1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
52 At a high level, the algorithm used in this file is as follows:
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
68 - Next check match_dups.
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
105 5. Write out C++ code for each function. */
108 #define INCLUDE_ALGORITHM
110 #include "coretypes.h"
115 #include "gensupport.h"
117 #undef GENERATOR_FILE
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
122 FIRST_GENERATOR_RTX_CODE
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
127 /* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129 static const bool merge_states_p
= true;
130 static const bool collapse_optional_decisions_p
= true;
131 static const bool cse_tests_p
= true;
132 static const bool simplify_tests_p
= true;
133 static const bool use_operand_variables_p
= true;
134 static const bool use_subroutines_p
= true;
135 static const bool use_pattern_routines_p
= true;
137 /* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140 static const bool mark_optional_transitions_p
= false;
142 /* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151 static const bool relative_patterns_p
= false;
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155 static const bool pattern_have_num_clobbers_p
= true;
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
161 static const bool pattern_c_test_p
= false;
163 /* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168 static const bool force_unique_params_p
= true;
170 /* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173 static const unsigned int MAX_DEPTH
= 6;
175 /* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177 static const unsigned int MIN_NUM_STATEMENTS
= 5;
179 /* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183 static const unsigned int MAX_NUM_STATEMENTS
= 200;
185 /* The minimum number of pseudo-statements that can be used in a pattern
187 static const unsigned int MIN_COMBINE_COST
= 4;
189 /* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
193 static const unsigned int MAX_PATTERN_PARAMS
= 5;
195 /* The maximum operand number plus one. */
198 /* Ways of obtaining an rtx to be tested. */
200 /* PATTERN (peep2_next_insn (ARG)). */
203 /* XEXP (BASE, ARG). */
206 /* XVECEXP (BASE, 0, ARG). */
210 /* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position
*base
;
217 /* A position with the same BASE and TYPE, but with the next value
219 struct position
*next
;
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position
*xexps
;
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position
*xvecexp0s
;
231 /* The type of position. */
232 enum position_type type
;
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id
;
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
245 /* A unique identifier for this position. */
250 SUBPATTERN
, RECOG
, SPLIT
, PEEPHOLE2
253 /* The root position (x0). */
254 static struct position root_pos
;
256 /* The number of positions created. Also one higher than the maximum
258 static unsigned int num_positions
= 1;
260 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262 static struct position
*peep2_insn_pos_list
= &root_pos
;
264 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
269 static struct position
*
270 next_position (struct position
**next_ptr
, struct position
*base
,
271 enum position_type type
, int arg
)
273 struct position
*pos
;
278 pos
= XCNEW (struct position
);
281 if (type
== POS_PEEP2_INSN
)
285 pos
->depth
= base
->depth
;
290 pos
->insn_id
= base
->insn_id
;
291 pos
->depth
= base
->depth
+ 1;
293 pos
->id
= num_positions
++;
299 /* Compare positions POS1 and POS2 lexicographically. */
302 compare_positions (struct position
*pos1
, struct position
*pos2
)
306 diff
= pos1
->depth
- pos2
->depth
;
310 while (pos1
->depth
!= pos2
->depth
);
314 while (pos1
->depth
!= pos2
->depth
);
317 diff
= (int) pos1
->type
- (int) pos2
->type
;
319 diff
= pos1
->arg
- pos2
->arg
;
326 /* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
330 static struct position
*
331 common_position (struct position
*pos1
, struct position
*pos2
)
333 if (pos1
->insn_id
!= pos2
->insn_id
)
334 return pos1
->insn_id
< pos2
->insn_id
? pos1
: pos2
;
335 if (pos1
->depth
> pos2
->depth
)
336 std::swap (pos1
, pos2
);
337 while (pos1
->depth
!= pos2
->depth
)
347 /* Search for and return operand N, stop when reaching node STOP. */
350 find_operand (rtx pattern
, int n
, rtx stop
)
360 code
= GET_CODE (pattern
);
361 if ((code
== MATCH_SCRATCH
362 || code
== MATCH_OPERAND
363 || code
== MATCH_OPERATOR
364 || code
== MATCH_PARALLEL
)
365 && XINT (pattern
, 0) == n
)
368 fmt
= GET_RTX_FORMAT (code
);
369 len
= GET_RTX_LENGTH (code
);
370 for (i
= 0; i
< len
; i
++)
375 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
380 if (! XVEC (pattern
, i
))
385 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
386 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
391 case 'i': case 'r': case 'w': case '0': case 's':
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
406 find_matching_operand (rtx pattern
, int n
)
413 code
= GET_CODE (pattern
);
414 if (code
== MATCH_OPERAND
415 && (XSTR (pattern
, 2)[0] == '0' + n
416 || (XSTR (pattern
, 2)[0] == '%'
417 && XSTR (pattern
, 2)[1] == '0' + n
)))
420 fmt
= GET_RTX_FORMAT (code
);
421 len
= GET_RTX_LENGTH (code
);
422 for (i
= 0; i
< len
; i
++)
427 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
432 if (! XVEC (pattern
, i
))
437 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
438 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
442 case 'i': case 'r': case 'w': case '0': case 's':
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
459 constraints_supported_in_insn_p (rtx insn
)
461 return !(GET_CODE (insn
) == DEFINE_EXPAND
462 || GET_CODE (insn
) == DEFINE_SPLIT
463 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
);
466 /* Check for various errors in PATTERN, which is part of INFO.
467 SET is nonnull for a destination, and is the complete set pattern.
468 SET_CODE is '=' for normal sets, and '+' within a context that
469 requires in-out constraints. */
472 validate_pattern (rtx pattern
, md_rtx_info
*info
, rtx set
, int set_code
)
479 code
= GET_CODE (pattern
);
484 const char constraints0
= XSTR (pattern
, 1)[0];
486 if (!constraints_supported_in_insn_p (info
->def
))
490 error_at (info
->loc
, "constraints not supported in %s",
491 GET_RTX_NAME (GET_CODE (info
->def
)));
496 /* If a MATCH_SCRATCH is used in a context requiring an write-only
497 or read/write register, validate that. */
500 && constraints0
!= '='
501 && constraints0
!= '+')
503 error_at (info
->loc
, "operand %d missing output reload",
511 if (find_operand (info
->def
, XINT (pattern
, 0), pattern
) == pattern
)
512 error_at (info
->loc
, "operand %i duplicated before defined",
518 const char *pred_name
= XSTR (pattern
, 1);
519 const struct pred_data
*pred
;
522 c_test
= get_c_test (info
->def
);
524 if (pred_name
[0] != 0)
526 pred
= lookup_predicate (pred_name
);
528 error_at (info
->loc
, "unknown predicate '%s'", pred_name
);
533 if (code
== MATCH_OPERAND
)
535 const char *constraints
= XSTR (pattern
, 2);
536 const char constraints0
= constraints
[0];
538 if (!constraints_supported_in_insn_p (info
->def
))
542 error_at (info
->loc
, "constraints not supported in %s",
543 GET_RTX_NAME (GET_CODE (info
->def
)));
547 /* A MATCH_OPERAND that is a SET should have an output reload. */
548 else if (set
&& constraints0
)
552 if (constraints0
== '+')
554 /* If we've only got an output reload for this operand,
555 we'd better have a matching input operand. */
556 else if (constraints0
== '='
557 && find_matching_operand (info
->def
,
561 error_at (info
->loc
, "operand %d missing in-out reload",
564 else if (constraints0
!= '=' && constraints0
!= '+')
565 error_at (info
->loc
, "operand %d missing output reload",
569 /* For matching constraint in MATCH_OPERAND, the digit must be a
570 smaller number than the number of the operand that uses it in the
574 while (constraints
[0]
575 && (constraints
[0] == ' ' || constraints
[0] == ','))
580 if (constraints
[0] >= '0' && constraints
[0] <= '9')
584 sscanf (constraints
, "%d", &val
);
585 if (val
>= XINT (pattern
, 0))
586 error_at (info
->loc
, "constraint digit %d is not"
587 " smaller than operand %d",
588 val
, XINT (pattern
, 0));
591 while (constraints
[0] && constraints
[0] != ',')
596 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
597 while not likely to occur at runtime, results in less efficient
598 code from insn-recog.c. */
599 if (set
&& pred
&& pred
->allows_non_lvalue
)
600 error_at (info
->loc
, "destination operand %d allows non-lvalue",
603 /* A modeless MATCH_OPERAND can be handy when we can check for
604 multiple modes in the c_test. In most other cases, it is a
605 mistake. Only DEFINE_INSN is eligible, since SPLIT and
606 PEEP2 can FAIL within the output pattern. Exclude special
607 predicates, which check the mode themselves. Also exclude
608 predicates that allow only constants. Exclude the SET_DEST
609 of a call instruction, as that is a common idiom. */
611 if (GET_MODE (pattern
) == VOIDmode
612 && code
== MATCH_OPERAND
613 && GET_CODE (info
->def
) == DEFINE_INSN
616 && pred
->allows_non_const
617 && strstr (c_test
, "operands") == NULL
619 && GET_CODE (set
) == SET
620 && GET_CODE (SET_SRC (set
)) == CALL
))
621 message_at (info
->loc
, "warning: operand %d missing mode?",
628 machine_mode dmode
, smode
;
631 dest
= SET_DEST (pattern
);
632 src
= SET_SRC (pattern
);
634 /* STRICT_LOW_PART is a wrapper. Its argument is the real
635 destination, and it's mode should match the source. */
636 if (GET_CODE (dest
) == STRICT_LOW_PART
)
637 dest
= XEXP (dest
, 0);
639 /* Find the referent for a DUP. */
641 if (GET_CODE (dest
) == MATCH_DUP
642 || GET_CODE (dest
) == MATCH_OP_DUP
643 || GET_CODE (dest
) == MATCH_PAR_DUP
)
644 dest
= find_operand (info
->def
, XINT (dest
, 0), NULL
);
646 if (GET_CODE (src
) == MATCH_DUP
647 || GET_CODE (src
) == MATCH_OP_DUP
648 || GET_CODE (src
) == MATCH_PAR_DUP
)
649 src
= find_operand (info
->def
, XINT (src
, 0), NULL
);
651 dmode
= GET_MODE (dest
);
652 smode
= GET_MODE (src
);
654 /* The mode of an ADDRESS_OPERAND is the mode of the memory
655 reference, not the mode of the address. */
656 if (GET_CODE (src
) == MATCH_OPERAND
657 && ! strcmp (XSTR (src
, 1), "address_operand"))
660 /* The operands of a SET must have the same mode unless one
662 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
663 error_at (info
->loc
, "mode mismatch in set: %smode vs %smode",
664 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
666 /* If only one of the operands is VOIDmode, and PC or CC0 is
667 not involved, it's probably a mistake. */
668 else if (dmode
!= smode
669 && GET_CODE (dest
) != PC
670 && GET_CODE (dest
) != CC0
671 && GET_CODE (src
) != PC
672 && GET_CODE (src
) != CC0
673 && !CONST_INT_P (src
)
674 && !CONST_WIDE_INT_P (src
)
675 && GET_CODE (src
) != CALL
)
678 which
= (dmode
== VOIDmode
? "destination" : "source");
679 message_at (info
->loc
, "warning: %s missing a mode?", which
);
682 if (dest
!= SET_DEST (pattern
))
683 validate_pattern (dest
, info
, pattern
, '=');
684 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
685 validate_pattern (SET_SRC (pattern
), info
, NULL_RTX
, 0);
690 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
694 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
695 validate_pattern (XEXP (pattern
, 1), info
, NULL_RTX
, 0);
696 validate_pattern (XEXP (pattern
, 2), info
, NULL_RTX
, 0);
699 case STRICT_LOW_PART
:
700 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
704 if (GET_MODE (LABEL_REF_LABEL (pattern
)) != VOIDmode
)
705 error_at (info
->loc
, "operand to label_ref %smode not VOIDmode",
706 GET_MODE_NAME (GET_MODE (LABEL_REF_LABEL (pattern
))));
713 fmt
= GET_RTX_FORMAT (code
);
714 len
= GET_RTX_LENGTH (code
);
715 for (i
= 0; i
< len
; i
++)
720 validate_pattern (XEXP (pattern
, i
), info
, NULL_RTX
, 0);
724 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
725 validate_pattern (XVECEXP (pattern
, i
, j
), info
, NULL_RTX
, 0);
728 case 'i': case 'r': case 'w': case '0': case 's':
737 /* Simple list structure for items of type T, for use when being part
738 of a list is an inherent property of T. T must have members equivalent
739 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
740 to set the parent list. */
741 template <typename T
>
744 /* A range of linked items. */
751 void set_parent (list_head
*);
756 void push_back (range
);
757 range
remove (range
);
758 void replace (range
, range
);
759 T
*singleton () const;
764 /* Create a range [START_IN, START_IN]. */
766 template <typename T
>
767 list_head
<T
>::range::range (T
*start_in
) : start (start_in
), end (start_in
) {}
769 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
771 template <typename T
>
772 list_head
<T
>::range::range (T
*start_in
, T
*end_in
)
773 : start (start_in
), end (end_in
) {}
775 template <typename T
>
777 list_head
<T
>::range::set_parent (list_head
<T
> *owner
)
779 for (T
*item
= start
; item
!= end
; item
= item
->next
)
780 item
->set_parent (owner
);
781 end
->set_parent (owner
);
784 template <typename T
>
785 list_head
<T
>::list_head () : first (0), last (0) {}
787 /* Add R to the end of the list. */
789 template <typename T
>
791 list_head
<T
>::push_back (range r
)
794 last
->next
= r
.start
;
797 r
.start
->prev
= last
;
802 /* Remove R from the list. R remains valid and can be inserted into
805 template <typename T
>
806 typename list_head
<T
>::range
807 list_head
<T
>::remove (range r
)
810 r
.start
->prev
->next
= r
.end
->next
;
814 r
.end
->next
->prev
= r
.start
->prev
;
816 last
= r
.start
->prev
;
823 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
826 template <typename T
>
828 list_head
<T
>::replace (range oldr
, range newr
)
830 newr
.start
->prev
= oldr
.start
->prev
;
831 newr
.end
->next
= oldr
.end
->next
;
833 oldr
.start
->prev
= 0;
837 if (newr
.start
->prev
)
838 newr
.start
->prev
->next
= newr
.start
;
842 newr
.end
->next
->prev
= newr
.end
;
845 newr
.set_parent (this);
848 /* Empty the list and return the previous contents as a range that can
849 be inserted into other lists. */
851 template <typename T
>
852 typename list_head
<T
>::range
853 list_head
<T
>::release ()
855 range
r (first
, last
);
862 /* If the list contains a single item, return that item, otherwise return
865 template <typename T
>
867 list_head
<T
>::singleton () const
869 return first
== last
? first
: 0;
874 /* Describes a possible successful return from a routine. */
875 struct acceptance_type
877 /* The type of routine we're returning from. */
878 routine_type type
: 16;
880 /* True if this structure only really represents a partial match,
881 and if we must call a subroutine of type TYPE to complete the match.
882 In this case we'll call the subroutine and, if it succeeds, return
883 whatever the subroutine returned.
885 False if this structure presents a full match. */
886 unsigned int partial_p
: 1;
890 /* If PARTIAL_P, this is the number of the subroutine to call. */
893 /* Valid if !PARTIAL_P. */
896 /* The identifier of the matching pattern. For SUBPATTERNs this
897 value belongs to an ad-hoc routine-specific enum. For the
898 others it's the number of an .md file pattern. */
902 /* For RECOG, the number of clobbers that must be added to the
903 pattern in order for it to match CODE. */
906 /* For PEEPHOLE2, the number of additional instructions that were
907 included in the optimization. */
915 operator == (const acceptance_type
&a
, const acceptance_type
&b
)
917 if (a
.partial_p
!= b
.partial_p
)
920 return a
.u
.subroutine_id
== b
.u
.subroutine_id
;
922 return a
.u
.full
.code
== b
.u
.full
.code
;
926 operator != (const acceptance_type
&a
, const acceptance_type
&b
)
928 return !operator == (a
, b
);
931 /* Represents a parameter to a pattern routine. */
934 /* The C type of parameter. */
936 /* Represents an invalid parameter. */
939 /* A machine_mode parameter. */
942 /* An rtx_code parameter. */
945 /* An int parameter. */
948 /* An unsigned int parameter. */
951 /* A HOST_WIDE_INT parameter. */
956 parameter (type_enum
, bool, uint64_t);
958 /* The type of the parameter. */
961 /* True if the value passed is variable, false if it is constant. */
964 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
965 format string. If !IS_PARAM, this is the constant value passed. */
969 parameter::parameter ()
970 : type (UNSET
), is_param (false), value (0) {}
972 parameter::parameter (type_enum type_in
, bool is_param_in
, uint64_t value_in
)
973 : type (type_in
), is_param (is_param_in
), value (value_in
) {}
976 operator == (const parameter
¶m1
, const parameter
¶m2
)
978 return (param1
.type
== param2
.type
979 && param1
.is_param
== param2
.is_param
980 && param1
.value
== param2
.value
);
984 operator != (const parameter
¶m1
, const parameter
¶m2
)
986 return !operator == (param1
, param2
);
989 /* Represents a routine that matches a partial rtx pattern, returning
990 an ad-hoc enum value on success and -1 on failure. The routine can
991 be used by any subroutine type. The match can be parameterized by
992 things like mode, code and UNSPEC number. */
993 struct pattern_routine
995 /* The state that implements the pattern. */
998 /* The deepest root position from which S can access all the rtxes it needs.
999 This is NULL if the pattern doesn't need an rtx input, usually because
1000 all matching is done on operands[] instead. */
1003 /* A unique identifier for the routine. */
1004 unsigned int pattern_id
;
1006 /* True if the routine takes pnum_clobbers as argument. */
1007 bool pnum_clobbers_p
;
1009 /* True if the routine takes the enclosing instruction as argument. */
1012 /* The types of the other parameters to the routine, if any. */
1013 auto_vec
<parameter::type_enum
, MAX_PATTERN_PARAMS
> param_types
;
1016 /* All defined patterns. */
1017 static vec
<pattern_routine
*> patterns
;
1019 /* Represents one use of a pattern routine. */
1022 /* The pattern routine to use. */
1023 pattern_routine
*routine
;
1025 /* The values to pass as parameters. This vector has the same length
1026 as ROUTINE->PARAM_TYPES. */
1027 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
1030 /* Represents a test performed by a decision. */
1035 /* The types of test that can be performed. Most of them take as input
1036 an rtx X. Some also take as input a transition label LABEL; the others
1037 are booleans for which the transition label is always "true".
1039 The order of the enum isn't important. */
1041 /* Check GET_CODE (X) == LABEL. */
1044 /* Check GET_MODE (X) == LABEL. */
1047 /* Check REGNO (X) == LABEL. */
1050 /* Check XINT (X, u.opno) == LABEL. */
1053 /* Check XWINT (X, u.opno) == LABEL. */
1056 /* Check XVECLEN (X, 0) == LABEL. */
1059 /* Check peep2_current_count >= u.min_len. */
1062 /* Check XVECLEN (X, 0) >= u.min_len. */
1065 /* Check whether X is a cached const_int with value u.integer. */
1068 /* Check u.predicate.data (X, u.predicate.mode). */
1071 /* Check rtx_equal_p (X, operands[u.opno]). */
1074 /* Check whether X matches pattern u.pattern. */
1077 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1080 /* Check whether general C test u.string holds. In general the condition
1081 needs access to "insn" and the full operand list. */
1084 /* Execute operands[u.opno] = X. (Always succeeds.) */
1087 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1088 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1092 /* The position of rtx X in the above description, relative to the
1093 incoming instruction "insn". The position is null if the test
1094 doesn't take an X as input. */
1097 /* Which element of operands[] already contains POS, or -1 if no element
1098 is known to hold POS. */
1101 /* The type of test and its parameters, as described above. */
1114 const struct pred_data
*data
;
1115 /* True if the mode is taken from a machine_mode parameter
1116 to the routine rather than a constant machine_mode. If true,
1117 MODE is the number of the parameter (for an "i%d" format string),
1118 otherwise it is the mode itself. */
1122 pattern_use
*pattern
;
1124 acceptance_type acceptance
;
1127 static rtx_test
code (position
*);
1128 static rtx_test
mode (position
*);
1129 static rtx_test
regno_field (position
*);
1130 static rtx_test
int_field (position
*, int);
1131 static rtx_test
wide_int_field (position
*, int);
1132 static rtx_test
veclen (position
*);
1133 static rtx_test
peep2_count (int);
1134 static rtx_test
veclen_ge (position
*, int);
1135 static rtx_test
predicate (position
*, const pred_data
*, machine_mode
);
1136 static rtx_test
duplicate (position
*, int);
1137 static rtx_test
pattern (position
*, pattern_use
*);
1138 static rtx_test
have_num_clobbers ();
1139 static rtx_test
c_test (const char *);
1140 static rtx_test
set_op (position
*, int);
1141 static rtx_test
accept (const acceptance_type
&);
1143 bool terminal_p () const;
1144 bool single_outcome_p () const;
1147 rtx_test (position
*, kind_enum
);
1150 rtx_test::rtx_test () {}
1152 rtx_test::rtx_test (position
*pos_in
, kind_enum kind_in
)
1153 : pos (pos_in
), pos_operand (-1), kind (kind_in
) {}
1156 rtx_test::code (position
*pos
)
1158 return rtx_test (pos
, rtx_test::CODE
);
1162 rtx_test::mode (position
*pos
)
1164 return rtx_test (pos
, rtx_test::MODE
);
1168 rtx_test::regno_field (position
*pos
)
1170 rtx_test
res (pos
, rtx_test::REGNO_FIELD
);
1175 rtx_test::int_field (position
*pos
, int opno
)
1177 rtx_test
res (pos
, rtx_test::INT_FIELD
);
1183 rtx_test::wide_int_field (position
*pos
, int opno
)
1185 rtx_test
res (pos
, rtx_test::WIDE_INT_FIELD
);
1191 rtx_test::veclen (position
*pos
)
1193 return rtx_test (pos
, rtx_test::VECLEN
);
1197 rtx_test::peep2_count (int min_len
)
1199 rtx_test
res (0, rtx_test::PEEP2_COUNT
);
1200 res
.u
.min_len
= min_len
;
1205 rtx_test::veclen_ge (position
*pos
, int min_len
)
1207 rtx_test
res (pos
, rtx_test::VECLEN_GE
);
1208 res
.u
.min_len
= min_len
;
1213 rtx_test::predicate (position
*pos
, const struct pred_data
*data
,
1216 rtx_test
res (pos
, rtx_test::PREDICATE
);
1217 res
.u
.predicate
.data
= data
;
1218 res
.u
.predicate
.mode_is_param
= false;
1219 res
.u
.predicate
.mode
= mode
;
1224 rtx_test::duplicate (position
*pos
, int opno
)
1226 rtx_test
res (pos
, rtx_test::DUPLICATE
);
1232 rtx_test::pattern (position
*pos
, pattern_use
*pattern
)
1234 rtx_test
res (pos
, rtx_test::PATTERN
);
1235 res
.u
.pattern
= pattern
;
1240 rtx_test::have_num_clobbers ()
1242 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS
);
1246 rtx_test::c_test (const char *string
)
1248 rtx_test
res (0, rtx_test::C_TEST
);
1249 res
.u
.string
= string
;
1254 rtx_test::set_op (position
*pos
, int opno
)
1256 rtx_test
res (pos
, rtx_test::SET_OP
);
1262 rtx_test::accept (const acceptance_type
&acceptance
)
1264 rtx_test
res (0, rtx_test::ACCEPT
);
1265 res
.u
.acceptance
= acceptance
;
1269 /* Return true if the test represents an unconditionally successful match. */
1272 rtx_test::terminal_p () const
1274 return kind
== rtx_test::ACCEPT
&& u
.acceptance
.type
!= PEEPHOLE2
;
1277 /* Return true if the test is a boolean that is always true. */
1280 rtx_test::single_outcome_p () const
1282 return terminal_p () || kind
== rtx_test::SET_OP
;
1286 operator == (const rtx_test
&a
, const rtx_test
&b
)
1288 if (a
.pos
!= b
.pos
|| a
.kind
!= b
.kind
)
1292 case rtx_test::CODE
:
1293 case rtx_test::MODE
:
1294 case rtx_test::REGNO_FIELD
:
1295 case rtx_test::VECLEN
:
1296 case rtx_test::HAVE_NUM_CLOBBERS
:
1299 case rtx_test::PEEP2_COUNT
:
1300 case rtx_test::VECLEN_GE
:
1301 return a
.u
.min_len
== b
.u
.min_len
;
1303 case rtx_test::INT_FIELD
:
1304 case rtx_test::WIDE_INT_FIELD
:
1305 case rtx_test::DUPLICATE
:
1306 case rtx_test::SET_OP
:
1307 return a
.u
.opno
== b
.u
.opno
;
1309 case rtx_test::SAVED_CONST_INT
:
1310 return (a
.u
.integer
.is_param
== b
.u
.integer
.is_param
1311 && a
.u
.integer
.value
== b
.u
.integer
.value
);
1313 case rtx_test::PREDICATE
:
1314 return (a
.u
.predicate
.data
== b
.u
.predicate
.data
1315 && a
.u
.predicate
.mode_is_param
== b
.u
.predicate
.mode_is_param
1316 && a
.u
.predicate
.mode
== b
.u
.predicate
.mode
);
1318 case rtx_test::PATTERN
:
1319 return (a
.u
.pattern
->routine
== b
.u
.pattern
->routine
1320 && a
.u
.pattern
->params
== b
.u
.pattern
->params
);
1322 case rtx_test::C_TEST
:
1323 return strcmp (a
.u
.string
, b
.u
.string
) == 0;
1325 case rtx_test::ACCEPT
:
1326 return a
.u
.acceptance
== b
.u
.acceptance
;
1332 operator != (const rtx_test
&a
, const rtx_test
&b
)
1334 return !operator == (a
, b
);
1337 /* A simple set of transition labels. Most transitions have a singleton
1338 label, so try to make that case as efficient as possible. */
1339 struct int_set
: public auto_vec
<uint64_t, 1>
1341 typedef uint64_t *iterator
;
1345 int_set (const int_set
&);
1347 int_set
&operator = (const int_set
&);
1353 int_set::int_set () {}
1355 int_set::int_set (uint64_t label
)
1360 int_set::int_set (const int_set
&other
)
1362 safe_splice (other
);
1366 int_set::operator = (const int_set
&other
)
1369 safe_splice (other
);
1382 return address () + length ();
1386 operator == (const int_set
&a
, const int_set
&b
)
1388 if (a
.length () != b
.length ())
1390 for (unsigned int i
= 0; i
< a
.length (); ++i
)
1397 operator != (const int_set
&a
, const int_set
&b
)
1399 return !operator == (a
, b
);
1404 /* Represents a transition between states, dependent on the result of
1408 transition (const int_set
&, state
*, bool);
1410 void set_parent (list_head
<transition
> *);
1412 /* Links to other transitions for T. Always null for boolean tests. */
1413 transition
*prev
, *next
;
1415 /* The transition should be taken when T has one of these values.
1416 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1417 rtx_test::PREDICATE it is always a singleton "true". The labels are
1418 sorted in ascending order. */
1421 /* The source decision. */
1424 /* The target state. */
1427 /* True if TO would function correctly even if TEST wasn't performed.
1428 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1429 before calling register_operand (x1, SImode), since register_operand
1430 performs its own mode check. However, checking GET_MODE can be a cheap
1431 way of disambiguating SImode and DImode register operands. */
1434 /* True if LABELS contains parameter numbers rather than constants.
1435 E.g. if this is true for a rtx_test::CODE, the label is the number
1436 of an rtx_code parameter rather than an rtx_code itself.
1437 LABELS is always a singleton when this variable is true. */
1441 /* Represents a test and the action that should be taken on the result.
1442 If a transition exists for the test outcome, the machine switches
1443 to the transition's target state. If no suitable transition exists,
1444 the machine either falls through to the next decision or, if there are no
1445 more decisions to try, fails the match. */
1446 struct decision
: list_head
<transition
>
1448 decision (const rtx_test
&);
1450 void set_parent (list_head
<decision
> *s
);
1451 bool if_statement_p (uint64_t * = 0) const;
1453 /* The state to which this decision belongs. */
1456 /* Links to other decisions in the same state. */
1457 decision
*prev
, *next
;
1459 /* The test to perform. */
1463 /* Represents one machine state. For each state the machine tries a list
1464 of decisions, in order, and acts on the first match. It fails without
1465 further backtracking if no decisions match. */
1466 struct state
: list_head
<decision
>
1468 void set_parent (list_head
<state
> *) {}
1471 transition::transition (const int_set
&labels_in
, state
*to_in
,
1473 : prev (0), next (0), labels (labels_in
), from (0), to (to_in
),
1474 optional (optional_in
), is_param (false) {}
1476 /* Set the source decision of the transition. */
1479 transition::set_parent (list_head
<transition
> *from_in
)
1481 from
= static_cast <decision
*> (from_in
);
1484 decision::decision (const rtx_test
&test_in
)
1485 : prev (0), next (0), test (test_in
) {}
1487 /* Set the state to which this decision belongs. */
1490 decision::set_parent (list_head
<decision
> *s_in
)
1492 s
= static_cast <state
*> (s_in
);
1495 /* Return true if the decision has a single transition with a single label.
1496 If so, return the label in *LABEL if nonnull. */
1499 decision::if_statement_p (uint64_t *label
) const
1501 if (singleton () && first
->labels
.length () == 1)
1504 *label
= first
->labels
[0];
1510 /* Add to FROM a decision that performs TEST and has a single transition
1514 add_decision (state
*from
, const rtx_test
&test
, transition
*trans
)
1516 decision
*d
= new decision (test
);
1517 from
->push_back (d
);
1518 d
->push_back (trans
);
1521 /* Add a transition from FROM to a new, empty state that is taken
1522 when TEST == LABELS. OPTIONAL says whether the new transition
1523 should be optional. Return the new state. */
1526 add_decision (state
*from
, const rtx_test
&test
, int_set labels
, bool optional
)
1528 state
*to
= new state
;
1529 add_decision (from
, test
, new transition (labels
, to
, optional
));
1533 /* Insert a decision before decisions R to make them dependent on
1534 TEST == LABELS. OPTIONAL says whether the new transition should be
1538 insert_decision_before (state::range r
, const rtx_test
&test
,
1539 const int_set
&labels
, bool optional
)
1541 decision
*newd
= new decision (test
);
1542 state
*news
= new state
;
1543 newd
->push_back (new transition (labels
, news
, optional
));
1544 r
.start
->s
->replace (r
, newd
);
1545 news
->push_back (r
);
1549 /* Remove any optional transitions from S that turned out not to be useful. */
1552 collapse_optional_decisions (state
*s
)
1554 decision
*d
= s
->first
;
1557 decision
*next
= d
->next
;
1558 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1559 collapse_optional_decisions (trans
->to
);
1560 /* A decision with a single optional transition doesn't help
1561 partition the potential matches and so is unlikely to be
1562 worthwhile. In particular, if the decision that performs the
1563 test is the last in the state, the best it could do is reject
1564 an invalid pattern slightly earlier. If instead the decision
1565 is not the last in the state, the condition it tests could hold
1566 even for the later decisions in the state. The best it can do
1567 is save work in some cases where only the later decisions can
1570 In both cases the optional transition would add extra work to
1571 successful matches when the tested condition holds. */
1572 if (transition
*trans
= d
->singleton ())
1573 if (trans
->optional
)
1574 s
->replace (d
, trans
->to
->release ());
1579 /* Try to squash several separate tests into simpler ones. */
1582 simplify_tests (state
*s
)
1584 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1587 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1588 into checks for const_int_rtx[N'], if N is suitably small. */
1589 if (d
->test
.kind
== rtx_test::CODE
1590 && d
->if_statement_p (&label
)
1591 && label
== CONST_INT
)
1592 if (decision
*second
= d
->first
->to
->singleton ())
1593 if (d
->test
.pos
== second
->test
.pos
1594 && second
->test
.kind
== rtx_test::WIDE_INT_FIELD
1595 && second
->test
.u
.opno
== 0
1596 && second
->if_statement_p (&label
)
1597 && IN_RANGE (int64_t (label
),
1598 -MAX_SAVED_CONST_INT
, MAX_SAVED_CONST_INT
))
1600 d
->test
.kind
= rtx_test::SAVED_CONST_INT
;
1601 d
->test
.u
.integer
.is_param
= false;
1602 d
->test
.u
.integer
.value
= label
;
1603 d
->replace (d
->first
, second
->release ());
1604 d
->first
->labels
[0] = true;
1606 /* If we have a CODE test followed by a PREDICATE test, rely on
1607 the predicate to test the code.
1609 This case exists for match_operators. We initially treat the
1610 CODE test for a match_operator as non-optional so that we can
1611 safely move down to its operands. It may turn out that all
1612 paths that reach that code test require the same predicate
1613 to be true. cse_tests will then put the predicate test in
1614 series with the code test. */
1615 if (d
->test
.kind
== rtx_test::CODE
)
1616 if (transition
*trans
= d
->singleton ())
1618 state
*s
= trans
->to
;
1619 while (decision
*d2
= s
->singleton ())
1621 if (d
->test
.pos
!= d2
->test
.pos
)
1623 transition
*trans2
= d2
->singleton ();
1626 if (d2
->test
.kind
== rtx_test::PREDICATE
)
1629 trans
->labels
= int_set (true);
1630 s
->replace (d2
, trans2
->to
->release ());
1636 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1637 simplify_tests (trans
->to
);
1641 /* Return true if all successful returns passing through D require the
1642 condition tested by COMMON to be true.
1644 When returning true, add all transitions like COMMON in D to WHERE.
1645 WHERE may contain a partial result on failure. */
1648 common_test_p (decision
*d
, transition
*common
, vec
<transition
*> *where
)
1650 if (d
->test
.kind
== rtx_test::ACCEPT
)
1651 /* We found a successful return that didn't require COMMON. */
1653 if (d
->test
== common
->from
->test
)
1655 transition
*trans
= d
->singleton ();
1657 || trans
->optional
!= common
->optional
1658 || trans
->labels
!= common
->labels
)
1660 where
->safe_push (trans
);
1663 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1664 for (decision
*subd
= trans
->to
->first
; subd
; subd
= subd
->next
)
1665 if (!common_test_p (subd
, common
, where
))
1670 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1671 const unsigned char TESTED_CODE
= 1;
1673 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1674 const unsigned char TESTED_VECLEN
= 2;
1676 /* Represents a set of conditions that are known to hold. */
1677 struct known_conditions
1679 /* A mask of TESTED_ values for each position, indexed by the position's
1681 auto_vec
<unsigned char> position_tests
;
1683 /* Index N says whether operands[N] has been set. */
1684 auto_vec
<bool> set_operands
;
1686 /* A guranteed lower bound on the value of peep2_current_count. */
1690 /* Return true if TEST can safely be performed at D, where
1691 the conditions in KC hold. TEST is known to occur along the
1692 first path from D (i.e. always following the first transition
1693 of the first decision). Any intervening tests can be used as
1694 negative proof that hoisting isn't safe, but only KC can be used
1695 as positive proof. */
1698 safe_to_hoist_p (decision
*d
, const rtx_test
&test
, known_conditions
*kc
)
1702 case rtx_test::C_TEST
:
1703 /* In general, C tests require everything else to have been
1704 verified and all operands to have been set up. */
1707 case rtx_test::ACCEPT
:
1708 /* Don't accept something before all conditions have been tested. */
1711 case rtx_test::PREDICATE
:
1712 /* Don't move a predicate over a test for VECLEN_GE, since the
1713 predicate used in a match_parallel can legitimately expect the
1714 length to be checked first. */
1715 for (decision
*subd
= d
;
1717 subd
= subd
->first
->to
->first
)
1718 if (subd
->test
.pos
== test
.pos
1719 && subd
->test
.kind
== rtx_test::VECLEN_GE
)
1723 case rtx_test::DUPLICATE
:
1724 /* Don't test for a match_dup until the associated operand has
1726 if (!kc
->set_operands
[test
.u
.opno
])
1730 case rtx_test::CODE
:
1731 case rtx_test::MODE
:
1732 case rtx_test::SAVED_CONST_INT
:
1733 case rtx_test::SET_OP
:
1735 /* Check whether it is safe to access the rtx under test. */
1736 switch (test
.pos
->type
)
1738 case POS_PEEP2_INSN
:
1739 return test
.pos
->arg
< kc
->peep2_count
;
1742 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_CODE
;
1745 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_VECLEN
;
1749 case rtx_test::REGNO_FIELD
:
1750 case rtx_test::INT_FIELD
:
1751 case rtx_test::WIDE_INT_FIELD
:
1752 case rtx_test::VECLEN
:
1753 case rtx_test::VECLEN_GE
:
1754 /* These tests access a specific part of an rtx, so are only safe
1755 once we know what the rtx is. */
1756 return kc
->position_tests
[test
.pos
->id
] & TESTED_CODE
;
1758 case rtx_test::PEEP2_COUNT
:
1759 case rtx_test::HAVE_NUM_CLOBBERS
:
1760 /* These tests can be performed anywhere. */
1763 case rtx_test::PATTERN
:
1769 /* Look for a transition that is taken by all successful returns from a range
1770 of decisions starting at OUTER and that would be better performed by
1771 OUTER's state instead. On success, store all instances of that transition
1772 in WHERE and return the last decision in the range. The range could
1773 just be OUTER, or it could include later decisions as well.
1775 WITH_POSITION_P is true if only tests with position POS should be tried,
1776 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1777 result is useful even when the range contains just a single decision
1778 with a single transition. KC are the conditions that are known to
1782 find_common_test (decision
*outer
, bool with_position_p
,
1783 position
*pos
, bool worthwhile_single_p
,
1784 known_conditions
*kc
, vec
<transition
*> *where
)
1786 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1787 just a single decision is useful, regardless of the number of
1788 transitions it has. */
1789 if (!outer
->singleton ())
1790 worthwhile_single_p
= true;
1791 /* Quick exit if we don't have enough decisions to form a worthwhile
1793 if (!worthwhile_single_p
&& !outer
->next
)
1795 /* Follow the first chain down, as one example of a path that needs
1796 to contain the common test. */
1797 for (decision
*d
= outer
; d
; d
= d
->first
->to
->first
)
1799 transition
*trans
= d
->singleton ();
1801 && (!with_position_p
|| d
->test
.pos
== pos
)
1802 && safe_to_hoist_p (outer
, d
->test
, kc
))
1804 if (common_test_p (outer
, trans
, where
))
1807 /* We checked above whether the move is worthwhile. */
1809 /* See how many decisions in OUTER's chain could reuse
1811 decision
*outer_end
= outer
;
1814 unsigned int length
= where
->length ();
1815 if (!common_test_p (outer_end
->next
, trans
, where
))
1817 where
->truncate (length
);
1820 outer_end
= outer_end
->next
;
1822 while (outer_end
->next
);
1823 /* It is worth moving TRANS if it can be shared by more than
1825 if (outer_end
!= outer
|| worthwhile_single_p
)
1828 where
->truncate (0);
1834 /* Try to promote common subtests in S to a single, shared decision.
1835 Also try to bunch tests for the same position together. POS is the
1836 position of the rtx tested before reaching S. KC are the conditions
1837 that are known to hold on entry to S. */
1840 cse_tests (position
*pos
, state
*s
, known_conditions
*kc
)
1842 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1844 auto_vec
<transition
*, 16> where
;
1847 /* Try to find conditions that don't depend on a particular rtx,
1848 such as pnum_clobbers != NULL or peep2_current_count >= X.
1849 It's usually better to check these conditions as soon as
1850 possible, so the change is worthwhile even if there is
1851 only one copy of the test. */
1852 decision
*endd
= find_common_test (d
, true, 0, true, kc
, &where
);
1853 if (!endd
&& d
->test
.pos
!= pos
)
1854 /* Try to find other conditions related to position POS
1855 before moving to the new position. Again, this is
1856 worthwhile even if there is only one copy of the test,
1857 since it means that fewer position variables are live
1859 endd
= find_common_test (d
, true, pos
, true, kc
, &where
);
1861 /* Try to find any condition that is used more than once. */
1862 endd
= find_common_test (d
, false, 0, false, kc
, &where
);
1865 transition
*common
= where
[0];
1866 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1867 on the common test and see the original D again next time. */
1868 d
= insert_decision_before (state::range (d
, endd
),
1872 /* Remove the old tests. */
1873 while (!where
.is_empty ())
1875 transition
*trans
= where
.pop ();
1876 trans
->from
->s
->replace (trans
->from
, trans
->to
->release ());
1881 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1882 It should realize that D's test is safe in the current
1884 gcc_assert (d
->test
.kind
== rtx_test::C_TEST
1885 || d
->test
.kind
== rtx_test::ACCEPT
1886 || safe_to_hoist_p (d
, d
->test
, kc
));
1888 /* D won't be changed any further by the current optimization.
1889 Recurse with the state temporarily updated to include D. */
1891 switch (d
->test
.kind
)
1893 case rtx_test::CODE
:
1894 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1895 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_CODE
;
1898 case rtx_test::VECLEN
:
1899 case rtx_test::VECLEN_GE
:
1900 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1901 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_VECLEN
;
1904 case rtx_test::SET_OP
:
1905 prev
= kc
->set_operands
[d
->test
.u
.opno
];
1907 kc
->set_operands
[d
->test
.u
.opno
] = true;
1910 case rtx_test::PEEP2_COUNT
:
1911 prev
= kc
->peep2_count
;
1912 kc
->peep2_count
= MAX (prev
, d
->test
.u
.min_len
);
1918 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1919 cse_tests (d
->test
.pos
? d
->test
.pos
: pos
, trans
->to
, kc
);
1920 switch (d
->test
.kind
)
1922 case rtx_test::CODE
:
1923 case rtx_test::VECLEN
:
1924 case rtx_test::VECLEN_GE
:
1925 kc
->position_tests
[d
->test
.pos
->id
] = prev
;
1928 case rtx_test::SET_OP
:
1929 kc
->set_operands
[d
->test
.u
.opno
] = prev
;
1932 case rtx_test::PEEP2_COUNT
:
1933 kc
->peep2_count
= prev
;
1942 /* Return the type of value that can be used to parameterize test KIND,
1943 or parameter::UNSET if none. */
1945 parameter::type_enum
1946 transition_parameter_type (rtx_test::kind_enum kind
)
1950 case rtx_test::CODE
:
1951 return parameter::CODE
;
1953 case rtx_test::MODE
:
1954 return parameter::MODE
;
1956 case rtx_test::REGNO_FIELD
:
1957 return parameter::UINT
;
1959 case rtx_test::INT_FIELD
:
1960 case rtx_test::VECLEN
:
1961 case rtx_test::PATTERN
:
1962 return parameter::INT
;
1964 case rtx_test::WIDE_INT_FIELD
:
1965 return parameter::WIDE_INT
;
1967 case rtx_test::PEEP2_COUNT
:
1968 case rtx_test::VECLEN_GE
:
1969 case rtx_test::SAVED_CONST_INT
:
1970 case rtx_test::PREDICATE
:
1971 case rtx_test::DUPLICATE
:
1972 case rtx_test::HAVE_NUM_CLOBBERS
:
1973 case rtx_test::C_TEST
:
1974 case rtx_test::SET_OP
:
1975 case rtx_test::ACCEPT
:
1976 return parameter::UNSET
;
1981 /* Initialize the pos_operand fields of each state reachable from S.
1982 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
1983 operands[OPERAND_POS[ID]] on entry to S. */
1986 find_operand_positions (state
*s
, vec
<int> &operand_pos
)
1988 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1990 int this_operand
= (d
->test
.pos
? operand_pos
[d
->test
.pos
->id
] : -1);
1991 if (this_operand
>= 0)
1992 d
->test
.pos_operand
= this_operand
;
1993 if (d
->test
.kind
== rtx_test::SET_OP
)
1994 operand_pos
[d
->test
.pos
->id
] = d
->test
.u
.opno
;
1995 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1996 find_operand_positions (trans
->to
, operand_pos
);
1997 if (d
->test
.kind
== rtx_test::SET_OP
)
1998 operand_pos
[d
->test
.pos
->id
] = this_operand
;
2002 /* Statistics about a matching routine. */
2007 /* The total number of decisions in the routine, excluding trivial
2008 ones that never fail. */
2009 unsigned int num_decisions
;
2011 /* The number of non-trivial decisions on the longest path through
2012 the routine, and the return value that contributes most to that
2014 unsigned int longest_path
;
2015 int longest_path_code
;
2017 /* The maximum number of times that a single call to the routine
2018 can backtrack, and the value returned at the end of that path.
2019 "Backtracking" here means failing one decision in state and
2020 going onto to the next. */
2021 unsigned int longest_backtrack
;
2022 int longest_backtrack_code
;
2026 : num_decisions (0), longest_path (0), longest_path_code (-1),
2027 longest_backtrack (0), longest_backtrack_code (-1) {}
2029 /* Return statistics about S. */
2032 get_stats (state
*s
)
2035 unsigned int longest_path
= 0;
2036 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2038 /* Work out the statistics for D. */
2040 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2042 stats for_trans
= get_stats (trans
->to
);
2043 for_d
.num_decisions
+= for_trans
.num_decisions
;
2044 /* Each transition is mutually-exclusive, so just pick the
2045 longest of the individual paths. */
2046 if (for_d
.longest_path
<= for_trans
.longest_path
)
2048 for_d
.longest_path
= for_trans
.longest_path
;
2049 for_d
.longest_path_code
= for_trans
.longest_path_code
;
2051 /* Likewise for backtracking. */
2052 if (for_d
.longest_backtrack
<= for_trans
.longest_backtrack
)
2054 for_d
.longest_backtrack
= for_trans
.longest_backtrack
;
2055 for_d
.longest_backtrack_code
= for_trans
.longest_backtrack_code
;
2059 /* Account for D's test in its statistics. */
2060 if (!d
->test
.single_outcome_p ())
2062 for_d
.num_decisions
+= 1;
2063 for_d
.longest_path
+= 1;
2065 if (d
->test
.kind
== rtx_test::ACCEPT
)
2067 for_d
.longest_path_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2068 for_d
.longest_backtrack_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2071 /* Keep a running count of the number of backtracks. */
2073 for_s
.longest_backtrack
+= 1;
2075 /* Accumulate D's statistics into S's. */
2076 for_s
.num_decisions
+= for_d
.num_decisions
;
2077 for_s
.longest_path
+= for_d
.longest_path
;
2078 for_s
.longest_backtrack
+= for_d
.longest_backtrack
;
2080 /* Use the code from the decision with the longest individual path,
2081 since that's more likely to be useful if trying to make the
2082 path shorter. In the event of a tie, pick the later decision,
2083 since that's closer to the end of the path. */
2084 if (longest_path
<= for_d
.longest_path
)
2086 longest_path
= for_d
.longest_path
;
2087 for_s
.longest_path_code
= for_d
.longest_path_code
;
2090 /* Later decisions in a state are necessarily in a longer backtrack
2091 than earlier decisions. */
2092 for_s
.longest_backtrack_code
= for_d
.longest_backtrack_code
;
2097 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2100 optimize_subroutine_group (const char *type
, state
*root
)
2102 /* Remove optional transitions that turned out not to be worthwhile. */
2103 if (collapse_optional_decisions_p
)
2104 collapse_optional_decisions (root
);
2106 /* Try to remove duplicated tests and to rearrange tests into a more
2110 known_conditions kc
;
2111 kc
.position_tests
.safe_grow_cleared (num_positions
);
2112 kc
.set_operands
.safe_grow_cleared (num_operands
);
2114 cse_tests (&root_pos
, root
, &kc
);
2117 /* Try to simplify two or more tests into one. */
2118 if (simplify_tests_p
)
2119 simplify_tests (root
);
2121 /* Try to use operands[] instead of xN variables. */
2122 if (use_operand_variables_p
)
2124 auto_vec
<int> operand_pos (num_positions
);
2125 for (unsigned int i
= 0; i
< num_positions
; ++i
)
2126 operand_pos
.quick_push (-1);
2127 find_operand_positions (root
, operand_pos
);
2130 /* Print a summary of the new state. */
2131 stats st
= get_stats (root
);
2132 fprintf (stderr
, "Statistics for %s:\n", type
);
2133 fprintf (stderr
, " Number of decisions: %6d\n", st
.num_decisions
);
2134 fprintf (stderr
, " longest path: %6d (code: %6d)\n",
2135 st
.longest_path
, st
.longest_path_code
);
2136 fprintf (stderr
, " longest backtrack: %6d (code: %6d)\n",
2137 st
.longest_backtrack
, st
.longest_backtrack_code
);
2140 struct merge_pattern_info
;
2142 /* Represents a transition from one pattern to another. */
2143 struct merge_pattern_transition
2145 merge_pattern_transition (merge_pattern_info
*);
2147 /* The target pattern. */
2148 merge_pattern_info
*to
;
2150 /* The parameters that the source pattern passes to the target pattern.
2151 "parameter (TYPE, true, I)" represents parameter I of the source
2153 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2156 merge_pattern_transition::merge_pattern_transition (merge_pattern_info
*to_in
)
2161 /* Represents a pattern that can might match several states. The pattern
2162 may replace parts of the test with a parameter value. It may also
2163 replace transition labels with parameters. */
2164 struct merge_pattern_info
2166 merge_pattern_info (unsigned int);
2168 /* If PARAM_TEST_P, the state's singleton test should be generalized
2169 to use the runtime value of PARAMS[PARAM_TEST]. */
2170 unsigned int param_test
: 8;
2172 /* If PARAM_TRANSITION_P, the state's single transition label should
2173 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2174 unsigned int param_transition
: 8;
2176 /* True if we have decided to generalize the root decision's test,
2177 as per PARAM_TEST. */
2178 unsigned int param_test_p
: 1;
2180 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2181 unsigned int param_transition_p
: 1;
2183 /* True if the contents of the structure are completely filled in. */
2184 unsigned int complete_p
: 1;
2186 /* The number of pseudo-statements in the pattern. Used to decide
2187 whether it's big enough to break out into a subroutine. */
2188 unsigned int num_statements
;
2190 /* The number of states that use this pattern. */
2191 unsigned int num_users
;
2193 /* The number of distinct success values that the pattern returns. */
2194 unsigned int num_results
;
2196 /* This array has one element for each runtime parameter to the pattern.
2197 PARAMS[I] gives the default value of parameter I, which is always
2200 These default parameters are used in cases where we match the
2201 pattern against some state S1, then add more parameters while
2202 matching against some state S2. S1 is then left passing fewer
2203 parameters than S2. The array gives us enough informatino to
2204 construct a full parameter list for S1 (see update_parameters).
2206 If we decide to create a subroutine for this pattern,
2207 PARAMS[I].type determines the C type of parameter I. */
2208 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2210 /* All states that match this pattern must have the same number of
2211 transitions. TRANSITIONS[I] describes the subpattern for transition
2212 number I; it is null if transition I represents a successful return
2213 from the pattern. */
2214 auto_vec
<merge_pattern_transition
*, 1> transitions
;
2216 /* The routine associated with the pattern, or null if we haven't generated
2218 pattern_routine
*routine
;
2221 merge_pattern_info::merge_pattern_info (unsigned int num_transitions
)
2223 param_transition (0),
2224 param_test_p (false),
2225 param_transition_p (false),
2232 transitions
.safe_grow_cleared (num_transitions
);
2235 /* Describes one way of matching a particular state to a particular
2237 struct merge_state_result
2239 merge_state_result (merge_pattern_info
*, position
*, merge_state_result
*);
2241 /* A pattern that matches the state. */
2242 merge_pattern_info
*pattern
;
2244 /* If we decide to use this match and create a subroutine for PATTERN,
2245 the state should pass the rtx at position ROOT to the pattern's
2246 rtx parameter. A null root means that the pattern doesn't need
2247 an rtx parameter; all the rtxes it matches come from elsewhere. */
2250 /* The parameters that should be passed to PATTERN for this state.
2251 If the array is shorter than PATTERN->params, the missing entries
2252 should be taken from the corresponding element of PATTERN->params. */
2253 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2255 /* An earlier match for the same state, or null if none. Patterns
2256 matched by earlier entries are smaller than PATTERN. */
2257 merge_state_result
*prev
;
2260 merge_state_result::merge_state_result (merge_pattern_info
*pattern_in
,
2262 merge_state_result
*prev_in
)
2263 : pattern (pattern_in
), root (root_in
), prev (prev_in
)
2266 /* Information about a state, used while trying to match it against
2268 struct merge_state_info
2270 merge_state_info (state
*);
2272 /* The state itself. */
2275 /* Index I gives information about the target of transition I. */
2276 merge_state_info
*to_states
;
2278 /* The number of transitions in S. */
2279 unsigned int num_transitions
;
2281 /* True if the state has been deleted in favor of a call to a
2285 /* The previous state that might be a merge candidate for S, or null
2286 if no previous states could be merged with S. */
2287 merge_state_info
*prev_same_test
;
2289 /* A list of pattern matches for this state. */
2290 merge_state_result
*res
;
2293 merge_state_info::merge_state_info (state
*s_in
)
2296 num_transitions (0),
2301 /* True if PAT would be useful as a subroutine. */
2304 useful_pattern_p (merge_pattern_info
*pat
)
2306 return pat
->num_statements
>= MIN_COMBINE_COST
;
2309 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2310 into PAT1's C routine. */
2313 same_pattern_p (merge_pattern_info
*pat1
, merge_pattern_info
*pat2
)
2315 return pat1
->num_users
== pat2
->num_users
|| !useful_pattern_p (pat2
);
2318 /* PAT was previously matched against SINFO based on tentative matches
2319 for the target states of SINFO's state. Return true if the match
2320 still holds; that is, if the target states of SINFO's state still
2321 match the corresponding transitions of PAT. */
2324 valid_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2326 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2327 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
2329 merge_state_result
*to_res
= sinfo
->to_states
[j
].res
;
2330 if (!to_res
|| to_res
->pattern
!= ptrans
->to
)
2336 /* Remove any matches that are no longer valid from the head of SINFO's
2340 prune_invalid_results (merge_state_info
*sinfo
)
2342 while (sinfo
->res
&& !valid_result_p (sinfo
->res
->pattern
, sinfo
))
2344 sinfo
->res
= sinfo
->res
->prev
;
2345 gcc_assert (sinfo
->res
);
2349 /* Return true if PAT represents the biggest posssible match for SINFO;
2350 that is, if the next action of SINFO's state on return from PAT will
2351 be something that cannot be merged with any other state. */
2354 complete_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2356 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2357 if (sinfo
->to_states
[j
].res
&& !pat
->transitions
[j
])
2362 /* Update TO for any parameters that have been added to FROM since TO
2363 was last set. The extra parameters in FROM will be constants or
2364 instructions to duplicate earlier parameters. */
2367 update_parameters (vec
<parameter
> &to
, const vec
<parameter
> &from
)
2369 for (unsigned int i
= to
.length (); i
< from
.length (); ++i
)
2370 to
.quick_push (from
[i
]);
2373 /* Return true if A and B can be tested by a single test. If the test
2374 can be parameterised, store the parameter value for A in *PARAMA and
2375 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2379 compatible_tests_p (const rtx_test
&a
, const rtx_test
&b
,
2380 parameter
*parama
, parameter
*paramb
)
2382 if (a
.kind
!= b
.kind
)
2386 case rtx_test::PREDICATE
:
2387 if (a
.u
.predicate
.data
!= b
.u
.predicate
.data
)
2389 *parama
= parameter (parameter::MODE
, false, a
.u
.predicate
.mode
);
2390 *paramb
= parameter (parameter::MODE
, false, b
.u
.predicate
.mode
);
2393 case rtx_test::SAVED_CONST_INT
:
2394 *parama
= parameter (parameter::INT
, false, a
.u
.integer
.value
);
2395 *paramb
= parameter (parameter::INT
, false, b
.u
.integer
.value
);
2403 /* PARAMS is an array of the parameters that a state is going to pass
2404 to a pattern routine. It is still incomplete; index I has a kind of
2405 parameter::UNSET if we don't yet know what the state will pass
2406 as parameter I. Try to make parameter ID equal VALUE, returning
2410 set_parameter (vec
<parameter
> ¶ms
, unsigned int id
,
2411 const parameter
&value
)
2413 if (params
[id
].type
== parameter::UNSET
)
2415 if (force_unique_params_p
)
2416 for (unsigned int i
= 0; i
< params
.length (); ++i
)
2417 if (params
[i
] == value
)
2422 return params
[id
] == value
;
2425 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2426 set of parameters that a particular state is going to pass to
2429 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2430 that is equal to PARAM1 for the state and has a default value of
2431 PARAM2. Parameters beginning at START were added as part of the
2432 same match and so may be reused. */
2435 add_parameter (vec
<parameter
> ¶ms1
, vec
<parameter
> ¶ms2
,
2436 const parameter
¶m1
, const parameter
¶m2
,
2437 unsigned int start
, unsigned int *res
)
2439 gcc_assert (params1
.length () == params2
.length ());
2440 gcc_assert (!param1
.is_param
&& !param2
.is_param
);
2442 for (unsigned int i
= start
; i
< params2
.length (); ++i
)
2443 if (params1
[i
] == param1
&& params2
[i
] == param2
)
2449 if (force_unique_params_p
)
2450 for (unsigned int i
= 0; i
< params2
.length (); ++i
)
2451 if (params1
[i
] == param1
|| params2
[i
] == param2
)
2454 if (params2
.length () >= MAX_PATTERN_PARAMS
)
2457 *res
= params2
.length ();
2458 params1
.quick_push (param1
);
2459 params2
.quick_push (param2
);
2463 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2464 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2465 is null, update it if necessary in order to make the condition hold. */
2468 merge_relative_positions (position
**roota
, position
*a
,
2469 position
*rootb
, position
*b
)
2471 if (!relative_patterns_p
)
2480 return *roota
== rootb
;
2482 /* If B does not belong to the same instruction as ROOTB, we don't
2483 start with ROOTB but instead start with a call to peep2_next_insn.
2484 In that case the sequences for B and A are identical iff B and A
2485 are themselves identical. */
2486 if (rootb
->insn_id
!= b
->insn_id
)
2490 if (!a
|| b
->type
!= a
->type
|| b
->arg
!= a
->arg
)
2500 /* A hasher of states that treats two states as "equal" if they might be
2501 merged (but trying to be more discriminating than "return true"). */
2502 struct test_pattern_hasher
: nofree_ptr_hash
<merge_state_info
>
2504 static inline hashval_t
hash (const value_type
&);
2505 static inline bool equal (const value_type
&, const compare_type
&);
2509 test_pattern_hasher::hash (merge_state_info
*const &sinfo
)
2512 decision
*d
= sinfo
->s
->singleton ();
2513 h
.add_int (d
->test
.pos_operand
+ 1);
2514 if (!relative_patterns_p
)
2515 h
.add_int (d
->test
.pos
? d
->test
.pos
->id
+ 1 : 0);
2516 h
.add_int (d
->test
.kind
);
2517 h
.add_int (sinfo
->num_transitions
);
2522 test_pattern_hasher::equal (merge_state_info
*const &sinfo1
,
2523 merge_state_info
*const &sinfo2
)
2525 decision
*d1
= sinfo1
->s
->singleton ();
2526 decision
*d2
= sinfo2
->s
->singleton ();
2527 gcc_assert (d1
&& d2
);
2529 parameter new_param1
, new_param2
;
2530 return (d1
->test
.pos_operand
== d2
->test
.pos_operand
2531 && (relative_patterns_p
|| d1
->test
.pos
== d2
->test
.pos
)
2532 && compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
)
2533 && sinfo1
->num_transitions
== sinfo2
->num_transitions
);
2536 /* Try to make the state described by SINFO1 use the same pattern as the
2537 state described by SINFO2. Return true on success.
2539 SINFO1 and SINFO2 are known to have the same hash value. */
2542 merge_patterns (merge_state_info
*sinfo1
, merge_state_info
*sinfo2
)
2544 merge_state_result
*res2
= sinfo2
->res
;
2545 merge_pattern_info
*pat
= res2
->pattern
;
2547 /* Write to temporary arrays while matching, in case we have to abort
2548 half way through. */
2549 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params1
;
2550 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params2
;
2551 params1
.quick_grow_cleared (pat
->params
.length ());
2552 params2
.splice (pat
->params
);
2553 unsigned int start_param
= params2
.length ();
2555 /* An array for recording changes to PAT->transitions[?].params.
2556 All changes involve replacing a constant parameter with some
2557 PAT->params[N], where N is the second element of the pending_param. */
2558 typedef std::pair
<parameter
*, unsigned int> pending_param
;
2559 auto_vec
<pending_param
, 32> pending_params
;
2561 decision
*d1
= sinfo1
->s
->singleton ();
2562 decision
*d2
= sinfo2
->s
->singleton ();
2563 gcc_assert (d1
&& d2
);
2565 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2566 as SINFO2's root relative to D2. */
2567 position
*root1
= 0;
2568 position
*root2
= res2
->root
;
2569 if (d2
->test
.pos_operand
< 0
2571 && !merge_relative_positions (&root1
, d1
->test
.pos
,
2572 root2
, d2
->test
.pos
))
2575 /* Check whether the patterns have the same shape. */
2576 unsigned int num_transitions
= sinfo1
->num_transitions
;
2577 gcc_assert (num_transitions
== sinfo2
->num_transitions
);
2578 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2579 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2581 merge_state_result
*to1_res
= sinfo1
->to_states
[i
].res
;
2582 merge_state_result
*to2_res
= sinfo2
->to_states
[i
].res
;
2583 merge_pattern_info
*to_pat
= ptrans
->to
;
2584 gcc_assert (to2_res
&& to2_res
->pattern
== to_pat
);
2585 if (!to1_res
|| to1_res
->pattern
!= to_pat
)
2588 && !merge_relative_positions (&root1
, to1_res
->root
,
2589 root2
, to2_res
->root
))
2591 /* Match the parameters that TO1_RES passes to TO_PAT with the
2592 parameters that PAT passes to TO_PAT. */
2593 update_parameters (to1_res
->params
, to_pat
->params
);
2594 for (unsigned int j
= 0; j
< to1_res
->params
.length (); ++j
)
2596 const parameter
¶m1
= to1_res
->params
[j
];
2597 const parameter
¶m2
= ptrans
->params
[j
];
2598 gcc_assert (!param1
.is_param
);
2599 if (param2
.is_param
)
2601 if (!set_parameter (params1
, param2
.value
, param1
))
2604 else if (param1
!= param2
)
2607 if (!add_parameter (params1
, params2
,
2608 param1
, param2
, start_param
, &id
))
2610 /* Record that PAT should now pass parameter ID to TO_PAT,
2611 instead of the current contents of *PARAM2. We only
2612 make the change if the rest of the match succeeds. */
2613 pending_params
.safe_push
2614 (pending_param (&ptrans
->params
[j
], id
));
2619 unsigned int param_test
= pat
->param_test
;
2620 unsigned int param_transition
= pat
->param_transition
;
2621 bool param_test_p
= pat
->param_test_p
;
2622 bool param_transition_p
= pat
->param_transition_p
;
2624 /* If the tests don't match exactly, try to parameterize them. */
2625 parameter new_param1
, new_param2
;
2626 if (!compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
))
2628 if (new_param1
.type
!= parameter::UNSET
)
2630 /* If the test has not already been parameterized, all existing
2631 matches use constant NEW_PARAM2. */
2634 if (!set_parameter (params1
, param_test
, new_param1
))
2637 else if (new_param1
!= new_param2
)
2639 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2640 start_param
, ¶m_test
))
2642 param_test_p
= true;
2646 /* Match the transitions. */
2647 transition
*trans1
= d1
->first
;
2648 transition
*trans2
= d2
->first
;
2649 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2651 if (param_transition_p
|| trans1
->labels
!= trans2
->labels
)
2653 /* We can only generalize a single transition with a single
2655 if (num_transitions
!= 1
2656 || trans1
->labels
.length () != 1
2657 || trans2
->labels
.length () != 1)
2660 /* Although we can match wide-int fields, in practice it leads
2661 to some odd results for const_vectors. We end up
2662 parameterizing the first N const_ints of the vector
2663 and then (once we reach the maximum number of parameters)
2664 we go on to match the other elements exactly. */
2665 if (d1
->test
.kind
== rtx_test::WIDE_INT_FIELD
)
2668 /* See whether the label has a generalizable type. */
2669 parameter::type_enum param_type
2670 = transition_parameter_type (d1
->test
.kind
);
2671 if (param_type
== parameter::UNSET
)
2674 /* Match the labels using parameters. */
2675 new_param1
= parameter (param_type
, false, trans1
->labels
[0]);
2676 if (param_transition_p
)
2678 if (!set_parameter (params1
, param_transition
, new_param1
))
2683 new_param2
= parameter (param_type
, false, trans2
->labels
[0]);
2684 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2685 start_param
, ¶m_transition
))
2687 param_transition_p
= true;
2690 trans1
= trans1
->next
;
2691 trans2
= trans2
->next
;
2694 /* Set any unset parameters to their default values. This occurs if some
2695 other state needed something to be parameterized in order to match SINFO2,
2696 but SINFO1 on its own does not. */
2697 for (unsigned int i
= 0; i
< params1
.length (); ++i
)
2698 if (params1
[i
].type
== parameter::UNSET
)
2699 params1
[i
] = params2
[i
];
2701 /* The match was successful. Commit all pending changes to PAT. */
2702 update_parameters (pat
->params
, params2
);
2706 FOR_EACH_VEC_ELT (pending_params
, i
, pp
)
2707 *pp
->first
= parameter (pp
->first
->type
, true, pp
->second
);
2709 pat
->param_test
= param_test
;
2710 pat
->param_transition
= param_transition
;
2711 pat
->param_test_p
= param_test_p
;
2712 pat
->param_transition_p
= param_transition_p
;
2714 /* Record the match of SINFO1. */
2715 merge_state_result
*new_res1
= new merge_state_result (pat
, root1
,
2717 new_res1
->params
.splice (params1
);
2718 sinfo1
->res
= new_res1
;
2722 /* The number of states that were removed by calling pattern routines. */
2723 static unsigned int pattern_use_states
;
2725 /* The number of states used while defining pattern routines. */
2726 static unsigned int pattern_def_states
;
2728 /* Information used while constructing a use or definition of a pattern
2730 struct create_pattern_info
2732 /* The routine itself. */
2733 pattern_routine
*routine
;
2735 /* The first unclaimed return value for this particular use or definition.
2736 We walk the substates of uses and definitions in the same order
2737 so each return value always refers to the same position within
2739 unsigned int next_result
;
2742 static void populate_pattern_routine (create_pattern_info
*,
2743 merge_state_info
*, state
*,
2744 const vec
<parameter
> &);
2746 /* SINFO matches a pattern for which we've decided to create a C routine.
2747 Return a decision that performs a call to the pattern routine,
2748 but leave the caller to add the transitions to it. Initialize CPI
2749 for this purpose. Also create a definition for the pattern routine,
2750 if it doesn't already have one.
2752 PARAMS are the parameters that SINFO passes to its pattern. */
2755 init_pattern_use (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2756 const vec
<parameter
> ¶ms
)
2758 state
*s
= sinfo
->s
;
2759 merge_state_result
*res
= sinfo
->res
;
2760 merge_pattern_info
*pat
= res
->pattern
;
2761 cpi
->routine
= pat
->routine
;
2764 /* We haven't defined the pattern routine yet, so create
2765 a definition now. */
2766 pattern_routine
*routine
= new pattern_routine
;
2767 pat
->routine
= routine
;
2768 cpi
->routine
= routine
;
2769 routine
->s
= new state
;
2770 routine
->insn_p
= false;
2771 routine
->pnum_clobbers_p
= false;
2773 /* Create an "idempotent" mapping of parameter I to parameter I.
2774 Also record the C type of each parameter to the routine. */
2775 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> def_params
;
2776 for (unsigned int i
= 0; i
< pat
->params
.length (); ++i
)
2778 def_params
.quick_push (parameter (pat
->params
[i
].type
, true, i
));
2779 routine
->param_types
.quick_push (pat
->params
[i
].type
);
2782 /* Any of the states that match the pattern could be used to
2783 create the routine definition. We might as well use SINFO
2784 since it's already to hand. This means that all positions
2785 in the definition will be relative to RES->root. */
2786 routine
->pos
= res
->root
;
2787 cpi
->next_result
= 0;
2788 populate_pattern_routine (cpi
, sinfo
, routine
->s
, def_params
);
2789 gcc_assert (cpi
->next_result
== pat
->num_results
);
2791 /* Add the routine to the global list, after the subroutines
2793 routine
->pattern_id
= patterns
.length ();
2794 patterns
.safe_push (routine
);
2797 /* Create a decision to call the routine, passing PARAMS to it. */
2798 pattern_use
*use
= new pattern_use
;
2799 use
->routine
= pat
->routine
;
2800 use
->params
.splice (params
);
2801 decision
*d
= new decision (rtx_test::pattern (res
->root
, use
));
2803 /* If the original decision could use an element of operands[] instead
2804 of an rtx variable, try to transfer it to the new decision. */
2805 if (s
->first
->test
.pos
&& res
->root
== s
->first
->test
.pos
)
2806 d
->test
.pos_operand
= s
->first
->test
.pos_operand
;
2808 cpi
->next_result
= 0;
2812 /* Make S return the next unclaimed pattern routine result for CPI. */
2815 add_pattern_acceptance (create_pattern_info
*cpi
, state
*s
)
2817 acceptance_type acceptance
;
2818 acceptance
.type
= SUBPATTERN
;
2819 acceptance
.partial_p
= false;
2820 acceptance
.u
.full
.code
= cpi
->next_result
;
2821 add_decision (s
, rtx_test::accept (acceptance
), true, false);
2822 cpi
->next_result
+= 1;
2825 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2826 (here referred to as "P"). P may be the top level of a pattern routine
2827 or a subpattern that should be inlined into its parent pattern's routine
2828 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2829 arbitrary; it could be any of the states that use P. The choice for
2830 subpatterns follows the choice for the parent pattern.
2832 PARAMS gives the value of each parameter to P in terms of the parameters
2833 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2834 is always "parameter (TYPE, true, I)". */
2837 populate_pattern_routine (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2838 state
*news
, const vec
<parameter
> ¶ms
)
2840 pattern_def_states
+= 1;
2842 decision
*d
= sinfo
->s
->singleton ();
2843 merge_pattern_info
*pat
= sinfo
->res
->pattern
;
2844 pattern_routine
*routine
= cpi
->routine
;
2846 /* Create a copy of D's test for the pattern routine and generalize it
2848 decision
*newd
= new decision (d
->test
);
2849 gcc_assert (newd
->test
.pos_operand
>= 0
2851 || common_position (newd
->test
.pos
,
2852 routine
->pos
) == routine
->pos
);
2853 if (pat
->param_test_p
)
2855 const parameter
¶m
= params
[pat
->param_test
];
2856 switch (newd
->test
.kind
)
2858 case rtx_test::PREDICATE
:
2859 newd
->test
.u
.predicate
.mode_is_param
= param
.is_param
;
2860 newd
->test
.u
.predicate
.mode
= param
.value
;
2863 case rtx_test::SAVED_CONST_INT
:
2864 newd
->test
.u
.integer
.is_param
= param
.is_param
;
2865 newd
->test
.u
.integer
.value
= param
.value
;
2873 if (d
->test
.kind
== rtx_test::C_TEST
)
2874 routine
->insn_p
= true;
2875 else if (d
->test
.kind
== rtx_test::HAVE_NUM_CLOBBERS
)
2876 routine
->pnum_clobbers_p
= true;
2877 news
->push_back (newd
);
2879 /* Fill in the transitions of NEWD. */
2881 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2883 /* Create a new state to act as the target of the new transition. */
2884 state
*to_news
= new state
;
2885 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2887 /* The pattern hasn't finished matching yet. Get the target
2888 pattern and the corresponding target state of SINFO. */
2889 merge_pattern_info
*to_pat
= ptrans
->to
;
2890 merge_state_info
*to
= sinfo
->to_states
+ i
;
2891 gcc_assert (to
->res
->pattern
== to_pat
);
2892 gcc_assert (ptrans
->params
.length () == to_pat
->params
.length ());
2894 /* Express the parameters to TO_PAT in terms of the parameters
2895 to the top-level pattern. */
2896 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> to_params
;
2897 for (unsigned int j
= 0; j
< ptrans
->params
.length (); ++j
)
2899 const parameter
¶m
= ptrans
->params
[j
];
2900 to_params
.quick_push (param
.is_param
2901 ? params
[param
.value
]
2905 if (same_pattern_p (pat
, to_pat
))
2906 /* TO_PAT is part of the current routine, so just recurse. */
2907 populate_pattern_routine (cpi
, to
, to_news
, to_params
);
2910 /* TO_PAT should be matched by calling a separate routine. */
2911 create_pattern_info sub_cpi
;
2912 decision
*subd
= init_pattern_use (&sub_cpi
, to
, to_params
);
2913 routine
->insn_p
|= sub_cpi
.routine
->insn_p
;
2914 routine
->pnum_clobbers_p
|= sub_cpi
.routine
->pnum_clobbers_p
;
2916 /* Add the pattern routine call to the new target state. */
2917 to_news
->push_back (subd
);
2919 /* Add a transition for each successful call result. */
2920 for (unsigned int j
= 0; j
< to_pat
->num_results
; ++j
)
2922 state
*res
= new state
;
2923 add_pattern_acceptance (cpi
, res
);
2924 subd
->push_back (new transition (j
, res
, false));
2929 /* This transition corresponds to a successful match. */
2930 add_pattern_acceptance (cpi
, to_news
);
2932 /* Create the transition itself, generalizing as necessary. */
2933 transition
*new_trans
= new transition (trans
->labels
, to_news
,
2935 if (pat
->param_transition_p
)
2937 const parameter
¶m
= params
[pat
->param_transition
];
2938 new_trans
->is_param
= param
.is_param
;
2939 new_trans
->labels
[0] = param
.value
;
2941 newd
->push_back (new_trans
);
2946 /* USE is a decision that calls a pattern routine and SINFO is part of the
2947 original state tree that the call is supposed to replace. Add the
2948 transitions for SINFO and its substates to USE. */
2951 populate_pattern_use (create_pattern_info
*cpi
, decision
*use
,
2952 merge_state_info
*sinfo
)
2954 pattern_use_states
+= 1;
2955 gcc_assert (!sinfo
->merged_p
);
2956 sinfo
->merged_p
= true;
2957 merge_state_result
*res
= sinfo
->res
;
2958 merge_pattern_info
*pat
= res
->pattern
;
2959 decision
*d
= sinfo
->s
->singleton ();
2961 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2963 if (pat
->transitions
[i
])
2964 /* The target state is also part of the pattern. */
2965 populate_pattern_use (cpi
, use
, sinfo
->to_states
+ i
);
2968 /* The transition corresponds to a successful return from the
2970 use
->push_back (new transition (cpi
->next_result
, trans
->to
, false));
2971 cpi
->next_result
+= 1;
2977 /* We have decided to replace SINFO's state with a call to a pattern
2978 routine. Make the change, creating a definition of the pattern routine
2979 if it doesn't have one already. */
2982 use_pattern (merge_state_info
*sinfo
)
2984 merge_state_result
*res
= sinfo
->res
;
2985 merge_pattern_info
*pat
= res
->pattern
;
2986 state
*s
= sinfo
->s
;
2988 /* The pattern may have acquired new parameters after it was matched
2989 against SINFO. Update the parameters that SINFO passes accordingly. */
2990 update_parameters (res
->params
, pat
->params
);
2992 create_pattern_info cpi
;
2993 decision
*d
= init_pattern_use (&cpi
, sinfo
, res
->params
);
2994 populate_pattern_use (&cpi
, d
, sinfo
);
2999 /* Look through the state trees in STATES for common patterns and
3000 split them into subroutines. */
3003 split_out_patterns (vec
<merge_state_info
> &states
)
3005 unsigned int first_transition
= states
.length ();
3006 hash_table
<test_pattern_hasher
> hashtab (128);
3007 /* Stage 1: Create an order in which parent states come before their child
3008 states and in which sibling states are at consecutive locations.
3009 Having consecutive sibling states allows merge_state_info to have
3010 a single to_states pointer. */
3011 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3012 for (decision
*d
= states
[i
].s
->first
; d
; d
= d
->next
)
3013 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3015 states
.safe_push (trans
->to
);
3016 states
[i
].num_transitions
+= 1;
3018 /* Stage 2: Now that the addresses are stable, set up the to_states
3019 pointers. Look for states that might be merged and enter them
3020 into the hash table. */
3021 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3023 merge_state_info
*sinfo
= &states
[i
];
3024 if (sinfo
->num_transitions
)
3026 sinfo
->to_states
= &states
[first_transition
];
3027 first_transition
+= sinfo
->num_transitions
;
3029 /* For simplicity, we only try to merge states that have a single
3030 decision. This is in any case the best we can do for peephole2,
3031 since whether a peephole2 ACCEPT succeeds or not depends on the
3032 specific peephole2 pattern (which is unique to each ACCEPT
3033 and so couldn't be shared between states). */
3034 if (decision
*d
= sinfo
->s
->singleton ())
3035 /* ACCEPT states are unique, so don't even try to merge them. */
3036 if (d
->test
.kind
!= rtx_test::ACCEPT
3037 && (pattern_have_num_clobbers_p
3038 || d
->test
.kind
!= rtx_test::HAVE_NUM_CLOBBERS
)
3039 && (pattern_c_test_p
3040 || d
->test
.kind
!= rtx_test::C_TEST
))
3042 merge_state_info
**slot
= hashtab
.find_slot (sinfo
, INSERT
);
3043 sinfo
->prev_same_test
= *slot
;
3047 /* Stage 3: Walk backwards through the list of states and try to merge
3048 them. This is a greedy, bottom-up match; parent nodes can only start
3049 a new leaf pattern if they fail to match when combined with all child
3050 nodes that have matching patterns.
3052 For each state we keep a list of potential matches, with each
3053 potential match being larger (and deeper) than the next match in
3054 the list. The final element in the list is a leaf pattern that
3055 matches just a single state.
3057 Each candidate pattern created in this loop is unique -- it won't
3058 have been seen by an earlier iteration. We try to match each pattern
3059 with every state that appears earlier in STATES.
3061 Because the patterns created in the loop are unique, any state
3062 that already has a match must have a final potential match that
3063 is different from any new leaf pattern. Therefore, when matching
3064 leaf patterns, we need only consider states whose list of matches
3067 The non-leaf patterns that we try are as deep as possible
3068 and are an extension of the state's previous best candidate match (PB).
3069 We need only consider states whose current potential match is also PB;
3070 any states that don't match as much as PB cannnot match the new pattern,
3071 while any states that already match more than PB must be different from
3073 for (unsigned int i2
= states
.length (); i2
-- > 0; )
3075 merge_state_info
*sinfo2
= &states
[i2
];
3077 /* Enforce the bottom-upness of the match: remove matches with later
3078 states if SINFO2's child states ended up finding a better match. */
3079 prune_invalid_results (sinfo2
);
3081 /* Do nothing if the state doesn't match a later one and if there are
3082 no earlier states it could match. */
3083 if (!sinfo2
->res
&& !sinfo2
->prev_same_test
)
3086 merge_state_result
*res2
= sinfo2
->res
;
3087 decision
*d2
= sinfo2
->s
->singleton ();
3088 position
*root2
= (d2
->test
.pos_operand
< 0 ? d2
->test
.pos
: 0);
3089 unsigned int num_transitions
= sinfo2
->num_transitions
;
3091 /* If RES2 is null then SINFO2's test in isolation has not been seen
3092 before. First try matching that on its own. */
3095 merge_pattern_info
*new_pat
3096 = new merge_pattern_info (num_transitions
);
3097 merge_state_result
*new_res2
3098 = new merge_state_result (new_pat
, root2
, res2
);
3099 sinfo2
->res
= new_res2
;
3101 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3102 new_pat
->num_results
= num_transitions
;
3103 bool matched_p
= false;
3104 /* Look for states that don't currently match anything but
3105 can be made to match SINFO2 on its own. */
3106 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3107 sinfo1
= sinfo1
->prev_same_test
)
3108 if (!sinfo1
->res
&& merge_patterns (sinfo1
, sinfo2
))
3112 /* No other states match. */
3122 /* Keep the existing pattern if it's as good as anything we'd
3123 create for SINFO2. */
3124 if (complete_result_p (res2
->pattern
, sinfo2
))
3126 res2
->pattern
->num_users
+= 1;
3130 /* Create a new pattern for SINFO2. */
3131 merge_pattern_info
*new_pat
= new merge_pattern_info (num_transitions
);
3132 merge_state_result
*new_res2
3133 = new merge_state_result (new_pat
, root2
, res2
);
3134 sinfo2
->res
= new_res2
;
3136 /* Fill in details about the pattern. */
3137 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3138 new_pat
->num_results
= 0;
3139 for (unsigned int j
= 0; j
< num_transitions
; ++j
)
3140 if (merge_state_result
*to_res
= sinfo2
->to_states
[j
].res
)
3142 /* Count the target state as part of this pattern.
3143 First update the root position so that it can reach
3144 the target state's root. */
3148 new_res2
->root
= common_position (new_res2
->root
,
3151 new_res2
->root
= to_res
->root
;
3153 merge_pattern_info
*to_pat
= to_res
->pattern
;
3154 merge_pattern_transition
*ptrans
3155 = new merge_pattern_transition (to_pat
);
3157 /* TO_PAT may have acquired more parameters when matching
3158 states earlier in STATES than TO_RES's, but the list is
3159 now final. Make sure that TO_RES is up to date. */
3160 update_parameters (to_res
->params
, to_pat
->params
);
3162 /* Start out by assuming that every user of NEW_PAT will
3163 want to pass the same (constant) parameters as TO_RES. */
3164 update_parameters (ptrans
->params
, to_res
->params
);
3166 new_pat
->transitions
[j
] = ptrans
;
3167 new_pat
->num_statements
+= to_pat
->num_statements
;
3168 new_pat
->num_results
+= to_pat
->num_results
;
3171 /* The target state doesn't match anything and so is not part
3173 new_pat
->num_results
+= 1;
3175 /* See if any earlier states that match RES2's pattern also match
3177 bool matched_p
= false;
3178 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3179 sinfo1
= sinfo1
->prev_same_test
)
3181 prune_invalid_results (sinfo1
);
3183 && sinfo1
->res
->pattern
== res2
->pattern
3184 && merge_patterns (sinfo1
, sinfo2
))
3189 /* Nothing else matches NEW_PAT, so go back to the previous
3190 pattern (possibly just a single-state one). */
3195 /* Assume that SINFO2 will use RES. At this point we don't know
3196 whether earlier states that match the same pattern will use
3197 that match or a different one. */
3198 sinfo2
->res
->pattern
->num_users
+= 1;
3200 /* Step 4: Finalize the choice of pattern for each state, ignoring
3201 patterns that were only used once. Update each pattern's size
3202 so that it doesn't include subpatterns that are going to be split
3203 out into subroutines. */
3204 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3206 merge_state_info
*sinfo
= &states
[i
];
3207 merge_state_result
*res
= sinfo
->res
;
3208 /* Wind past patterns that are only used by SINFO. */
3209 while (res
&& res
->pattern
->num_users
== 1)
3214 res
->pattern
->num_users
+= 1;
3219 /* We have a shared pattern and are now committed to the match. */
3220 merge_pattern_info
*pat
= res
->pattern
;
3221 gcc_assert (valid_result_p (pat
, sinfo
));
3223 if (!pat
->complete_p
)
3225 /* Look for subpatterns that are going to be split out and remove
3226 them from the number of statements. */
3227 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
3228 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
3230 merge_pattern_info
*to_pat
= ptrans
->to
;
3231 if (!same_pattern_p (pat
, to_pat
))
3232 pat
->num_statements
-= to_pat
->num_statements
;
3234 pat
->complete_p
= true;
3237 /* Step 5: Split out the patterns. */
3238 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3240 merge_state_info
*sinfo
= &states
[i
];
3241 merge_state_result
*res
= sinfo
->res
;
3242 if (!sinfo
->merged_p
&& res
&& useful_pattern_p (res
->pattern
))
3243 use_pattern (sinfo
);
3245 fprintf (stderr
, "Shared %d out of %d states by creating %d new states,"
3247 pattern_use_states
, states
.length (), pattern_def_states
,
3248 pattern_use_states
- pattern_def_states
);
3251 /* Information about a state tree that we're considering splitting into a
3255 /* The number of pseudo-statements in the state tree. */
3256 unsigned int num_statements
;
3258 /* The approximate number of nested "if" and "switch" statements that
3259 would be required if control could fall through to a later state. */
3263 /* Pairs a transition with information about its target state. */
3264 typedef std::pair
<transition
*, state_size
> subroutine_candidate
;
3266 /* Sort two subroutine_candidates so that the one with the largest
3267 number of statements comes last. */
3270 subroutine_candidate_cmp (const void *a
, const void *b
)
3272 return int (((const subroutine_candidate
*) a
)->second
.num_statements
3273 - ((const subroutine_candidate
*) b
)->second
.num_statements
);
3276 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3277 state that performs a subroutine call to S. */
3280 create_subroutine (routine_type type
, state
*s
, vec
<state
*> &procs
)
3282 procs
.safe_push (s
);
3283 acceptance_type acceptance
;
3284 acceptance
.type
= type
;
3285 acceptance
.partial_p
= true;
3286 acceptance
.u
.subroutine_id
= procs
.length ();
3287 state
*news
= new state
;
3288 add_decision (news
, rtx_test::accept (acceptance
), true, false);
3292 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3293 better split into subroutines. Accumulate all such subroutines in PROCS.
3294 Return the size of the new state tree (excluding subroutines). */
3297 find_subroutines (routine_type type
, state
*s
, vec
<state
*> &procs
)
3299 auto_vec
<subroutine_candidate
, 16> candidates
;
3301 size
.num_statements
= 0;
3303 for (decision
*d
= s
->first
; d
; d
= d
->next
)
3305 if (!d
->test
.single_outcome_p ())
3306 size
.num_statements
+= 1;
3307 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3309 /* Keep chains of simple decisions together if we know that no
3310 change of position is required. We'll output this chain as a
3311 single "if" statement, so it counts as a single nesting level. */
3312 if (d
->test
.pos
&& d
->if_statement_p ())
3315 decision
*newd
= trans
->to
->singleton ();
3318 && newd
->test
.pos_operand
< 0
3319 && newd
->test
.pos
!= d
->test
.pos
)
3320 || !newd
->if_statement_p ())
3322 if (!newd
->test
.single_outcome_p ())
3323 size
.num_statements
+= 1;
3324 trans
= newd
->singleton ();
3325 if (newd
->test
.kind
== rtx_test::SET_OP
3326 || newd
->test
.kind
== rtx_test::ACCEPT
)
3329 /* The target of TRANS is a subroutine candidate. First recurse
3330 on it to see how big it is after subroutines have been
3332 state_size to_size
= find_subroutines (type
, trans
->to
, procs
);
3333 if (d
->next
&& to_size
.depth
> MAX_DEPTH
)
3334 /* Keeping the target state in the same routine would lead
3335 to an excessive nesting of "if" and "switch" statements.
3336 Split it out into a subroutine so that it can use
3337 inverted tests that return early on failure. */
3338 trans
->to
= create_subroutine (type
, trans
->to
, procs
);
3341 size
.num_statements
+= to_size
.num_statements
;
3342 if (to_size
.num_statements
< MIN_NUM_STATEMENTS
)
3343 /* The target state is too small to be worth splitting.
3344 Keep it in the same routine as S. */
3345 size
.depth
= MAX (size
.depth
, to_size
.depth
);
3347 /* Assume for now that we'll keep the target state in the
3348 same routine as S, but record it as a subroutine candidate
3349 if S grows too big. */
3350 candidates
.safe_push (subroutine_candidate (trans
, to_size
));
3354 if (size
.num_statements
> MAX_NUM_STATEMENTS
)
3356 /* S is too big. Sort the subroutine candidates so that bigger ones
3357 are nearer the end. */
3358 candidates
.qsort (subroutine_candidate_cmp
);
3359 while (!candidates
.is_empty ()
3360 && size
.num_statements
> MAX_NUM_STATEMENTS
)
3362 /* Peel off a candidate and force it into a subroutine. */
3363 subroutine_candidate cand
= candidates
.pop ();
3364 size
.num_statements
-= cand
.second
.num_statements
;
3365 cand
.first
->to
= create_subroutine (type
, cand
.first
->to
, procs
);
3368 /* Update the depth for subroutine candidates that we decided not to
3370 for (unsigned int i
= 0; i
< candidates
.length (); ++i
)
3371 size
.depth
= MAX (size
.depth
, candidates
[i
].second
.depth
);
3376 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3379 safe_predicate_mode (const struct pred_data
*pred
, machine_mode mode
)
3381 /* Scalar integer constants have VOIDmode. */
3382 if (GET_MODE_CLASS (mode
) == MODE_INT
3383 && (pred
->codes
[CONST_INT
]
3384 || pred
->codes
[CONST_DOUBLE
]
3385 || pred
->codes
[CONST_WIDE_INT
]
3386 || pred
->codes
[LABEL_REF
]))
3389 return !pred
->special
&& mode
!= VOIDmode
;
3392 /* Fill CODES with the set of codes that could be matched by PRED. */
3395 get_predicate_codes (const struct pred_data
*pred
, int_set
*codes
)
3397 for (int i
= 0; i
< NUM_TRUE_RTX_CODE
; ++i
)
3398 if (!pred
|| pred
->codes
[i
])
3399 codes
->safe_push (i
);
3402 /* Return true if the first path through D1 tests the same thing as D2. */
3405 has_same_test_p (decision
*d1
, decision
*d2
)
3409 if (d1
->test
== d2
->test
)
3411 d1
= d1
->first
->to
->first
;
3417 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3418 from D2 have single decisions and all those decisions have single
3422 mutually_exclusive_p (decision
*d1
, decision
*d2
)
3424 /* If one path through D1 fails to test the same thing as D2, assume
3425 that D2's test could be true for D1 and look for a later, more useful,
3426 test. This isn't as expensive as it looks in practice. */
3427 while (!has_same_test_p (d1
, d2
))
3429 d2
= d2
->singleton ()->to
->singleton ();
3433 if (d1
->test
== d2
->test
)
3435 /* Look for any transitions from D1 that have the same labels as
3436 the transition from D2. */
3437 transition
*trans2
= d2
->singleton ();
3438 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3440 int_set::iterator i1
= trans1
->labels
.begin ();
3441 int_set::iterator end1
= trans1
->labels
.end ();
3442 int_set::iterator i2
= trans2
->labels
.begin ();
3443 int_set::iterator end2
= trans2
->labels
.end ();
3444 while (i1
!= end1
&& i2
!= end2
)
3451 /* TRANS1 has some labels in common with TRANS2. Assume
3452 that D1 and D2 could match the same rtx if the target
3453 of TRANS1 could match the same rtx as D2. */
3454 for (decision
*subd1
= trans1
->to
->first
;
3455 subd1
; subd1
= subd1
->next
)
3456 if (!mutually_exclusive_p (subd1
, d2
))
3463 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3464 for (decision
*subd1
= trans1
->to
->first
; subd1
; subd1
= subd1
->next
)
3465 if (!mutually_exclusive_p (subd1
, d2
))
3470 /* Try to merge S2's decision into D1, given that they have the same test.
3471 Fail only if EXCLUDE is nonnull and the new transition would have the
3472 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3473 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3474 if the merge is complete. */
3477 merge_into_decision (decision
*d1
, state
*s2
, const int_set
*exclude
,
3478 state
**next_s1
, state
**next_s2
,
3479 const int_set
**next_exclude
)
3481 decision
*d2
= s2
->singleton ();
3482 transition
*trans2
= d2
->singleton ();
3484 /* Get a list of the transitions that intersect TRANS2. */
3485 auto_vec
<transition
*, 32> intersecting
;
3486 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3488 int_set::iterator i1
= trans1
->labels
.begin ();
3489 int_set::iterator end1
= trans1
->labels
.end ();
3490 int_set::iterator i2
= trans2
->labels
.begin ();
3491 int_set::iterator end2
= trans2
->labels
.end ();
3492 bool trans1_is_subset
= true;
3493 bool trans2_is_subset
= true;
3494 bool intersect_p
= false;
3495 while (i1
!= end1
&& i2
!= end2
)
3498 trans1_is_subset
= false;
3503 trans2_is_subset
= false;
3513 trans1_is_subset
= false;
3515 trans2_is_subset
= false;
3516 if (trans1_is_subset
&& trans2_is_subset
)
3518 /* There's already a transition that matches exactly.
3519 Merge the target states. */
3520 trans1
->optional
&= trans2
->optional
;
3521 *next_s1
= trans1
->to
;
3522 *next_s2
= trans2
->to
;
3526 if (trans2_is_subset
)
3528 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3529 the target of TRANS1, but (to avoid infinite recursion)
3530 make sure that we don't end up creating another transition
3532 *next_s1
= trans1
->to
;
3534 *next_exclude
= &trans1
->labels
;
3538 intersecting
.safe_push (trans1
);
3541 if (intersecting
.is_empty ())
3543 /* No existing labels intersect the new ones. We can just add
3545 d1
->push_back (d2
->release ());
3552 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3553 result in COMBINED and use NEXT as a temporary. */
3554 int_set tmp1
= trans2
->labels
, tmp2
;
3555 int_set
*combined
= &tmp1
, *next
= &tmp2
;
3556 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3558 transition
*trans1
= intersecting
[i
];
3560 next
->safe_grow (trans1
->labels
.length () + combined
->length ());
3561 int_set::iterator end
3562 = std::set_union (trans1
->labels
.begin (), trans1
->labels
.end (),
3563 combined
->begin (), combined
->end (),
3565 next
->truncate (end
- next
->begin ());
3566 std::swap (next
, combined
);
3569 /* Stop now if we've been told not to create a transition with these
3571 if (exclude
&& *combined
== *exclude
)
3574 /* Get the transition that should carry the new labels. */
3575 transition
*new_trans
= intersecting
[0];
3576 if (intersecting
.length () == 1)
3578 /* We're merging with one existing transition whose labels are a
3579 subset of those required. If both transitions are optional,
3580 we can just expand the set of labels so that it's suitable
3581 for both transitions. It isn't worth preserving the original
3582 transitions since we know that they can't be merged; we would
3583 need to backtrack to S2 if TRANS1->to fails. In contrast,
3584 we might be able to merge the targets of the transitions
3585 without any backtracking.
3587 If instead the existing transition is not optional, ensure that
3588 all target decisions are suitably protected. Some decisions
3589 might already have a more specific requirement than NEW_TRANS,
3590 in which case there's no point testing NEW_TRANS as well. E.g. this
3591 would have happened if a test for an (eq ...) rtx had been
3592 added to a decision that tested whether the code is suitable
3593 for comparison_operator. The original comparison_operator
3594 transition would have been non-optional and the (eq ...) test
3595 would be performed by a second decision in the target of that
3598 The remaining case -- keeping the original optional transition
3599 when adding a non-optional TRANS2 -- is a wash. Preserving
3600 the optional transition only helps if we later merge another
3601 state S3 that is mutually exclusive with S2 and whose labels
3602 belong to *COMBINED - TRANS1->labels. We can then test the
3603 original NEW_TRANS and S3 in the same decision. We keep the
3604 optional transition around for that case, but it occurs very
3606 gcc_assert (new_trans
->labels
!= *combined
);
3607 if (!new_trans
->optional
|| !trans2
->optional
)
3609 decision
*start
= 0;
3610 for (decision
*end
= new_trans
->to
->first
; end
; end
= end
->next
)
3612 if (!start
&& end
->test
!= d1
->test
)
3613 /* END belongs to a range of decisions that need to be
3614 protected by NEW_TRANS. */
3616 if (start
&& (!end
->next
|| end
->next
->test
== d1
->test
))
3618 /* Protect [START, END] with NEW_TRANS. The decisions
3619 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3620 state
*new_s
= new state
;
3621 decision
*new_d
= new decision (d1
->test
);
3622 new_d
->push_back (new transition (new_trans
->labels
, new_s
,
3623 new_trans
->optional
));
3624 state::range
r (start
, end
);
3625 new_trans
->to
->replace (r
, new_d
);
3626 new_s
->push_back (r
);
3628 /* Continue with an empty range. */
3631 /* Continue from the decision after NEW_D. */
3636 new_trans
->optional
= true;
3637 new_trans
->labels
= *combined
;
3641 /* We're merging more than one existing transition together.
3642 Those transitions are successfully dividing the matching space
3643 and so we want to preserve them, even if they're optional.
3645 Create a new transition with the union set of labels and make
3646 it go to a state that has the original transitions. */
3647 decision
*new_d
= new decision (d1
->test
);
3648 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3649 new_d
->push_back (d1
->remove (intersecting
[i
]));
3651 state
*new_s
= new state
;
3652 new_s
->push_back (new_d
);
3654 new_trans
= new transition (*combined
, new_s
, true);
3655 d1
->push_back (new_trans
);
3658 /* We now have an optional transition with labels *COMBINED. Decide
3659 whether we can use it as TRANS2 or whether we need to merge S2
3660 into the target of NEW_TRANS. */
3661 gcc_assert (new_trans
->optional
);
3662 if (new_trans
->labels
== trans2
->labels
)
3664 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3665 new_trans
->optional
= trans2
->optional
;
3666 *next_s1
= new_trans
->to
;
3667 *next_s2
= trans2
->to
;
3672 /* Try to merge TRANS2 into the target of the overlapping transition,
3673 but (to prevent infinite recursion or excessive redundancy) without
3674 creating another transition of the same type. */
3675 *next_s1
= new_trans
->to
;
3677 *next_exclude
= &new_trans
->labels
;
3682 /* Make progress in merging S2 into S1, given that each state in S2
3683 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3684 transition with the same test as S2's decision and with the labels
3687 Return true if there is still work to do. When returning true,
3688 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3689 S1, S2 and EXCLUDE should have next time round.
3691 If S1 and S2 both match a particular rtx, give priority to S1. */
3694 merge_into_state_1 (state
*s1
, state
*s2
, const int_set
*exclude
,
3695 state
**next_s1
, state
**next_s2
,
3696 const int_set
**next_exclude
)
3698 decision
*d2
= s2
->singleton ();
3699 if (decision
*d1
= s1
->last
)
3701 if (d1
->test
.terminal_p ())
3702 /* D1 is an unconditional return, so S2 can never match. This can
3703 sometimes be a bug in the .md description, but might also happen
3704 if genconditions forces some conditions to true for certain
3708 /* Go backwards through the decisions in S1, stopping once we find one
3709 that could match the same thing as S2. */
3710 while (d1
->prev
&& mutually_exclusive_p (d1
, d2
))
3713 /* Search forwards from that point, merging D2 into the first
3715 for (; d1
; d1
= d1
->next
)
3717 /* If S2 performs some optional tests before testing the same thing
3718 as D1, those tests do not help to distinguish D1 and S2, so it's
3719 better to drop them. Search through such optional decisions
3720 until we find something that tests the same thing as D1. */
3724 decision
*sub_d2
= sub_s2
->singleton ();
3725 if (d1
->test
== sub_d2
->test
)
3727 /* Only apply EXCLUDE if we're testing the same thing
3729 const int_set
*sub_exclude
= (d2
== sub_d2
? exclude
: 0);
3731 /* Try to merge SUB_S2 into D1. This can only fail if
3732 it would involve creating a new transition with
3733 labels SUB_EXCLUDE. */
3734 if (merge_into_decision (d1
, sub_s2
, sub_exclude
,
3735 next_s1
, next_s2
, next_exclude
))
3736 return *next_s2
!= 0;
3738 /* Can't merge with D1; try a later decision. */
3741 transition
*sub_trans2
= sub_d2
->singleton ();
3742 if (!sub_trans2
->optional
)
3743 /* Can't merge with D1; try a later decision. */
3745 sub_s2
= sub_trans2
->to
;
3750 /* We can't merge D2 with any existing decision. Just add it to the end. */
3751 s1
->push_back (s2
->release ());
3755 /* Merge S2 into S1. If they both match a particular rtx, give
3756 priority to S1. Each state in S2 has a single decision. */
3759 merge_into_state (state
*s1
, state
*s2
)
3761 const int_set
*exclude
= 0;
3762 while (s2
&& merge_into_state_1 (s1
, s2
, exclude
, &s1
, &s2
, &exclude
))
3766 /* Pairs a pattern that needs to be matched with the rtx position at
3767 which the pattern should occur. */
3768 struct pattern_pos
{
3770 pattern_pos (rtx
, position
*);
3776 pattern_pos::pattern_pos (rtx pattern_in
, position
*pos_in
)
3777 : pattern (pattern_in
), pos (pos_in
)
3780 /* Compare entries according to their depth-first order. There shouldn't
3781 be two entries at the same position. */
3784 operator < (const pattern_pos
&e1
, const pattern_pos
&e2
)
3786 int diff
= compare_positions (e1
.pos
, e2
.pos
);
3787 gcc_assert (diff
!= 0 || e1
.pattern
== e2
.pattern
);
3791 /* Return the name of the predicate matched by MATCH_RTX. */
3794 predicate_name (rtx match_rtx
)
3796 if (GET_CODE (match_rtx
) == MATCH_SCRATCH
)
3797 return "scratch_operand";
3799 return XSTR (match_rtx
, 1);
3802 /* Add new decisions to S that check whether the rtx at position POS
3803 matches PATTERN. Return the state that is reached in that case.
3804 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3807 match_pattern_2 (state
*s
, md_rtx_info
*info
, position
*pos
, rtx pattern
)
3809 auto_vec
<pattern_pos
, 32> worklist
;
3810 auto_vec
<pattern_pos
, 32> pred_and_mode_tests
;
3811 auto_vec
<pattern_pos
, 32> dup_tests
;
3813 worklist
.safe_push (pattern_pos (pattern
, pos
));
3814 while (!worklist
.is_empty ())
3816 pattern_pos next
= worklist
.pop ();
3817 pattern
= next
.pattern
;
3819 unsigned int reverse_s
= worklist
.length ();
3821 enum rtx_code code
= GET_CODE (pattern
);
3827 /* Add a test that the rtx matches the earlier one, but only
3828 after the structure and predicates have been checked. */
3829 dup_tests
.safe_push (pattern_pos (pattern
, pos
));
3831 /* Use the same code check as the original operand. */
3832 pattern
= find_operand (info
->def
, XINT (pattern
, 0), NULL_RTX
);
3835 case MATCH_PARALLEL
:
3838 case MATCH_OPERATOR
:
3840 const char *pred_name
= predicate_name (pattern
);
3841 const struct pred_data
*pred
= 0;
3842 if (pred_name
[0] != 0)
3844 pred
= lookup_predicate (pred_name
);
3845 /* Only report errors once per rtx. */
3846 if (code
== GET_CODE (pattern
))
3849 error_at (info
->loc
, "unknown predicate '%s' used in %s",
3850 pred_name
, GET_RTX_NAME (code
));
3851 else if (code
== MATCH_PARALLEL
3852 && pred
->singleton
!= PARALLEL
)
3853 error_at (info
->loc
, "predicate '%s' used in"
3854 " match_parallel does not allow only PARALLEL",
3859 if (code
== MATCH_PARALLEL
|| code
== MATCH_PAR_DUP
)
3861 /* Check that we have a parallel with enough elements. */
3862 s
= add_decision (s
, rtx_test::code (pos
), PARALLEL
, false);
3863 int min_len
= XVECLEN (pattern
, 2);
3864 s
= add_decision (s
, rtx_test::veclen_ge (pos
, min_len
),
3869 /* Check that the rtx has one of codes accepted by the
3870 predicate. This is necessary when matching suboperands
3871 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3872 call XEXP (X, N) without checking that X has at least
3875 get_predicate_codes (pred
, &codes
);
3876 bool need_codes
= (pred
3877 && (code
== MATCH_OPERATOR
3878 || code
== MATCH_OP_DUP
));
3879 s
= add_decision (s
, rtx_test::code (pos
), codes
, !need_codes
);
3882 /* Postpone the predicate check until we've checked the rest
3883 of the rtx structure. */
3884 if (code
== GET_CODE (pattern
))
3885 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3887 /* If we need to match suboperands, add them to the worklist. */
3888 if (code
== MATCH_OPERATOR
|| code
== MATCH_PARALLEL
)
3890 position
**subpos_ptr
;
3891 enum position_type pos_type
;
3893 if (code
== MATCH_OPERATOR
|| code
== MATCH_OP_DUP
)
3895 pos_type
= POS_XEXP
;
3896 subpos_ptr
= &pos
->xexps
;
3897 i
= (code
== MATCH_OPERATOR
? 2 : 1);
3901 pos_type
= POS_XVECEXP0
;
3902 subpos_ptr
= &pos
->xvecexp0s
;
3905 for (int j
= 0; j
< XVECLEN (pattern
, i
); ++j
)
3907 position
*subpos
= next_position (subpos_ptr
, pos
,
3909 worklist
.safe_push (pattern_pos (XVECEXP (pattern
, i
, j
),
3911 subpos_ptr
= &subpos
->next
;
3919 /* Check that the rtx has the right code. */
3920 s
= add_decision (s
, rtx_test::code (pos
), code
, false);
3922 /* Queue a test for the mode if one is specified. */
3923 if (GET_MODE (pattern
) != VOIDmode
)
3924 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3926 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
3927 const char *fmt
= GET_RTX_FORMAT (code
);
3928 position
**subpos_ptr
= &pos
->xexps
;
3929 for (size_t i
= 0; fmt
[i
]; ++i
)
3931 position
*subpos
= next_position (subpos_ptr
, pos
,
3936 worklist
.safe_push (pattern_pos (XEXP (pattern
, i
),
3942 /* Make sure the vector has the right number of
3944 int length
= XVECLEN (pattern
, i
);
3945 s
= add_decision (s
, rtx_test::veclen (pos
),
3948 position
**subpos2_ptr
= &pos
->xvecexp0s
;
3949 for (int j
= 0; j
< length
; j
++)
3951 position
*subpos2
= next_position (subpos2_ptr
, pos
,
3953 rtx x
= XVECEXP (pattern
, i
, j
);
3954 worklist
.safe_push (pattern_pos (x
, subpos2
));
3955 subpos2_ptr
= &subpos2
->next
;
3961 /* Make sure that XINT (X, I) has the right value. */
3962 s
= add_decision (s
, rtx_test::int_field (pos
, i
),
3963 XINT (pattern
, i
), false);
3967 /* Make sure that REGNO (X) has the right value. */
3968 gcc_assert (i
== 0);
3969 s
= add_decision (s
, rtx_test::regno_field (pos
),
3970 REGNO (pattern
), false);
3974 /* Make sure that XWINT (X, I) has the right value. */
3975 s
= add_decision (s
, rtx_test::wide_int_field (pos
, i
),
3976 XWINT (pattern
, 0), false);
3985 subpos_ptr
= &subpos
->next
;
3990 /* Operands are pushed onto the worklist so that later indices are
3991 nearer the top. That's what we want for SETs, since a SET_SRC
3992 is a better discriminator than a SET_DEST. In other cases it's
3993 usually better to match earlier indices first. This is especially
3994 true of PARALLELs, where the first element tends to be the most
3995 individual. It's also true for commutative operators, where the
3996 canonicalization rules say that the more complex operand should
3998 if (code
!= SET
&& worklist
.length () > reverse_s
)
3999 std::reverse (&worklist
[0] + reverse_s
,
4000 &worklist
[0] + worklist
.length ());
4003 /* Sort the predicate and mode tests so that they're in depth-first order.
4004 The main goal of this is to put SET_SRC match_operands after SET_DEST
4005 match_operands and after mode checks for the enclosing SET_SRC operators
4006 (such as the mode of a PLUS in an addition instruction). The latter
4007 two types of test can determine the mode exactly, whereas a SET_SRC
4008 match_operand often has to cope with the possibility of the operand
4009 being a modeless constant integer. E.g. something that matches
4010 register_operand (x, SImode) never matches register_operand (x, DImode),
4011 but a const_int that matches immediate_operand (x, SImode) also matches
4012 immediate_operand (x, DImode). The register_operand cases can therefore
4013 be distinguished by a switch on the mode, but the immediate_operand
4015 if (pred_and_mode_tests
.length () > 1)
4016 std::sort (&pred_and_mode_tests
[0],
4017 &pred_and_mode_tests
[0] + pred_and_mode_tests
.length ());
4019 /* Add the mode and predicate tests. */
4022 FOR_EACH_VEC_ELT (pred_and_mode_tests
, i
, e
)
4024 switch (GET_CODE (e
->pattern
))
4026 case MATCH_PARALLEL
:
4029 case MATCH_OPERATOR
:
4031 int opno
= XINT (e
->pattern
, 0);
4032 num_operands
= MAX (num_operands
, opno
+ 1);
4033 const char *pred_name
= predicate_name (e
->pattern
);
4036 const struct pred_data
*pred
= lookup_predicate (pred_name
);
4037 /* Check the mode first, to distinguish things like SImode
4038 and DImode register_operands, as described above. */
4039 machine_mode mode
= GET_MODE (e
->pattern
);
4040 if (pred
&& safe_predicate_mode (pred
, mode
))
4041 s
= add_decision (s
, rtx_test::mode (e
->pos
), mode
, true);
4043 /* Assign to operands[] first, so that the rtx usually doesn't
4044 need to be live across the call to the predicate.
4046 This shouldn't cause a problem with dirtying the page,
4047 since we fully expect to assign to operands[] at some point,
4048 and since the caller usually writes to other parts of
4049 recog_data anyway. */
4050 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4052 s
= add_decision (s
, rtx_test::predicate (e
->pos
, pred
, mode
),
4056 /* Historically we've ignored the mode when there's no
4057 predicate. Just set up operands[] unconditionally. */
4058 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4064 s
= add_decision (s
, rtx_test::mode (e
->pos
),
4065 GET_MODE (e
->pattern
), false);
4070 /* Finally add rtx_equal_p checks for duplicated operands. */
4071 FOR_EACH_VEC_ELT (dup_tests
, i
, e
)
4072 s
= add_decision (s
, rtx_test::duplicate (e
->pos
, XINT (e
->pattern
, 0)),
4077 /* Add new decisions to S that make it return ACCEPTANCE if:
4079 (1) the rtx doesn't match anything already matched by S
4080 (2) the rtx matches TOP_PATTERN and
4081 (3) the C test required by INFO->def is true
4083 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4084 to match, otherwise it is a single instruction pattern. */
4087 match_pattern_1 (state
*s
, md_rtx_info
*info
, rtx pattern
,
4088 acceptance_type acceptance
)
4090 if (acceptance
.type
== PEEPHOLE2
)
4092 /* Match each individual instruction. */
4093 position
**subpos_ptr
= &peep2_insn_pos_list
;
4095 for (int i
= 0; i
< XVECLEN (pattern
, 0); ++i
)
4097 rtx x
= XVECEXP (pattern
, 0, i
);
4098 position
*subpos
= next_position (subpos_ptr
, &root_pos
,
4099 POS_PEEP2_INSN
, count
);
4101 s
= add_decision (s
, rtx_test::peep2_count (count
+ 1),
4103 s
= match_pattern_2 (s
, info
, subpos
, x
);
4104 subpos_ptr
= &subpos
->next
;
4107 acceptance
.u
.full
.u
.match_len
= count
- 1;
4111 /* Make the rtx itself. */
4112 s
= match_pattern_2 (s
, info
, &root_pos
, pattern
);
4114 /* If the match is only valid when extra clobbers are added,
4115 make sure we're able to pass that information to the caller. */
4116 if (acceptance
.type
== RECOG
&& acceptance
.u
.full
.u
.num_clobbers
)
4117 s
= add_decision (s
, rtx_test::have_num_clobbers (), true, false);
4120 /* Make sure that the C test is true. */
4121 const char *c_test
= get_c_test (info
->def
);
4122 if (maybe_eval_c_test (c_test
) != 1)
4123 s
= add_decision (s
, rtx_test::c_test (c_test
), true, false);
4125 /* Accept the pattern. */
4126 add_decision (s
, rtx_test::accept (acceptance
), true, false);
4129 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4130 decisions with what's already in S, to reduce the amount of
4134 match_pattern (state
*s
, md_rtx_info
*info
, rtx pattern
,
4135 acceptance_type acceptance
)
4140 /* Add the decisions to a fresh state and then merge the full tree
4141 into the existing one. */
4142 match_pattern_1 (&root
, info
, pattern
, acceptance
);
4143 merge_into_state (s
, &root
);
4146 match_pattern_1 (s
, info
, pattern
, acceptance
);
4149 /* Begin the output file. */
4155 /* Generated automatically by the program `genrecog' from the target\n\
4156 machine description file. */\n\
4158 #include \"config.h\"\n\
4159 #include \"system.h\"\n\
4160 #include \"coretypes.h\"\n\
4161 #include \"backend.h\"\n\
4162 #include \"predict.h\"\n\
4163 #include \"rtl.h\"\n\
4164 #include \"tm_p.h\"\n\
4165 #include \"emit-rtl.h\"\n\
4166 #include \"insn-config.h\"\n\
4167 #include \"recog.h\"\n\
4168 #include \"output.h\"\n\
4169 #include \"flags.h\"\n\
4170 #include \"df.h\"\n\
4171 #include \"resource.h\"\n\
4172 #include \"diagnostic-core.h\"\n\
4173 #include \"reload.h\"\n\
4174 #include \"regs.h\"\n\
4175 #include \"tm-constrs.h\"\n\
4179 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4180 X0 is a valid instruction.\n\
4182 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4183 returns a nonnegative number which is the insn code number for the\n\
4184 pattern that matched. This is the same as the order in the machine\n\
4185 description of the entry that matched. This number can be used as an\n\
4186 index into `insn_data' and other tables.\n");
4188 The third parameter to recog is an optional pointer to an int. If\n\
4189 present, recog will accept a pattern if it matches except for missing\n\
4190 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4191 the optional pointer will be set to the number of CLOBBERs that need\n\
4192 to be added (it should be initialized to zero by the caller). If it");
4194 is set nonzero, the caller should allocate a PARALLEL of the\n\
4195 appropriate size, copy the initial entries, and call add_clobbers\n\
4196 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4200 The function split_insns returns 0 if the rtl could not\n\
4201 be split or the split rtl as an INSN list if it can be.\n\
4203 The function peephole2_insns returns 0 if the rtl could not\n\
4204 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4205 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4209 /* Return the C type of a parameter with type TYPE. */
4212 parameter_type_string (parameter::type_enum type
)
4216 case parameter::UNSET
:
4219 case parameter::CODE
:
4222 case parameter::MODE
:
4223 return "machine_mode";
4225 case parameter::INT
:
4228 case parameter::UINT
:
4229 return "unsigned int";
4231 case parameter::WIDE_INT
:
4232 return "HOST_WIDE_INT";
4237 /* Return true if ACCEPTANCE requires only a single C statement even in
4238 a backtracking context. */
4241 single_statement_p (const acceptance_type
&acceptance
)
4243 if (acceptance
.partial_p
)
4244 /* We need to handle failures of the subroutine. */
4246 switch (acceptance
.type
)
4253 /* False if we need to assign to pnum_clobbers. */
4254 return acceptance
.u
.full
.u
.num_clobbers
== 0;
4257 /* We need to assign to pmatch_len_ and handle null returns from the
4258 peephole2 routine. */
4264 /* Return the C failure value for a routine of type TYPE. */
4267 get_failure_return (routine_type type
)
4282 /* Indicates whether a block of code always returns or whether it can fall
4290 /* Information used while writing out code. */
4294 /* The type of routine that we're generating. */
4297 /* Maps position ids to xN variable numbers. The entry is only valid if
4298 it is less than the length of VAR_TO_ID, but this holds for every position
4299 tested by a state when writing out that state. */
4300 auto_vec
<unsigned int> id_to_var
;
4302 /* Maps xN variable numbers to position ids. */
4303 auto_vec
<unsigned int> var_to_id
;
4305 /* Index N is true if variable xN has already been set. */
4306 auto_vec
<bool> seen_vars
;
4309 /* Return true if D is a call to a pattern routine and if there is some X
4310 such that the transition for pattern result N goes to a successful return
4311 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4312 to the number of return values. (We know that every PATTERN decision has
4313 a transition for every successful return.) */
4316 terminal_pattern_p (decision
*d
, unsigned int *base_out
,
4317 unsigned int *count_out
)
4319 if (d
->test
.kind
!= rtx_test::PATTERN
)
4321 unsigned int base
= 0;
4322 unsigned int count
= 0;
4323 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4325 if (trans
->is_param
|| trans
->labels
.length () != 1)
4327 decision
*subd
= trans
->to
->singleton ();
4328 if (!subd
|| subd
->test
.kind
!= rtx_test::ACCEPT
)
4330 unsigned int this_base
= (subd
->test
.u
.acceptance
.u
.full
.code
4331 - trans
->labels
[0]);
4332 if (trans
== d
->first
)
4334 else if (base
!= this_base
)
4343 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4344 already available in state OS. */
4347 test_position_available_p (output_state
*os
, const rtx_test
&test
)
4350 || test
.pos_operand
>= 0
4351 || os
->seen_vars
[os
->id_to_var
[test
.pos
->id
]]);
4354 /* Like printf, but print INDENT spaces at the beginning. */
4356 static void ATTRIBUTE_PRINTF_2
4357 printf_indent (unsigned int indent
, const char *format
, ...)
4360 va_start (ap
, format
);
4361 printf ("%*s", indent
, "");
4362 vprintf (format
, ap
);
4366 /* Emit code to initialize the variable associated with POS, if it isn't
4367 already valid in state OS. Indent each line by INDENT spaces. Update
4368 OS with the new state. */
4371 change_state (output_state
*os
, position
*pos
, unsigned int indent
)
4373 unsigned int var
= os
->id_to_var
[pos
->id
];
4374 gcc_assert (var
< os
->var_to_id
.length () && os
->var_to_id
[var
] == pos
->id
);
4375 if (os
->seen_vars
[var
])
4379 case POS_PEEP2_INSN
:
4380 printf_indent (indent
, "x%d = PATTERN (peep2_next_insn (%d));\n",
4385 change_state (os
, pos
->base
, indent
);
4386 printf_indent (indent
, "x%d = XEXP (x%d, %d);\n",
4387 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4391 change_state (os
, pos
->base
, indent
);
4392 printf_indent (indent
, "x%d = XVECEXP (x%d, 0, %d);\n",
4393 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4396 os
->seen_vars
[var
] = true;
4399 /* Print the enumerator constant for CODE -- the upcase version of
4403 print_code (enum rtx_code code
)
4406 for (p
= GET_RTX_NAME (code
); *p
; p
++)
4407 putchar (TOUPPER (*p
));
4410 /* Emit a uint64_t as an integer constant expression. We need to take
4411 special care to avoid "decimal constant is so large that it is unsigned"
4412 warnings in the resulting code. */
4415 print_host_wide_int (uint64_t val
)
4417 uint64_t min
= uint64_t (1) << (HOST_BITS_PER_WIDE_INT
- 1);
4419 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
" - 1)", val
+ 1);
4421 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
4424 /* Print the C expression for actual parameter PARAM. */
4427 print_parameter_value (const parameter
¶m
)
4430 printf ("i%d", (int) param
.value
+ 1);
4434 case parameter::UNSET
:
4438 case parameter::CODE
:
4439 print_code ((enum rtx_code
) param
.value
);
4442 case parameter::MODE
:
4443 printf ("%smode", GET_MODE_NAME ((machine_mode
) param
.value
));
4446 case parameter::INT
:
4447 printf ("%d", (int) param
.value
);
4450 case parameter::UINT
:
4451 printf ("%u", (unsigned int) param
.value
);
4454 case parameter::WIDE_INT
:
4455 print_host_wide_int (param
.value
);
4460 /* Print the C expression for the rtx tested by TEST. */
4463 print_test_rtx (output_state
*os
, const rtx_test
&test
)
4465 if (test
.pos_operand
>= 0)
4466 printf ("operands[%d]", test
.pos_operand
);
4468 printf ("x%d", os
->id_to_var
[test
.pos
->id
]);
4471 /* Print the C expression for non-boolean test TEST. */
4474 print_nonbool_test (output_state
*os
, const rtx_test
&test
)
4478 case rtx_test::CODE
:
4479 printf ("GET_CODE (");
4480 print_test_rtx (os
, test
);
4484 case rtx_test::MODE
:
4485 printf ("GET_MODE (");
4486 print_test_rtx (os
, test
);
4490 case rtx_test::VECLEN
:
4491 printf ("XVECLEN (");
4492 print_test_rtx (os
, test
);
4496 case rtx_test::INT_FIELD
:
4498 print_test_rtx (os
, test
);
4499 printf (", %d)", test
.u
.opno
);
4502 case rtx_test::REGNO_FIELD
:
4504 print_test_rtx (os
, test
);
4508 case rtx_test::WIDE_INT_FIELD
:
4510 print_test_rtx (os
, test
);
4511 printf (", %d)", test
.u
.opno
);
4514 case rtx_test::PATTERN
:
4516 pattern_routine
*routine
= test
.u
.pattern
->routine
;
4517 printf ("pattern%d (", routine
->pattern_id
);
4518 const char *sep
= "";
4521 print_test_rtx (os
, test
);
4524 if (routine
->insn_p
)
4526 printf ("%sinsn", sep
);
4529 if (routine
->pnum_clobbers_p
)
4531 printf ("%spnum_clobbers", sep
);
4534 for (unsigned int i
= 0; i
< test
.u
.pattern
->params
.length (); ++i
)
4536 fputs (sep
, stdout
);
4537 print_parameter_value (test
.u
.pattern
->params
[i
]);
4544 case rtx_test::PEEP2_COUNT
:
4545 case rtx_test::VECLEN_GE
:
4546 case rtx_test::SAVED_CONST_INT
:
4547 case rtx_test::DUPLICATE
:
4548 case rtx_test::PREDICATE
:
4549 case rtx_test::SET_OP
:
4550 case rtx_test::HAVE_NUM_CLOBBERS
:
4551 case rtx_test::C_TEST
:
4552 case rtx_test::ACCEPT
:
4557 /* IS_PARAM and LABEL are taken from a transition whose source
4558 decision performs TEST. Print the C code for the label. */
4561 print_label_value (const rtx_test
&test
, bool is_param
, uint64_t value
)
4563 print_parameter_value (parameter (transition_parameter_type (test
.kind
),
4567 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4568 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4569 Test for inequality if INVERT_P, otherwise test for equality. */
4572 print_test (output_state
*os
, const rtx_test
&test
, bool is_param
,
4573 uint64_t value
, bool invert_p
)
4577 /* Handle the non-boolean TESTs. */
4578 case rtx_test::CODE
:
4579 case rtx_test::MODE
:
4580 case rtx_test::VECLEN
:
4581 case rtx_test::REGNO_FIELD
:
4582 case rtx_test::INT_FIELD
:
4583 case rtx_test::WIDE_INT_FIELD
:
4584 case rtx_test::PATTERN
:
4585 print_nonbool_test (os
, test
);
4586 printf (" %s ", invert_p
? "!=" : "==");
4587 print_label_value (test
, is_param
, value
);
4590 case rtx_test::SAVED_CONST_INT
:
4591 gcc_assert (!is_param
&& value
== 1);
4592 print_test_rtx (os
, test
);
4593 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4594 invert_p
? "!=" : "==");
4595 print_parameter_value (parameter (parameter::INT
,
4596 test
.u
.integer
.is_param
,
4597 test
.u
.integer
.value
));
4601 case rtx_test::PEEP2_COUNT
:
4602 gcc_assert (!is_param
&& value
== 1);
4603 printf ("peep2_current_count %s %d", invert_p
? "<" : ">=",
4607 case rtx_test::VECLEN_GE
:
4608 gcc_assert (!is_param
&& value
== 1);
4609 printf ("XVECLEN (");
4610 print_test_rtx (os
, test
);
4611 printf (", 0) %s %d", invert_p
? "<" : ">=", test
.u
.min_len
);
4614 case rtx_test::PREDICATE
:
4615 gcc_assert (!is_param
&& value
== 1);
4616 printf ("%s%s (", invert_p
? "!" : "", test
.u
.predicate
.data
->name
);
4617 print_test_rtx (os
, test
);
4619 print_parameter_value (parameter (parameter::MODE
,
4620 test
.u
.predicate
.mode_is_param
,
4621 test
.u
.predicate
.mode
));
4625 case rtx_test::DUPLICATE
:
4626 gcc_assert (!is_param
&& value
== 1);
4627 printf ("%srtx_equal_p (", invert_p
? "!" : "");
4628 print_test_rtx (os
, test
);
4629 printf (", operands[%d])", test
.u
.opno
);
4632 case rtx_test::HAVE_NUM_CLOBBERS
:
4633 gcc_assert (!is_param
&& value
== 1);
4634 printf ("pnum_clobbers %s NULL", invert_p
? "==" : "!=");
4637 case rtx_test::C_TEST
:
4638 gcc_assert (!is_param
&& value
== 1);
4641 print_c_condition (test
.u
.string
);
4644 case rtx_test::ACCEPT
:
4645 case rtx_test::SET_OP
:
4650 static exit_state
print_decision (output_state
*, decision
*,
4651 unsigned int, bool);
4653 /* Print code to perform S, indent each line by INDENT spaces.
4654 IS_FINAL is true if there are no fallback decisions to test on failure;
4655 if the state fails then the entire routine fails. */
4658 print_state (output_state
*os
, state
*s
, unsigned int indent
, bool is_final
)
4660 exit_state es
= ES_FALLTHROUGH
;
4661 for (decision
*d
= s
->first
; d
; d
= d
->next
)
4662 es
= print_decision (os
, d
, indent
, is_final
&& !d
->next
);
4663 if (es
!= ES_RETURNED
&& is_final
)
4665 printf_indent (indent
, "return %s;\n", get_failure_return (os
->type
));
4671 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4672 is known to be true). Return the C condition that indicates a successful
4676 print_subroutine_call (const acceptance_type
&acceptance
)
4678 switch (acceptance
.type
)
4684 printf ("recog_%d (x1, insn, pnum_clobbers)",
4685 acceptance
.u
.subroutine_id
);
4689 printf ("split_%d (x1, insn)", acceptance
.u
.subroutine_id
);
4690 return "!= NULL_RTX";
4693 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4694 acceptance
.u
.subroutine_id
);
4695 return "!= NULL_RTX";
4700 /* Print code for the successful match described by ACCEPTANCE.
4701 INDENT and IS_FINAL are as for print_state. */
4704 print_acceptance (const acceptance_type
&acceptance
, unsigned int indent
,
4707 if (acceptance
.partial_p
)
4709 /* Defer the rest of the match to a subroutine. */
4712 printf_indent (indent
, "return ");
4713 print_subroutine_call (acceptance
);
4719 printf_indent (indent
, "res = ");
4720 const char *res_test
= print_subroutine_call (acceptance
);
4722 printf_indent (indent
, "if (res %s)\n", res_test
);
4723 printf_indent (indent
+ 2, "return res;\n");
4724 return ES_FALLTHROUGH
;
4727 switch (acceptance
.type
)
4730 printf_indent (indent
, "return %d;\n", acceptance
.u
.full
.code
);
4734 if (acceptance
.u
.full
.u
.num_clobbers
!= 0)
4735 printf_indent (indent
, "*pnum_clobbers = %d;\n",
4736 acceptance
.u
.full
.u
.num_clobbers
);
4737 printf_indent (indent
, "return %d; /* %s */\n", acceptance
.u
.full
.code
,
4738 get_insn_name (acceptance
.u
.full
.code
));
4742 printf_indent (indent
, "return gen_split_%d (insn, operands);\n",
4743 acceptance
.u
.full
.code
);
4747 printf_indent (indent
, "*pmatch_len_ = %d;\n",
4748 acceptance
.u
.full
.u
.match_len
);
4751 printf_indent (indent
, "return gen_peephole2_%d (insn, operands);\n",
4752 acceptance
.u
.full
.code
);
4757 printf_indent (indent
, "res = gen_peephole2_%d (insn, operands);\n",
4758 acceptance
.u
.full
.code
);
4759 printf_indent (indent
, "if (res != NULL_RTX)\n");
4760 printf_indent (indent
+ 2, "return res;\n");
4761 return ES_FALLTHROUGH
;
4767 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4770 print_decision (output_state
*os
, decision
*d
, unsigned int indent
,
4774 unsigned int base
, count
;
4776 /* Make sure the rtx under test is available either in operands[] or
4777 in an xN variable. */
4778 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
4779 change_state (os
, d
->test
.pos
, indent
);
4781 /* Look for cases where a pattern routine P1 calls another pattern routine
4782 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4783 is true and BASE is zero we can simply use:
4785 return patternN (...);
4787 Otherwise we can use:
4789 res = patternN (...);
4793 However, if BASE is nonzero and patternN only returns 0 or -1,
4794 the usual "return BASE;" is better than "return res + BASE;".
4795 If BASE is zero, "return res;" should be better than "return 0;",
4796 since no assignment to the return register is required. */
4797 if (os
->type
== SUBPATTERN
4798 && terminal_pattern_p (d
, &base
, &count
)
4799 && (base
== 0 || count
> 1))
4801 if (is_final
&& base
== 0)
4803 printf_indent (indent
, "return ");
4804 print_nonbool_test (os
, d
->test
);
4805 printf ("; /* [-1, %d] */\n", count
- 1);
4810 printf_indent (indent
, "res = ");
4811 print_nonbool_test (os
, d
->test
);
4813 printf_indent (indent
, "if (res >= 0)\n");
4814 printf_indent (indent
+ 2, "return res");
4816 printf (" + %d", base
);
4817 printf ("; /* [%d, %d] */\n", base
, base
+ count
- 1);
4818 return ES_FALLTHROUGH
;
4821 else if (d
->test
.kind
== rtx_test::ACCEPT
)
4822 return print_acceptance (d
->test
.u
.acceptance
, indent
, is_final
);
4823 else if (d
->test
.kind
== rtx_test::SET_OP
)
4825 printf_indent (indent
, "operands[%d] = ", d
->test
.u
.opno
);
4826 print_test_rtx (os
, d
->test
);
4828 return print_state (os
, d
->singleton ()->to
, indent
, is_final
);
4830 /* Handle decisions with a single transition and a single transition
4832 else if (d
->if_statement_p (&label
))
4834 transition
*trans
= d
->singleton ();
4835 if (mark_optional_transitions_p
&& trans
->optional
)
4836 printf_indent (indent
, "/* OPTIONAL IF */\n");
4838 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4839 so that we return immediately on failure and fall through on
4841 printf_indent (indent
, "if (");
4842 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4844 /* Look for following states that would be handled by this code
4845 on recursion. If they don't need any preparatory statements,
4846 include them in the current "if" statement rather than creating
4850 d
= trans
->to
->singleton ();
4852 || d
->test
.kind
== rtx_test::ACCEPT
4853 || d
->test
.kind
== rtx_test::SET_OP
4854 || !d
->if_statement_p (&label
)
4855 || !test_position_available_p (os
, d
->test
))
4859 if (mark_optional_transitions_p
&& trans
->optional
)
4860 printf_indent (indent
+ 4, "/* OPTIONAL IF */\n");
4861 printf_indent (indent
+ 4, "%s ", is_final
? "||" : "&&");
4862 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4866 /* Print the conditional code with INDENT + 2 and the fallthrough
4867 code with indent INDENT. */
4868 state
*to
= trans
->to
;
4871 /* We inverted the condition above, so return failure in the
4872 "if" body and fall through to the target of the transition. */
4873 printf_indent (indent
+ 2, "return %s;\n",
4874 get_failure_return (os
->type
));
4875 return print_state (os
, to
, indent
, is_final
);
4877 else if (to
->singleton ()
4878 && to
->first
->test
.kind
== rtx_test::ACCEPT
4879 && single_statement_p (to
->first
->test
.u
.acceptance
))
4881 /* The target of the transition is a simple "return" statement.
4882 It doesn't need any braces and doesn't fall through. */
4883 if (print_acceptance (to
->first
->test
.u
.acceptance
,
4884 indent
+ 2, true) != ES_RETURNED
)
4886 return ES_FALLTHROUGH
;
4890 /* The general case. Output code for the target of the transition
4891 in braces. This will not invalidate any of the xN variables
4892 that are already valid, but we mustn't rely on any that are
4893 set by the "if" body. */
4894 auto_vec
<bool, 32> old_seen
;
4895 old_seen
.safe_splice (os
->seen_vars
);
4897 printf_indent (indent
+ 2, "{\n");
4898 print_state (os
, trans
->to
, indent
+ 4, is_final
);
4899 printf_indent (indent
+ 2, "}\n");
4901 os
->seen_vars
.truncate (0);
4902 os
->seen_vars
.splice (old_seen
);
4903 return ES_FALLTHROUGH
;
4908 /* Output the decision as a switch statement. */
4909 printf_indent (indent
, "switch (");
4910 print_nonbool_test (os
, d
->test
);
4913 /* Each case statement starts with the same set of valid variables.
4914 These are also the only variables will be valid on fallthrough. */
4915 auto_vec
<bool, 32> old_seen
;
4916 old_seen
.safe_splice (os
->seen_vars
);
4918 printf_indent (indent
+ 2, "{\n");
4919 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4921 gcc_assert (!trans
->is_param
);
4922 if (mark_optional_transitions_p
&& trans
->optional
)
4923 printf_indent (indent
+ 2, "/* OPTIONAL CASE */\n");
4924 for (int_set::iterator j
= trans
->labels
.begin ();
4925 j
!= trans
->labels
.end (); ++j
)
4927 printf_indent (indent
+ 2, "case ");
4928 print_label_value (d
->test
, trans
->is_param
, *j
);
4931 if (print_state (os
, trans
->to
, indent
+ 4, is_final
))
4933 /* The state can fall through. Add an explicit break. */
4934 gcc_assert (!is_final
);
4935 printf_indent (indent
+ 4, "break;\n");
4939 /* Restore the original set of valid variables. */
4940 os
->seen_vars
.truncate (0);
4941 os
->seen_vars
.splice (old_seen
);
4943 /* Add a default case. */
4944 printf_indent (indent
+ 2, "default:\n");
4946 printf_indent (indent
+ 4, "return %s;\n",
4947 get_failure_return (os
->type
));
4949 printf_indent (indent
+ 4, "break;\n");
4950 printf_indent (indent
+ 2, "}\n");
4951 return is_final
? ES_RETURNED
: ES_FALLTHROUGH
;
4955 /* Make sure that OS has a position variable for POS. ROOT_P is true if
4956 POS is the root position for the routine. */
4959 assign_position_var (output_state
*os
, position
*pos
, bool root_p
)
4961 unsigned int idx
= os
->id_to_var
[pos
->id
];
4962 if (idx
< os
->var_to_id
.length () && os
->var_to_id
[idx
] == pos
->id
)
4964 if (!root_p
&& pos
->type
!= POS_PEEP2_INSN
)
4965 assign_position_var (os
, pos
->base
, false);
4966 os
->id_to_var
[pos
->id
] = os
->var_to_id
.length ();
4967 os
->var_to_id
.safe_push (pos
->id
);
4970 /* Make sure that OS has the position variables required by S. */
4973 assign_position_vars (output_state
*os
, state
*s
)
4975 for (decision
*d
= s
->first
; d
; d
= d
->next
)
4977 /* Positions associated with operands can be read from the
4978 operands[] array. */
4979 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
4980 assign_position_var (os
, d
->test
.pos
, false);
4981 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4982 assign_position_vars (os
, trans
->to
);
4986 /* Print the open brace and variable definitions for a routine that
4987 implements S. ROOT is the deepest rtx from which S can access all
4988 relevant parts of the first instruction it matches. Initialize OS
4989 so that every relevant position has an rtx variable xN and so that
4990 only ROOT's variable has a valid value. */
4993 print_subroutine_start (output_state
*os
, state
*s
, position
*root
)
4995 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
4996 " = &recog_data.operand[0];\n");
4997 os
->var_to_id
.truncate (0);
4998 os
->seen_vars
.truncate (0);
5001 /* Create a fake entry for position 0 so that an id_to_var of 0
5002 is always invalid. This also makes the xN variables naturally
5003 1-based rather than 0-based. */
5004 os
->var_to_id
.safe_push (num_positions
);
5006 /* Associate ROOT with x1. */
5007 assign_position_var (os
, root
, true);
5009 /* Assign xN variables to all other relevant positions. */
5010 assign_position_vars (os
, s
);
5012 /* Output the variable declarations (except for ROOT's, which is
5013 passed in as a parameter). */
5014 unsigned int num_vars
= os
->var_to_id
.length ();
5017 for (unsigned int i
= 2; i
< num_vars
; ++i
)
5018 /* Print 8 rtx variables to a line. */
5020 i
== 2 ? " rtx" : (i
- 2) % 8 == 0 ? ";\n rtx" : ",", i
);
5024 /* Say that x1 is valid and the rest aren't. */
5025 os
->seen_vars
.safe_grow_cleared (num_vars
);
5026 os
->seen_vars
[1] = true;
5028 if (os
->type
== SUBPATTERN
|| os
->type
== RECOG
)
5029 printf (" int res ATTRIBUTE_UNUSED;\n");
5031 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
5034 /* Output the definition of pattern routine ROUTINE. */
5037 print_pattern (output_state
*os
, pattern_routine
*routine
)
5039 printf ("\nstatic int\npattern%d (", routine
->pattern_id
);
5040 const char *sep
= "";
5041 /* Add the top-level rtx parameter, if any. */
5044 printf ("%srtx x1", sep
);
5047 /* Add the optional parameters. */
5048 if (routine
->insn_p
)
5050 /* We can't easily tell whether a C condition actually reads INSN,
5051 so add an ATTRIBUTE_UNUSED just in case. */
5052 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep
);
5055 if (routine
->pnum_clobbers_p
)
5057 printf ("%sint *pnum_clobbers", sep
);
5060 /* Add the "i" parameters. */
5061 for (unsigned int i
= 0; i
< routine
->param_types
.length (); ++i
)
5063 printf ("%s%s i%d", sep
,
5064 parameter_type_string (routine
->param_types
[i
]), i
+ 1);
5068 os
->type
= SUBPATTERN
;
5069 print_subroutine_start (os
, routine
->s
, routine
->pos
);
5070 print_state (os
, routine
->s
, 2, true);
5074 /* Output a routine of type TYPE that implements S. PROC_ID is the
5075 number of the subroutine associated with S, or 0 if S is the main
5079 print_subroutine (output_state
*os
, state
*s
, int proc_id
)
5081 /* For now, the top-level "recog" takes a plain "rtx", and performs a
5082 checked cast to "rtx_insn *" for use throughout the rest of the
5083 function and the code it calls. */
5084 const char *insn_param
5085 = proc_id
> 0 ? "rtx_insn *insn" : "rtx uncast_insn";
5094 printf ("static int\nrecog_%d", proc_id
);
5096 printf ("int\nrecog");
5097 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5098 "\t%s ATTRIBUTE_UNUSED,\n"
5099 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", insn_param
);
5104 printf ("static rtx_insn *\nsplit_%d", proc_id
);
5106 printf ("rtx_insn *\nsplit_insns");
5107 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5112 printf ("static rtx_insn *\npeephole2_%d", proc_id
);
5114 printf ("rtx_insn *\npeephole2_insns");
5115 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5116 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5117 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5120 print_subroutine_start (os
, s
, &root_pos
);
5123 printf (" recog_data.insn = NULL;\n");
5124 if (os
->type
== RECOG
)
5126 printf (" rtx_insn *insn ATTRIBUTE_UNUSED;\n");
5127 printf (" insn = safe_as_a <rtx_insn *> (uncast_insn);\n");
5130 print_state (os
, s
, 2, true);
5134 /* Print out a routine of type TYPE that performs ROOT. */
5137 print_subroutine_group (output_state
*os
, routine_type type
, state
*root
)
5140 if (use_subroutines_p
)
5142 /* Split ROOT up into smaller pieces, both for readability and to
5143 help the compiler. */
5144 auto_vec
<state
*> subroutines
;
5145 find_subroutines (type
, root
, subroutines
);
5147 /* Output the subroutines (but not ROOT itself). */
5150 FOR_EACH_VEC_ELT (subroutines
, i
, s
)
5151 print_subroutine (os
, s
, i
+ 1);
5153 /* Output the main routine. */
5154 print_subroutine (os
, root
, 0);
5157 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5160 get_peephole2_pattern (md_rtx_info
*info
)
5163 rtvec vec
= XVEC (info
->def
, 0);
5164 rtx pattern
= rtx_alloc (SEQUENCE
);
5165 XVEC (pattern
, 0) = rtvec_alloc (GET_NUM_ELEM (vec
));
5166 for (i
= j
= 0; i
< GET_NUM_ELEM (vec
); i
++)
5168 rtx x
= RTVEC_ELT (vec
, i
);
5169 /* Ignore scratch register requirements. */
5170 if (GET_CODE (x
) != MATCH_SCRATCH
&& GET_CODE (x
) != MATCH_DUP
)
5172 XVECEXP (pattern
, 0, j
) = x
;
5176 XVECLEN (pattern
, 0) = j
;
5178 error_at (info
->loc
, "empty define_peephole2");
5182 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5183 rtx can be added automatically by add_clobbers. If so, update
5184 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5185 of such trailing rtxes and update *PATTERN_PTR so that it contains
5186 the pattern without those rtxes. */
5189 remove_clobbers (acceptance_type
*acceptance_ptr
, rtx
*pattern_ptr
)
5194 /* Find the last non-clobber in the parallel. */
5195 rtx pattern
= *pattern_ptr
;
5196 for (i
= XVECLEN (pattern
, 0); i
> 0; i
--)
5198 rtx x
= XVECEXP (pattern
, 0, i
- 1);
5199 if (GET_CODE (x
) != CLOBBER
5200 || (!REG_P (XEXP (x
, 0))
5201 && GET_CODE (XEXP (x
, 0)) != MATCH_SCRATCH
))
5205 if (i
== XVECLEN (pattern
, 0))
5208 /* Build a similar insn without the clobbers. */
5210 new_pattern
= XVECEXP (pattern
, 0, 0);
5213 new_pattern
= rtx_alloc (PARALLEL
);
5214 XVEC (new_pattern
, 0) = rtvec_alloc (i
);
5215 for (int j
= 0; j
< i
; ++j
)
5216 XVECEXP (new_pattern
, 0, j
) = XVECEXP (pattern
, 0, j
);
5220 acceptance_ptr
->u
.full
.u
.num_clobbers
= XVECLEN (pattern
, 0) - i
;
5221 *pattern_ptr
= new_pattern
;
5226 main (int argc
, const char **argv
)
5228 state insn_root
, split_root
, peephole2_root
;
5230 progname
= "genrecog";
5232 if (!init_rtx_reader_args (argc
, argv
))
5233 return (FATAL_EXIT_CODE
);
5237 /* Read the machine description. */
5240 while (read_md_rtx (&info
))
5244 acceptance_type acceptance
;
5245 acceptance
.partial_p
= false;
5246 acceptance
.u
.full
.code
= info
.index
;
5249 switch (GET_CODE (def
))
5253 /* Match the instruction in the original .md form. */
5254 acceptance
.type
= RECOG
;
5255 acceptance
.u
.full
.u
.num_clobbers
= 0;
5256 pattern
= add_implicit_parallel (XVEC (def
, 1));
5257 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5258 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5260 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5261 allow recog_for_combine to match without the clobbers. */
5262 if (GET_CODE (pattern
) == PARALLEL
5263 && remove_clobbers (&acceptance
, &pattern
))
5264 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5269 acceptance
.type
= SPLIT
;
5270 pattern
= add_implicit_parallel (XVEC (def
, 0));
5271 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5272 match_pattern (&split_root
, &info
, pattern
, acceptance
);
5274 /* Declare the gen_split routine that we'll call if the
5275 pattern matches. The definition comes from insn-emit.c. */
5276 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5280 case DEFINE_PEEPHOLE2
:
5281 acceptance
.type
= PEEPHOLE2
;
5282 pattern
= get_peephole2_pattern (&info
);
5283 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5284 match_pattern (&peephole2_root
, &info
, pattern
, acceptance
);
5286 /* Declare the gen_peephole2 routine that we'll call if the
5287 pattern matches. The definition comes from insn-emit.c. */
5288 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5298 return FATAL_EXIT_CODE
;
5302 /* Optimize each routine in turn. */
5303 optimize_subroutine_group ("recog", &insn_root
);
5304 optimize_subroutine_group ("split_insns", &split_root
);
5305 optimize_subroutine_group ("peephole2_insns", &peephole2_root
);
5308 os
.id_to_var
.safe_grow_cleared (num_positions
);
5310 if (use_pattern_routines_p
)
5312 /* Look for common patterns and split them out into subroutines. */
5313 auto_vec
<merge_state_info
> states
;
5314 states
.safe_push (&insn_root
);
5315 states
.safe_push (&split_root
);
5316 states
.safe_push (&peephole2_root
);
5317 split_out_patterns (states
);
5319 /* Print out the routines that we just created. */
5321 pattern_routine
*routine
;
5322 FOR_EACH_VEC_ELT (patterns
, i
, routine
)
5323 print_pattern (&os
, routine
);
5326 /* Print out the matching routines. */
5327 print_subroutine_group (&os
, RECOG
, &insn_root
);
5328 print_subroutine_group (&os
, SPLIT
, &split_root
);
5329 print_subroutine_group (&os
, PEEPHOLE2
, &peephole2_root
);
5332 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);