2016-10-22 Thomas Koenig <tkoenig@gcc.gnu.org>
[official-gcc.git] / gcc / lra-spills.c
blob6e044cdfced3964b41481c00477329a01b38290e
1 /* Change pseudos by memory.
2 Copyright (C) 2010-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for a pass to change spilled pseudos into
23 memory.
25 The pass creates necessary stack slots and assigns spilled pseudos
26 to the stack slots in following way:
28 for all spilled pseudos P most frequently used first do
29 for all stack slots S do
30 if P doesn't conflict with pseudos assigned to S then
31 assign S to P and goto to the next pseudo process
32 end
33 end
34 create new stack slot S and assign P to S
35 end
37 The actual algorithm is bit more complicated because of different
38 pseudo sizes.
40 After that the code changes spilled pseudos (except ones created
41 from scratches) by corresponding stack slot memory in RTL.
43 If at least one stack slot was created, we need to run more passes
44 because we have new addresses which should be checked and because
45 the old address displacements might change and address constraints
46 (or insn memory constraints) might not be satisfied any more.
48 For some targets, the pass can spill some pseudos into hard
49 registers of different class (usually into vector registers)
50 instead of spilling them into memory if it is possible and
51 profitable. Spilling GENERAL_REGS pseudo into SSE registers for
52 Intel Corei7 is an example of such optimization. And this is
53 actually recommended by Intel optimization guide.
55 The file also contains code for final change of pseudos on hard
56 regs correspondingly assigned to them. */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "backend.h"
62 #include "target.h"
63 #include "rtl.h"
64 #include "df.h"
65 #include "insn-config.h"
66 #include "regs.h"
67 #include "memmodel.h"
68 #include "ira.h"
69 #include "recog.h"
70 #include "output.h"
71 #include "cfgrtl.h"
72 #include "lra.h"
73 #include "lra-int.h"
76 /* Max regno at the start of the pass. */
77 static int regs_num;
79 /* Map spilled regno -> hard regno used instead of memory for
80 spilling. */
81 static rtx *spill_hard_reg;
83 /* The structure describes stack slot of a spilled pseudo. */
84 struct pseudo_slot
86 /* Number (0, 1, ...) of the stack slot to which given pseudo
87 belongs. */
88 int slot_num;
89 /* First or next slot with the same slot number. */
90 struct pseudo_slot *next, *first;
91 /* Memory representing the spilled pseudo. */
92 rtx mem;
95 /* The stack slots for each spilled pseudo. Indexed by regnos. */
96 static struct pseudo_slot *pseudo_slots;
98 /* The structure describes a register or a stack slot which can be
99 used for several spilled pseudos. */
100 struct slot
102 /* First pseudo with given stack slot. */
103 int regno;
104 /* Hard reg into which the slot pseudos are spilled. The value is
105 negative for pseudos spilled into memory. */
106 int hard_regno;
107 /* Memory representing the all stack slot. It can be different from
108 memory representing a pseudo belonging to give stack slot because
109 pseudo can be placed in a part of the corresponding stack slot.
110 The value is NULL for pseudos spilled into a hard reg. */
111 rtx mem;
112 /* Combined live ranges of all pseudos belonging to given slot. It
113 is used to figure out that a new spilled pseudo can use given
114 stack slot. */
115 lra_live_range_t live_ranges;
118 /* Array containing info about the stack slots. The array element is
119 indexed by the stack slot number in the range [0..slots_num). */
120 static struct slot *slots;
121 /* The number of the stack slots currently existing. */
122 static int slots_num;
124 /* Set up memory of the spilled pseudo I. The function can allocate
125 the corresponding stack slot if it is not done yet. */
126 static void
127 assign_mem_slot (int i)
129 rtx x = NULL_RTX;
130 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
131 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
132 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
133 unsigned int max_ref_width = GET_MODE_SIZE (lra_reg_info[i].biggest_mode);
134 unsigned int total_size = MAX (inherent_size, max_ref_width);
135 unsigned int min_align = max_ref_width * BITS_PER_UNIT;
136 int adjust = 0;
138 lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
139 && lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
141 x = slots[pseudo_slots[i].slot_num].mem;
143 /* We can use a slot already allocated because it is guaranteed the
144 slot provides both enough inherent space and enough total
145 space. */
146 if (x)
148 /* Each pseudo has an inherent size which comes from its own mode,
149 and a total size which provides room for paradoxical subregs
150 which refer to the pseudo reg in wider modes. We allocate a new
151 slot, making sure that it has enough inherent space and total
152 space. */
153 else
155 rtx stack_slot;
157 /* No known place to spill from => no slot to reuse. */
158 x = assign_stack_local (mode, total_size,
159 min_align > inherent_align
160 || total_size > inherent_size ? -1 : 0);
161 stack_slot = x;
162 /* Cancel the big-endian correction done in assign_stack_local.
163 Get the address of the beginning of the slot. This is so we
164 can do a big-endian correction unconditionally below. */
165 if (BYTES_BIG_ENDIAN)
167 adjust = inherent_size - total_size;
168 if (adjust)
169 stack_slot
170 = adjust_address_nv (x,
171 mode_for_size (total_size * BITS_PER_UNIT,
172 MODE_INT, 1),
173 adjust);
175 slots[pseudo_slots[i].slot_num].mem = stack_slot;
178 /* On a big endian machine, the "address" of the slot is the address
179 of the low part that fits its inherent mode. */
180 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
181 adjust += (total_size - inherent_size);
183 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
185 /* Set all of the memory attributes as appropriate for a spill. */
186 set_mem_attrs_for_spill (x);
187 pseudo_slots[i].mem = x;
190 /* Sort pseudos according their usage frequencies. */
191 static int
192 regno_freq_compare (const void *v1p, const void *v2p)
194 const int regno1 = *(const int *) v1p;
195 const int regno2 = *(const int *) v2p;
196 int diff;
198 if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
199 return diff;
200 return regno1 - regno2;
203 /* Sort pseudos according to their slots, putting the slots in the order
204 that they should be allocated. Slots with lower numbers have the highest
205 priority and should get the smallest displacement from the stack or
206 frame pointer (whichever is being used).
208 The first allocated slot is always closest to the frame pointer,
209 so prefer lower slot numbers when frame_pointer_needed. If the stack
210 and frame grow in the same direction, then the first allocated slot is
211 always closest to the initial stack pointer and furthest away from the
212 final stack pointer, so allocate higher numbers first when using the
213 stack pointer in that case. The reverse is true if the stack and
214 frame grow in opposite directions. */
215 static int
216 pseudo_reg_slot_compare (const void *v1p, const void *v2p)
218 const int regno1 = *(const int *) v1p;
219 const int regno2 = *(const int *) v2p;
220 int diff, slot_num1, slot_num2;
221 int total_size1, total_size2;
223 slot_num1 = pseudo_slots[regno1].slot_num;
224 slot_num2 = pseudo_slots[regno2].slot_num;
225 if ((diff = slot_num1 - slot_num2) != 0)
226 return (frame_pointer_needed
227 || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
228 total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
229 total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
230 if ((diff = total_size2 - total_size1) != 0)
231 return diff;
232 return regno1 - regno2;
235 /* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
236 sorted in order of highest frequency first. Put the pseudos which
237 did not get a spill hard register at the beginning of array
238 PSEUDO_REGNOS. Return the number of such pseudos. */
239 static int
240 assign_spill_hard_regs (int *pseudo_regnos, int n)
242 int i, k, p, regno, res, spill_class_size, hard_regno, nr;
243 enum reg_class rclass, spill_class;
244 machine_mode mode;
245 lra_live_range_t r;
246 rtx_insn *insn;
247 rtx set;
248 basic_block bb;
249 HARD_REG_SET conflict_hard_regs;
250 bitmap_head ok_insn_bitmap;
251 bitmap setjump_crosses = regstat_get_setjmp_crosses ();
252 /* Hard registers which can not be used for any purpose at given
253 program point because they are unallocatable or already allocated
254 for other pseudos. */
255 HARD_REG_SET *reserved_hard_regs;
257 if (! lra_reg_spill_p)
258 return n;
259 /* Set up reserved hard regs for every program point. */
260 reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
261 for (p = 0; p < lra_live_max_point; p++)
262 COPY_HARD_REG_SET (reserved_hard_regs[p], lra_no_alloc_regs);
263 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
264 if (lra_reg_info[i].nrefs != 0
265 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
266 for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
267 for (p = r->start; p <= r->finish; p++)
268 add_to_hard_reg_set (&reserved_hard_regs[p],
269 lra_reg_info[i].biggest_mode, hard_regno);
270 bitmap_initialize (&ok_insn_bitmap, &reg_obstack);
271 FOR_EACH_BB_FN (bb, cfun)
272 FOR_BB_INSNS (bb, insn)
273 if (DEBUG_INSN_P (insn)
274 || ((set = single_set (insn)) != NULL_RTX
275 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
276 bitmap_set_bit (&ok_insn_bitmap, INSN_UID (insn));
277 for (res = i = 0; i < n; i++)
279 regno = pseudo_regnos[i];
280 rclass = lra_get_allocno_class (regno);
281 if (bitmap_bit_p (setjump_crosses, regno)
282 || (spill_class
283 = ((enum reg_class)
284 targetm.spill_class ((reg_class_t) rclass,
285 PSEUDO_REGNO_MODE (regno)))) == NO_REGS
286 || bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
287 &ok_insn_bitmap))
289 pseudo_regnos[res++] = regno;
290 continue;
292 lra_assert (spill_class != NO_REGS);
293 COPY_HARD_REG_SET (conflict_hard_regs,
294 lra_reg_info[regno].conflict_hard_regs);
295 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
296 for (p = r->start; p <= r->finish; p++)
297 IOR_HARD_REG_SET (conflict_hard_regs, reserved_hard_regs[p]);
298 spill_class_size = ira_class_hard_regs_num[spill_class];
299 mode = lra_reg_info[regno].biggest_mode;
300 for (k = 0; k < spill_class_size; k++)
302 hard_regno = ira_class_hard_regs[spill_class][k];
303 if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
304 break;
306 if (k >= spill_class_size)
308 /* There is no available regs -- assign memory later. */
309 pseudo_regnos[res++] = regno;
310 continue;
312 if (lra_dump_file != NULL)
313 fprintf (lra_dump_file, " Spill r%d into hr%d\n", regno, hard_regno);
314 /* Update reserved_hard_regs. */
315 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
316 for (p = r->start; p <= r->finish; p++)
317 add_to_hard_reg_set (&reserved_hard_regs[p],
318 lra_reg_info[regno].biggest_mode, hard_regno);
319 spill_hard_reg[regno]
320 = gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
321 for (nr = 0;
322 nr < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode];
323 nr++)
324 /* Just loop. */
325 df_set_regs_ever_live (hard_regno + nr, true);
327 bitmap_clear (&ok_insn_bitmap);
328 free (reserved_hard_regs);
329 return res;
332 /* Add pseudo REGNO to slot SLOT_NUM. */
333 static void
334 add_pseudo_to_slot (int regno, int slot_num)
336 struct pseudo_slot *first;
338 if (slots[slot_num].regno < 0)
340 /* It is the first pseudo in the slot. */
341 slots[slot_num].regno = regno;
342 pseudo_slots[regno].first = &pseudo_slots[regno];
343 pseudo_slots[regno].next = NULL;
345 else
347 first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
348 pseudo_slots[regno].next = first->next;
349 first->next = &pseudo_slots[regno];
351 pseudo_slots[regno].mem = NULL_RTX;
352 pseudo_slots[regno].slot_num = slot_num;
353 slots[slot_num].live_ranges
354 = lra_merge_live_ranges (slots[slot_num].live_ranges,
355 lra_copy_live_range_list
356 (lra_reg_info[regno].live_ranges));
359 /* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
360 length N. Sort pseudos in PSEUDO_REGNOS for subsequent assigning
361 memory stack slots. */
362 static void
363 assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
365 int i, j, regno;
367 slots_num = 0;
368 /* Assign stack slot numbers to spilled pseudos, use smaller numbers
369 for most frequently used pseudos. */
370 for (i = 0; i < n; i++)
372 regno = pseudo_regnos[i];
373 if (! flag_ira_share_spill_slots)
374 j = slots_num;
375 else
377 for (j = 0; j < slots_num; j++)
378 if (slots[j].hard_regno < 0
379 && ! (lra_intersected_live_ranges_p
380 (slots[j].live_ranges,
381 lra_reg_info[regno].live_ranges)))
382 break;
384 if (j >= slots_num)
386 /* New slot. */
387 slots[j].live_ranges = NULL;
388 slots[j].regno = slots[j].hard_regno = -1;
389 slots[j].mem = NULL_RTX;
390 slots_num++;
392 add_pseudo_to_slot (regno, j);
394 /* Sort regnos according to their slot numbers. */
395 qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
398 /* Recursively process LOC in INSN and change spilled pseudos to the
399 corresponding memory or spilled hard reg. Ignore spilled pseudos
400 created from the scratches. Return true if the pseudo nrefs equal
401 to 0 (don't change the pseudo in this case). Otherwise return false. */
402 static bool
403 remove_pseudos (rtx *loc, rtx_insn *insn)
405 int i;
406 rtx hard_reg;
407 const char *fmt;
408 enum rtx_code code;
409 bool res = false;
411 if (*loc == NULL_RTX)
412 return res;
413 code = GET_CODE (*loc);
414 if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
415 && lra_get_regno_hard_regno (i) < 0
416 /* We do not want to assign memory for former scratches because
417 it might result in an address reload for some targets. In
418 any case we transform such pseudos not getting hard registers
419 into scratches back. */
420 && ! lra_former_scratch_p (i))
422 if (lra_reg_info[i].nrefs == 0
423 && pseudo_slots[i].mem == NULL && spill_hard_reg[i] == NULL)
424 return true;
425 if ((hard_reg = spill_hard_reg[i]) != NULL_RTX)
426 *loc = copy_rtx (hard_reg);
427 else
429 rtx x = lra_eliminate_regs_1 (insn, pseudo_slots[i].mem,
430 GET_MODE (pseudo_slots[i].mem),
431 false, false, 0, true);
432 *loc = x != pseudo_slots[i].mem ? x : copy_rtx (x);
434 return res;
437 fmt = GET_RTX_FORMAT (code);
438 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
440 if (fmt[i] == 'e')
441 res = remove_pseudos (&XEXP (*loc, i), insn) || res;
442 else if (fmt[i] == 'E')
444 int j;
446 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
447 res = remove_pseudos (&XVECEXP (*loc, i, j), insn) || res;
450 return res;
453 /* Convert spilled pseudos into their stack slots or spill hard regs,
454 put insns to process on the constraint stack (that is all insns in
455 which pseudos were changed to memory or spill hard regs). */
456 static void
457 spill_pseudos (void)
459 basic_block bb;
460 rtx_insn *insn, *curr;
461 int i;
462 bitmap_head spilled_pseudos, changed_insns;
464 bitmap_initialize (&spilled_pseudos, &reg_obstack);
465 bitmap_initialize (&changed_insns, &reg_obstack);
466 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
468 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
469 && ! lra_former_scratch_p (i))
471 bitmap_set_bit (&spilled_pseudos, i);
472 bitmap_ior_into (&changed_insns, &lra_reg_info[i].insn_bitmap);
475 FOR_EACH_BB_FN (bb, cfun)
477 FOR_BB_INSNS_SAFE (bb, insn, curr)
479 bool removed_pseudo_p = false;
481 if (bitmap_bit_p (&changed_insns, INSN_UID (insn)))
483 rtx *link_loc, link;
485 removed_pseudo_p = remove_pseudos (&PATTERN (insn), insn);
486 if (CALL_P (insn)
487 && remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
488 removed_pseudo_p = true;
489 for (link_loc = &REG_NOTES (insn);
490 (link = *link_loc) != NULL_RTX;
491 link_loc = &XEXP (link, 1))
493 switch (REG_NOTE_KIND (link))
495 case REG_FRAME_RELATED_EXPR:
496 case REG_CFA_DEF_CFA:
497 case REG_CFA_ADJUST_CFA:
498 case REG_CFA_OFFSET:
499 case REG_CFA_REGISTER:
500 case REG_CFA_EXPRESSION:
501 case REG_CFA_RESTORE:
502 case REG_CFA_SET_VDRAP:
503 if (remove_pseudos (&XEXP (link, 0), insn))
504 removed_pseudo_p = true;
505 break;
506 default:
507 break;
510 if (lra_dump_file != NULL)
511 fprintf (lra_dump_file,
512 "Changing spilled pseudos to memory in insn #%u\n",
513 INSN_UID (insn));
514 lra_push_insn (insn);
515 if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
516 lra_set_used_insn_alternative (insn, -1);
518 else if (CALL_P (insn)
519 /* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE
520 does not affect value of insn_bitmap of the
521 corresponding lra_reg_info. That is because we
522 don't need to reload pseudos in
523 CALL_INSN_FUNCTION_USAGEs. So if we process only
524 insns in the insn_bitmap of given pseudo here, we
525 can miss the pseudo in some
526 CALL_INSN_FUNCTION_USAGEs. */
527 && remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
528 removed_pseudo_p = true;
529 if (removed_pseudo_p)
531 lra_assert (DEBUG_INSN_P (insn));
532 lra_invalidate_insn_data (insn);
533 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
534 if (lra_dump_file != NULL)
535 fprintf (lra_dump_file,
536 "Debug insn #%u is reset because it referenced "
537 "removed pseudo\n", INSN_UID (insn));
539 bitmap_and_compl_into (df_get_live_in (bb), &spilled_pseudos);
540 bitmap_and_compl_into (df_get_live_out (bb), &spilled_pseudos);
543 bitmap_clear (&spilled_pseudos);
544 bitmap_clear (&changed_insns);
547 /* Return true if we need to change some pseudos into memory. */
548 bool
549 lra_need_for_spills_p (void)
551 int i; max_regno = max_reg_num ();
553 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
554 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
555 && ! lra_former_scratch_p (i))
556 return true;
557 return false;
560 /* Change spilled pseudos into memory or spill hard regs. Put changed
561 insns on the constraint stack (these insns will be considered on
562 the next constraint pass). The changed insns are all insns in
563 which pseudos were changed. */
564 void
565 lra_spill (void)
567 int i, n, curr_regno;
568 int *pseudo_regnos;
570 regs_num = max_reg_num ();
571 spill_hard_reg = XNEWVEC (rtx, regs_num);
572 pseudo_regnos = XNEWVEC (int, regs_num);
573 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
574 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
575 /* We do not want to assign memory for former scratches. */
576 && ! lra_former_scratch_p (i))
577 pseudo_regnos[n++] = i;
578 lra_assert (n > 0);
579 pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
580 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
582 spill_hard_reg[i] = NULL_RTX;
583 pseudo_slots[i].mem = NULL_RTX;
585 slots = XNEWVEC (struct slot, regs_num);
586 /* Sort regnos according their usage frequencies. */
587 qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
588 n = assign_spill_hard_regs (pseudo_regnos, n);
589 assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
590 for (i = 0; i < n; i++)
591 if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
592 assign_mem_slot (pseudo_regnos[i]);
593 if (n > 0 && crtl->stack_alignment_needed)
594 /* If we have a stack frame, we must align it now. The stack size
595 may be a part of the offset computation for register
596 elimination. */
597 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
598 if (lra_dump_file != NULL)
600 for (i = 0; i < slots_num; i++)
602 fprintf (lra_dump_file, " Slot %d regnos (width = %d):", i,
603 GET_MODE_SIZE (GET_MODE (slots[i].mem)));
604 for (curr_regno = slots[i].regno;;
605 curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
607 fprintf (lra_dump_file, " %d", curr_regno);
608 if (pseudo_slots[curr_regno].next == NULL)
609 break;
611 fprintf (lra_dump_file, "\n");
614 spill_pseudos ();
615 free (slots);
616 free (pseudo_slots);
617 free (pseudo_regnos);
618 free (spill_hard_reg);
621 /* Apply alter_subreg for subregs of regs in *LOC. Use FINAL_P for
622 alter_subreg calls. Return true if any subreg of reg is
623 processed. */
624 static bool
625 alter_subregs (rtx *loc, bool final_p)
627 int i;
628 rtx x = *loc;
629 bool res;
630 const char *fmt;
631 enum rtx_code code;
633 if (x == NULL_RTX)
634 return false;
635 code = GET_CODE (x);
636 if (code == SUBREG && REG_P (SUBREG_REG (x)))
638 lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
639 alter_subreg (loc, final_p);
640 return true;
642 fmt = GET_RTX_FORMAT (code);
643 res = false;
644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
646 if (fmt[i] == 'e')
648 if (alter_subregs (&XEXP (x, i), final_p))
649 res = true;
651 else if (fmt[i] == 'E')
653 int j;
655 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
656 if (alter_subregs (&XVECEXP (x, i, j), final_p))
657 res = true;
660 return res;
663 /* Return true if REGNO is used for return in the current
664 function. */
665 static bool
666 return_regno_p (unsigned int regno)
668 rtx outgoing = crtl->return_rtx;
670 if (! outgoing)
671 return false;
673 if (REG_P (outgoing))
674 return REGNO (outgoing) == regno;
675 else if (GET_CODE (outgoing) == PARALLEL)
677 int i;
679 for (i = 0; i < XVECLEN (outgoing, 0); i++)
681 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
683 if (REG_P (x) && REGNO (x) == regno)
684 return true;
687 return false;
690 /* Return true if REGNO is in one of subsequent USE after INSN in the
691 same BB. */
692 static bool
693 regno_in_use_p (rtx_insn *insn, unsigned int regno)
695 static lra_insn_recog_data_t id;
696 static struct lra_static_insn_data *static_id;
697 struct lra_insn_reg *reg;
698 int i, arg_regno;
699 basic_block bb = BLOCK_FOR_INSN (insn);
701 while ((insn = next_nondebug_insn (insn)) != NULL_RTX)
703 if (BARRIER_P (insn) || bb != BLOCK_FOR_INSN (insn))
704 return false;
705 if (! INSN_P (insn))
706 continue;
707 if (GET_CODE (PATTERN (insn)) == USE
708 && REG_P (XEXP (PATTERN (insn), 0))
709 && regno == REGNO (XEXP (PATTERN (insn), 0)))
710 return true;
711 /* Check that the regno is not modified. */
712 id = lra_get_insn_recog_data (insn);
713 for (reg = id->regs; reg != NULL; reg = reg->next)
714 if (reg->type != OP_IN && reg->regno == (int) regno)
715 return false;
716 static_id = id->insn_static_data;
717 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
718 if (reg->type != OP_IN && reg->regno == (int) regno)
719 return false;
720 if (id->arg_hard_regs != NULL)
721 for (i = 0; (arg_regno = id->arg_hard_regs[i]) >= 0; i++)
722 if ((int) regno == (arg_regno >= FIRST_PSEUDO_REGISTER
723 ? arg_regno : arg_regno - FIRST_PSEUDO_REGISTER))
724 return false;
726 return false;
729 /* Final change of pseudos got hard registers into the corresponding
730 hard registers and removing temporary clobbers. */
731 void
732 lra_final_code_change (void)
734 int i, hard_regno;
735 basic_block bb;
736 rtx_insn *insn, *curr;
737 int max_regno = max_reg_num ();
739 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
740 if (lra_reg_info[i].nrefs != 0
741 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
742 SET_REGNO (regno_reg_rtx[i], hard_regno);
743 FOR_EACH_BB_FN (bb, cfun)
744 FOR_BB_INSNS_SAFE (bb, insn, curr)
745 if (INSN_P (insn))
747 rtx pat = PATTERN (insn);
749 if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
751 /* Remove clobbers temporarily created in LRA. We don't
752 need them anymore and don't want to waste compiler
753 time processing them in a few subsequent passes. */
754 lra_invalidate_insn_data (insn);
755 delete_insn (insn);
756 continue;
759 /* IRA can generate move insns involving pseudos. It is
760 better remove them earlier to speed up compiler a bit.
761 It is also better to do it here as they might not pass
762 final RTL check in LRA, (e.g. insn moving a control
763 register into itself). So remove an useless move insn
764 unless next insn is USE marking the return reg (we should
765 save this as some subsequent optimizations assume that
766 such original insns are saved). */
767 if (NONJUMP_INSN_P (insn) && GET_CODE (pat) == SET
768 && REG_P (SET_SRC (pat)) && REG_P (SET_DEST (pat))
769 && REGNO (SET_SRC (pat)) == REGNO (SET_DEST (pat))
770 && (! return_regno_p (REGNO (SET_SRC (pat)))
771 || ! regno_in_use_p (insn, REGNO (SET_SRC (pat)))))
773 lra_invalidate_insn_data (insn);
774 delete_insn (insn);
775 continue;
778 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
779 struct lra_insn_reg *reg;
781 for (reg = id->regs; reg != NULL; reg = reg->next)
782 if (reg->regno >= FIRST_PSEUDO_REGISTER
783 && lra_reg_info [reg->regno].nrefs == 0)
784 break;
786 if (reg != NULL)
788 /* Pseudos still can be in debug insns in some very rare
789 and complicated cases, e.g. the pseudo was removed by
790 inheritance and the debug insn is not EBBs where the
791 inheritance happened. It is difficult and time
792 consuming to find what hard register corresponds the
793 pseudo -- so just remove the debug insn. Another
794 solution could be assigning hard reg/memory but it
795 would be a misleading info. It is better not to have
796 info than have it wrong. */
797 lra_assert (DEBUG_INSN_P (insn));
798 lra_invalidate_insn_data (insn);
799 delete_insn (insn);
800 continue;
803 struct lra_static_insn_data *static_id = id->insn_static_data;
804 bool insn_change_p = false;
806 for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
807 if ((DEBUG_INSN_P (insn) || ! static_id->operand[i].is_operator)
808 && alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
810 lra_update_dup (id, i);
811 insn_change_p = true;
813 if (insn_change_p)
814 lra_update_operator_dups (id);