if we don't care about
12071 NaNs or Infinities. Skip the transformation
12072 for non-real operands. */
12073 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
12074 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
12075 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
12076 && operand_equal_p (arg0, arg1, 0))
12078 tree r = build_real (TREE_TYPE (arg0), dconst1);
12080 return omit_two_operands_loc (loc, type, r, arg0, arg1);
12083 /* The complex version of the above A / A optimization. */
12084 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
12085 && operand_equal_p (arg0, arg1, 0))
12087 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
12088 if (! HONOR_NANS (TYPE_MODE (elem_type))
12089 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
12091 tree r = build_real (elem_type, dconst1);
12092 /* omit_two_operands will call fold_convert for us. */
12093 return omit_two_operands_loc (loc, type, r, arg0, arg1);
12097 /* (-A) / (-B) -> A / B */
12098 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
12099 return fold_build2_loc (loc, RDIV_EXPR, type,
12100 TREE_OPERAND (arg0, 0),
12101 negate_expr (arg1));
12102 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
12103 return fold_build2_loc (loc, RDIV_EXPR, type,
12104 negate_expr (arg0),
12105 TREE_OPERAND (arg1, 0));
12107 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
12108 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
12109 && real_onep (arg1))
12110 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12112 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
12113 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
12114 && real_minus_onep (arg1))
12115 return non_lvalue_loc (loc, fold_convert_loc (loc, type,
12116 negate_expr (arg0)));
12118 /* If ARG1 is a constant, we can convert this to a multiply by the
12119 reciprocal. This does not have the same rounding properties,
12120 so only do this if -freciprocal-math. We can actually
12121 always safely do it if ARG1 is a power of two, but it's hard to
12122 tell if it is or not in a portable manner. */
12123 if (optimize
12124 && (TREE_CODE (arg1) == REAL_CST
12125 || (TREE_CODE (arg1) == COMPLEX_CST
12126 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg1)))
12127 || (TREE_CODE (arg1) == VECTOR_CST
12128 && VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg1)))))
12130 if (flag_reciprocal_math
12131 && 0 != (tem = const_binop (code, build_one_cst (type), arg1)))
12132 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tem);
12133 /* Find the reciprocal if optimizing and the result is exact.
12134 TODO: Complex reciprocal not implemented. */
12135 if (TREE_CODE (arg1) != COMPLEX_CST)
12137 tree inverse = exact_inverse (TREE_TYPE (arg0), arg1);
12139 if (inverse)
12140 return fold_build2_loc (loc, MULT_EXPR, type, arg0, inverse);
12143 /* Convert A/B/C to A/(B*C). */
12144 if (flag_reciprocal_math
12145 && TREE_CODE (arg0) == RDIV_EXPR)
12146 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
12147 fold_build2_loc (loc, MULT_EXPR, type,
12148 TREE_OPERAND (arg0, 1), arg1));
12150 /* Convert A/(B/C) to (A/B)*C. */
12151 if (flag_reciprocal_math
12152 && TREE_CODE (arg1) == RDIV_EXPR)
12153 return fold_build2_loc (loc, MULT_EXPR, type,
12154 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
12155 TREE_OPERAND (arg1, 0)),
12156 TREE_OPERAND (arg1, 1));
12158 /* Convert C1/(X*C2) into (C1/C2)/X. */
12159 if (flag_reciprocal_math
12160 && TREE_CODE (arg1) == MULT_EXPR
12161 && TREE_CODE (arg0) == REAL_CST
12162 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
12164 tree tem = const_binop (RDIV_EXPR, arg0,
12165 TREE_OPERAND (arg1, 1));
12166 if (tem)
12167 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
12168 TREE_OPERAND (arg1, 0));
12171 if (flag_unsafe_math_optimizations)
12173 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
12174 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
12176 /* Optimize sin(x)/cos(x) as tan(x). */
12177 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
12178 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
12179 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
12180 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
12181 CALL_EXPR_ARG (arg1, 0), 0))
12183 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
12185 if (tanfn != NULL_TREE)
12186 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
12189 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
12190 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
12191 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
12192 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
12193 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
12194 CALL_EXPR_ARG (arg1, 0), 0))
12196 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
12198 if (tanfn != NULL_TREE)
12200 tree tmp = build_call_expr_loc (loc, tanfn, 1,
12201 CALL_EXPR_ARG (arg0, 0));
12202 return fold_build2_loc (loc, RDIV_EXPR, type,
12203 build_real (type, dconst1), tmp);
12207 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
12208 NaNs or Infinities. */
12209 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
12210 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
12211 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
12213 tree arg00 = CALL_EXPR_ARG (arg0, 0);
12214 tree arg01 = CALL_EXPR_ARG (arg1, 0);
12216 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
12217 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
12218 && operand_equal_p (arg00, arg01, 0))
12220 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
12222 if (cosfn != NULL_TREE)
12223 return build_call_expr_loc (loc, cosfn, 1, arg00);
12227 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
12228 NaNs or Infinities. */
12229 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
12230 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
12231 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
12233 tree arg00 = CALL_EXPR_ARG (arg0, 0);
12234 tree arg01 = CALL_EXPR_ARG (arg1, 0);
12236 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
12237 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
12238 && operand_equal_p (arg00, arg01, 0))
12240 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
12242 if (cosfn != NULL_TREE)
12244 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
12245 return fold_build2_loc (loc, RDIV_EXPR, type,
12246 build_real (type, dconst1),
12247 tmp);
12252 /* Optimize pow(x,c)/x as pow(x,c-1). */
12253 if (fcode0 == BUILT_IN_POW
12254 || fcode0 == BUILT_IN_POWF
12255 || fcode0 == BUILT_IN_POWL)
12257 tree arg00 = CALL_EXPR_ARG (arg0, 0);
12258 tree arg01 = CALL_EXPR_ARG (arg0, 1);
12259 if (TREE_CODE (arg01) == REAL_CST
12260 && !TREE_OVERFLOW (arg01)
12261 && operand_equal_p (arg1, arg00, 0))
12263 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
12264 REAL_VALUE_TYPE c;
12265 tree arg;
12267 c = TREE_REAL_CST (arg01);
12268 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
12269 arg = build_real (type, c);
12270 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
12274 /* Optimize a/root(b/c) into a*root(c/b). */
12275 if (BUILTIN_ROOT_P (fcode1))
12277 tree rootarg = CALL_EXPR_ARG (arg1, 0);
12279 if (TREE_CODE (rootarg) == RDIV_EXPR)
12281 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
12282 tree b = TREE_OPERAND (rootarg, 0);
12283 tree c = TREE_OPERAND (rootarg, 1);
12285 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
12287 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
12288 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
12292 /* Optimize x/expN(y) into x*expN(-y). */
12293 if (BUILTIN_EXPONENT_P (fcode1))
12295 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
12296 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
12297 arg1 = build_call_expr_loc (loc,
12298 expfn, 1,
12299 fold_convert_loc (loc, type, arg));
12300 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
12303 /* Optimize x/pow(y,z) into x*pow(y,-z). */
12304 if (fcode1 == BUILT_IN_POW
12305 || fcode1 == BUILT_IN_POWF
12306 || fcode1 == BUILT_IN_POWL)
12308 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
12309 tree arg10 = CALL_EXPR_ARG (arg1, 0);
12310 tree arg11 = CALL_EXPR_ARG (arg1, 1);
12311 tree neg11 = fold_convert_loc (loc, type,
12312 negate_expr (arg11));
12313 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
12314 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
12317 return NULL_TREE;
12319 case TRUNC_DIV_EXPR:
12320 /* Optimize (X & (-A)) / A where A is a power of 2,
12321 to X >> log2(A) */
12322 if (TREE_CODE (arg0) == BIT_AND_EXPR
12323 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
12324 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
12326 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
12327 arg1, TREE_OPERAND (arg0, 1));
12328 if (sum && integer_zerop (sum)) {
12329 tree pow2 = build_int_cst (integer_type_node,
12330 wi::exact_log2 (arg1));
12331 return fold_build2_loc (loc, RSHIFT_EXPR, type,
12332 TREE_OPERAND (arg0, 0), pow2);
12336 /* Fall through */
12338 case FLOOR_DIV_EXPR:
12339 /* Simplify A / (B << N) where A and B are positive and B is
12340 a power of 2, to A >> (N + log2(B)). */
12341 strict_overflow_p = false;
12342 if (TREE_CODE (arg1) == LSHIFT_EXPR
12343 && (TYPE_UNSIGNED (type)
12344 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
12346 tree sval = TREE_OPERAND (arg1, 0);
12347 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
12349 tree sh_cnt = TREE_OPERAND (arg1, 1);
12350 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
12351 wi::exact_log2 (sval));
12353 if (strict_overflow_p)
12354 fold_overflow_warning (("assuming signed overflow does not "
12355 "occur when simplifying A / (B << N)"),
12356 WARN_STRICT_OVERFLOW_MISC);
12358 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
12359 sh_cnt, pow2);
12360 return fold_build2_loc (loc, RSHIFT_EXPR, type,
12361 fold_convert_loc (loc, type, arg0), sh_cnt);
12365 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
12366 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
12367 if (INTEGRAL_TYPE_P (type)
12368 && TYPE_UNSIGNED (type)
12369 && code == FLOOR_DIV_EXPR)
12370 return fold_build2_loc (loc, TRUNC_DIV_EXPR, type, op0, op1);
12372 /* Fall through */
12374 case ROUND_DIV_EXPR:
12375 case CEIL_DIV_EXPR:
12376 case EXACT_DIV_EXPR:
12377 if (integer_onep (arg1))
12378 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12379 if (integer_zerop (arg1))
12380 return NULL_TREE;
12381 /* X / -1 is -X. */
12382 if (!TYPE_UNSIGNED (type)
12383 && TREE_CODE (arg1) == INTEGER_CST
12384 && wi::eq_p (arg1, -1))
12385 return fold_convert_loc (loc, type, negate_expr (arg0));
12387 /* Convert -A / -B to A / B when the type is signed and overflow is
12388 undefined. */
12389 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12390 && TREE_CODE (arg0) == NEGATE_EXPR
12391 && negate_expr_p (arg1))
12393 if (INTEGRAL_TYPE_P (type))
12394 fold_overflow_warning (("assuming signed overflow does not occur "
12395 "when distributing negation across "
12396 "division"),
12397 WARN_STRICT_OVERFLOW_MISC);
12398 return fold_build2_loc (loc, code, type,
12399 fold_convert_loc (loc, type,
12400 TREE_OPERAND (arg0, 0)),
12401 fold_convert_loc (loc, type,
12402 negate_expr (arg1)));
12404 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12405 && TREE_CODE (arg1) == NEGATE_EXPR
12406 && negate_expr_p (arg0))
12408 if (INTEGRAL_TYPE_P (type))
12409 fold_overflow_warning (("assuming signed overflow does not occur "
12410 "when distributing negation across "
12411 "division"),
12412 WARN_STRICT_OVERFLOW_MISC);
12413 return fold_build2_loc (loc, code, type,
12414 fold_convert_loc (loc, type,
12415 negate_expr (arg0)),
12416 fold_convert_loc (loc, type,
12417 TREE_OPERAND (arg1, 0)));
12420 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
12421 operation, EXACT_DIV_EXPR.
12423 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
12424 At one time others generated faster code, it's not clear if they do
12425 after the last round to changes to the DIV code in expmed.c. */
12426 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
12427 && multiple_of_p (type, arg0, arg1))
12428 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
12430 strict_overflow_p = false;
12431 if (TREE_CODE (arg1) == INTEGER_CST
12432 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
12433 &strict_overflow_p)))
12435 if (strict_overflow_p)
12436 fold_overflow_warning (("assuming signed overflow does not occur "
12437 "when simplifying division"),
12438 WARN_STRICT_OVERFLOW_MISC);
12439 return fold_convert_loc (loc, type, tem);
12442 return NULL_TREE;
12444 case CEIL_MOD_EXPR:
12445 case FLOOR_MOD_EXPR:
12446 case ROUND_MOD_EXPR:
12447 case TRUNC_MOD_EXPR:
12448 /* X % 1 is always zero, but be sure to preserve any side
12449 effects in X. */
12450 if (integer_onep (arg1))
12451 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12453 /* X % 0, return X % 0 unchanged so that we can get the
12454 proper warnings and errors. */
12455 if (integer_zerop (arg1))
12456 return NULL_TREE;
12458 /* 0 % X is always zero, but be sure to preserve any side
12459 effects in X. Place this after checking for X == 0. */
12460 if (integer_zerop (arg0))
12461 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
12463 /* X % -1 is zero. */
12464 if (!TYPE_UNSIGNED (type)
12465 && TREE_CODE (arg1) == INTEGER_CST
12466 && wi::eq_p (arg1, -1))
12467 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12469 /* X % -C is the same as X % C. */
12470 if (code == TRUNC_MOD_EXPR
12471 && TYPE_SIGN (type) == SIGNED
12472 && TREE_CODE (arg1) == INTEGER_CST
12473 && !TREE_OVERFLOW (arg1)
12474 && wi::neg_p (arg1)
12475 && !TYPE_OVERFLOW_TRAPS (type)
12476 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
12477 && !sign_bit_p (arg1, arg1))
12478 return fold_build2_loc (loc, code, type,
12479 fold_convert_loc (loc, type, arg0),
12480 fold_convert_loc (loc, type,
12481 negate_expr (arg1)));
12483 /* X % -Y is the same as X % Y. */
12484 if (code == TRUNC_MOD_EXPR
12485 && !TYPE_UNSIGNED (type)
12486 && TREE_CODE (arg1) == NEGATE_EXPR
12487 && !TYPE_OVERFLOW_TRAPS (type))
12488 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, arg0),
12489 fold_convert_loc (loc, type,
12490 TREE_OPERAND (arg1, 0)));
12492 strict_overflow_p = false;
12493 if (TREE_CODE (arg1) == INTEGER_CST
12494 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
12495 &strict_overflow_p)))
12497 if (strict_overflow_p)
12498 fold_overflow_warning (("assuming signed overflow does not occur "
12499 "when simplifying modulus"),
12500 WARN_STRICT_OVERFLOW_MISC);
12501 return fold_convert_loc (loc, type, tem);
12504 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
12505 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
12506 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
12507 && (TYPE_UNSIGNED (type)
12508 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
12510 tree c = arg1;
12511 /* Also optimize A % (C << N) where C is a power of 2,
12512 to A & ((C << N) - 1). */
12513 if (TREE_CODE (arg1) == LSHIFT_EXPR)
12514 c = TREE_OPERAND (arg1, 0);
12516 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
12518 tree mask
12519 = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (arg1), arg1,
12520 build_int_cst (TREE_TYPE (arg1), 1));
12521 if (strict_overflow_p)
12522 fold_overflow_warning (("assuming signed overflow does not "
12523 "occur when simplifying "
12524 "X % (power of two)"),
12525 WARN_STRICT_OVERFLOW_MISC);
12526 return fold_build2_loc (loc, BIT_AND_EXPR, type,
12527 fold_convert_loc (loc, type, arg0),
12528 fold_convert_loc (loc, type, mask));
12532 return NULL_TREE;
12534 case LROTATE_EXPR:
12535 case RROTATE_EXPR:
12536 if (integer_all_onesp (arg0))
12537 return omit_one_operand_loc (loc, type, arg0, arg1);
12538 goto shift;
12540 case RSHIFT_EXPR:
12541 /* Optimize -1 >> x for arithmetic right shifts. */
12542 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type)
12543 && tree_expr_nonnegative_p (arg1))
12544 return omit_one_operand_loc (loc, type, arg0, arg1);
12545 /* ... fall through ... */
12547 case LSHIFT_EXPR:
12548 shift:
12549 if (integer_zerop (arg1))
12550 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12551 if (integer_zerop (arg0))
12552 return omit_one_operand_loc (loc, type, arg0, arg1);
12554 /* Prefer vector1 << scalar to vector1 << vector2
12555 if vector2 is uniform. */
12556 if (VECTOR_TYPE_P (TREE_TYPE (arg1))
12557 && (tem = uniform_vector_p (arg1)) != NULL_TREE)
12558 return fold_build2_loc (loc, code, type, op0, tem);
12560 /* Since negative shift count is not well-defined,
12561 don't try to compute it in the compiler. */
12562 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
12563 return NULL_TREE;
12565 prec = element_precision (type);
12567 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
12568 if (TREE_CODE (op0) == code && tree_fits_uhwi_p (arg1)
12569 && tree_to_uhwi (arg1) < prec
12570 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
12571 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
12573 unsigned int low = (tree_to_uhwi (TREE_OPERAND (arg0, 1))
12574 + tree_to_uhwi (arg1));
12576 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
12577 being well defined. */
12578 if (low >= prec)
12580 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
12581 low = low % prec;
12582 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
12583 return omit_one_operand_loc (loc, type, build_zero_cst (type),
12584 TREE_OPERAND (arg0, 0));
12585 else
12586 low = prec - 1;
12589 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12590 build_int_cst (TREE_TYPE (arg1), low));
12593 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
12594 into x & ((unsigned)-1 >> c) for unsigned types. */
12595 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
12596 || (TYPE_UNSIGNED (type)
12597 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
12598 && tree_fits_uhwi_p (arg1)
12599 && tree_to_uhwi (arg1) < prec
12600 && tree_fits_uhwi_p (TREE_OPERAND (arg0, 1))
12601 && tree_to_uhwi (TREE_OPERAND (arg0, 1)) < prec)
12603 HOST_WIDE_INT low0 = tree_to_uhwi (TREE_OPERAND (arg0, 1));
12604 HOST_WIDE_INT low1 = tree_to_uhwi (arg1);
12605 tree lshift;
12606 tree arg00;
12608 if (low0 == low1)
12610 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12612 lshift = build_minus_one_cst (type);
12613 lshift = const_binop (code, lshift, arg1);
12615 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
12619 /* Rewrite an LROTATE_EXPR by a constant into an
12620 RROTATE_EXPR by a new constant. */
12621 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
12623 tree tem = build_int_cst (TREE_TYPE (arg1), prec);
12624 tem = const_binop (MINUS_EXPR, tem, arg1);
12625 return fold_build2_loc (loc, RROTATE_EXPR, type, op0, tem);
12628 /* If we have a rotate of a bit operation with the rotate count and
12629 the second operand of the bit operation both constant,
12630 permute the two operations. */
12631 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
12632 && (TREE_CODE (arg0) == BIT_AND_EXPR
12633 || TREE_CODE (arg0) == BIT_IOR_EXPR
12634 || TREE_CODE (arg0) == BIT_XOR_EXPR)
12635 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12636 return fold_build2_loc (loc, TREE_CODE (arg0), type,
12637 fold_build2_loc (loc, code, type,
12638 TREE_OPERAND (arg0, 0), arg1),
12639 fold_build2_loc (loc, code, type,
12640 TREE_OPERAND (arg0, 1), arg1));
12642 /* Two consecutive rotates adding up to the some integer
12643 multiple of the precision of the type can be ignored. */
12644 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
12645 && TREE_CODE (arg0) == RROTATE_EXPR
12646 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12647 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
12648 prec) == 0)
12649 return TREE_OPERAND (arg0, 0);
12651 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
12652 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
12653 if the latter can be further optimized. */
12654 if ((code == LSHIFT_EXPR || code == RSHIFT_EXPR)
12655 && TREE_CODE (arg0) == BIT_AND_EXPR
12656 && TREE_CODE (arg1) == INTEGER_CST
12657 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12659 tree mask = fold_build2_loc (loc, code, type,
12660 fold_convert_loc (loc, type,
12661 TREE_OPERAND (arg0, 1)),
12662 arg1);
12663 tree shift = fold_build2_loc (loc, code, type,
12664 fold_convert_loc (loc, type,
12665 TREE_OPERAND (arg0, 0)),
12666 arg1);
12667 tem = fold_binary_loc (loc, BIT_AND_EXPR, type, shift, mask);
12668 if (tem)
12669 return tem;
12672 return NULL_TREE;
12674 case MIN_EXPR:
12675 if (operand_equal_p (arg0, arg1, 0))
12676 return omit_one_operand_loc (loc, type, arg0, arg1);
12677 if (INTEGRAL_TYPE_P (type)
12678 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
12679 return omit_one_operand_loc (loc, type, arg1, arg0);
12680 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
12681 if (tem)
12682 return tem;
12683 goto associate;
12685 case MAX_EXPR:
12686 if (operand_equal_p (arg0, arg1, 0))
12687 return omit_one_operand_loc (loc, type, arg0, arg1);
12688 if (INTEGRAL_TYPE_P (type)
12689 && TYPE_MAX_VALUE (type)
12690 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
12691 return omit_one_operand_loc (loc, type, arg1, arg0);
12692 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
12693 if (tem)
12694 return tem;
12695 goto associate;
12697 case TRUTH_ANDIF_EXPR:
12698 /* Note that the operands of this must be ints
12699 and their values must be 0 or 1.
12700 ("true" is a fixed value perhaps depending on the language.) */
12701 /* If first arg is constant zero, return it. */
12702 if (integer_zerop (arg0))
12703 return fold_convert_loc (loc, type, arg0);
12704 case TRUTH_AND_EXPR:
12705 /* If either arg is constant true, drop it. */
12706 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12707 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12708 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
12709 /* Preserve sequence points. */
12710 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12711 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12712 /* If second arg is constant zero, result is zero, but first arg
12713 must be evaluated. */
12714 if (integer_zerop (arg1))
12715 return omit_one_operand_loc (loc, type, arg1, arg0);
12716 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
12717 case will be handled here. */
12718 if (integer_zerop (arg0))
12719 return omit_one_operand_loc (loc, type, arg0, arg1);
12721 /* !X && X is always false. */
12722 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12723 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12724 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
12725 /* X && !X is always false. */
12726 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12727 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12728 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12730 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12731 means A >= Y && A != MAX, but in this case we know that
12732 A < X <= MAX. */
12734 if (!TREE_SIDE_EFFECTS (arg0)
12735 && !TREE_SIDE_EFFECTS (arg1))
12737 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
12738 if (tem && !operand_equal_p (tem, arg0, 0))
12739 return fold_build2_loc (loc, code, type, tem, arg1);
12741 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
12742 if (tem && !operand_equal_p (tem, arg1, 0))
12743 return fold_build2_loc (loc, code, type, arg0, tem);
12746 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12747 != NULL_TREE)
12748 return tem;
12750 return NULL_TREE;
12752 case TRUTH_ORIF_EXPR:
12753 /* Note that the operands of this must be ints
12754 and their values must be 0 or true.
12755 ("true" is a fixed value perhaps depending on the language.) */
12756 /* If first arg is constant true, return it. */
12757 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12758 return fold_convert_loc (loc, type, arg0);
12759 case TRUTH_OR_EXPR:
12760 /* If either arg is constant zero, drop it. */
12761 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12762 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12763 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12764 /* Preserve sequence points. */
12765 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12766 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12767 /* If second arg is constant true, result is true, but we must
12768 evaluate first arg. */
12769 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12770 return omit_one_operand_loc (loc, type, arg1, arg0);
12771 /* Likewise for first arg, but note this only occurs here for
12772 TRUTH_OR_EXPR. */
12773 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12774 return omit_one_operand_loc (loc, type, arg0, arg1);
12776 /* !X || X is always true. */
12777 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12778 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12779 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12780 /* X || !X is always true. */
12781 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12782 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12783 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12785 /* (X && !Y) || (!X && Y) is X ^ Y */
12786 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
12787 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
12789 tree a0, a1, l0, l1, n0, n1;
12791 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
12792 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
12794 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12795 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12797 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
12798 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
12800 if ((operand_equal_p (n0, a0, 0)
12801 && operand_equal_p (n1, a1, 0))
12802 || (operand_equal_p (n0, a1, 0)
12803 && operand_equal_p (n1, a0, 0)))
12804 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
12807 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12808 != NULL_TREE)
12809 return tem;
12811 return NULL_TREE;
12813 case TRUTH_XOR_EXPR:
12814 /* If the second arg is constant zero, drop it. */
12815 if (integer_zerop (arg1))
12816 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12817 /* If the second arg is constant true, this is a logical inversion. */
12818 if (integer_onep (arg1))
12820 tem = invert_truthvalue_loc (loc, arg0);
12821 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
12823 /* Identical arguments cancel to zero. */
12824 if (operand_equal_p (arg0, arg1, 0))
12825 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12827 /* !X ^ X is always true. */
12828 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12829 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12830 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12832 /* X ^ !X is always true. */
12833 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12834 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12835 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12837 return NULL_TREE;
12839 case EQ_EXPR:
12840 case NE_EXPR:
12841 STRIP_NOPS (arg0);
12842 STRIP_NOPS (arg1);
12844 tem = fold_comparison (loc, code, type, op0, op1);
12845 if (tem != NULL_TREE)
12846 return tem;
12848 /* bool_var != 0 becomes bool_var. */
12849 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12850 && code == NE_EXPR)
12851 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12853 /* bool_var == 1 becomes bool_var. */
12854 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12855 && code == EQ_EXPR)
12856 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12858 /* bool_var != 1 becomes !bool_var. */
12859 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12860 && code == NE_EXPR)
12861 return fold_convert_loc (loc, type,
12862 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12863 TREE_TYPE (arg0), arg0));
12865 /* bool_var == 0 becomes !bool_var. */
12866 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12867 && code == EQ_EXPR)
12868 return fold_convert_loc (loc, type,
12869 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12870 TREE_TYPE (arg0), arg0));
12872 /* !exp != 0 becomes !exp */
12873 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
12874 && code == NE_EXPR)
12875 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12877 /* If this is an equality comparison of the address of two non-weak,
12878 unaliased symbols neither of which are extern (since we do not
12879 have access to attributes for externs), then we know the result. */
12880 if (TREE_CODE (arg0) == ADDR_EXPR
12881 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
12882 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
12883 && ! lookup_attribute ("alias",
12884 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
12885 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
12886 && TREE_CODE (arg1) == ADDR_EXPR
12887 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
12888 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
12889 && ! lookup_attribute ("alias",
12890 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
12891 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
12893 /* We know that we're looking at the address of two
12894 non-weak, unaliased, static _DECL nodes.
12896 It is both wasteful and incorrect to call operand_equal_p
12897 to compare the two ADDR_EXPR nodes. It is wasteful in that
12898 all we need to do is test pointer equality for the arguments
12899 to the two ADDR_EXPR nodes. It is incorrect to use
12900 operand_equal_p as that function is NOT equivalent to a
12901 C equality test. It can in fact return false for two
12902 objects which would test as equal using the C equality
12903 operator. */
12904 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
12905 return constant_boolean_node (equal
12906 ? code == EQ_EXPR : code != EQ_EXPR,
12907 type);
12910 /* Similarly for a NEGATE_EXPR. */
12911 if (TREE_CODE (arg0) == NEGATE_EXPR
12912 && TREE_CODE (arg1) == INTEGER_CST
12913 && 0 != (tem = negate_expr (fold_convert_loc (loc, TREE_TYPE (arg0),
12914 arg1)))
12915 && TREE_CODE (tem) == INTEGER_CST
12916 && !TREE_OVERFLOW (tem))
12917 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12919 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12920 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12921 && TREE_CODE (arg1) == INTEGER_CST
12922 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12923 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12924 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
12925 fold_convert_loc (loc,
12926 TREE_TYPE (arg0),
12927 arg1),
12928 TREE_OPERAND (arg0, 1)));
12930 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
12931 if ((TREE_CODE (arg0) == PLUS_EXPR
12932 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
12933 || TREE_CODE (arg0) == MINUS_EXPR)
12934 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12935 0)),
12936 arg1, 0)
12937 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12938 || POINTER_TYPE_P (TREE_TYPE (arg0))))
12940 tree val = TREE_OPERAND (arg0, 1);
12941 return omit_two_operands_loc (loc, type,
12942 fold_build2_loc (loc, code, type,
12943 val,
12944 build_int_cst (TREE_TYPE (val),
12945 0)),
12946 TREE_OPERAND (arg0, 0), arg1);
12949 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
12950 if (TREE_CODE (arg0) == MINUS_EXPR
12951 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
12952 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12953 1)),
12954 arg1, 0)
12955 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
12957 return omit_two_operands_loc (loc, type,
12958 code == NE_EXPR
12959 ? boolean_true_node : boolean_false_node,
12960 TREE_OPERAND (arg0, 1), arg1);
12963 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12964 if (TREE_CODE (arg0) == ABS_EXPR
12965 && (integer_zerop (arg1) || real_zerop (arg1)))
12966 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
12968 /* If this is an EQ or NE comparison with zero and ARG0 is
12969 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12970 two operations, but the latter can be done in one less insn
12971 on machines that have only two-operand insns or on which a
12972 constant cannot be the first operand. */
12973 if (TREE_CODE (arg0) == BIT_AND_EXPR
12974 && integer_zerop (arg1))
12976 tree arg00 = TREE_OPERAND (arg0, 0);
12977 tree arg01 = TREE_OPERAND (arg0, 1);
12978 if (TREE_CODE (arg00) == LSHIFT_EXPR
12979 && integer_onep (TREE_OPERAND (arg00, 0)))
12981 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
12982 arg01, TREE_OPERAND (arg00, 1));
12983 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12984 build_int_cst (TREE_TYPE (arg0), 1));
12985 return fold_build2_loc (loc, code, type,
12986 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12987 arg1);
12989 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12990 && integer_onep (TREE_OPERAND (arg01, 0)))
12992 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
12993 arg00, TREE_OPERAND (arg01, 1));
12994 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12995 build_int_cst (TREE_TYPE (arg0), 1));
12996 return fold_build2_loc (loc, code, type,
12997 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12998 arg1);
13002 /* If this is an NE or EQ comparison of zero against the result of a
13003 signed MOD operation whose second operand is a power of 2, make
13004 the MOD operation unsigned since it is simpler and equivalent. */
13005 if (integer_zerop (arg1)
13006 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
13007 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
13008 || TREE_CODE (arg0) == CEIL_MOD_EXPR
13009 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
13010 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
13011 && integer_pow2p (TREE_OPERAND (arg0, 1)))
13013 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
13014 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
13015 fold_convert_loc (loc, newtype,
13016 TREE_OPERAND (arg0, 0)),
13017 fold_convert_loc (loc, newtype,
13018 TREE_OPERAND (arg0, 1)));
13020 return fold_build2_loc (loc, code, type, newmod,
13021 fold_convert_loc (loc, newtype, arg1));
13024 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
13025 C1 is a valid shift constant, and C2 is a power of two, i.e.
13026 a single bit. */
13027 if (TREE_CODE (arg0) == BIT_AND_EXPR
13028 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
13029 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
13030 == INTEGER_CST
13031 && integer_pow2p (TREE_OPERAND (arg0, 1))
13032 && integer_zerop (arg1))
13034 tree itype = TREE_TYPE (arg0);
13035 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
13036 prec = TYPE_PRECISION (itype);
13038 /* Check for a valid shift count. */
13039 if (wi::ltu_p (arg001, prec))
13041 tree arg01 = TREE_OPERAND (arg0, 1);
13042 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
13043 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
13044 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
13045 can be rewritten as (X & (C2 << C1)) != 0. */
13046 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
13048 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
13049 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
13050 return fold_build2_loc (loc, code, type, tem,
13051 fold_convert_loc (loc, itype, arg1));
13053 /* Otherwise, for signed (arithmetic) shifts,
13054 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
13055 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
13056 else if (!TYPE_UNSIGNED (itype))
13057 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
13058 arg000, build_int_cst (itype, 0));
13059 /* Otherwise, of unsigned (logical) shifts,
13060 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
13061 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
13062 else
13063 return omit_one_operand_loc (loc, type,
13064 code == EQ_EXPR ? integer_one_node
13065 : integer_zero_node,
13066 arg000);
13070 /* If we have (A & C) == C where C is a power of 2, convert this into
13071 (A & C) != 0. Similarly for NE_EXPR. */
13072 if (TREE_CODE (arg0) == BIT_AND_EXPR
13073 && integer_pow2p (TREE_OPERAND (arg0, 1))
13074 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
13075 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
13076 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
13077 integer_zero_node));
13079 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
13080 bit, then fold the expression into A < 0 or A >= 0. */
13081 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
13082 if (tem)
13083 return tem;
13085 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
13086 Similarly for NE_EXPR. */
13087 if (TREE_CODE (arg0) == BIT_AND_EXPR
13088 && TREE_CODE (arg1) == INTEGER_CST
13089 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
13091 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
13092 TREE_TYPE (TREE_OPERAND (arg0, 1)),
13093 TREE_OPERAND (arg0, 1));
13094 tree dandnotc
13095 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
13096 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
13097 notc);
13098 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
13099 if (integer_nonzerop (dandnotc))
13100 return omit_one_operand_loc (loc, type, rslt, arg0);
13103 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
13104 Similarly for NE_EXPR. */
13105 if (TREE_CODE (arg0) == BIT_IOR_EXPR
13106 && TREE_CODE (arg1) == INTEGER_CST
13107 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
13109 tree notd = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
13110 tree candnotd
13111 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
13112 TREE_OPERAND (arg0, 1),
13113 fold_convert_loc (loc, TREE_TYPE (arg0), notd));
13114 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
13115 if (integer_nonzerop (candnotd))
13116 return omit_one_operand_loc (loc, type, rslt, arg0);
13119 /* If this is a comparison of a field, we may be able to simplify it. */
13120 if ((TREE_CODE (arg0) == COMPONENT_REF
13121 || TREE_CODE (arg0) == BIT_FIELD_REF)
13122 /* Handle the constant case even without -O
13123 to make sure the warnings are given. */
13124 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
13126 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
13127 if (t1)
13128 return t1;
13131 /* Optimize comparisons of strlen vs zero to a compare of the
13132 first character of the string vs zero. To wit,
13133 strlen(ptr) == 0 => *ptr == 0
13134 strlen(ptr) != 0 => *ptr != 0
13135 Other cases should reduce to one of these two (or a constant)
13136 due to the return value of strlen being unsigned. */
13137 if (TREE_CODE (arg0) == CALL_EXPR
13138 && integer_zerop (arg1))
13140 tree fndecl = get_callee_fndecl (arg0);
13142 if (fndecl
13143 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
13144 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
13145 && call_expr_nargs (arg0) == 1
13146 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
13148 tree iref = build_fold_indirect_ref_loc (loc,
13149 CALL_EXPR_ARG (arg0, 0));
13150 return fold_build2_loc (loc, code, type, iref,
13151 build_int_cst (TREE_TYPE (iref), 0));
13155 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
13156 of X. Similarly fold (X >> C) == 0 into X >= 0. */
13157 if (TREE_CODE (arg0) == RSHIFT_EXPR
13158 && integer_zerop (arg1)
13159 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
13161 tree arg00 = TREE_OPERAND (arg0, 0);
13162 tree arg01 = TREE_OPERAND (arg0, 1);
13163 tree itype = TREE_TYPE (arg00);
13164 if (wi::eq_p (arg01, TYPE_PRECISION (itype) - 1))
13166 if (TYPE_UNSIGNED (itype))
13168 itype = signed_type_for (itype);
13169 arg00 = fold_convert_loc (loc, itype, arg00);
13171 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
13172 type, arg00, build_zero_cst (itype));
13176 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
13177 if (integer_zerop (arg1)
13178 && TREE_CODE (arg0) == BIT_XOR_EXPR)
13179 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
13180 TREE_OPERAND (arg0, 1));
13182 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
13183 if (TREE_CODE (arg0) == BIT_XOR_EXPR
13184 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
13185 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
13186 build_zero_cst (TREE_TYPE (arg0)));
13187 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
13188 if (TREE_CODE (arg0) == BIT_XOR_EXPR
13189 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
13190 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
13191 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 1),
13192 build_zero_cst (TREE_TYPE (arg0)));
13194 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
13195 if (TREE_CODE (arg0) == BIT_XOR_EXPR
13196 && TREE_CODE (arg1) == INTEGER_CST
13197 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
13198 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
13199 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg1),
13200 TREE_OPERAND (arg0, 1), arg1));
13202 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
13203 (X & C) == 0 when C is a single bit. */
13204 if (TREE_CODE (arg0) == BIT_AND_EXPR
13205 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
13206 && integer_zerop (arg1)
13207 && integer_pow2p (TREE_OPERAND (arg0, 1)))
13209 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
13210 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
13211 TREE_OPERAND (arg0, 1));
13212 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
13213 type, tem,
13214 fold_convert_loc (loc, TREE_TYPE (arg0),
13215 arg1));
13218 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
13219 constant C is a power of two, i.e. a single bit. */
13220 if (TREE_CODE (arg0) == BIT_XOR_EXPR
13221 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13222 && integer_zerop (arg1)
13223 && integer_pow2p (TREE_OPERAND (arg0, 1))
13224 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13225 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
13227 tree arg00 = TREE_OPERAND (arg0, 0);
13228 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
13229 arg00, build_int_cst (TREE_TYPE (arg00), 0));
13232 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
13233 when is C is a power of two, i.e. a single bit. */
13234 if (TREE_CODE (arg0) == BIT_AND_EXPR
13235 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
13236 && integer_zerop (arg1)
13237 && integer_pow2p (TREE_OPERAND (arg0, 1))
13238 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13239 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
13241 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
13242 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
13243 arg000, TREE_OPERAND (arg0, 1));
13244 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
13245 tem, build_int_cst (TREE_TYPE (tem), 0));
13248 if (integer_zerop (arg1)
13249 && tree_expr_nonzero_p (arg0))
13251 tree res = constant_boolean_node (code==NE_EXPR, type);
13252 return omit_one_operand_loc (loc, type, res, arg0);
13255 /* Fold -X op -Y as X op Y, where op is eq/ne. */
13256 if (TREE_CODE (arg0) == NEGATE_EXPR
13257 && TREE_CODE (arg1) == NEGATE_EXPR)
13258 return fold_build2_loc (loc, code, type,
13259 TREE_OPERAND (arg0, 0),
13260 fold_convert_loc (loc, TREE_TYPE (arg0),
13261 TREE_OPERAND (arg1, 0)));
13263 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
13264 if (TREE_CODE (arg0) == BIT_AND_EXPR
13265 && TREE_CODE (arg1) == BIT_AND_EXPR)
13267 tree arg00 = TREE_OPERAND (arg0, 0);
13268 tree arg01 = TREE_OPERAND (arg0, 1);
13269 tree arg10 = TREE_OPERAND (arg1, 0);
13270 tree arg11 = TREE_OPERAND (arg1, 1);
13271 tree itype = TREE_TYPE (arg0);
13273 if (operand_equal_p (arg01, arg11, 0))
13274 return fold_build2_loc (loc, code, type,
13275 fold_build2_loc (loc, BIT_AND_EXPR, itype,
13276 fold_build2_loc (loc,
13277 BIT_XOR_EXPR, itype,
13278 arg00, arg10),
13279 arg01),
13280 build_zero_cst (itype));
13282 if (operand_equal_p (arg01, arg10, 0))
13283 return fold_build2_loc (loc, code, type,
13284 fold_build2_loc (loc, BIT_AND_EXPR, itype,
13285 fold_build2_loc (loc,
13286 BIT_XOR_EXPR, itype,
13287 arg00, arg11),
13288 arg01),
13289 build_zero_cst (itype));
13291 if (operand_equal_p (arg00, arg11, 0))
13292 return fold_build2_loc (loc, code, type,
13293 fold_build2_loc (loc, BIT_AND_EXPR, itype,
13294 fold_build2_loc (loc,
13295 BIT_XOR_EXPR, itype,
13296 arg01, arg10),
13297 arg00),
13298 build_zero_cst (itype));
13300 if (operand_equal_p (arg00, arg10, 0))
13301 return fold_build2_loc (loc, code, type,
13302 fold_build2_loc (loc, BIT_AND_EXPR, itype,
13303 fold_build2_loc (loc,
13304 BIT_XOR_EXPR, itype,
13305 arg01, arg11),
13306 arg00),
13307 build_zero_cst (itype));
13310 if (TREE_CODE (arg0) == BIT_XOR_EXPR
13311 && TREE_CODE (arg1) == BIT_XOR_EXPR)
13313 tree arg00 = TREE_OPERAND (arg0, 0);
13314 tree arg01 = TREE_OPERAND (arg0, 1);
13315 tree arg10 = TREE_OPERAND (arg1, 0);
13316 tree arg11 = TREE_OPERAND (arg1, 1);
13317 tree itype = TREE_TYPE (arg0);
13319 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
13320 operand_equal_p guarantees no side-effects so we don't need
13321 to use omit_one_operand on Z. */
13322 if (operand_equal_p (arg01, arg11, 0))
13323 return fold_build2_loc (loc, code, type, arg00,
13324 fold_convert_loc (loc, TREE_TYPE (arg00),
13325 arg10));
13326 if (operand_equal_p (arg01, arg10, 0))
13327 return fold_build2_loc (loc, code, type, arg00,
13328 fold_convert_loc (loc, TREE_TYPE (arg00),
13329 arg11));
13330 if (operand_equal_p (arg00, arg11, 0))
13331 return fold_build2_loc (loc, code, type, arg01,
13332 fold_convert_loc (loc, TREE_TYPE (arg01),
13333 arg10));
13334 if (operand_equal_p (arg00, arg10, 0))
13335 return fold_build2_loc (loc, code, type, arg01,
13336 fold_convert_loc (loc, TREE_TYPE (arg01),
13337 arg11));
13339 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
13340 if (TREE_CODE (arg01) == INTEGER_CST
13341 && TREE_CODE (arg11) == INTEGER_CST)
13343 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
13344 fold_convert_loc (loc, itype, arg11));
13345 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
13346 return fold_build2_loc (loc, code, type, tem,
13347 fold_convert_loc (loc, itype, arg10));
13351 /* Attempt to simplify equality/inequality comparisons of complex
13352 values. Only lower the comparison if the result is known or
13353 can be simplified to a single scalar comparison. */
13354 if ((TREE_CODE (arg0) == COMPLEX_EXPR
13355 || TREE_CODE (arg0) == COMPLEX_CST)
13356 && (TREE_CODE (arg1) == COMPLEX_EXPR
13357 || TREE_CODE (arg1) == COMPLEX_CST))
13359 tree real0, imag0, real1, imag1;
13360 tree rcond, icond;
13362 if (TREE_CODE (arg0) == COMPLEX_EXPR)
13364 real0 = TREE_OPERAND (arg0, 0);
13365 imag0 = TREE_OPERAND (arg0, 1);
13367 else
13369 real0 = TREE_REALPART (arg0);
13370 imag0 = TREE_IMAGPART (arg0);
13373 if (TREE_CODE (arg1) == COMPLEX_EXPR)
13375 real1 = TREE_OPERAND (arg1, 0);
13376 imag1 = TREE_OPERAND (arg1, 1);
13378 else
13380 real1 = TREE_REALPART (arg1);
13381 imag1 = TREE_IMAGPART (arg1);
13384 rcond = fold_binary_loc (loc, code, type, real0, real1);
13385 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
13387 if (integer_zerop (rcond))
13389 if (code == EQ_EXPR)
13390 return omit_two_operands_loc (loc, type, boolean_false_node,
13391 imag0, imag1);
13392 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
13394 else
13396 if (code == NE_EXPR)
13397 return omit_two_operands_loc (loc, type, boolean_true_node,
13398 imag0, imag1);
13399 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
13403 icond = fold_binary_loc (loc, code, type, imag0, imag1);
13404 if (icond && TREE_CODE (icond) == INTEGER_CST)
13406 if (integer_zerop (icond))
13408 if (code == EQ_EXPR)
13409 return omit_two_operands_loc (loc, type, boolean_false_node,
13410 real0, real1);
13411 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
13413 else
13415 if (code == NE_EXPR)
13416 return omit_two_operands_loc (loc, type, boolean_true_node,
13417 real0, real1);
13418 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
13423 return NULL_TREE;
13425 case LT_EXPR:
13426 case GT_EXPR:
13427 case LE_EXPR:
13428 case GE_EXPR:
13429 tem = fold_comparison (loc, code, type, op0, op1);
13430 if (tem != NULL_TREE)
13431 return tem;
13433 /* Transform comparisons of the form X +- C CMP X. */
13434 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
13435 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
13436 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
13437 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
13438 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
13439 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
13441 tree arg01 = TREE_OPERAND (arg0, 1);
13442 enum tree_code code0 = TREE_CODE (arg0);
13443 int is_positive;
13445 if (TREE_CODE (arg01) == REAL_CST)
13446 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
13447 else
13448 is_positive = tree_int_cst_sgn (arg01);
13450 /* (X - c) > X becomes false. */
13451 if (code == GT_EXPR
13452 && ((code0 == MINUS_EXPR && is_positive >= 0)
13453 || (code0 == PLUS_EXPR && is_positive <= 0)))
13455 if (TREE_CODE (arg01) == INTEGER_CST
13456 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13457 fold_overflow_warning (("assuming signed overflow does not "
13458 "occur when assuming that (X - c) > X "
13459 "is always false"),
13460 WARN_STRICT_OVERFLOW_ALL);
13461 return constant_boolean_node (0, type);
13464 /* Likewise (X + c) < X becomes false. */
13465 if (code == LT_EXPR
13466 && ((code0 == PLUS_EXPR && is_positive >= 0)
13467 || (code0 == MINUS_EXPR && is_positive <= 0)))
13469 if (TREE_CODE (arg01) == INTEGER_CST
13470 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13471 fold_overflow_warning (("assuming signed overflow does not "
13472 "occur when assuming that "
13473 "(X + c) < X is always false"),
13474 WARN_STRICT_OVERFLOW_ALL);
13475 return constant_boolean_node (0, type);
13478 /* Convert (X - c) <= X to true. */
13479 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
13480 && code == LE_EXPR
13481 && ((code0 == MINUS_EXPR && is_positive >= 0)
13482 || (code0 == PLUS_EXPR && is_positive <= 0)))
13484 if (TREE_CODE (arg01) == INTEGER_CST
13485 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13486 fold_overflow_warning (("assuming signed overflow does not "
13487 "occur when assuming that "
13488 "(X - c) <= X is always true"),
13489 WARN_STRICT_OVERFLOW_ALL);
13490 return constant_boolean_node (1, type);
13493 /* Convert (X + c) >= X to true. */
13494 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
13495 && code == GE_EXPR
13496 && ((code0 == PLUS_EXPR && is_positive >= 0)
13497 || (code0 == MINUS_EXPR && is_positive <= 0)))
13499 if (TREE_CODE (arg01) == INTEGER_CST
13500 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13501 fold_overflow_warning (("assuming signed overflow does not "
13502 "occur when assuming that "
13503 "(X + c) >= X is always true"),
13504 WARN_STRICT_OVERFLOW_ALL);
13505 return constant_boolean_node (1, type);
13508 if (TREE_CODE (arg01) == INTEGER_CST)
13510 /* Convert X + c > X and X - c < X to true for integers. */
13511 if (code == GT_EXPR
13512 && ((code0 == PLUS_EXPR && is_positive > 0)
13513 || (code0 == MINUS_EXPR && is_positive < 0)))
13515 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13516 fold_overflow_warning (("assuming signed overflow does "
13517 "not occur when assuming that "
13518 "(X + c) > X is always true"),
13519 WARN_STRICT_OVERFLOW_ALL);
13520 return constant_boolean_node (1, type);
13523 if (code == LT_EXPR
13524 && ((code0 == MINUS_EXPR && is_positive > 0)
13525 || (code0 == PLUS_EXPR && is_positive < 0)))
13527 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13528 fold_overflow_warning (("assuming signed overflow does "
13529 "not occur when assuming that "
13530 "(X - c) < X is always true"),
13531 WARN_STRICT_OVERFLOW_ALL);
13532 return constant_boolean_node (1, type);
13535 /* Convert X + c <= X and X - c >= X to false for integers. */
13536 if (code == LE_EXPR
13537 && ((code0 == PLUS_EXPR && is_positive > 0)
13538 || (code0 == MINUS_EXPR && is_positive < 0)))
13540 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13541 fold_overflow_warning (("assuming signed overflow does "
13542 "not occur when assuming that "
13543 "(X + c) <= X is always false"),
13544 WARN_STRICT_OVERFLOW_ALL);
13545 return constant_boolean_node (0, type);
13548 if (code == GE_EXPR
13549 && ((code0 == MINUS_EXPR && is_positive > 0)
13550 || (code0 == PLUS_EXPR && is_positive < 0)))
13552 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
13553 fold_overflow_warning (("assuming signed overflow does "
13554 "not occur when assuming that "
13555 "(X - c) >= X is always false"),
13556 WARN_STRICT_OVERFLOW_ALL);
13557 return constant_boolean_node (0, type);
13562 /* Comparisons with the highest or lowest possible integer of
13563 the specified precision will have known values. */
13565 tree arg1_type = TREE_TYPE (arg1);
13566 unsigned int prec = TYPE_PRECISION (arg1_type);
13568 if (TREE_CODE (arg1) == INTEGER_CST
13569 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
13571 wide_int max = wi::max_value (arg1_type);
13572 wide_int signed_max = wi::max_value (prec, SIGNED);
13573 wide_int min = wi::min_value (arg1_type);
13575 if (wi::eq_p (arg1, max))
13576 switch (code)
13578 case GT_EXPR:
13579 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
13581 case GE_EXPR:
13582 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
13584 case LE_EXPR:
13585 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
13587 case LT_EXPR:
13588 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
13590 /* The GE_EXPR and LT_EXPR cases above are not normally
13591 reached because of previous transformations. */
13593 default:
13594 break;
13596 else if (wi::eq_p (arg1, max - 1))
13597 switch (code)
13599 case GT_EXPR:
13600 arg1 = const_binop (PLUS_EXPR, arg1,
13601 build_int_cst (TREE_TYPE (arg1), 1));
13602 return fold_build2_loc (loc, EQ_EXPR, type,
13603 fold_convert_loc (loc,
13604 TREE_TYPE (arg1), arg0),
13605 arg1);
13606 case LE_EXPR:
13607 arg1 = const_binop (PLUS_EXPR, arg1,
13608 build_int_cst (TREE_TYPE (arg1), 1));
13609 return fold_build2_loc (loc, NE_EXPR, type,
13610 fold_convert_loc (loc, TREE_TYPE (arg1),
13611 arg0),
13612 arg1);
13613 default:
13614 break;
13616 else if (wi::eq_p (arg1, min))
13617 switch (code)
13619 case LT_EXPR:
13620 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
13622 case LE_EXPR:
13623 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
13625 case GE_EXPR:
13626 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
13628 case GT_EXPR:
13629 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
13631 default:
13632 break;
13634 else if (wi::eq_p (arg1, min + 1))
13635 switch (code)
13637 case GE_EXPR:
13638 arg1 = const_binop (MINUS_EXPR, arg1,
13639 build_int_cst (TREE_TYPE (arg1), 1));
13640 return fold_build2_loc (loc, NE_EXPR, type,
13641 fold_convert_loc (loc,
13642 TREE_TYPE (arg1), arg0),
13643 arg1);
13644 case LT_EXPR:
13645 arg1 = const_binop (MINUS_EXPR, arg1,
13646 build_int_cst (TREE_TYPE (arg1), 1));
13647 return fold_build2_loc (loc, EQ_EXPR, type,
13648 fold_convert_loc (loc, TREE_TYPE (arg1),
13649 arg0),
13650 arg1);
13651 default:
13652 break;
13655 else if (wi::eq_p (arg1, signed_max)
13656 && TYPE_UNSIGNED (arg1_type)
13657 /* We will flip the signedness of the comparison operator
13658 associated with the mode of arg1, so the sign bit is
13659 specified by this mode. Check that arg1 is the signed
13660 max associated with this sign bit. */
13661 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
13662 /* signed_type does not work on pointer types. */
13663 && INTEGRAL_TYPE_P (arg1_type))
13665 /* The following case also applies to X < signed_max+1
13666 and X >= signed_max+1 because previous transformations. */
13667 if (code == LE_EXPR || code == GT_EXPR)
13669 tree st = signed_type_for (arg1_type);
13670 return fold_build2_loc (loc,
13671 code == LE_EXPR ? GE_EXPR : LT_EXPR,
13672 type, fold_convert_loc (loc, st, arg0),
13673 build_int_cst (st, 0));
13679 /* If we are comparing an ABS_EXPR with a constant, we can
13680 convert all the cases into explicit comparisons, but they may
13681 well not be faster than doing the ABS and one comparison.
13682 But ABS (X) <= C is a range comparison, which becomes a subtraction
13683 and a comparison, and is probably faster. */
13684 if (code == LE_EXPR
13685 && TREE_CODE (arg1) == INTEGER_CST
13686 && TREE_CODE (arg0) == ABS_EXPR
13687 && ! TREE_SIDE_EFFECTS (arg0)
13688 && (0 != (tem = negate_expr (arg1)))
13689 && TREE_CODE (tem) == INTEGER_CST
13690 && !TREE_OVERFLOW (tem))
13691 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13692 build2 (GE_EXPR, type,
13693 TREE_OPERAND (arg0, 0), tem),
13694 build2 (LE_EXPR, type,
13695 TREE_OPERAND (arg0, 0), arg1));
13697 /* Convert ABS_EXPR<x> >= 0 to true. */
13698 strict_overflow_p = false;
13699 if (code == GE_EXPR
13700 && (integer_zerop (arg1)
13701 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
13702 && real_zerop (arg1)))
13703 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13705 if (strict_overflow_p)
13706 fold_overflow_warning (("assuming signed overflow does not occur "
13707 "when simplifying comparison of "
13708 "absolute value and zero"),
13709 WARN_STRICT_OVERFLOW_CONDITIONAL);
13710 return omit_one_operand_loc (loc, type,
13711 constant_boolean_node (true, type),
13712 arg0);
13715 /* Convert ABS_EXPR<x> < 0 to false. */
13716 strict_overflow_p = false;
13717 if (code == LT_EXPR
13718 && (integer_zerop (arg1) || real_zerop (arg1))
13719 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13721 if (strict_overflow_p)
13722 fold_overflow_warning (("assuming signed overflow does not occur "
13723 "when simplifying comparison of "
13724 "absolute value and zero"),
13725 WARN_STRICT_OVERFLOW_CONDITIONAL);
13726 return omit_one_operand_loc (loc, type,
13727 constant_boolean_node (false, type),
13728 arg0);
13731 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13732 and similarly for >= into !=. */
13733 if ((code == LT_EXPR || code == GE_EXPR)
13734 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13735 && TREE_CODE (arg1) == LSHIFT_EXPR
13736 && integer_onep (TREE_OPERAND (arg1, 0)))
13737 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13738 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13739 TREE_OPERAND (arg1, 1)),
13740 build_zero_cst (TREE_TYPE (arg0)));
13742 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
13743 otherwise Y might be >= # of bits in X's type and thus e.g.
13744 (unsigned char) (1 << Y) for Y 15 might be 0.
13745 If the cast is widening, then 1 << Y should have unsigned type,
13746 otherwise if Y is number of bits in the signed shift type minus 1,
13747 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
13748 31 might be 0xffffffff80000000. */
13749 if ((code == LT_EXPR || code == GE_EXPR)
13750 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13751 && CONVERT_EXPR_P (arg1)
13752 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
13753 && (TYPE_PRECISION (TREE_TYPE (arg1))
13754 >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0))))
13755 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
13756 || (TYPE_PRECISION (TREE_TYPE (arg1))
13757 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
13758 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
13760 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13761 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
13762 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13763 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
13764 build_zero_cst (TREE_TYPE (arg0)));
13767 return NULL_TREE;
13769 case UNORDERED_EXPR:
13770 case ORDERED_EXPR:
13771 case UNLT_EXPR:
13772 case UNLE_EXPR:
13773 case UNGT_EXPR:
13774 case UNGE_EXPR:
13775 case UNEQ_EXPR:
13776 case LTGT_EXPR:
13777 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
13779 t1 = fold_relational_const (code, type, arg0, arg1);
13780 if (t1 != NULL_TREE)
13781 return t1;
13784 /* If the first operand is NaN, the result is constant. */
13785 if (TREE_CODE (arg0) == REAL_CST
13786 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
13787 && (code != LTGT_EXPR || ! flag_trapping_math))
13789 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13790 ? integer_zero_node
13791 : integer_one_node;
13792 return omit_one_operand_loc (loc, type, t1, arg1);
13795 /* If the second operand is NaN, the result is constant. */
13796 if (TREE_CODE (arg1) == REAL_CST
13797 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
13798 && (code != LTGT_EXPR || ! flag_trapping_math))
13800 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13801 ? integer_zero_node
13802 : integer_one_node;
13803 return omit_one_operand_loc (loc, type, t1, arg0);
13806 /* Simplify unordered comparison of something with itself. */
13807 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
13808 && operand_equal_p (arg0, arg1, 0))
13809 return constant_boolean_node (1, type);
13811 if (code == LTGT_EXPR
13812 && !flag_trapping_math
13813 && operand_equal_p (arg0, arg1, 0))
13814 return constant_boolean_node (0, type);
13816 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
13818 tree targ0 = strip_float_extensions (arg0);
13819 tree targ1 = strip_float_extensions (arg1);
13820 tree newtype = TREE_TYPE (targ0);
13822 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
13823 newtype = TREE_TYPE (targ1);
13825 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
13826 return fold_build2_loc (loc, code, type,
13827 fold_convert_loc (loc, newtype, targ0),
13828 fold_convert_loc (loc, newtype, targ1));
13831 return NULL_TREE;
13833 case COMPOUND_EXPR:
13834 /* When pedantic, a compound expression can be neither an lvalue
13835 nor an integer constant expression. */
13836 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
13837 return NULL_TREE;
13838 /* Don't let (0, 0) be null pointer constant. */
13839 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
13840 : fold_convert_loc (loc, type, arg1);
13841 return pedantic_non_lvalue_loc (loc, tem);
13843 case COMPLEX_EXPR:
13844 if ((TREE_CODE (arg0) == REAL_CST
13845 && TREE_CODE (arg1) == REAL_CST)
13846 || (TREE_CODE (arg0) == INTEGER_CST
13847 && TREE_CODE (arg1) == INTEGER_CST))
13848 return build_complex (type, arg0, arg1);
13849 if (TREE_CODE (arg0) == REALPART_EXPR
13850 && TREE_CODE (arg1) == IMAGPART_EXPR
13851 && TREE_TYPE (TREE_OPERAND (arg0, 0)) == type
13852 && operand_equal_p (TREE_OPERAND (arg0, 0),
13853 TREE_OPERAND (arg1, 0), 0))
13854 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 0),
13855 TREE_OPERAND (arg1, 0));
13856 return NULL_TREE;
13858 case ASSERT_EXPR:
13859 /* An ASSERT_EXPR should never be passed to fold_binary. */
13860 gcc_unreachable ();
13862 case VEC_PACK_TRUNC_EXPR:
13863 case VEC_PACK_FIX_TRUNC_EXPR:
13865 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
13866 tree *elts;
13868 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts / 2
13869 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2);
13870 if (TREE_CODE (arg0) != VECTOR_CST || TREE_CODE (arg1) != VECTOR_CST)
13871 return NULL_TREE;
13873 elts = XALLOCAVEC (tree, nelts);
13874 if (!vec_cst_ctor_to_array (arg0, elts)
13875 || !vec_cst_ctor_to_array (arg1, elts + nelts / 2))
13876 return NULL_TREE;
13878 for (i = 0; i < nelts; i++)
13880 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
13881 ? NOP_EXPR : FIX_TRUNC_EXPR,
13882 TREE_TYPE (type), elts[i]);
13883 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
13884 return NULL_TREE;
13887 return build_vector (type, elts);
13890 case VEC_WIDEN_MULT_LO_EXPR:
13891 case VEC_WIDEN_MULT_HI_EXPR:
13892 case VEC_WIDEN_MULT_EVEN_EXPR:
13893 case VEC_WIDEN_MULT_ODD_EXPR:
13895 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
13896 unsigned int out, ofs, scale;
13897 tree *elts;
13899 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2
13900 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2);
13901 if (TREE_CODE (arg0) != VECTOR_CST || TREE_CODE (arg1) != VECTOR_CST)
13902 return NULL_TREE;
13904 elts = XALLOCAVEC (tree, nelts * 4);
13905 if (!vec_cst_ctor_to_array (arg0, elts)
13906 || !vec_cst_ctor_to_array (arg1, elts + nelts * 2))
13907 return NULL_TREE;
13909 if (code == VEC_WIDEN_MULT_LO_EXPR)
13910 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
13911 else if (code == VEC_WIDEN_MULT_HI_EXPR)
13912 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
13913 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
13914 scale = 1, ofs = 0;
13915 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
13916 scale = 1, ofs = 1;
13918 for (out = 0; out < nelts; out++)
13920 unsigned int in1 = (out << scale) + ofs;
13921 unsigned int in2 = in1 + nelts * 2;
13922 tree t1, t2;
13924 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
13925 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
13927 if (t1 == NULL_TREE || t2 == NULL_TREE)
13928 return NULL_TREE;
13929 elts[out] = const_binop (MULT_EXPR, t1, t2);
13930 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
13931 return NULL_TREE;
13934 return build_vector (type, elts);
13937 default:
13938 return NULL_TREE;
13939 } /* switch (code) */
13942 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
13943 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
13944 of GOTO_EXPR. */
13946 static tree
13947 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
13949 switch (TREE_CODE (*tp))
13951 case LABEL_EXPR:
13952 return *tp;
13954 case GOTO_EXPR:
13955 *walk_subtrees = 0;
13957 /* ... fall through ... */
13959 default:
13960 return NULL_TREE;
13964 /* Return whether the sub-tree ST contains a label which is accessible from
13965 outside the sub-tree. */
13967 static bool
13968 contains_label_p (tree st)
13970 return
13971 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
13974 /* Fold a ternary expression of code CODE and type TYPE with operands
13975 OP0, OP1, and OP2. Return the folded expression if folding is
13976 successful. Otherwise, return NULL_TREE. */
13978 tree
13979 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
13980 tree op0, tree op1, tree op2)
13982 tree tem;
13983 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
13984 enum tree_code_class kind = TREE_CODE_CLASS (code);
13986 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13987 && TREE_CODE_LENGTH (code) == 3);
13989 /* Strip any conversions that don't change the mode. This is safe
13990 for every expression, except for a comparison expression because
13991 its signedness is derived from its operands. So, in the latter
13992 case, only strip conversions that don't change the signedness.
13994 Note that this is done as an internal manipulation within the
13995 constant folder, in order to find the simplest representation of
13996 the arguments so that their form can be studied. In any cases,
13997 the appropriate type conversions should be put back in the tree
13998 that will get out of the constant folder. */
13999 if (op0)
14001 arg0 = op0;
14002 STRIP_NOPS (arg0);
14005 if (op1)
14007 arg1 = op1;
14008 STRIP_NOPS (arg1);
14011 if (op2)
14013 arg2 = op2;
14014 STRIP_NOPS (arg2);
14017 switch (code)
14019 case COMPONENT_REF:
14020 if (TREE_CODE (arg0) == CONSTRUCTOR
14021 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
14023 unsigned HOST_WIDE_INT idx;
14024 tree field, value;
14025 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
14026 if (field == arg1)
14027 return value;
14029 return NULL_TREE;
14031 case COND_EXPR:
14032 case VEC_COND_EXPR:
14033 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
14034 so all simple results must be passed through pedantic_non_lvalue. */
14035 if (TREE_CODE (arg0) == INTEGER_CST)
14037 tree unused_op = integer_zerop (arg0) ? op1 : op2;
14038 tem = integer_zerop (arg0) ? op2 : op1;
14039 /* Only optimize constant conditions when the selected branch
14040 has the same type as the COND_EXPR. This avoids optimizing
14041 away "c ? x : throw", where the throw has a void type.
14042 Avoid throwing away that operand which contains label. */
14043 if ((!TREE_SIDE_EFFECTS (unused_op)
14044 || !contains_label_p (unused_op))
14045 && (! VOID_TYPE_P (TREE_TYPE (tem))
14046 || VOID_TYPE_P (type)))
14047 return pedantic_non_lvalue_loc (loc, tem);
14048 return NULL_TREE;
14050 else if (TREE_CODE (arg0) == VECTOR_CST)
14052 if (integer_all_onesp (arg0))
14053 return pedantic_omit_one_operand_loc (loc, type, arg1, arg2);
14054 if (integer_zerop (arg0))
14055 return pedantic_omit_one_operand_loc (loc, type, arg2, arg1);
14057 if ((TREE_CODE (arg1) == VECTOR_CST
14058 || TREE_CODE (arg1) == CONSTRUCTOR)
14059 && (TREE_CODE (arg2) == VECTOR_CST
14060 || TREE_CODE (arg2) == CONSTRUCTOR))
14062 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
14063 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
14064 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
14065 for (i = 0; i < nelts; i++)
14067 tree val = VECTOR_CST_ELT (arg0, i);
14068 if (integer_all_onesp (val))
14069 sel[i] = i;
14070 else if (integer_zerop (val))
14071 sel[i] = nelts + i;
14072 else /* Currently unreachable. */
14073 return NULL_TREE;
14075 tree t = fold_vec_perm (type, arg1, arg2, sel);
14076 if (t != NULL_TREE)
14077 return t;
14081 if (operand_equal_p (arg1, op2, 0))
14082 return pedantic_omit_one_operand_loc (loc, type, arg1, arg0);
14084 /* If we have A op B ? A : C, we may be able to convert this to a
14085 simpler expression, depending on the operation and the values
14086 of B and C. Signed zeros prevent all of these transformations,
14087 for reasons given above each one.
14089 Also try swapping the arguments and inverting the conditional. */
14090 if (COMPARISON_CLASS_P (arg0)
14091 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
14092 arg1, TREE_OPERAND (arg0, 1))
14093 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
14095 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
14096 if (tem)
14097 return tem;
14100 if (COMPARISON_CLASS_P (arg0)
14101 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
14102 op2,
14103 TREE_OPERAND (arg0, 1))
14104 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
14106 location_t loc0 = expr_location_or (arg0, loc);
14107 tem = fold_invert_truthvalue (loc0, arg0);
14108 if (tem && COMPARISON_CLASS_P (tem))
14110 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
14111 if (tem)
14112 return tem;
14116 /* If the second operand is simpler than the third, swap them
14117 since that produces better jump optimization results. */
14118 if (truth_value_p (TREE_CODE (arg0))
14119 && tree_swap_operands_p (op1, op2, false))
14121 location_t loc0 = expr_location_or (arg0, loc);
14122 /* See if this can be inverted. If it can't, possibly because
14123 it was a floating-point inequality comparison, don't do
14124 anything. */
14125 tem = fold_invert_truthvalue (loc0, arg0);
14126 if (tem)
14127 return fold_build3_loc (loc, code, type, tem, op2, op1);
14130 /* Convert A ? 1 : 0 to simply A. */
14131 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
14132 : (integer_onep (op1)
14133 && !VECTOR_TYPE_P (type)))
14134 && integer_zerop (op2)
14135 /* If we try to convert OP0 to our type, the
14136 call to fold will try to move the conversion inside
14137 a COND, which will recurse. In that case, the COND_EXPR
14138 is probably the best choice, so leave it alone. */
14139 && type == TREE_TYPE (arg0))
14140 return pedantic_non_lvalue_loc (loc, arg0);
14142 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
14143 over COND_EXPR in cases such as floating point comparisons. */
14144 if (integer_zerop (op1)
14145 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
14146 : (integer_onep (op2)
14147 && !VECTOR_TYPE_P (type)))
14148 && truth_value_p (TREE_CODE (arg0)))
14149 return pedantic_non_lvalue_loc (loc,
14150 fold_convert_loc (loc, type,
14151 invert_truthvalue_loc (loc,
14152 arg0)));
14154 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
14155 if (TREE_CODE (arg0) == LT_EXPR
14156 && integer_zerop (TREE_OPERAND (arg0, 1))
14157 && integer_zerop (op2)
14158 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
14160 /* sign_bit_p looks through both zero and sign extensions,
14161 but for this optimization only sign extensions are
14162 usable. */
14163 tree tem2 = TREE_OPERAND (arg0, 0);
14164 while (tem != tem2)
14166 if (TREE_CODE (tem2) != NOP_EXPR
14167 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
14169 tem = NULL_TREE;
14170 break;
14172 tem2 = TREE_OPERAND (tem2, 0);
14174 /* sign_bit_p only checks ARG1 bits within A's precision.
14175 If <sign bit of A> has wider type than A, bits outside
14176 of A's precision in <sign bit of A> need to be checked.
14177 If they are all 0, this optimization needs to be done
14178 in unsigned A's type, if they are all 1 in signed A's type,
14179 otherwise this can't be done. */
14180 if (tem
14181 && TYPE_PRECISION (TREE_TYPE (tem))
14182 < TYPE_PRECISION (TREE_TYPE (arg1))
14183 && TYPE_PRECISION (TREE_TYPE (tem))
14184 < TYPE_PRECISION (type))
14186 int inner_width, outer_width;
14187 tree tem_type;
14189 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
14190 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
14191 if (outer_width > TYPE_PRECISION (type))
14192 outer_width = TYPE_PRECISION (type);
14194 wide_int mask = wi::shifted_mask
14195 (inner_width, outer_width - inner_width, false,
14196 TYPE_PRECISION (TREE_TYPE (arg1)));
14198 wide_int common = mask & arg1;
14199 if (common == mask)
14201 tem_type = signed_type_for (TREE_TYPE (tem));
14202 tem = fold_convert_loc (loc, tem_type, tem);
14204 else if (common == 0)
14206 tem_type = unsigned_type_for (TREE_TYPE (tem));
14207 tem = fold_convert_loc (loc, tem_type, tem);
14209 else
14210 tem = NULL;
14213 if (tem)
14214 return
14215 fold_convert_loc (loc, type,
14216 fold_build2_loc (loc, BIT_AND_EXPR,
14217 TREE_TYPE (tem), tem,
14218 fold_convert_loc (loc,
14219 TREE_TYPE (tem),
14220 arg1)));
14223 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
14224 already handled above. */
14225 if (TREE_CODE (arg0) == BIT_AND_EXPR
14226 && integer_onep (TREE_OPERAND (arg0, 1))
14227 && integer_zerop (op2)
14228 && integer_pow2p (arg1))
14230 tree tem = TREE_OPERAND (arg0, 0);
14231 STRIP_NOPS (tem);
14232 if (TREE_CODE (tem) == RSHIFT_EXPR
14233 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
14234 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
14235 tree_to_uhwi (TREE_OPERAND (tem, 1)))
14236 return fold_build2_loc (loc, BIT_AND_EXPR, type,
14237 TREE_OPERAND (tem, 0), arg1);
14240 /* A & N ? N : 0 is simply A & N if N is a power of two. This
14241 is probably obsolete because the first operand should be a
14242 truth value (that's why we have the two cases above), but let's
14243 leave it in until we can confirm this for all front-ends. */
14244 if (integer_zerop (op2)
14245 && TREE_CODE (arg0) == NE_EXPR
14246 && integer_zerop (TREE_OPERAND (arg0, 1))
14247 && integer_pow2p (arg1)
14248 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
14249 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
14250 arg1, OEP_ONLY_CONST))
14251 return pedantic_non_lvalue_loc (loc,
14252 fold_convert_loc (loc, type,
14253 TREE_OPERAND (arg0, 0)));
14255 /* Disable the transformations below for vectors, since
14256 fold_binary_op_with_conditional_arg may undo them immediately,
14257 yielding an infinite loop. */
14258 if (code == VEC_COND_EXPR)
14259 return NULL_TREE;
14261 /* Convert A ? B : 0 into A && B if A and B are truth values. */
14262 if (integer_zerop (op2)
14263 && truth_value_p (TREE_CODE (arg0))
14264 && truth_value_p (TREE_CODE (arg1))
14265 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
14266 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
14267 : TRUTH_ANDIF_EXPR,
14268 type, fold_convert_loc (loc, type, arg0), arg1);
14270 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
14271 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
14272 && truth_value_p (TREE_CODE (arg0))
14273 && truth_value_p (TREE_CODE (arg1))
14274 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
14276 location_t loc0 = expr_location_or (arg0, loc);
14277 /* Only perform transformation if ARG0 is easily inverted. */
14278 tem = fold_invert_truthvalue (loc0, arg0);
14279 if (tem)
14280 return fold_build2_loc (loc, code == VEC_COND_EXPR
14281 ? BIT_IOR_EXPR
14282 : TRUTH_ORIF_EXPR,
14283 type, fold_convert_loc (loc, type, tem),
14284 arg1);
14287 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
14288 if (integer_zerop (arg1)
14289 && truth_value_p (TREE_CODE (arg0))
14290 && truth_value_p (TREE_CODE (op2))
14291 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
14293 location_t loc0 = expr_location_or (arg0, loc);
14294 /* Only perform transformation if ARG0 is easily inverted. */
14295 tem = fold_invert_truthvalue (loc0, arg0);
14296 if (tem)
14297 return fold_build2_loc (loc, code == VEC_COND_EXPR
14298 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
14299 type, fold_convert_loc (loc, type, tem),
14300 op2);
14303 /* Convert A ? 1 : B into A || B if A and B are truth values. */
14304 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
14305 && truth_value_p (TREE_CODE (arg0))
14306 && truth_value_p (TREE_CODE (op2))
14307 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
14308 return fold_build2_loc (loc, code == VEC_COND_EXPR
14309 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
14310 type, fold_convert_loc (loc, type, arg0), op2);
14312 return NULL_TREE;
14314 case CALL_EXPR:
14315 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
14316 of fold_ternary on them. */
14317 gcc_unreachable ();
14319 case BIT_FIELD_REF:
14320 if ((TREE_CODE (arg0) == VECTOR_CST
14321 || (TREE_CODE (arg0) == CONSTRUCTOR
14322 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
14323 && (type == TREE_TYPE (TREE_TYPE (arg0))
14324 || (TREE_CODE (type) == VECTOR_TYPE
14325 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
14327 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
14328 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
14329 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
14330 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
14332 if (n != 0
14333 && (idx % width) == 0
14334 && (n % width) == 0
14335 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
14337 idx = idx / width;
14338 n = n / width;
14340 if (TREE_CODE (arg0) == VECTOR_CST)
14342 if (n == 1)
14343 return VECTOR_CST_ELT (arg0, idx);
14345 tree *vals = XALLOCAVEC (tree, n);
14346 for (unsigned i = 0; i < n; ++i)
14347 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
14348 return build_vector (type, vals);
14351 /* Constructor elements can be subvectors. */
14352 unsigned HOST_WIDE_INT k = 1;
14353 if (CONSTRUCTOR_NELTS (arg0) != 0)
14355 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
14356 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
14357 k = TYPE_VECTOR_SUBPARTS (cons_elem);
14360 /* We keep an exact subset of the constructor elements. */
14361 if ((idx % k) == 0 && (n % k) == 0)
14363 if (CONSTRUCTOR_NELTS (arg0) == 0)
14364 return build_constructor (type, NULL);
14365 idx /= k;
14366 n /= k;
14367 if (n == 1)
14369 if (idx < CONSTRUCTOR_NELTS (arg0))
14370 return CONSTRUCTOR_ELT (arg0, idx)->value;
14371 return build_zero_cst (type);
14374 vec<constructor_elt, va_gc> *vals;
14375 vec_alloc (vals, n);
14376 for (unsigned i = 0;
14377 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
14378 ++i)
14379 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
14380 CONSTRUCTOR_ELT
14381 (arg0, idx + i)->value);
14382 return build_constructor (type, vals);
14384 /* The bitfield references a single constructor element. */
14385 else if (idx + n <= (idx / k + 1) * k)
14387 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
14388 return build_zero_cst (type);
14389 else if (n == k)
14390 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
14391 else
14392 return fold_build3_loc (loc, code, type,
14393 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
14394 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
14399 /* A bit-field-ref that referenced the full argument can be stripped. */
14400 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
14401 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
14402 && integer_zerop (op2))
14403 return fold_convert_loc (loc, type, arg0);
14405 /* On constants we can use native encode/interpret to constant
14406 fold (nearly) all BIT_FIELD_REFs. */
14407 if (CONSTANT_CLASS_P (arg0)
14408 && can_native_interpret_type_p (type)
14409 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
14410 /* This limitation should not be necessary, we just need to
14411 round this up to mode size. */
14412 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
14413 /* Need bit-shifting of the buffer to relax the following. */
14414 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
14416 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
14417 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
14418 unsigned HOST_WIDE_INT clen;
14419 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
14420 /* ??? We cannot tell native_encode_expr to start at
14421 some random byte only. So limit us to a reasonable amount
14422 of work. */
14423 if (clen <= 4096)
14425 unsigned char *b = XALLOCAVEC (unsigned char, clen);
14426 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
14427 if (len > 0
14428 && len * BITS_PER_UNIT >= bitpos + bitsize)
14430 tree v = native_interpret_expr (type,
14431 b + bitpos / BITS_PER_UNIT,
14432 bitsize / BITS_PER_UNIT);
14433 if (v)
14434 return v;
14439 return NULL_TREE;
14441 case FMA_EXPR:
14442 /* For integers we can decompose the FMA if possible. */
14443 if (TREE_CODE (arg0) == INTEGER_CST
14444 && TREE_CODE (arg1) == INTEGER_CST)
14445 return fold_build2_loc (loc, PLUS_EXPR, type,
14446 const_binop (MULT_EXPR, arg0, arg1), arg2);
14447 if (integer_zerop (arg2))
14448 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
14450 return fold_fma (loc, type, arg0, arg1, arg2);
14452 case VEC_PERM_EXPR:
14453 if (TREE_CODE (arg2) == VECTOR_CST)
14455 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask;
14456 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
14457 bool need_mask_canon = false;
14458 bool all_in_vec0 = true;
14459 bool all_in_vec1 = true;
14460 bool maybe_identity = true;
14461 bool single_arg = (op0 == op1);
14462 bool changed = false;
14464 mask = single_arg ? (nelts - 1) : (2 * nelts - 1);
14465 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
14466 for (i = 0; i < nelts; i++)
14468 tree val = VECTOR_CST_ELT (arg2, i);
14469 if (TREE_CODE (val) != INTEGER_CST)
14470 return NULL_TREE;
14472 /* Make sure that the perm value is in an acceptable
14473 range. */
14474 wide_int t = val;
14475 if (wi::gtu_p (t, mask))
14477 need_mask_canon = true;
14478 sel[i] = t.to_uhwi () & mask;
14480 else
14481 sel[i] = t.to_uhwi ();
14483 if (sel[i] < nelts)
14484 all_in_vec1 = false;
14485 else
14486 all_in_vec0 = false;
14488 if ((sel[i] & (nelts-1)) != i)
14489 maybe_identity = false;
14492 if (maybe_identity)
14494 if (all_in_vec0)
14495 return op0;
14496 if (all_in_vec1)
14497 return op1;
14500 if (all_in_vec0)
14501 op1 = op0;
14502 else if (all_in_vec1)
14504 op0 = op1;
14505 for (i = 0; i < nelts; i++)
14506 sel[i] -= nelts;
14507 need_mask_canon = true;
14510 if ((TREE_CODE (op0) == VECTOR_CST
14511 || TREE_CODE (op0) == CONSTRUCTOR)
14512 && (TREE_CODE (op1) == VECTOR_CST
14513 || TREE_CODE (op1) == CONSTRUCTOR))
14515 tree t = fold_vec_perm (type, op0, op1, sel);
14516 if (t != NULL_TREE)
14517 return t;
14520 if (op0 == op1 && !single_arg)
14521 changed = true;
14523 if (need_mask_canon && arg2 == op2)
14525 tree *tsel = XALLOCAVEC (tree, nelts);
14526 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
14527 for (i = 0; i < nelts; i++)
14528 tsel[i] = build_int_cst (eltype, sel[i]);
14529 op2 = build_vector (TREE_TYPE (arg2), tsel);
14530 changed = true;
14533 if (changed)
14534 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
14536 return NULL_TREE;
14538 default:
14539 return NULL_TREE;
14540 } /* switch (code) */
14543 /* Perform constant folding and related simplification of EXPR.
14544 The related simplifications include x*1 => x, x*0 => 0, etc.,
14545 and application of the associative law.
14546 NOP_EXPR conversions may be removed freely (as long as we
14547 are careful not to change the type of the overall expression).
14548 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
14549 but we can constant-fold them if they have constant operands. */
14551 #ifdef ENABLE_FOLD_CHECKING
14552 # define fold(x) fold_1 (x)
14553 static tree fold_1 (tree);
14554 static
14555 #endif
14556 tree
14557 fold (tree expr)
14559 const tree t = expr;
14560 enum tree_code code = TREE_CODE (t);
14561 enum tree_code_class kind = TREE_CODE_CLASS (code);
14562 tree tem;
14563 location_t loc = EXPR_LOCATION (expr);
14565 /* Return right away if a constant. */
14566 if (kind == tcc_constant)
14567 return t;
14569 /* CALL_EXPR-like objects with variable numbers of operands are
14570 treated specially. */
14571 if (kind == tcc_vl_exp)
14573 if (code == CALL_EXPR)
14575 tem = fold_call_expr (loc, expr, false);
14576 return tem ? tem : expr;
14578 return expr;
14581 if (IS_EXPR_CODE_CLASS (kind))
14583 tree type = TREE_TYPE (t);
14584 tree op0, op1, op2;
14586 switch (TREE_CODE_LENGTH (code))
14588 case 1:
14589 op0 = TREE_OPERAND (t, 0);
14590 tem = fold_unary_loc (loc, code, type, op0);
14591 return tem ? tem : expr;
14592 case 2:
14593 op0 = TREE_OPERAND (t, 0);
14594 op1 = TREE_OPERAND (t, 1);
14595 tem = fold_binary_loc (loc, code, type, op0, op1);
14596 return tem ? tem : expr;
14597 case 3:
14598 op0 = TREE_OPERAND (t, 0);
14599 op1 = TREE_OPERAND (t, 1);
14600 op2 = TREE_OPERAND (t, 2);
14601 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
14602 return tem ? tem : expr;
14603 default:
14604 break;
14608 switch (code)
14610 case ARRAY_REF:
14612 tree op0 = TREE_OPERAND (t, 0);
14613 tree op1 = TREE_OPERAND (t, 1);
14615 if (TREE_CODE (op1) == INTEGER_CST
14616 && TREE_CODE (op0) == CONSTRUCTOR
14617 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
14619 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (op0);
14620 unsigned HOST_WIDE_INT end = vec_safe_length (elts);
14621 unsigned HOST_WIDE_INT begin = 0;
14623 /* Find a matching index by means of a binary search. */
14624 while (begin != end)
14626 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
14627 tree index = (*elts)[middle].index;
14629 if (TREE_CODE (index) == INTEGER_CST
14630 && tree_int_cst_lt (index, op1))
14631 begin = middle + 1;
14632 else if (TREE_CODE (index) == INTEGER_CST
14633 && tree_int_cst_lt (op1, index))
14634 end = middle;
14635 else if (TREE_CODE (index) == RANGE_EXPR
14636 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
14637 begin = middle + 1;
14638 else if (TREE_CODE (index) == RANGE_EXPR
14639 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
14640 end = middle;
14641 else
14642 return (*elts)[middle].value;
14646 return t;
14649 /* Return a VECTOR_CST if possible. */
14650 case CONSTRUCTOR:
14652 tree type = TREE_TYPE (t);
14653 if (TREE_CODE (type) != VECTOR_TYPE)
14654 return t;
14656 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
14657 unsigned HOST_WIDE_INT idx, pos = 0;
14658 tree value;
14660 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, value)
14662 if (!CONSTANT_CLASS_P (value))
14663 return t;
14664 if (TREE_CODE (value) == VECTOR_CST)
14666 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
14667 vec[pos++] = VECTOR_CST_ELT (value, i);
14669 else
14670 vec[pos++] = value;
14672 for (; pos < TYPE_VECTOR_SUBPARTS (type); ++pos)
14673 vec[pos] = build_zero_cst (TREE_TYPE (type));
14675 return build_vector (type, vec);
14678 case CONST_DECL:
14679 return fold (DECL_INITIAL (t));
14681 default:
14682 return t;
14683 } /* switch (code) */
14686 #ifdef ENABLE_FOLD_CHECKING
14687 #undef fold
14689 static void fold_checksum_tree (const_tree, struct md5_ctx *,
14690 hash_table<pointer_hash<const tree_node> > *);
14691 static void fold_check_failed (const_tree, const_tree);
14692 void print_fold_checksum (const_tree);
14694 /* When --enable-checking=fold, compute a digest of expr before
14695 and after actual fold call to see if fold did not accidentally
14696 change original expr. */
14698 tree
14699 fold (tree expr)
14701 tree ret;
14702 struct md5_ctx ctx;
14703 unsigned char checksum_before[16], checksum_after[16];
14704 hash_table<pointer_hash<const tree_node> > ht (32);
14706 md5_init_ctx (&ctx);
14707 fold_checksum_tree (expr, &ctx, &ht);
14708 md5_finish_ctx (&ctx, checksum_before);
14709 ht.empty ();
14711 ret = fold_1 (expr);
14713 md5_init_ctx (&ctx);
14714 fold_checksum_tree (expr, &ctx, &ht);
14715 md5_finish_ctx (&ctx, checksum_after);
14717 if (memcmp (checksum_before, checksum_after, 16))
14718 fold_check_failed (expr, ret);
14720 return ret;
14723 void
14724 print_fold_checksum (const_tree expr)
14726 struct md5_ctx ctx;
14727 unsigned char checksum[16], cnt;
14728 hash_table<pointer_hash<const tree_node> > ht (32);
14730 md5_init_ctx (&ctx);
14731 fold_checksum_tree (expr, &ctx, &ht);
14732 md5_finish_ctx (&ctx, checksum);
14733 for (cnt = 0; cnt < 16; ++cnt)
14734 fprintf (stderr, "%02x", checksum[cnt]);
14735 putc ('\n', stderr);
14738 static void
14739 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
14741 internal_error ("fold check: original tree changed by fold");
14744 static void
14745 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
14746 hash_table<pointer_hash <const tree_node> > *ht)
14748 const tree_node **slot;
14749 enum tree_code code;
14750 union tree_node buf;
14751 int i, len;
14753 recursive_label:
14754 if (expr == NULL)
14755 return;
14756 slot = ht->find_slot (expr, INSERT);
14757 if (*slot != NULL)
14758 return;
14759 *slot = expr;
14760 code = TREE_CODE (expr);
14761 if (TREE_CODE_CLASS (code) == tcc_declaration
14762 && DECL_ASSEMBLER_NAME_SET_P (expr))
14764 /* Allow DECL_ASSEMBLER_NAME to be modified. */
14765 memcpy ((char *) &buf, expr, tree_size (expr));
14766 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
14767 expr = (tree) &buf;
14769 else if (TREE_CODE_CLASS (code) == tcc_type
14770 && (TYPE_POINTER_TO (expr)
14771 || TYPE_REFERENCE_TO (expr)
14772 || TYPE_CACHED_VALUES_P (expr)
14773 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
14774 || TYPE_NEXT_VARIANT (expr)))
14776 /* Allow these fields to be modified. */
14777 tree tmp;
14778 memcpy ((char *) &buf, expr, tree_size (expr));
14779 expr = tmp = (tree) &buf;
14780 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
14781 TYPE_POINTER_TO (tmp) = NULL;
14782 TYPE_REFERENCE_TO (tmp) = NULL;
14783 TYPE_NEXT_VARIANT (tmp) = NULL;
14784 if (TYPE_CACHED_VALUES_P (tmp))
14786 TYPE_CACHED_VALUES_P (tmp) = 0;
14787 TYPE_CACHED_VALUES (tmp) = NULL;
14790 md5_process_bytes (expr, tree_size (expr), ctx);
14791 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
14792 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
14793 if (TREE_CODE_CLASS (code) != tcc_type
14794 && TREE_CODE_CLASS (code) != tcc_declaration
14795 && code != TREE_LIST
14796 && code != SSA_NAME
14797 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
14798 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
14799 switch (TREE_CODE_CLASS (code))
14801 case tcc_constant:
14802 switch (code)
14804 case STRING_CST:
14805 md5_process_bytes (TREE_STRING_POINTER (expr),
14806 TREE_STRING_LENGTH (expr), ctx);
14807 break;
14808 case COMPLEX_CST:
14809 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
14810 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
14811 break;
14812 case VECTOR_CST:
14813 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
14814 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
14815 break;
14816 default:
14817 break;
14819 break;
14820 case tcc_exceptional:
14821 switch (code)
14823 case TREE_LIST:
14824 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
14825 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
14826 expr = TREE_CHAIN (expr);
14827 goto recursive_label;
14828 break;
14829 case TREE_VEC:
14830 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
14831 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
14832 break;
14833 default:
14834 break;
14836 break;
14837 case tcc_expression:
14838 case tcc_reference:
14839 case tcc_comparison:
14840 case tcc_unary:
14841 case tcc_binary:
14842 case tcc_statement:
14843 case tcc_vl_exp:
14844 len = TREE_OPERAND_LENGTH (expr);
14845 for (i = 0; i < len; ++i)
14846 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
14847 break;
14848 case tcc_declaration:
14849 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
14850 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
14851 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
14853 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
14854 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
14855 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
14856 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
14857 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
14860 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
14862 if (TREE_CODE (expr) == FUNCTION_DECL)
14863 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
14864 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
14865 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
14867 break;
14868 case tcc_type:
14869 if (TREE_CODE (expr) == ENUMERAL_TYPE)
14870 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
14871 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
14872 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
14873 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
14874 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
14875 if (INTEGRAL_TYPE_P (expr)
14876 || SCALAR_FLOAT_TYPE_P (expr))
14878 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
14879 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
14881 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
14882 if (TREE_CODE (expr) == RECORD_TYPE
14883 || TREE_CODE (expr) == UNION_TYPE
14884 || TREE_CODE (expr) == QUAL_UNION_TYPE)
14885 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
14886 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
14887 break;
14888 default:
14889 break;
14893 /* Helper function for outputting the checksum of a tree T. When
14894 debugging with gdb, you can "define mynext" to be "next" followed
14895 by "call debug_fold_checksum (op0)", then just trace down till the
14896 outputs differ. */
14898 DEBUG_FUNCTION void
14899 debug_fold_checksum (const_tree t)
14901 int i;
14902 unsigned char checksum[16];
14903 struct md5_ctx ctx;
14904 hash_table<pointer_hash<const tree_node> > ht (32);
14906 md5_init_ctx (&ctx);
14907 fold_checksum_tree (t, &ctx, &ht);
14908 md5_finish_ctx (&ctx, checksum);
14909 ht.empty ();
14911 for (i = 0; i < 16; i++)
14912 fprintf (stderr, "%d ", checksum[i]);
14914 fprintf (stderr, "\n");
14917 #endif
14919 /* Fold a unary tree expression with code CODE of type TYPE with an
14920 operand OP0. LOC is the location of the resulting expression.
14921 Return a folded expression if successful. Otherwise, return a tree
14922 expression with code CODE of type TYPE with an operand OP0. */
14924 tree
14925 fold_build1_stat_loc (location_t loc,
14926 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
14928 tree tem;
14929 #ifdef ENABLE_FOLD_CHECKING
14930 unsigned char checksum_before[16], checksum_after[16];
14931 struct md5_ctx ctx;
14932 hash_table<pointer_hash<const tree_node> > ht (32);
14934 md5_init_ctx (&ctx);
14935 fold_checksum_tree (op0, &ctx, &ht);
14936 md5_finish_ctx (&ctx, checksum_before);
14937 ht.empty ();
14938 #endif
14940 tem = fold_unary_loc (loc, code, type, op0);
14941 if (!tem)
14942 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
14944 #ifdef ENABLE_FOLD_CHECKING
14945 md5_init_ctx (&ctx);
14946 fold_checksum_tree (op0, &ctx, &ht);
14947 md5_finish_ctx (&ctx, checksum_after);
14949 if (memcmp (checksum_before, checksum_after, 16))
14950 fold_check_failed (op0, tem);
14951 #endif
14952 return tem;
14955 /* Fold a binary tree expression with code CODE of type TYPE with
14956 operands OP0 and OP1. LOC is the location of the resulting
14957 expression. Return a folded expression if successful. Otherwise,
14958 return a tree expression with code CODE of type TYPE with operands
14959 OP0 and OP1. */
14961 tree
14962 fold_build2_stat_loc (location_t loc,
14963 enum tree_code code, tree type, tree op0, tree op1
14964 MEM_STAT_DECL)
14966 tree tem;
14967 #ifdef ENABLE_FOLD_CHECKING
14968 unsigned char checksum_before_op0[16],
14969 checksum_before_op1[16],
14970 checksum_after_op0[16],
14971 checksum_after_op1[16];
14972 struct md5_ctx ctx;
14973 hash_table<pointer_hash<const tree_node> > ht (32);
14975 md5_init_ctx (&ctx);
14976 fold_checksum_tree (op0, &ctx, &ht);
14977 md5_finish_ctx (&ctx, checksum_before_op0);
14978 ht.empty ();
14980 md5_init_ctx (&ctx);
14981 fold_checksum_tree (op1, &ctx, &ht);
14982 md5_finish_ctx (&ctx, checksum_before_op1);
14983 ht.empty ();
14984 #endif
14986 tem = fold_binary_loc (loc, code, type, op0, op1);
14987 if (!tem)
14988 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
14990 #ifdef ENABLE_FOLD_CHECKING
14991 md5_init_ctx (&ctx);
14992 fold_checksum_tree (op0, &ctx, &ht);
14993 md5_finish_ctx (&ctx, checksum_after_op0);
14994 ht.empty ();
14996 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14997 fold_check_failed (op0, tem);
14999 md5_init_ctx (&ctx);
15000 fold_checksum_tree (op1, &ctx, &ht);
15001 md5_finish_ctx (&ctx, checksum_after_op1);
15003 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
15004 fold_check_failed (op1, tem);
15005 #endif
15006 return tem;
15009 /* Fold a ternary tree expression with code CODE of type TYPE with
15010 operands OP0, OP1, and OP2. Return a folded expression if
15011 successful. Otherwise, return a tree expression with code CODE of
15012 type TYPE with operands OP0, OP1, and OP2. */
15014 tree
15015 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
15016 tree op0, tree op1, tree op2 MEM_STAT_DECL)
15018 tree tem;
15019 #ifdef ENABLE_FOLD_CHECKING
15020 unsigned char checksum_before_op0[16],
15021 checksum_before_op1[16],
15022 checksum_before_op2[16],
15023 checksum_after_op0[16],
15024 checksum_after_op1[16],
15025 checksum_after_op2[16];
15026 struct md5_ctx ctx;
15027 hash_table<pointer_hash<const tree_node> > ht (32);
15029 md5_init_ctx (&ctx);
15030 fold_checksum_tree (op0, &ctx, &ht);
15031 md5_finish_ctx (&ctx, checksum_before_op0);
15032 ht.empty ();
15034 md5_init_ctx (&ctx);
15035 fold_checksum_tree (op1, &ctx, &ht);
15036 md5_finish_ctx (&ctx, checksum_before_op1);
15037 ht.empty ();
15039 md5_init_ctx (&ctx);
15040 fold_checksum_tree (op2, &ctx, &ht);
15041 md5_finish_ctx (&ctx, checksum_before_op2);
15042 ht.empty ();
15043 #endif
15045 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
15046 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
15047 if (!tem)
15048 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
15050 #ifdef ENABLE_FOLD_CHECKING
15051 md5_init_ctx (&ctx);
15052 fold_checksum_tree (op0, &ctx, &ht);
15053 md5_finish_ctx (&ctx, checksum_after_op0);
15054 ht.empty ();
15056 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
15057 fold_check_failed (op0, tem);
15059 md5_init_ctx (&ctx);
15060 fold_checksum_tree (op1, &ctx, &ht);
15061 md5_finish_ctx (&ctx, checksum_after_op1);
15062 ht.empty ();
15064 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
15065 fold_check_failed (op1, tem);
15067 md5_init_ctx (&ctx);
15068 fold_checksum_tree (op2, &ctx, &ht);
15069 md5_finish_ctx (&ctx, checksum_after_op2);
15071 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
15072 fold_check_failed (op2, tem);
15073 #endif
15074 return tem;
15077 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
15078 arguments in ARGARRAY, and a null static chain.
15079 Return a folded expression if successful. Otherwise, return a CALL_EXPR
15080 of type TYPE from the given operands as constructed by build_call_array. */
15082 tree
15083 fold_build_call_array_loc (location_t loc, tree type, tree fn,
15084 int nargs, tree *argarray)
15086 tree tem;
15087 #ifdef ENABLE_FOLD_CHECKING
15088 unsigned char checksum_before_fn[16],
15089 checksum_before_arglist[16],
15090 checksum_after_fn[16],
15091 checksum_after_arglist[16];
15092 struct md5_ctx ctx;
15093 hash_table<pointer_hash<const tree_node> > ht (32);
15094 int i;
15096 md5_init_ctx (&ctx);
15097 fold_checksum_tree (fn, &ctx, &ht);
15098 md5_finish_ctx (&ctx, checksum_before_fn);
15099 ht.empty ();
15101 md5_init_ctx (&ctx);
15102 for (i = 0; i < nargs; i++)
15103 fold_checksum_tree (argarray[i], &ctx, &ht);
15104 md5_finish_ctx (&ctx, checksum_before_arglist);
15105 ht.empty ();
15106 #endif
15108 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
15110 #ifdef ENABLE_FOLD_CHECKING
15111 md5_init_ctx (&ctx);
15112 fold_checksum_tree (fn, &ctx, &ht);
15113 md5_finish_ctx (&ctx, checksum_after_fn);
15114 ht.empty ();
15116 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
15117 fold_check_failed (fn, tem);
15119 md5_init_ctx (&ctx);
15120 for (i = 0; i < nargs; i++)
15121 fold_checksum_tree (argarray[i], &ctx, &ht);
15122 md5_finish_ctx (&ctx, checksum_after_arglist);
15124 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
15125 fold_check_failed (NULL_TREE, tem);
15126 #endif
15127 return tem;
15130 /* Perform constant folding and related simplification of initializer
15131 expression EXPR. These behave identically to "fold_buildN" but ignore
15132 potential run-time traps and exceptions that fold must preserve. */
15134 #define START_FOLD_INIT \
15135 int saved_signaling_nans = flag_signaling_nans;\
15136 int saved_trapping_math = flag_trapping_math;\
15137 int saved_rounding_math = flag_rounding_math;\
15138 int saved_trapv = flag_trapv;\
15139 int saved_folding_initializer = folding_initializer;\
15140 flag_signaling_nans = 0;\
15141 flag_trapping_math = 0;\
15142 flag_rounding_math = 0;\
15143 flag_trapv = 0;\
15144 folding_initializer = 1;
15146 #define END_FOLD_INIT \
15147 flag_signaling_nans = saved_signaling_nans;\
15148 flag_trapping_math = saved_trapping_math;\
15149 flag_rounding_math = saved_rounding_math;\
15150 flag_trapv = saved_trapv;\
15151 folding_initializer = saved_folding_initializer;
15153 tree
15154 fold_build1_initializer_loc (location_t loc, enum tree_code code,
15155 tree type, tree op)
15157 tree result;
15158 START_FOLD_INIT;
15160 result = fold_build1_loc (loc, code, type, op);
15162 END_FOLD_INIT;
15163 return result;
15166 tree
15167 fold_build2_initializer_loc (location_t loc, enum tree_code code,
15168 tree type, tree op0, tree op1)
15170 tree result;
15171 START_FOLD_INIT;
15173 result = fold_build2_loc (loc, code, type, op0, op1);
15175 END_FOLD_INIT;
15176 return result;
15179 tree
15180 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
15181 int nargs, tree *argarray)
15183 tree result;
15184 START_FOLD_INIT;
15186 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
15188 END_FOLD_INIT;
15189 return result;
15192 #undef START_FOLD_INIT
15193 #undef END_FOLD_INIT
15195 /* Determine if first argument is a multiple of second argument. Return 0 if
15196 it is not, or we cannot easily determined it to be.
15198 An example of the sort of thing we care about (at this point; this routine
15199 could surely be made more general, and expanded to do what the *_DIV_EXPR's
15200 fold cases do now) is discovering that
15202 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
15204 is a multiple of
15206 SAVE_EXPR (J * 8)
15208 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
15210 This code also handles discovering that
15212 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
15214 is a multiple of 8 so we don't have to worry about dealing with a
15215 possible remainder.
15217 Note that we *look* inside a SAVE_EXPR only to determine how it was
15218 calculated; it is not safe for fold to do much of anything else with the
15219 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
15220 at run time. For example, the latter example above *cannot* be implemented
15221 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
15222 evaluation time of the original SAVE_EXPR is not necessarily the same at
15223 the time the new expression is evaluated. The only optimization of this
15224 sort that would be valid is changing
15226 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
15228 divided by 8 to
15230 SAVE_EXPR (I) * SAVE_EXPR (J)
15232 (where the same SAVE_EXPR (J) is used in the original and the
15233 transformed version). */
15236 multiple_of_p (tree type, const_tree top, const_tree bottom)
15238 if (operand_equal_p (top, bottom, 0))
15239 return 1;
15241 if (TREE_CODE (type) != INTEGER_TYPE)
15242 return 0;
15244 switch (TREE_CODE (top))
15246 case BIT_AND_EXPR:
15247 /* Bitwise and provides a power of two multiple. If the mask is
15248 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
15249 if (!integer_pow2p (bottom))
15250 return 0;
15251 /* FALLTHRU */
15253 case MULT_EXPR:
15254 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
15255 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
15257 case PLUS_EXPR:
15258 case MINUS_EXPR:
15259 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
15260 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
15262 case LSHIFT_EXPR:
15263 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
15265 tree op1, t1;
15267 op1 = TREE_OPERAND (top, 1);
15268 /* const_binop may not detect overflow correctly,
15269 so check for it explicitly here. */
15270 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
15271 && 0 != (t1 = fold_convert (type,
15272 const_binop (LSHIFT_EXPR,
15273 size_one_node,
15274 op1)))
15275 && !TREE_OVERFLOW (t1))
15276 return multiple_of_p (type, t1, bottom);
15278 return 0;
15280 case NOP_EXPR:
15281 /* Can't handle conversions from non-integral or wider integral type. */
15282 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
15283 || (TYPE_PRECISION (type)
15284 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
15285 return 0;
15287 /* .. fall through ... */
15289 case SAVE_EXPR:
15290 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
15292 case COND_EXPR:
15293 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
15294 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
15296 case INTEGER_CST:
15297 if (TREE_CODE (bottom) != INTEGER_CST
15298 || integer_zerop (bottom)
15299 || (TYPE_UNSIGNED (type)
15300 && (tree_int_cst_sgn (top) < 0
15301 || tree_int_cst_sgn (bottom) < 0)))
15302 return 0;
15303 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
15304 SIGNED);
15306 default:
15307 return 0;
15311 /* Return true if CODE or TYPE is known to be non-negative. */
15313 static bool
15314 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
15316 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
15317 && truth_value_p (code))
15318 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
15319 have a signed:1 type (where the value is -1 and 0). */
15320 return true;
15321 return false;
15324 /* Return true if (CODE OP0) is known to be non-negative. If the return
15325 value is based on the assumption that signed overflow is undefined,
15326 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15327 *STRICT_OVERFLOW_P. */
15329 bool
15330 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
15331 bool *strict_overflow_p)
15333 if (TYPE_UNSIGNED (type))
15334 return true;
15336 switch (code)
15338 case ABS_EXPR:
15339 /* We can't return 1 if flag_wrapv is set because
15340 ABS_EXPR<INT_MIN> = INT_MIN. */
15341 if (!INTEGRAL_TYPE_P (type))
15342 return true;
15343 if (TYPE_OVERFLOW_UNDEFINED (type))
15345 *strict_overflow_p = true;
15346 return true;
15348 break;
15350 case NON_LVALUE_EXPR:
15351 case FLOAT_EXPR:
15352 case FIX_TRUNC_EXPR:
15353 return tree_expr_nonnegative_warnv_p (op0,
15354 strict_overflow_p);
15356 case NOP_EXPR:
15358 tree inner_type = TREE_TYPE (op0);
15359 tree outer_type = type;
15361 if (TREE_CODE (outer_type) == REAL_TYPE)
15363 if (TREE_CODE (inner_type) == REAL_TYPE)
15364 return tree_expr_nonnegative_warnv_p (op0,
15365 strict_overflow_p);
15366 if (INTEGRAL_TYPE_P (inner_type))
15368 if (TYPE_UNSIGNED (inner_type))
15369 return true;
15370 return tree_expr_nonnegative_warnv_p (op0,
15371 strict_overflow_p);
15374 else if (INTEGRAL_TYPE_P (outer_type))
15376 if (TREE_CODE (inner_type) == REAL_TYPE)
15377 return tree_expr_nonnegative_warnv_p (op0,
15378 strict_overflow_p);
15379 if (INTEGRAL_TYPE_P (inner_type))
15380 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
15381 && TYPE_UNSIGNED (inner_type);
15384 break;
15386 default:
15387 return tree_simple_nonnegative_warnv_p (code, type);
15390 /* We don't know sign of `t', so be conservative and return false. */
15391 return false;
15394 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
15395 value is based on the assumption that signed overflow is undefined,
15396 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15397 *STRICT_OVERFLOW_P. */
15399 bool
15400 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
15401 tree op1, bool *strict_overflow_p)
15403 if (TYPE_UNSIGNED (type))
15404 return true;
15406 switch (code)
15408 case POINTER_PLUS_EXPR:
15409 case PLUS_EXPR:
15410 if (FLOAT_TYPE_P (type))
15411 return (tree_expr_nonnegative_warnv_p (op0,
15412 strict_overflow_p)
15413 && tree_expr_nonnegative_warnv_p (op1,
15414 strict_overflow_p));
15416 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
15417 both unsigned and at least 2 bits shorter than the result. */
15418 if (TREE_CODE (type) == INTEGER_TYPE
15419 && TREE_CODE (op0) == NOP_EXPR
15420 && TREE_CODE (op1) == NOP_EXPR)
15422 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
15423 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
15424 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
15425 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
15427 unsigned int prec = MAX (TYPE_PRECISION (inner1),
15428 TYPE_PRECISION (inner2)) + 1;
15429 return prec < TYPE_PRECISION (type);
15432 break;
15434 case MULT_EXPR:
15435 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
15437 /* x * x is always non-negative for floating point x
15438 or without overflow. */
15439 if (operand_equal_p (op0, op1, 0)
15440 || (tree_expr_nonnegative_warnv_p (op0, strict_overflow_p)
15441 && tree_expr_nonnegative_warnv_p (op1, strict_overflow_p)))
15443 if (TYPE_OVERFLOW_UNDEFINED (type))
15444 *strict_overflow_p = true;
15445 return true;
15449 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
15450 both unsigned and their total bits is shorter than the result. */
15451 if (TREE_CODE (type) == INTEGER_TYPE
15452 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
15453 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
15455 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
15456 ? TREE_TYPE (TREE_OPERAND (op0, 0))
15457 : TREE_TYPE (op0);
15458 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
15459 ? TREE_TYPE (TREE_OPERAND (op1, 0))
15460 : TREE_TYPE (op1);
15462 bool unsigned0 = TYPE_UNSIGNED (inner0);
15463 bool unsigned1 = TYPE_UNSIGNED (inner1);
15465 if (TREE_CODE (op0) == INTEGER_CST)
15466 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
15468 if (TREE_CODE (op1) == INTEGER_CST)
15469 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
15471 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
15472 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
15474 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
15475 ? tree_int_cst_min_precision (op0, UNSIGNED)
15476 : TYPE_PRECISION (inner0);
15478 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
15479 ? tree_int_cst_min_precision (op1, UNSIGNED)
15480 : TYPE_PRECISION (inner1);
15482 return precision0 + precision1 < TYPE_PRECISION (type);
15485 return false;
15487 case BIT_AND_EXPR:
15488 case MAX_EXPR:
15489 return (tree_expr_nonnegative_warnv_p (op0,
15490 strict_overflow_p)
15491 || tree_expr_nonnegative_warnv_p (op1,
15492 strict_overflow_p));
15494 case BIT_IOR_EXPR:
15495 case BIT_XOR_EXPR:
15496 case MIN_EXPR:
15497 case RDIV_EXPR:
15498 case TRUNC_DIV_EXPR:
15499 case CEIL_DIV_EXPR:
15500 case FLOOR_DIV_EXPR:
15501 case ROUND_DIV_EXPR:
15502 return (tree_expr_nonnegative_warnv_p (op0,
15503 strict_overflow_p)
15504 && tree_expr_nonnegative_warnv_p (op1,
15505 strict_overflow_p));
15507 case TRUNC_MOD_EXPR:
15508 case CEIL_MOD_EXPR:
15509 case FLOOR_MOD_EXPR:
15510 case ROUND_MOD_EXPR:
15511 return tree_expr_nonnegative_warnv_p (op0,
15512 strict_overflow_p);
15513 default:
15514 return tree_simple_nonnegative_warnv_p (code, type);
15517 /* We don't know sign of `t', so be conservative and return false. */
15518 return false;
15521 /* Return true if T is known to be non-negative. If the return
15522 value is based on the assumption that signed overflow is undefined,
15523 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15524 *STRICT_OVERFLOW_P. */
15526 bool
15527 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
15529 if (TYPE_UNSIGNED (TREE_TYPE (t)))
15530 return true;
15532 switch (TREE_CODE (t))
15534 case INTEGER_CST:
15535 return tree_int_cst_sgn (t) >= 0;
15537 case REAL_CST:
15538 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
15540 case FIXED_CST:
15541 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
15543 case COND_EXPR:
15544 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
15545 strict_overflow_p)
15546 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
15547 strict_overflow_p));
15548 default:
15549 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
15550 TREE_TYPE (t));
15552 /* We don't know sign of `t', so be conservative and return false. */
15553 return false;
15556 /* Return true if T is known to be non-negative. If the return
15557 value is based on the assumption that signed overflow is undefined,
15558 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15559 *STRICT_OVERFLOW_P. */
15561 bool
15562 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
15563 tree arg0, tree arg1, bool *strict_overflow_p)
15565 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
15566 switch (DECL_FUNCTION_CODE (fndecl))
15568 CASE_FLT_FN (BUILT_IN_ACOS):
15569 CASE_FLT_FN (BUILT_IN_ACOSH):
15570 CASE_FLT_FN (BUILT_IN_CABS):
15571 CASE_FLT_FN (BUILT_IN_COSH):
15572 CASE_FLT_FN (BUILT_IN_ERFC):
15573 CASE_FLT_FN (BUILT_IN_EXP):
15574 CASE_FLT_FN (BUILT_IN_EXP10):
15575 CASE_FLT_FN (BUILT_IN_EXP2):
15576 CASE_FLT_FN (BUILT_IN_FABS):
15577 CASE_FLT_FN (BUILT_IN_FDIM):
15578 CASE_FLT_FN (BUILT_IN_HYPOT):
15579 CASE_FLT_FN (BUILT_IN_POW10):
15580 CASE_INT_FN (BUILT_IN_FFS):
15581 CASE_INT_FN (BUILT_IN_PARITY):
15582 CASE_INT_FN (BUILT_IN_POPCOUNT):
15583 CASE_INT_FN (BUILT_IN_CLZ):
15584 CASE_INT_FN (BUILT_IN_CLRSB):
15585 case BUILT_IN_BSWAP32:
15586 case BUILT_IN_BSWAP64:
15587 /* Always true. */
15588 return true;
15590 CASE_FLT_FN (BUILT_IN_SQRT):
15591 /* sqrt(-0.0) is -0.0. */
15592 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
15593 return true;
15594 return tree_expr_nonnegative_warnv_p (arg0,
15595 strict_overflow_p);
15597 CASE_FLT_FN (BUILT_IN_ASINH):
15598 CASE_FLT_FN (BUILT_IN_ATAN):
15599 CASE_FLT_FN (BUILT_IN_ATANH):
15600 CASE_FLT_FN (BUILT_IN_CBRT):
15601 CASE_FLT_FN (BUILT_IN_CEIL):
15602 CASE_FLT_FN (BUILT_IN_ERF):
15603 CASE_FLT_FN (BUILT_IN_EXPM1):
15604 CASE_FLT_FN (BUILT_IN_FLOOR):
15605 CASE_FLT_FN (BUILT_IN_FMOD):
15606 CASE_FLT_FN (BUILT_IN_FREXP):
15607 CASE_FLT_FN (BUILT_IN_ICEIL):
15608 CASE_FLT_FN (BUILT_IN_IFLOOR):
15609 CASE_FLT_FN (BUILT_IN_IRINT):
15610 CASE_FLT_FN (BUILT_IN_IROUND):
15611 CASE_FLT_FN (BUILT_IN_LCEIL):
15612 CASE_FLT_FN (BUILT_IN_LDEXP):
15613 CASE_FLT_FN (BUILT_IN_LFLOOR):
15614 CASE_FLT_FN (BUILT_IN_LLCEIL):
15615 CASE_FLT_FN (BUILT_IN_LLFLOOR):
15616 CASE_FLT_FN (BUILT_IN_LLRINT):
15617 CASE_FLT_FN (BUILT_IN_LLROUND):
15618 CASE_FLT_FN (BUILT_IN_LRINT):
15619 CASE_FLT_FN (BUILT_IN_LROUND):
15620 CASE_FLT_FN (BUILT_IN_MODF):
15621 CASE_FLT_FN (BUILT_IN_NEARBYINT):
15622 CASE_FLT_FN (BUILT_IN_RINT):
15623 CASE_FLT_FN (BUILT_IN_ROUND):
15624 CASE_FLT_FN (BUILT_IN_SCALB):
15625 CASE_FLT_FN (BUILT_IN_SCALBLN):
15626 CASE_FLT_FN (BUILT_IN_SCALBN):
15627 CASE_FLT_FN (BUILT_IN_SIGNBIT):
15628 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
15629 CASE_FLT_FN (BUILT_IN_SINH):
15630 CASE_FLT_FN (BUILT_IN_TANH):
15631 CASE_FLT_FN (BUILT_IN_TRUNC):
15632 /* True if the 1st argument is nonnegative. */
15633 return tree_expr_nonnegative_warnv_p (arg0,
15634 strict_overflow_p);
15636 CASE_FLT_FN (BUILT_IN_FMAX):
15637 /* True if the 1st OR 2nd arguments are nonnegative. */
15638 return (tree_expr_nonnegative_warnv_p (arg0,
15639 strict_overflow_p)
15640 || (tree_expr_nonnegative_warnv_p (arg1,
15641 strict_overflow_p)));
15643 CASE_FLT_FN (BUILT_IN_FMIN):
15644 /* True if the 1st AND 2nd arguments are nonnegative. */
15645 return (tree_expr_nonnegative_warnv_p (arg0,
15646 strict_overflow_p)
15647 && (tree_expr_nonnegative_warnv_p (arg1,
15648 strict_overflow_p)));
15650 CASE_FLT_FN (BUILT_IN_COPYSIGN):
15651 /* True if the 2nd argument is nonnegative. */
15652 return tree_expr_nonnegative_warnv_p (arg1,
15653 strict_overflow_p);
15655 CASE_FLT_FN (BUILT_IN_POWI):
15656 /* True if the 1st argument is nonnegative or the second
15657 argument is an even integer. */
15658 if (TREE_CODE (arg1) == INTEGER_CST
15659 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
15660 return true;
15661 return tree_expr_nonnegative_warnv_p (arg0,
15662 strict_overflow_p);
15664 CASE_FLT_FN (BUILT_IN_POW):
15665 /* True if the 1st argument is nonnegative or the second
15666 argument is an even integer valued real. */
15667 if (TREE_CODE (arg1) == REAL_CST)
15669 REAL_VALUE_TYPE c;
15670 HOST_WIDE_INT n;
15672 c = TREE_REAL_CST (arg1);
15673 n = real_to_integer (&c);
15674 if ((n & 1) == 0)
15676 REAL_VALUE_TYPE cint;
15677 real_from_integer (&cint, VOIDmode, n, SIGNED);
15678 if (real_identical (&c, &cint))
15679 return true;
15682 return tree_expr_nonnegative_warnv_p (arg0,
15683 strict_overflow_p);
15685 default:
15686 break;
15688 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
15689 type);
15692 /* Return true if T is known to be non-negative. If the return
15693 value is based on the assumption that signed overflow is undefined,
15694 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15695 *STRICT_OVERFLOW_P. */
15697 static bool
15698 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
15700 enum tree_code code = TREE_CODE (t);
15701 if (TYPE_UNSIGNED (TREE_TYPE (t)))
15702 return true;
15704 switch (code)
15706 case TARGET_EXPR:
15708 tree temp = TARGET_EXPR_SLOT (t);
15709 t = TARGET_EXPR_INITIAL (t);
15711 /* If the initializer is non-void, then it's a normal expression
15712 that will be assigned to the slot. */
15713 if (!VOID_TYPE_P (t))
15714 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
15716 /* Otherwise, the initializer sets the slot in some way. One common
15717 way is an assignment statement at the end of the initializer. */
15718 while (1)
15720 if (TREE_CODE (t) == BIND_EXPR)
15721 t = expr_last (BIND_EXPR_BODY (t));
15722 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
15723 || TREE_CODE (t) == TRY_CATCH_EXPR)
15724 t = expr_last (TREE_OPERAND (t, 0));
15725 else if (TREE_CODE (t) == STATEMENT_LIST)
15726 t = expr_last (t);
15727 else
15728 break;
15730 if (TREE_CODE (t) == MODIFY_EXPR
15731 && TREE_OPERAND (t, 0) == temp)
15732 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
15733 strict_overflow_p);
15735 return false;
15738 case CALL_EXPR:
15740 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
15741 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
15743 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
15744 get_callee_fndecl (t),
15745 arg0,
15746 arg1,
15747 strict_overflow_p);
15749 case COMPOUND_EXPR:
15750 case MODIFY_EXPR:
15751 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
15752 strict_overflow_p);
15753 case BIND_EXPR:
15754 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
15755 strict_overflow_p);
15756 case SAVE_EXPR:
15757 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
15758 strict_overflow_p);
15760 default:
15761 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
15762 TREE_TYPE (t));
15765 /* We don't know sign of `t', so be conservative and return false. */
15766 return false;
15769 /* Return true if T is known to be non-negative. If the return
15770 value is based on the assumption that signed overflow is undefined,
15771 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15772 *STRICT_OVERFLOW_P. */
15774 bool
15775 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
15777 enum tree_code code;
15778 if (t == error_mark_node)
15779 return false;
15781 code = TREE_CODE (t);
15782 switch (TREE_CODE_CLASS (code))
15784 case tcc_binary:
15785 case tcc_comparison:
15786 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15787 TREE_TYPE (t),
15788 TREE_OPERAND (t, 0),
15789 TREE_OPERAND (t, 1),
15790 strict_overflow_p);
15792 case tcc_unary:
15793 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15794 TREE_TYPE (t),
15795 TREE_OPERAND (t, 0),
15796 strict_overflow_p);
15798 case tcc_constant:
15799 case tcc_declaration:
15800 case tcc_reference:
15801 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
15803 default:
15804 break;
15807 switch (code)
15809 case TRUTH_AND_EXPR:
15810 case TRUTH_OR_EXPR:
15811 case TRUTH_XOR_EXPR:
15812 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15813 TREE_TYPE (t),
15814 TREE_OPERAND (t, 0),
15815 TREE_OPERAND (t, 1),
15816 strict_overflow_p);
15817 case TRUTH_NOT_EXPR:
15818 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15819 TREE_TYPE (t),
15820 TREE_OPERAND (t, 0),
15821 strict_overflow_p);
15823 case COND_EXPR:
15824 case CONSTRUCTOR:
15825 case OBJ_TYPE_REF:
15826 case ASSERT_EXPR:
15827 case ADDR_EXPR:
15828 case WITH_SIZE_EXPR:
15829 case SSA_NAME:
15830 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
15832 default:
15833 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
15837 /* Return true if `t' is known to be non-negative. Handle warnings
15838 about undefined signed overflow. */
15840 bool
15841 tree_expr_nonnegative_p (tree t)
15843 bool ret, strict_overflow_p;
15845 strict_overflow_p = false;
15846 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
15847 if (strict_overflow_p)
15848 fold_overflow_warning (("assuming signed overflow does not occur when "
15849 "determining that expression is always "
15850 "non-negative"),
15851 WARN_STRICT_OVERFLOW_MISC);
15852 return ret;
15856 /* Return true when (CODE OP0) is an address and is known to be nonzero.
15857 For floating point we further ensure that T is not denormal.
15858 Similar logic is present in nonzero_address in rtlanal.h.
15860 If the return value is based on the assumption that signed overflow
15861 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15862 change *STRICT_OVERFLOW_P. */
15864 bool
15865 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
15866 bool *strict_overflow_p)
15868 switch (code)
15870 case ABS_EXPR:
15871 return tree_expr_nonzero_warnv_p (op0,
15872 strict_overflow_p);
15874 case NOP_EXPR:
15876 tree inner_type = TREE_TYPE (op0);
15877 tree outer_type = type;
15879 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
15880 && tree_expr_nonzero_warnv_p (op0,
15881 strict_overflow_p));
15883 break;
15885 case NON_LVALUE_EXPR:
15886 return tree_expr_nonzero_warnv_p (op0,
15887 strict_overflow_p);
15889 default:
15890 break;
15893 return false;
15896 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
15897 For floating point we further ensure that T is not denormal.
15898 Similar logic is present in nonzero_address in rtlanal.h.
15900 If the return value is based on the assumption that signed overflow
15901 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15902 change *STRICT_OVERFLOW_P. */
15904 bool
15905 tree_binary_nonzero_warnv_p (enum tree_code code,
15906 tree type,
15907 tree op0,
15908 tree op1, bool *strict_overflow_p)
15910 bool sub_strict_overflow_p;
15911 switch (code)
15913 case POINTER_PLUS_EXPR:
15914 case PLUS_EXPR:
15915 if (TYPE_OVERFLOW_UNDEFINED (type))
15917 /* With the presence of negative values it is hard
15918 to say something. */
15919 sub_strict_overflow_p = false;
15920 if (!tree_expr_nonnegative_warnv_p (op0,
15921 &sub_strict_overflow_p)
15922 || !tree_expr_nonnegative_warnv_p (op1,
15923 &sub_strict_overflow_p))
15924 return false;
15925 /* One of operands must be positive and the other non-negative. */
15926 /* We don't set *STRICT_OVERFLOW_P here: even if this value
15927 overflows, on a twos-complement machine the sum of two
15928 nonnegative numbers can never be zero. */
15929 return (tree_expr_nonzero_warnv_p (op0,
15930 strict_overflow_p)
15931 || tree_expr_nonzero_warnv_p (op1,
15932 strict_overflow_p));
15934 break;
15936 case MULT_EXPR:
15937 if (TYPE_OVERFLOW_UNDEFINED (type))
15939 if (tree_expr_nonzero_warnv_p (op0,
15940 strict_overflow_p)
15941 && tree_expr_nonzero_warnv_p (op1,
15942 strict_overflow_p))
15944 *strict_overflow_p = true;
15945 return true;
15948 break;
15950 case MIN_EXPR:
15951 sub_strict_overflow_p = false;
15952 if (tree_expr_nonzero_warnv_p (op0,
15953 &sub_strict_overflow_p)
15954 && tree_expr_nonzero_warnv_p (op1,
15955 &sub_strict_overflow_p))
15957 if (sub_strict_overflow_p)
15958 *strict_overflow_p = true;
15960 break;
15962 case MAX_EXPR:
15963 sub_strict_overflow_p = false;
15964 if (tree_expr_nonzero_warnv_p (op0,
15965 &sub_strict_overflow_p))
15967 if (sub_strict_overflow_p)
15968 *strict_overflow_p = true;
15970 /* When both operands are nonzero, then MAX must be too. */
15971 if (tree_expr_nonzero_warnv_p (op1,
15972 strict_overflow_p))
15973 return true;
15975 /* MAX where operand 0 is positive is positive. */
15976 return tree_expr_nonnegative_warnv_p (op0,
15977 strict_overflow_p);
15979 /* MAX where operand 1 is positive is positive. */
15980 else if (tree_expr_nonzero_warnv_p (op1,
15981 &sub_strict_overflow_p)
15982 && tree_expr_nonnegative_warnv_p (op1,
15983 &sub_strict_overflow_p))
15985 if (sub_strict_overflow_p)
15986 *strict_overflow_p = true;
15987 return true;
15989 break;
15991 case BIT_IOR_EXPR:
15992 return (tree_expr_nonzero_warnv_p (op1,
15993 strict_overflow_p)
15994 || tree_expr_nonzero_warnv_p (op0,
15995 strict_overflow_p));
15997 default:
15998 break;
16001 return false;
16004 /* Return true when T is an address and is known to be nonzero.
16005 For floating point we further ensure that T is not denormal.
16006 Similar logic is present in nonzero_address in rtlanal.h.
16008 If the return value is based on the assumption that signed overflow
16009 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
16010 change *STRICT_OVERFLOW_P. */
16012 bool
16013 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
16015 bool sub_strict_overflow_p;
16016 switch (TREE_CODE (t))
16018 case INTEGER_CST:
16019 return !integer_zerop (t);
16021 case ADDR_EXPR:
16023 tree base = TREE_OPERAND (t, 0);
16025 if (!DECL_P (base))
16026 base = get_base_address (base);
16028 if (!base)
16029 return false;
16031 /* For objects in symbol table check if we know they are non-zero.
16032 Don't do anything for variables and functions before symtab is built;
16033 it is quite possible that they will be declared weak later. */
16034 if (DECL_P (base) && decl_in_symtab_p (base))
16036 struct symtab_node *symbol;
16038 symbol = symtab_get_node (base);
16039 if (symbol)
16040 return symbol->nonzero_address ();
16041 else
16042 return false;
16045 /* Function local objects are never NULL. */
16046 if (DECL_P (base)
16047 && (DECL_CONTEXT (base)
16048 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
16049 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
16050 return true;
16052 /* Constants are never weak. */
16053 if (CONSTANT_CLASS_P (base))
16054 return true;
16056 return false;
16059 case COND_EXPR:
16060 sub_strict_overflow_p = false;
16061 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
16062 &sub_strict_overflow_p)
16063 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
16064 &sub_strict_overflow_p))
16066 if (sub_strict_overflow_p)
16067 *strict_overflow_p = true;
16068 return true;
16070 break;
16072 default:
16073 break;
16075 return false;
16078 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
16079 attempt to fold the expression to a constant without modifying TYPE,
16080 OP0 or OP1.
16082 If the expression could be simplified to a constant, then return
16083 the constant. If the expression would not be simplified to a
16084 constant, then return NULL_TREE. */
16086 tree
16087 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
16089 tree tem = fold_binary (code, type, op0, op1);
16090 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
16093 /* Given the components of a unary expression CODE, TYPE and OP0,
16094 attempt to fold the expression to a constant without modifying
16095 TYPE or OP0.
16097 If the expression could be simplified to a constant, then return
16098 the constant. If the expression would not be simplified to a
16099 constant, then return NULL_TREE. */
16101 tree
16102 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
16104 tree tem = fold_unary (code, type, op0);
16105 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
16108 /* If EXP represents referencing an element in a constant string
16109 (either via pointer arithmetic or array indexing), return the
16110 tree representing the value accessed, otherwise return NULL. */
16112 tree
16113 fold_read_from_constant_string (tree exp)
16115 if ((TREE_CODE (exp) == INDIRECT_REF
16116 || TREE_CODE (exp) == ARRAY_REF)
16117 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
16119 tree exp1 = TREE_OPERAND (exp, 0);
16120 tree index;
16121 tree string;
16122 location_t loc = EXPR_LOCATION (exp);
16124 if (TREE_CODE (exp) == INDIRECT_REF)
16125 string = string_constant (exp1, &index);
16126 else
16128 tree low_bound = array_ref_low_bound (exp);
16129 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
16131 /* Optimize the special-case of a zero lower bound.
16133 We convert the low_bound to sizetype to avoid some problems
16134 with constant folding. (E.g. suppose the lower bound is 1,
16135 and its mode is QI. Without the conversion,l (ARRAY
16136 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
16137 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
16138 if (! integer_zerop (low_bound))
16139 index = size_diffop_loc (loc, index,
16140 fold_convert_loc (loc, sizetype, low_bound));
16142 string = exp1;
16145 if (string
16146 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
16147 && TREE_CODE (string) == STRING_CST
16148 && TREE_CODE (index) == INTEGER_CST
16149 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
16150 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
16151 == MODE_INT)
16152 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
16153 return build_int_cst_type (TREE_TYPE (exp),
16154 (TREE_STRING_POINTER (string)
16155 [TREE_INT_CST_LOW (index)]));
16157 return NULL;
16160 /* Return the tree for neg (ARG0) when ARG0 is known to be either
16161 an integer constant, real, or fixed-point constant.
16163 TYPE is the type of the result. */
16165 static tree
16166 fold_negate_const (tree arg0, tree type)
16168 tree t = NULL_TREE;
16170 switch (TREE_CODE (arg0))
16172 case INTEGER_CST:
16174 bool overflow;
16175 wide_int val = wi::neg (arg0, &overflow);
16176 t = force_fit_type (type, val, 1,
16177 (overflow | TREE_OVERFLOW (arg0))
16178 && !TYPE_UNSIGNED (type));
16179 break;
16182 case REAL_CST:
16183 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
16184 break;
16186 case FIXED_CST:
16188 FIXED_VALUE_TYPE f;
16189 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
16190 &(TREE_FIXED_CST (arg0)), NULL,
16191 TYPE_SATURATING (type));
16192 t = build_fixed (type, f);
16193 /* Propagate overflow flags. */
16194 if (overflow_p | TREE_OVERFLOW (arg0))
16195 TREE_OVERFLOW (t) = 1;
16196 break;
16199 default:
16200 gcc_unreachable ();
16203 return t;
16206 /* Return the tree for abs (ARG0) when ARG0 is known to be either
16207 an integer constant or real constant.
16209 TYPE is the type of the result. */
16211 tree
16212 fold_abs_const (tree arg0, tree type)
16214 tree t = NULL_TREE;
16216 switch (TREE_CODE (arg0))
16218 case INTEGER_CST:
16220 /* If the value is unsigned or non-negative, then the absolute value
16221 is the same as the ordinary value. */
16222 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
16223 t = arg0;
16225 /* If the value is negative, then the absolute value is
16226 its negation. */
16227 else
16229 bool overflow;
16230 wide_int val = wi::neg (arg0, &overflow);
16231 t = force_fit_type (type, val, -1,
16232 overflow | TREE_OVERFLOW (arg0));
16235 break;
16237 case REAL_CST:
16238 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
16239 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
16240 else
16241 t = arg0;
16242 break;
16244 default:
16245 gcc_unreachable ();
16248 return t;
16251 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
16252 constant. TYPE is the type of the result. */
16254 static tree
16255 fold_not_const (const_tree arg0, tree type)
16257 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
16259 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
16262 /* Given CODE, a relational operator, the target type, TYPE and two
16263 constant operands OP0 and OP1, return the result of the
16264 relational operation. If the result is not a compile time
16265 constant, then return NULL_TREE. */
16267 static tree
16268 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
16270 int result, invert;
16272 /* From here on, the only cases we handle are when the result is
16273 known to be a constant. */
16275 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
16277 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
16278 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
16280 /* Handle the cases where either operand is a NaN. */
16281 if (real_isnan (c0) || real_isnan (c1))
16283 switch (code)
16285 case EQ_EXPR:
16286 case ORDERED_EXPR:
16287 result = 0;
16288 break;
16290 case NE_EXPR:
16291 case UNORDERED_EXPR:
16292 case UNLT_EXPR:
16293 case UNLE_EXPR:
16294 case UNGT_EXPR:
16295 case UNGE_EXPR:
16296 case UNEQ_EXPR:
16297 result = 1;
16298 break;
16300 case LT_EXPR:
16301 case LE_EXPR:
16302 case GT_EXPR:
16303 case GE_EXPR:
16304 case LTGT_EXPR:
16305 if (flag_trapping_math)
16306 return NULL_TREE;
16307 result = 0;
16308 break;
16310 default:
16311 gcc_unreachable ();
16314 return constant_boolean_node (result, type);
16317 return constant_boolean_node (real_compare (code, c0, c1), type);
16320 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
16322 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
16323 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
16324 return constant_boolean_node (fixed_compare (code, c0, c1), type);
16327 /* Handle equality/inequality of complex constants. */
16328 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
16330 tree rcond = fold_relational_const (code, type,
16331 TREE_REALPART (op0),
16332 TREE_REALPART (op1));
16333 tree icond = fold_relational_const (code, type,
16334 TREE_IMAGPART (op0),
16335 TREE_IMAGPART (op1));
16336 if (code == EQ_EXPR)
16337 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
16338 else if (code == NE_EXPR)
16339 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
16340 else
16341 return NULL_TREE;
16344 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
16346 unsigned count = VECTOR_CST_NELTS (op0);
16347 tree *elts = XALLOCAVEC (tree, count);
16348 gcc_assert (VECTOR_CST_NELTS (op1) == count
16349 && TYPE_VECTOR_SUBPARTS (type) == count);
16351 for (unsigned i = 0; i < count; i++)
16353 tree elem_type = TREE_TYPE (type);
16354 tree elem0 = VECTOR_CST_ELT (op0, i);
16355 tree elem1 = VECTOR_CST_ELT (op1, i);
16357 tree tem = fold_relational_const (code, elem_type,
16358 elem0, elem1);
16360 if (tem == NULL_TREE)
16361 return NULL_TREE;
16363 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
16366 return build_vector (type, elts);
16369 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
16371 To compute GT, swap the arguments and do LT.
16372 To compute GE, do LT and invert the result.
16373 To compute LE, swap the arguments, do LT and invert the result.
16374 To compute NE, do EQ and invert the result.
16376 Therefore, the code below must handle only EQ and LT. */
16378 if (code == LE_EXPR || code == GT_EXPR)
16380 tree tem = op0;
16381 op0 = op1;
16382 op1 = tem;
16383 code = swap_tree_comparison (code);
16386 /* Note that it is safe to invert for real values here because we
16387 have already handled the one case that it matters. */
16389 invert = 0;
16390 if (code == NE_EXPR || code == GE_EXPR)
16392 invert = 1;
16393 code = invert_tree_comparison (code, false);
16396 /* Compute a result for LT or EQ if args permit;
16397 Otherwise return T. */
16398 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
16400 if (code == EQ_EXPR)
16401 result = tree_int_cst_equal (op0, op1);
16402 else
16403 result = tree_int_cst_lt (op0, op1);
16405 else
16406 return NULL_TREE;
16408 if (invert)
16409 result ^= 1;
16410 return constant_boolean_node (result, type);
16413 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
16414 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
16415 itself. */
16417 tree
16418 fold_build_cleanup_point_expr (tree type, tree expr)
16420 /* If the expression does not have side effects then we don't have to wrap
16421 it with a cleanup point expression. */
16422 if (!TREE_SIDE_EFFECTS (expr))
16423 return expr;
16425 /* If the expression is a return, check to see if the expression inside the
16426 return has no side effects or the right hand side of the modify expression
16427 inside the return. If either don't have side effects set we don't need to
16428 wrap the expression in a cleanup point expression. Note we don't check the
16429 left hand side of the modify because it should always be a return decl. */
16430 if (TREE_CODE (expr) == RETURN_EXPR)
16432 tree op = TREE_OPERAND (expr, 0);
16433 if (!op || !TREE_SIDE_EFFECTS (op))
16434 return expr;
16435 op = TREE_OPERAND (op, 1);
16436 if (!TREE_SIDE_EFFECTS (op))
16437 return expr;
16440 return build1 (CLEANUP_POINT_EXPR, type, expr);
16443 /* Given a pointer value OP0 and a type TYPE, return a simplified version
16444 of an indirection through OP0, or NULL_TREE if no simplification is
16445 possible. */
16447 tree
16448 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
16450 tree sub = op0;
16451 tree subtype;
16453 STRIP_NOPS (sub);
16454 subtype = TREE_TYPE (sub);
16455 if (!POINTER_TYPE_P (subtype))
16456 return NULL_TREE;
16458 if (TREE_CODE (sub) == ADDR_EXPR)
16460 tree op = TREE_OPERAND (sub, 0);
16461 tree optype = TREE_TYPE (op);
16462 /* *&CONST_DECL -> to the value of the const decl. */
16463 if (TREE_CODE (op) == CONST_DECL)
16464 return DECL_INITIAL (op);
16465 /* *&p => p; make sure to handle *&"str"[cst] here. */
16466 if (type == optype)
16468 tree fop = fold_read_from_constant_string (op);
16469 if (fop)
16470 return fop;
16471 else
16472 return op;
16474 /* *(foo *)&fooarray => fooarray[0] */
16475 else if (TREE_CODE (optype) == ARRAY_TYPE
16476 && type == TREE_TYPE (optype)
16477 && (!in_gimple_form
16478 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
16480 tree type_domain = TYPE_DOMAIN (optype);
16481 tree min_val = size_zero_node;
16482 if (type_domain && TYPE_MIN_VALUE (type_domain))
16483 min_val = TYPE_MIN_VALUE (type_domain);
16484 if (in_gimple_form
16485 && TREE_CODE (min_val) != INTEGER_CST)
16486 return NULL_TREE;
16487 return build4_loc (loc, ARRAY_REF, type, op, min_val,
16488 NULL_TREE, NULL_TREE);
16490 /* *(foo *)&complexfoo => __real__ complexfoo */
16491 else if (TREE_CODE (optype) == COMPLEX_TYPE
16492 && type == TREE_TYPE (optype))
16493 return fold_build1_loc (loc, REALPART_EXPR, type, op);
16494 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
16495 else if (TREE_CODE (optype) == VECTOR_TYPE
16496 && type == TREE_TYPE (optype))
16498 tree part_width = TYPE_SIZE (type);
16499 tree index = bitsize_int (0);
16500 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
16504 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
16505 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
16507 tree op00 = TREE_OPERAND (sub, 0);
16508 tree op01 = TREE_OPERAND (sub, 1);
16510 STRIP_NOPS (op00);
16511 if (TREE_CODE (op00) == ADDR_EXPR)
16513 tree op00type;
16514 op00 = TREE_OPERAND (op00, 0);
16515 op00type = TREE_TYPE (op00);
16517 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
16518 if (TREE_CODE (op00type) == VECTOR_TYPE
16519 && type == TREE_TYPE (op00type))
16521 HOST_WIDE_INT offset = tree_to_shwi (op01);
16522 tree part_width = TYPE_SIZE (type);
16523 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
16524 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
16525 tree index = bitsize_int (indexi);
16527 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
16528 return fold_build3_loc (loc,
16529 BIT_FIELD_REF, type, op00,
16530 part_width, index);
16533 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
16534 else if (TREE_CODE (op00type) == COMPLEX_TYPE
16535 && type == TREE_TYPE (op00type))
16537 tree size = TYPE_SIZE_UNIT (type);
16538 if (tree_int_cst_equal (size, op01))
16539 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
16541 /* ((foo *)&fooarray)[1] => fooarray[1] */
16542 else if (TREE_CODE (op00type) == ARRAY_TYPE
16543 && type == TREE_TYPE (op00type))
16545 tree type_domain = TYPE_DOMAIN (op00type);
16546 tree min_val = size_zero_node;
16547 if (type_domain && TYPE_MIN_VALUE (type_domain))
16548 min_val = TYPE_MIN_VALUE (type_domain);
16549 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
16550 TYPE_SIZE_UNIT (type));
16551 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
16552 return build4_loc (loc, ARRAY_REF, type, op00, op01,
16553 NULL_TREE, NULL_TREE);
16558 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
16559 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
16560 && type == TREE_TYPE (TREE_TYPE (subtype))
16561 && (!in_gimple_form
16562 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
16564 tree type_domain;
16565 tree min_val = size_zero_node;
16566 sub = build_fold_indirect_ref_loc (loc, sub);
16567 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
16568 if (type_domain && TYPE_MIN_VALUE (type_domain))
16569 min_val = TYPE_MIN_VALUE (type_domain);
16570 if (in_gimple_form
16571 && TREE_CODE (min_val) != INTEGER_CST)
16572 return NULL_TREE;
16573 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
16574 NULL_TREE);
16577 return NULL_TREE;
16580 /* Builds an expression for an indirection through T, simplifying some
16581 cases. */
16583 tree
16584 build_fold_indirect_ref_loc (location_t loc, tree t)
16586 tree type = TREE_TYPE (TREE_TYPE (t));
16587 tree sub = fold_indirect_ref_1 (loc, type, t);
16589 if (sub)
16590 return sub;
16592 return build1_loc (loc, INDIRECT_REF, type, t);
16595 /* Given an INDIRECT_REF T, return either T or a simplified version. */
16597 tree
16598 fold_indirect_ref_loc (location_t loc, tree t)
16600 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
16602 if (sub)
16603 return sub;
16604 else
16605 return t;
16608 /* Strip non-trapping, non-side-effecting tree nodes from an expression
16609 whose result is ignored. The type of the returned tree need not be
16610 the same as the original expression. */
16612 tree
16613 fold_ignored_result (tree t)
16615 if (!TREE_SIDE_EFFECTS (t))
16616 return integer_zero_node;
16618 for (;;)
16619 switch (TREE_CODE_CLASS (TREE_CODE (t)))
16621 case tcc_unary:
16622 t = TREE_OPERAND (t, 0);
16623 break;
16625 case tcc_binary:
16626 case tcc_comparison:
16627 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
16628 t = TREE_OPERAND (t, 0);
16629 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
16630 t = TREE_OPERAND (t, 1);
16631 else
16632 return t;
16633 break;
16635 case tcc_expression:
16636 switch (TREE_CODE (t))
16638 case COMPOUND_EXPR:
16639 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
16640 return t;
16641 t = TREE_OPERAND (t, 0);
16642 break;
16644 case COND_EXPR:
16645 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
16646 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
16647 return t;
16648 t = TREE_OPERAND (t, 0);
16649 break;
16651 default:
16652 return t;
16654 break;
16656 default:
16657 return t;
16661 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
16663 tree
16664 round_up_loc (location_t loc, tree value, unsigned int divisor)
16666 tree div = NULL_TREE;
16668 if (divisor == 1)
16669 return value;
16671 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16672 have to do anything. Only do this when we are not given a const,
16673 because in that case, this check is more expensive than just
16674 doing it. */
16675 if (TREE_CODE (value) != INTEGER_CST)
16677 div = build_int_cst (TREE_TYPE (value), divisor);
16679 if (multiple_of_p (TREE_TYPE (value), value, div))
16680 return value;
16683 /* If divisor is a power of two, simplify this to bit manipulation. */
16684 if (divisor == (divisor & -divisor))
16686 if (TREE_CODE (value) == INTEGER_CST)
16688 wide_int val = value;
16689 bool overflow_p;
16691 if ((val & (divisor - 1)) == 0)
16692 return value;
16694 overflow_p = TREE_OVERFLOW (value);
16695 val &= ~(divisor - 1);
16696 val += divisor;
16697 if (val == 0)
16698 overflow_p = true;
16700 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
16702 else
16704 tree t;
16706 t = build_int_cst (TREE_TYPE (value), divisor - 1);
16707 value = size_binop_loc (loc, PLUS_EXPR, value, t);
16708 t = build_int_cst (TREE_TYPE (value), -divisor);
16709 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
16712 else
16714 if (!div)
16715 div = build_int_cst (TREE_TYPE (value), divisor);
16716 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
16717 value = size_binop_loc (loc, MULT_EXPR, value, div);
16720 return value;
16723 /* Likewise, but round down. */
16725 tree
16726 round_down_loc (location_t loc, tree value, int divisor)
16728 tree div = NULL_TREE;
16730 gcc_assert (divisor > 0);
16731 if (divisor == 1)
16732 return value;
16734 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16735 have to do anything. Only do this when we are not given a const,
16736 because in that case, this check is more expensive than just
16737 doing it. */
16738 if (TREE_CODE (value) != INTEGER_CST)
16740 div = build_int_cst (TREE_TYPE (value), divisor);
16742 if (multiple_of_p (TREE_TYPE (value), value, div))
16743 return value;
16746 /* If divisor is a power of two, simplify this to bit manipulation. */
16747 if (divisor == (divisor & -divisor))
16749 tree t;
16751 t = build_int_cst (TREE_TYPE (value), -divisor);
16752 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
16754 else
16756 if (!div)
16757 div = build_int_cst (TREE_TYPE (value), divisor);
16758 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
16759 value = size_binop_loc (loc, MULT_EXPR, value, div);
16762 return value;
16765 /* Returns the pointer to the base of the object addressed by EXP and
16766 extracts the information about the offset of the access, storing it
16767 to PBITPOS and POFFSET. */
16769 static tree
16770 split_address_to_core_and_offset (tree exp,
16771 HOST_WIDE_INT *pbitpos, tree *poffset)
16773 tree core;
16774 enum machine_mode mode;
16775 int unsignedp, volatilep;
16776 HOST_WIDE_INT bitsize;
16777 location_t loc = EXPR_LOCATION (exp);
16779 if (TREE_CODE (exp) == ADDR_EXPR)
16781 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
16782 poffset, &mode, &unsignedp, &volatilep,
16783 false);
16784 core = build_fold_addr_expr_loc (loc, core);
16786 else
16788 core = exp;
16789 *pbitpos = 0;
16790 *poffset = NULL_TREE;
16793 return core;
16796 /* Returns true if addresses of E1 and E2 differ by a constant, false
16797 otherwise. If they do, E1 - E2 is stored in *DIFF. */
16799 bool
16800 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
16802 tree core1, core2;
16803 HOST_WIDE_INT bitpos1, bitpos2;
16804 tree toffset1, toffset2, tdiff, type;
16806 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
16807 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
16809 if (bitpos1 % BITS_PER_UNIT != 0
16810 || bitpos2 % BITS_PER_UNIT != 0
16811 || !operand_equal_p (core1, core2, 0))
16812 return false;
16814 if (toffset1 && toffset2)
16816 type = TREE_TYPE (toffset1);
16817 if (type != TREE_TYPE (toffset2))
16818 toffset2 = fold_convert (type, toffset2);
16820 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
16821 if (!cst_and_fits_in_hwi (tdiff))
16822 return false;
16824 *diff = int_cst_value (tdiff);
16826 else if (toffset1 || toffset2)
16828 /* If only one of the offsets is non-constant, the difference cannot
16829 be a constant. */
16830 return false;
16832 else
16833 *diff = 0;
16835 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
16836 return true;
16839 /* Simplify the floating point expression EXP when the sign of the
16840 result is not significant. Return NULL_TREE if no simplification
16841 is possible. */
16843 tree
16844 fold_strip_sign_ops (tree exp)
16846 tree arg0, arg1;
16847 location_t loc = EXPR_LOCATION (exp);
16849 switch (TREE_CODE (exp))
16851 case ABS_EXPR:
16852 case NEGATE_EXPR:
16853 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
16854 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
16856 case MULT_EXPR:
16857 case RDIV_EXPR:
16858 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
16859 return NULL_TREE;
16860 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
16861 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16862 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
16863 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
16864 arg0 ? arg0 : TREE_OPERAND (exp, 0),
16865 arg1 ? arg1 : TREE_OPERAND (exp, 1));
16866 break;
16868 case COMPOUND_EXPR:
16869 arg0 = TREE_OPERAND (exp, 0);
16870 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16871 if (arg1)
16872 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
16873 break;
16875 case COND_EXPR:
16876 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16877 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
16878 if (arg0 || arg1)
16879 return fold_build3_loc (loc,
16880 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
16881 arg0 ? arg0 : TREE_OPERAND (exp, 1),
16882 arg1 ? arg1 : TREE_OPERAND (exp, 2));
16883 break;
16885 case CALL_EXPR:
16887 const enum built_in_function fcode = builtin_mathfn_code (exp);
16888 switch (fcode)
16890 CASE_FLT_FN (BUILT_IN_COPYSIGN):
16891 /* Strip copysign function call, return the 1st argument. */
16892 arg0 = CALL_EXPR_ARG (exp, 0);
16893 arg1 = CALL_EXPR_ARG (exp, 1);
16894 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
16896 default:
16897 /* Strip sign ops from the argument of "odd" math functions. */
16898 if (negate_mathfn_p (fcode))
16900 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
16901 if (arg0)
16902 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
16904 break;
16907 break;
16909 default:
16910 break;
16912 return NULL_TREE;